1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2016 Gary Mills 26 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 27 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 28 * Copyright 2019 Joyent, Inc. 29 */ 30 31 #include <sys/dsl_scan.h> 32 #include <sys/dsl_pool.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_prop.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dnode.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/arc.h> 41 #include <sys/arc_impl.h> 42 #include <sys/zap.h> 43 #include <sys/zio.h> 44 #include <sys/zfs_context.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/zfs_znode.h> 47 #include <sys/spa_impl.h> 48 #include <sys/vdev_impl.h> 49 #include <sys/zil_impl.h> 50 #include <sys/zio_checksum.h> 51 #include <sys/brt.h> 52 #include <sys/ddt.h> 53 #include <sys/sa.h> 54 #include <sys/sa_impl.h> 55 #include <sys/zfeature.h> 56 #include <sys/abd.h> 57 #include <sys/range_tree.h> 58 #include <sys/dbuf.h> 59 #ifdef _KERNEL 60 #include <sys/zfs_vfsops.h> 61 #endif 62 63 /* 64 * Grand theory statement on scan queue sorting 65 * 66 * Scanning is implemented by recursively traversing all indirection levels 67 * in an object and reading all blocks referenced from said objects. This 68 * results in us approximately traversing the object from lowest logical 69 * offset to the highest. For best performance, we would want the logical 70 * blocks to be physically contiguous. However, this is frequently not the 71 * case with pools given the allocation patterns of copy-on-write filesystems. 72 * So instead, we put the I/Os into a reordering queue and issue them in a 73 * way that will most benefit physical disks (LBA-order). 74 * 75 * Queue management: 76 * 77 * Ideally, we would want to scan all metadata and queue up all block I/O 78 * prior to starting to issue it, because that allows us to do an optimal 79 * sorting job. This can however consume large amounts of memory. Therefore 80 * we continuously monitor the size of the queues and constrain them to 5% 81 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 82 * limit, we clear out a few of the largest extents at the head of the queues 83 * to make room for more scanning. Hopefully, these extents will be fairly 84 * large and contiguous, allowing us to approach sequential I/O throughput 85 * even without a fully sorted tree. 86 * 87 * Metadata scanning takes place in dsl_scan_visit(), which is called from 88 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 89 * metadata on the pool, or we need to make room in memory because our 90 * queues are too large, dsl_scan_visit() is postponed and 91 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 92 * that metadata scanning and queued I/O issuing are mutually exclusive. This 93 * allows us to provide maximum sequential I/O throughput for the majority of 94 * I/O's issued since sequential I/O performance is significantly negatively 95 * impacted if it is interleaved with random I/O. 96 * 97 * Implementation Notes 98 * 99 * One side effect of the queued scanning algorithm is that the scanning code 100 * needs to be notified whenever a block is freed. This is needed to allow 101 * the scanning code to remove these I/Os from the issuing queue. Additionally, 102 * we do not attempt to queue gang blocks to be issued sequentially since this 103 * is very hard to do and would have an extremely limited performance benefit. 104 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 105 * algorithm. 106 * 107 * Backwards compatibility 108 * 109 * This new algorithm is backwards compatible with the legacy on-disk data 110 * structures (and therefore does not require a new feature flag). 111 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 112 * will stop scanning metadata (in logical order) and wait for all outstanding 113 * sorted I/O to complete. Once this is done, we write out a checkpoint 114 * bookmark, indicating that we have scanned everything logically before it. 115 * If the pool is imported on a machine without the new sorting algorithm, 116 * the scan simply resumes from the last checkpoint using the legacy algorithm. 117 */ 118 119 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 120 const zbookmark_phys_t *); 121 122 static scan_cb_t dsl_scan_scrub_cb; 123 124 static int scan_ds_queue_compare(const void *a, const void *b); 125 static int scan_prefetch_queue_compare(const void *a, const void *b); 126 static void scan_ds_queue_clear(dsl_scan_t *scn); 127 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 128 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 129 uint64_t *txg); 130 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 131 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 132 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 133 static uint64_t dsl_scan_count_data_disks(spa_t *spa); 134 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb); 135 136 extern uint_t zfs_vdev_async_write_active_min_dirty_percent; 137 static int zfs_scan_blkstats = 0; 138 139 /* 140 * 'zpool status' uses bytes processed per pass to report throughput and 141 * estimate time remaining. We define a pass to start when the scanning 142 * phase completes for a sequential resilver. Optionally, this value 143 * may be used to reset the pass statistics every N txgs to provide an 144 * estimated completion time based on currently observed performance. 145 */ 146 static uint_t zfs_scan_report_txgs = 0; 147 148 /* 149 * By default zfs will check to ensure it is not over the hard memory 150 * limit before each txg. If finer-grained control of this is needed 151 * this value can be set to 1 to enable checking before scanning each 152 * block. 153 */ 154 static int zfs_scan_strict_mem_lim = B_FALSE; 155 156 /* 157 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 158 * to strike a balance here between keeping the vdev queues full of I/Os 159 * at all times and not overflowing the queues to cause long latency, 160 * which would cause long txg sync times. No matter what, we will not 161 * overload the drives with I/O, since that is protected by 162 * zfs_vdev_scrub_max_active. 163 */ 164 static uint64_t zfs_scan_vdev_limit = 16 << 20; 165 166 static uint_t zfs_scan_issue_strategy = 0; 167 168 /* don't queue & sort zios, go direct */ 169 static int zfs_scan_legacy = B_FALSE; 170 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 171 172 /* 173 * fill_weight is non-tunable at runtime, so we copy it at module init from 174 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 175 * break queue sorting. 176 */ 177 static uint_t zfs_scan_fill_weight = 3; 178 static uint64_t fill_weight; 179 180 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 181 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 182 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 183 184 185 /* fraction of physmem */ 186 static uint_t zfs_scan_mem_lim_fact = 20; 187 188 /* fraction of mem lim above */ 189 static uint_t zfs_scan_mem_lim_soft_fact = 20; 190 191 /* minimum milliseconds to scrub per txg */ 192 static uint_t zfs_scrub_min_time_ms = 1000; 193 194 /* minimum milliseconds to obsolete per txg */ 195 static uint_t zfs_obsolete_min_time_ms = 500; 196 197 /* minimum milliseconds to free per txg */ 198 static uint_t zfs_free_min_time_ms = 1000; 199 200 /* minimum milliseconds to resilver per txg */ 201 static uint_t zfs_resilver_min_time_ms = 3000; 202 203 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */ 204 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 205 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 206 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 207 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 208 /* max number of blocks to free in a single TXG */ 209 static uint64_t zfs_async_block_max_blocks = UINT64_MAX; 210 /* max number of dedup blocks to free in a single TXG */ 211 static uint64_t zfs_max_async_dedup_frees = 100000; 212 213 /* set to disable resilver deferring */ 214 static int zfs_resilver_disable_defer = B_FALSE; 215 216 /* Don't defer a resilver if the one in progress only got this far: */ 217 static uint_t zfs_resilver_defer_percent = 10; 218 219 /* 220 * We wait a few txgs after importing a pool to begin scanning so that 221 * the import / mounting code isn't held up by scrub / resilver IO. 222 * Unfortunately, it is a bit difficult to determine exactly how long 223 * this will take since userspace will trigger fs mounts asynchronously 224 * and the kernel will create zvol minors asynchronously. As a result, 225 * the value provided here is a bit arbitrary, but represents a 226 * reasonable estimate of how many txgs it will take to finish fully 227 * importing a pool 228 */ 229 #define SCAN_IMPORT_WAIT_TXGS 5 230 231 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 232 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 233 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 234 235 #define DSL_SCAN_IS_SCRUB(scn) \ 236 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB) 237 238 /* 239 * Enable/disable the processing of the free_bpobj object. 240 */ 241 static int zfs_free_bpobj_enabled = 1; 242 243 /* Error blocks to be scrubbed in one txg. */ 244 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12; 245 246 /* the order has to match pool_scan_type */ 247 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 248 NULL, 249 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 250 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 251 }; 252 253 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 254 typedef struct { 255 uint64_t sds_dsobj; 256 uint64_t sds_txg; 257 avl_node_t sds_node; 258 } scan_ds_t; 259 260 /* 261 * This controls what conditions are placed on dsl_scan_sync_state(): 262 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0 263 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0. 264 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise 265 * write out the scn_phys_cached version. 266 * See dsl_scan_sync_state for details. 267 */ 268 typedef enum { 269 SYNC_OPTIONAL, 270 SYNC_MANDATORY, 271 SYNC_CACHED 272 } state_sync_type_t; 273 274 /* 275 * This struct represents the minimum information needed to reconstruct a 276 * zio for sequential scanning. This is useful because many of these will 277 * accumulate in the sequential IO queues before being issued, so saving 278 * memory matters here. 279 */ 280 typedef struct scan_io { 281 /* fields from blkptr_t */ 282 uint64_t sio_blk_prop; 283 uint64_t sio_phys_birth; 284 uint64_t sio_birth; 285 zio_cksum_t sio_cksum; 286 uint32_t sio_nr_dvas; 287 288 /* fields from zio_t */ 289 uint32_t sio_flags; 290 zbookmark_phys_t sio_zb; 291 292 /* members for queue sorting */ 293 union { 294 avl_node_t sio_addr_node; /* link into issuing queue */ 295 list_node_t sio_list_node; /* link for issuing to disk */ 296 } sio_nodes; 297 298 /* 299 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 300 * depending on how many were in the original bp. Only the 301 * first DVA is really used for sorting and issuing purposes. 302 * The other DVAs (if provided) simply exist so that the zio 303 * layer can find additional copies to repair from in the 304 * event of an error. This array must go at the end of the 305 * struct to allow this for the variable number of elements. 306 */ 307 dva_t sio_dva[]; 308 } scan_io_t; 309 310 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 311 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 312 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 313 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 314 #define SIO_GET_END_OFFSET(sio) \ 315 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 316 #define SIO_GET_MUSED(sio) \ 317 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 318 319 struct dsl_scan_io_queue { 320 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 321 vdev_t *q_vd; /* top-level vdev that this queue represents */ 322 zio_t *q_zio; /* scn_zio_root child for waiting on IO */ 323 324 /* trees used for sorting I/Os and extents of I/Os */ 325 zfs_range_tree_t *q_exts_by_addr; 326 zfs_btree_t q_exts_by_size; 327 avl_tree_t q_sios_by_addr; 328 uint64_t q_sio_memused; 329 uint64_t q_last_ext_addr; 330 331 /* members for zio rate limiting */ 332 uint64_t q_maxinflight_bytes; 333 uint64_t q_inflight_bytes; 334 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 335 336 /* per txg statistics */ 337 uint64_t q_total_seg_size_this_txg; 338 uint64_t q_segs_this_txg; 339 uint64_t q_total_zio_size_this_txg; 340 uint64_t q_zios_this_txg; 341 }; 342 343 /* private data for dsl_scan_prefetch_cb() */ 344 typedef struct scan_prefetch_ctx { 345 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 346 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 347 boolean_t spc_root; /* is this prefetch for an objset? */ 348 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 349 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 350 } scan_prefetch_ctx_t; 351 352 /* private data for dsl_scan_prefetch() */ 353 typedef struct scan_prefetch_issue_ctx { 354 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 355 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 356 blkptr_t spic_bp; /* bp to prefetch */ 357 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 358 } scan_prefetch_issue_ctx_t; 359 360 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 361 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 362 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 363 scan_io_t *sio); 364 365 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 366 static void scan_io_queues_destroy(dsl_scan_t *scn); 367 368 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 369 370 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 371 static void 372 sio_free(scan_io_t *sio) 373 { 374 ASSERT3U(sio->sio_nr_dvas, >, 0); 375 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 376 377 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 378 } 379 380 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 381 static scan_io_t * 382 sio_alloc(unsigned short nr_dvas) 383 { 384 ASSERT3U(nr_dvas, >, 0); 385 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 386 387 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 388 } 389 390 void 391 scan_init(void) 392 { 393 /* 394 * This is used in ext_size_compare() to weight segments 395 * based on how sparse they are. This cannot be changed 396 * mid-scan and the tree comparison functions don't currently 397 * have a mechanism for passing additional context to the 398 * compare functions. Thus we store this value globally and 399 * we only allow it to be set at module initialization time 400 */ 401 fill_weight = zfs_scan_fill_weight; 402 403 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 404 char name[36]; 405 406 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 407 sio_cache[i] = kmem_cache_create(name, 408 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 409 0, NULL, NULL, NULL, NULL, NULL, 0); 410 } 411 } 412 413 void 414 scan_fini(void) 415 { 416 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 417 kmem_cache_destroy(sio_cache[i]); 418 } 419 } 420 421 static inline boolean_t 422 dsl_scan_is_running(const dsl_scan_t *scn) 423 { 424 return (scn->scn_phys.scn_state == DSS_SCANNING); 425 } 426 427 boolean_t 428 dsl_scan_resilvering(dsl_pool_t *dp) 429 { 430 return (dsl_scan_is_running(dp->dp_scan) && 431 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 432 } 433 434 static inline void 435 sio2bp(const scan_io_t *sio, blkptr_t *bp) 436 { 437 memset(bp, 0, sizeof (*bp)); 438 bp->blk_prop = sio->sio_blk_prop; 439 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth); 440 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth); 441 bp->blk_fill = 1; /* we always only work with data pointers */ 442 bp->blk_cksum = sio->sio_cksum; 443 444 ASSERT3U(sio->sio_nr_dvas, >, 0); 445 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 446 447 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t)); 448 } 449 450 static inline void 451 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 452 { 453 sio->sio_blk_prop = bp->blk_prop; 454 sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp); 455 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp); 456 sio->sio_cksum = bp->blk_cksum; 457 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 458 459 /* 460 * Copy the DVAs to the sio. We need all copies of the block so 461 * that the self healing code can use the alternate copies if the 462 * first is corrupted. We want the DVA at index dva_i to be first 463 * in the sio since this is the primary one that we want to issue. 464 */ 465 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 466 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 467 } 468 } 469 470 int 471 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 472 { 473 int err; 474 dsl_scan_t *scn; 475 spa_t *spa = dp->dp_spa; 476 uint64_t f; 477 478 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 479 scn->scn_dp = dp; 480 481 /* 482 * It's possible that we're resuming a scan after a reboot so 483 * make sure that the scan_async_destroying flag is initialized 484 * appropriately. 485 */ 486 ASSERT(!scn->scn_async_destroying); 487 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 488 SPA_FEATURE_ASYNC_DESTROY); 489 490 /* 491 * Calculate the max number of in-flight bytes for pool-wide 492 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). 493 * Limits for the issuing phase are done per top-level vdev and 494 * are handled separately. 495 */ 496 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, 497 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); 498 499 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 500 offsetof(scan_ds_t, sds_node)); 501 mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL); 502 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 503 sizeof (scan_prefetch_issue_ctx_t), 504 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 505 506 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 507 "scrub_func", sizeof (uint64_t), 1, &f); 508 if (err == 0) { 509 /* 510 * There was an old-style scrub in progress. Restart a 511 * new-style scrub from the beginning. 512 */ 513 scn->scn_restart_txg = txg; 514 zfs_dbgmsg("old-style scrub was in progress for %s; " 515 "restarting new-style scrub in txg %llu", 516 spa->spa_name, 517 (longlong_t)scn->scn_restart_txg); 518 519 /* 520 * Load the queue obj from the old location so that it 521 * can be freed by dsl_scan_done(). 522 */ 523 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 524 "scrub_queue", sizeof (uint64_t), 1, 525 &scn->scn_phys.scn_queue_obj); 526 } else { 527 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 528 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), 529 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys); 530 531 if (err != 0 && err != ENOENT) 532 return (err); 533 534 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 535 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 536 &scn->scn_phys); 537 538 /* 539 * Detect if the pool contains the signature of #2094. If it 540 * does properly update the scn->scn_phys structure and notify 541 * the administrator by setting an errata for the pool. 542 */ 543 if (err == EOVERFLOW) { 544 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 545 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 546 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 547 (23 * sizeof (uint64_t))); 548 549 err = zap_lookup(dp->dp_meta_objset, 550 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 551 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 552 if (err == 0) { 553 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 554 555 if (overflow & ~DSL_SCAN_FLAGS_MASK || 556 scn->scn_async_destroying) { 557 spa->spa_errata = 558 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 559 return (EOVERFLOW); 560 } 561 562 memcpy(&scn->scn_phys, zaptmp, 563 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 564 scn->scn_phys.scn_flags = overflow; 565 566 /* Required scrub already in progress. */ 567 if (scn->scn_phys.scn_state == DSS_FINISHED || 568 scn->scn_phys.scn_state == DSS_CANCELED) 569 spa->spa_errata = 570 ZPOOL_ERRATA_ZOL_2094_SCRUB; 571 } 572 } 573 574 if (err == ENOENT) 575 return (0); 576 else if (err) 577 return (err); 578 579 /* 580 * We might be restarting after a reboot, so jump the issued 581 * counter to how far we've scanned. We know we're consistent 582 * up to here. 583 */ 584 scn->scn_issued_before_pass = scn->scn_phys.scn_examined - 585 scn->scn_phys.scn_skipped; 586 587 if (dsl_scan_is_running(scn) && 588 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 589 /* 590 * A new-type scrub was in progress on an old 591 * pool, and the pool was accessed by old 592 * software. Restart from the beginning, since 593 * the old software may have changed the pool in 594 * the meantime. 595 */ 596 scn->scn_restart_txg = txg; 597 zfs_dbgmsg("new-style scrub for %s was modified " 598 "by old software; restarting in txg %llu", 599 spa->spa_name, 600 (longlong_t)scn->scn_restart_txg); 601 } else if (dsl_scan_resilvering(dp)) { 602 /* 603 * If a resilver is in progress and there are already 604 * errors, restart it instead of finishing this scan and 605 * then restarting it. If there haven't been any errors 606 * then remember that the incore DTL is valid. 607 */ 608 if (scn->scn_phys.scn_errors > 0) { 609 scn->scn_restart_txg = txg; 610 zfs_dbgmsg("resilver can't excise DTL_MISSING " 611 "when finished; restarting on %s in txg " 612 "%llu", 613 spa->spa_name, 614 (u_longlong_t)scn->scn_restart_txg); 615 } else { 616 /* it's safe to excise DTL when finished */ 617 spa->spa_scrub_started = B_TRUE; 618 } 619 } 620 } 621 622 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 623 624 /* reload the queue into the in-core state */ 625 if (scn->scn_phys.scn_queue_obj != 0) { 626 zap_cursor_t zc; 627 zap_attribute_t *za = zap_attribute_alloc(); 628 629 for (zap_cursor_init(&zc, dp->dp_meta_objset, 630 scn->scn_phys.scn_queue_obj); 631 zap_cursor_retrieve(&zc, za) == 0; 632 (void) zap_cursor_advance(&zc)) { 633 scan_ds_queue_insert(scn, 634 zfs_strtonum(za->za_name, NULL), 635 za->za_first_integer); 636 } 637 zap_cursor_fini(&zc); 638 zap_attribute_free(za); 639 } 640 641 ddt_walk_init(spa, scn->scn_phys.scn_max_txg); 642 643 spa_scan_stat_init(spa); 644 vdev_scan_stat_init(spa->spa_root_vdev); 645 646 return (0); 647 } 648 649 void 650 dsl_scan_fini(dsl_pool_t *dp) 651 { 652 if (dp->dp_scan != NULL) { 653 dsl_scan_t *scn = dp->dp_scan; 654 655 if (scn->scn_taskq != NULL) 656 taskq_destroy(scn->scn_taskq); 657 658 scan_ds_queue_clear(scn); 659 avl_destroy(&scn->scn_queue); 660 mutex_destroy(&scn->scn_queue_lock); 661 scan_ds_prefetch_queue_clear(scn); 662 avl_destroy(&scn->scn_prefetch_queue); 663 664 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 665 dp->dp_scan = NULL; 666 } 667 } 668 669 static boolean_t 670 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 671 { 672 return (scn->scn_restart_txg != 0 && 673 scn->scn_restart_txg <= tx->tx_txg); 674 } 675 676 boolean_t 677 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 678 { 679 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 680 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 681 } 682 683 boolean_t 684 dsl_scan_scrubbing(const dsl_pool_t *dp) 685 { 686 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 687 688 return (scn_phys->scn_state == DSS_SCANNING && 689 scn_phys->scn_func == POOL_SCAN_SCRUB); 690 } 691 692 boolean_t 693 dsl_errorscrubbing(const dsl_pool_t *dp) 694 { 695 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys; 696 697 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING && 698 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB); 699 } 700 701 boolean_t 702 dsl_errorscrub_is_paused(const dsl_scan_t *scn) 703 { 704 return (dsl_errorscrubbing(scn->scn_dp) && 705 scn->errorscrub_phys.dep_paused_flags); 706 } 707 708 boolean_t 709 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 710 { 711 return (dsl_scan_scrubbing(scn->scn_dp) && 712 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 713 } 714 715 static void 716 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx) 717 { 718 scn->errorscrub_phys.dep_cursor = 719 zap_cursor_serialize(&scn->errorscrub_cursor); 720 721 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 722 DMU_POOL_DIRECTORY_OBJECT, 723 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS, 724 &scn->errorscrub_phys, tx)); 725 } 726 727 static void 728 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx) 729 { 730 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 731 pool_scan_func_t *funcp = arg; 732 dsl_pool_t *dp = scn->scn_dp; 733 spa_t *spa = dp->dp_spa; 734 735 ASSERT(!dsl_scan_is_running(scn)); 736 ASSERT(!dsl_errorscrubbing(scn->scn_dp)); 737 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 738 739 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys)); 740 scn->errorscrub_phys.dep_func = *funcp; 741 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING; 742 scn->errorscrub_phys.dep_start_time = gethrestime_sec(); 743 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa); 744 scn->errorscrub_phys.dep_examined = 0; 745 scn->errorscrub_phys.dep_errors = 0; 746 scn->errorscrub_phys.dep_cursor = 0; 747 zap_cursor_init_serialized(&scn->errorscrub_cursor, 748 spa->spa_meta_objset, spa->spa_errlog_last, 749 scn->errorscrub_phys.dep_cursor); 750 751 vdev_config_dirty(spa->spa_root_vdev); 752 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START); 753 754 dsl_errorscrub_sync_state(scn, tx); 755 756 spa_history_log_internal(spa, "error scrub setup", tx, 757 "func=%u mintxg=%u maxtxg=%llu", 758 *funcp, 0, (u_longlong_t)tx->tx_txg); 759 } 760 761 static int 762 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx) 763 { 764 (void) arg; 765 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 766 767 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) { 768 return (SET_ERROR(EBUSY)); 769 } 770 771 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) { 772 return (ECANCELED); 773 } 774 return (0); 775 } 776 777 /* 778 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 779 * Because we can be running in the block sorting algorithm, we do not always 780 * want to write out the record, only when it is "safe" to do so. This safety 781 * condition is achieved by making sure that the sorting queues are empty 782 * (scn_queues_pending == 0). When this condition is not true, the sync'd state 783 * is inconsistent with how much actual scanning progress has been made. The 784 * kind of sync to be performed is specified by the sync_type argument. If the 785 * sync is optional, we only sync if the queues are empty. If the sync is 786 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 787 * third possible state is a "cached" sync. This is done in response to: 788 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 789 * destroyed, so we wouldn't be able to restart scanning from it. 790 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 791 * superseded by a newer snapshot. 792 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 793 * swapped with its clone. 794 * In all cases, a cached sync simply rewrites the last record we've written, 795 * just slightly modified. For the modifications that are performed to the 796 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 797 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 798 */ 799 static void 800 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 801 { 802 int i; 803 spa_t *spa = scn->scn_dp->dp_spa; 804 805 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0); 806 if (scn->scn_queues_pending == 0) { 807 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 808 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 809 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 810 811 if (q == NULL) 812 continue; 813 814 mutex_enter(&vd->vdev_scan_io_queue_lock); 815 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 816 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 817 NULL); 818 ASSERT3P(zfs_range_tree_first(q->q_exts_by_addr), ==, 819 NULL); 820 mutex_exit(&vd->vdev_scan_io_queue_lock); 821 } 822 823 if (scn->scn_phys.scn_queue_obj != 0) 824 scan_ds_queue_sync(scn, tx); 825 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 826 DMU_POOL_DIRECTORY_OBJECT, 827 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 828 &scn->scn_phys, tx)); 829 memcpy(&scn->scn_phys_cached, &scn->scn_phys, 830 sizeof (scn->scn_phys)); 831 832 if (scn->scn_checkpointing) 833 zfs_dbgmsg("finish scan checkpoint for %s", 834 spa->spa_name); 835 836 scn->scn_checkpointing = B_FALSE; 837 scn->scn_last_checkpoint = ddi_get_lbolt(); 838 } else if (sync_type == SYNC_CACHED) { 839 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 840 DMU_POOL_DIRECTORY_OBJECT, 841 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 842 &scn->scn_phys_cached, tx)); 843 } 844 } 845 846 int 847 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 848 { 849 (void) arg; 850 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 851 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 852 853 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) || 854 dsl_errorscrubbing(scn->scn_dp)) 855 return (SET_ERROR(EBUSY)); 856 857 return (0); 858 } 859 860 void 861 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 862 { 863 setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg; 864 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 865 dmu_object_type_t ot = 0; 866 dsl_pool_t *dp = scn->scn_dp; 867 spa_t *spa = dp->dp_spa; 868 869 ASSERT(!dsl_scan_is_running(scn)); 870 ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE); 871 ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS); 872 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys)); 873 874 /* 875 * If we are starting a fresh scrub, we erase the error scrub 876 * information from disk. 877 */ 878 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys)); 879 dsl_errorscrub_sync_state(scn, tx); 880 881 scn->scn_phys.scn_func = setup_sync_arg->func; 882 scn->scn_phys.scn_state = DSS_SCANNING; 883 scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart; 884 if (setup_sync_arg->txgend == 0) { 885 scn->scn_phys.scn_max_txg = tx->tx_txg; 886 } else { 887 scn->scn_phys.scn_max_txg = setup_sync_arg->txgend; 888 } 889 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 890 scn->scn_phys.scn_start_time = gethrestime_sec(); 891 scn->scn_phys.scn_errors = 0; 892 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 893 scn->scn_issued_before_pass = 0; 894 scn->scn_restart_txg = 0; 895 scn->scn_done_txg = 0; 896 scn->scn_last_checkpoint = 0; 897 scn->scn_checkpointing = B_FALSE; 898 spa_scan_stat_init(spa); 899 vdev_scan_stat_init(spa->spa_root_vdev); 900 901 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 902 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 903 904 /* rewrite all disk labels */ 905 vdev_config_dirty(spa->spa_root_vdev); 906 907 if (vdev_resilver_needed(spa->spa_root_vdev, 908 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 909 nvlist_t *aux = fnvlist_alloc(); 910 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 911 "healing"); 912 spa_event_notify(spa, NULL, aux, 913 ESC_ZFS_RESILVER_START); 914 nvlist_free(aux); 915 } else { 916 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 917 } 918 919 spa->spa_scrub_started = B_TRUE; 920 /* 921 * If this is an incremental scrub, limit the DDT scrub phase 922 * to just the auto-ditto class (for correctness); the rest 923 * of the scrub should go faster using top-down pruning. 924 */ 925 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 926 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 927 928 /* 929 * When starting a resilver clear any existing rebuild state. 930 * This is required to prevent stale rebuild status from 931 * being reported when a rebuild is run, then a resilver and 932 * finally a scrub. In which case only the scrub status 933 * should be reported by 'zpool status'. 934 */ 935 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 936 vdev_t *rvd = spa->spa_root_vdev; 937 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 938 vdev_t *vd = rvd->vdev_child[i]; 939 vdev_rebuild_clear_sync( 940 (void *)(uintptr_t)vd->vdev_id, tx); 941 } 942 } 943 } 944 945 /* back to the generic stuff */ 946 947 if (zfs_scan_blkstats) { 948 if (dp->dp_blkstats == NULL) { 949 dp->dp_blkstats = 950 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 951 } 952 memset(&dp->dp_blkstats->zab_type, 0, 953 sizeof (dp->dp_blkstats->zab_type)); 954 } else { 955 if (dp->dp_blkstats) { 956 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 957 dp->dp_blkstats = NULL; 958 } 959 } 960 961 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 962 ot = DMU_OT_ZAP_OTHER; 963 964 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 965 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 966 967 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 968 969 ddt_walk_init(spa, scn->scn_phys.scn_max_txg); 970 971 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 972 973 spa_history_log_internal(spa, "scan setup", tx, 974 "func=%u mintxg=%llu maxtxg=%llu", 975 setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg, 976 (u_longlong_t)scn->scn_phys.scn_max_txg); 977 } 978 979 /* 980 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub, 981 * error scrub or resilver. Can also be called to resume a paused scrub or 982 * error scrub. 983 */ 984 int 985 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart, 986 uint64_t txgend) 987 { 988 spa_t *spa = dp->dp_spa; 989 dsl_scan_t *scn = dp->dp_scan; 990 setup_sync_arg_t setup_sync_arg; 991 992 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) { 993 return (EINVAL); 994 } 995 996 /* 997 * Purge all vdev caches and probe all devices. We do this here 998 * rather than in sync context because this requires a writer lock 999 * on the spa_config lock, which we can't do from sync context. The 1000 * spa_scrub_reopen flag indicates that vdev_open() should not 1001 * attempt to start another scrub. 1002 */ 1003 spa_vdev_state_enter(spa, SCL_NONE); 1004 spa->spa_scrub_reopen = B_TRUE; 1005 vdev_reopen(spa->spa_root_vdev); 1006 spa->spa_scrub_reopen = B_FALSE; 1007 (void) spa_vdev_state_exit(spa, NULL, 0); 1008 1009 if (func == POOL_SCAN_RESILVER) { 1010 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 1011 return (0); 1012 } 1013 1014 if (func == POOL_SCAN_ERRORSCRUB) { 1015 if (dsl_errorscrub_is_paused(dp->dp_scan)) { 1016 /* 1017 * got error scrub start cmd, resume paused error scrub. 1018 */ 1019 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 1020 POOL_SCRUB_NORMAL); 1021 if (err == 0) { 1022 spa_event_notify(spa, NULL, NULL, 1023 ESC_ZFS_ERRORSCRUB_RESUME); 1024 return (0); 1025 } 1026 return (SET_ERROR(err)); 1027 } 1028 1029 return (dsl_sync_task(spa_name(dp->dp_spa), 1030 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync, 1031 &func, 0, ZFS_SPACE_CHECK_RESERVED)); 1032 } 1033 1034 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 1035 /* got scrub start cmd, resume paused scrub */ 1036 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 1037 POOL_SCRUB_NORMAL); 1038 if (err == 0) { 1039 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 1040 return (0); 1041 } 1042 return (SET_ERROR(err)); 1043 } 1044 1045 setup_sync_arg.func = func; 1046 setup_sync_arg.txgstart = txgstart; 1047 setup_sync_arg.txgend = txgend; 1048 1049 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 1050 dsl_scan_setup_sync, &setup_sync_arg, 0, 1051 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1052 } 1053 1054 static void 1055 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 1056 { 1057 dsl_pool_t *dp = scn->scn_dp; 1058 spa_t *spa = dp->dp_spa; 1059 1060 if (complete) { 1061 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH); 1062 spa_history_log_internal(spa, "error scrub done", tx, 1063 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1064 } else { 1065 spa_history_log_internal(spa, "error scrub canceled", tx, 1066 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1067 } 1068 1069 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED; 1070 spa->spa_scrub_active = B_FALSE; 1071 spa_errlog_rotate(spa); 1072 scn->errorscrub_phys.dep_end_time = gethrestime_sec(); 1073 zap_cursor_fini(&scn->errorscrub_cursor); 1074 1075 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1076 spa->spa_errata = 0; 1077 1078 ASSERT(!dsl_errorscrubbing(scn->scn_dp)); 1079 } 1080 1081 static void 1082 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 1083 { 1084 static const char *old_names[] = { 1085 "scrub_bookmark", 1086 "scrub_ddt_bookmark", 1087 "scrub_ddt_class_max", 1088 "scrub_queue", 1089 "scrub_min_txg", 1090 "scrub_max_txg", 1091 "scrub_func", 1092 "scrub_errors", 1093 NULL 1094 }; 1095 1096 dsl_pool_t *dp = scn->scn_dp; 1097 spa_t *spa = dp->dp_spa; 1098 int i; 1099 1100 /* Remove any remnants of an old-style scrub. */ 1101 for (i = 0; old_names[i]; i++) { 1102 (void) zap_remove(dp->dp_meta_objset, 1103 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 1104 } 1105 1106 if (scn->scn_phys.scn_queue_obj != 0) { 1107 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1108 scn->scn_phys.scn_queue_obj, tx)); 1109 scn->scn_phys.scn_queue_obj = 0; 1110 } 1111 scan_ds_queue_clear(scn); 1112 scan_ds_prefetch_queue_clear(scn); 1113 1114 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1115 1116 /* 1117 * If we were "restarted" from a stopped state, don't bother 1118 * with anything else. 1119 */ 1120 if (!dsl_scan_is_running(scn)) { 1121 ASSERT(!scn->scn_is_sorted); 1122 return; 1123 } 1124 1125 if (scn->scn_is_sorted) { 1126 scan_io_queues_destroy(scn); 1127 scn->scn_is_sorted = B_FALSE; 1128 1129 if (scn->scn_taskq != NULL) { 1130 taskq_destroy(scn->scn_taskq); 1131 scn->scn_taskq = NULL; 1132 } 1133 } 1134 1135 if (dsl_scan_restarting(scn, tx)) { 1136 spa_history_log_internal(spa, "scan aborted, restarting", tx, 1137 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1138 } else if (!complete) { 1139 spa_history_log_internal(spa, "scan cancelled", tx, 1140 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1141 } else { 1142 spa_history_log_internal(spa, "scan done", tx, 1143 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1144 if (DSL_SCAN_IS_SCRUB(scn)) { 1145 VERIFY0(zap_update(dp->dp_meta_objset, 1146 DMU_POOL_DIRECTORY_OBJECT, 1147 DMU_POOL_LAST_SCRUBBED_TXG, 1148 sizeof (uint64_t), 1, 1149 &scn->scn_phys.scn_max_txg, tx)); 1150 spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg; 1151 } 1152 } 1153 1154 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 1155 spa->spa_scrub_active = B_FALSE; 1156 1157 /* 1158 * If the scrub/resilver completed, update all DTLs to 1159 * reflect this. Whether it succeeded or not, vacate 1160 * all temporary scrub DTLs. 1161 * 1162 * As the scrub does not currently support traversing 1163 * data that have been freed but are part of a checkpoint, 1164 * we don't mark the scrub as done in the DTLs as faults 1165 * may still exist in those vdevs. 1166 */ 1167 if (complete && 1168 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 1169 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 1170 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 1171 1172 if (scn->scn_phys.scn_min_txg) { 1173 nvlist_t *aux = fnvlist_alloc(); 1174 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 1175 "healing"); 1176 spa_event_notify(spa, NULL, aux, 1177 ESC_ZFS_RESILVER_FINISH); 1178 nvlist_free(aux); 1179 } else { 1180 spa_event_notify(spa, NULL, NULL, 1181 ESC_ZFS_SCRUB_FINISH); 1182 } 1183 } else { 1184 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 1185 0, B_TRUE, B_FALSE); 1186 } 1187 spa_errlog_rotate(spa); 1188 1189 /* 1190 * Don't clear flag until after vdev_dtl_reassess to ensure that 1191 * DTL_MISSING will get updated when possible. 1192 */ 1193 scn->scn_phys.scn_state = complete ? DSS_FINISHED : 1194 DSS_CANCELED; 1195 scn->scn_phys.scn_end_time = gethrestime_sec(); 1196 spa->spa_scrub_started = B_FALSE; 1197 1198 /* 1199 * We may have finished replacing a device. 1200 * Let the async thread assess this and handle the detach. 1201 */ 1202 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 1203 1204 /* 1205 * Clear any resilver_deferred flags in the config. 1206 * If there are drives that need resilvering, kick 1207 * off an asynchronous request to start resilver. 1208 * vdev_clear_resilver_deferred() may update the config 1209 * before the resilver can restart. In the event of 1210 * a crash during this period, the spa loading code 1211 * will find the drives that need to be resilvered 1212 * and start the resilver then. 1213 */ 1214 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 1215 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 1216 spa_history_log_internal(spa, 1217 "starting deferred resilver", tx, "errors=%llu", 1218 (u_longlong_t)spa_approx_errlog_size(spa)); 1219 spa_async_request(spa, SPA_ASYNC_RESILVER); 1220 } 1221 1222 /* Clear recent error events (i.e. duplicate events tracking) */ 1223 if (complete) 1224 zfs_ereport_clear(spa, NULL); 1225 } else { 1226 scn->scn_phys.scn_state = complete ? DSS_FINISHED : 1227 DSS_CANCELED; 1228 scn->scn_phys.scn_end_time = gethrestime_sec(); 1229 } 1230 1231 spa_notify_waiters(spa); 1232 1233 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1234 spa->spa_errata = 0; 1235 1236 ASSERT(!dsl_scan_is_running(scn)); 1237 } 1238 1239 static int 1240 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1241 { 1242 pool_scrub_cmd_t *cmd = arg; 1243 dsl_pool_t *dp = dmu_tx_pool(tx); 1244 dsl_scan_t *scn = dp->dp_scan; 1245 1246 if (*cmd == POOL_SCRUB_PAUSE) { 1247 /* 1248 * can't pause a error scrub when there is no in-progress 1249 * error scrub. 1250 */ 1251 if (!dsl_errorscrubbing(dp)) 1252 return (SET_ERROR(ENOENT)); 1253 1254 /* can't pause a paused error scrub */ 1255 if (dsl_errorscrub_is_paused(scn)) 1256 return (SET_ERROR(EBUSY)); 1257 } else if (*cmd != POOL_SCRUB_NORMAL) { 1258 return (SET_ERROR(ENOTSUP)); 1259 } 1260 1261 return (0); 1262 } 1263 1264 static void 1265 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1266 { 1267 pool_scrub_cmd_t *cmd = arg; 1268 dsl_pool_t *dp = dmu_tx_pool(tx); 1269 spa_t *spa = dp->dp_spa; 1270 dsl_scan_t *scn = dp->dp_scan; 1271 1272 if (*cmd == POOL_SCRUB_PAUSE) { 1273 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec(); 1274 scn->errorscrub_phys.dep_paused_flags = B_TRUE; 1275 dsl_errorscrub_sync_state(scn, tx); 1276 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED); 1277 } else { 1278 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1279 if (dsl_errorscrub_is_paused(scn)) { 1280 /* 1281 * We need to keep track of how much time we spend 1282 * paused per pass so that we can adjust the error scrub 1283 * rate shown in the output of 'zpool status'. 1284 */ 1285 spa->spa_scan_pass_errorscrub_spent_paused += 1286 gethrestime_sec() - 1287 spa->spa_scan_pass_errorscrub_pause; 1288 1289 spa->spa_scan_pass_errorscrub_pause = 0; 1290 scn->errorscrub_phys.dep_paused_flags = B_FALSE; 1291 1292 zap_cursor_init_serialized( 1293 &scn->errorscrub_cursor, 1294 spa->spa_meta_objset, spa->spa_errlog_last, 1295 scn->errorscrub_phys.dep_cursor); 1296 1297 dsl_errorscrub_sync_state(scn, tx); 1298 } 1299 } 1300 } 1301 1302 static int 1303 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx) 1304 { 1305 (void) arg; 1306 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1307 /* can't cancel a error scrub when there is no one in-progress */ 1308 if (!dsl_errorscrubbing(scn->scn_dp)) 1309 return (SET_ERROR(ENOENT)); 1310 return (0); 1311 } 1312 1313 static void 1314 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx) 1315 { 1316 (void) arg; 1317 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1318 1319 dsl_errorscrub_done(scn, B_FALSE, tx); 1320 dsl_errorscrub_sync_state(scn, tx); 1321 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, 1322 ESC_ZFS_ERRORSCRUB_ABORT); 1323 } 1324 1325 static int 1326 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1327 { 1328 (void) arg; 1329 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1330 1331 if (!dsl_scan_is_running(scn)) 1332 return (SET_ERROR(ENOENT)); 1333 return (0); 1334 } 1335 1336 static void 1337 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1338 { 1339 (void) arg; 1340 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1341 1342 dsl_scan_done(scn, B_FALSE, tx); 1343 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1344 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1345 } 1346 1347 int 1348 dsl_scan_cancel(dsl_pool_t *dp) 1349 { 1350 if (dsl_errorscrubbing(dp)) { 1351 return (dsl_sync_task(spa_name(dp->dp_spa), 1352 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync, 1353 NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1354 } 1355 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1356 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1357 } 1358 1359 static int 1360 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1361 { 1362 pool_scrub_cmd_t *cmd = arg; 1363 dsl_pool_t *dp = dmu_tx_pool(tx); 1364 dsl_scan_t *scn = dp->dp_scan; 1365 1366 if (*cmd == POOL_SCRUB_PAUSE) { 1367 /* can't pause a scrub when there is no in-progress scrub */ 1368 if (!dsl_scan_scrubbing(dp)) 1369 return (SET_ERROR(ENOENT)); 1370 1371 /* can't pause a paused scrub */ 1372 if (dsl_scan_is_paused_scrub(scn)) 1373 return (SET_ERROR(EBUSY)); 1374 } else if (*cmd != POOL_SCRUB_NORMAL) { 1375 return (SET_ERROR(ENOTSUP)); 1376 } 1377 1378 return (0); 1379 } 1380 1381 static void 1382 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1383 { 1384 pool_scrub_cmd_t *cmd = arg; 1385 dsl_pool_t *dp = dmu_tx_pool(tx); 1386 spa_t *spa = dp->dp_spa; 1387 dsl_scan_t *scn = dp->dp_scan; 1388 1389 if (*cmd == POOL_SCRUB_PAUSE) { 1390 /* can't pause a scrub when there is no in-progress scrub */ 1391 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1392 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1393 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1394 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1395 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1396 spa_notify_waiters(spa); 1397 } else { 1398 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1399 if (dsl_scan_is_paused_scrub(scn)) { 1400 /* 1401 * We need to keep track of how much time we spend 1402 * paused per pass so that we can adjust the scrub rate 1403 * shown in the output of 'zpool status' 1404 */ 1405 spa->spa_scan_pass_scrub_spent_paused += 1406 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1407 spa->spa_scan_pass_scrub_pause = 0; 1408 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1409 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1410 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1411 } 1412 } 1413 } 1414 1415 /* 1416 * Set scrub pause/resume state if it makes sense to do so 1417 */ 1418 int 1419 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1420 { 1421 if (dsl_errorscrubbing(dp)) { 1422 return (dsl_sync_task(spa_name(dp->dp_spa), 1423 dsl_errorscrub_pause_resume_check, 1424 dsl_errorscrub_pause_resume_sync, &cmd, 3, 1425 ZFS_SPACE_CHECK_RESERVED)); 1426 } 1427 return (dsl_sync_task(spa_name(dp->dp_spa), 1428 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1429 ZFS_SPACE_CHECK_RESERVED)); 1430 } 1431 1432 1433 /* start a new scan, or restart an existing one. */ 1434 void 1435 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1436 { 1437 if (txg == 0) { 1438 dmu_tx_t *tx; 1439 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1440 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND)); 1441 1442 txg = dmu_tx_get_txg(tx); 1443 dp->dp_scan->scn_restart_txg = txg; 1444 dmu_tx_commit(tx); 1445 } else { 1446 dp->dp_scan->scn_restart_txg = txg; 1447 } 1448 zfs_dbgmsg("restarting resilver for %s at txg=%llu", 1449 dp->dp_spa->spa_name, (longlong_t)txg); 1450 } 1451 1452 void 1453 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1454 { 1455 zio_free(dp->dp_spa, txg, bp); 1456 } 1457 1458 void 1459 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1460 { 1461 ASSERT(dsl_pool_sync_context(dp)); 1462 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1463 } 1464 1465 static int 1466 scan_ds_queue_compare(const void *a, const void *b) 1467 { 1468 const scan_ds_t *sds_a = a, *sds_b = b; 1469 1470 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1471 return (-1); 1472 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1473 return (0); 1474 return (1); 1475 } 1476 1477 static void 1478 scan_ds_queue_clear(dsl_scan_t *scn) 1479 { 1480 void *cookie = NULL; 1481 scan_ds_t *sds; 1482 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1483 kmem_free(sds, sizeof (*sds)); 1484 } 1485 } 1486 1487 static boolean_t 1488 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1489 { 1490 scan_ds_t srch, *sds; 1491 1492 srch.sds_dsobj = dsobj; 1493 sds = avl_find(&scn->scn_queue, &srch, NULL); 1494 if (sds != NULL && txg != NULL) 1495 *txg = sds->sds_txg; 1496 return (sds != NULL); 1497 } 1498 1499 static void 1500 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1501 { 1502 scan_ds_t *sds; 1503 avl_index_t where; 1504 1505 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1506 sds->sds_dsobj = dsobj; 1507 sds->sds_txg = txg; 1508 1509 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1510 avl_insert(&scn->scn_queue, sds, where); 1511 } 1512 1513 static void 1514 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1515 { 1516 scan_ds_t srch, *sds; 1517 1518 srch.sds_dsobj = dsobj; 1519 1520 sds = avl_find(&scn->scn_queue, &srch, NULL); 1521 VERIFY(sds != NULL); 1522 avl_remove(&scn->scn_queue, sds); 1523 kmem_free(sds, sizeof (*sds)); 1524 } 1525 1526 static void 1527 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1528 { 1529 dsl_pool_t *dp = scn->scn_dp; 1530 spa_t *spa = dp->dp_spa; 1531 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1532 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1533 1534 ASSERT0(scn->scn_queues_pending); 1535 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1536 1537 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1538 scn->scn_phys.scn_queue_obj, tx)); 1539 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1540 DMU_OT_NONE, 0, tx); 1541 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1542 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1543 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1544 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1545 sds->sds_txg, tx)); 1546 } 1547 } 1548 1549 /* 1550 * Computes the memory limit state that we're currently in. A sorted scan 1551 * needs quite a bit of memory to hold the sorting queue, so we need to 1552 * reasonably constrain the size so it doesn't impact overall system 1553 * performance. We compute two limits: 1554 * 1) Hard memory limit: if the amount of memory used by the sorting 1555 * queues on a pool gets above this value, we stop the metadata 1556 * scanning portion and start issuing the queued up and sorted 1557 * I/Os to reduce memory usage. 1558 * This limit is calculated as a fraction of physmem (by default 5%). 1559 * We constrain the lower bound of the hard limit to an absolute 1560 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1561 * the upper bound to 5% of the total pool size - no chance we'll 1562 * ever need that much memory, but just to keep the value in check. 1563 * 2) Soft memory limit: once we hit the hard memory limit, we start 1564 * issuing I/O to reduce queue memory usage, but we don't want to 1565 * completely empty out the queues, since we might be able to find I/Os 1566 * that will fill in the gaps of our non-sequential IOs at some point 1567 * in the future. So we stop the issuing of I/Os once the amount of 1568 * memory used drops below the soft limit (at which point we stop issuing 1569 * I/O and start scanning metadata again). 1570 * 1571 * This limit is calculated by subtracting a fraction of the hard 1572 * limit from the hard limit. By default this fraction is 5%, so 1573 * the soft limit is 95% of the hard limit. We cap the size of the 1574 * difference between the hard and soft limits at an absolute 1575 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1576 * sufficient to not cause too frequent switching between the 1577 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1578 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1579 * that should take at least a decent fraction of a second). 1580 */ 1581 static boolean_t 1582 dsl_scan_should_clear(dsl_scan_t *scn) 1583 { 1584 spa_t *spa = scn->scn_dp->dp_spa; 1585 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1586 uint64_t alloc, mlim_hard, mlim_soft, mused; 1587 1588 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1589 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1590 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1591 1592 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1593 zfs_scan_mem_lim_min); 1594 mlim_hard = MIN(mlim_hard, alloc / 20); 1595 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1596 zfs_scan_mem_lim_soft_max); 1597 mused = 0; 1598 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1599 vdev_t *tvd = rvd->vdev_child[i]; 1600 dsl_scan_io_queue_t *queue; 1601 1602 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1603 queue = tvd->vdev_scan_io_queue; 1604 if (queue != NULL) { 1605 /* 1606 * # of extents in exts_by_addr = # in exts_by_size. 1607 * B-tree efficiency is ~75%, but can be as low as 50%. 1608 */ 1609 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * (( 1610 sizeof (zfs_range_seg_gap_t) + sizeof (uint64_t)) * 1611 3 / 2) + queue->q_sio_memused; 1612 } 1613 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1614 } 1615 1616 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1617 1618 if (mused == 0) 1619 ASSERT0(scn->scn_queues_pending); 1620 1621 /* 1622 * If we are above our hard limit, we need to clear out memory. 1623 * If we are below our soft limit, we need to accumulate sequential IOs. 1624 * Otherwise, we should keep doing whatever we are currently doing. 1625 */ 1626 if (mused >= mlim_hard) 1627 return (B_TRUE); 1628 else if (mused < mlim_soft) 1629 return (B_FALSE); 1630 else 1631 return (scn->scn_clearing); 1632 } 1633 1634 static boolean_t 1635 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1636 { 1637 /* we never skip user/group accounting objects */ 1638 if (zb && (int64_t)zb->zb_object < 0) 1639 return (B_FALSE); 1640 1641 if (scn->scn_suspending) 1642 return (B_TRUE); /* we're already suspending */ 1643 1644 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1645 return (B_FALSE); /* we're resuming */ 1646 1647 /* We only know how to resume from level-0 and objset blocks. */ 1648 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1649 return (B_FALSE); 1650 1651 /* 1652 * We suspend if: 1653 * - we have scanned for at least the minimum time (default 1 sec 1654 * for scrub, 3 sec for resilver), and either we have sufficient 1655 * dirty data that we are starting to write more quickly 1656 * (default 30%), someone is explicitly waiting for this txg 1657 * to complete, or we have used up all of the time in the txg 1658 * timeout (default 5 sec). 1659 * or 1660 * - the spa is shutting down because this pool is being exported 1661 * or the machine is rebooting. 1662 * or 1663 * - the scan queue has reached its memory use limit 1664 */ 1665 uint64_t curr_time_ns = gethrtime(); 1666 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1667 uint64_t sync_time_ns = curr_time_ns - 1668 scn->scn_dp->dp_spa->spa_sync_starttime; 1669 uint64_t dirty_min_bytes = zfs_dirty_data_max * 1670 zfs_vdev_async_write_active_min_dirty_percent / 100; 1671 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1672 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1673 1674 if ((NSEC2MSEC(scan_time_ns) > mintime && 1675 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 1676 txg_sync_waiting(scn->scn_dp) || 1677 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1678 spa_shutting_down(scn->scn_dp->dp_spa) || 1679 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) || 1680 !ddt_walk_ready(scn->scn_dp->dp_spa)) { 1681 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1682 dprintf("suspending at first available bookmark " 1683 "%llx/%llx/%llx/%llx\n", 1684 (longlong_t)zb->zb_objset, 1685 (longlong_t)zb->zb_object, 1686 (longlong_t)zb->zb_level, 1687 (longlong_t)zb->zb_blkid); 1688 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1689 zb->zb_objset, 0, 0, 0); 1690 } else if (zb != NULL) { 1691 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1692 (longlong_t)zb->zb_objset, 1693 (longlong_t)zb->zb_object, 1694 (longlong_t)zb->zb_level, 1695 (longlong_t)zb->zb_blkid); 1696 scn->scn_phys.scn_bookmark = *zb; 1697 } else { 1698 #ifdef ZFS_DEBUG 1699 dsl_scan_phys_t *scnp = &scn->scn_phys; 1700 dprintf("suspending at at DDT bookmark " 1701 "%llx/%llx/%llx/%llx\n", 1702 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1703 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1704 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1705 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1706 #endif 1707 } 1708 scn->scn_suspending = B_TRUE; 1709 return (B_TRUE); 1710 } 1711 return (B_FALSE); 1712 } 1713 1714 static boolean_t 1715 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1716 { 1717 /* 1718 * We suspend if: 1719 * - we have scrubbed for at least the minimum time (default 1 sec 1720 * for error scrub), someone is explicitly waiting for this txg 1721 * to complete, or we have used up all of the time in the txg 1722 * timeout (default 5 sec). 1723 * or 1724 * - the spa is shutting down because this pool is being exported 1725 * or the machine is rebooting. 1726 */ 1727 uint64_t curr_time_ns = gethrtime(); 1728 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time; 1729 uint64_t sync_time_ns = curr_time_ns - 1730 scn->scn_dp->dp_spa->spa_sync_starttime; 1731 int mintime = zfs_scrub_min_time_ms; 1732 1733 if ((NSEC2MSEC(error_scrub_time_ns) > mintime && 1734 (txg_sync_waiting(scn->scn_dp) || 1735 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1736 spa_shutting_down(scn->scn_dp->dp_spa)) { 1737 if (zb) { 1738 dprintf("error scrub suspending at bookmark " 1739 "%llx/%llx/%llx/%llx\n", 1740 (longlong_t)zb->zb_objset, 1741 (longlong_t)zb->zb_object, 1742 (longlong_t)zb->zb_level, 1743 (longlong_t)zb->zb_blkid); 1744 } 1745 return (B_TRUE); 1746 } 1747 return (B_FALSE); 1748 } 1749 1750 typedef struct zil_scan_arg { 1751 dsl_pool_t *zsa_dp; 1752 zil_header_t *zsa_zh; 1753 } zil_scan_arg_t; 1754 1755 static int 1756 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, 1757 uint64_t claim_txg) 1758 { 1759 (void) zilog; 1760 zil_scan_arg_t *zsa = arg; 1761 dsl_pool_t *dp = zsa->zsa_dp; 1762 dsl_scan_t *scn = dp->dp_scan; 1763 zil_header_t *zh = zsa->zsa_zh; 1764 zbookmark_phys_t zb; 1765 1766 ASSERT(!BP_IS_REDACTED(bp)); 1767 if (BP_IS_HOLE(bp) || 1768 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) 1769 return (0); 1770 1771 /* 1772 * One block ("stubby") can be allocated a long time ago; we 1773 * want to visit that one because it has been allocated 1774 * (on-disk) even if it hasn't been claimed (even though for 1775 * scrub there's nothing to do to it). 1776 */ 1777 if (claim_txg == 0 && 1778 BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa)) 1779 return (0); 1780 1781 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1782 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1783 1784 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1785 return (0); 1786 } 1787 1788 static int 1789 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, 1790 uint64_t claim_txg) 1791 { 1792 (void) zilog; 1793 if (lrc->lrc_txtype == TX_WRITE) { 1794 zil_scan_arg_t *zsa = arg; 1795 dsl_pool_t *dp = zsa->zsa_dp; 1796 dsl_scan_t *scn = dp->dp_scan; 1797 zil_header_t *zh = zsa->zsa_zh; 1798 const lr_write_t *lr = (const lr_write_t *)lrc; 1799 const blkptr_t *bp = &lr->lr_blkptr; 1800 zbookmark_phys_t zb; 1801 1802 ASSERT(!BP_IS_REDACTED(bp)); 1803 if (BP_IS_HOLE(bp) || 1804 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) 1805 return (0); 1806 1807 /* 1808 * birth can be < claim_txg if this record's txg is 1809 * already txg sync'ed (but this log block contains 1810 * other records that are not synced) 1811 */ 1812 if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg) 1813 return (0); 1814 1815 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 1816 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1817 lr->lr_foid, ZB_ZIL_LEVEL, 1818 lr->lr_offset / BP_GET_LSIZE(bp)); 1819 1820 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1821 } 1822 return (0); 1823 } 1824 1825 static void 1826 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1827 { 1828 uint64_t claim_txg = zh->zh_claim_txg; 1829 zil_scan_arg_t zsa = { dp, zh }; 1830 zilog_t *zilog; 1831 1832 ASSERT(spa_writeable(dp->dp_spa)); 1833 1834 /* 1835 * We only want to visit blocks that have been claimed but not yet 1836 * replayed (or, in read-only mode, blocks that *would* be claimed). 1837 */ 1838 if (claim_txg == 0) 1839 return; 1840 1841 zilog = zil_alloc(dp->dp_meta_objset, zh); 1842 1843 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1844 claim_txg, B_FALSE); 1845 1846 zil_free(zilog); 1847 } 1848 1849 /* 1850 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1851 * here is to sort the AVL tree by the order each block will be needed. 1852 */ 1853 static int 1854 scan_prefetch_queue_compare(const void *a, const void *b) 1855 { 1856 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1857 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1858 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1859 1860 return (zbookmark_compare(spc_a->spc_datablkszsec, 1861 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1862 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1863 } 1864 1865 static void 1866 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag) 1867 { 1868 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1869 zfs_refcount_destroy(&spc->spc_refcnt); 1870 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1871 } 1872 } 1873 1874 static scan_prefetch_ctx_t * 1875 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag) 1876 { 1877 scan_prefetch_ctx_t *spc; 1878 1879 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1880 zfs_refcount_create(&spc->spc_refcnt); 1881 zfs_refcount_add(&spc->spc_refcnt, tag); 1882 spc->spc_scn = scn; 1883 if (dnp != NULL) { 1884 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1885 spc->spc_indblkshift = dnp->dn_indblkshift; 1886 spc->spc_root = B_FALSE; 1887 } else { 1888 spc->spc_datablkszsec = 0; 1889 spc->spc_indblkshift = 0; 1890 spc->spc_root = B_TRUE; 1891 } 1892 1893 return (spc); 1894 } 1895 1896 static void 1897 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag) 1898 { 1899 zfs_refcount_add(&spc->spc_refcnt, tag); 1900 } 1901 1902 static void 1903 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1904 { 1905 spa_t *spa = scn->scn_dp->dp_spa; 1906 void *cookie = NULL; 1907 scan_prefetch_issue_ctx_t *spic = NULL; 1908 1909 mutex_enter(&spa->spa_scrub_lock); 1910 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1911 &cookie)) != NULL) { 1912 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1913 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1914 } 1915 mutex_exit(&spa->spa_scrub_lock); 1916 } 1917 1918 static boolean_t 1919 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1920 const zbookmark_phys_t *zb) 1921 { 1922 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1923 dnode_phys_t tmp_dnp; 1924 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1925 1926 if (zb->zb_objset != last_zb->zb_objset) 1927 return (B_TRUE); 1928 if ((int64_t)zb->zb_object < 0) 1929 return (B_FALSE); 1930 1931 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1932 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1933 1934 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1935 return (B_TRUE); 1936 1937 return (B_FALSE); 1938 } 1939 1940 static void 1941 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1942 { 1943 avl_index_t idx; 1944 dsl_scan_t *scn = spc->spc_scn; 1945 spa_t *spa = scn->scn_dp->dp_spa; 1946 scan_prefetch_issue_ctx_t *spic; 1947 1948 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1949 return; 1950 1951 if (BP_IS_HOLE(bp) || 1952 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg || 1953 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1954 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1955 return; 1956 1957 if (dsl_scan_check_prefetch_resume(spc, zb)) 1958 return; 1959 1960 scan_prefetch_ctx_add_ref(spc, scn); 1961 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1962 spic->spic_spc = spc; 1963 spic->spic_bp = *bp; 1964 spic->spic_zb = *zb; 1965 1966 /* 1967 * Add the IO to the queue of blocks to prefetch. This allows us to 1968 * prioritize blocks that we will need first for the main traversal 1969 * thread. 1970 */ 1971 mutex_enter(&spa->spa_scrub_lock); 1972 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1973 /* this block is already queued for prefetch */ 1974 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1975 scan_prefetch_ctx_rele(spc, scn); 1976 mutex_exit(&spa->spa_scrub_lock); 1977 return; 1978 } 1979 1980 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1981 cv_broadcast(&spa->spa_scrub_io_cv); 1982 mutex_exit(&spa->spa_scrub_lock); 1983 } 1984 1985 static void 1986 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1987 uint64_t objset, uint64_t object) 1988 { 1989 int i; 1990 zbookmark_phys_t zb; 1991 scan_prefetch_ctx_t *spc; 1992 1993 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1994 return; 1995 1996 SET_BOOKMARK(&zb, objset, object, 0, 0); 1997 1998 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1999 2000 for (i = 0; i < dnp->dn_nblkptr; i++) { 2001 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 2002 zb.zb_blkid = i; 2003 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 2004 } 2005 2006 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 2007 zb.zb_level = 0; 2008 zb.zb_blkid = DMU_SPILL_BLKID; 2009 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 2010 } 2011 2012 scan_prefetch_ctx_rele(spc, FTAG); 2013 } 2014 2015 static void 2016 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 2017 arc_buf_t *buf, void *private) 2018 { 2019 (void) zio; 2020 scan_prefetch_ctx_t *spc = private; 2021 dsl_scan_t *scn = spc->spc_scn; 2022 spa_t *spa = scn->scn_dp->dp_spa; 2023 2024 /* broadcast that the IO has completed for rate limiting purposes */ 2025 mutex_enter(&spa->spa_scrub_lock); 2026 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 2027 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 2028 cv_broadcast(&spa->spa_scrub_io_cv); 2029 mutex_exit(&spa->spa_scrub_lock); 2030 2031 /* if there was an error or we are done prefetching, just cleanup */ 2032 if (buf == NULL || scn->scn_prefetch_stop) 2033 goto out; 2034 2035 if (BP_GET_LEVEL(bp) > 0) { 2036 int i; 2037 blkptr_t *cbp; 2038 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2039 zbookmark_phys_t czb; 2040 2041 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 2042 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2043 zb->zb_level - 1, zb->zb_blkid * epb + i); 2044 dsl_scan_prefetch(spc, cbp, &czb); 2045 } 2046 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 2047 dnode_phys_t *cdnp; 2048 int i; 2049 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 2050 2051 for (i = 0, cdnp = buf->b_data; i < epb; 2052 i += cdnp->dn_extra_slots + 1, 2053 cdnp += cdnp->dn_extra_slots + 1) { 2054 dsl_scan_prefetch_dnode(scn, cdnp, 2055 zb->zb_objset, zb->zb_blkid * epb + i); 2056 } 2057 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 2058 objset_phys_t *osp = buf->b_data; 2059 2060 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 2061 zb->zb_objset, DMU_META_DNODE_OBJECT); 2062 2063 if (OBJSET_BUF_HAS_USERUSED(buf)) { 2064 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) { 2065 dsl_scan_prefetch_dnode(scn, 2066 &osp->os_projectused_dnode, zb->zb_objset, 2067 DMU_PROJECTUSED_OBJECT); 2068 } 2069 dsl_scan_prefetch_dnode(scn, 2070 &osp->os_groupused_dnode, zb->zb_objset, 2071 DMU_GROUPUSED_OBJECT); 2072 dsl_scan_prefetch_dnode(scn, 2073 &osp->os_userused_dnode, zb->zb_objset, 2074 DMU_USERUSED_OBJECT); 2075 } 2076 } 2077 2078 out: 2079 if (buf != NULL) 2080 arc_buf_destroy(buf, private); 2081 scan_prefetch_ctx_rele(spc, scn); 2082 } 2083 2084 static void 2085 dsl_scan_prefetch_thread(void *arg) 2086 { 2087 dsl_scan_t *scn = arg; 2088 spa_t *spa = scn->scn_dp->dp_spa; 2089 scan_prefetch_issue_ctx_t *spic; 2090 2091 /* loop until we are told to stop */ 2092 while (!scn->scn_prefetch_stop) { 2093 arc_flags_t flags = ARC_FLAG_NOWAIT | 2094 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 2095 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 2096 2097 mutex_enter(&spa->spa_scrub_lock); 2098 2099 /* 2100 * Wait until we have an IO to issue and are not above our 2101 * maximum in flight limit. 2102 */ 2103 while (!scn->scn_prefetch_stop && 2104 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 2105 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 2106 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2107 } 2108 2109 /* recheck if we should stop since we waited for the cv */ 2110 if (scn->scn_prefetch_stop) { 2111 mutex_exit(&spa->spa_scrub_lock); 2112 break; 2113 } 2114 2115 /* remove the prefetch IO from the tree */ 2116 spic = avl_first(&scn->scn_prefetch_queue); 2117 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 2118 avl_remove(&scn->scn_prefetch_queue, spic); 2119 2120 mutex_exit(&spa->spa_scrub_lock); 2121 2122 if (BP_IS_PROTECTED(&spic->spic_bp)) { 2123 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 2124 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 2125 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 2126 zio_flags |= ZIO_FLAG_RAW; 2127 } 2128 2129 /* We don't need data L1 buffer since we do not prefetch L0. */ 2130 blkptr_t *bp = &spic->spic_bp; 2131 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 2132 BP_GET_TYPE(bp) != DMU_OT_OBJSET) 2133 flags |= ARC_FLAG_NO_BUF; 2134 2135 /* issue the prefetch asynchronously */ 2136 (void) arc_read(scn->scn_zio_root, spa, bp, 2137 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB, 2138 zio_flags, &flags, &spic->spic_zb); 2139 2140 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 2141 } 2142 2143 ASSERT(scn->scn_prefetch_stop); 2144 2145 /* free any prefetches we didn't get to complete */ 2146 mutex_enter(&spa->spa_scrub_lock); 2147 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 2148 avl_remove(&scn->scn_prefetch_queue, spic); 2149 scan_prefetch_ctx_rele(spic->spic_spc, scn); 2150 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 2151 } 2152 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 2153 mutex_exit(&spa->spa_scrub_lock); 2154 } 2155 2156 static boolean_t 2157 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 2158 const zbookmark_phys_t *zb) 2159 { 2160 /* 2161 * We never skip over user/group accounting objects (obj<0) 2162 */ 2163 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 2164 (int64_t)zb->zb_object >= 0) { 2165 /* 2166 * If we already visited this bp & everything below (in 2167 * a prior txg sync), don't bother doing it again. 2168 */ 2169 if (zbookmark_subtree_completed(dnp, zb, 2170 &scn->scn_phys.scn_bookmark)) 2171 return (B_TRUE); 2172 2173 /* 2174 * If we found the block we're trying to resume from, or 2175 * we went past it, zero it out to indicate that it's OK 2176 * to start checking for suspending again. 2177 */ 2178 if (zbookmark_subtree_tbd(dnp, zb, 2179 &scn->scn_phys.scn_bookmark)) { 2180 dprintf("resuming at %llx/%llx/%llx/%llx\n", 2181 (longlong_t)zb->zb_objset, 2182 (longlong_t)zb->zb_object, 2183 (longlong_t)zb->zb_level, 2184 (longlong_t)zb->zb_blkid); 2185 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb)); 2186 } 2187 } 2188 return (B_FALSE); 2189 } 2190 2191 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb, 2192 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 2193 dmu_objset_type_t ostype, dmu_tx_t *tx); 2194 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 2195 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 2196 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 2197 2198 /* 2199 * Return nonzero on i/o error. 2200 * Return new buf to write out in *bufp. 2201 */ 2202 inline __attribute__((always_inline)) static int 2203 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 2204 dnode_phys_t *dnp, const blkptr_t *bp, 2205 const zbookmark_phys_t *zb, dmu_tx_t *tx) 2206 { 2207 dsl_pool_t *dp = scn->scn_dp; 2208 spa_t *spa = dp->dp_spa; 2209 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 2210 int err; 2211 2212 ASSERT(!BP_IS_REDACTED(bp)); 2213 2214 /* 2215 * There is an unlikely case of encountering dnodes with contradicting 2216 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created 2217 * or modified before commit 4254acb was merged. As it is not possible 2218 * to know which of the two is correct, report an error. 2219 */ 2220 if (dnp != NULL && 2221 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) { 2222 scn->scn_phys.scn_errors++; 2223 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp)); 2224 return (SET_ERROR(EINVAL)); 2225 } 2226 2227 if (BP_GET_LEVEL(bp) > 0) { 2228 arc_flags_t flags = ARC_FLAG_WAIT; 2229 int i; 2230 blkptr_t *cbp; 2231 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2232 arc_buf_t *buf; 2233 2234 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2235 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2236 if (err) { 2237 scn->scn_phys.scn_errors++; 2238 return (err); 2239 } 2240 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 2241 zbookmark_phys_t czb; 2242 2243 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2244 zb->zb_level - 1, 2245 zb->zb_blkid * epb + i); 2246 dsl_scan_visitbp(cbp, &czb, dnp, 2247 ds, scn, ostype, tx); 2248 } 2249 arc_buf_destroy(buf, &buf); 2250 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 2251 arc_flags_t flags = ARC_FLAG_WAIT; 2252 dnode_phys_t *cdnp; 2253 int i; 2254 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 2255 arc_buf_t *buf; 2256 2257 if (BP_IS_PROTECTED(bp)) { 2258 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 2259 zio_flags |= ZIO_FLAG_RAW; 2260 } 2261 2262 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2263 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2264 if (err) { 2265 scn->scn_phys.scn_errors++; 2266 return (err); 2267 } 2268 for (i = 0, cdnp = buf->b_data; i < epb; 2269 i += cdnp->dn_extra_slots + 1, 2270 cdnp += cdnp->dn_extra_slots + 1) { 2271 dsl_scan_visitdnode(scn, ds, ostype, 2272 cdnp, zb->zb_blkid * epb + i, tx); 2273 } 2274 2275 arc_buf_destroy(buf, &buf); 2276 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 2277 arc_flags_t flags = ARC_FLAG_WAIT; 2278 objset_phys_t *osp; 2279 arc_buf_t *buf; 2280 2281 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2282 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2283 if (err) { 2284 scn->scn_phys.scn_errors++; 2285 return (err); 2286 } 2287 2288 osp = buf->b_data; 2289 2290 dsl_scan_visitdnode(scn, ds, osp->os_type, 2291 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 2292 2293 if (OBJSET_BUF_HAS_USERUSED(buf)) { 2294 /* 2295 * We also always visit user/group/project accounting 2296 * objects, and never skip them, even if we are 2297 * suspending. This is necessary so that the 2298 * space deltas from this txg get integrated. 2299 */ 2300 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 2301 dsl_scan_visitdnode(scn, ds, osp->os_type, 2302 &osp->os_projectused_dnode, 2303 DMU_PROJECTUSED_OBJECT, tx); 2304 dsl_scan_visitdnode(scn, ds, osp->os_type, 2305 &osp->os_groupused_dnode, 2306 DMU_GROUPUSED_OBJECT, tx); 2307 dsl_scan_visitdnode(scn, ds, osp->os_type, 2308 &osp->os_userused_dnode, 2309 DMU_USERUSED_OBJECT, tx); 2310 } 2311 arc_buf_destroy(buf, &buf); 2312 } else if (zfs_blkptr_verify(spa, bp, 2313 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 2314 /* 2315 * Sanity check the block pointer contents, this is handled 2316 * by arc_read() for the cases above. 2317 */ 2318 scn->scn_phys.scn_errors++; 2319 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp)); 2320 return (SET_ERROR(EINVAL)); 2321 } 2322 2323 return (0); 2324 } 2325 2326 inline __attribute__((always_inline)) static void 2327 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 2328 dmu_objset_type_t ostype, dnode_phys_t *dnp, 2329 uint64_t object, dmu_tx_t *tx) 2330 { 2331 int j; 2332 2333 for (j = 0; j < dnp->dn_nblkptr; j++) { 2334 zbookmark_phys_t czb; 2335 2336 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 2337 dnp->dn_nlevels - 1, j); 2338 dsl_scan_visitbp(&dnp->dn_blkptr[j], 2339 &czb, dnp, ds, scn, ostype, tx); 2340 } 2341 2342 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 2343 zbookmark_phys_t czb; 2344 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 2345 0, DMU_SPILL_BLKID); 2346 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 2347 &czb, dnp, ds, scn, ostype, tx); 2348 } 2349 } 2350 2351 /* 2352 * The arguments are in this order because mdb can only print the 2353 * first 5; we want them to be useful. 2354 */ 2355 static void 2356 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb, 2357 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 2358 dmu_objset_type_t ostype, dmu_tx_t *tx) 2359 { 2360 dsl_pool_t *dp = scn->scn_dp; 2361 2362 if (dsl_scan_check_suspend(scn, zb)) 2363 return; 2364 2365 if (dsl_scan_check_resume(scn, dnp, zb)) 2366 return; 2367 2368 scn->scn_visited_this_txg++; 2369 2370 if (BP_IS_HOLE(bp)) { 2371 scn->scn_holes_this_txg++; 2372 return; 2373 } 2374 2375 if (BP_IS_REDACTED(bp)) { 2376 ASSERT(dsl_dataset_feature_is_active(ds, 2377 SPA_FEATURE_REDACTED_DATASETS)); 2378 return; 2379 } 2380 2381 /* 2382 * Check if this block contradicts any filesystem flags. 2383 */ 2384 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS; 2385 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE) 2386 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2387 2388 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp)); 2389 if (f != SPA_FEATURE_NONE) 2390 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2391 2392 f = zio_compress_to_feature(BP_GET_COMPRESS(bp)); 2393 if (f != SPA_FEATURE_NONE) 2394 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2395 2396 if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) { 2397 scn->scn_lt_min_this_txg++; 2398 return; 2399 } 2400 2401 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0) 2402 return; 2403 2404 /* 2405 * If dsl_scan_ddt() has already visited this block, it will have 2406 * already done any translations or scrubbing, so don't call the 2407 * callback again. 2408 */ 2409 if (ddt_class_contains(dp->dp_spa, 2410 scn->scn_phys.scn_ddt_class_max, bp)) { 2411 scn->scn_ddt_contained_this_txg++; 2412 return; 2413 } 2414 2415 /* 2416 * If this block is from the future (after cur_max_txg), then we 2417 * are doing this on behalf of a deleted snapshot, and we will 2418 * revisit the future block on the next pass of this dataset. 2419 * Don't scan it now unless we need to because something 2420 * under it was modified. 2421 */ 2422 if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2423 scn->scn_gt_max_this_txg++; 2424 return; 2425 } 2426 2427 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2428 } 2429 2430 static void 2431 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2432 dmu_tx_t *tx) 2433 { 2434 zbookmark_phys_t zb; 2435 scan_prefetch_ctx_t *spc; 2436 2437 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2438 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2439 2440 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2441 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2442 zb.zb_objset, 0, 0, 0); 2443 } else { 2444 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2445 } 2446 2447 scn->scn_objsets_visited_this_txg++; 2448 2449 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2450 dsl_scan_prefetch(spc, bp, &zb); 2451 scan_prefetch_ctx_rele(spc, FTAG); 2452 2453 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2454 2455 dprintf_ds(ds, "finished scan%s", ""); 2456 } 2457 2458 static void 2459 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2460 { 2461 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2462 if (ds->ds_is_snapshot) { 2463 /* 2464 * Note: 2465 * - scn_cur_{min,max}_txg stays the same. 2466 * - Setting the flag is not really necessary if 2467 * scn_cur_max_txg == scn_max_txg, because there 2468 * is nothing after this snapshot that we care 2469 * about. However, we set it anyway and then 2470 * ignore it when we retraverse it in 2471 * dsl_scan_visitds(). 2472 */ 2473 scn_phys->scn_bookmark.zb_objset = 2474 dsl_dataset_phys(ds)->ds_next_snap_obj; 2475 zfs_dbgmsg("destroying ds %llu on %s; currently " 2476 "traversing; reset zb_objset to %llu", 2477 (u_longlong_t)ds->ds_object, 2478 ds->ds_dir->dd_pool->dp_spa->spa_name, 2479 (u_longlong_t)dsl_dataset_phys(ds)-> 2480 ds_next_snap_obj); 2481 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2482 } else { 2483 SET_BOOKMARK(&scn_phys->scn_bookmark, 2484 ZB_DESTROYED_OBJSET, 0, 0, 0); 2485 zfs_dbgmsg("destroying ds %llu on %s; currently " 2486 "traversing; reset bookmark to -1,0,0,0", 2487 (u_longlong_t)ds->ds_object, 2488 ds->ds_dir->dd_pool->dp_spa->spa_name); 2489 } 2490 } 2491 } 2492 2493 /* 2494 * Invoked when a dataset is destroyed. We need to make sure that: 2495 * 2496 * 1) If it is the dataset that was currently being scanned, we write 2497 * a new dsl_scan_phys_t and marking the objset reference in it 2498 * as destroyed. 2499 * 2) Remove it from the work queue, if it was present. 2500 * 2501 * If the dataset was actually a snapshot, instead of marking the dataset 2502 * as destroyed, we instead substitute the next snapshot in line. 2503 */ 2504 void 2505 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2506 { 2507 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2508 dsl_scan_t *scn = dp->dp_scan; 2509 uint64_t mintxg; 2510 2511 if (!dsl_scan_is_running(scn)) 2512 return; 2513 2514 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2515 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2516 2517 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2518 scan_ds_queue_remove(scn, ds->ds_object); 2519 if (ds->ds_is_snapshot) 2520 scan_ds_queue_insert(scn, 2521 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2522 } 2523 2524 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2525 ds->ds_object, &mintxg) == 0) { 2526 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2527 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2528 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2529 if (ds->ds_is_snapshot) { 2530 /* 2531 * We keep the same mintxg; it could be > 2532 * ds_creation_txg if the previous snapshot was 2533 * deleted too. 2534 */ 2535 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2536 scn->scn_phys.scn_queue_obj, 2537 dsl_dataset_phys(ds)->ds_next_snap_obj, 2538 mintxg, tx) == 0); 2539 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2540 "replacing with %llu", 2541 (u_longlong_t)ds->ds_object, 2542 dp->dp_spa->spa_name, 2543 (u_longlong_t)dsl_dataset_phys(ds)-> 2544 ds_next_snap_obj); 2545 } else { 2546 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2547 "removing", 2548 (u_longlong_t)ds->ds_object, 2549 dp->dp_spa->spa_name); 2550 } 2551 } 2552 2553 /* 2554 * dsl_scan_sync() should be called after this, and should sync 2555 * out our changed state, but just to be safe, do it here. 2556 */ 2557 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2558 } 2559 2560 static void 2561 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2562 { 2563 if (scn_bookmark->zb_objset == ds->ds_object) { 2564 scn_bookmark->zb_objset = 2565 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2566 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; " 2567 "reset zb_objset to %llu", 2568 (u_longlong_t)ds->ds_object, 2569 ds->ds_dir->dd_pool->dp_spa->spa_name, 2570 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2571 } 2572 } 2573 2574 /* 2575 * Called when a dataset is snapshotted. If we were currently traversing 2576 * this snapshot, we reset our bookmark to point at the newly created 2577 * snapshot. We also modify our work queue to remove the old snapshot and 2578 * replace with the new one. 2579 */ 2580 void 2581 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2582 { 2583 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2584 dsl_scan_t *scn = dp->dp_scan; 2585 uint64_t mintxg; 2586 2587 if (!dsl_scan_is_running(scn)) 2588 return; 2589 2590 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2591 2592 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2593 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2594 2595 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2596 scan_ds_queue_remove(scn, ds->ds_object); 2597 scan_ds_queue_insert(scn, 2598 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2599 } 2600 2601 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2602 ds->ds_object, &mintxg) == 0) { 2603 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2604 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2605 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2606 scn->scn_phys.scn_queue_obj, 2607 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2608 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; " 2609 "replacing with %llu", 2610 (u_longlong_t)ds->ds_object, 2611 dp->dp_spa->spa_name, 2612 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2613 } 2614 2615 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2616 } 2617 2618 static void 2619 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2620 zbookmark_phys_t *scn_bookmark) 2621 { 2622 if (scn_bookmark->zb_objset == ds1->ds_object) { 2623 scn_bookmark->zb_objset = ds2->ds_object; 2624 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2625 "reset zb_objset to %llu", 2626 (u_longlong_t)ds1->ds_object, 2627 ds1->ds_dir->dd_pool->dp_spa->spa_name, 2628 (u_longlong_t)ds2->ds_object); 2629 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2630 scn_bookmark->zb_objset = ds1->ds_object; 2631 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2632 "reset zb_objset to %llu", 2633 (u_longlong_t)ds2->ds_object, 2634 ds2->ds_dir->dd_pool->dp_spa->spa_name, 2635 (u_longlong_t)ds1->ds_object); 2636 } 2637 } 2638 2639 /* 2640 * Called when an origin dataset and its clone are swapped. If we were 2641 * currently traversing the dataset, we need to switch to traversing the 2642 * newly promoted clone. 2643 */ 2644 void 2645 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2646 { 2647 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2648 dsl_scan_t *scn = dp->dp_scan; 2649 uint64_t mintxg1, mintxg2; 2650 boolean_t ds1_queued, ds2_queued; 2651 2652 if (!dsl_scan_is_running(scn)) 2653 return; 2654 2655 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2656 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2657 2658 /* 2659 * Handle the in-memory scan queue. 2660 */ 2661 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2662 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2663 2664 /* Sanity checking. */ 2665 if (ds1_queued) { 2666 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2667 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2668 } 2669 if (ds2_queued) { 2670 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2671 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2672 } 2673 2674 if (ds1_queued && ds2_queued) { 2675 /* 2676 * If both are queued, we don't need to do anything. 2677 * The swapping code below would not handle this case correctly, 2678 * since we can't insert ds2 if it is already there. That's 2679 * because scan_ds_queue_insert() prohibits a duplicate insert 2680 * and panics. 2681 */ 2682 } else if (ds1_queued) { 2683 scan_ds_queue_remove(scn, ds1->ds_object); 2684 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2685 } else if (ds2_queued) { 2686 scan_ds_queue_remove(scn, ds2->ds_object); 2687 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2688 } 2689 2690 /* 2691 * Handle the on-disk scan queue. 2692 * The on-disk state is an out-of-date version of the in-memory state, 2693 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2694 * be different. Therefore we need to apply the swap logic to the 2695 * on-disk state independently of the in-memory state. 2696 */ 2697 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2698 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2699 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2700 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2701 2702 /* Sanity checking. */ 2703 if (ds1_queued) { 2704 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2705 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2706 } 2707 if (ds2_queued) { 2708 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2709 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2710 } 2711 2712 if (ds1_queued && ds2_queued) { 2713 /* 2714 * If both are queued, we don't need to do anything. 2715 * Alternatively, we could check for EEXIST from 2716 * zap_add_int_key() and back out to the original state, but 2717 * that would be more work than checking for this case upfront. 2718 */ 2719 } else if (ds1_queued) { 2720 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2721 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2722 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2723 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2724 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2725 "replacing with %llu", 2726 (u_longlong_t)ds1->ds_object, 2727 dp->dp_spa->spa_name, 2728 (u_longlong_t)ds2->ds_object); 2729 } else if (ds2_queued) { 2730 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2731 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2732 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2733 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2734 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2735 "replacing with %llu", 2736 (u_longlong_t)ds2->ds_object, 2737 dp->dp_spa->spa_name, 2738 (u_longlong_t)ds1->ds_object); 2739 } 2740 2741 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2742 } 2743 2744 static int 2745 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2746 { 2747 uint64_t originobj = *(uint64_t *)arg; 2748 dsl_dataset_t *ds; 2749 int err; 2750 dsl_scan_t *scn = dp->dp_scan; 2751 2752 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2753 return (0); 2754 2755 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2756 if (err) 2757 return (err); 2758 2759 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2760 dsl_dataset_t *prev; 2761 err = dsl_dataset_hold_obj(dp, 2762 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2763 2764 dsl_dataset_rele(ds, FTAG); 2765 if (err) 2766 return (err); 2767 ds = prev; 2768 } 2769 mutex_enter(&scn->scn_queue_lock); 2770 scan_ds_queue_insert(scn, ds->ds_object, 2771 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2772 mutex_exit(&scn->scn_queue_lock); 2773 dsl_dataset_rele(ds, FTAG); 2774 return (0); 2775 } 2776 2777 static void 2778 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2779 { 2780 dsl_pool_t *dp = scn->scn_dp; 2781 dsl_dataset_t *ds; 2782 2783 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2784 2785 if (scn->scn_phys.scn_cur_min_txg >= 2786 scn->scn_phys.scn_max_txg) { 2787 /* 2788 * This can happen if this snapshot was created after the 2789 * scan started, and we already completed a previous snapshot 2790 * that was created after the scan started. This snapshot 2791 * only references blocks with: 2792 * 2793 * birth < our ds_creation_txg 2794 * cur_min_txg is no less than ds_creation_txg. 2795 * We have already visited these blocks. 2796 * or 2797 * birth > scn_max_txg 2798 * The scan requested not to visit these blocks. 2799 * 2800 * Subsequent snapshots (and clones) can reference our 2801 * blocks, or blocks with even higher birth times. 2802 * Therefore we do not need to visit them either, 2803 * so we do not add them to the work queue. 2804 * 2805 * Note that checking for cur_min_txg >= cur_max_txg 2806 * is not sufficient, because in that case we may need to 2807 * visit subsequent snapshots. This happens when min_txg > 0, 2808 * which raises cur_min_txg. In this case we will visit 2809 * this dataset but skip all of its blocks, because the 2810 * rootbp's birth time is < cur_min_txg. Then we will 2811 * add the next snapshots/clones to the work queue. 2812 */ 2813 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2814 dsl_dataset_name(ds, dsname); 2815 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2816 "cur_min_txg (%llu) >= max_txg (%llu)", 2817 (longlong_t)dsobj, dsname, 2818 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2819 (longlong_t)scn->scn_phys.scn_max_txg); 2820 kmem_free(dsname, MAXNAMELEN); 2821 2822 goto out; 2823 } 2824 2825 /* 2826 * Only the ZIL in the head (non-snapshot) is valid. Even though 2827 * snapshots can have ZIL block pointers (which may be the same 2828 * BP as in the head), they must be ignored. In addition, $ORIGIN 2829 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2830 * need to look for a ZIL in it either. So we traverse the ZIL here, 2831 * rather than in scan_recurse(), because the regular snapshot 2832 * block-sharing rules don't apply to it. 2833 */ 2834 if (!dsl_dataset_is_snapshot(ds) && 2835 (dp->dp_origin_snap == NULL || 2836 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2837 objset_t *os; 2838 if (dmu_objset_from_ds(ds, &os) != 0) { 2839 goto out; 2840 } 2841 dsl_scan_zil(dp, &os->os_zil_header); 2842 } 2843 2844 /* 2845 * Iterate over the bps in this ds. 2846 */ 2847 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2848 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2849 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2850 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2851 2852 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2853 dsl_dataset_name(ds, dsname); 2854 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2855 "suspending=%u", 2856 (longlong_t)dsobj, dsname, 2857 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2858 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2859 (int)scn->scn_suspending); 2860 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2861 2862 if (scn->scn_suspending) 2863 goto out; 2864 2865 /* 2866 * We've finished this pass over this dataset. 2867 */ 2868 2869 /* 2870 * If we did not completely visit this dataset, do another pass. 2871 */ 2872 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2873 zfs_dbgmsg("incomplete pass on %s; visiting again", 2874 dp->dp_spa->spa_name); 2875 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2876 scan_ds_queue_insert(scn, ds->ds_object, 2877 scn->scn_phys.scn_cur_max_txg); 2878 goto out; 2879 } 2880 2881 /* 2882 * Add descendant datasets to work queue. 2883 */ 2884 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2885 scan_ds_queue_insert(scn, 2886 dsl_dataset_phys(ds)->ds_next_snap_obj, 2887 dsl_dataset_phys(ds)->ds_creation_txg); 2888 } 2889 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2890 boolean_t usenext = B_FALSE; 2891 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2892 uint64_t count; 2893 /* 2894 * A bug in a previous version of the code could 2895 * cause upgrade_clones_cb() to not set 2896 * ds_next_snap_obj when it should, leading to a 2897 * missing entry. Therefore we can only use the 2898 * next_clones_obj when its count is correct. 2899 */ 2900 int err = zap_count(dp->dp_meta_objset, 2901 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2902 if (err == 0 && 2903 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2904 usenext = B_TRUE; 2905 } 2906 2907 if (usenext) { 2908 zap_cursor_t zc; 2909 zap_attribute_t *za = zap_attribute_alloc(); 2910 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2911 dsl_dataset_phys(ds)->ds_next_clones_obj); 2912 zap_cursor_retrieve(&zc, za) == 0; 2913 (void) zap_cursor_advance(&zc)) { 2914 scan_ds_queue_insert(scn, 2915 zfs_strtonum(za->za_name, NULL), 2916 dsl_dataset_phys(ds)->ds_creation_txg); 2917 } 2918 zap_cursor_fini(&zc); 2919 zap_attribute_free(za); 2920 } else { 2921 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2922 enqueue_clones_cb, &ds->ds_object, 2923 DS_FIND_CHILDREN)); 2924 } 2925 } 2926 2927 out: 2928 dsl_dataset_rele(ds, FTAG); 2929 } 2930 2931 static int 2932 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2933 { 2934 (void) arg; 2935 dsl_dataset_t *ds; 2936 int err; 2937 dsl_scan_t *scn = dp->dp_scan; 2938 2939 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2940 if (err) 2941 return (err); 2942 2943 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2944 dsl_dataset_t *prev; 2945 err = dsl_dataset_hold_obj(dp, 2946 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2947 if (err) { 2948 dsl_dataset_rele(ds, FTAG); 2949 return (err); 2950 } 2951 2952 /* 2953 * If this is a clone, we don't need to worry about it for now. 2954 */ 2955 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2956 dsl_dataset_rele(ds, FTAG); 2957 dsl_dataset_rele(prev, FTAG); 2958 return (0); 2959 } 2960 dsl_dataset_rele(ds, FTAG); 2961 ds = prev; 2962 } 2963 2964 mutex_enter(&scn->scn_queue_lock); 2965 scan_ds_queue_insert(scn, ds->ds_object, 2966 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2967 mutex_exit(&scn->scn_queue_lock); 2968 dsl_dataset_rele(ds, FTAG); 2969 return (0); 2970 } 2971 2972 void 2973 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2974 ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 2975 { 2976 (void) tx; 2977 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 2978 blkptr_t bp; 2979 zbookmark_phys_t zb = { 0 }; 2980 2981 if (!dsl_scan_is_running(scn)) 2982 return; 2983 2984 /* 2985 * This function is special because it is the only thing 2986 * that can add scan_io_t's to the vdev scan queues from 2987 * outside dsl_scan_sync(). For the most part this is ok 2988 * as long as it is called from within syncing context. 2989 * However, dsl_scan_sync() expects that no new sio's will 2990 * be added between when all the work for a scan is done 2991 * and the next txg when the scan is actually marked as 2992 * completed. This check ensures we do not issue new sio's 2993 * during this period. 2994 */ 2995 if (scn->scn_done_txg != 0) 2996 return; 2997 2998 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 2999 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 3000 uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v); 3001 3002 if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg) 3003 continue; 3004 ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp); 3005 3006 scn->scn_visited_this_txg++; 3007 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 3008 } 3009 } 3010 3011 /* 3012 * Scrub/dedup interaction. 3013 * 3014 * If there are N references to a deduped block, we don't want to scrub it 3015 * N times -- ideally, we should scrub it exactly once. 3016 * 3017 * We leverage the fact that the dde's replication class (ddt_class_t) 3018 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 3019 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 3020 * 3021 * To prevent excess scrubbing, the scrub begins by walking the DDT 3022 * to find all blocks with refcnt > 1, and scrubs each of these once. 3023 * Since there are two replication classes which contain blocks with 3024 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 3025 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 3026 * 3027 * There would be nothing more to say if a block's refcnt couldn't change 3028 * during a scrub, but of course it can so we must account for changes 3029 * in a block's replication class. 3030 * 3031 * Here's an example of what can occur: 3032 * 3033 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 3034 * when visited during the top-down scrub phase, it will be scrubbed twice. 3035 * This negates our scrub optimization, but is otherwise harmless. 3036 * 3037 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 3038 * on each visit during the top-down scrub phase, it will never be scrubbed. 3039 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 3040 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 3041 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 3042 * while a scrub is in progress, it scrubs the block right then. 3043 */ 3044 static void 3045 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 3046 { 3047 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 3048 ddt_lightweight_entry_t ddlwe = {0}; 3049 int error; 3050 uint64_t n = 0; 3051 3052 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) { 3053 ddt_t *ddt; 3054 3055 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 3056 break; 3057 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 3058 (longlong_t)ddb->ddb_class, 3059 (longlong_t)ddb->ddb_type, 3060 (longlong_t)ddb->ddb_checksum, 3061 (longlong_t)ddb->ddb_cursor); 3062 3063 /* There should be no pending changes to the dedup table */ 3064 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 3065 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 3066 3067 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx); 3068 n++; 3069 3070 if (dsl_scan_check_suspend(scn, NULL)) 3071 break; 3072 } 3073 3074 if (error == EAGAIN) { 3075 dsl_scan_check_suspend(scn, NULL); 3076 error = 0; 3077 3078 zfs_dbgmsg("waiting for ddt to become ready for scan " 3079 "on %s with class_max = %u; suspending=%u", 3080 scn->scn_dp->dp_spa->spa_name, 3081 (int)scn->scn_phys.scn_ddt_class_max, 3082 (int)scn->scn_suspending); 3083 } else 3084 zfs_dbgmsg("scanned %llu ddt entries on %s with " 3085 "class_max = %u; suspending=%u", (longlong_t)n, 3086 scn->scn_dp->dp_spa->spa_name, 3087 (int)scn->scn_phys.scn_ddt_class_max, 3088 (int)scn->scn_suspending); 3089 3090 ASSERT(error == 0 || error == ENOENT); 3091 ASSERT(error != ENOENT || 3092 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 3093 } 3094 3095 static uint64_t 3096 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 3097 { 3098 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 3099 if (ds->ds_is_snapshot) 3100 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 3101 return (smt); 3102 } 3103 3104 static void 3105 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 3106 { 3107 scan_ds_t *sds; 3108 dsl_pool_t *dp = scn->scn_dp; 3109 3110 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 3111 scn->scn_phys.scn_ddt_class_max) { 3112 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 3113 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 3114 dsl_scan_ddt(scn, tx); 3115 if (scn->scn_suspending) 3116 return; 3117 } 3118 3119 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 3120 /* First do the MOS & ORIGIN */ 3121 3122 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 3123 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 3124 dsl_scan_visit_rootbp(scn, NULL, 3125 &dp->dp_meta_rootbp, tx); 3126 if (scn->scn_suspending) 3127 return; 3128 3129 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 3130 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 3131 enqueue_cb, NULL, DS_FIND_CHILDREN)); 3132 } else { 3133 dsl_scan_visitds(scn, 3134 dp->dp_origin_snap->ds_object, tx); 3135 } 3136 ASSERT(!scn->scn_suspending); 3137 } else if (scn->scn_phys.scn_bookmark.zb_objset != 3138 ZB_DESTROYED_OBJSET) { 3139 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 3140 /* 3141 * If we were suspended, continue from here. Note if the 3142 * ds we were suspended on was deleted, the zb_objset may 3143 * be -1, so we will skip this and find a new objset 3144 * below. 3145 */ 3146 dsl_scan_visitds(scn, dsobj, tx); 3147 if (scn->scn_suspending) 3148 return; 3149 } 3150 3151 /* 3152 * In case we suspended right at the end of the ds, zero the 3153 * bookmark so we don't think that we're still trying to resume. 3154 */ 3155 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t)); 3156 3157 /* 3158 * Keep pulling things out of the dataset avl queue. Updates to the 3159 * persistent zap-object-as-queue happen only at checkpoints. 3160 */ 3161 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 3162 dsl_dataset_t *ds; 3163 uint64_t dsobj = sds->sds_dsobj; 3164 uint64_t txg = sds->sds_txg; 3165 3166 /* dequeue and free the ds from the queue */ 3167 scan_ds_queue_remove(scn, dsobj); 3168 sds = NULL; 3169 3170 /* set up min / max txg */ 3171 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 3172 if (txg != 0) { 3173 scn->scn_phys.scn_cur_min_txg = 3174 MAX(scn->scn_phys.scn_min_txg, txg); 3175 } else { 3176 scn->scn_phys.scn_cur_min_txg = 3177 MAX(scn->scn_phys.scn_min_txg, 3178 dsl_dataset_phys(ds)->ds_prev_snap_txg); 3179 } 3180 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 3181 dsl_dataset_rele(ds, FTAG); 3182 3183 dsl_scan_visitds(scn, dsobj, tx); 3184 if (scn->scn_suspending) 3185 return; 3186 } 3187 3188 /* No more objsets to fetch, we're done */ 3189 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 3190 ASSERT0(scn->scn_suspending); 3191 } 3192 3193 static uint64_t 3194 dsl_scan_count_data_disks(spa_t *spa) 3195 { 3196 vdev_t *rvd = spa->spa_root_vdev; 3197 uint64_t i, leaves = 0; 3198 3199 for (i = 0; i < rvd->vdev_children; i++) { 3200 vdev_t *vd = rvd->vdev_child[i]; 3201 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache) 3202 continue; 3203 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd); 3204 } 3205 return (leaves); 3206 } 3207 3208 static void 3209 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 3210 { 3211 int i; 3212 uint64_t cur_size = 0; 3213 3214 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3215 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 3216 } 3217 3218 q->q_total_zio_size_this_txg += cur_size; 3219 q->q_zios_this_txg++; 3220 } 3221 3222 static void 3223 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 3224 uint64_t end) 3225 { 3226 q->q_total_seg_size_this_txg += end - start; 3227 q->q_segs_this_txg++; 3228 } 3229 3230 static boolean_t 3231 scan_io_queue_check_suspend(dsl_scan_t *scn) 3232 { 3233 /* See comment in dsl_scan_check_suspend() */ 3234 uint64_t curr_time_ns = gethrtime(); 3235 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 3236 uint64_t sync_time_ns = curr_time_ns - 3237 scn->scn_dp->dp_spa->spa_sync_starttime; 3238 uint64_t dirty_min_bytes = zfs_dirty_data_max * 3239 zfs_vdev_async_write_active_min_dirty_percent / 100; 3240 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3241 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3242 3243 return ((NSEC2MSEC(scan_time_ns) > mintime && 3244 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 3245 txg_sync_waiting(scn->scn_dp) || 3246 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 3247 spa_shutting_down(scn->scn_dp->dp_spa)); 3248 } 3249 3250 /* 3251 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 3252 * disk. This consumes the io_list and frees the scan_io_t's. This is 3253 * called when emptying queues, either when we're up against the memory 3254 * limit or when we have finished scanning. Returns B_TRUE if we stopped 3255 * processing the list before we finished. Any sios that were not issued 3256 * will remain in the io_list. 3257 */ 3258 static boolean_t 3259 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 3260 { 3261 dsl_scan_t *scn = queue->q_scn; 3262 scan_io_t *sio; 3263 boolean_t suspended = B_FALSE; 3264 3265 while ((sio = list_head(io_list)) != NULL) { 3266 blkptr_t bp; 3267 3268 if (scan_io_queue_check_suspend(scn)) { 3269 suspended = B_TRUE; 3270 break; 3271 } 3272 3273 sio2bp(sio, &bp); 3274 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 3275 &sio->sio_zb, queue); 3276 (void) list_remove_head(io_list); 3277 scan_io_queues_update_zio_stats(queue, &bp); 3278 sio_free(sio); 3279 } 3280 return (suspended); 3281 } 3282 3283 /* 3284 * This function removes sios from an IO queue which reside within a given 3285 * zfs_range_seg_t and inserts them (in offset order) into a list. Note that 3286 * we only ever return a maximum of 32 sios at once. If there are more sios 3287 * to process within this segment that did not make it onto the list we 3288 * return B_TRUE and otherwise B_FALSE. 3289 */ 3290 static boolean_t 3291 scan_io_queue_gather(dsl_scan_io_queue_t *queue, zfs_range_seg_t *rs, 3292 list_t *list) 3293 { 3294 scan_io_t *srch_sio, *sio, *next_sio; 3295 avl_index_t idx; 3296 uint_t num_sios = 0; 3297 int64_t bytes_issued = 0; 3298 3299 ASSERT(rs != NULL); 3300 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3301 3302 srch_sio = sio_alloc(1); 3303 srch_sio->sio_nr_dvas = 1; 3304 SIO_SET_OFFSET(srch_sio, zfs_rs_get_start(rs, queue->q_exts_by_addr)); 3305 3306 /* 3307 * The exact start of the extent might not contain any matching zios, 3308 * so if that's the case, examine the next one in the tree. 3309 */ 3310 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 3311 sio_free(srch_sio); 3312 3313 if (sio == NULL) 3314 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 3315 3316 while (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs, 3317 queue->q_exts_by_addr) && num_sios <= 32) { 3318 ASSERT3U(SIO_GET_OFFSET(sio), >=, zfs_rs_get_start(rs, 3319 queue->q_exts_by_addr)); 3320 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, zfs_rs_get_end(rs, 3321 queue->q_exts_by_addr)); 3322 3323 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 3324 avl_remove(&queue->q_sios_by_addr, sio); 3325 if (avl_is_empty(&queue->q_sios_by_addr)) 3326 atomic_add_64(&queue->q_scn->scn_queues_pending, -1); 3327 queue->q_sio_memused -= SIO_GET_MUSED(sio); 3328 3329 bytes_issued += SIO_GET_ASIZE(sio); 3330 num_sios++; 3331 list_insert_tail(list, sio); 3332 sio = next_sio; 3333 } 3334 3335 /* 3336 * We limit the number of sios we process at once to 32 to avoid 3337 * biting off more than we can chew. If we didn't take everything 3338 * in the segment we update it to reflect the work we were able to 3339 * complete. Otherwise, we remove it from the range tree entirely. 3340 */ 3341 if (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs, 3342 queue->q_exts_by_addr)) { 3343 zfs_range_tree_adjust_fill(queue->q_exts_by_addr, rs, 3344 -bytes_issued); 3345 zfs_range_tree_resize_segment(queue->q_exts_by_addr, rs, 3346 SIO_GET_OFFSET(sio), zfs_rs_get_end(rs, 3347 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 3348 queue->q_last_ext_addr = SIO_GET_OFFSET(sio); 3349 return (B_TRUE); 3350 } else { 3351 uint64_t rstart = zfs_rs_get_start(rs, queue->q_exts_by_addr); 3352 uint64_t rend = zfs_rs_get_end(rs, queue->q_exts_by_addr); 3353 zfs_range_tree_remove(queue->q_exts_by_addr, rstart, rend - 3354 rstart); 3355 queue->q_last_ext_addr = -1; 3356 return (B_FALSE); 3357 } 3358 } 3359 3360 /* 3361 * This is called from the queue emptying thread and selects the next 3362 * extent from which we are to issue I/Os. The behavior of this function 3363 * depends on the state of the scan, the current memory consumption and 3364 * whether or not we are performing a scan shutdown. 3365 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 3366 * needs to perform a checkpoint 3367 * 2) We select the largest available extent if we are up against the 3368 * memory limit. 3369 * 3) Otherwise we don't select any extents. 3370 */ 3371 static zfs_range_seg_t * 3372 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 3373 { 3374 dsl_scan_t *scn = queue->q_scn; 3375 zfs_range_tree_t *rt = queue->q_exts_by_addr; 3376 3377 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3378 ASSERT(scn->scn_is_sorted); 3379 3380 if (!scn->scn_checkpointing && !scn->scn_clearing) 3381 return (NULL); 3382 3383 /* 3384 * During normal clearing, we want to issue our largest segments 3385 * first, keeping IO as sequential as possible, and leaving the 3386 * smaller extents for later with the hope that they might eventually 3387 * grow to larger sequential segments. However, when the scan is 3388 * checkpointing, no new extents will be added to the sorting queue, 3389 * so the way we are sorted now is as good as it will ever get. 3390 * In this case, we instead switch to issuing extents in LBA order. 3391 */ 3392 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) || 3393 zfs_scan_issue_strategy == 1) 3394 return (zfs_range_tree_first(rt)); 3395 3396 /* 3397 * Try to continue previous extent if it is not completed yet. After 3398 * shrink in scan_io_queue_gather() it may no longer be the best, but 3399 * otherwise we leave shorter remnant every txg. 3400 */ 3401 uint64_t start; 3402 uint64_t size = 1ULL << rt->rt_shift; 3403 zfs_range_seg_t *addr_rs; 3404 if (queue->q_last_ext_addr != -1) { 3405 start = queue->q_last_ext_addr; 3406 addr_rs = zfs_range_tree_find(rt, start, size); 3407 if (addr_rs != NULL) 3408 return (addr_rs); 3409 } 3410 3411 /* 3412 * Nothing to continue, so find new best extent. 3413 */ 3414 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL); 3415 if (v == NULL) 3416 return (NULL); 3417 queue->q_last_ext_addr = start = *v << rt->rt_shift; 3418 3419 /* 3420 * We need to get the original entry in the by_addr tree so we can 3421 * modify it. 3422 */ 3423 addr_rs = zfs_range_tree_find(rt, start, size); 3424 ASSERT3P(addr_rs, !=, NULL); 3425 ASSERT3U(zfs_rs_get_start(addr_rs, rt), ==, start); 3426 ASSERT3U(zfs_rs_get_end(addr_rs, rt), >, start); 3427 return (addr_rs); 3428 } 3429 3430 static void 3431 scan_io_queues_run_one(void *arg) 3432 { 3433 dsl_scan_io_queue_t *queue = arg; 3434 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3435 boolean_t suspended = B_FALSE; 3436 zfs_range_seg_t *rs; 3437 scan_io_t *sio; 3438 zio_t *zio; 3439 list_t sio_list; 3440 3441 ASSERT(queue->q_scn->scn_is_sorted); 3442 3443 list_create(&sio_list, sizeof (scan_io_t), 3444 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3445 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa, 3446 NULL, NULL, NULL, ZIO_FLAG_CANFAIL); 3447 mutex_enter(q_lock); 3448 queue->q_zio = zio; 3449 3450 /* Calculate maximum in-flight bytes for this vdev. */ 3451 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit * 3452 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd))); 3453 3454 /* reset per-queue scan statistics for this txg */ 3455 queue->q_total_seg_size_this_txg = 0; 3456 queue->q_segs_this_txg = 0; 3457 queue->q_total_zio_size_this_txg = 0; 3458 queue->q_zios_this_txg = 0; 3459 3460 /* loop until we run out of time or sios */ 3461 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3462 uint64_t seg_start = 0, seg_end = 0; 3463 boolean_t more_left; 3464 3465 ASSERT(list_is_empty(&sio_list)); 3466 3467 /* loop while we still have sios left to process in this rs */ 3468 do { 3469 scan_io_t *first_sio, *last_sio; 3470 3471 /* 3472 * We have selected which extent needs to be 3473 * processed next. Gather up the corresponding sios. 3474 */ 3475 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3476 ASSERT(!list_is_empty(&sio_list)); 3477 first_sio = list_head(&sio_list); 3478 last_sio = list_tail(&sio_list); 3479 3480 seg_end = SIO_GET_END_OFFSET(last_sio); 3481 if (seg_start == 0) 3482 seg_start = SIO_GET_OFFSET(first_sio); 3483 3484 /* 3485 * Issuing sios can take a long time so drop the 3486 * queue lock. The sio queue won't be updated by 3487 * other threads since we're in syncing context so 3488 * we can be sure that our trees will remain exactly 3489 * as we left them. 3490 */ 3491 mutex_exit(q_lock); 3492 suspended = scan_io_queue_issue(queue, &sio_list); 3493 mutex_enter(q_lock); 3494 3495 if (suspended) 3496 break; 3497 } while (more_left); 3498 3499 /* update statistics for debugging purposes */ 3500 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3501 3502 if (suspended) 3503 break; 3504 } 3505 3506 /* 3507 * If we were suspended in the middle of processing, 3508 * requeue any unfinished sios and exit. 3509 */ 3510 while ((sio = list_remove_head(&sio_list)) != NULL) 3511 scan_io_queue_insert_impl(queue, sio); 3512 3513 queue->q_zio = NULL; 3514 mutex_exit(q_lock); 3515 zio_nowait(zio); 3516 list_destroy(&sio_list); 3517 } 3518 3519 /* 3520 * Performs an emptying run on all scan queues in the pool. This just 3521 * punches out one thread per top-level vdev, each of which processes 3522 * only that vdev's scan queue. We can parallelize the I/O here because 3523 * we know that each queue's I/Os only affect its own top-level vdev. 3524 * 3525 * This function waits for the queue runs to complete, and must be 3526 * called from dsl_scan_sync (or in general, syncing context). 3527 */ 3528 static void 3529 scan_io_queues_run(dsl_scan_t *scn) 3530 { 3531 spa_t *spa = scn->scn_dp->dp_spa; 3532 3533 ASSERT(scn->scn_is_sorted); 3534 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3535 3536 if (scn->scn_queues_pending == 0) 3537 return; 3538 3539 if (scn->scn_taskq == NULL) { 3540 int nthreads = spa->spa_root_vdev->vdev_children; 3541 3542 /* 3543 * We need to make this taskq *always* execute as many 3544 * threads in parallel as we have top-level vdevs and no 3545 * less, otherwise strange serialization of the calls to 3546 * scan_io_queues_run_one can occur during spa_sync runs 3547 * and that significantly impacts performance. 3548 */ 3549 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3550 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3551 } 3552 3553 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3554 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3555 3556 mutex_enter(&vd->vdev_scan_io_queue_lock); 3557 if (vd->vdev_scan_io_queue != NULL) { 3558 VERIFY(taskq_dispatch(scn->scn_taskq, 3559 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3560 TQ_SLEEP) != TASKQID_INVALID); 3561 } 3562 mutex_exit(&vd->vdev_scan_io_queue_lock); 3563 } 3564 3565 /* 3566 * Wait for the queues to finish issuing their IOs for this run 3567 * before we return. There may still be IOs in flight at this 3568 * point. 3569 */ 3570 taskq_wait(scn->scn_taskq); 3571 } 3572 3573 static boolean_t 3574 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3575 { 3576 uint64_t elapsed_nanosecs; 3577 3578 if (zfs_recover) 3579 return (B_FALSE); 3580 3581 if (zfs_async_block_max_blocks != 0 && 3582 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3583 return (B_TRUE); 3584 } 3585 3586 if (zfs_max_async_dedup_frees != 0 && 3587 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3588 return (B_TRUE); 3589 } 3590 3591 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3592 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3593 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3594 txg_sync_waiting(scn->scn_dp)) || 3595 spa_shutting_down(scn->scn_dp->dp_spa)); 3596 } 3597 3598 static int 3599 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3600 { 3601 dsl_scan_t *scn = arg; 3602 3603 if (!scn->scn_is_bptree || 3604 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3605 if (dsl_scan_async_block_should_pause(scn)) 3606 return (SET_ERROR(ERESTART)); 3607 } 3608 3609 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3610 dmu_tx_get_txg(tx), bp, 0)); 3611 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3612 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3613 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3614 scn->scn_visited_this_txg++; 3615 if (BP_GET_DEDUP(bp)) 3616 scn->scn_dedup_frees_this_txg++; 3617 return (0); 3618 } 3619 3620 static void 3621 dsl_scan_update_stats(dsl_scan_t *scn) 3622 { 3623 spa_t *spa = scn->scn_dp->dp_spa; 3624 uint64_t i; 3625 uint64_t seg_size_total = 0, zio_size_total = 0; 3626 uint64_t seg_count_total = 0, zio_count_total = 0; 3627 3628 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3629 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3630 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3631 3632 if (queue == NULL) 3633 continue; 3634 3635 seg_size_total += queue->q_total_seg_size_this_txg; 3636 zio_size_total += queue->q_total_zio_size_this_txg; 3637 seg_count_total += queue->q_segs_this_txg; 3638 zio_count_total += queue->q_zios_this_txg; 3639 } 3640 3641 if (seg_count_total == 0 || zio_count_total == 0) { 3642 scn->scn_avg_seg_size_this_txg = 0; 3643 scn->scn_avg_zio_size_this_txg = 0; 3644 scn->scn_segs_this_txg = 0; 3645 scn->scn_zios_this_txg = 0; 3646 return; 3647 } 3648 3649 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3650 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3651 scn->scn_segs_this_txg = seg_count_total; 3652 scn->scn_zios_this_txg = zio_count_total; 3653 } 3654 3655 static int 3656 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3657 dmu_tx_t *tx) 3658 { 3659 ASSERT(!bp_freed); 3660 return (dsl_scan_free_block_cb(arg, bp, tx)); 3661 } 3662 3663 static int 3664 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3665 dmu_tx_t *tx) 3666 { 3667 ASSERT(!bp_freed); 3668 dsl_scan_t *scn = arg; 3669 const dva_t *dva = &bp->blk_dva[0]; 3670 3671 if (dsl_scan_async_block_should_pause(scn)) 3672 return (SET_ERROR(ERESTART)); 3673 3674 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3675 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3676 DVA_GET_ASIZE(dva), tx); 3677 scn->scn_visited_this_txg++; 3678 return (0); 3679 } 3680 3681 boolean_t 3682 dsl_scan_active(dsl_scan_t *scn) 3683 { 3684 spa_t *spa = scn->scn_dp->dp_spa; 3685 uint64_t used = 0, comp, uncomp; 3686 boolean_t clones_left; 3687 3688 if (spa->spa_load_state != SPA_LOAD_NONE) 3689 return (B_FALSE); 3690 if (spa_shutting_down(spa)) 3691 return (B_FALSE); 3692 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3693 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3694 return (B_TRUE); 3695 3696 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3697 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3698 &used, &comp, &uncomp); 3699 } 3700 clones_left = spa_livelist_delete_check(spa); 3701 return ((used != 0) || (clones_left)); 3702 } 3703 3704 boolean_t 3705 dsl_errorscrub_active(dsl_scan_t *scn) 3706 { 3707 spa_t *spa = scn->scn_dp->dp_spa; 3708 if (spa->spa_load_state != SPA_LOAD_NONE) 3709 return (B_FALSE); 3710 if (spa_shutting_down(spa)) 3711 return (B_FALSE); 3712 if (dsl_errorscrubbing(scn->scn_dp)) 3713 return (B_TRUE); 3714 return (B_FALSE); 3715 } 3716 3717 static boolean_t 3718 dsl_scan_check_deferred(vdev_t *vd) 3719 { 3720 boolean_t need_resilver = B_FALSE; 3721 3722 for (int c = 0; c < vd->vdev_children; c++) { 3723 need_resilver |= 3724 dsl_scan_check_deferred(vd->vdev_child[c]); 3725 } 3726 3727 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3728 !vd->vdev_ops->vdev_op_leaf) 3729 return (need_resilver); 3730 3731 if (!vd->vdev_resilver_deferred) 3732 need_resilver = B_TRUE; 3733 3734 return (need_resilver); 3735 } 3736 3737 static boolean_t 3738 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3739 uint64_t phys_birth) 3740 { 3741 vdev_t *vd; 3742 3743 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3744 3745 if (vd->vdev_ops == &vdev_indirect_ops) { 3746 /* 3747 * The indirect vdev can point to multiple 3748 * vdevs. For simplicity, always create 3749 * the resilver zio_t. zio_vdev_io_start() 3750 * will bypass the child resilver i/o's if 3751 * they are on vdevs that don't have DTL's. 3752 */ 3753 return (B_TRUE); 3754 } 3755 3756 if (DVA_GET_GANG(dva)) { 3757 /* 3758 * Gang members may be spread across multiple 3759 * vdevs, so the best estimate we have is the 3760 * scrub range, which has already been checked. 3761 * XXX -- it would be better to change our 3762 * allocation policy to ensure that all 3763 * gang members reside on the same vdev. 3764 */ 3765 return (B_TRUE); 3766 } 3767 3768 /* 3769 * Check if the top-level vdev must resilver this offset. 3770 * When the offset does not intersect with a dirty leaf DTL 3771 * then it may be possible to skip the resilver IO. The psize 3772 * is provided instead of asize to simplify the check for RAIDZ. 3773 */ 3774 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) 3775 return (B_FALSE); 3776 3777 /* 3778 * Check that this top-level vdev has a device under it which 3779 * is resilvering and is not deferred. 3780 */ 3781 if (!dsl_scan_check_deferred(vd)) 3782 return (B_FALSE); 3783 3784 return (B_TRUE); 3785 } 3786 3787 static int 3788 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3789 { 3790 dsl_scan_t *scn = dp->dp_scan; 3791 spa_t *spa = dp->dp_spa; 3792 int err = 0; 3793 3794 if (spa_suspend_async_destroy(spa)) 3795 return (0); 3796 3797 if (zfs_free_bpobj_enabled && 3798 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3799 scn->scn_is_bptree = B_FALSE; 3800 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3801 scn->scn_zio_root = zio_root(spa, NULL, 3802 NULL, ZIO_FLAG_MUSTSUCCEED); 3803 err = bpobj_iterate(&dp->dp_free_bpobj, 3804 bpobj_dsl_scan_free_block_cb, scn, tx); 3805 VERIFY0(zio_wait(scn->scn_zio_root)); 3806 scn->scn_zio_root = NULL; 3807 3808 if (err != 0 && err != ERESTART) 3809 zfs_panic_recover("error %u from bpobj_iterate()", err); 3810 } 3811 3812 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3813 ASSERT(scn->scn_async_destroying); 3814 scn->scn_is_bptree = B_TRUE; 3815 scn->scn_zio_root = zio_root(spa, NULL, 3816 NULL, ZIO_FLAG_MUSTSUCCEED); 3817 err = bptree_iterate(dp->dp_meta_objset, 3818 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3819 VERIFY0(zio_wait(scn->scn_zio_root)); 3820 scn->scn_zio_root = NULL; 3821 3822 if (err == EIO || err == ECKSUM) { 3823 err = 0; 3824 } else if (err != 0 && err != ERESTART) { 3825 zfs_panic_recover("error %u from " 3826 "traverse_dataset_destroyed()", err); 3827 } 3828 3829 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3830 /* finished; deactivate async destroy feature */ 3831 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3832 ASSERT(!spa_feature_is_active(spa, 3833 SPA_FEATURE_ASYNC_DESTROY)); 3834 VERIFY0(zap_remove(dp->dp_meta_objset, 3835 DMU_POOL_DIRECTORY_OBJECT, 3836 DMU_POOL_BPTREE_OBJ, tx)); 3837 VERIFY0(bptree_free(dp->dp_meta_objset, 3838 dp->dp_bptree_obj, tx)); 3839 dp->dp_bptree_obj = 0; 3840 scn->scn_async_destroying = B_FALSE; 3841 scn->scn_async_stalled = B_FALSE; 3842 } else { 3843 /* 3844 * If we didn't make progress, mark the async 3845 * destroy as stalled, so that we will not initiate 3846 * a spa_sync() on its behalf. Note that we only 3847 * check this if we are not finished, because if the 3848 * bptree had no blocks for us to visit, we can 3849 * finish without "making progress". 3850 */ 3851 scn->scn_async_stalled = 3852 (scn->scn_visited_this_txg == 0); 3853 } 3854 } 3855 if (scn->scn_visited_this_txg) { 3856 zfs_dbgmsg("freed %llu blocks in %llums from " 3857 "free_bpobj/bptree on %s in txg %llu; err=%u", 3858 (longlong_t)scn->scn_visited_this_txg, 3859 (longlong_t) 3860 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3861 spa->spa_name, (longlong_t)tx->tx_txg, err); 3862 scn->scn_visited_this_txg = 0; 3863 scn->scn_dedup_frees_this_txg = 0; 3864 3865 /* 3866 * Write out changes to the DDT and the BRT that may be required 3867 * as a result of the blocks freed. This ensures that the DDT 3868 * and the BRT are clean when a scrub/resilver runs. 3869 */ 3870 ddt_sync(spa, tx->tx_txg); 3871 brt_sync(spa, tx->tx_txg); 3872 } 3873 if (err != 0) 3874 return (err); 3875 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3876 zfs_free_leak_on_eio && 3877 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3878 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3879 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3880 /* 3881 * We have finished background destroying, but there is still 3882 * some space left in the dp_free_dir. Transfer this leaked 3883 * space to the dp_leak_dir. 3884 */ 3885 if (dp->dp_leak_dir == NULL) { 3886 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3887 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3888 LEAK_DIR_NAME, tx); 3889 VERIFY0(dsl_pool_open_special_dir(dp, 3890 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3891 rrw_exit(&dp->dp_config_rwlock, FTAG); 3892 } 3893 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3894 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3895 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3896 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3897 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3898 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3899 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3900 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3901 } 3902 3903 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3904 !spa_livelist_delete_check(spa)) { 3905 /* finished; verify that space accounting went to zero */ 3906 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3907 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3908 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3909 } 3910 3911 spa_notify_waiters(spa); 3912 3913 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3914 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3915 DMU_POOL_OBSOLETE_BPOBJ)); 3916 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3917 ASSERT(spa_feature_is_active(dp->dp_spa, 3918 SPA_FEATURE_OBSOLETE_COUNTS)); 3919 3920 scn->scn_is_bptree = B_FALSE; 3921 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3922 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3923 dsl_scan_obsolete_block_cb, scn, tx); 3924 if (err != 0 && err != ERESTART) 3925 zfs_panic_recover("error %u from bpobj_iterate()", err); 3926 3927 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3928 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3929 } 3930 return (0); 3931 } 3932 3933 static void 3934 name_to_bookmark(char *buf, zbookmark_phys_t *zb) 3935 { 3936 zb->zb_objset = zfs_strtonum(buf, &buf); 3937 ASSERT(*buf == ':'); 3938 zb->zb_object = zfs_strtonum(buf + 1, &buf); 3939 ASSERT(*buf == ':'); 3940 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf); 3941 ASSERT(*buf == ':'); 3942 zb->zb_blkid = zfs_strtonum(buf + 1, &buf); 3943 ASSERT(*buf == '\0'); 3944 } 3945 3946 static void 3947 name_to_object(char *buf, uint64_t *obj) 3948 { 3949 *obj = zfs_strtonum(buf, &buf); 3950 ASSERT(*buf == '\0'); 3951 } 3952 3953 static void 3954 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb) 3955 { 3956 dsl_pool_t *dp = scn->scn_dp; 3957 dsl_dataset_t *ds; 3958 objset_t *os; 3959 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0) 3960 return; 3961 3962 if (dmu_objset_from_ds(ds, &os) != 0) { 3963 dsl_dataset_rele(ds, FTAG); 3964 return; 3965 } 3966 3967 /* 3968 * If the key is not loaded dbuf_dnode_findbp() will error out with 3969 * EACCES. However in that case dnode_hold() will eventually call 3970 * dbuf_read()->zio_wait() which may call spa_log_error(). This will 3971 * lead to a deadlock due to us holding the mutex spa_errlist_lock. 3972 * Avoid this by checking here if the keys are loaded, if not return. 3973 * If the keys are not loaded the head_errlog feature is meaningless 3974 * as we cannot figure out the birth txg of the block pointer. 3975 */ 3976 if (dsl_dataset_get_keystatus(ds->ds_dir) == 3977 ZFS_KEYSTATUS_UNAVAILABLE) { 3978 dsl_dataset_rele(ds, FTAG); 3979 return; 3980 } 3981 3982 dnode_t *dn; 3983 blkptr_t bp; 3984 3985 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) { 3986 dsl_dataset_rele(ds, FTAG); 3987 return; 3988 } 3989 3990 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3991 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL, 3992 NULL); 3993 3994 if (error) { 3995 rw_exit(&dn->dn_struct_rwlock); 3996 dnode_rele(dn, FTAG); 3997 dsl_dataset_rele(ds, FTAG); 3998 return; 3999 } 4000 4001 if (!error && BP_IS_HOLE(&bp)) { 4002 rw_exit(&dn->dn_struct_rwlock); 4003 dnode_rele(dn, FTAG); 4004 dsl_dataset_rele(ds, FTAG); 4005 return; 4006 } 4007 4008 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | 4009 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB; 4010 4011 /* If it's an intent log block, failure is expected. */ 4012 if (zb.zb_level == ZB_ZIL_LEVEL) 4013 zio_flags |= ZIO_FLAG_SPECULATIVE; 4014 4015 ASSERT(!BP_IS_EMBEDDED(&bp)); 4016 scan_exec_io(dp, &bp, zio_flags, &zb, NULL); 4017 rw_exit(&dn->dn_struct_rwlock); 4018 dnode_rele(dn, FTAG); 4019 dsl_dataset_rele(ds, FTAG); 4020 } 4021 4022 /* 4023 * We keep track of the scrubbed error blocks in "count". This will be used 4024 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This 4025 * function is modelled after check_filesystem(). 4026 */ 4027 static int 4028 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep, 4029 int *count) 4030 { 4031 dsl_dataset_t *ds; 4032 dsl_pool_t *dp = spa->spa_dsl_pool; 4033 dsl_scan_t *scn = dp->dp_scan; 4034 4035 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds); 4036 if (error != 0) 4037 return (error); 4038 4039 uint64_t latest_txg; 4040 uint64_t txg_to_consider = spa->spa_syncing_txg; 4041 boolean_t check_snapshot = B_TRUE; 4042 4043 error = find_birth_txg(ds, zep, &latest_txg); 4044 4045 /* 4046 * If find_birth_txg() errors out, then err on the side of caution and 4047 * proceed. In worst case scenario scrub all objects. If zep->zb_birth 4048 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to 4049 * scrub all objects. 4050 */ 4051 if (error == 0 && zep->zb_birth == latest_txg) { 4052 /* Block neither free nor re written. */ 4053 zbookmark_phys_t zb; 4054 zep_to_zb(fs, zep, &zb); 4055 scn->scn_zio_root = zio_root(spa, NULL, NULL, 4056 ZIO_FLAG_CANFAIL); 4057 /* We have already acquired the config lock for spa */ 4058 read_by_block_level(scn, zb); 4059 4060 (void) zio_wait(scn->scn_zio_root); 4061 scn->scn_zio_root = NULL; 4062 4063 scn->errorscrub_phys.dep_examined++; 4064 scn->errorscrub_phys.dep_to_examine--; 4065 (*count)++; 4066 if ((*count) == zfs_scrub_error_blocks_per_txg || 4067 dsl_error_scrub_check_suspend(scn, &zb)) { 4068 dsl_dataset_rele(ds, FTAG); 4069 return (SET_ERROR(EFAULT)); 4070 } 4071 4072 check_snapshot = B_FALSE; 4073 } else if (error == 0) { 4074 txg_to_consider = latest_txg; 4075 } 4076 4077 /* 4078 * Retrieve the number of snapshots if the dataset is not a snapshot. 4079 */ 4080 uint64_t snap_count = 0; 4081 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) { 4082 4083 error = zap_count(spa->spa_meta_objset, 4084 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count); 4085 4086 if (error != 0) { 4087 dsl_dataset_rele(ds, FTAG); 4088 return (error); 4089 } 4090 } 4091 4092 if (snap_count == 0) { 4093 /* Filesystem without snapshots. */ 4094 dsl_dataset_rele(ds, FTAG); 4095 return (0); 4096 } 4097 4098 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4099 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4100 4101 dsl_dataset_rele(ds, FTAG); 4102 4103 /* Check only snapshots created from this file system. */ 4104 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg && 4105 snap_obj_txg <= txg_to_consider) { 4106 4107 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds); 4108 if (error != 0) 4109 return (error); 4110 4111 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) { 4112 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4113 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4114 dsl_dataset_rele(ds, FTAG); 4115 continue; 4116 } 4117 4118 boolean_t affected = B_TRUE; 4119 if (check_snapshot) { 4120 uint64_t blk_txg; 4121 error = find_birth_txg(ds, zep, &blk_txg); 4122 4123 /* 4124 * Scrub the snapshot also when zb_birth == 0 or when 4125 * find_birth_txg() returns an error. 4126 */ 4127 affected = (error == 0 && zep->zb_birth == blk_txg) || 4128 (error != 0) || (zep->zb_birth == 0); 4129 } 4130 4131 /* Scrub snapshots. */ 4132 if (affected) { 4133 zbookmark_phys_t zb; 4134 zep_to_zb(snap_obj, zep, &zb); 4135 scn->scn_zio_root = zio_root(spa, NULL, NULL, 4136 ZIO_FLAG_CANFAIL); 4137 /* We have already acquired the config lock for spa */ 4138 read_by_block_level(scn, zb); 4139 4140 (void) zio_wait(scn->scn_zio_root); 4141 scn->scn_zio_root = NULL; 4142 4143 scn->errorscrub_phys.dep_examined++; 4144 scn->errorscrub_phys.dep_to_examine--; 4145 (*count)++; 4146 if ((*count) == zfs_scrub_error_blocks_per_txg || 4147 dsl_error_scrub_check_suspend(scn, &zb)) { 4148 dsl_dataset_rele(ds, FTAG); 4149 return (EFAULT); 4150 } 4151 } 4152 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4153 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4154 dsl_dataset_rele(ds, FTAG); 4155 } 4156 return (0); 4157 } 4158 4159 void 4160 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx) 4161 { 4162 spa_t *spa = dp->dp_spa; 4163 dsl_scan_t *scn = dp->dp_scan; 4164 4165 /* 4166 * Only process scans in sync pass 1. 4167 */ 4168 4169 if (spa_sync_pass(spa) > 1) 4170 return; 4171 4172 /* 4173 * If the spa is shutting down, then stop scanning. This will 4174 * ensure that the scan does not dirty any new data during the 4175 * shutdown phase. 4176 */ 4177 if (spa_shutting_down(spa)) 4178 return; 4179 4180 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) { 4181 return; 4182 } 4183 4184 if (dsl_scan_resilvering(scn->scn_dp)) { 4185 /* cancel the error scrub if resilver started */ 4186 dsl_scan_cancel(scn->scn_dp); 4187 return; 4188 } 4189 4190 spa->spa_scrub_active = B_TRUE; 4191 scn->scn_sync_start_time = gethrtime(); 4192 4193 /* 4194 * zfs_scan_suspend_progress can be set to disable scrub progress. 4195 * See more detailed comment in dsl_scan_sync(). 4196 */ 4197 if (zfs_scan_suspend_progress) { 4198 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4199 int mintime = zfs_scrub_min_time_ms; 4200 4201 while (zfs_scan_suspend_progress && 4202 !txg_sync_waiting(scn->scn_dp) && 4203 !spa_shutting_down(scn->scn_dp->dp_spa) && 4204 NSEC2MSEC(scan_time_ns) < mintime) { 4205 delay(hz); 4206 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4207 } 4208 return; 4209 } 4210 4211 int i = 0; 4212 zap_attribute_t *za; 4213 zbookmark_phys_t *zb; 4214 boolean_t limit_exceeded = B_FALSE; 4215 4216 za = zap_attribute_alloc(); 4217 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP); 4218 4219 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 4220 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0; 4221 zap_cursor_advance(&scn->errorscrub_cursor)) { 4222 name_to_bookmark(za->za_name, zb); 4223 4224 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4225 NULL, ZIO_FLAG_CANFAIL); 4226 dsl_pool_config_enter(dp, FTAG); 4227 read_by_block_level(scn, *zb); 4228 dsl_pool_config_exit(dp, FTAG); 4229 4230 (void) zio_wait(scn->scn_zio_root); 4231 scn->scn_zio_root = NULL; 4232 4233 scn->errorscrub_phys.dep_examined += 1; 4234 scn->errorscrub_phys.dep_to_examine -= 1; 4235 i++; 4236 if (i == zfs_scrub_error_blocks_per_txg || 4237 dsl_error_scrub_check_suspend(scn, zb)) { 4238 limit_exceeded = B_TRUE; 4239 break; 4240 } 4241 } 4242 4243 if (!limit_exceeded) 4244 dsl_errorscrub_done(scn, B_TRUE, tx); 4245 4246 dsl_errorscrub_sync_state(scn, tx); 4247 zap_attribute_free(za); 4248 kmem_free(zb, sizeof (*zb)); 4249 return; 4250 } 4251 4252 int error = 0; 4253 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0; 4254 zap_cursor_advance(&scn->errorscrub_cursor)) { 4255 4256 zap_cursor_t *head_ds_cursor; 4257 zap_attribute_t *head_ds_attr; 4258 zbookmark_err_phys_t head_ds_block; 4259 4260 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP); 4261 head_ds_attr = zap_attribute_alloc(); 4262 4263 uint64_t head_ds_err_obj = za->za_first_integer; 4264 uint64_t head_ds; 4265 name_to_object(za->za_name, &head_ds); 4266 boolean_t config_held = B_FALSE; 4267 uint64_t top_affected_fs; 4268 4269 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset, 4270 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor, 4271 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) { 4272 4273 name_to_errphys(head_ds_attr->za_name, &head_ds_block); 4274 4275 /* 4276 * In case we are called from spa_sync the pool 4277 * config is already held. 4278 */ 4279 if (!dsl_pool_config_held(dp)) { 4280 dsl_pool_config_enter(dp, FTAG); 4281 config_held = B_TRUE; 4282 } 4283 4284 error = find_top_affected_fs(spa, 4285 head_ds, &head_ds_block, &top_affected_fs); 4286 if (error) 4287 break; 4288 4289 error = scrub_filesystem(spa, top_affected_fs, 4290 &head_ds_block, &i); 4291 4292 if (error == SET_ERROR(EFAULT)) { 4293 limit_exceeded = B_TRUE; 4294 break; 4295 } 4296 } 4297 4298 zap_cursor_fini(head_ds_cursor); 4299 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor)); 4300 zap_attribute_free(head_ds_attr); 4301 4302 if (config_held) 4303 dsl_pool_config_exit(dp, FTAG); 4304 } 4305 4306 zap_attribute_free(za); 4307 kmem_free(zb, sizeof (*zb)); 4308 if (!limit_exceeded) 4309 dsl_errorscrub_done(scn, B_TRUE, tx); 4310 4311 dsl_errorscrub_sync_state(scn, tx); 4312 } 4313 4314 /* 4315 * This is the primary entry point for scans that is called from syncing 4316 * context. Scans must happen entirely during syncing context so that we 4317 * can guarantee that blocks we are currently scanning will not change out 4318 * from under us. While a scan is active, this function controls how quickly 4319 * transaction groups proceed, instead of the normal handling provided by 4320 * txg_sync_thread(). 4321 */ 4322 void 4323 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 4324 { 4325 int err = 0; 4326 dsl_scan_t *scn = dp->dp_scan; 4327 spa_t *spa = dp->dp_spa; 4328 state_sync_type_t sync_type = SYNC_OPTIONAL; 4329 int restart_early = 0; 4330 4331 if (spa->spa_resilver_deferred) { 4332 uint64_t to_issue, issued; 4333 4334 if (!spa_feature_is_active(dp->dp_spa, 4335 SPA_FEATURE_RESILVER_DEFER)) 4336 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 4337 4338 /* 4339 * See print_scan_scrub_resilver_status() issued/total_i 4340 * @ cmd/zpool/zpool_main.c 4341 */ 4342 to_issue = 4343 scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped; 4344 issued = 4345 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 4346 restart_early = 4347 zfs_resilver_disable_defer || 4348 (issued < (to_issue * zfs_resilver_defer_percent / 100)); 4349 } 4350 4351 /* 4352 * Only process scans in sync pass 1. 4353 */ 4354 if (spa_sync_pass(spa) > 1) 4355 return; 4356 4357 4358 /* 4359 * Check for scn_restart_txg before checking spa_load_state, so 4360 * that we can restart an old-style scan while the pool is being 4361 * imported (see dsl_scan_init). We also restart scans if there 4362 * is a deferred resilver and the user has manually disabled 4363 * deferred resilvers via zfs_resilver_disable_defer, or if the 4364 * current scan progress is below zfs_resilver_defer_percent. 4365 */ 4366 if (dsl_scan_restarting(scn, tx) || restart_early) { 4367 setup_sync_arg_t setup_sync_arg = { 4368 .func = POOL_SCAN_SCRUB, 4369 .txgstart = 0, 4370 .txgend = 0, 4371 }; 4372 dsl_scan_done(scn, B_FALSE, tx); 4373 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 4374 setup_sync_arg.func = POOL_SCAN_RESILVER; 4375 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d", 4376 setup_sync_arg.func, dp->dp_spa->spa_name, 4377 (longlong_t)tx->tx_txg, restart_early); 4378 dsl_scan_setup_sync(&setup_sync_arg, tx); 4379 } 4380 4381 /* 4382 * If the spa is shutting down, then stop scanning. This will 4383 * ensure that the scan does not dirty any new data during the 4384 * shutdown phase. 4385 */ 4386 if (spa_shutting_down(spa)) 4387 return; 4388 4389 /* 4390 * If the scan is inactive due to a stalled async destroy, try again. 4391 */ 4392 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 4393 return; 4394 4395 /* reset scan statistics */ 4396 scn->scn_visited_this_txg = 0; 4397 scn->scn_dedup_frees_this_txg = 0; 4398 scn->scn_holes_this_txg = 0; 4399 scn->scn_lt_min_this_txg = 0; 4400 scn->scn_gt_max_this_txg = 0; 4401 scn->scn_ddt_contained_this_txg = 0; 4402 scn->scn_objsets_visited_this_txg = 0; 4403 scn->scn_avg_seg_size_this_txg = 0; 4404 scn->scn_segs_this_txg = 0; 4405 scn->scn_avg_zio_size_this_txg = 0; 4406 scn->scn_zios_this_txg = 0; 4407 scn->scn_suspending = B_FALSE; 4408 scn->scn_sync_start_time = gethrtime(); 4409 spa->spa_scrub_active = B_TRUE; 4410 4411 /* 4412 * First process the async destroys. If we suspend, don't do 4413 * any scrubbing or resilvering. This ensures that there are no 4414 * async destroys while we are scanning, so the scan code doesn't 4415 * have to worry about traversing it. It is also faster to free the 4416 * blocks than to scrub them. 4417 */ 4418 err = dsl_process_async_destroys(dp, tx); 4419 if (err != 0) 4420 return; 4421 4422 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 4423 return; 4424 4425 /* 4426 * Wait a few txgs after importing to begin scanning so that 4427 * we can get the pool imported quickly. 4428 */ 4429 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 4430 return; 4431 4432 /* 4433 * zfs_scan_suspend_progress can be set to disable scan progress. 4434 * We don't want to spin the txg_sync thread, so we add a delay 4435 * here to simulate the time spent doing a scan. This is mostly 4436 * useful for testing and debugging. 4437 */ 4438 if (zfs_scan_suspend_progress) { 4439 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4440 uint_t mintime = (scn->scn_phys.scn_func == 4441 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : 4442 zfs_scrub_min_time_ms; 4443 4444 while (zfs_scan_suspend_progress && 4445 !txg_sync_waiting(scn->scn_dp) && 4446 !spa_shutting_down(scn->scn_dp->dp_spa) && 4447 NSEC2MSEC(scan_time_ns) < mintime) { 4448 delay(hz); 4449 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4450 } 4451 return; 4452 } 4453 4454 /* 4455 * Disabled by default, set zfs_scan_report_txgs to report 4456 * average performance over the last zfs_scan_report_txgs TXGs. 4457 */ 4458 if (zfs_scan_report_txgs != 0 && 4459 tx->tx_txg % zfs_scan_report_txgs == 0) { 4460 scn->scn_issued_before_pass += spa->spa_scan_pass_issued; 4461 spa_scan_stat_init(spa); 4462 } 4463 4464 /* 4465 * It is possible to switch from unsorted to sorted at any time, 4466 * but afterwards the scan will remain sorted unless reloaded from 4467 * a checkpoint after a reboot. 4468 */ 4469 if (!zfs_scan_legacy) { 4470 scn->scn_is_sorted = B_TRUE; 4471 if (scn->scn_last_checkpoint == 0) 4472 scn->scn_last_checkpoint = ddi_get_lbolt(); 4473 } 4474 4475 /* 4476 * For sorted scans, determine what kind of work we will be doing 4477 * this txg based on our memory limitations and whether or not we 4478 * need to perform a checkpoint. 4479 */ 4480 if (scn->scn_is_sorted) { 4481 /* 4482 * If we are over our checkpoint interval, set scn_clearing 4483 * so that we can begin checkpointing immediately. The 4484 * checkpoint allows us to save a consistent bookmark 4485 * representing how much data we have scrubbed so far. 4486 * Otherwise, use the memory limit to determine if we should 4487 * scan for metadata or start issue scrub IOs. We accumulate 4488 * metadata until we hit our hard memory limit at which point 4489 * we issue scrub IOs until we are at our soft memory limit. 4490 */ 4491 if (scn->scn_checkpointing || 4492 ddi_get_lbolt() - scn->scn_last_checkpoint > 4493 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 4494 if (!scn->scn_checkpointing) 4495 zfs_dbgmsg("begin scan checkpoint for %s", 4496 spa->spa_name); 4497 4498 scn->scn_checkpointing = B_TRUE; 4499 scn->scn_clearing = B_TRUE; 4500 } else { 4501 boolean_t should_clear = dsl_scan_should_clear(scn); 4502 if (should_clear && !scn->scn_clearing) { 4503 zfs_dbgmsg("begin scan clearing for %s", 4504 spa->spa_name); 4505 scn->scn_clearing = B_TRUE; 4506 } else if (!should_clear && scn->scn_clearing) { 4507 zfs_dbgmsg("finish scan clearing for %s", 4508 spa->spa_name); 4509 scn->scn_clearing = B_FALSE; 4510 } 4511 } 4512 } else { 4513 ASSERT0(scn->scn_checkpointing); 4514 ASSERT0(scn->scn_clearing); 4515 } 4516 4517 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 4518 /* Need to scan metadata for more blocks to scrub */ 4519 dsl_scan_phys_t *scnp = &scn->scn_phys; 4520 taskqid_t prefetch_tqid; 4521 4522 /* 4523 * Calculate the max number of in-flight bytes for pool-wide 4524 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). 4525 * Limits for the issuing phase are done per top-level vdev and 4526 * are handled separately. 4527 */ 4528 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, 4529 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); 4530 4531 if (scnp->scn_ddt_bookmark.ddb_class <= 4532 scnp->scn_ddt_class_max) { 4533 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 4534 zfs_dbgmsg("doing scan sync for %s txg %llu; " 4535 "ddt bm=%llu/%llu/%llu/%llx", 4536 spa->spa_name, 4537 (longlong_t)tx->tx_txg, 4538 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 4539 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 4540 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 4541 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 4542 } else { 4543 zfs_dbgmsg("doing scan sync for %s txg %llu; " 4544 "bm=%llu/%llu/%llu/%llu", 4545 spa->spa_name, 4546 (longlong_t)tx->tx_txg, 4547 (longlong_t)scnp->scn_bookmark.zb_objset, 4548 (longlong_t)scnp->scn_bookmark.zb_object, 4549 (longlong_t)scnp->scn_bookmark.zb_level, 4550 (longlong_t)scnp->scn_bookmark.zb_blkid); 4551 } 4552 4553 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4554 NULL, ZIO_FLAG_CANFAIL); 4555 4556 scn->scn_prefetch_stop = B_FALSE; 4557 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 4558 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 4559 ASSERT(prefetch_tqid != TASKQID_INVALID); 4560 4561 dsl_pool_config_enter(dp, FTAG); 4562 dsl_scan_visit(scn, tx); 4563 dsl_pool_config_exit(dp, FTAG); 4564 4565 mutex_enter(&dp->dp_spa->spa_scrub_lock); 4566 scn->scn_prefetch_stop = B_TRUE; 4567 cv_broadcast(&spa->spa_scrub_io_cv); 4568 mutex_exit(&dp->dp_spa->spa_scrub_lock); 4569 4570 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 4571 (void) zio_wait(scn->scn_zio_root); 4572 scn->scn_zio_root = NULL; 4573 4574 zfs_dbgmsg("scan visited %llu blocks of %s in %llums " 4575 "(%llu os's, %llu holes, %llu < mintxg, " 4576 "%llu in ddt, %llu > maxtxg)", 4577 (longlong_t)scn->scn_visited_this_txg, 4578 spa->spa_name, 4579 (longlong_t)NSEC2MSEC(gethrtime() - 4580 scn->scn_sync_start_time), 4581 (longlong_t)scn->scn_objsets_visited_this_txg, 4582 (longlong_t)scn->scn_holes_this_txg, 4583 (longlong_t)scn->scn_lt_min_this_txg, 4584 (longlong_t)scn->scn_ddt_contained_this_txg, 4585 (longlong_t)scn->scn_gt_max_this_txg); 4586 4587 if (!scn->scn_suspending) { 4588 ASSERT0(avl_numnodes(&scn->scn_queue)); 4589 scn->scn_done_txg = tx->tx_txg + 1; 4590 if (scn->scn_is_sorted) { 4591 scn->scn_checkpointing = B_TRUE; 4592 scn->scn_clearing = B_TRUE; 4593 scn->scn_issued_before_pass += 4594 spa->spa_scan_pass_issued; 4595 spa_scan_stat_init(spa); 4596 } 4597 zfs_dbgmsg("scan complete for %s txg %llu", 4598 spa->spa_name, 4599 (longlong_t)tx->tx_txg); 4600 } 4601 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) { 4602 ASSERT(scn->scn_clearing); 4603 4604 /* need to issue scrubbing IOs from per-vdev queues */ 4605 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4606 NULL, ZIO_FLAG_CANFAIL); 4607 scan_io_queues_run(scn); 4608 (void) zio_wait(scn->scn_zio_root); 4609 scn->scn_zio_root = NULL; 4610 4611 /* calculate and dprintf the current memory usage */ 4612 (void) dsl_scan_should_clear(scn); 4613 dsl_scan_update_stats(scn); 4614 4615 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) " 4616 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)", 4617 (longlong_t)scn->scn_zios_this_txg, 4618 spa->spa_name, 4619 (longlong_t)scn->scn_segs_this_txg, 4620 (longlong_t)NSEC2MSEC(gethrtime() - 4621 scn->scn_sync_start_time), 4622 (longlong_t)scn->scn_avg_zio_size_this_txg, 4623 (longlong_t)scn->scn_avg_seg_size_this_txg); 4624 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 4625 /* Finished with everything. Mark the scrub as complete */ 4626 zfs_dbgmsg("scan issuing complete txg %llu for %s", 4627 (longlong_t)tx->tx_txg, 4628 spa->spa_name); 4629 ASSERT3U(scn->scn_done_txg, !=, 0); 4630 ASSERT0(spa->spa_scrub_inflight); 4631 ASSERT0(scn->scn_queues_pending); 4632 dsl_scan_done(scn, B_TRUE, tx); 4633 sync_type = SYNC_MANDATORY; 4634 } 4635 4636 dsl_scan_sync_state(scn, tx, sync_type); 4637 } 4638 4639 static void 4640 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all) 4641 { 4642 /* 4643 * Don't count embedded bp's, since we already did the work of 4644 * scanning these when we scanned the containing block. 4645 */ 4646 if (BP_IS_EMBEDDED(bp)) 4647 return; 4648 4649 /* 4650 * Update the spa's stats on how many bytes we have issued. 4651 * Sequential scrubs create a zio for each DVA of the bp. Each 4652 * of these will include all DVAs for repair purposes, but the 4653 * zio code will only try the first one unless there is an issue. 4654 * Therefore, we should only count the first DVA for these IOs. 4655 */ 4656 atomic_add_64(&spa->spa_scan_pass_issued, 4657 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 4658 } 4659 4660 static void 4661 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all) 4662 { 4663 if (BP_IS_EMBEDDED(bp)) 4664 return; 4665 atomic_add_64(&scn->scn_phys.scn_skipped, 4666 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 4667 } 4668 4669 static void 4670 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp) 4671 { 4672 /* 4673 * If we resume after a reboot, zab will be NULL; don't record 4674 * incomplete stats in that case. 4675 */ 4676 if (zab == NULL) 4677 return; 4678 4679 for (int i = 0; i < 4; i++) { 4680 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 4681 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 4682 4683 if (t & DMU_OT_NEWTYPE) 4684 t = DMU_OT_OTHER; 4685 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 4686 int equal; 4687 4688 zb->zb_count++; 4689 zb->zb_asize += BP_GET_ASIZE(bp); 4690 zb->zb_lsize += BP_GET_LSIZE(bp); 4691 zb->zb_psize += BP_GET_PSIZE(bp); 4692 zb->zb_gangs += BP_COUNT_GANG(bp); 4693 4694 switch (BP_GET_NDVAS(bp)) { 4695 case 2: 4696 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 4697 DVA_GET_VDEV(&bp->blk_dva[1])) 4698 zb->zb_ditto_2_of_2_samevdev++; 4699 break; 4700 case 3: 4701 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 4702 DVA_GET_VDEV(&bp->blk_dva[1])) + 4703 (DVA_GET_VDEV(&bp->blk_dva[0]) == 4704 DVA_GET_VDEV(&bp->blk_dva[2])) + 4705 (DVA_GET_VDEV(&bp->blk_dva[1]) == 4706 DVA_GET_VDEV(&bp->blk_dva[2])); 4707 if (equal == 1) 4708 zb->zb_ditto_2_of_3_samevdev++; 4709 else if (equal == 3) 4710 zb->zb_ditto_3_of_3_samevdev++; 4711 break; 4712 } 4713 } 4714 } 4715 4716 static void 4717 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 4718 { 4719 avl_index_t idx; 4720 dsl_scan_t *scn = queue->q_scn; 4721 4722 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4723 4724 if (unlikely(avl_is_empty(&queue->q_sios_by_addr))) 4725 atomic_add_64(&scn->scn_queues_pending, 1); 4726 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 4727 /* block is already scheduled for reading */ 4728 sio_free(sio); 4729 return; 4730 } 4731 avl_insert(&queue->q_sios_by_addr, sio, idx); 4732 queue->q_sio_memused += SIO_GET_MUSED(sio); 4733 zfs_range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), 4734 SIO_GET_ASIZE(sio)); 4735 } 4736 4737 /* 4738 * Given all the info we got from our metadata scanning process, we 4739 * construct a scan_io_t and insert it into the scan sorting queue. The 4740 * I/O must already be suitable for us to process. This is controlled 4741 * by dsl_scan_enqueue(). 4742 */ 4743 static void 4744 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 4745 int zio_flags, const zbookmark_phys_t *zb) 4746 { 4747 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 4748 4749 ASSERT0(BP_IS_GANG(bp)); 4750 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4751 4752 bp2sio(bp, sio, dva_i); 4753 sio->sio_flags = zio_flags; 4754 sio->sio_zb = *zb; 4755 4756 queue->q_last_ext_addr = -1; 4757 scan_io_queue_insert_impl(queue, sio); 4758 } 4759 4760 /* 4761 * Given a set of I/O parameters as discovered by the metadata traversal 4762 * process, attempts to place the I/O into the sorted queues (if allowed), 4763 * or immediately executes the I/O. 4764 */ 4765 static void 4766 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4767 const zbookmark_phys_t *zb) 4768 { 4769 spa_t *spa = dp->dp_spa; 4770 4771 ASSERT(!BP_IS_EMBEDDED(bp)); 4772 4773 /* 4774 * Gang blocks are hard to issue sequentially, so we just issue them 4775 * here immediately instead of queuing them. 4776 */ 4777 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 4778 scan_exec_io(dp, bp, zio_flags, zb, NULL); 4779 return; 4780 } 4781 4782 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 4783 dva_t dva; 4784 vdev_t *vdev; 4785 4786 dva = bp->blk_dva[i]; 4787 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 4788 ASSERT(vdev != NULL); 4789 4790 mutex_enter(&vdev->vdev_scan_io_queue_lock); 4791 if (vdev->vdev_scan_io_queue == NULL) 4792 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 4793 ASSERT(dp->dp_scan != NULL); 4794 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 4795 i, zio_flags, zb); 4796 mutex_exit(&vdev->vdev_scan_io_queue_lock); 4797 } 4798 } 4799 4800 static int 4801 dsl_scan_scrub_cb(dsl_pool_t *dp, 4802 const blkptr_t *bp, const zbookmark_phys_t *zb) 4803 { 4804 dsl_scan_t *scn = dp->dp_scan; 4805 spa_t *spa = dp->dp_spa; 4806 uint64_t phys_birth = BP_GET_BIRTH(bp); 4807 size_t psize = BP_GET_PSIZE(bp); 4808 boolean_t needs_io = B_FALSE; 4809 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 4810 4811 count_block(dp->dp_blkstats, bp); 4812 if (phys_birth <= scn->scn_phys.scn_min_txg || 4813 phys_birth >= scn->scn_phys.scn_max_txg) { 4814 count_block_skipped(scn, bp, B_TRUE); 4815 return (0); 4816 } 4817 4818 /* Embedded BP's have phys_birth==0, so we reject them above. */ 4819 ASSERT(!BP_IS_EMBEDDED(bp)); 4820 4821 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 4822 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 4823 zio_flags |= ZIO_FLAG_SCRUB; 4824 needs_io = B_TRUE; 4825 } else { 4826 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 4827 zio_flags |= ZIO_FLAG_RESILVER; 4828 needs_io = B_FALSE; 4829 } 4830 4831 /* If it's an intent log block, failure is expected. */ 4832 if (zb->zb_level == ZB_ZIL_LEVEL) 4833 zio_flags |= ZIO_FLAG_SPECULATIVE; 4834 4835 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 4836 const dva_t *dva = &bp->blk_dva[d]; 4837 4838 /* 4839 * Keep track of how much data we've examined so that 4840 * zpool(8) status can make useful progress reports. 4841 */ 4842 uint64_t asize = DVA_GET_ASIZE(dva); 4843 scn->scn_phys.scn_examined += asize; 4844 spa->spa_scan_pass_exam += asize; 4845 4846 /* if it's a resilver, this may not be in the target range */ 4847 if (!needs_io) 4848 needs_io = dsl_scan_need_resilver(spa, dva, psize, 4849 phys_birth); 4850 } 4851 4852 if (needs_io && !zfs_no_scrub_io) { 4853 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4854 } else { 4855 count_block_skipped(scn, bp, B_TRUE); 4856 } 4857 4858 /* do not relocate this block */ 4859 return (0); 4860 } 4861 4862 static void 4863 dsl_scan_scrub_done(zio_t *zio) 4864 { 4865 spa_t *spa = zio->io_spa; 4866 blkptr_t *bp = zio->io_bp; 4867 dsl_scan_io_queue_t *queue = zio->io_private; 4868 4869 abd_free(zio->io_abd); 4870 4871 if (queue == NULL) { 4872 mutex_enter(&spa->spa_scrub_lock); 4873 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4874 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4875 cv_broadcast(&spa->spa_scrub_io_cv); 4876 mutex_exit(&spa->spa_scrub_lock); 4877 } else { 4878 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4879 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4880 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4881 cv_broadcast(&queue->q_zio_cv); 4882 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4883 } 4884 4885 if (zio->io_error && (zio->io_error != ECKSUM || 4886 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4887 if (dsl_errorscrubbing(spa->spa_dsl_pool) && 4888 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) { 4889 atomic_inc_64(&spa->spa_dsl_pool->dp_scan 4890 ->errorscrub_phys.dep_errors); 4891 } else { 4892 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys 4893 .scn_errors); 4894 } 4895 } 4896 } 4897 4898 /* 4899 * Given a scanning zio's information, executes the zio. The zio need 4900 * not necessarily be only sortable, this function simply executes the 4901 * zio, no matter what it is. The optional queue argument allows the 4902 * caller to specify that they want per top level vdev IO rate limiting 4903 * instead of the legacy global limiting. 4904 */ 4905 static void 4906 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4907 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4908 { 4909 spa_t *spa = dp->dp_spa; 4910 dsl_scan_t *scn = dp->dp_scan; 4911 size_t size = BP_GET_PSIZE(bp); 4912 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4913 zio_t *pio; 4914 4915 if (queue == NULL) { 4916 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4917 mutex_enter(&spa->spa_scrub_lock); 4918 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4919 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4920 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4921 mutex_exit(&spa->spa_scrub_lock); 4922 pio = scn->scn_zio_root; 4923 } else { 4924 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4925 4926 ASSERT3U(queue->q_maxinflight_bytes, >, 0); 4927 mutex_enter(q_lock); 4928 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4929 cv_wait(&queue->q_zio_cv, q_lock); 4930 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4931 pio = queue->q_zio; 4932 mutex_exit(q_lock); 4933 } 4934 4935 ASSERT(pio != NULL); 4936 count_block_issued(spa, bp, queue == NULL); 4937 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done, 4938 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4939 } 4940 4941 /* 4942 * This is the primary extent sorting algorithm. We balance two parameters: 4943 * 1) how many bytes of I/O are in an extent 4944 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4945 * Since we allow extents to have gaps between their constituent I/Os, it's 4946 * possible to have a fairly large extent that contains the same amount of 4947 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4948 * The algorithm sorts based on a score calculated from the extent's size, 4949 * the relative fill volume (in %) and a "fill weight" parameter that controls 4950 * the split between whether we prefer larger extents or more well populated 4951 * extents: 4952 * 4953 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4954 * 4955 * Example: 4956 * 1) assume extsz = 64 MiB 4957 * 2) assume fill = 32 MiB (extent is half full) 4958 * 3) assume fill_weight = 3 4959 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4960 * SCORE = 32M + (50 * 3 * 32M) / 100 4961 * SCORE = 32M + (4800M / 100) 4962 * SCORE = 32M + 48M 4963 * ^ ^ 4964 * | +--- final total relative fill-based score 4965 * +--------- final total fill-based score 4966 * SCORE = 80M 4967 * 4968 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4969 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4970 * Note that as an optimization, we replace multiplication and division by 4971 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4972 * 4973 * Since we do not care if one extent is only few percent better than another, 4974 * compress the score into 6 bits via binary logarithm AKA highbit64() and 4975 * put into otherwise unused due to ashift high bits of offset. This allows 4976 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them 4977 * with single operation. Plus it makes scrubs more sequential and reduces 4978 * chances that minor extent change move it within the B-tree. 4979 */ 4980 __attribute__((always_inline)) inline 4981 static int 4982 ext_size_compare(const void *x, const void *y) 4983 { 4984 const uint64_t *a = x, *b = y; 4985 4986 return (TREE_CMP(*a, *b)); 4987 } 4988 4989 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t, 4990 ext_size_compare) 4991 4992 static void 4993 ext_size_create(zfs_range_tree_t *rt, void *arg) 4994 { 4995 (void) rt; 4996 zfs_btree_t *size_tree = arg; 4997 4998 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf, 4999 sizeof (uint64_t)); 5000 } 5001 5002 static void 5003 ext_size_destroy(zfs_range_tree_t *rt, void *arg) 5004 { 5005 (void) rt; 5006 zfs_btree_t *size_tree = arg; 5007 ASSERT0(zfs_btree_numnodes(size_tree)); 5008 5009 zfs_btree_destroy(size_tree); 5010 } 5011 5012 static uint64_t 5013 ext_size_value(zfs_range_tree_t *rt, zfs_range_seg_gap_t *rsg) 5014 { 5015 (void) rt; 5016 uint64_t size = rsg->rs_end - rsg->rs_start; 5017 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) * 5018 fill_weight * rsg->rs_fill) >> 7); 5019 ASSERT3U(rt->rt_shift, >=, 8); 5020 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start); 5021 } 5022 5023 static void 5024 ext_size_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg) 5025 { 5026 zfs_btree_t *size_tree = arg; 5027 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP); 5028 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs); 5029 zfs_btree_add(size_tree, &v); 5030 } 5031 5032 static void 5033 ext_size_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg) 5034 { 5035 zfs_btree_t *size_tree = arg; 5036 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP); 5037 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs); 5038 zfs_btree_remove(size_tree, &v); 5039 } 5040 5041 static void 5042 ext_size_vacate(zfs_range_tree_t *rt, void *arg) 5043 { 5044 zfs_btree_t *size_tree = arg; 5045 zfs_btree_clear(size_tree); 5046 zfs_btree_destroy(size_tree); 5047 5048 ext_size_create(rt, arg); 5049 } 5050 5051 static const zfs_range_tree_ops_t ext_size_ops = { 5052 .rtop_create = ext_size_create, 5053 .rtop_destroy = ext_size_destroy, 5054 .rtop_add = ext_size_add, 5055 .rtop_remove = ext_size_remove, 5056 .rtop_vacate = ext_size_vacate 5057 }; 5058 5059 /* 5060 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 5061 * based on LBA-order (from lowest to highest). 5062 */ 5063 static int 5064 sio_addr_compare(const void *x, const void *y) 5065 { 5066 const scan_io_t *a = x, *b = y; 5067 5068 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 5069 } 5070 5071 /* IO queues are created on demand when they are needed. */ 5072 static dsl_scan_io_queue_t * 5073 scan_io_queue_create(vdev_t *vd) 5074 { 5075 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 5076 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 5077 5078 q->q_scn = scn; 5079 q->q_vd = vd; 5080 q->q_sio_memused = 0; 5081 q->q_last_ext_addr = -1; 5082 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 5083 q->q_exts_by_addr = zfs_range_tree_create_gap(&ext_size_ops, 5084 ZFS_RANGE_SEG_GAP, &q->q_exts_by_size, 0, vd->vdev_ashift, 5085 zfs_scan_max_ext_gap); 5086 avl_create(&q->q_sios_by_addr, sio_addr_compare, 5087 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 5088 5089 return (q); 5090 } 5091 5092 /* 5093 * Destroys a scan queue and all segments and scan_io_t's contained in it. 5094 * No further execution of I/O occurs, anything pending in the queue is 5095 * simply freed without being executed. 5096 */ 5097 void 5098 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 5099 { 5100 dsl_scan_t *scn = queue->q_scn; 5101 scan_io_t *sio; 5102 void *cookie = NULL; 5103 5104 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 5105 5106 if (!avl_is_empty(&queue->q_sios_by_addr)) 5107 atomic_add_64(&scn->scn_queues_pending, -1); 5108 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 5109 NULL) { 5110 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, 5111 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 5112 queue->q_sio_memused -= SIO_GET_MUSED(sio); 5113 sio_free(sio); 5114 } 5115 5116 ASSERT0(queue->q_sio_memused); 5117 zfs_range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 5118 zfs_range_tree_destroy(queue->q_exts_by_addr); 5119 avl_destroy(&queue->q_sios_by_addr); 5120 cv_destroy(&queue->q_zio_cv); 5121 5122 kmem_free(queue, sizeof (*queue)); 5123 } 5124 5125 /* 5126 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 5127 * called on behalf of vdev_top_transfer when creating or destroying 5128 * a mirror vdev due to zpool attach/detach. 5129 */ 5130 void 5131 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 5132 { 5133 mutex_enter(&svd->vdev_scan_io_queue_lock); 5134 mutex_enter(&tvd->vdev_scan_io_queue_lock); 5135 5136 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 5137 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 5138 svd->vdev_scan_io_queue = NULL; 5139 if (tvd->vdev_scan_io_queue != NULL) 5140 tvd->vdev_scan_io_queue->q_vd = tvd; 5141 5142 mutex_exit(&tvd->vdev_scan_io_queue_lock); 5143 mutex_exit(&svd->vdev_scan_io_queue_lock); 5144 } 5145 5146 static void 5147 scan_io_queues_destroy(dsl_scan_t *scn) 5148 { 5149 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 5150 5151 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 5152 vdev_t *tvd = rvd->vdev_child[i]; 5153 5154 mutex_enter(&tvd->vdev_scan_io_queue_lock); 5155 if (tvd->vdev_scan_io_queue != NULL) 5156 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 5157 tvd->vdev_scan_io_queue = NULL; 5158 mutex_exit(&tvd->vdev_scan_io_queue_lock); 5159 } 5160 } 5161 5162 static void 5163 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 5164 { 5165 dsl_pool_t *dp = spa->spa_dsl_pool; 5166 dsl_scan_t *scn = dp->dp_scan; 5167 vdev_t *vdev; 5168 kmutex_t *q_lock; 5169 dsl_scan_io_queue_t *queue; 5170 scan_io_t *srch_sio, *sio; 5171 avl_index_t idx; 5172 uint64_t start, size; 5173 5174 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 5175 ASSERT(vdev != NULL); 5176 q_lock = &vdev->vdev_scan_io_queue_lock; 5177 queue = vdev->vdev_scan_io_queue; 5178 5179 mutex_enter(q_lock); 5180 if (queue == NULL) { 5181 mutex_exit(q_lock); 5182 return; 5183 } 5184 5185 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 5186 bp2sio(bp, srch_sio, dva_i); 5187 start = SIO_GET_OFFSET(srch_sio); 5188 size = SIO_GET_ASIZE(srch_sio); 5189 5190 /* 5191 * We can find the zio in two states: 5192 * 1) Cold, just sitting in the queue of zio's to be issued at 5193 * some point in the future. In this case, all we do is 5194 * remove the zio from the q_sios_by_addr tree, decrement 5195 * its data volume from the containing zfs_range_seg_t and 5196 * resort the q_exts_by_size tree to reflect that the 5197 * zfs_range_seg_t has lost some of its 'fill'. We don't shorten 5198 * the zfs_range_seg_t - this is usually rare enough not to be 5199 * worth the extra hassle of trying keep track of precise 5200 * extent boundaries. 5201 * 2) Hot, where the zio is currently in-flight in 5202 * dsl_scan_issue_ios. In this case, we can't simply 5203 * reach in and stop the in-flight zio's, so we instead 5204 * block the caller. Eventually, dsl_scan_issue_ios will 5205 * be done with issuing the zio's it gathered and will 5206 * signal us. 5207 */ 5208 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 5209 sio_free(srch_sio); 5210 5211 if (sio != NULL) { 5212 blkptr_t tmpbp; 5213 5214 /* Got it while it was cold in the queue */ 5215 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 5216 ASSERT3U(size, ==, SIO_GET_ASIZE(sio)); 5217 avl_remove(&queue->q_sios_by_addr, sio); 5218 if (avl_is_empty(&queue->q_sios_by_addr)) 5219 atomic_add_64(&scn->scn_queues_pending, -1); 5220 queue->q_sio_memused -= SIO_GET_MUSED(sio); 5221 5222 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, start, 5223 size)); 5224 zfs_range_tree_remove_fill(queue->q_exts_by_addr, start, size); 5225 5226 /* count the block as though we skipped it */ 5227 sio2bp(sio, &tmpbp); 5228 count_block_skipped(scn, &tmpbp, B_FALSE); 5229 5230 sio_free(sio); 5231 } 5232 mutex_exit(q_lock); 5233 } 5234 5235 /* 5236 * Callback invoked when a zio_free() zio is executing. This needs to be 5237 * intercepted to prevent the zio from deallocating a particular portion 5238 * of disk space and it then getting reallocated and written to, while we 5239 * still have it queued up for processing. 5240 */ 5241 void 5242 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 5243 { 5244 dsl_pool_t *dp = spa->spa_dsl_pool; 5245 dsl_scan_t *scn = dp->dp_scan; 5246 5247 ASSERT(!BP_IS_EMBEDDED(bp)); 5248 ASSERT(scn != NULL); 5249 if (!dsl_scan_is_running(scn)) 5250 return; 5251 5252 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 5253 dsl_scan_freed_dva(spa, bp, i); 5254 } 5255 5256 /* 5257 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 5258 * not started, start it. Otherwise, only restart if max txg in DTL range is 5259 * greater than the max txg in the current scan. If the DTL max is less than 5260 * the scan max, then the vdev has not missed any new data since the resilver 5261 * started, so a restart is not needed. 5262 */ 5263 void 5264 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 5265 { 5266 uint64_t min, max; 5267 5268 if (!vdev_resilver_needed(vd, &min, &max)) 5269 return; 5270 5271 if (!dsl_scan_resilvering(dp)) { 5272 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 5273 return; 5274 } 5275 5276 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 5277 return; 5278 5279 /* restart is needed, check if it can be deferred */ 5280 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 5281 vdev_defer_resilver(vd); 5282 else 5283 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 5284 } 5285 5286 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW, 5287 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 5288 5289 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW, 5290 "Min millisecs to scrub per txg"); 5291 5292 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW, 5293 "Min millisecs to obsolete per txg"); 5294 5295 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW, 5296 "Min millisecs to free per txg"); 5297 5298 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW, 5299 "Min millisecs to resilver per txg"); 5300 5301 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 5302 "Set to prevent scans from progressing"); 5303 5304 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 5305 "Set to disable scrub I/O"); 5306 5307 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 5308 "Set to disable scrub prefetching"); 5309 5310 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW, 5311 "Max number of blocks freed in one txg"); 5312 5313 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW, 5314 "Max number of dedup blocks freed in one txg"); 5315 5316 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 5317 "Enable processing of the free_bpobj"); 5318 5319 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW, 5320 "Enable block statistics calculation during scrub"); 5321 5322 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW, 5323 "Fraction of RAM for scan hard limit"); 5324 5325 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW, 5326 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size"); 5327 5328 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 5329 "Scrub using legacy non-sequential method"); 5330 5331 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW, 5332 "Scan progress on-disk checkpointing interval"); 5333 5334 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW, 5335 "Max gap in bytes between sequential scrub / resilver I/Os"); 5336 5337 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW, 5338 "Fraction of hard limit used as soft limit"); 5339 5340 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 5341 "Tunable to attempt to reduce lock contention"); 5342 5343 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW, 5344 "Tunable to adjust bias towards more filled segments during scans"); 5345 5346 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW, 5347 "Tunable to report resilver performance over the last N txgs"); 5348 5349 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 5350 "Process all resilvers immediately"); 5351 5352 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW, 5353 "Issued IO percent complete after which resilvers are deferred"); 5354 5355 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW, 5356 "Error blocks to be scrubbed in one txg"); 5357