1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 27 * Copyright 2019 Joyent, Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/arc_impl.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/zfs_context.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/zfs_znode.h> 46 #include <sys/spa_impl.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/zil_impl.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/brt.h> 51 #include <sys/ddt.h> 52 #include <sys/sa.h> 53 #include <sys/sa_impl.h> 54 #include <sys/zfeature.h> 55 #include <sys/abd.h> 56 #include <sys/range_tree.h> 57 #include <sys/dbuf.h> 58 #ifdef _KERNEL 59 #include <sys/zfs_vfsops.h> 60 #endif 61 62 /* 63 * Grand theory statement on scan queue sorting 64 * 65 * Scanning is implemented by recursively traversing all indirection levels 66 * in an object and reading all blocks referenced from said objects. This 67 * results in us approximately traversing the object from lowest logical 68 * offset to the highest. For best performance, we would want the logical 69 * blocks to be physically contiguous. However, this is frequently not the 70 * case with pools given the allocation patterns of copy-on-write filesystems. 71 * So instead, we put the I/Os into a reordering queue and issue them in a 72 * way that will most benefit physical disks (LBA-order). 73 * 74 * Queue management: 75 * 76 * Ideally, we would want to scan all metadata and queue up all block I/O 77 * prior to starting to issue it, because that allows us to do an optimal 78 * sorting job. This can however consume large amounts of memory. Therefore 79 * we continuously monitor the size of the queues and constrain them to 5% 80 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 81 * limit, we clear out a few of the largest extents at the head of the queues 82 * to make room for more scanning. Hopefully, these extents will be fairly 83 * large and contiguous, allowing us to approach sequential I/O throughput 84 * even without a fully sorted tree. 85 * 86 * Metadata scanning takes place in dsl_scan_visit(), which is called from 87 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 88 * metadata on the pool, or we need to make room in memory because our 89 * queues are too large, dsl_scan_visit() is postponed and 90 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 91 * that metadata scanning and queued I/O issuing are mutually exclusive. This 92 * allows us to provide maximum sequential I/O throughput for the majority of 93 * I/O's issued since sequential I/O performance is significantly negatively 94 * impacted if it is interleaved with random I/O. 95 * 96 * Implementation Notes 97 * 98 * One side effect of the queued scanning algorithm is that the scanning code 99 * needs to be notified whenever a block is freed. This is needed to allow 100 * the scanning code to remove these I/Os from the issuing queue. Additionally, 101 * we do not attempt to queue gang blocks to be issued sequentially since this 102 * is very hard to do and would have an extremely limited performance benefit. 103 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 104 * algorithm. 105 * 106 * Backwards compatibility 107 * 108 * This new algorithm is backwards compatible with the legacy on-disk data 109 * structures (and therefore does not require a new feature flag). 110 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 111 * will stop scanning metadata (in logical order) and wait for all outstanding 112 * sorted I/O to complete. Once this is done, we write out a checkpoint 113 * bookmark, indicating that we have scanned everything logically before it. 114 * If the pool is imported on a machine without the new sorting algorithm, 115 * the scan simply resumes from the last checkpoint using the legacy algorithm. 116 */ 117 118 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 119 const zbookmark_phys_t *); 120 121 static scan_cb_t dsl_scan_scrub_cb; 122 123 static int scan_ds_queue_compare(const void *a, const void *b); 124 static int scan_prefetch_queue_compare(const void *a, const void *b); 125 static void scan_ds_queue_clear(dsl_scan_t *scn); 126 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 127 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 128 uint64_t *txg); 129 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 130 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 131 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 132 static uint64_t dsl_scan_count_data_disks(spa_t *spa); 133 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb); 134 135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent; 136 static int zfs_scan_blkstats = 0; 137 138 /* 139 * 'zpool status' uses bytes processed per pass to report throughput and 140 * estimate time remaining. We define a pass to start when the scanning 141 * phase completes for a sequential resilver. Optionally, this value 142 * may be used to reset the pass statistics every N txgs to provide an 143 * estimated completion time based on currently observed performance. 144 */ 145 static uint_t zfs_scan_report_txgs = 0; 146 147 /* 148 * By default zfs will check to ensure it is not over the hard memory 149 * limit before each txg. If finer-grained control of this is needed 150 * this value can be set to 1 to enable checking before scanning each 151 * block. 152 */ 153 static int zfs_scan_strict_mem_lim = B_FALSE; 154 155 /* 156 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 157 * to strike a balance here between keeping the vdev queues full of I/Os 158 * at all times and not overflowing the queues to cause long latency, 159 * which would cause long txg sync times. No matter what, we will not 160 * overload the drives with I/O, since that is protected by 161 * zfs_vdev_scrub_max_active. 162 */ 163 static uint64_t zfs_scan_vdev_limit = 16 << 20; 164 165 static uint_t zfs_scan_issue_strategy = 0; 166 167 /* don't queue & sort zios, go direct */ 168 static int zfs_scan_legacy = B_FALSE; 169 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 170 171 /* 172 * fill_weight is non-tunable at runtime, so we copy it at module init from 173 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 174 * break queue sorting. 175 */ 176 static uint_t zfs_scan_fill_weight = 3; 177 static uint64_t fill_weight; 178 179 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 180 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 181 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 182 183 184 /* fraction of physmem */ 185 static uint_t zfs_scan_mem_lim_fact = 20; 186 187 /* fraction of mem lim above */ 188 static uint_t zfs_scan_mem_lim_soft_fact = 20; 189 190 /* minimum milliseconds to scrub per txg */ 191 static uint_t zfs_scrub_min_time_ms = 1000; 192 193 /* minimum milliseconds to obsolete per txg */ 194 static uint_t zfs_obsolete_min_time_ms = 500; 195 196 /* minimum milliseconds to free per txg */ 197 static uint_t zfs_free_min_time_ms = 1000; 198 199 /* minimum milliseconds to resilver per txg */ 200 static uint_t zfs_resilver_min_time_ms = 3000; 201 202 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */ 203 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 204 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 205 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 206 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 207 /* max number of blocks to free in a single TXG */ 208 static uint64_t zfs_async_block_max_blocks = UINT64_MAX; 209 /* max number of dedup blocks to free in a single TXG */ 210 static uint64_t zfs_max_async_dedup_frees = 100000; 211 212 /* set to disable resilver deferring */ 213 static int zfs_resilver_disable_defer = B_FALSE; 214 215 /* Don't defer a resilver if the one in progress only got this far: */ 216 static uint_t zfs_resilver_defer_percent = 10; 217 218 /* 219 * We wait a few txgs after importing a pool to begin scanning so that 220 * the import / mounting code isn't held up by scrub / resilver IO. 221 * Unfortunately, it is a bit difficult to determine exactly how long 222 * this will take since userspace will trigger fs mounts asynchronously 223 * and the kernel will create zvol minors asynchronously. As a result, 224 * the value provided here is a bit arbitrary, but represents a 225 * reasonable estimate of how many txgs it will take to finish fully 226 * importing a pool 227 */ 228 #define SCAN_IMPORT_WAIT_TXGS 5 229 230 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 231 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 232 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 233 234 #define DSL_SCAN_IS_SCRUB(scn) \ 235 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB) 236 237 /* 238 * Enable/disable the processing of the free_bpobj object. 239 */ 240 static int zfs_free_bpobj_enabled = 1; 241 242 /* Error blocks to be scrubbed in one txg. */ 243 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12; 244 245 /* the order has to match pool_scan_type */ 246 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 247 NULL, 248 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 249 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 250 }; 251 252 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 253 typedef struct { 254 uint64_t sds_dsobj; 255 uint64_t sds_txg; 256 avl_node_t sds_node; 257 } scan_ds_t; 258 259 /* 260 * This controls what conditions are placed on dsl_scan_sync_state(): 261 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0 262 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0. 263 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise 264 * write out the scn_phys_cached version. 265 * See dsl_scan_sync_state for details. 266 */ 267 typedef enum { 268 SYNC_OPTIONAL, 269 SYNC_MANDATORY, 270 SYNC_CACHED 271 } state_sync_type_t; 272 273 /* 274 * This struct represents the minimum information needed to reconstruct a 275 * zio for sequential scanning. This is useful because many of these will 276 * accumulate in the sequential IO queues before being issued, so saving 277 * memory matters here. 278 */ 279 typedef struct scan_io { 280 /* fields from blkptr_t */ 281 uint64_t sio_blk_prop; 282 uint64_t sio_phys_birth; 283 uint64_t sio_birth; 284 zio_cksum_t sio_cksum; 285 uint32_t sio_nr_dvas; 286 287 /* fields from zio_t */ 288 uint32_t sio_flags; 289 zbookmark_phys_t sio_zb; 290 291 /* members for queue sorting */ 292 union { 293 avl_node_t sio_addr_node; /* link into issuing queue */ 294 list_node_t sio_list_node; /* link for issuing to disk */ 295 } sio_nodes; 296 297 /* 298 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 299 * depending on how many were in the original bp. Only the 300 * first DVA is really used for sorting and issuing purposes. 301 * The other DVAs (if provided) simply exist so that the zio 302 * layer can find additional copies to repair from in the 303 * event of an error. This array must go at the end of the 304 * struct to allow this for the variable number of elements. 305 */ 306 dva_t sio_dva[]; 307 } scan_io_t; 308 309 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 310 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 311 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 312 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 313 #define SIO_GET_END_OFFSET(sio) \ 314 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 315 #define SIO_GET_MUSED(sio) \ 316 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 317 318 struct dsl_scan_io_queue { 319 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 320 vdev_t *q_vd; /* top-level vdev that this queue represents */ 321 zio_t *q_zio; /* scn_zio_root child for waiting on IO */ 322 323 /* trees used for sorting I/Os and extents of I/Os */ 324 range_tree_t *q_exts_by_addr; 325 zfs_btree_t q_exts_by_size; 326 avl_tree_t q_sios_by_addr; 327 uint64_t q_sio_memused; 328 uint64_t q_last_ext_addr; 329 330 /* members for zio rate limiting */ 331 uint64_t q_maxinflight_bytes; 332 uint64_t q_inflight_bytes; 333 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 334 335 /* per txg statistics */ 336 uint64_t q_total_seg_size_this_txg; 337 uint64_t q_segs_this_txg; 338 uint64_t q_total_zio_size_this_txg; 339 uint64_t q_zios_this_txg; 340 }; 341 342 /* private data for dsl_scan_prefetch_cb() */ 343 typedef struct scan_prefetch_ctx { 344 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 345 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 346 boolean_t spc_root; /* is this prefetch for an objset? */ 347 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 348 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 349 } scan_prefetch_ctx_t; 350 351 /* private data for dsl_scan_prefetch() */ 352 typedef struct scan_prefetch_issue_ctx { 353 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 354 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 355 blkptr_t spic_bp; /* bp to prefetch */ 356 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 357 } scan_prefetch_issue_ctx_t; 358 359 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 360 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 361 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 362 scan_io_t *sio); 363 364 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 365 static void scan_io_queues_destroy(dsl_scan_t *scn); 366 367 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 368 369 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 370 static void 371 sio_free(scan_io_t *sio) 372 { 373 ASSERT3U(sio->sio_nr_dvas, >, 0); 374 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 375 376 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 377 } 378 379 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 380 static scan_io_t * 381 sio_alloc(unsigned short nr_dvas) 382 { 383 ASSERT3U(nr_dvas, >, 0); 384 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 385 386 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 387 } 388 389 void 390 scan_init(void) 391 { 392 /* 393 * This is used in ext_size_compare() to weight segments 394 * based on how sparse they are. This cannot be changed 395 * mid-scan and the tree comparison functions don't currently 396 * have a mechanism for passing additional context to the 397 * compare functions. Thus we store this value globally and 398 * we only allow it to be set at module initialization time 399 */ 400 fill_weight = zfs_scan_fill_weight; 401 402 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 403 char name[36]; 404 405 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 406 sio_cache[i] = kmem_cache_create(name, 407 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 408 0, NULL, NULL, NULL, NULL, NULL, 0); 409 } 410 } 411 412 void 413 scan_fini(void) 414 { 415 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 416 kmem_cache_destroy(sio_cache[i]); 417 } 418 } 419 420 static inline boolean_t 421 dsl_scan_is_running(const dsl_scan_t *scn) 422 { 423 return (scn->scn_phys.scn_state == DSS_SCANNING); 424 } 425 426 boolean_t 427 dsl_scan_resilvering(dsl_pool_t *dp) 428 { 429 return (dsl_scan_is_running(dp->dp_scan) && 430 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 431 } 432 433 static inline void 434 sio2bp(const scan_io_t *sio, blkptr_t *bp) 435 { 436 memset(bp, 0, sizeof (*bp)); 437 bp->blk_prop = sio->sio_blk_prop; 438 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth); 439 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth); 440 bp->blk_fill = 1; /* we always only work with data pointers */ 441 bp->blk_cksum = sio->sio_cksum; 442 443 ASSERT3U(sio->sio_nr_dvas, >, 0); 444 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 445 446 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t)); 447 } 448 449 static inline void 450 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 451 { 452 sio->sio_blk_prop = bp->blk_prop; 453 sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp); 454 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp); 455 sio->sio_cksum = bp->blk_cksum; 456 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 457 458 /* 459 * Copy the DVAs to the sio. We need all copies of the block so 460 * that the self healing code can use the alternate copies if the 461 * first is corrupted. We want the DVA at index dva_i to be first 462 * in the sio since this is the primary one that we want to issue. 463 */ 464 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 465 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 466 } 467 } 468 469 int 470 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 471 { 472 int err; 473 dsl_scan_t *scn; 474 spa_t *spa = dp->dp_spa; 475 uint64_t f; 476 477 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 478 scn->scn_dp = dp; 479 480 /* 481 * It's possible that we're resuming a scan after a reboot so 482 * make sure that the scan_async_destroying flag is initialized 483 * appropriately. 484 */ 485 ASSERT(!scn->scn_async_destroying); 486 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 487 SPA_FEATURE_ASYNC_DESTROY); 488 489 /* 490 * Calculate the max number of in-flight bytes for pool-wide 491 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). 492 * Limits for the issuing phase are done per top-level vdev and 493 * are handled separately. 494 */ 495 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, 496 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); 497 498 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 499 offsetof(scan_ds_t, sds_node)); 500 mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL); 501 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 502 sizeof (scan_prefetch_issue_ctx_t), 503 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 504 505 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 506 "scrub_func", sizeof (uint64_t), 1, &f); 507 if (err == 0) { 508 /* 509 * There was an old-style scrub in progress. Restart a 510 * new-style scrub from the beginning. 511 */ 512 scn->scn_restart_txg = txg; 513 zfs_dbgmsg("old-style scrub was in progress for %s; " 514 "restarting new-style scrub in txg %llu", 515 spa->spa_name, 516 (longlong_t)scn->scn_restart_txg); 517 518 /* 519 * Load the queue obj from the old location so that it 520 * can be freed by dsl_scan_done(). 521 */ 522 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 523 "scrub_queue", sizeof (uint64_t), 1, 524 &scn->scn_phys.scn_queue_obj); 525 } else { 526 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 527 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), 528 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys); 529 530 if (err != 0 && err != ENOENT) 531 return (err); 532 533 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 534 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 535 &scn->scn_phys); 536 537 /* 538 * Detect if the pool contains the signature of #2094. If it 539 * does properly update the scn->scn_phys structure and notify 540 * the administrator by setting an errata for the pool. 541 */ 542 if (err == EOVERFLOW) { 543 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 544 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 545 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 546 (23 * sizeof (uint64_t))); 547 548 err = zap_lookup(dp->dp_meta_objset, 549 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 550 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 551 if (err == 0) { 552 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 553 554 if (overflow & ~DSL_SCAN_FLAGS_MASK || 555 scn->scn_async_destroying) { 556 spa->spa_errata = 557 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 558 return (EOVERFLOW); 559 } 560 561 memcpy(&scn->scn_phys, zaptmp, 562 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 563 scn->scn_phys.scn_flags = overflow; 564 565 /* Required scrub already in progress. */ 566 if (scn->scn_phys.scn_state == DSS_FINISHED || 567 scn->scn_phys.scn_state == DSS_CANCELED) 568 spa->spa_errata = 569 ZPOOL_ERRATA_ZOL_2094_SCRUB; 570 } 571 } 572 573 if (err == ENOENT) 574 return (0); 575 else if (err) 576 return (err); 577 578 /* 579 * We might be restarting after a reboot, so jump the issued 580 * counter to how far we've scanned. We know we're consistent 581 * up to here. 582 */ 583 scn->scn_issued_before_pass = scn->scn_phys.scn_examined - 584 scn->scn_phys.scn_skipped; 585 586 if (dsl_scan_is_running(scn) && 587 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 588 /* 589 * A new-type scrub was in progress on an old 590 * pool, and the pool was accessed by old 591 * software. Restart from the beginning, since 592 * the old software may have changed the pool in 593 * the meantime. 594 */ 595 scn->scn_restart_txg = txg; 596 zfs_dbgmsg("new-style scrub for %s was modified " 597 "by old software; restarting in txg %llu", 598 spa->spa_name, 599 (longlong_t)scn->scn_restart_txg); 600 } else if (dsl_scan_resilvering(dp)) { 601 /* 602 * If a resilver is in progress and there are already 603 * errors, restart it instead of finishing this scan and 604 * then restarting it. If there haven't been any errors 605 * then remember that the incore DTL is valid. 606 */ 607 if (scn->scn_phys.scn_errors > 0) { 608 scn->scn_restart_txg = txg; 609 zfs_dbgmsg("resilver can't excise DTL_MISSING " 610 "when finished; restarting on %s in txg " 611 "%llu", 612 spa->spa_name, 613 (u_longlong_t)scn->scn_restart_txg); 614 } else { 615 /* it's safe to excise DTL when finished */ 616 spa->spa_scrub_started = B_TRUE; 617 } 618 } 619 } 620 621 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 622 623 /* reload the queue into the in-core state */ 624 if (scn->scn_phys.scn_queue_obj != 0) { 625 zap_cursor_t zc; 626 zap_attribute_t *za = zap_attribute_alloc(); 627 628 for (zap_cursor_init(&zc, dp->dp_meta_objset, 629 scn->scn_phys.scn_queue_obj); 630 zap_cursor_retrieve(&zc, za) == 0; 631 (void) zap_cursor_advance(&zc)) { 632 scan_ds_queue_insert(scn, 633 zfs_strtonum(za->za_name, NULL), 634 za->za_first_integer); 635 } 636 zap_cursor_fini(&zc); 637 zap_attribute_free(za); 638 } 639 640 ddt_walk_init(spa, scn->scn_phys.scn_max_txg); 641 642 spa_scan_stat_init(spa); 643 vdev_scan_stat_init(spa->spa_root_vdev); 644 645 return (0); 646 } 647 648 void 649 dsl_scan_fini(dsl_pool_t *dp) 650 { 651 if (dp->dp_scan != NULL) { 652 dsl_scan_t *scn = dp->dp_scan; 653 654 if (scn->scn_taskq != NULL) 655 taskq_destroy(scn->scn_taskq); 656 657 scan_ds_queue_clear(scn); 658 avl_destroy(&scn->scn_queue); 659 mutex_destroy(&scn->scn_queue_lock); 660 scan_ds_prefetch_queue_clear(scn); 661 avl_destroy(&scn->scn_prefetch_queue); 662 663 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 664 dp->dp_scan = NULL; 665 } 666 } 667 668 static boolean_t 669 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 670 { 671 return (scn->scn_restart_txg != 0 && 672 scn->scn_restart_txg <= tx->tx_txg); 673 } 674 675 boolean_t 676 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 677 { 678 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 679 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 680 } 681 682 boolean_t 683 dsl_scan_scrubbing(const dsl_pool_t *dp) 684 { 685 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 686 687 return (scn_phys->scn_state == DSS_SCANNING && 688 scn_phys->scn_func == POOL_SCAN_SCRUB); 689 } 690 691 boolean_t 692 dsl_errorscrubbing(const dsl_pool_t *dp) 693 { 694 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys; 695 696 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING && 697 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB); 698 } 699 700 boolean_t 701 dsl_errorscrub_is_paused(const dsl_scan_t *scn) 702 { 703 return (dsl_errorscrubbing(scn->scn_dp) && 704 scn->errorscrub_phys.dep_paused_flags); 705 } 706 707 boolean_t 708 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 709 { 710 return (dsl_scan_scrubbing(scn->scn_dp) && 711 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 712 } 713 714 static void 715 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx) 716 { 717 scn->errorscrub_phys.dep_cursor = 718 zap_cursor_serialize(&scn->errorscrub_cursor); 719 720 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 721 DMU_POOL_DIRECTORY_OBJECT, 722 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS, 723 &scn->errorscrub_phys, tx)); 724 } 725 726 static void 727 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx) 728 { 729 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 730 pool_scan_func_t *funcp = arg; 731 dsl_pool_t *dp = scn->scn_dp; 732 spa_t *spa = dp->dp_spa; 733 734 ASSERT(!dsl_scan_is_running(scn)); 735 ASSERT(!dsl_errorscrubbing(scn->scn_dp)); 736 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 737 738 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys)); 739 scn->errorscrub_phys.dep_func = *funcp; 740 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING; 741 scn->errorscrub_phys.dep_start_time = gethrestime_sec(); 742 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa); 743 scn->errorscrub_phys.dep_examined = 0; 744 scn->errorscrub_phys.dep_errors = 0; 745 scn->errorscrub_phys.dep_cursor = 0; 746 zap_cursor_init_serialized(&scn->errorscrub_cursor, 747 spa->spa_meta_objset, spa->spa_errlog_last, 748 scn->errorscrub_phys.dep_cursor); 749 750 vdev_config_dirty(spa->spa_root_vdev); 751 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START); 752 753 dsl_errorscrub_sync_state(scn, tx); 754 755 spa_history_log_internal(spa, "error scrub setup", tx, 756 "func=%u mintxg=%u maxtxg=%llu", 757 *funcp, 0, (u_longlong_t)tx->tx_txg); 758 } 759 760 static int 761 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx) 762 { 763 (void) arg; 764 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 765 766 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) { 767 return (SET_ERROR(EBUSY)); 768 } 769 770 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) { 771 return (ECANCELED); 772 } 773 return (0); 774 } 775 776 /* 777 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 778 * Because we can be running in the block sorting algorithm, we do not always 779 * want to write out the record, only when it is "safe" to do so. This safety 780 * condition is achieved by making sure that the sorting queues are empty 781 * (scn_queues_pending == 0). When this condition is not true, the sync'd state 782 * is inconsistent with how much actual scanning progress has been made. The 783 * kind of sync to be performed is specified by the sync_type argument. If the 784 * sync is optional, we only sync if the queues are empty. If the sync is 785 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 786 * third possible state is a "cached" sync. This is done in response to: 787 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 788 * destroyed, so we wouldn't be able to restart scanning from it. 789 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 790 * superseded by a newer snapshot. 791 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 792 * swapped with its clone. 793 * In all cases, a cached sync simply rewrites the last record we've written, 794 * just slightly modified. For the modifications that are performed to the 795 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 796 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 797 */ 798 static void 799 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 800 { 801 int i; 802 spa_t *spa = scn->scn_dp->dp_spa; 803 804 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0); 805 if (scn->scn_queues_pending == 0) { 806 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 807 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 808 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 809 810 if (q == NULL) 811 continue; 812 813 mutex_enter(&vd->vdev_scan_io_queue_lock); 814 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 815 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 816 NULL); 817 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 818 mutex_exit(&vd->vdev_scan_io_queue_lock); 819 } 820 821 if (scn->scn_phys.scn_queue_obj != 0) 822 scan_ds_queue_sync(scn, tx); 823 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 824 DMU_POOL_DIRECTORY_OBJECT, 825 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 826 &scn->scn_phys, tx)); 827 memcpy(&scn->scn_phys_cached, &scn->scn_phys, 828 sizeof (scn->scn_phys)); 829 830 if (scn->scn_checkpointing) 831 zfs_dbgmsg("finish scan checkpoint for %s", 832 spa->spa_name); 833 834 scn->scn_checkpointing = B_FALSE; 835 scn->scn_last_checkpoint = ddi_get_lbolt(); 836 } else if (sync_type == SYNC_CACHED) { 837 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 838 DMU_POOL_DIRECTORY_OBJECT, 839 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 840 &scn->scn_phys_cached, tx)); 841 } 842 } 843 844 int 845 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 846 { 847 (void) arg; 848 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 849 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 850 851 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) || 852 dsl_errorscrubbing(scn->scn_dp)) 853 return (SET_ERROR(EBUSY)); 854 855 return (0); 856 } 857 858 void 859 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 860 { 861 setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg; 862 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 863 dmu_object_type_t ot = 0; 864 dsl_pool_t *dp = scn->scn_dp; 865 spa_t *spa = dp->dp_spa; 866 867 ASSERT(!dsl_scan_is_running(scn)); 868 ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE); 869 ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS); 870 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys)); 871 872 /* 873 * If we are starting a fresh scrub, we erase the error scrub 874 * information from disk. 875 */ 876 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys)); 877 dsl_errorscrub_sync_state(scn, tx); 878 879 scn->scn_phys.scn_func = setup_sync_arg->func; 880 scn->scn_phys.scn_state = DSS_SCANNING; 881 scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart; 882 if (setup_sync_arg->txgend == 0) { 883 scn->scn_phys.scn_max_txg = tx->tx_txg; 884 } else { 885 scn->scn_phys.scn_max_txg = setup_sync_arg->txgend; 886 } 887 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 888 scn->scn_phys.scn_start_time = gethrestime_sec(); 889 scn->scn_phys.scn_errors = 0; 890 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 891 scn->scn_issued_before_pass = 0; 892 scn->scn_restart_txg = 0; 893 scn->scn_done_txg = 0; 894 scn->scn_last_checkpoint = 0; 895 scn->scn_checkpointing = B_FALSE; 896 spa_scan_stat_init(spa); 897 vdev_scan_stat_init(spa->spa_root_vdev); 898 899 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 900 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 901 902 /* rewrite all disk labels */ 903 vdev_config_dirty(spa->spa_root_vdev); 904 905 if (vdev_resilver_needed(spa->spa_root_vdev, 906 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 907 nvlist_t *aux = fnvlist_alloc(); 908 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 909 "healing"); 910 spa_event_notify(spa, NULL, aux, 911 ESC_ZFS_RESILVER_START); 912 nvlist_free(aux); 913 } else { 914 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 915 } 916 917 spa->spa_scrub_started = B_TRUE; 918 /* 919 * If this is an incremental scrub, limit the DDT scrub phase 920 * to just the auto-ditto class (for correctness); the rest 921 * of the scrub should go faster using top-down pruning. 922 */ 923 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 924 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 925 926 /* 927 * When starting a resilver clear any existing rebuild state. 928 * This is required to prevent stale rebuild status from 929 * being reported when a rebuild is run, then a resilver and 930 * finally a scrub. In which case only the scrub status 931 * should be reported by 'zpool status'. 932 */ 933 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 934 vdev_t *rvd = spa->spa_root_vdev; 935 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 936 vdev_t *vd = rvd->vdev_child[i]; 937 vdev_rebuild_clear_sync( 938 (void *)(uintptr_t)vd->vdev_id, tx); 939 } 940 } 941 } 942 943 /* back to the generic stuff */ 944 945 if (zfs_scan_blkstats) { 946 if (dp->dp_blkstats == NULL) { 947 dp->dp_blkstats = 948 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 949 } 950 memset(&dp->dp_blkstats->zab_type, 0, 951 sizeof (dp->dp_blkstats->zab_type)); 952 } else { 953 if (dp->dp_blkstats) { 954 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 955 dp->dp_blkstats = NULL; 956 } 957 } 958 959 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 960 ot = DMU_OT_ZAP_OTHER; 961 962 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 963 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 964 965 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 966 967 ddt_walk_init(spa, scn->scn_phys.scn_max_txg); 968 969 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 970 971 spa_history_log_internal(spa, "scan setup", tx, 972 "func=%u mintxg=%llu maxtxg=%llu", 973 setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg, 974 (u_longlong_t)scn->scn_phys.scn_max_txg); 975 } 976 977 /* 978 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub, 979 * error scrub or resilver. Can also be called to resume a paused scrub or 980 * error scrub. 981 */ 982 int 983 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart, 984 uint64_t txgend) 985 { 986 spa_t *spa = dp->dp_spa; 987 dsl_scan_t *scn = dp->dp_scan; 988 setup_sync_arg_t setup_sync_arg; 989 990 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) { 991 return (EINVAL); 992 } 993 994 /* 995 * Purge all vdev caches and probe all devices. We do this here 996 * rather than in sync context because this requires a writer lock 997 * on the spa_config lock, which we can't do from sync context. The 998 * spa_scrub_reopen flag indicates that vdev_open() should not 999 * attempt to start another scrub. 1000 */ 1001 spa_vdev_state_enter(spa, SCL_NONE); 1002 spa->spa_scrub_reopen = B_TRUE; 1003 vdev_reopen(spa->spa_root_vdev); 1004 spa->spa_scrub_reopen = B_FALSE; 1005 (void) spa_vdev_state_exit(spa, NULL, 0); 1006 1007 if (func == POOL_SCAN_RESILVER) { 1008 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 1009 return (0); 1010 } 1011 1012 if (func == POOL_SCAN_ERRORSCRUB) { 1013 if (dsl_errorscrub_is_paused(dp->dp_scan)) { 1014 /* 1015 * got error scrub start cmd, resume paused error scrub. 1016 */ 1017 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 1018 POOL_SCRUB_NORMAL); 1019 if (err == 0) { 1020 spa_event_notify(spa, NULL, NULL, 1021 ESC_ZFS_ERRORSCRUB_RESUME); 1022 return (ECANCELED); 1023 } 1024 return (SET_ERROR(err)); 1025 } 1026 1027 return (dsl_sync_task(spa_name(dp->dp_spa), 1028 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync, 1029 &func, 0, ZFS_SPACE_CHECK_RESERVED)); 1030 } 1031 1032 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 1033 /* got scrub start cmd, resume paused scrub */ 1034 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 1035 POOL_SCRUB_NORMAL); 1036 if (err == 0) { 1037 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 1038 return (SET_ERROR(ECANCELED)); 1039 } 1040 return (SET_ERROR(err)); 1041 } 1042 1043 setup_sync_arg.func = func; 1044 setup_sync_arg.txgstart = txgstart; 1045 setup_sync_arg.txgend = txgend; 1046 1047 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 1048 dsl_scan_setup_sync, &setup_sync_arg, 0, 1049 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1050 } 1051 1052 static void 1053 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 1054 { 1055 dsl_pool_t *dp = scn->scn_dp; 1056 spa_t *spa = dp->dp_spa; 1057 1058 if (complete) { 1059 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH); 1060 spa_history_log_internal(spa, "error scrub done", tx, 1061 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1062 } else { 1063 spa_history_log_internal(spa, "error scrub canceled", tx, 1064 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1065 } 1066 1067 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED; 1068 spa->spa_scrub_active = B_FALSE; 1069 spa_errlog_rotate(spa); 1070 scn->errorscrub_phys.dep_end_time = gethrestime_sec(); 1071 zap_cursor_fini(&scn->errorscrub_cursor); 1072 1073 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1074 spa->spa_errata = 0; 1075 1076 ASSERT(!dsl_errorscrubbing(scn->scn_dp)); 1077 } 1078 1079 static void 1080 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 1081 { 1082 static const char *old_names[] = { 1083 "scrub_bookmark", 1084 "scrub_ddt_bookmark", 1085 "scrub_ddt_class_max", 1086 "scrub_queue", 1087 "scrub_min_txg", 1088 "scrub_max_txg", 1089 "scrub_func", 1090 "scrub_errors", 1091 NULL 1092 }; 1093 1094 dsl_pool_t *dp = scn->scn_dp; 1095 spa_t *spa = dp->dp_spa; 1096 int i; 1097 1098 /* Remove any remnants of an old-style scrub. */ 1099 for (i = 0; old_names[i]; i++) { 1100 (void) zap_remove(dp->dp_meta_objset, 1101 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 1102 } 1103 1104 if (scn->scn_phys.scn_queue_obj != 0) { 1105 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1106 scn->scn_phys.scn_queue_obj, tx)); 1107 scn->scn_phys.scn_queue_obj = 0; 1108 } 1109 scan_ds_queue_clear(scn); 1110 scan_ds_prefetch_queue_clear(scn); 1111 1112 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1113 1114 /* 1115 * If we were "restarted" from a stopped state, don't bother 1116 * with anything else. 1117 */ 1118 if (!dsl_scan_is_running(scn)) { 1119 ASSERT(!scn->scn_is_sorted); 1120 return; 1121 } 1122 1123 if (scn->scn_is_sorted) { 1124 scan_io_queues_destroy(scn); 1125 scn->scn_is_sorted = B_FALSE; 1126 1127 if (scn->scn_taskq != NULL) { 1128 taskq_destroy(scn->scn_taskq); 1129 scn->scn_taskq = NULL; 1130 } 1131 } 1132 1133 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 1134 1135 spa_notify_waiters(spa); 1136 1137 if (dsl_scan_restarting(scn, tx)) { 1138 spa_history_log_internal(spa, "scan aborted, restarting", tx, 1139 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1140 } else if (!complete) { 1141 spa_history_log_internal(spa, "scan cancelled", tx, 1142 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1143 } else { 1144 spa_history_log_internal(spa, "scan done", tx, 1145 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1146 if (DSL_SCAN_IS_SCRUB(scn)) { 1147 VERIFY0(zap_update(dp->dp_meta_objset, 1148 DMU_POOL_DIRECTORY_OBJECT, 1149 DMU_POOL_LAST_SCRUBBED_TXG, 1150 sizeof (uint64_t), 1, 1151 &scn->scn_phys.scn_max_txg, tx)); 1152 spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg; 1153 } 1154 } 1155 1156 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 1157 spa->spa_scrub_active = B_FALSE; 1158 1159 /* 1160 * If the scrub/resilver completed, update all DTLs to 1161 * reflect this. Whether it succeeded or not, vacate 1162 * all temporary scrub DTLs. 1163 * 1164 * As the scrub does not currently support traversing 1165 * data that have been freed but are part of a checkpoint, 1166 * we don't mark the scrub as done in the DTLs as faults 1167 * may still exist in those vdevs. 1168 */ 1169 if (complete && 1170 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 1171 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 1172 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 1173 1174 if (scn->scn_phys.scn_min_txg) { 1175 nvlist_t *aux = fnvlist_alloc(); 1176 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 1177 "healing"); 1178 spa_event_notify(spa, NULL, aux, 1179 ESC_ZFS_RESILVER_FINISH); 1180 nvlist_free(aux); 1181 } else { 1182 spa_event_notify(spa, NULL, NULL, 1183 ESC_ZFS_SCRUB_FINISH); 1184 } 1185 } else { 1186 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 1187 0, B_TRUE, B_FALSE); 1188 } 1189 spa_errlog_rotate(spa); 1190 1191 /* 1192 * Don't clear flag until after vdev_dtl_reassess to ensure that 1193 * DTL_MISSING will get updated when possible. 1194 */ 1195 spa->spa_scrub_started = B_FALSE; 1196 1197 /* 1198 * We may have finished replacing a device. 1199 * Let the async thread assess this and handle the detach. 1200 */ 1201 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 1202 1203 /* 1204 * Clear any resilver_deferred flags in the config. 1205 * If there are drives that need resilvering, kick 1206 * off an asynchronous request to start resilver. 1207 * vdev_clear_resilver_deferred() may update the config 1208 * before the resilver can restart. In the event of 1209 * a crash during this period, the spa loading code 1210 * will find the drives that need to be resilvered 1211 * and start the resilver then. 1212 */ 1213 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 1214 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 1215 spa_history_log_internal(spa, 1216 "starting deferred resilver", tx, "errors=%llu", 1217 (u_longlong_t)spa_approx_errlog_size(spa)); 1218 spa_async_request(spa, SPA_ASYNC_RESILVER); 1219 } 1220 1221 /* Clear recent error events (i.e. duplicate events tracking) */ 1222 if (complete) 1223 zfs_ereport_clear(spa, NULL); 1224 } 1225 1226 scn->scn_phys.scn_end_time = gethrestime_sec(); 1227 1228 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1229 spa->spa_errata = 0; 1230 1231 ASSERT(!dsl_scan_is_running(scn)); 1232 } 1233 1234 static int 1235 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1236 { 1237 pool_scrub_cmd_t *cmd = arg; 1238 dsl_pool_t *dp = dmu_tx_pool(tx); 1239 dsl_scan_t *scn = dp->dp_scan; 1240 1241 if (*cmd == POOL_SCRUB_PAUSE) { 1242 /* 1243 * can't pause a error scrub when there is no in-progress 1244 * error scrub. 1245 */ 1246 if (!dsl_errorscrubbing(dp)) 1247 return (SET_ERROR(ENOENT)); 1248 1249 /* can't pause a paused error scrub */ 1250 if (dsl_errorscrub_is_paused(scn)) 1251 return (SET_ERROR(EBUSY)); 1252 } else if (*cmd != POOL_SCRUB_NORMAL) { 1253 return (SET_ERROR(ENOTSUP)); 1254 } 1255 1256 return (0); 1257 } 1258 1259 static void 1260 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1261 { 1262 pool_scrub_cmd_t *cmd = arg; 1263 dsl_pool_t *dp = dmu_tx_pool(tx); 1264 spa_t *spa = dp->dp_spa; 1265 dsl_scan_t *scn = dp->dp_scan; 1266 1267 if (*cmd == POOL_SCRUB_PAUSE) { 1268 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec(); 1269 scn->errorscrub_phys.dep_paused_flags = B_TRUE; 1270 dsl_errorscrub_sync_state(scn, tx); 1271 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED); 1272 } else { 1273 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1274 if (dsl_errorscrub_is_paused(scn)) { 1275 /* 1276 * We need to keep track of how much time we spend 1277 * paused per pass so that we can adjust the error scrub 1278 * rate shown in the output of 'zpool status'. 1279 */ 1280 spa->spa_scan_pass_errorscrub_spent_paused += 1281 gethrestime_sec() - 1282 spa->spa_scan_pass_errorscrub_pause; 1283 1284 spa->spa_scan_pass_errorscrub_pause = 0; 1285 scn->errorscrub_phys.dep_paused_flags = B_FALSE; 1286 1287 zap_cursor_init_serialized( 1288 &scn->errorscrub_cursor, 1289 spa->spa_meta_objset, spa->spa_errlog_last, 1290 scn->errorscrub_phys.dep_cursor); 1291 1292 dsl_errorscrub_sync_state(scn, tx); 1293 } 1294 } 1295 } 1296 1297 static int 1298 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx) 1299 { 1300 (void) arg; 1301 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1302 /* can't cancel a error scrub when there is no one in-progress */ 1303 if (!dsl_errorscrubbing(scn->scn_dp)) 1304 return (SET_ERROR(ENOENT)); 1305 return (0); 1306 } 1307 1308 static void 1309 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx) 1310 { 1311 (void) arg; 1312 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1313 1314 dsl_errorscrub_done(scn, B_FALSE, tx); 1315 dsl_errorscrub_sync_state(scn, tx); 1316 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, 1317 ESC_ZFS_ERRORSCRUB_ABORT); 1318 } 1319 1320 static int 1321 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1322 { 1323 (void) arg; 1324 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1325 1326 if (!dsl_scan_is_running(scn)) 1327 return (SET_ERROR(ENOENT)); 1328 return (0); 1329 } 1330 1331 static void 1332 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1333 { 1334 (void) arg; 1335 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1336 1337 dsl_scan_done(scn, B_FALSE, tx); 1338 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1339 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1340 } 1341 1342 int 1343 dsl_scan_cancel(dsl_pool_t *dp) 1344 { 1345 if (dsl_errorscrubbing(dp)) { 1346 return (dsl_sync_task(spa_name(dp->dp_spa), 1347 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync, 1348 NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1349 } 1350 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1351 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1352 } 1353 1354 static int 1355 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1356 { 1357 pool_scrub_cmd_t *cmd = arg; 1358 dsl_pool_t *dp = dmu_tx_pool(tx); 1359 dsl_scan_t *scn = dp->dp_scan; 1360 1361 if (*cmd == POOL_SCRUB_PAUSE) { 1362 /* can't pause a scrub when there is no in-progress scrub */ 1363 if (!dsl_scan_scrubbing(dp)) 1364 return (SET_ERROR(ENOENT)); 1365 1366 /* can't pause a paused scrub */ 1367 if (dsl_scan_is_paused_scrub(scn)) 1368 return (SET_ERROR(EBUSY)); 1369 } else if (*cmd != POOL_SCRUB_NORMAL) { 1370 return (SET_ERROR(ENOTSUP)); 1371 } 1372 1373 return (0); 1374 } 1375 1376 static void 1377 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1378 { 1379 pool_scrub_cmd_t *cmd = arg; 1380 dsl_pool_t *dp = dmu_tx_pool(tx); 1381 spa_t *spa = dp->dp_spa; 1382 dsl_scan_t *scn = dp->dp_scan; 1383 1384 if (*cmd == POOL_SCRUB_PAUSE) { 1385 /* can't pause a scrub when there is no in-progress scrub */ 1386 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1387 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1388 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1389 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1390 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1391 spa_notify_waiters(spa); 1392 } else { 1393 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1394 if (dsl_scan_is_paused_scrub(scn)) { 1395 /* 1396 * We need to keep track of how much time we spend 1397 * paused per pass so that we can adjust the scrub rate 1398 * shown in the output of 'zpool status' 1399 */ 1400 spa->spa_scan_pass_scrub_spent_paused += 1401 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1402 spa->spa_scan_pass_scrub_pause = 0; 1403 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1404 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1405 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1406 } 1407 } 1408 } 1409 1410 /* 1411 * Set scrub pause/resume state if it makes sense to do so 1412 */ 1413 int 1414 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1415 { 1416 if (dsl_errorscrubbing(dp)) { 1417 return (dsl_sync_task(spa_name(dp->dp_spa), 1418 dsl_errorscrub_pause_resume_check, 1419 dsl_errorscrub_pause_resume_sync, &cmd, 3, 1420 ZFS_SPACE_CHECK_RESERVED)); 1421 } 1422 return (dsl_sync_task(spa_name(dp->dp_spa), 1423 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1424 ZFS_SPACE_CHECK_RESERVED)); 1425 } 1426 1427 1428 /* start a new scan, or restart an existing one. */ 1429 void 1430 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1431 { 1432 if (txg == 0) { 1433 dmu_tx_t *tx; 1434 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1435 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1436 1437 txg = dmu_tx_get_txg(tx); 1438 dp->dp_scan->scn_restart_txg = txg; 1439 dmu_tx_commit(tx); 1440 } else { 1441 dp->dp_scan->scn_restart_txg = txg; 1442 } 1443 zfs_dbgmsg("restarting resilver for %s at txg=%llu", 1444 dp->dp_spa->spa_name, (longlong_t)txg); 1445 } 1446 1447 void 1448 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1449 { 1450 zio_free(dp->dp_spa, txg, bp); 1451 } 1452 1453 void 1454 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1455 { 1456 ASSERT(dsl_pool_sync_context(dp)); 1457 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1458 } 1459 1460 static int 1461 scan_ds_queue_compare(const void *a, const void *b) 1462 { 1463 const scan_ds_t *sds_a = a, *sds_b = b; 1464 1465 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1466 return (-1); 1467 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1468 return (0); 1469 return (1); 1470 } 1471 1472 static void 1473 scan_ds_queue_clear(dsl_scan_t *scn) 1474 { 1475 void *cookie = NULL; 1476 scan_ds_t *sds; 1477 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1478 kmem_free(sds, sizeof (*sds)); 1479 } 1480 } 1481 1482 static boolean_t 1483 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1484 { 1485 scan_ds_t srch, *sds; 1486 1487 srch.sds_dsobj = dsobj; 1488 sds = avl_find(&scn->scn_queue, &srch, NULL); 1489 if (sds != NULL && txg != NULL) 1490 *txg = sds->sds_txg; 1491 return (sds != NULL); 1492 } 1493 1494 static void 1495 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1496 { 1497 scan_ds_t *sds; 1498 avl_index_t where; 1499 1500 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1501 sds->sds_dsobj = dsobj; 1502 sds->sds_txg = txg; 1503 1504 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1505 avl_insert(&scn->scn_queue, sds, where); 1506 } 1507 1508 static void 1509 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1510 { 1511 scan_ds_t srch, *sds; 1512 1513 srch.sds_dsobj = dsobj; 1514 1515 sds = avl_find(&scn->scn_queue, &srch, NULL); 1516 VERIFY(sds != NULL); 1517 avl_remove(&scn->scn_queue, sds); 1518 kmem_free(sds, sizeof (*sds)); 1519 } 1520 1521 static void 1522 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1523 { 1524 dsl_pool_t *dp = scn->scn_dp; 1525 spa_t *spa = dp->dp_spa; 1526 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1527 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1528 1529 ASSERT0(scn->scn_queues_pending); 1530 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1531 1532 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1533 scn->scn_phys.scn_queue_obj, tx)); 1534 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1535 DMU_OT_NONE, 0, tx); 1536 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1537 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1538 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1539 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1540 sds->sds_txg, tx)); 1541 } 1542 } 1543 1544 /* 1545 * Computes the memory limit state that we're currently in. A sorted scan 1546 * needs quite a bit of memory to hold the sorting queue, so we need to 1547 * reasonably constrain the size so it doesn't impact overall system 1548 * performance. We compute two limits: 1549 * 1) Hard memory limit: if the amount of memory used by the sorting 1550 * queues on a pool gets above this value, we stop the metadata 1551 * scanning portion and start issuing the queued up and sorted 1552 * I/Os to reduce memory usage. 1553 * This limit is calculated as a fraction of physmem (by default 5%). 1554 * We constrain the lower bound of the hard limit to an absolute 1555 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1556 * the upper bound to 5% of the total pool size - no chance we'll 1557 * ever need that much memory, but just to keep the value in check. 1558 * 2) Soft memory limit: once we hit the hard memory limit, we start 1559 * issuing I/O to reduce queue memory usage, but we don't want to 1560 * completely empty out the queues, since we might be able to find I/Os 1561 * that will fill in the gaps of our non-sequential IOs at some point 1562 * in the future. So we stop the issuing of I/Os once the amount of 1563 * memory used drops below the soft limit (at which point we stop issuing 1564 * I/O and start scanning metadata again). 1565 * 1566 * This limit is calculated by subtracting a fraction of the hard 1567 * limit from the hard limit. By default this fraction is 5%, so 1568 * the soft limit is 95% of the hard limit. We cap the size of the 1569 * difference between the hard and soft limits at an absolute 1570 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1571 * sufficient to not cause too frequent switching between the 1572 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1573 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1574 * that should take at least a decent fraction of a second). 1575 */ 1576 static boolean_t 1577 dsl_scan_should_clear(dsl_scan_t *scn) 1578 { 1579 spa_t *spa = scn->scn_dp->dp_spa; 1580 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1581 uint64_t alloc, mlim_hard, mlim_soft, mused; 1582 1583 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1584 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1585 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1586 1587 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1588 zfs_scan_mem_lim_min); 1589 mlim_hard = MIN(mlim_hard, alloc / 20); 1590 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1591 zfs_scan_mem_lim_soft_max); 1592 mused = 0; 1593 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1594 vdev_t *tvd = rvd->vdev_child[i]; 1595 dsl_scan_io_queue_t *queue; 1596 1597 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1598 queue = tvd->vdev_scan_io_queue; 1599 if (queue != NULL) { 1600 /* 1601 * # of extents in exts_by_addr = # in exts_by_size. 1602 * B-tree efficiency is ~75%, but can be as low as 50%. 1603 */ 1604 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1605 ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) * 1606 3 / 2) + queue->q_sio_memused; 1607 } 1608 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1609 } 1610 1611 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1612 1613 if (mused == 0) 1614 ASSERT0(scn->scn_queues_pending); 1615 1616 /* 1617 * If we are above our hard limit, we need to clear out memory. 1618 * If we are below our soft limit, we need to accumulate sequential IOs. 1619 * Otherwise, we should keep doing whatever we are currently doing. 1620 */ 1621 if (mused >= mlim_hard) 1622 return (B_TRUE); 1623 else if (mused < mlim_soft) 1624 return (B_FALSE); 1625 else 1626 return (scn->scn_clearing); 1627 } 1628 1629 static boolean_t 1630 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1631 { 1632 /* we never skip user/group accounting objects */ 1633 if (zb && (int64_t)zb->zb_object < 0) 1634 return (B_FALSE); 1635 1636 if (scn->scn_suspending) 1637 return (B_TRUE); /* we're already suspending */ 1638 1639 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1640 return (B_FALSE); /* we're resuming */ 1641 1642 /* We only know how to resume from level-0 and objset blocks. */ 1643 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1644 return (B_FALSE); 1645 1646 /* 1647 * We suspend if: 1648 * - we have scanned for at least the minimum time (default 1 sec 1649 * for scrub, 3 sec for resilver), and either we have sufficient 1650 * dirty data that we are starting to write more quickly 1651 * (default 30%), someone is explicitly waiting for this txg 1652 * to complete, or we have used up all of the time in the txg 1653 * timeout (default 5 sec). 1654 * or 1655 * - the spa is shutting down because this pool is being exported 1656 * or the machine is rebooting. 1657 * or 1658 * - the scan queue has reached its memory use limit 1659 */ 1660 uint64_t curr_time_ns = gethrtime(); 1661 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1662 uint64_t sync_time_ns = curr_time_ns - 1663 scn->scn_dp->dp_spa->spa_sync_starttime; 1664 uint64_t dirty_min_bytes = zfs_dirty_data_max * 1665 zfs_vdev_async_write_active_min_dirty_percent / 100; 1666 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1667 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1668 1669 if ((NSEC2MSEC(scan_time_ns) > mintime && 1670 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 1671 txg_sync_waiting(scn->scn_dp) || 1672 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1673 spa_shutting_down(scn->scn_dp->dp_spa) || 1674 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) || 1675 !ddt_walk_ready(scn->scn_dp->dp_spa)) { 1676 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1677 dprintf("suspending at first available bookmark " 1678 "%llx/%llx/%llx/%llx\n", 1679 (longlong_t)zb->zb_objset, 1680 (longlong_t)zb->zb_object, 1681 (longlong_t)zb->zb_level, 1682 (longlong_t)zb->zb_blkid); 1683 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1684 zb->zb_objset, 0, 0, 0); 1685 } else if (zb != NULL) { 1686 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1687 (longlong_t)zb->zb_objset, 1688 (longlong_t)zb->zb_object, 1689 (longlong_t)zb->zb_level, 1690 (longlong_t)zb->zb_blkid); 1691 scn->scn_phys.scn_bookmark = *zb; 1692 } else { 1693 #ifdef ZFS_DEBUG 1694 dsl_scan_phys_t *scnp = &scn->scn_phys; 1695 dprintf("suspending at at DDT bookmark " 1696 "%llx/%llx/%llx/%llx\n", 1697 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1698 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1699 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1700 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1701 #endif 1702 } 1703 scn->scn_suspending = B_TRUE; 1704 return (B_TRUE); 1705 } 1706 return (B_FALSE); 1707 } 1708 1709 static boolean_t 1710 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1711 { 1712 /* 1713 * We suspend if: 1714 * - we have scrubbed for at least the minimum time (default 1 sec 1715 * for error scrub), someone is explicitly waiting for this txg 1716 * to complete, or we have used up all of the time in the txg 1717 * timeout (default 5 sec). 1718 * or 1719 * - the spa is shutting down because this pool is being exported 1720 * or the machine is rebooting. 1721 */ 1722 uint64_t curr_time_ns = gethrtime(); 1723 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time; 1724 uint64_t sync_time_ns = curr_time_ns - 1725 scn->scn_dp->dp_spa->spa_sync_starttime; 1726 int mintime = zfs_scrub_min_time_ms; 1727 1728 if ((NSEC2MSEC(error_scrub_time_ns) > mintime && 1729 (txg_sync_waiting(scn->scn_dp) || 1730 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1731 spa_shutting_down(scn->scn_dp->dp_spa)) { 1732 if (zb) { 1733 dprintf("error scrub suspending at bookmark " 1734 "%llx/%llx/%llx/%llx\n", 1735 (longlong_t)zb->zb_objset, 1736 (longlong_t)zb->zb_object, 1737 (longlong_t)zb->zb_level, 1738 (longlong_t)zb->zb_blkid); 1739 } 1740 return (B_TRUE); 1741 } 1742 return (B_FALSE); 1743 } 1744 1745 typedef struct zil_scan_arg { 1746 dsl_pool_t *zsa_dp; 1747 zil_header_t *zsa_zh; 1748 } zil_scan_arg_t; 1749 1750 static int 1751 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, 1752 uint64_t claim_txg) 1753 { 1754 (void) zilog; 1755 zil_scan_arg_t *zsa = arg; 1756 dsl_pool_t *dp = zsa->zsa_dp; 1757 dsl_scan_t *scn = dp->dp_scan; 1758 zil_header_t *zh = zsa->zsa_zh; 1759 zbookmark_phys_t zb; 1760 1761 ASSERT(!BP_IS_REDACTED(bp)); 1762 if (BP_IS_HOLE(bp) || 1763 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) 1764 return (0); 1765 1766 /* 1767 * One block ("stubby") can be allocated a long time ago; we 1768 * want to visit that one because it has been allocated 1769 * (on-disk) even if it hasn't been claimed (even though for 1770 * scrub there's nothing to do to it). 1771 */ 1772 if (claim_txg == 0 && 1773 BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa)) 1774 return (0); 1775 1776 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1777 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1778 1779 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1780 return (0); 1781 } 1782 1783 static int 1784 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, 1785 uint64_t claim_txg) 1786 { 1787 (void) zilog; 1788 if (lrc->lrc_txtype == TX_WRITE) { 1789 zil_scan_arg_t *zsa = arg; 1790 dsl_pool_t *dp = zsa->zsa_dp; 1791 dsl_scan_t *scn = dp->dp_scan; 1792 zil_header_t *zh = zsa->zsa_zh; 1793 const lr_write_t *lr = (const lr_write_t *)lrc; 1794 const blkptr_t *bp = &lr->lr_blkptr; 1795 zbookmark_phys_t zb; 1796 1797 ASSERT(!BP_IS_REDACTED(bp)); 1798 if (BP_IS_HOLE(bp) || 1799 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) 1800 return (0); 1801 1802 /* 1803 * birth can be < claim_txg if this record's txg is 1804 * already txg sync'ed (but this log block contains 1805 * other records that are not synced) 1806 */ 1807 if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg) 1808 return (0); 1809 1810 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 1811 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1812 lr->lr_foid, ZB_ZIL_LEVEL, 1813 lr->lr_offset / BP_GET_LSIZE(bp)); 1814 1815 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1816 } 1817 return (0); 1818 } 1819 1820 static void 1821 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1822 { 1823 uint64_t claim_txg = zh->zh_claim_txg; 1824 zil_scan_arg_t zsa = { dp, zh }; 1825 zilog_t *zilog; 1826 1827 ASSERT(spa_writeable(dp->dp_spa)); 1828 1829 /* 1830 * We only want to visit blocks that have been claimed but not yet 1831 * replayed (or, in read-only mode, blocks that *would* be claimed). 1832 */ 1833 if (claim_txg == 0) 1834 return; 1835 1836 zilog = zil_alloc(dp->dp_meta_objset, zh); 1837 1838 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1839 claim_txg, B_FALSE); 1840 1841 zil_free(zilog); 1842 } 1843 1844 /* 1845 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1846 * here is to sort the AVL tree by the order each block will be needed. 1847 */ 1848 static int 1849 scan_prefetch_queue_compare(const void *a, const void *b) 1850 { 1851 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1852 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1853 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1854 1855 return (zbookmark_compare(spc_a->spc_datablkszsec, 1856 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1857 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1858 } 1859 1860 static void 1861 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag) 1862 { 1863 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1864 zfs_refcount_destroy(&spc->spc_refcnt); 1865 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1866 } 1867 } 1868 1869 static scan_prefetch_ctx_t * 1870 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag) 1871 { 1872 scan_prefetch_ctx_t *spc; 1873 1874 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1875 zfs_refcount_create(&spc->spc_refcnt); 1876 zfs_refcount_add(&spc->spc_refcnt, tag); 1877 spc->spc_scn = scn; 1878 if (dnp != NULL) { 1879 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1880 spc->spc_indblkshift = dnp->dn_indblkshift; 1881 spc->spc_root = B_FALSE; 1882 } else { 1883 spc->spc_datablkszsec = 0; 1884 spc->spc_indblkshift = 0; 1885 spc->spc_root = B_TRUE; 1886 } 1887 1888 return (spc); 1889 } 1890 1891 static void 1892 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag) 1893 { 1894 zfs_refcount_add(&spc->spc_refcnt, tag); 1895 } 1896 1897 static void 1898 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1899 { 1900 spa_t *spa = scn->scn_dp->dp_spa; 1901 void *cookie = NULL; 1902 scan_prefetch_issue_ctx_t *spic = NULL; 1903 1904 mutex_enter(&spa->spa_scrub_lock); 1905 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1906 &cookie)) != NULL) { 1907 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1908 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1909 } 1910 mutex_exit(&spa->spa_scrub_lock); 1911 } 1912 1913 static boolean_t 1914 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1915 const zbookmark_phys_t *zb) 1916 { 1917 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1918 dnode_phys_t tmp_dnp; 1919 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1920 1921 if (zb->zb_objset != last_zb->zb_objset) 1922 return (B_TRUE); 1923 if ((int64_t)zb->zb_object < 0) 1924 return (B_FALSE); 1925 1926 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1927 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1928 1929 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1930 return (B_TRUE); 1931 1932 return (B_FALSE); 1933 } 1934 1935 static void 1936 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1937 { 1938 avl_index_t idx; 1939 dsl_scan_t *scn = spc->spc_scn; 1940 spa_t *spa = scn->scn_dp->dp_spa; 1941 scan_prefetch_issue_ctx_t *spic; 1942 1943 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1944 return; 1945 1946 if (BP_IS_HOLE(bp) || 1947 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg || 1948 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1949 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1950 return; 1951 1952 if (dsl_scan_check_prefetch_resume(spc, zb)) 1953 return; 1954 1955 scan_prefetch_ctx_add_ref(spc, scn); 1956 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1957 spic->spic_spc = spc; 1958 spic->spic_bp = *bp; 1959 spic->spic_zb = *zb; 1960 1961 /* 1962 * Add the IO to the queue of blocks to prefetch. This allows us to 1963 * prioritize blocks that we will need first for the main traversal 1964 * thread. 1965 */ 1966 mutex_enter(&spa->spa_scrub_lock); 1967 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1968 /* this block is already queued for prefetch */ 1969 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1970 scan_prefetch_ctx_rele(spc, scn); 1971 mutex_exit(&spa->spa_scrub_lock); 1972 return; 1973 } 1974 1975 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1976 cv_broadcast(&spa->spa_scrub_io_cv); 1977 mutex_exit(&spa->spa_scrub_lock); 1978 } 1979 1980 static void 1981 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1982 uint64_t objset, uint64_t object) 1983 { 1984 int i; 1985 zbookmark_phys_t zb; 1986 scan_prefetch_ctx_t *spc; 1987 1988 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1989 return; 1990 1991 SET_BOOKMARK(&zb, objset, object, 0, 0); 1992 1993 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1994 1995 for (i = 0; i < dnp->dn_nblkptr; i++) { 1996 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1997 zb.zb_blkid = i; 1998 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1999 } 2000 2001 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 2002 zb.zb_level = 0; 2003 zb.zb_blkid = DMU_SPILL_BLKID; 2004 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 2005 } 2006 2007 scan_prefetch_ctx_rele(spc, FTAG); 2008 } 2009 2010 static void 2011 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 2012 arc_buf_t *buf, void *private) 2013 { 2014 (void) zio; 2015 scan_prefetch_ctx_t *spc = private; 2016 dsl_scan_t *scn = spc->spc_scn; 2017 spa_t *spa = scn->scn_dp->dp_spa; 2018 2019 /* broadcast that the IO has completed for rate limiting purposes */ 2020 mutex_enter(&spa->spa_scrub_lock); 2021 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 2022 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 2023 cv_broadcast(&spa->spa_scrub_io_cv); 2024 mutex_exit(&spa->spa_scrub_lock); 2025 2026 /* if there was an error or we are done prefetching, just cleanup */ 2027 if (buf == NULL || scn->scn_prefetch_stop) 2028 goto out; 2029 2030 if (BP_GET_LEVEL(bp) > 0) { 2031 int i; 2032 blkptr_t *cbp; 2033 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2034 zbookmark_phys_t czb; 2035 2036 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 2037 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2038 zb->zb_level - 1, zb->zb_blkid * epb + i); 2039 dsl_scan_prefetch(spc, cbp, &czb); 2040 } 2041 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 2042 dnode_phys_t *cdnp; 2043 int i; 2044 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 2045 2046 for (i = 0, cdnp = buf->b_data; i < epb; 2047 i += cdnp->dn_extra_slots + 1, 2048 cdnp += cdnp->dn_extra_slots + 1) { 2049 dsl_scan_prefetch_dnode(scn, cdnp, 2050 zb->zb_objset, zb->zb_blkid * epb + i); 2051 } 2052 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 2053 objset_phys_t *osp = buf->b_data; 2054 2055 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 2056 zb->zb_objset, DMU_META_DNODE_OBJECT); 2057 2058 if (OBJSET_BUF_HAS_USERUSED(buf)) { 2059 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) { 2060 dsl_scan_prefetch_dnode(scn, 2061 &osp->os_projectused_dnode, zb->zb_objset, 2062 DMU_PROJECTUSED_OBJECT); 2063 } 2064 dsl_scan_prefetch_dnode(scn, 2065 &osp->os_groupused_dnode, zb->zb_objset, 2066 DMU_GROUPUSED_OBJECT); 2067 dsl_scan_prefetch_dnode(scn, 2068 &osp->os_userused_dnode, zb->zb_objset, 2069 DMU_USERUSED_OBJECT); 2070 } 2071 } 2072 2073 out: 2074 if (buf != NULL) 2075 arc_buf_destroy(buf, private); 2076 scan_prefetch_ctx_rele(spc, scn); 2077 } 2078 2079 static void 2080 dsl_scan_prefetch_thread(void *arg) 2081 { 2082 dsl_scan_t *scn = arg; 2083 spa_t *spa = scn->scn_dp->dp_spa; 2084 scan_prefetch_issue_ctx_t *spic; 2085 2086 /* loop until we are told to stop */ 2087 while (!scn->scn_prefetch_stop) { 2088 arc_flags_t flags = ARC_FLAG_NOWAIT | 2089 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 2090 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 2091 2092 mutex_enter(&spa->spa_scrub_lock); 2093 2094 /* 2095 * Wait until we have an IO to issue and are not above our 2096 * maximum in flight limit. 2097 */ 2098 while (!scn->scn_prefetch_stop && 2099 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 2100 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 2101 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2102 } 2103 2104 /* recheck if we should stop since we waited for the cv */ 2105 if (scn->scn_prefetch_stop) { 2106 mutex_exit(&spa->spa_scrub_lock); 2107 break; 2108 } 2109 2110 /* remove the prefetch IO from the tree */ 2111 spic = avl_first(&scn->scn_prefetch_queue); 2112 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 2113 avl_remove(&scn->scn_prefetch_queue, spic); 2114 2115 mutex_exit(&spa->spa_scrub_lock); 2116 2117 if (BP_IS_PROTECTED(&spic->spic_bp)) { 2118 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 2119 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 2120 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 2121 zio_flags |= ZIO_FLAG_RAW; 2122 } 2123 2124 /* We don't need data L1 buffer since we do not prefetch L0. */ 2125 blkptr_t *bp = &spic->spic_bp; 2126 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 2127 BP_GET_TYPE(bp) != DMU_OT_OBJSET) 2128 flags |= ARC_FLAG_NO_BUF; 2129 2130 /* issue the prefetch asynchronously */ 2131 (void) arc_read(scn->scn_zio_root, spa, bp, 2132 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB, 2133 zio_flags, &flags, &spic->spic_zb); 2134 2135 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 2136 } 2137 2138 ASSERT(scn->scn_prefetch_stop); 2139 2140 /* free any prefetches we didn't get to complete */ 2141 mutex_enter(&spa->spa_scrub_lock); 2142 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 2143 avl_remove(&scn->scn_prefetch_queue, spic); 2144 scan_prefetch_ctx_rele(spic->spic_spc, scn); 2145 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 2146 } 2147 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 2148 mutex_exit(&spa->spa_scrub_lock); 2149 } 2150 2151 static boolean_t 2152 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 2153 const zbookmark_phys_t *zb) 2154 { 2155 /* 2156 * We never skip over user/group accounting objects (obj<0) 2157 */ 2158 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 2159 (int64_t)zb->zb_object >= 0) { 2160 /* 2161 * If we already visited this bp & everything below (in 2162 * a prior txg sync), don't bother doing it again. 2163 */ 2164 if (zbookmark_subtree_completed(dnp, zb, 2165 &scn->scn_phys.scn_bookmark)) 2166 return (B_TRUE); 2167 2168 /* 2169 * If we found the block we're trying to resume from, or 2170 * we went past it, zero it out to indicate that it's OK 2171 * to start checking for suspending again. 2172 */ 2173 if (zbookmark_subtree_tbd(dnp, zb, 2174 &scn->scn_phys.scn_bookmark)) { 2175 dprintf("resuming at %llx/%llx/%llx/%llx\n", 2176 (longlong_t)zb->zb_objset, 2177 (longlong_t)zb->zb_object, 2178 (longlong_t)zb->zb_level, 2179 (longlong_t)zb->zb_blkid); 2180 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb)); 2181 } 2182 } 2183 return (B_FALSE); 2184 } 2185 2186 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb, 2187 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 2188 dmu_objset_type_t ostype, dmu_tx_t *tx); 2189 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 2190 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 2191 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 2192 2193 /* 2194 * Return nonzero on i/o error. 2195 * Return new buf to write out in *bufp. 2196 */ 2197 inline __attribute__((always_inline)) static int 2198 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 2199 dnode_phys_t *dnp, const blkptr_t *bp, 2200 const zbookmark_phys_t *zb, dmu_tx_t *tx) 2201 { 2202 dsl_pool_t *dp = scn->scn_dp; 2203 spa_t *spa = dp->dp_spa; 2204 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 2205 int err; 2206 2207 ASSERT(!BP_IS_REDACTED(bp)); 2208 2209 /* 2210 * There is an unlikely case of encountering dnodes with contradicting 2211 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created 2212 * or modified before commit 4254acb was merged. As it is not possible 2213 * to know which of the two is correct, report an error. 2214 */ 2215 if (dnp != NULL && 2216 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) { 2217 scn->scn_phys.scn_errors++; 2218 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp)); 2219 return (SET_ERROR(EINVAL)); 2220 } 2221 2222 if (BP_GET_LEVEL(bp) > 0) { 2223 arc_flags_t flags = ARC_FLAG_WAIT; 2224 int i; 2225 blkptr_t *cbp; 2226 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2227 arc_buf_t *buf; 2228 2229 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2230 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2231 if (err) { 2232 scn->scn_phys.scn_errors++; 2233 return (err); 2234 } 2235 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 2236 zbookmark_phys_t czb; 2237 2238 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2239 zb->zb_level - 1, 2240 zb->zb_blkid * epb + i); 2241 dsl_scan_visitbp(cbp, &czb, dnp, 2242 ds, scn, ostype, tx); 2243 } 2244 arc_buf_destroy(buf, &buf); 2245 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 2246 arc_flags_t flags = ARC_FLAG_WAIT; 2247 dnode_phys_t *cdnp; 2248 int i; 2249 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 2250 arc_buf_t *buf; 2251 2252 if (BP_IS_PROTECTED(bp)) { 2253 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 2254 zio_flags |= ZIO_FLAG_RAW; 2255 } 2256 2257 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2258 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2259 if (err) { 2260 scn->scn_phys.scn_errors++; 2261 return (err); 2262 } 2263 for (i = 0, cdnp = buf->b_data; i < epb; 2264 i += cdnp->dn_extra_slots + 1, 2265 cdnp += cdnp->dn_extra_slots + 1) { 2266 dsl_scan_visitdnode(scn, ds, ostype, 2267 cdnp, zb->zb_blkid * epb + i, tx); 2268 } 2269 2270 arc_buf_destroy(buf, &buf); 2271 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 2272 arc_flags_t flags = ARC_FLAG_WAIT; 2273 objset_phys_t *osp; 2274 arc_buf_t *buf; 2275 2276 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2277 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2278 if (err) { 2279 scn->scn_phys.scn_errors++; 2280 return (err); 2281 } 2282 2283 osp = buf->b_data; 2284 2285 dsl_scan_visitdnode(scn, ds, osp->os_type, 2286 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 2287 2288 if (OBJSET_BUF_HAS_USERUSED(buf)) { 2289 /* 2290 * We also always visit user/group/project accounting 2291 * objects, and never skip them, even if we are 2292 * suspending. This is necessary so that the 2293 * space deltas from this txg get integrated. 2294 */ 2295 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 2296 dsl_scan_visitdnode(scn, ds, osp->os_type, 2297 &osp->os_projectused_dnode, 2298 DMU_PROJECTUSED_OBJECT, tx); 2299 dsl_scan_visitdnode(scn, ds, osp->os_type, 2300 &osp->os_groupused_dnode, 2301 DMU_GROUPUSED_OBJECT, tx); 2302 dsl_scan_visitdnode(scn, ds, osp->os_type, 2303 &osp->os_userused_dnode, 2304 DMU_USERUSED_OBJECT, tx); 2305 } 2306 arc_buf_destroy(buf, &buf); 2307 } else if (!zfs_blkptr_verify(spa, bp, 2308 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 2309 /* 2310 * Sanity check the block pointer contents, this is handled 2311 * by arc_read() for the cases above. 2312 */ 2313 scn->scn_phys.scn_errors++; 2314 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp)); 2315 return (SET_ERROR(EINVAL)); 2316 } 2317 2318 return (0); 2319 } 2320 2321 inline __attribute__((always_inline)) static void 2322 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 2323 dmu_objset_type_t ostype, dnode_phys_t *dnp, 2324 uint64_t object, dmu_tx_t *tx) 2325 { 2326 int j; 2327 2328 for (j = 0; j < dnp->dn_nblkptr; j++) { 2329 zbookmark_phys_t czb; 2330 2331 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 2332 dnp->dn_nlevels - 1, j); 2333 dsl_scan_visitbp(&dnp->dn_blkptr[j], 2334 &czb, dnp, ds, scn, ostype, tx); 2335 } 2336 2337 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 2338 zbookmark_phys_t czb; 2339 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 2340 0, DMU_SPILL_BLKID); 2341 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 2342 &czb, dnp, ds, scn, ostype, tx); 2343 } 2344 } 2345 2346 /* 2347 * The arguments are in this order because mdb can only print the 2348 * first 5; we want them to be useful. 2349 */ 2350 static void 2351 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb, 2352 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 2353 dmu_objset_type_t ostype, dmu_tx_t *tx) 2354 { 2355 dsl_pool_t *dp = scn->scn_dp; 2356 2357 if (dsl_scan_check_suspend(scn, zb)) 2358 return; 2359 2360 if (dsl_scan_check_resume(scn, dnp, zb)) 2361 return; 2362 2363 scn->scn_visited_this_txg++; 2364 2365 if (BP_IS_HOLE(bp)) { 2366 scn->scn_holes_this_txg++; 2367 return; 2368 } 2369 2370 if (BP_IS_REDACTED(bp)) { 2371 ASSERT(dsl_dataset_feature_is_active(ds, 2372 SPA_FEATURE_REDACTED_DATASETS)); 2373 return; 2374 } 2375 2376 /* 2377 * Check if this block contradicts any filesystem flags. 2378 */ 2379 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS; 2380 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE) 2381 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2382 2383 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp)); 2384 if (f != SPA_FEATURE_NONE) 2385 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2386 2387 f = zio_compress_to_feature(BP_GET_COMPRESS(bp)); 2388 if (f != SPA_FEATURE_NONE) 2389 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2390 2391 if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) { 2392 scn->scn_lt_min_this_txg++; 2393 return; 2394 } 2395 2396 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0) 2397 return; 2398 2399 /* 2400 * If dsl_scan_ddt() has already visited this block, it will have 2401 * already done any translations or scrubbing, so don't call the 2402 * callback again. 2403 */ 2404 if (ddt_class_contains(dp->dp_spa, 2405 scn->scn_phys.scn_ddt_class_max, bp)) { 2406 scn->scn_ddt_contained_this_txg++; 2407 return; 2408 } 2409 2410 /* 2411 * If this block is from the future (after cur_max_txg), then we 2412 * are doing this on behalf of a deleted snapshot, and we will 2413 * revisit the future block on the next pass of this dataset. 2414 * Don't scan it now unless we need to because something 2415 * under it was modified. 2416 */ 2417 if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2418 scn->scn_gt_max_this_txg++; 2419 return; 2420 } 2421 2422 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2423 } 2424 2425 static void 2426 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2427 dmu_tx_t *tx) 2428 { 2429 zbookmark_phys_t zb; 2430 scan_prefetch_ctx_t *spc; 2431 2432 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2433 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2434 2435 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2436 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2437 zb.zb_objset, 0, 0, 0); 2438 } else { 2439 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2440 } 2441 2442 scn->scn_objsets_visited_this_txg++; 2443 2444 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2445 dsl_scan_prefetch(spc, bp, &zb); 2446 scan_prefetch_ctx_rele(spc, FTAG); 2447 2448 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2449 2450 dprintf_ds(ds, "finished scan%s", ""); 2451 } 2452 2453 static void 2454 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2455 { 2456 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2457 if (ds->ds_is_snapshot) { 2458 /* 2459 * Note: 2460 * - scn_cur_{min,max}_txg stays the same. 2461 * - Setting the flag is not really necessary if 2462 * scn_cur_max_txg == scn_max_txg, because there 2463 * is nothing after this snapshot that we care 2464 * about. However, we set it anyway and then 2465 * ignore it when we retraverse it in 2466 * dsl_scan_visitds(). 2467 */ 2468 scn_phys->scn_bookmark.zb_objset = 2469 dsl_dataset_phys(ds)->ds_next_snap_obj; 2470 zfs_dbgmsg("destroying ds %llu on %s; currently " 2471 "traversing; reset zb_objset to %llu", 2472 (u_longlong_t)ds->ds_object, 2473 ds->ds_dir->dd_pool->dp_spa->spa_name, 2474 (u_longlong_t)dsl_dataset_phys(ds)-> 2475 ds_next_snap_obj); 2476 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2477 } else { 2478 SET_BOOKMARK(&scn_phys->scn_bookmark, 2479 ZB_DESTROYED_OBJSET, 0, 0, 0); 2480 zfs_dbgmsg("destroying ds %llu on %s; currently " 2481 "traversing; reset bookmark to -1,0,0,0", 2482 (u_longlong_t)ds->ds_object, 2483 ds->ds_dir->dd_pool->dp_spa->spa_name); 2484 } 2485 } 2486 } 2487 2488 /* 2489 * Invoked when a dataset is destroyed. We need to make sure that: 2490 * 2491 * 1) If it is the dataset that was currently being scanned, we write 2492 * a new dsl_scan_phys_t and marking the objset reference in it 2493 * as destroyed. 2494 * 2) Remove it from the work queue, if it was present. 2495 * 2496 * If the dataset was actually a snapshot, instead of marking the dataset 2497 * as destroyed, we instead substitute the next snapshot in line. 2498 */ 2499 void 2500 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2501 { 2502 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2503 dsl_scan_t *scn = dp->dp_scan; 2504 uint64_t mintxg; 2505 2506 if (!dsl_scan_is_running(scn)) 2507 return; 2508 2509 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2510 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2511 2512 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2513 scan_ds_queue_remove(scn, ds->ds_object); 2514 if (ds->ds_is_snapshot) 2515 scan_ds_queue_insert(scn, 2516 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2517 } 2518 2519 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2520 ds->ds_object, &mintxg) == 0) { 2521 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2522 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2523 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2524 if (ds->ds_is_snapshot) { 2525 /* 2526 * We keep the same mintxg; it could be > 2527 * ds_creation_txg if the previous snapshot was 2528 * deleted too. 2529 */ 2530 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2531 scn->scn_phys.scn_queue_obj, 2532 dsl_dataset_phys(ds)->ds_next_snap_obj, 2533 mintxg, tx) == 0); 2534 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2535 "replacing with %llu", 2536 (u_longlong_t)ds->ds_object, 2537 dp->dp_spa->spa_name, 2538 (u_longlong_t)dsl_dataset_phys(ds)-> 2539 ds_next_snap_obj); 2540 } else { 2541 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2542 "removing", 2543 (u_longlong_t)ds->ds_object, 2544 dp->dp_spa->spa_name); 2545 } 2546 } 2547 2548 /* 2549 * dsl_scan_sync() should be called after this, and should sync 2550 * out our changed state, but just to be safe, do it here. 2551 */ 2552 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2553 } 2554 2555 static void 2556 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2557 { 2558 if (scn_bookmark->zb_objset == ds->ds_object) { 2559 scn_bookmark->zb_objset = 2560 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2561 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; " 2562 "reset zb_objset to %llu", 2563 (u_longlong_t)ds->ds_object, 2564 ds->ds_dir->dd_pool->dp_spa->spa_name, 2565 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2566 } 2567 } 2568 2569 /* 2570 * Called when a dataset is snapshotted. If we were currently traversing 2571 * this snapshot, we reset our bookmark to point at the newly created 2572 * snapshot. We also modify our work queue to remove the old snapshot and 2573 * replace with the new one. 2574 */ 2575 void 2576 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2577 { 2578 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2579 dsl_scan_t *scn = dp->dp_scan; 2580 uint64_t mintxg; 2581 2582 if (!dsl_scan_is_running(scn)) 2583 return; 2584 2585 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2586 2587 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2588 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2589 2590 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2591 scan_ds_queue_remove(scn, ds->ds_object); 2592 scan_ds_queue_insert(scn, 2593 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2594 } 2595 2596 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2597 ds->ds_object, &mintxg) == 0) { 2598 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2599 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2600 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2601 scn->scn_phys.scn_queue_obj, 2602 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2603 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; " 2604 "replacing with %llu", 2605 (u_longlong_t)ds->ds_object, 2606 dp->dp_spa->spa_name, 2607 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2608 } 2609 2610 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2611 } 2612 2613 static void 2614 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2615 zbookmark_phys_t *scn_bookmark) 2616 { 2617 if (scn_bookmark->zb_objset == ds1->ds_object) { 2618 scn_bookmark->zb_objset = ds2->ds_object; 2619 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2620 "reset zb_objset to %llu", 2621 (u_longlong_t)ds1->ds_object, 2622 ds1->ds_dir->dd_pool->dp_spa->spa_name, 2623 (u_longlong_t)ds2->ds_object); 2624 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2625 scn_bookmark->zb_objset = ds1->ds_object; 2626 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2627 "reset zb_objset to %llu", 2628 (u_longlong_t)ds2->ds_object, 2629 ds2->ds_dir->dd_pool->dp_spa->spa_name, 2630 (u_longlong_t)ds1->ds_object); 2631 } 2632 } 2633 2634 /* 2635 * Called when an origin dataset and its clone are swapped. If we were 2636 * currently traversing the dataset, we need to switch to traversing the 2637 * newly promoted clone. 2638 */ 2639 void 2640 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2641 { 2642 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2643 dsl_scan_t *scn = dp->dp_scan; 2644 uint64_t mintxg1, mintxg2; 2645 boolean_t ds1_queued, ds2_queued; 2646 2647 if (!dsl_scan_is_running(scn)) 2648 return; 2649 2650 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2651 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2652 2653 /* 2654 * Handle the in-memory scan queue. 2655 */ 2656 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2657 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2658 2659 /* Sanity checking. */ 2660 if (ds1_queued) { 2661 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2662 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2663 } 2664 if (ds2_queued) { 2665 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2666 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2667 } 2668 2669 if (ds1_queued && ds2_queued) { 2670 /* 2671 * If both are queued, we don't need to do anything. 2672 * The swapping code below would not handle this case correctly, 2673 * since we can't insert ds2 if it is already there. That's 2674 * because scan_ds_queue_insert() prohibits a duplicate insert 2675 * and panics. 2676 */ 2677 } else if (ds1_queued) { 2678 scan_ds_queue_remove(scn, ds1->ds_object); 2679 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2680 } else if (ds2_queued) { 2681 scan_ds_queue_remove(scn, ds2->ds_object); 2682 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2683 } 2684 2685 /* 2686 * Handle the on-disk scan queue. 2687 * The on-disk state is an out-of-date version of the in-memory state, 2688 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2689 * be different. Therefore we need to apply the swap logic to the 2690 * on-disk state independently of the in-memory state. 2691 */ 2692 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2693 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2694 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2695 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2696 2697 /* Sanity checking. */ 2698 if (ds1_queued) { 2699 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2700 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2701 } 2702 if (ds2_queued) { 2703 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2704 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2705 } 2706 2707 if (ds1_queued && ds2_queued) { 2708 /* 2709 * If both are queued, we don't need to do anything. 2710 * Alternatively, we could check for EEXIST from 2711 * zap_add_int_key() and back out to the original state, but 2712 * that would be more work than checking for this case upfront. 2713 */ 2714 } else if (ds1_queued) { 2715 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2716 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2717 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2718 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2719 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2720 "replacing with %llu", 2721 (u_longlong_t)ds1->ds_object, 2722 dp->dp_spa->spa_name, 2723 (u_longlong_t)ds2->ds_object); 2724 } else if (ds2_queued) { 2725 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2726 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2727 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2728 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2729 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2730 "replacing with %llu", 2731 (u_longlong_t)ds2->ds_object, 2732 dp->dp_spa->spa_name, 2733 (u_longlong_t)ds1->ds_object); 2734 } 2735 2736 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2737 } 2738 2739 static int 2740 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2741 { 2742 uint64_t originobj = *(uint64_t *)arg; 2743 dsl_dataset_t *ds; 2744 int err; 2745 dsl_scan_t *scn = dp->dp_scan; 2746 2747 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2748 return (0); 2749 2750 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2751 if (err) 2752 return (err); 2753 2754 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2755 dsl_dataset_t *prev; 2756 err = dsl_dataset_hold_obj(dp, 2757 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2758 2759 dsl_dataset_rele(ds, FTAG); 2760 if (err) 2761 return (err); 2762 ds = prev; 2763 } 2764 mutex_enter(&scn->scn_queue_lock); 2765 scan_ds_queue_insert(scn, ds->ds_object, 2766 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2767 mutex_exit(&scn->scn_queue_lock); 2768 dsl_dataset_rele(ds, FTAG); 2769 return (0); 2770 } 2771 2772 static void 2773 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2774 { 2775 dsl_pool_t *dp = scn->scn_dp; 2776 dsl_dataset_t *ds; 2777 2778 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2779 2780 if (scn->scn_phys.scn_cur_min_txg >= 2781 scn->scn_phys.scn_max_txg) { 2782 /* 2783 * This can happen if this snapshot was created after the 2784 * scan started, and we already completed a previous snapshot 2785 * that was created after the scan started. This snapshot 2786 * only references blocks with: 2787 * 2788 * birth < our ds_creation_txg 2789 * cur_min_txg is no less than ds_creation_txg. 2790 * We have already visited these blocks. 2791 * or 2792 * birth > scn_max_txg 2793 * The scan requested not to visit these blocks. 2794 * 2795 * Subsequent snapshots (and clones) can reference our 2796 * blocks, or blocks with even higher birth times. 2797 * Therefore we do not need to visit them either, 2798 * so we do not add them to the work queue. 2799 * 2800 * Note that checking for cur_min_txg >= cur_max_txg 2801 * is not sufficient, because in that case we may need to 2802 * visit subsequent snapshots. This happens when min_txg > 0, 2803 * which raises cur_min_txg. In this case we will visit 2804 * this dataset but skip all of its blocks, because the 2805 * rootbp's birth time is < cur_min_txg. Then we will 2806 * add the next snapshots/clones to the work queue. 2807 */ 2808 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2809 dsl_dataset_name(ds, dsname); 2810 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2811 "cur_min_txg (%llu) >= max_txg (%llu)", 2812 (longlong_t)dsobj, dsname, 2813 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2814 (longlong_t)scn->scn_phys.scn_max_txg); 2815 kmem_free(dsname, MAXNAMELEN); 2816 2817 goto out; 2818 } 2819 2820 /* 2821 * Only the ZIL in the head (non-snapshot) is valid. Even though 2822 * snapshots can have ZIL block pointers (which may be the same 2823 * BP as in the head), they must be ignored. In addition, $ORIGIN 2824 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2825 * need to look for a ZIL in it either. So we traverse the ZIL here, 2826 * rather than in scan_recurse(), because the regular snapshot 2827 * block-sharing rules don't apply to it. 2828 */ 2829 if (!dsl_dataset_is_snapshot(ds) && 2830 (dp->dp_origin_snap == NULL || 2831 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2832 objset_t *os; 2833 if (dmu_objset_from_ds(ds, &os) != 0) { 2834 goto out; 2835 } 2836 dsl_scan_zil(dp, &os->os_zil_header); 2837 } 2838 2839 /* 2840 * Iterate over the bps in this ds. 2841 */ 2842 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2843 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2844 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2845 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2846 2847 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2848 dsl_dataset_name(ds, dsname); 2849 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2850 "suspending=%u", 2851 (longlong_t)dsobj, dsname, 2852 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2853 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2854 (int)scn->scn_suspending); 2855 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2856 2857 if (scn->scn_suspending) 2858 goto out; 2859 2860 /* 2861 * We've finished this pass over this dataset. 2862 */ 2863 2864 /* 2865 * If we did not completely visit this dataset, do another pass. 2866 */ 2867 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2868 zfs_dbgmsg("incomplete pass on %s; visiting again", 2869 dp->dp_spa->spa_name); 2870 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2871 scan_ds_queue_insert(scn, ds->ds_object, 2872 scn->scn_phys.scn_cur_max_txg); 2873 goto out; 2874 } 2875 2876 /* 2877 * Add descendant datasets to work queue. 2878 */ 2879 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2880 scan_ds_queue_insert(scn, 2881 dsl_dataset_phys(ds)->ds_next_snap_obj, 2882 dsl_dataset_phys(ds)->ds_creation_txg); 2883 } 2884 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2885 boolean_t usenext = B_FALSE; 2886 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2887 uint64_t count; 2888 /* 2889 * A bug in a previous version of the code could 2890 * cause upgrade_clones_cb() to not set 2891 * ds_next_snap_obj when it should, leading to a 2892 * missing entry. Therefore we can only use the 2893 * next_clones_obj when its count is correct. 2894 */ 2895 int err = zap_count(dp->dp_meta_objset, 2896 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2897 if (err == 0 && 2898 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2899 usenext = B_TRUE; 2900 } 2901 2902 if (usenext) { 2903 zap_cursor_t zc; 2904 zap_attribute_t *za = zap_attribute_alloc(); 2905 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2906 dsl_dataset_phys(ds)->ds_next_clones_obj); 2907 zap_cursor_retrieve(&zc, za) == 0; 2908 (void) zap_cursor_advance(&zc)) { 2909 scan_ds_queue_insert(scn, 2910 zfs_strtonum(za->za_name, NULL), 2911 dsl_dataset_phys(ds)->ds_creation_txg); 2912 } 2913 zap_cursor_fini(&zc); 2914 zap_attribute_free(za); 2915 } else { 2916 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2917 enqueue_clones_cb, &ds->ds_object, 2918 DS_FIND_CHILDREN)); 2919 } 2920 } 2921 2922 out: 2923 dsl_dataset_rele(ds, FTAG); 2924 } 2925 2926 static int 2927 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2928 { 2929 (void) arg; 2930 dsl_dataset_t *ds; 2931 int err; 2932 dsl_scan_t *scn = dp->dp_scan; 2933 2934 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2935 if (err) 2936 return (err); 2937 2938 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2939 dsl_dataset_t *prev; 2940 err = dsl_dataset_hold_obj(dp, 2941 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2942 if (err) { 2943 dsl_dataset_rele(ds, FTAG); 2944 return (err); 2945 } 2946 2947 /* 2948 * If this is a clone, we don't need to worry about it for now. 2949 */ 2950 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2951 dsl_dataset_rele(ds, FTAG); 2952 dsl_dataset_rele(prev, FTAG); 2953 return (0); 2954 } 2955 dsl_dataset_rele(ds, FTAG); 2956 ds = prev; 2957 } 2958 2959 mutex_enter(&scn->scn_queue_lock); 2960 scan_ds_queue_insert(scn, ds->ds_object, 2961 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2962 mutex_exit(&scn->scn_queue_lock); 2963 dsl_dataset_rele(ds, FTAG); 2964 return (0); 2965 } 2966 2967 void 2968 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2969 ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 2970 { 2971 (void) tx; 2972 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 2973 blkptr_t bp; 2974 zbookmark_phys_t zb = { 0 }; 2975 2976 if (!dsl_scan_is_running(scn)) 2977 return; 2978 2979 /* 2980 * This function is special because it is the only thing 2981 * that can add scan_io_t's to the vdev scan queues from 2982 * outside dsl_scan_sync(). For the most part this is ok 2983 * as long as it is called from within syncing context. 2984 * However, dsl_scan_sync() expects that no new sio's will 2985 * be added between when all the work for a scan is done 2986 * and the next txg when the scan is actually marked as 2987 * completed. This check ensures we do not issue new sio's 2988 * during this period. 2989 */ 2990 if (scn->scn_done_txg != 0) 2991 return; 2992 2993 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 2994 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 2995 uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v); 2996 2997 if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg) 2998 continue; 2999 ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp); 3000 3001 scn->scn_visited_this_txg++; 3002 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 3003 } 3004 } 3005 3006 /* 3007 * Scrub/dedup interaction. 3008 * 3009 * If there are N references to a deduped block, we don't want to scrub it 3010 * N times -- ideally, we should scrub it exactly once. 3011 * 3012 * We leverage the fact that the dde's replication class (ddt_class_t) 3013 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 3014 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 3015 * 3016 * To prevent excess scrubbing, the scrub begins by walking the DDT 3017 * to find all blocks with refcnt > 1, and scrubs each of these once. 3018 * Since there are two replication classes which contain blocks with 3019 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 3020 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 3021 * 3022 * There would be nothing more to say if a block's refcnt couldn't change 3023 * during a scrub, but of course it can so we must account for changes 3024 * in a block's replication class. 3025 * 3026 * Here's an example of what can occur: 3027 * 3028 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 3029 * when visited during the top-down scrub phase, it will be scrubbed twice. 3030 * This negates our scrub optimization, but is otherwise harmless. 3031 * 3032 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 3033 * on each visit during the top-down scrub phase, it will never be scrubbed. 3034 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 3035 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 3036 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 3037 * while a scrub is in progress, it scrubs the block right then. 3038 */ 3039 static void 3040 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 3041 { 3042 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 3043 ddt_lightweight_entry_t ddlwe = {0}; 3044 int error; 3045 uint64_t n = 0; 3046 3047 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) { 3048 ddt_t *ddt; 3049 3050 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 3051 break; 3052 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 3053 (longlong_t)ddb->ddb_class, 3054 (longlong_t)ddb->ddb_type, 3055 (longlong_t)ddb->ddb_checksum, 3056 (longlong_t)ddb->ddb_cursor); 3057 3058 /* There should be no pending changes to the dedup table */ 3059 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 3060 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 3061 3062 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx); 3063 n++; 3064 3065 if (dsl_scan_check_suspend(scn, NULL)) 3066 break; 3067 } 3068 3069 if (error == EAGAIN) { 3070 dsl_scan_check_suspend(scn, NULL); 3071 error = 0; 3072 3073 zfs_dbgmsg("waiting for ddt to become ready for scan " 3074 "on %s with class_max = %u; suspending=%u", 3075 scn->scn_dp->dp_spa->spa_name, 3076 (int)scn->scn_phys.scn_ddt_class_max, 3077 (int)scn->scn_suspending); 3078 } else 3079 zfs_dbgmsg("scanned %llu ddt entries on %s with " 3080 "class_max = %u; suspending=%u", (longlong_t)n, 3081 scn->scn_dp->dp_spa->spa_name, 3082 (int)scn->scn_phys.scn_ddt_class_max, 3083 (int)scn->scn_suspending); 3084 3085 ASSERT(error == 0 || error == ENOENT); 3086 ASSERT(error != ENOENT || 3087 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 3088 } 3089 3090 static uint64_t 3091 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 3092 { 3093 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 3094 if (ds->ds_is_snapshot) 3095 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 3096 return (smt); 3097 } 3098 3099 static void 3100 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 3101 { 3102 scan_ds_t *sds; 3103 dsl_pool_t *dp = scn->scn_dp; 3104 3105 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 3106 scn->scn_phys.scn_ddt_class_max) { 3107 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 3108 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 3109 dsl_scan_ddt(scn, tx); 3110 if (scn->scn_suspending) 3111 return; 3112 } 3113 3114 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 3115 /* First do the MOS & ORIGIN */ 3116 3117 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 3118 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 3119 dsl_scan_visit_rootbp(scn, NULL, 3120 &dp->dp_meta_rootbp, tx); 3121 if (scn->scn_suspending) 3122 return; 3123 3124 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 3125 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 3126 enqueue_cb, NULL, DS_FIND_CHILDREN)); 3127 } else { 3128 dsl_scan_visitds(scn, 3129 dp->dp_origin_snap->ds_object, tx); 3130 } 3131 ASSERT(!scn->scn_suspending); 3132 } else if (scn->scn_phys.scn_bookmark.zb_objset != 3133 ZB_DESTROYED_OBJSET) { 3134 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 3135 /* 3136 * If we were suspended, continue from here. Note if the 3137 * ds we were suspended on was deleted, the zb_objset may 3138 * be -1, so we will skip this and find a new objset 3139 * below. 3140 */ 3141 dsl_scan_visitds(scn, dsobj, tx); 3142 if (scn->scn_suspending) 3143 return; 3144 } 3145 3146 /* 3147 * In case we suspended right at the end of the ds, zero the 3148 * bookmark so we don't think that we're still trying to resume. 3149 */ 3150 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t)); 3151 3152 /* 3153 * Keep pulling things out of the dataset avl queue. Updates to the 3154 * persistent zap-object-as-queue happen only at checkpoints. 3155 */ 3156 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 3157 dsl_dataset_t *ds; 3158 uint64_t dsobj = sds->sds_dsobj; 3159 uint64_t txg = sds->sds_txg; 3160 3161 /* dequeue and free the ds from the queue */ 3162 scan_ds_queue_remove(scn, dsobj); 3163 sds = NULL; 3164 3165 /* set up min / max txg */ 3166 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 3167 if (txg != 0) { 3168 scn->scn_phys.scn_cur_min_txg = 3169 MAX(scn->scn_phys.scn_min_txg, txg); 3170 } else { 3171 scn->scn_phys.scn_cur_min_txg = 3172 MAX(scn->scn_phys.scn_min_txg, 3173 dsl_dataset_phys(ds)->ds_prev_snap_txg); 3174 } 3175 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 3176 dsl_dataset_rele(ds, FTAG); 3177 3178 dsl_scan_visitds(scn, dsobj, tx); 3179 if (scn->scn_suspending) 3180 return; 3181 } 3182 3183 /* No more objsets to fetch, we're done */ 3184 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 3185 ASSERT0(scn->scn_suspending); 3186 } 3187 3188 static uint64_t 3189 dsl_scan_count_data_disks(spa_t *spa) 3190 { 3191 vdev_t *rvd = spa->spa_root_vdev; 3192 uint64_t i, leaves = 0; 3193 3194 for (i = 0; i < rvd->vdev_children; i++) { 3195 vdev_t *vd = rvd->vdev_child[i]; 3196 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache) 3197 continue; 3198 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd); 3199 } 3200 return (leaves); 3201 } 3202 3203 static void 3204 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 3205 { 3206 int i; 3207 uint64_t cur_size = 0; 3208 3209 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3210 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 3211 } 3212 3213 q->q_total_zio_size_this_txg += cur_size; 3214 q->q_zios_this_txg++; 3215 } 3216 3217 static void 3218 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 3219 uint64_t end) 3220 { 3221 q->q_total_seg_size_this_txg += end - start; 3222 q->q_segs_this_txg++; 3223 } 3224 3225 static boolean_t 3226 scan_io_queue_check_suspend(dsl_scan_t *scn) 3227 { 3228 /* See comment in dsl_scan_check_suspend() */ 3229 uint64_t curr_time_ns = gethrtime(); 3230 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 3231 uint64_t sync_time_ns = curr_time_ns - 3232 scn->scn_dp->dp_spa->spa_sync_starttime; 3233 uint64_t dirty_min_bytes = zfs_dirty_data_max * 3234 zfs_vdev_async_write_active_min_dirty_percent / 100; 3235 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3236 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3237 3238 return ((NSEC2MSEC(scan_time_ns) > mintime && 3239 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 3240 txg_sync_waiting(scn->scn_dp) || 3241 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 3242 spa_shutting_down(scn->scn_dp->dp_spa)); 3243 } 3244 3245 /* 3246 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 3247 * disk. This consumes the io_list and frees the scan_io_t's. This is 3248 * called when emptying queues, either when we're up against the memory 3249 * limit or when we have finished scanning. Returns B_TRUE if we stopped 3250 * processing the list before we finished. Any sios that were not issued 3251 * will remain in the io_list. 3252 */ 3253 static boolean_t 3254 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 3255 { 3256 dsl_scan_t *scn = queue->q_scn; 3257 scan_io_t *sio; 3258 boolean_t suspended = B_FALSE; 3259 3260 while ((sio = list_head(io_list)) != NULL) { 3261 blkptr_t bp; 3262 3263 if (scan_io_queue_check_suspend(scn)) { 3264 suspended = B_TRUE; 3265 break; 3266 } 3267 3268 sio2bp(sio, &bp); 3269 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 3270 &sio->sio_zb, queue); 3271 (void) list_remove_head(io_list); 3272 scan_io_queues_update_zio_stats(queue, &bp); 3273 sio_free(sio); 3274 } 3275 return (suspended); 3276 } 3277 3278 /* 3279 * This function removes sios from an IO queue which reside within a given 3280 * range_seg_t and inserts them (in offset order) into a list. Note that 3281 * we only ever return a maximum of 32 sios at once. If there are more sios 3282 * to process within this segment that did not make it onto the list we 3283 * return B_TRUE and otherwise B_FALSE. 3284 */ 3285 static boolean_t 3286 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 3287 { 3288 scan_io_t *srch_sio, *sio, *next_sio; 3289 avl_index_t idx; 3290 uint_t num_sios = 0; 3291 int64_t bytes_issued = 0; 3292 3293 ASSERT(rs != NULL); 3294 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3295 3296 srch_sio = sio_alloc(1); 3297 srch_sio->sio_nr_dvas = 1; 3298 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 3299 3300 /* 3301 * The exact start of the extent might not contain any matching zios, 3302 * so if that's the case, examine the next one in the tree. 3303 */ 3304 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 3305 sio_free(srch_sio); 3306 3307 if (sio == NULL) 3308 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 3309 3310 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 3311 queue->q_exts_by_addr) && num_sios <= 32) { 3312 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 3313 queue->q_exts_by_addr)); 3314 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 3315 queue->q_exts_by_addr)); 3316 3317 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 3318 avl_remove(&queue->q_sios_by_addr, sio); 3319 if (avl_is_empty(&queue->q_sios_by_addr)) 3320 atomic_add_64(&queue->q_scn->scn_queues_pending, -1); 3321 queue->q_sio_memused -= SIO_GET_MUSED(sio); 3322 3323 bytes_issued += SIO_GET_ASIZE(sio); 3324 num_sios++; 3325 list_insert_tail(list, sio); 3326 sio = next_sio; 3327 } 3328 3329 /* 3330 * We limit the number of sios we process at once to 32 to avoid 3331 * biting off more than we can chew. If we didn't take everything 3332 * in the segment we update it to reflect the work we were able to 3333 * complete. Otherwise, we remove it from the range tree entirely. 3334 */ 3335 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 3336 queue->q_exts_by_addr)) { 3337 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 3338 -bytes_issued); 3339 range_tree_resize_segment(queue->q_exts_by_addr, rs, 3340 SIO_GET_OFFSET(sio), rs_get_end(rs, 3341 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 3342 queue->q_last_ext_addr = SIO_GET_OFFSET(sio); 3343 return (B_TRUE); 3344 } else { 3345 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 3346 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 3347 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 3348 queue->q_last_ext_addr = -1; 3349 return (B_FALSE); 3350 } 3351 } 3352 3353 /* 3354 * This is called from the queue emptying thread and selects the next 3355 * extent from which we are to issue I/Os. The behavior of this function 3356 * depends on the state of the scan, the current memory consumption and 3357 * whether or not we are performing a scan shutdown. 3358 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 3359 * needs to perform a checkpoint 3360 * 2) We select the largest available extent if we are up against the 3361 * memory limit. 3362 * 3) Otherwise we don't select any extents. 3363 */ 3364 static range_seg_t * 3365 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 3366 { 3367 dsl_scan_t *scn = queue->q_scn; 3368 range_tree_t *rt = queue->q_exts_by_addr; 3369 3370 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3371 ASSERT(scn->scn_is_sorted); 3372 3373 if (!scn->scn_checkpointing && !scn->scn_clearing) 3374 return (NULL); 3375 3376 /* 3377 * During normal clearing, we want to issue our largest segments 3378 * first, keeping IO as sequential as possible, and leaving the 3379 * smaller extents for later with the hope that they might eventually 3380 * grow to larger sequential segments. However, when the scan is 3381 * checkpointing, no new extents will be added to the sorting queue, 3382 * so the way we are sorted now is as good as it will ever get. 3383 * In this case, we instead switch to issuing extents in LBA order. 3384 */ 3385 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) || 3386 zfs_scan_issue_strategy == 1) 3387 return (range_tree_first(rt)); 3388 3389 /* 3390 * Try to continue previous extent if it is not completed yet. After 3391 * shrink in scan_io_queue_gather() it may no longer be the best, but 3392 * otherwise we leave shorter remnant every txg. 3393 */ 3394 uint64_t start; 3395 uint64_t size = 1ULL << rt->rt_shift; 3396 range_seg_t *addr_rs; 3397 if (queue->q_last_ext_addr != -1) { 3398 start = queue->q_last_ext_addr; 3399 addr_rs = range_tree_find(rt, start, size); 3400 if (addr_rs != NULL) 3401 return (addr_rs); 3402 } 3403 3404 /* 3405 * Nothing to continue, so find new best extent. 3406 */ 3407 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL); 3408 if (v == NULL) 3409 return (NULL); 3410 queue->q_last_ext_addr = start = *v << rt->rt_shift; 3411 3412 /* 3413 * We need to get the original entry in the by_addr tree so we can 3414 * modify it. 3415 */ 3416 addr_rs = range_tree_find(rt, start, size); 3417 ASSERT3P(addr_rs, !=, NULL); 3418 ASSERT3U(rs_get_start(addr_rs, rt), ==, start); 3419 ASSERT3U(rs_get_end(addr_rs, rt), >, start); 3420 return (addr_rs); 3421 } 3422 3423 static void 3424 scan_io_queues_run_one(void *arg) 3425 { 3426 dsl_scan_io_queue_t *queue = arg; 3427 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3428 boolean_t suspended = B_FALSE; 3429 range_seg_t *rs; 3430 scan_io_t *sio; 3431 zio_t *zio; 3432 list_t sio_list; 3433 3434 ASSERT(queue->q_scn->scn_is_sorted); 3435 3436 list_create(&sio_list, sizeof (scan_io_t), 3437 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3438 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa, 3439 NULL, NULL, NULL, ZIO_FLAG_CANFAIL); 3440 mutex_enter(q_lock); 3441 queue->q_zio = zio; 3442 3443 /* Calculate maximum in-flight bytes for this vdev. */ 3444 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit * 3445 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd))); 3446 3447 /* reset per-queue scan statistics for this txg */ 3448 queue->q_total_seg_size_this_txg = 0; 3449 queue->q_segs_this_txg = 0; 3450 queue->q_total_zio_size_this_txg = 0; 3451 queue->q_zios_this_txg = 0; 3452 3453 /* loop until we run out of time or sios */ 3454 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3455 uint64_t seg_start = 0, seg_end = 0; 3456 boolean_t more_left; 3457 3458 ASSERT(list_is_empty(&sio_list)); 3459 3460 /* loop while we still have sios left to process in this rs */ 3461 do { 3462 scan_io_t *first_sio, *last_sio; 3463 3464 /* 3465 * We have selected which extent needs to be 3466 * processed next. Gather up the corresponding sios. 3467 */ 3468 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3469 ASSERT(!list_is_empty(&sio_list)); 3470 first_sio = list_head(&sio_list); 3471 last_sio = list_tail(&sio_list); 3472 3473 seg_end = SIO_GET_END_OFFSET(last_sio); 3474 if (seg_start == 0) 3475 seg_start = SIO_GET_OFFSET(first_sio); 3476 3477 /* 3478 * Issuing sios can take a long time so drop the 3479 * queue lock. The sio queue won't be updated by 3480 * other threads since we're in syncing context so 3481 * we can be sure that our trees will remain exactly 3482 * as we left them. 3483 */ 3484 mutex_exit(q_lock); 3485 suspended = scan_io_queue_issue(queue, &sio_list); 3486 mutex_enter(q_lock); 3487 3488 if (suspended) 3489 break; 3490 } while (more_left); 3491 3492 /* update statistics for debugging purposes */ 3493 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3494 3495 if (suspended) 3496 break; 3497 } 3498 3499 /* 3500 * If we were suspended in the middle of processing, 3501 * requeue any unfinished sios and exit. 3502 */ 3503 while ((sio = list_remove_head(&sio_list)) != NULL) 3504 scan_io_queue_insert_impl(queue, sio); 3505 3506 queue->q_zio = NULL; 3507 mutex_exit(q_lock); 3508 zio_nowait(zio); 3509 list_destroy(&sio_list); 3510 } 3511 3512 /* 3513 * Performs an emptying run on all scan queues in the pool. This just 3514 * punches out one thread per top-level vdev, each of which processes 3515 * only that vdev's scan queue. We can parallelize the I/O here because 3516 * we know that each queue's I/Os only affect its own top-level vdev. 3517 * 3518 * This function waits for the queue runs to complete, and must be 3519 * called from dsl_scan_sync (or in general, syncing context). 3520 */ 3521 static void 3522 scan_io_queues_run(dsl_scan_t *scn) 3523 { 3524 spa_t *spa = scn->scn_dp->dp_spa; 3525 3526 ASSERT(scn->scn_is_sorted); 3527 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3528 3529 if (scn->scn_queues_pending == 0) 3530 return; 3531 3532 if (scn->scn_taskq == NULL) { 3533 int nthreads = spa->spa_root_vdev->vdev_children; 3534 3535 /* 3536 * We need to make this taskq *always* execute as many 3537 * threads in parallel as we have top-level vdevs and no 3538 * less, otherwise strange serialization of the calls to 3539 * scan_io_queues_run_one can occur during spa_sync runs 3540 * and that significantly impacts performance. 3541 */ 3542 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3543 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3544 } 3545 3546 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3547 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3548 3549 mutex_enter(&vd->vdev_scan_io_queue_lock); 3550 if (vd->vdev_scan_io_queue != NULL) { 3551 VERIFY(taskq_dispatch(scn->scn_taskq, 3552 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3553 TQ_SLEEP) != TASKQID_INVALID); 3554 } 3555 mutex_exit(&vd->vdev_scan_io_queue_lock); 3556 } 3557 3558 /* 3559 * Wait for the queues to finish issuing their IOs for this run 3560 * before we return. There may still be IOs in flight at this 3561 * point. 3562 */ 3563 taskq_wait(scn->scn_taskq); 3564 } 3565 3566 static boolean_t 3567 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3568 { 3569 uint64_t elapsed_nanosecs; 3570 3571 if (zfs_recover) 3572 return (B_FALSE); 3573 3574 if (zfs_async_block_max_blocks != 0 && 3575 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3576 return (B_TRUE); 3577 } 3578 3579 if (zfs_max_async_dedup_frees != 0 && 3580 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3581 return (B_TRUE); 3582 } 3583 3584 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3585 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3586 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3587 txg_sync_waiting(scn->scn_dp)) || 3588 spa_shutting_down(scn->scn_dp->dp_spa)); 3589 } 3590 3591 static int 3592 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3593 { 3594 dsl_scan_t *scn = arg; 3595 3596 if (!scn->scn_is_bptree || 3597 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3598 if (dsl_scan_async_block_should_pause(scn)) 3599 return (SET_ERROR(ERESTART)); 3600 } 3601 3602 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3603 dmu_tx_get_txg(tx), bp, 0)); 3604 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3605 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3606 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3607 scn->scn_visited_this_txg++; 3608 if (BP_GET_DEDUP(bp)) 3609 scn->scn_dedup_frees_this_txg++; 3610 return (0); 3611 } 3612 3613 static void 3614 dsl_scan_update_stats(dsl_scan_t *scn) 3615 { 3616 spa_t *spa = scn->scn_dp->dp_spa; 3617 uint64_t i; 3618 uint64_t seg_size_total = 0, zio_size_total = 0; 3619 uint64_t seg_count_total = 0, zio_count_total = 0; 3620 3621 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3622 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3623 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3624 3625 if (queue == NULL) 3626 continue; 3627 3628 seg_size_total += queue->q_total_seg_size_this_txg; 3629 zio_size_total += queue->q_total_zio_size_this_txg; 3630 seg_count_total += queue->q_segs_this_txg; 3631 zio_count_total += queue->q_zios_this_txg; 3632 } 3633 3634 if (seg_count_total == 0 || zio_count_total == 0) { 3635 scn->scn_avg_seg_size_this_txg = 0; 3636 scn->scn_avg_zio_size_this_txg = 0; 3637 scn->scn_segs_this_txg = 0; 3638 scn->scn_zios_this_txg = 0; 3639 return; 3640 } 3641 3642 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3643 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3644 scn->scn_segs_this_txg = seg_count_total; 3645 scn->scn_zios_this_txg = zio_count_total; 3646 } 3647 3648 static int 3649 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3650 dmu_tx_t *tx) 3651 { 3652 ASSERT(!bp_freed); 3653 return (dsl_scan_free_block_cb(arg, bp, tx)); 3654 } 3655 3656 static int 3657 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3658 dmu_tx_t *tx) 3659 { 3660 ASSERT(!bp_freed); 3661 dsl_scan_t *scn = arg; 3662 const dva_t *dva = &bp->blk_dva[0]; 3663 3664 if (dsl_scan_async_block_should_pause(scn)) 3665 return (SET_ERROR(ERESTART)); 3666 3667 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3668 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3669 DVA_GET_ASIZE(dva), tx); 3670 scn->scn_visited_this_txg++; 3671 return (0); 3672 } 3673 3674 boolean_t 3675 dsl_scan_active(dsl_scan_t *scn) 3676 { 3677 spa_t *spa = scn->scn_dp->dp_spa; 3678 uint64_t used = 0, comp, uncomp; 3679 boolean_t clones_left; 3680 3681 if (spa->spa_load_state != SPA_LOAD_NONE) 3682 return (B_FALSE); 3683 if (spa_shutting_down(spa)) 3684 return (B_FALSE); 3685 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3686 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3687 return (B_TRUE); 3688 3689 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3690 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3691 &used, &comp, &uncomp); 3692 } 3693 clones_left = spa_livelist_delete_check(spa); 3694 return ((used != 0) || (clones_left)); 3695 } 3696 3697 boolean_t 3698 dsl_errorscrub_active(dsl_scan_t *scn) 3699 { 3700 spa_t *spa = scn->scn_dp->dp_spa; 3701 if (spa->spa_load_state != SPA_LOAD_NONE) 3702 return (B_FALSE); 3703 if (spa_shutting_down(spa)) 3704 return (B_FALSE); 3705 if (dsl_errorscrubbing(scn->scn_dp)) 3706 return (B_TRUE); 3707 return (B_FALSE); 3708 } 3709 3710 static boolean_t 3711 dsl_scan_check_deferred(vdev_t *vd) 3712 { 3713 boolean_t need_resilver = B_FALSE; 3714 3715 for (int c = 0; c < vd->vdev_children; c++) { 3716 need_resilver |= 3717 dsl_scan_check_deferred(vd->vdev_child[c]); 3718 } 3719 3720 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3721 !vd->vdev_ops->vdev_op_leaf) 3722 return (need_resilver); 3723 3724 if (!vd->vdev_resilver_deferred) 3725 need_resilver = B_TRUE; 3726 3727 return (need_resilver); 3728 } 3729 3730 static boolean_t 3731 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3732 uint64_t phys_birth) 3733 { 3734 vdev_t *vd; 3735 3736 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3737 3738 if (vd->vdev_ops == &vdev_indirect_ops) { 3739 /* 3740 * The indirect vdev can point to multiple 3741 * vdevs. For simplicity, always create 3742 * the resilver zio_t. zio_vdev_io_start() 3743 * will bypass the child resilver i/o's if 3744 * they are on vdevs that don't have DTL's. 3745 */ 3746 return (B_TRUE); 3747 } 3748 3749 if (DVA_GET_GANG(dva)) { 3750 /* 3751 * Gang members may be spread across multiple 3752 * vdevs, so the best estimate we have is the 3753 * scrub range, which has already been checked. 3754 * XXX -- it would be better to change our 3755 * allocation policy to ensure that all 3756 * gang members reside on the same vdev. 3757 */ 3758 return (B_TRUE); 3759 } 3760 3761 /* 3762 * Check if the top-level vdev must resilver this offset. 3763 * When the offset does not intersect with a dirty leaf DTL 3764 * then it may be possible to skip the resilver IO. The psize 3765 * is provided instead of asize to simplify the check for RAIDZ. 3766 */ 3767 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) 3768 return (B_FALSE); 3769 3770 /* 3771 * Check that this top-level vdev has a device under it which 3772 * is resilvering and is not deferred. 3773 */ 3774 if (!dsl_scan_check_deferred(vd)) 3775 return (B_FALSE); 3776 3777 return (B_TRUE); 3778 } 3779 3780 static int 3781 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3782 { 3783 dsl_scan_t *scn = dp->dp_scan; 3784 spa_t *spa = dp->dp_spa; 3785 int err = 0; 3786 3787 if (spa_suspend_async_destroy(spa)) 3788 return (0); 3789 3790 if (zfs_free_bpobj_enabled && 3791 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3792 scn->scn_is_bptree = B_FALSE; 3793 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3794 scn->scn_zio_root = zio_root(spa, NULL, 3795 NULL, ZIO_FLAG_MUSTSUCCEED); 3796 err = bpobj_iterate(&dp->dp_free_bpobj, 3797 bpobj_dsl_scan_free_block_cb, scn, tx); 3798 VERIFY0(zio_wait(scn->scn_zio_root)); 3799 scn->scn_zio_root = NULL; 3800 3801 if (err != 0 && err != ERESTART) 3802 zfs_panic_recover("error %u from bpobj_iterate()", err); 3803 } 3804 3805 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3806 ASSERT(scn->scn_async_destroying); 3807 scn->scn_is_bptree = B_TRUE; 3808 scn->scn_zio_root = zio_root(spa, NULL, 3809 NULL, ZIO_FLAG_MUSTSUCCEED); 3810 err = bptree_iterate(dp->dp_meta_objset, 3811 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3812 VERIFY0(zio_wait(scn->scn_zio_root)); 3813 scn->scn_zio_root = NULL; 3814 3815 if (err == EIO || err == ECKSUM) { 3816 err = 0; 3817 } else if (err != 0 && err != ERESTART) { 3818 zfs_panic_recover("error %u from " 3819 "traverse_dataset_destroyed()", err); 3820 } 3821 3822 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3823 /* finished; deactivate async destroy feature */ 3824 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3825 ASSERT(!spa_feature_is_active(spa, 3826 SPA_FEATURE_ASYNC_DESTROY)); 3827 VERIFY0(zap_remove(dp->dp_meta_objset, 3828 DMU_POOL_DIRECTORY_OBJECT, 3829 DMU_POOL_BPTREE_OBJ, tx)); 3830 VERIFY0(bptree_free(dp->dp_meta_objset, 3831 dp->dp_bptree_obj, tx)); 3832 dp->dp_bptree_obj = 0; 3833 scn->scn_async_destroying = B_FALSE; 3834 scn->scn_async_stalled = B_FALSE; 3835 } else { 3836 /* 3837 * If we didn't make progress, mark the async 3838 * destroy as stalled, so that we will not initiate 3839 * a spa_sync() on its behalf. Note that we only 3840 * check this if we are not finished, because if the 3841 * bptree had no blocks for us to visit, we can 3842 * finish without "making progress". 3843 */ 3844 scn->scn_async_stalled = 3845 (scn->scn_visited_this_txg == 0); 3846 } 3847 } 3848 if (scn->scn_visited_this_txg) { 3849 zfs_dbgmsg("freed %llu blocks in %llums from " 3850 "free_bpobj/bptree on %s in txg %llu; err=%u", 3851 (longlong_t)scn->scn_visited_this_txg, 3852 (longlong_t) 3853 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3854 spa->spa_name, (longlong_t)tx->tx_txg, err); 3855 scn->scn_visited_this_txg = 0; 3856 scn->scn_dedup_frees_this_txg = 0; 3857 3858 /* 3859 * Write out changes to the DDT and the BRT that may be required 3860 * as a result of the blocks freed. This ensures that the DDT 3861 * and the BRT are clean when a scrub/resilver runs. 3862 */ 3863 ddt_sync(spa, tx->tx_txg); 3864 brt_sync(spa, tx->tx_txg); 3865 } 3866 if (err != 0) 3867 return (err); 3868 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3869 zfs_free_leak_on_eio && 3870 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3871 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3872 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3873 /* 3874 * We have finished background destroying, but there is still 3875 * some space left in the dp_free_dir. Transfer this leaked 3876 * space to the dp_leak_dir. 3877 */ 3878 if (dp->dp_leak_dir == NULL) { 3879 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3880 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3881 LEAK_DIR_NAME, tx); 3882 VERIFY0(dsl_pool_open_special_dir(dp, 3883 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3884 rrw_exit(&dp->dp_config_rwlock, FTAG); 3885 } 3886 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3887 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3888 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3889 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3890 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3891 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3892 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3893 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3894 } 3895 3896 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3897 !spa_livelist_delete_check(spa)) { 3898 /* finished; verify that space accounting went to zero */ 3899 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3900 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3901 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3902 } 3903 3904 spa_notify_waiters(spa); 3905 3906 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3907 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3908 DMU_POOL_OBSOLETE_BPOBJ)); 3909 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3910 ASSERT(spa_feature_is_active(dp->dp_spa, 3911 SPA_FEATURE_OBSOLETE_COUNTS)); 3912 3913 scn->scn_is_bptree = B_FALSE; 3914 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3915 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3916 dsl_scan_obsolete_block_cb, scn, tx); 3917 if (err != 0 && err != ERESTART) 3918 zfs_panic_recover("error %u from bpobj_iterate()", err); 3919 3920 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3921 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3922 } 3923 return (0); 3924 } 3925 3926 static void 3927 name_to_bookmark(char *buf, zbookmark_phys_t *zb) 3928 { 3929 zb->zb_objset = zfs_strtonum(buf, &buf); 3930 ASSERT(*buf == ':'); 3931 zb->zb_object = zfs_strtonum(buf + 1, &buf); 3932 ASSERT(*buf == ':'); 3933 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf); 3934 ASSERT(*buf == ':'); 3935 zb->zb_blkid = zfs_strtonum(buf + 1, &buf); 3936 ASSERT(*buf == '\0'); 3937 } 3938 3939 static void 3940 name_to_object(char *buf, uint64_t *obj) 3941 { 3942 *obj = zfs_strtonum(buf, &buf); 3943 ASSERT(*buf == '\0'); 3944 } 3945 3946 static void 3947 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb) 3948 { 3949 dsl_pool_t *dp = scn->scn_dp; 3950 dsl_dataset_t *ds; 3951 objset_t *os; 3952 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0) 3953 return; 3954 3955 if (dmu_objset_from_ds(ds, &os) != 0) { 3956 dsl_dataset_rele(ds, FTAG); 3957 return; 3958 } 3959 3960 /* 3961 * If the key is not loaded dbuf_dnode_findbp() will error out with 3962 * EACCES. However in that case dnode_hold() will eventually call 3963 * dbuf_read()->zio_wait() which may call spa_log_error(). This will 3964 * lead to a deadlock due to us holding the mutex spa_errlist_lock. 3965 * Avoid this by checking here if the keys are loaded, if not return. 3966 * If the keys are not loaded the head_errlog feature is meaningless 3967 * as we cannot figure out the birth txg of the block pointer. 3968 */ 3969 if (dsl_dataset_get_keystatus(ds->ds_dir) == 3970 ZFS_KEYSTATUS_UNAVAILABLE) { 3971 dsl_dataset_rele(ds, FTAG); 3972 return; 3973 } 3974 3975 dnode_t *dn; 3976 blkptr_t bp; 3977 3978 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) { 3979 dsl_dataset_rele(ds, FTAG); 3980 return; 3981 } 3982 3983 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3984 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL, 3985 NULL); 3986 3987 if (error) { 3988 rw_exit(&dn->dn_struct_rwlock); 3989 dnode_rele(dn, FTAG); 3990 dsl_dataset_rele(ds, FTAG); 3991 return; 3992 } 3993 3994 if (!error && BP_IS_HOLE(&bp)) { 3995 rw_exit(&dn->dn_struct_rwlock); 3996 dnode_rele(dn, FTAG); 3997 dsl_dataset_rele(ds, FTAG); 3998 return; 3999 } 4000 4001 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | 4002 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB; 4003 4004 /* If it's an intent log block, failure is expected. */ 4005 if (zb.zb_level == ZB_ZIL_LEVEL) 4006 zio_flags |= ZIO_FLAG_SPECULATIVE; 4007 4008 ASSERT(!BP_IS_EMBEDDED(&bp)); 4009 scan_exec_io(dp, &bp, zio_flags, &zb, NULL); 4010 rw_exit(&dn->dn_struct_rwlock); 4011 dnode_rele(dn, FTAG); 4012 dsl_dataset_rele(ds, FTAG); 4013 } 4014 4015 /* 4016 * We keep track of the scrubbed error blocks in "count". This will be used 4017 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This 4018 * function is modelled after check_filesystem(). 4019 */ 4020 static int 4021 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep, 4022 int *count) 4023 { 4024 dsl_dataset_t *ds; 4025 dsl_pool_t *dp = spa->spa_dsl_pool; 4026 dsl_scan_t *scn = dp->dp_scan; 4027 4028 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds); 4029 if (error != 0) 4030 return (error); 4031 4032 uint64_t latest_txg; 4033 uint64_t txg_to_consider = spa->spa_syncing_txg; 4034 boolean_t check_snapshot = B_TRUE; 4035 4036 error = find_birth_txg(ds, zep, &latest_txg); 4037 4038 /* 4039 * If find_birth_txg() errors out, then err on the side of caution and 4040 * proceed. In worst case scenario scrub all objects. If zep->zb_birth 4041 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to 4042 * scrub all objects. 4043 */ 4044 if (error == 0 && zep->zb_birth == latest_txg) { 4045 /* Block neither free nor re written. */ 4046 zbookmark_phys_t zb; 4047 zep_to_zb(fs, zep, &zb); 4048 scn->scn_zio_root = zio_root(spa, NULL, NULL, 4049 ZIO_FLAG_CANFAIL); 4050 /* We have already acquired the config lock for spa */ 4051 read_by_block_level(scn, zb); 4052 4053 (void) zio_wait(scn->scn_zio_root); 4054 scn->scn_zio_root = NULL; 4055 4056 scn->errorscrub_phys.dep_examined++; 4057 scn->errorscrub_phys.dep_to_examine--; 4058 (*count)++; 4059 if ((*count) == zfs_scrub_error_blocks_per_txg || 4060 dsl_error_scrub_check_suspend(scn, &zb)) { 4061 dsl_dataset_rele(ds, FTAG); 4062 return (SET_ERROR(EFAULT)); 4063 } 4064 4065 check_snapshot = B_FALSE; 4066 } else if (error == 0) { 4067 txg_to_consider = latest_txg; 4068 } 4069 4070 /* 4071 * Retrieve the number of snapshots if the dataset is not a snapshot. 4072 */ 4073 uint64_t snap_count = 0; 4074 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) { 4075 4076 error = zap_count(spa->spa_meta_objset, 4077 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count); 4078 4079 if (error != 0) { 4080 dsl_dataset_rele(ds, FTAG); 4081 return (error); 4082 } 4083 } 4084 4085 if (snap_count == 0) { 4086 /* Filesystem without snapshots. */ 4087 dsl_dataset_rele(ds, FTAG); 4088 return (0); 4089 } 4090 4091 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4092 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4093 4094 dsl_dataset_rele(ds, FTAG); 4095 4096 /* Check only snapshots created from this file system. */ 4097 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg && 4098 snap_obj_txg <= txg_to_consider) { 4099 4100 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds); 4101 if (error != 0) 4102 return (error); 4103 4104 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) { 4105 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4106 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4107 dsl_dataset_rele(ds, FTAG); 4108 continue; 4109 } 4110 4111 boolean_t affected = B_TRUE; 4112 if (check_snapshot) { 4113 uint64_t blk_txg; 4114 error = find_birth_txg(ds, zep, &blk_txg); 4115 4116 /* 4117 * Scrub the snapshot also when zb_birth == 0 or when 4118 * find_birth_txg() returns an error. 4119 */ 4120 affected = (error == 0 && zep->zb_birth == blk_txg) || 4121 (error != 0) || (zep->zb_birth == 0); 4122 } 4123 4124 /* Scrub snapshots. */ 4125 if (affected) { 4126 zbookmark_phys_t zb; 4127 zep_to_zb(snap_obj, zep, &zb); 4128 scn->scn_zio_root = zio_root(spa, NULL, NULL, 4129 ZIO_FLAG_CANFAIL); 4130 /* We have already acquired the config lock for spa */ 4131 read_by_block_level(scn, zb); 4132 4133 (void) zio_wait(scn->scn_zio_root); 4134 scn->scn_zio_root = NULL; 4135 4136 scn->errorscrub_phys.dep_examined++; 4137 scn->errorscrub_phys.dep_to_examine--; 4138 (*count)++; 4139 if ((*count) == zfs_scrub_error_blocks_per_txg || 4140 dsl_error_scrub_check_suspend(scn, &zb)) { 4141 dsl_dataset_rele(ds, FTAG); 4142 return (EFAULT); 4143 } 4144 } 4145 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4146 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4147 dsl_dataset_rele(ds, FTAG); 4148 } 4149 return (0); 4150 } 4151 4152 void 4153 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx) 4154 { 4155 spa_t *spa = dp->dp_spa; 4156 dsl_scan_t *scn = dp->dp_scan; 4157 4158 /* 4159 * Only process scans in sync pass 1. 4160 */ 4161 4162 if (spa_sync_pass(spa) > 1) 4163 return; 4164 4165 /* 4166 * If the spa is shutting down, then stop scanning. This will 4167 * ensure that the scan does not dirty any new data during the 4168 * shutdown phase. 4169 */ 4170 if (spa_shutting_down(spa)) 4171 return; 4172 4173 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) { 4174 return; 4175 } 4176 4177 if (dsl_scan_resilvering(scn->scn_dp)) { 4178 /* cancel the error scrub if resilver started */ 4179 dsl_scan_cancel(scn->scn_dp); 4180 return; 4181 } 4182 4183 spa->spa_scrub_active = B_TRUE; 4184 scn->scn_sync_start_time = gethrtime(); 4185 4186 /* 4187 * zfs_scan_suspend_progress can be set to disable scrub progress. 4188 * See more detailed comment in dsl_scan_sync(). 4189 */ 4190 if (zfs_scan_suspend_progress) { 4191 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4192 int mintime = zfs_scrub_min_time_ms; 4193 4194 while (zfs_scan_suspend_progress && 4195 !txg_sync_waiting(scn->scn_dp) && 4196 !spa_shutting_down(scn->scn_dp->dp_spa) && 4197 NSEC2MSEC(scan_time_ns) < mintime) { 4198 delay(hz); 4199 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4200 } 4201 return; 4202 } 4203 4204 int i = 0; 4205 zap_attribute_t *za; 4206 zbookmark_phys_t *zb; 4207 boolean_t limit_exceeded = B_FALSE; 4208 4209 za = zap_attribute_alloc(); 4210 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP); 4211 4212 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 4213 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0; 4214 zap_cursor_advance(&scn->errorscrub_cursor)) { 4215 name_to_bookmark(za->za_name, zb); 4216 4217 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4218 NULL, ZIO_FLAG_CANFAIL); 4219 dsl_pool_config_enter(dp, FTAG); 4220 read_by_block_level(scn, *zb); 4221 dsl_pool_config_exit(dp, FTAG); 4222 4223 (void) zio_wait(scn->scn_zio_root); 4224 scn->scn_zio_root = NULL; 4225 4226 scn->errorscrub_phys.dep_examined += 1; 4227 scn->errorscrub_phys.dep_to_examine -= 1; 4228 i++; 4229 if (i == zfs_scrub_error_blocks_per_txg || 4230 dsl_error_scrub_check_suspend(scn, zb)) { 4231 limit_exceeded = B_TRUE; 4232 break; 4233 } 4234 } 4235 4236 if (!limit_exceeded) 4237 dsl_errorscrub_done(scn, B_TRUE, tx); 4238 4239 dsl_errorscrub_sync_state(scn, tx); 4240 zap_attribute_free(za); 4241 kmem_free(zb, sizeof (*zb)); 4242 return; 4243 } 4244 4245 int error = 0; 4246 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0; 4247 zap_cursor_advance(&scn->errorscrub_cursor)) { 4248 4249 zap_cursor_t *head_ds_cursor; 4250 zap_attribute_t *head_ds_attr; 4251 zbookmark_err_phys_t head_ds_block; 4252 4253 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP); 4254 head_ds_attr = zap_attribute_alloc(); 4255 4256 uint64_t head_ds_err_obj = za->za_first_integer; 4257 uint64_t head_ds; 4258 name_to_object(za->za_name, &head_ds); 4259 boolean_t config_held = B_FALSE; 4260 uint64_t top_affected_fs; 4261 4262 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset, 4263 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor, 4264 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) { 4265 4266 name_to_errphys(head_ds_attr->za_name, &head_ds_block); 4267 4268 /* 4269 * In case we are called from spa_sync the pool 4270 * config is already held. 4271 */ 4272 if (!dsl_pool_config_held(dp)) { 4273 dsl_pool_config_enter(dp, FTAG); 4274 config_held = B_TRUE; 4275 } 4276 4277 error = find_top_affected_fs(spa, 4278 head_ds, &head_ds_block, &top_affected_fs); 4279 if (error) 4280 break; 4281 4282 error = scrub_filesystem(spa, top_affected_fs, 4283 &head_ds_block, &i); 4284 4285 if (error == SET_ERROR(EFAULT)) { 4286 limit_exceeded = B_TRUE; 4287 break; 4288 } 4289 } 4290 4291 zap_cursor_fini(head_ds_cursor); 4292 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor)); 4293 zap_attribute_free(head_ds_attr); 4294 4295 if (config_held) 4296 dsl_pool_config_exit(dp, FTAG); 4297 } 4298 4299 zap_attribute_free(za); 4300 kmem_free(zb, sizeof (*zb)); 4301 if (!limit_exceeded) 4302 dsl_errorscrub_done(scn, B_TRUE, tx); 4303 4304 dsl_errorscrub_sync_state(scn, tx); 4305 } 4306 4307 /* 4308 * This is the primary entry point for scans that is called from syncing 4309 * context. Scans must happen entirely during syncing context so that we 4310 * can guarantee that blocks we are currently scanning will not change out 4311 * from under us. While a scan is active, this function controls how quickly 4312 * transaction groups proceed, instead of the normal handling provided by 4313 * txg_sync_thread(). 4314 */ 4315 void 4316 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 4317 { 4318 int err = 0; 4319 dsl_scan_t *scn = dp->dp_scan; 4320 spa_t *spa = dp->dp_spa; 4321 state_sync_type_t sync_type = SYNC_OPTIONAL; 4322 int restart_early = 0; 4323 4324 if (spa->spa_resilver_deferred) { 4325 uint64_t to_issue, issued; 4326 4327 if (!spa_feature_is_active(dp->dp_spa, 4328 SPA_FEATURE_RESILVER_DEFER)) 4329 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 4330 4331 /* 4332 * See print_scan_scrub_resilver_status() issued/total_i 4333 * @ cmd/zpool/zpool_main.c 4334 */ 4335 to_issue = 4336 scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped; 4337 issued = 4338 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 4339 restart_early = 4340 zfs_resilver_disable_defer || 4341 (issued < (to_issue * zfs_resilver_defer_percent / 100)); 4342 } 4343 4344 /* 4345 * Only process scans in sync pass 1. 4346 */ 4347 if (spa_sync_pass(spa) > 1) 4348 return; 4349 4350 4351 /* 4352 * Check for scn_restart_txg before checking spa_load_state, so 4353 * that we can restart an old-style scan while the pool is being 4354 * imported (see dsl_scan_init). We also restart scans if there 4355 * is a deferred resilver and the user has manually disabled 4356 * deferred resilvers via zfs_resilver_disable_defer, or if the 4357 * current scan progress is below zfs_resilver_defer_percent. 4358 */ 4359 if (dsl_scan_restarting(scn, tx) || restart_early) { 4360 setup_sync_arg_t setup_sync_arg = { 4361 .func = POOL_SCAN_SCRUB, 4362 .txgstart = 0, 4363 .txgend = 0, 4364 }; 4365 dsl_scan_done(scn, B_FALSE, tx); 4366 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 4367 setup_sync_arg.func = POOL_SCAN_RESILVER; 4368 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d", 4369 setup_sync_arg.func, dp->dp_spa->spa_name, 4370 (longlong_t)tx->tx_txg, restart_early); 4371 dsl_scan_setup_sync(&setup_sync_arg, tx); 4372 } 4373 4374 /* 4375 * If the spa is shutting down, then stop scanning. This will 4376 * ensure that the scan does not dirty any new data during the 4377 * shutdown phase. 4378 */ 4379 if (spa_shutting_down(spa)) 4380 return; 4381 4382 /* 4383 * If the scan is inactive due to a stalled async destroy, try again. 4384 */ 4385 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 4386 return; 4387 4388 /* reset scan statistics */ 4389 scn->scn_visited_this_txg = 0; 4390 scn->scn_dedup_frees_this_txg = 0; 4391 scn->scn_holes_this_txg = 0; 4392 scn->scn_lt_min_this_txg = 0; 4393 scn->scn_gt_max_this_txg = 0; 4394 scn->scn_ddt_contained_this_txg = 0; 4395 scn->scn_objsets_visited_this_txg = 0; 4396 scn->scn_avg_seg_size_this_txg = 0; 4397 scn->scn_segs_this_txg = 0; 4398 scn->scn_avg_zio_size_this_txg = 0; 4399 scn->scn_zios_this_txg = 0; 4400 scn->scn_suspending = B_FALSE; 4401 scn->scn_sync_start_time = gethrtime(); 4402 spa->spa_scrub_active = B_TRUE; 4403 4404 /* 4405 * First process the async destroys. If we suspend, don't do 4406 * any scrubbing or resilvering. This ensures that there are no 4407 * async destroys while we are scanning, so the scan code doesn't 4408 * have to worry about traversing it. It is also faster to free the 4409 * blocks than to scrub them. 4410 */ 4411 err = dsl_process_async_destroys(dp, tx); 4412 if (err != 0) 4413 return; 4414 4415 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 4416 return; 4417 4418 /* 4419 * Wait a few txgs after importing to begin scanning so that 4420 * we can get the pool imported quickly. 4421 */ 4422 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 4423 return; 4424 4425 /* 4426 * zfs_scan_suspend_progress can be set to disable scan progress. 4427 * We don't want to spin the txg_sync thread, so we add a delay 4428 * here to simulate the time spent doing a scan. This is mostly 4429 * useful for testing and debugging. 4430 */ 4431 if (zfs_scan_suspend_progress) { 4432 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4433 uint_t mintime = (scn->scn_phys.scn_func == 4434 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : 4435 zfs_scrub_min_time_ms; 4436 4437 while (zfs_scan_suspend_progress && 4438 !txg_sync_waiting(scn->scn_dp) && 4439 !spa_shutting_down(scn->scn_dp->dp_spa) && 4440 NSEC2MSEC(scan_time_ns) < mintime) { 4441 delay(hz); 4442 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4443 } 4444 return; 4445 } 4446 4447 /* 4448 * Disabled by default, set zfs_scan_report_txgs to report 4449 * average performance over the last zfs_scan_report_txgs TXGs. 4450 */ 4451 if (zfs_scan_report_txgs != 0 && 4452 tx->tx_txg % zfs_scan_report_txgs == 0) { 4453 scn->scn_issued_before_pass += spa->spa_scan_pass_issued; 4454 spa_scan_stat_init(spa); 4455 } 4456 4457 /* 4458 * It is possible to switch from unsorted to sorted at any time, 4459 * but afterwards the scan will remain sorted unless reloaded from 4460 * a checkpoint after a reboot. 4461 */ 4462 if (!zfs_scan_legacy) { 4463 scn->scn_is_sorted = B_TRUE; 4464 if (scn->scn_last_checkpoint == 0) 4465 scn->scn_last_checkpoint = ddi_get_lbolt(); 4466 } 4467 4468 /* 4469 * For sorted scans, determine what kind of work we will be doing 4470 * this txg based on our memory limitations and whether or not we 4471 * need to perform a checkpoint. 4472 */ 4473 if (scn->scn_is_sorted) { 4474 /* 4475 * If we are over our checkpoint interval, set scn_clearing 4476 * so that we can begin checkpointing immediately. The 4477 * checkpoint allows us to save a consistent bookmark 4478 * representing how much data we have scrubbed so far. 4479 * Otherwise, use the memory limit to determine if we should 4480 * scan for metadata or start issue scrub IOs. We accumulate 4481 * metadata until we hit our hard memory limit at which point 4482 * we issue scrub IOs until we are at our soft memory limit. 4483 */ 4484 if (scn->scn_checkpointing || 4485 ddi_get_lbolt() - scn->scn_last_checkpoint > 4486 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 4487 if (!scn->scn_checkpointing) 4488 zfs_dbgmsg("begin scan checkpoint for %s", 4489 spa->spa_name); 4490 4491 scn->scn_checkpointing = B_TRUE; 4492 scn->scn_clearing = B_TRUE; 4493 } else { 4494 boolean_t should_clear = dsl_scan_should_clear(scn); 4495 if (should_clear && !scn->scn_clearing) { 4496 zfs_dbgmsg("begin scan clearing for %s", 4497 spa->spa_name); 4498 scn->scn_clearing = B_TRUE; 4499 } else if (!should_clear && scn->scn_clearing) { 4500 zfs_dbgmsg("finish scan clearing for %s", 4501 spa->spa_name); 4502 scn->scn_clearing = B_FALSE; 4503 } 4504 } 4505 } else { 4506 ASSERT0(scn->scn_checkpointing); 4507 ASSERT0(scn->scn_clearing); 4508 } 4509 4510 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 4511 /* Need to scan metadata for more blocks to scrub */ 4512 dsl_scan_phys_t *scnp = &scn->scn_phys; 4513 taskqid_t prefetch_tqid; 4514 4515 /* 4516 * Calculate the max number of in-flight bytes for pool-wide 4517 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). 4518 * Limits for the issuing phase are done per top-level vdev and 4519 * are handled separately. 4520 */ 4521 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, 4522 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); 4523 4524 if (scnp->scn_ddt_bookmark.ddb_class <= 4525 scnp->scn_ddt_class_max) { 4526 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 4527 zfs_dbgmsg("doing scan sync for %s txg %llu; " 4528 "ddt bm=%llu/%llu/%llu/%llx", 4529 spa->spa_name, 4530 (longlong_t)tx->tx_txg, 4531 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 4532 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 4533 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 4534 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 4535 } else { 4536 zfs_dbgmsg("doing scan sync for %s txg %llu; " 4537 "bm=%llu/%llu/%llu/%llu", 4538 spa->spa_name, 4539 (longlong_t)tx->tx_txg, 4540 (longlong_t)scnp->scn_bookmark.zb_objset, 4541 (longlong_t)scnp->scn_bookmark.zb_object, 4542 (longlong_t)scnp->scn_bookmark.zb_level, 4543 (longlong_t)scnp->scn_bookmark.zb_blkid); 4544 } 4545 4546 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4547 NULL, ZIO_FLAG_CANFAIL); 4548 4549 scn->scn_prefetch_stop = B_FALSE; 4550 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 4551 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 4552 ASSERT(prefetch_tqid != TASKQID_INVALID); 4553 4554 dsl_pool_config_enter(dp, FTAG); 4555 dsl_scan_visit(scn, tx); 4556 dsl_pool_config_exit(dp, FTAG); 4557 4558 mutex_enter(&dp->dp_spa->spa_scrub_lock); 4559 scn->scn_prefetch_stop = B_TRUE; 4560 cv_broadcast(&spa->spa_scrub_io_cv); 4561 mutex_exit(&dp->dp_spa->spa_scrub_lock); 4562 4563 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 4564 (void) zio_wait(scn->scn_zio_root); 4565 scn->scn_zio_root = NULL; 4566 4567 zfs_dbgmsg("scan visited %llu blocks of %s in %llums " 4568 "(%llu os's, %llu holes, %llu < mintxg, " 4569 "%llu in ddt, %llu > maxtxg)", 4570 (longlong_t)scn->scn_visited_this_txg, 4571 spa->spa_name, 4572 (longlong_t)NSEC2MSEC(gethrtime() - 4573 scn->scn_sync_start_time), 4574 (longlong_t)scn->scn_objsets_visited_this_txg, 4575 (longlong_t)scn->scn_holes_this_txg, 4576 (longlong_t)scn->scn_lt_min_this_txg, 4577 (longlong_t)scn->scn_ddt_contained_this_txg, 4578 (longlong_t)scn->scn_gt_max_this_txg); 4579 4580 if (!scn->scn_suspending) { 4581 ASSERT0(avl_numnodes(&scn->scn_queue)); 4582 scn->scn_done_txg = tx->tx_txg + 1; 4583 if (scn->scn_is_sorted) { 4584 scn->scn_checkpointing = B_TRUE; 4585 scn->scn_clearing = B_TRUE; 4586 scn->scn_issued_before_pass += 4587 spa->spa_scan_pass_issued; 4588 spa_scan_stat_init(spa); 4589 } 4590 zfs_dbgmsg("scan complete for %s txg %llu", 4591 spa->spa_name, 4592 (longlong_t)tx->tx_txg); 4593 } 4594 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) { 4595 ASSERT(scn->scn_clearing); 4596 4597 /* need to issue scrubbing IOs from per-vdev queues */ 4598 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4599 NULL, ZIO_FLAG_CANFAIL); 4600 scan_io_queues_run(scn); 4601 (void) zio_wait(scn->scn_zio_root); 4602 scn->scn_zio_root = NULL; 4603 4604 /* calculate and dprintf the current memory usage */ 4605 (void) dsl_scan_should_clear(scn); 4606 dsl_scan_update_stats(scn); 4607 4608 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) " 4609 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)", 4610 (longlong_t)scn->scn_zios_this_txg, 4611 spa->spa_name, 4612 (longlong_t)scn->scn_segs_this_txg, 4613 (longlong_t)NSEC2MSEC(gethrtime() - 4614 scn->scn_sync_start_time), 4615 (longlong_t)scn->scn_avg_zio_size_this_txg, 4616 (longlong_t)scn->scn_avg_seg_size_this_txg); 4617 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 4618 /* Finished with everything. Mark the scrub as complete */ 4619 zfs_dbgmsg("scan issuing complete txg %llu for %s", 4620 (longlong_t)tx->tx_txg, 4621 spa->spa_name); 4622 ASSERT3U(scn->scn_done_txg, !=, 0); 4623 ASSERT0(spa->spa_scrub_inflight); 4624 ASSERT0(scn->scn_queues_pending); 4625 dsl_scan_done(scn, B_TRUE, tx); 4626 sync_type = SYNC_MANDATORY; 4627 } 4628 4629 dsl_scan_sync_state(scn, tx, sync_type); 4630 } 4631 4632 static void 4633 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all) 4634 { 4635 /* 4636 * Don't count embedded bp's, since we already did the work of 4637 * scanning these when we scanned the containing block. 4638 */ 4639 if (BP_IS_EMBEDDED(bp)) 4640 return; 4641 4642 /* 4643 * Update the spa's stats on how many bytes we have issued. 4644 * Sequential scrubs create a zio for each DVA of the bp. Each 4645 * of these will include all DVAs for repair purposes, but the 4646 * zio code will only try the first one unless there is an issue. 4647 * Therefore, we should only count the first DVA for these IOs. 4648 */ 4649 atomic_add_64(&spa->spa_scan_pass_issued, 4650 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 4651 } 4652 4653 static void 4654 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all) 4655 { 4656 if (BP_IS_EMBEDDED(bp)) 4657 return; 4658 atomic_add_64(&scn->scn_phys.scn_skipped, 4659 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 4660 } 4661 4662 static void 4663 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp) 4664 { 4665 /* 4666 * If we resume after a reboot, zab will be NULL; don't record 4667 * incomplete stats in that case. 4668 */ 4669 if (zab == NULL) 4670 return; 4671 4672 for (int i = 0; i < 4; i++) { 4673 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 4674 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 4675 4676 if (t & DMU_OT_NEWTYPE) 4677 t = DMU_OT_OTHER; 4678 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 4679 int equal; 4680 4681 zb->zb_count++; 4682 zb->zb_asize += BP_GET_ASIZE(bp); 4683 zb->zb_lsize += BP_GET_LSIZE(bp); 4684 zb->zb_psize += BP_GET_PSIZE(bp); 4685 zb->zb_gangs += BP_COUNT_GANG(bp); 4686 4687 switch (BP_GET_NDVAS(bp)) { 4688 case 2: 4689 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 4690 DVA_GET_VDEV(&bp->blk_dva[1])) 4691 zb->zb_ditto_2_of_2_samevdev++; 4692 break; 4693 case 3: 4694 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 4695 DVA_GET_VDEV(&bp->blk_dva[1])) + 4696 (DVA_GET_VDEV(&bp->blk_dva[0]) == 4697 DVA_GET_VDEV(&bp->blk_dva[2])) + 4698 (DVA_GET_VDEV(&bp->blk_dva[1]) == 4699 DVA_GET_VDEV(&bp->blk_dva[2])); 4700 if (equal == 1) 4701 zb->zb_ditto_2_of_3_samevdev++; 4702 else if (equal == 3) 4703 zb->zb_ditto_3_of_3_samevdev++; 4704 break; 4705 } 4706 } 4707 } 4708 4709 static void 4710 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 4711 { 4712 avl_index_t idx; 4713 dsl_scan_t *scn = queue->q_scn; 4714 4715 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4716 4717 if (unlikely(avl_is_empty(&queue->q_sios_by_addr))) 4718 atomic_add_64(&scn->scn_queues_pending, 1); 4719 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 4720 /* block is already scheduled for reading */ 4721 sio_free(sio); 4722 return; 4723 } 4724 avl_insert(&queue->q_sios_by_addr, sio, idx); 4725 queue->q_sio_memused += SIO_GET_MUSED(sio); 4726 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), 4727 SIO_GET_ASIZE(sio)); 4728 } 4729 4730 /* 4731 * Given all the info we got from our metadata scanning process, we 4732 * construct a scan_io_t and insert it into the scan sorting queue. The 4733 * I/O must already be suitable for us to process. This is controlled 4734 * by dsl_scan_enqueue(). 4735 */ 4736 static void 4737 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 4738 int zio_flags, const zbookmark_phys_t *zb) 4739 { 4740 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 4741 4742 ASSERT0(BP_IS_GANG(bp)); 4743 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4744 4745 bp2sio(bp, sio, dva_i); 4746 sio->sio_flags = zio_flags; 4747 sio->sio_zb = *zb; 4748 4749 queue->q_last_ext_addr = -1; 4750 scan_io_queue_insert_impl(queue, sio); 4751 } 4752 4753 /* 4754 * Given a set of I/O parameters as discovered by the metadata traversal 4755 * process, attempts to place the I/O into the sorted queues (if allowed), 4756 * or immediately executes the I/O. 4757 */ 4758 static void 4759 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4760 const zbookmark_phys_t *zb) 4761 { 4762 spa_t *spa = dp->dp_spa; 4763 4764 ASSERT(!BP_IS_EMBEDDED(bp)); 4765 4766 /* 4767 * Gang blocks are hard to issue sequentially, so we just issue them 4768 * here immediately instead of queuing them. 4769 */ 4770 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 4771 scan_exec_io(dp, bp, zio_flags, zb, NULL); 4772 return; 4773 } 4774 4775 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 4776 dva_t dva; 4777 vdev_t *vdev; 4778 4779 dva = bp->blk_dva[i]; 4780 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 4781 ASSERT(vdev != NULL); 4782 4783 mutex_enter(&vdev->vdev_scan_io_queue_lock); 4784 if (vdev->vdev_scan_io_queue == NULL) 4785 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 4786 ASSERT(dp->dp_scan != NULL); 4787 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 4788 i, zio_flags, zb); 4789 mutex_exit(&vdev->vdev_scan_io_queue_lock); 4790 } 4791 } 4792 4793 static int 4794 dsl_scan_scrub_cb(dsl_pool_t *dp, 4795 const blkptr_t *bp, const zbookmark_phys_t *zb) 4796 { 4797 dsl_scan_t *scn = dp->dp_scan; 4798 spa_t *spa = dp->dp_spa; 4799 uint64_t phys_birth = BP_GET_BIRTH(bp); 4800 size_t psize = BP_GET_PSIZE(bp); 4801 boolean_t needs_io = B_FALSE; 4802 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 4803 4804 count_block(dp->dp_blkstats, bp); 4805 if (phys_birth <= scn->scn_phys.scn_min_txg || 4806 phys_birth >= scn->scn_phys.scn_max_txg) { 4807 count_block_skipped(scn, bp, B_TRUE); 4808 return (0); 4809 } 4810 4811 /* Embedded BP's have phys_birth==0, so we reject them above. */ 4812 ASSERT(!BP_IS_EMBEDDED(bp)); 4813 4814 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 4815 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 4816 zio_flags |= ZIO_FLAG_SCRUB; 4817 needs_io = B_TRUE; 4818 } else { 4819 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 4820 zio_flags |= ZIO_FLAG_RESILVER; 4821 needs_io = B_FALSE; 4822 } 4823 4824 /* If it's an intent log block, failure is expected. */ 4825 if (zb->zb_level == ZB_ZIL_LEVEL) 4826 zio_flags |= ZIO_FLAG_SPECULATIVE; 4827 4828 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 4829 const dva_t *dva = &bp->blk_dva[d]; 4830 4831 /* 4832 * Keep track of how much data we've examined so that 4833 * zpool(8) status can make useful progress reports. 4834 */ 4835 uint64_t asize = DVA_GET_ASIZE(dva); 4836 scn->scn_phys.scn_examined += asize; 4837 spa->spa_scan_pass_exam += asize; 4838 4839 /* if it's a resilver, this may not be in the target range */ 4840 if (!needs_io) 4841 needs_io = dsl_scan_need_resilver(spa, dva, psize, 4842 phys_birth); 4843 } 4844 4845 if (needs_io && !zfs_no_scrub_io) { 4846 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4847 } else { 4848 count_block_skipped(scn, bp, B_TRUE); 4849 } 4850 4851 /* do not relocate this block */ 4852 return (0); 4853 } 4854 4855 static void 4856 dsl_scan_scrub_done(zio_t *zio) 4857 { 4858 spa_t *spa = zio->io_spa; 4859 blkptr_t *bp = zio->io_bp; 4860 dsl_scan_io_queue_t *queue = zio->io_private; 4861 4862 abd_free(zio->io_abd); 4863 4864 if (queue == NULL) { 4865 mutex_enter(&spa->spa_scrub_lock); 4866 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4867 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4868 cv_broadcast(&spa->spa_scrub_io_cv); 4869 mutex_exit(&spa->spa_scrub_lock); 4870 } else { 4871 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4872 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4873 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4874 cv_broadcast(&queue->q_zio_cv); 4875 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4876 } 4877 4878 if (zio->io_error && (zio->io_error != ECKSUM || 4879 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4880 if (dsl_errorscrubbing(spa->spa_dsl_pool) && 4881 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) { 4882 atomic_inc_64(&spa->spa_dsl_pool->dp_scan 4883 ->errorscrub_phys.dep_errors); 4884 } else { 4885 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys 4886 .scn_errors); 4887 } 4888 } 4889 } 4890 4891 /* 4892 * Given a scanning zio's information, executes the zio. The zio need 4893 * not necessarily be only sortable, this function simply executes the 4894 * zio, no matter what it is. The optional queue argument allows the 4895 * caller to specify that they want per top level vdev IO rate limiting 4896 * instead of the legacy global limiting. 4897 */ 4898 static void 4899 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4900 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4901 { 4902 spa_t *spa = dp->dp_spa; 4903 dsl_scan_t *scn = dp->dp_scan; 4904 size_t size = BP_GET_PSIZE(bp); 4905 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4906 zio_t *pio; 4907 4908 if (queue == NULL) { 4909 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4910 mutex_enter(&spa->spa_scrub_lock); 4911 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4912 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4913 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4914 mutex_exit(&spa->spa_scrub_lock); 4915 pio = scn->scn_zio_root; 4916 } else { 4917 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4918 4919 ASSERT3U(queue->q_maxinflight_bytes, >, 0); 4920 mutex_enter(q_lock); 4921 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4922 cv_wait(&queue->q_zio_cv, q_lock); 4923 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4924 pio = queue->q_zio; 4925 mutex_exit(q_lock); 4926 } 4927 4928 ASSERT(pio != NULL); 4929 count_block_issued(spa, bp, queue == NULL); 4930 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done, 4931 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4932 } 4933 4934 /* 4935 * This is the primary extent sorting algorithm. We balance two parameters: 4936 * 1) how many bytes of I/O are in an extent 4937 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4938 * Since we allow extents to have gaps between their constituent I/Os, it's 4939 * possible to have a fairly large extent that contains the same amount of 4940 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4941 * The algorithm sorts based on a score calculated from the extent's size, 4942 * the relative fill volume (in %) and a "fill weight" parameter that controls 4943 * the split between whether we prefer larger extents or more well populated 4944 * extents: 4945 * 4946 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4947 * 4948 * Example: 4949 * 1) assume extsz = 64 MiB 4950 * 2) assume fill = 32 MiB (extent is half full) 4951 * 3) assume fill_weight = 3 4952 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4953 * SCORE = 32M + (50 * 3 * 32M) / 100 4954 * SCORE = 32M + (4800M / 100) 4955 * SCORE = 32M + 48M 4956 * ^ ^ 4957 * | +--- final total relative fill-based score 4958 * +--------- final total fill-based score 4959 * SCORE = 80M 4960 * 4961 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4962 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4963 * Note that as an optimization, we replace multiplication and division by 4964 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4965 * 4966 * Since we do not care if one extent is only few percent better than another, 4967 * compress the score into 6 bits via binary logarithm AKA highbit64() and 4968 * put into otherwise unused due to ashift high bits of offset. This allows 4969 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them 4970 * with single operation. Plus it makes scrubs more sequential and reduces 4971 * chances that minor extent change move it within the B-tree. 4972 */ 4973 __attribute__((always_inline)) inline 4974 static int 4975 ext_size_compare(const void *x, const void *y) 4976 { 4977 const uint64_t *a = x, *b = y; 4978 4979 return (TREE_CMP(*a, *b)); 4980 } 4981 4982 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t, 4983 ext_size_compare) 4984 4985 static void 4986 ext_size_create(range_tree_t *rt, void *arg) 4987 { 4988 (void) rt; 4989 zfs_btree_t *size_tree = arg; 4990 4991 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf, 4992 sizeof (uint64_t)); 4993 } 4994 4995 static void 4996 ext_size_destroy(range_tree_t *rt, void *arg) 4997 { 4998 (void) rt; 4999 zfs_btree_t *size_tree = arg; 5000 ASSERT0(zfs_btree_numnodes(size_tree)); 5001 5002 zfs_btree_destroy(size_tree); 5003 } 5004 5005 static uint64_t 5006 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg) 5007 { 5008 (void) rt; 5009 uint64_t size = rsg->rs_end - rsg->rs_start; 5010 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) * 5011 fill_weight * rsg->rs_fill) >> 7); 5012 ASSERT3U(rt->rt_shift, >=, 8); 5013 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start); 5014 } 5015 5016 static void 5017 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg) 5018 { 5019 zfs_btree_t *size_tree = arg; 5020 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); 5021 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); 5022 zfs_btree_add(size_tree, &v); 5023 } 5024 5025 static void 5026 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 5027 { 5028 zfs_btree_t *size_tree = arg; 5029 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); 5030 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); 5031 zfs_btree_remove(size_tree, &v); 5032 } 5033 5034 static void 5035 ext_size_vacate(range_tree_t *rt, void *arg) 5036 { 5037 zfs_btree_t *size_tree = arg; 5038 zfs_btree_clear(size_tree); 5039 zfs_btree_destroy(size_tree); 5040 5041 ext_size_create(rt, arg); 5042 } 5043 5044 static const range_tree_ops_t ext_size_ops = { 5045 .rtop_create = ext_size_create, 5046 .rtop_destroy = ext_size_destroy, 5047 .rtop_add = ext_size_add, 5048 .rtop_remove = ext_size_remove, 5049 .rtop_vacate = ext_size_vacate 5050 }; 5051 5052 /* 5053 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 5054 * based on LBA-order (from lowest to highest). 5055 */ 5056 static int 5057 sio_addr_compare(const void *x, const void *y) 5058 { 5059 const scan_io_t *a = x, *b = y; 5060 5061 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 5062 } 5063 5064 /* IO queues are created on demand when they are needed. */ 5065 static dsl_scan_io_queue_t * 5066 scan_io_queue_create(vdev_t *vd) 5067 { 5068 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 5069 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 5070 5071 q->q_scn = scn; 5072 q->q_vd = vd; 5073 q->q_sio_memused = 0; 5074 q->q_last_ext_addr = -1; 5075 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 5076 q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP, 5077 &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap); 5078 avl_create(&q->q_sios_by_addr, sio_addr_compare, 5079 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 5080 5081 return (q); 5082 } 5083 5084 /* 5085 * Destroys a scan queue and all segments and scan_io_t's contained in it. 5086 * No further execution of I/O occurs, anything pending in the queue is 5087 * simply freed without being executed. 5088 */ 5089 void 5090 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 5091 { 5092 dsl_scan_t *scn = queue->q_scn; 5093 scan_io_t *sio; 5094 void *cookie = NULL; 5095 5096 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 5097 5098 if (!avl_is_empty(&queue->q_sios_by_addr)) 5099 atomic_add_64(&scn->scn_queues_pending, -1); 5100 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 5101 NULL) { 5102 ASSERT(range_tree_contains(queue->q_exts_by_addr, 5103 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 5104 queue->q_sio_memused -= SIO_GET_MUSED(sio); 5105 sio_free(sio); 5106 } 5107 5108 ASSERT0(queue->q_sio_memused); 5109 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 5110 range_tree_destroy(queue->q_exts_by_addr); 5111 avl_destroy(&queue->q_sios_by_addr); 5112 cv_destroy(&queue->q_zio_cv); 5113 5114 kmem_free(queue, sizeof (*queue)); 5115 } 5116 5117 /* 5118 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 5119 * called on behalf of vdev_top_transfer when creating or destroying 5120 * a mirror vdev due to zpool attach/detach. 5121 */ 5122 void 5123 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 5124 { 5125 mutex_enter(&svd->vdev_scan_io_queue_lock); 5126 mutex_enter(&tvd->vdev_scan_io_queue_lock); 5127 5128 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 5129 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 5130 svd->vdev_scan_io_queue = NULL; 5131 if (tvd->vdev_scan_io_queue != NULL) 5132 tvd->vdev_scan_io_queue->q_vd = tvd; 5133 5134 mutex_exit(&tvd->vdev_scan_io_queue_lock); 5135 mutex_exit(&svd->vdev_scan_io_queue_lock); 5136 } 5137 5138 static void 5139 scan_io_queues_destroy(dsl_scan_t *scn) 5140 { 5141 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 5142 5143 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 5144 vdev_t *tvd = rvd->vdev_child[i]; 5145 5146 mutex_enter(&tvd->vdev_scan_io_queue_lock); 5147 if (tvd->vdev_scan_io_queue != NULL) 5148 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 5149 tvd->vdev_scan_io_queue = NULL; 5150 mutex_exit(&tvd->vdev_scan_io_queue_lock); 5151 } 5152 } 5153 5154 static void 5155 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 5156 { 5157 dsl_pool_t *dp = spa->spa_dsl_pool; 5158 dsl_scan_t *scn = dp->dp_scan; 5159 vdev_t *vdev; 5160 kmutex_t *q_lock; 5161 dsl_scan_io_queue_t *queue; 5162 scan_io_t *srch_sio, *sio; 5163 avl_index_t idx; 5164 uint64_t start, size; 5165 5166 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 5167 ASSERT(vdev != NULL); 5168 q_lock = &vdev->vdev_scan_io_queue_lock; 5169 queue = vdev->vdev_scan_io_queue; 5170 5171 mutex_enter(q_lock); 5172 if (queue == NULL) { 5173 mutex_exit(q_lock); 5174 return; 5175 } 5176 5177 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 5178 bp2sio(bp, srch_sio, dva_i); 5179 start = SIO_GET_OFFSET(srch_sio); 5180 size = SIO_GET_ASIZE(srch_sio); 5181 5182 /* 5183 * We can find the zio in two states: 5184 * 1) Cold, just sitting in the queue of zio's to be issued at 5185 * some point in the future. In this case, all we do is 5186 * remove the zio from the q_sios_by_addr tree, decrement 5187 * its data volume from the containing range_seg_t and 5188 * resort the q_exts_by_size tree to reflect that the 5189 * range_seg_t has lost some of its 'fill'. We don't shorten 5190 * the range_seg_t - this is usually rare enough not to be 5191 * worth the extra hassle of trying keep track of precise 5192 * extent boundaries. 5193 * 2) Hot, where the zio is currently in-flight in 5194 * dsl_scan_issue_ios. In this case, we can't simply 5195 * reach in and stop the in-flight zio's, so we instead 5196 * block the caller. Eventually, dsl_scan_issue_ios will 5197 * be done with issuing the zio's it gathered and will 5198 * signal us. 5199 */ 5200 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 5201 sio_free(srch_sio); 5202 5203 if (sio != NULL) { 5204 blkptr_t tmpbp; 5205 5206 /* Got it while it was cold in the queue */ 5207 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 5208 ASSERT3U(size, ==, SIO_GET_ASIZE(sio)); 5209 avl_remove(&queue->q_sios_by_addr, sio); 5210 if (avl_is_empty(&queue->q_sios_by_addr)) 5211 atomic_add_64(&scn->scn_queues_pending, -1); 5212 queue->q_sio_memused -= SIO_GET_MUSED(sio); 5213 5214 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 5215 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 5216 5217 /* count the block as though we skipped it */ 5218 sio2bp(sio, &tmpbp); 5219 count_block_skipped(scn, &tmpbp, B_FALSE); 5220 5221 sio_free(sio); 5222 } 5223 mutex_exit(q_lock); 5224 } 5225 5226 /* 5227 * Callback invoked when a zio_free() zio is executing. This needs to be 5228 * intercepted to prevent the zio from deallocating a particular portion 5229 * of disk space and it then getting reallocated and written to, while we 5230 * still have it queued up for processing. 5231 */ 5232 void 5233 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 5234 { 5235 dsl_pool_t *dp = spa->spa_dsl_pool; 5236 dsl_scan_t *scn = dp->dp_scan; 5237 5238 ASSERT(!BP_IS_EMBEDDED(bp)); 5239 ASSERT(scn != NULL); 5240 if (!dsl_scan_is_running(scn)) 5241 return; 5242 5243 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 5244 dsl_scan_freed_dva(spa, bp, i); 5245 } 5246 5247 /* 5248 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 5249 * not started, start it. Otherwise, only restart if max txg in DTL range is 5250 * greater than the max txg in the current scan. If the DTL max is less than 5251 * the scan max, then the vdev has not missed any new data since the resilver 5252 * started, so a restart is not needed. 5253 */ 5254 void 5255 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 5256 { 5257 uint64_t min, max; 5258 5259 if (!vdev_resilver_needed(vd, &min, &max)) 5260 return; 5261 5262 if (!dsl_scan_resilvering(dp)) { 5263 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 5264 return; 5265 } 5266 5267 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 5268 return; 5269 5270 /* restart is needed, check if it can be deferred */ 5271 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 5272 vdev_defer_resilver(vd); 5273 else 5274 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 5275 } 5276 5277 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW, 5278 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 5279 5280 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW, 5281 "Min millisecs to scrub per txg"); 5282 5283 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW, 5284 "Min millisecs to obsolete per txg"); 5285 5286 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW, 5287 "Min millisecs to free per txg"); 5288 5289 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW, 5290 "Min millisecs to resilver per txg"); 5291 5292 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 5293 "Set to prevent scans from progressing"); 5294 5295 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 5296 "Set to disable scrub I/O"); 5297 5298 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 5299 "Set to disable scrub prefetching"); 5300 5301 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW, 5302 "Max number of blocks freed in one txg"); 5303 5304 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW, 5305 "Max number of dedup blocks freed in one txg"); 5306 5307 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 5308 "Enable processing of the free_bpobj"); 5309 5310 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW, 5311 "Enable block statistics calculation during scrub"); 5312 5313 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW, 5314 "Fraction of RAM for scan hard limit"); 5315 5316 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW, 5317 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size"); 5318 5319 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 5320 "Scrub using legacy non-sequential method"); 5321 5322 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW, 5323 "Scan progress on-disk checkpointing interval"); 5324 5325 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW, 5326 "Max gap in bytes between sequential scrub / resilver I/Os"); 5327 5328 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW, 5329 "Fraction of hard limit used as soft limit"); 5330 5331 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 5332 "Tunable to attempt to reduce lock contention"); 5333 5334 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW, 5335 "Tunable to adjust bias towards more filled segments during scans"); 5336 5337 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW, 5338 "Tunable to report resilver performance over the last N txgs"); 5339 5340 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 5341 "Process all resilvers immediately"); 5342 5343 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW, 5344 "Issued IO percent complete after which resilvers are deferred"); 5345 5346 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW, 5347 "Error blocks to be scrubbed in one txg"); 5348