xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_scan.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24  * Copyright 2016 Gary Mills
25  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27  * Copyright 2019 Joyent, Inc.
28  */
29 
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/arc_impl.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/brt.h>
51 #include <sys/ddt.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/range_tree.h>
57 #include <sys/dbuf.h>
58 #ifdef _KERNEL
59 #include <sys/zfs_vfsops.h>
60 #endif
61 
62 /*
63  * Grand theory statement on scan queue sorting
64  *
65  * Scanning is implemented by recursively traversing all indirection levels
66  * in an object and reading all blocks referenced from said objects. This
67  * results in us approximately traversing the object from lowest logical
68  * offset to the highest. For best performance, we would want the logical
69  * blocks to be physically contiguous. However, this is frequently not the
70  * case with pools given the allocation patterns of copy-on-write filesystems.
71  * So instead, we put the I/Os into a reordering queue and issue them in a
72  * way that will most benefit physical disks (LBA-order).
73  *
74  * Queue management:
75  *
76  * Ideally, we would want to scan all metadata and queue up all block I/O
77  * prior to starting to issue it, because that allows us to do an optimal
78  * sorting job. This can however consume large amounts of memory. Therefore
79  * we continuously monitor the size of the queues and constrain them to 5%
80  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81  * limit, we clear out a few of the largest extents at the head of the queues
82  * to make room for more scanning. Hopefully, these extents will be fairly
83  * large and contiguous, allowing us to approach sequential I/O throughput
84  * even without a fully sorted tree.
85  *
86  * Metadata scanning takes place in dsl_scan_visit(), which is called from
87  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88  * metadata on the pool, or we need to make room in memory because our
89  * queues are too large, dsl_scan_visit() is postponed and
90  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91  * that metadata scanning and queued I/O issuing are mutually exclusive. This
92  * allows us to provide maximum sequential I/O throughput for the majority of
93  * I/O's issued since sequential I/O performance is significantly negatively
94  * impacted if it is interleaved with random I/O.
95  *
96  * Implementation Notes
97  *
98  * One side effect of the queued scanning algorithm is that the scanning code
99  * needs to be notified whenever a block is freed. This is needed to allow
100  * the scanning code to remove these I/Os from the issuing queue. Additionally,
101  * we do not attempt to queue gang blocks to be issued sequentially since this
102  * is very hard to do and would have an extremely limited performance benefit.
103  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
104  * algorithm.
105  *
106  * Backwards compatibility
107  *
108  * This new algorithm is backwards compatible with the legacy on-disk data
109  * structures (and therefore does not require a new feature flag).
110  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111  * will stop scanning metadata (in logical order) and wait for all outstanding
112  * sorted I/O to complete. Once this is done, we write out a checkpoint
113  * bookmark, indicating that we have scanned everything logically before it.
114  * If the pool is imported on a machine without the new sorting algorithm,
115  * the scan simply resumes from the last checkpoint using the legacy algorithm.
116  */
117 
118 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
119     const zbookmark_phys_t *);
120 
121 static scan_cb_t dsl_scan_scrub_cb;
122 
123 static int scan_ds_queue_compare(const void *a, const void *b);
124 static int scan_prefetch_queue_compare(const void *a, const void *b);
125 static void scan_ds_queue_clear(dsl_scan_t *scn);
126 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
127 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
128     uint64_t *txg);
129 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
130 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
131 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
132 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
133 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
134 
135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
136 static int zfs_scan_blkstats = 0;
137 
138 /*
139  * 'zpool status' uses bytes processed per pass to report throughput and
140  * estimate time remaining.  We define a pass to start when the scanning
141  * phase completes for a sequential resilver.  Optionally, this value
142  * may be used to reset the pass statistics every N txgs to provide an
143  * estimated completion time based on currently observed performance.
144  */
145 static uint_t zfs_scan_report_txgs = 0;
146 
147 /*
148  * By default zfs will check to ensure it is not over the hard memory
149  * limit before each txg. If finer-grained control of this is needed
150  * this value can be set to 1 to enable checking before scanning each
151  * block.
152  */
153 static int zfs_scan_strict_mem_lim = B_FALSE;
154 
155 /*
156  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157  * to strike a balance here between keeping the vdev queues full of I/Os
158  * at all times and not overflowing the queues to cause long latency,
159  * which would cause long txg sync times. No matter what, we will not
160  * overload the drives with I/O, since that is protected by
161  * zfs_vdev_scrub_max_active.
162  */
163 static uint64_t zfs_scan_vdev_limit = 16 << 20;
164 
165 static uint_t zfs_scan_issue_strategy = 0;
166 
167 /* don't queue & sort zios, go direct */
168 static int zfs_scan_legacy = B_FALSE;
169 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
170 
171 /*
172  * fill_weight is non-tunable at runtime, so we copy it at module init from
173  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174  * break queue sorting.
175  */
176 static uint_t zfs_scan_fill_weight = 3;
177 static uint64_t fill_weight;
178 
179 /* See dsl_scan_should_clear() for details on the memory limit tunables */
180 static const uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
181 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
182 
183 
184 /* fraction of physmem */
185 static uint_t zfs_scan_mem_lim_fact = 20;
186 
187 /* fraction of mem lim above */
188 static uint_t zfs_scan_mem_lim_soft_fact = 20;
189 
190 /* minimum milliseconds to scrub per txg */
191 static uint_t zfs_scrub_min_time_ms = 1000;
192 
193 /* minimum milliseconds to obsolete per txg */
194 static uint_t zfs_obsolete_min_time_ms = 500;
195 
196 /* minimum milliseconds to free per txg */
197 static uint_t zfs_free_min_time_ms = 1000;
198 
199 /* minimum milliseconds to resilver per txg */
200 static uint_t zfs_resilver_min_time_ms = 3000;
201 
202 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
203 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
204 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
205 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
206 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
207 /* max number of blocks to free in a single TXG */
208 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
209 /* max number of dedup blocks to free in a single TXG */
210 static uint64_t zfs_max_async_dedup_frees = 100000;
211 
212 /* set to disable resilver deferring */
213 static int zfs_resilver_disable_defer = B_FALSE;
214 
215 /* Don't defer a resilver if the one in progress only got this far: */
216 static uint_t zfs_resilver_defer_percent = 10;
217 
218 /*
219  * We wait a few txgs after importing a pool to begin scanning so that
220  * the import / mounting code isn't held up by scrub / resilver IO.
221  * Unfortunately, it is a bit difficult to determine exactly how long
222  * this will take since userspace will trigger fs mounts asynchronously
223  * and the kernel will create zvol minors asynchronously. As a result,
224  * the value provided here is a bit arbitrary, but represents a
225  * reasonable estimate of how many txgs it will take to finish fully
226  * importing a pool
227  */
228 #define	SCAN_IMPORT_WAIT_TXGS 		5
229 
230 #define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
231 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
232 	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
233 
234 #define	DSL_SCAN_IS_SCRUB(scn)		\
235 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB)
236 
237 /*
238  * Enable/disable the processing of the free_bpobj object.
239  */
240 static int zfs_free_bpobj_enabled = 1;
241 
242 /* Error blocks to be scrubbed in one txg. */
243 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
244 
245 /* the order has to match pool_scan_type */
246 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
247 	NULL,
248 	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
249 	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
250 };
251 
252 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
253 typedef struct {
254 	uint64_t	sds_dsobj;
255 	uint64_t	sds_txg;
256 	avl_node_t	sds_node;
257 } scan_ds_t;
258 
259 /*
260  * This controls what conditions are placed on dsl_scan_sync_state():
261  * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
262  * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
263  * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
264  *	write out the scn_phys_cached version.
265  * See dsl_scan_sync_state for details.
266  */
267 typedef enum {
268 	SYNC_OPTIONAL,
269 	SYNC_MANDATORY,
270 	SYNC_CACHED
271 } state_sync_type_t;
272 
273 /*
274  * This struct represents the minimum information needed to reconstruct a
275  * zio for sequential scanning. This is useful because many of these will
276  * accumulate in the sequential IO queues before being issued, so saving
277  * memory matters here.
278  */
279 typedef struct scan_io {
280 	/* fields from blkptr_t */
281 	uint64_t		sio_blk_prop;
282 	uint64_t		sio_phys_birth;
283 	uint64_t		sio_birth;
284 	zio_cksum_t		sio_cksum;
285 	uint32_t		sio_nr_dvas;
286 
287 	/* fields from zio_t */
288 	uint32_t		sio_flags;
289 	zbookmark_phys_t	sio_zb;
290 
291 	/* members for queue sorting */
292 	union {
293 		avl_node_t	sio_addr_node; /* link into issuing queue */
294 		list_node_t	sio_list_node; /* link for issuing to disk */
295 	} sio_nodes;
296 
297 	/*
298 	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
299 	 * depending on how many were in the original bp. Only the
300 	 * first DVA is really used for sorting and issuing purposes.
301 	 * The other DVAs (if provided) simply exist so that the zio
302 	 * layer can find additional copies to repair from in the
303 	 * event of an error. This array must go at the end of the
304 	 * struct to allow this for the variable number of elements.
305 	 */
306 	dva_t			sio_dva[];
307 } scan_io_t;
308 
309 #define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
310 #define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
311 #define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
312 #define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
313 #define	SIO_GET_END_OFFSET(sio)		\
314 	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
315 #define	SIO_GET_MUSED(sio)		\
316 	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
317 
318 struct dsl_scan_io_queue {
319 	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
320 	vdev_t		*q_vd; /* top-level vdev that this queue represents */
321 	zio_t		*q_zio; /* scn_zio_root child for waiting on IO */
322 
323 	/* trees used for sorting I/Os and extents of I/Os */
324 	range_tree_t	*q_exts_by_addr;
325 	zfs_btree_t	q_exts_by_size;
326 	avl_tree_t	q_sios_by_addr;
327 	uint64_t	q_sio_memused;
328 	uint64_t	q_last_ext_addr;
329 
330 	/* members for zio rate limiting */
331 	uint64_t	q_maxinflight_bytes;
332 	uint64_t	q_inflight_bytes;
333 	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
334 
335 	/* per txg statistics */
336 	uint64_t	q_total_seg_size_this_txg;
337 	uint64_t	q_segs_this_txg;
338 	uint64_t	q_total_zio_size_this_txg;
339 	uint64_t	q_zios_this_txg;
340 };
341 
342 /* private data for dsl_scan_prefetch_cb() */
343 typedef struct scan_prefetch_ctx {
344 	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
345 	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
346 	boolean_t spc_root;		/* is this prefetch for an objset? */
347 	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
348 	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
349 } scan_prefetch_ctx_t;
350 
351 /* private data for dsl_scan_prefetch() */
352 typedef struct scan_prefetch_issue_ctx {
353 	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
354 	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
355 	blkptr_t spic_bp;		/* bp to prefetch */
356 	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
357 } scan_prefetch_issue_ctx_t;
358 
359 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
360     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
361 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
362     scan_io_t *sio);
363 
364 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
365 static void scan_io_queues_destroy(dsl_scan_t *scn);
366 
367 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
368 
369 /* sio->sio_nr_dvas must be set so we know which cache to free from */
370 static void
371 sio_free(scan_io_t *sio)
372 {
373 	ASSERT3U(sio->sio_nr_dvas, >, 0);
374 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
375 
376 	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
377 }
378 
379 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
380 static scan_io_t *
381 sio_alloc(unsigned short nr_dvas)
382 {
383 	ASSERT3U(nr_dvas, >, 0);
384 	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
385 
386 	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
387 }
388 
389 void
390 scan_init(void)
391 {
392 	/*
393 	 * This is used in ext_size_compare() to weight segments
394 	 * based on how sparse they are. This cannot be changed
395 	 * mid-scan and the tree comparison functions don't currently
396 	 * have a mechanism for passing additional context to the
397 	 * compare functions. Thus we store this value globally and
398 	 * we only allow it to be set at module initialization time
399 	 */
400 	fill_weight = zfs_scan_fill_weight;
401 
402 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
403 		char name[36];
404 
405 		(void) snprintf(name, sizeof (name), "sio_cache_%d", i);
406 		sio_cache[i] = kmem_cache_create(name,
407 		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
408 		    0, NULL, NULL, NULL, NULL, NULL, 0);
409 	}
410 }
411 
412 void
413 scan_fini(void)
414 {
415 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
416 		kmem_cache_destroy(sio_cache[i]);
417 	}
418 }
419 
420 static inline boolean_t
421 dsl_scan_is_running(const dsl_scan_t *scn)
422 {
423 	return (scn->scn_phys.scn_state == DSS_SCANNING);
424 }
425 
426 boolean_t
427 dsl_scan_resilvering(dsl_pool_t *dp)
428 {
429 	return (dsl_scan_is_running(dp->dp_scan) &&
430 	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
431 }
432 
433 static inline void
434 sio2bp(const scan_io_t *sio, blkptr_t *bp)
435 {
436 	memset(bp, 0, sizeof (*bp));
437 	bp->blk_prop = sio->sio_blk_prop;
438 	BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
439 	BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
440 	bp->blk_fill = 1;	/* we always only work with data pointers */
441 	bp->blk_cksum = sio->sio_cksum;
442 
443 	ASSERT3U(sio->sio_nr_dvas, >, 0);
444 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
445 
446 	memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
447 }
448 
449 static inline void
450 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
451 {
452 	sio->sio_blk_prop = bp->blk_prop;
453 	sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
454 	sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
455 	sio->sio_cksum = bp->blk_cksum;
456 	sio->sio_nr_dvas = BP_GET_NDVAS(bp);
457 
458 	/*
459 	 * Copy the DVAs to the sio. We need all copies of the block so
460 	 * that the self healing code can use the alternate copies if the
461 	 * first is corrupted. We want the DVA at index dva_i to be first
462 	 * in the sio since this is the primary one that we want to issue.
463 	 */
464 	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
465 		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
466 	}
467 }
468 
469 int
470 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
471 {
472 	int err;
473 	dsl_scan_t *scn;
474 	spa_t *spa = dp->dp_spa;
475 	uint64_t f;
476 
477 	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
478 	scn->scn_dp = dp;
479 
480 	/*
481 	 * It's possible that we're resuming a scan after a reboot so
482 	 * make sure that the scan_async_destroying flag is initialized
483 	 * appropriately.
484 	 */
485 	ASSERT(!scn->scn_async_destroying);
486 	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
487 	    SPA_FEATURE_ASYNC_DESTROY);
488 
489 	/*
490 	 * Calculate the max number of in-flight bytes for pool-wide
491 	 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
492 	 * Limits for the issuing phase are done per top-level vdev and
493 	 * are handled separately.
494 	 */
495 	scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
496 	    zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
497 
498 	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
499 	    offsetof(scan_ds_t, sds_node));
500 	mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL);
501 	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
502 	    sizeof (scan_prefetch_issue_ctx_t),
503 	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
504 
505 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
506 	    "scrub_func", sizeof (uint64_t), 1, &f);
507 	if (err == 0) {
508 		/*
509 		 * There was an old-style scrub in progress.  Restart a
510 		 * new-style scrub from the beginning.
511 		 */
512 		scn->scn_restart_txg = txg;
513 		zfs_dbgmsg("old-style scrub was in progress for %s; "
514 		    "restarting new-style scrub in txg %llu",
515 		    spa->spa_name,
516 		    (longlong_t)scn->scn_restart_txg);
517 
518 		/*
519 		 * Load the queue obj from the old location so that it
520 		 * can be freed by dsl_scan_done().
521 		 */
522 		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
523 		    "scrub_queue", sizeof (uint64_t), 1,
524 		    &scn->scn_phys.scn_queue_obj);
525 	} else {
526 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
527 		    DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
528 		    ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
529 
530 		if (err != 0 && err != ENOENT)
531 			return (err);
532 
533 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
534 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
535 		    &scn->scn_phys);
536 
537 		/*
538 		 * Detect if the pool contains the signature of #2094.  If it
539 		 * does properly update the scn->scn_phys structure and notify
540 		 * the administrator by setting an errata for the pool.
541 		 */
542 		if (err == EOVERFLOW) {
543 			uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
544 			VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
545 			VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
546 			    (23 * sizeof (uint64_t)));
547 
548 			err = zap_lookup(dp->dp_meta_objset,
549 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
550 			    sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
551 			if (err == 0) {
552 				uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
553 
554 				if (overflow & ~DSL_SCAN_FLAGS_MASK ||
555 				    scn->scn_async_destroying) {
556 					spa->spa_errata =
557 					    ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
558 					return (EOVERFLOW);
559 				}
560 
561 				memcpy(&scn->scn_phys, zaptmp,
562 				    SCAN_PHYS_NUMINTS * sizeof (uint64_t));
563 				scn->scn_phys.scn_flags = overflow;
564 
565 				/* Required scrub already in progress. */
566 				if (scn->scn_phys.scn_state == DSS_FINISHED ||
567 				    scn->scn_phys.scn_state == DSS_CANCELED)
568 					spa->spa_errata =
569 					    ZPOOL_ERRATA_ZOL_2094_SCRUB;
570 			}
571 		}
572 
573 		if (err == ENOENT)
574 			return (0);
575 		else if (err)
576 			return (err);
577 
578 		/*
579 		 * We might be restarting after a reboot, so jump the issued
580 		 * counter to how far we've scanned. We know we're consistent
581 		 * up to here.
582 		 */
583 		scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
584 		    scn->scn_phys.scn_skipped;
585 
586 		if (dsl_scan_is_running(scn) &&
587 		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
588 			/*
589 			 * A new-type scrub was in progress on an old
590 			 * pool, and the pool was accessed by old
591 			 * software.  Restart from the beginning, since
592 			 * the old software may have changed the pool in
593 			 * the meantime.
594 			 */
595 			scn->scn_restart_txg = txg;
596 			zfs_dbgmsg("new-style scrub for %s was modified "
597 			    "by old software; restarting in txg %llu",
598 			    spa->spa_name,
599 			    (longlong_t)scn->scn_restart_txg);
600 		} else if (dsl_scan_resilvering(dp)) {
601 			/*
602 			 * If a resilver is in progress and there are already
603 			 * errors, restart it instead of finishing this scan and
604 			 * then restarting it. If there haven't been any errors
605 			 * then remember that the incore DTL is valid.
606 			 */
607 			if (scn->scn_phys.scn_errors > 0) {
608 				scn->scn_restart_txg = txg;
609 				zfs_dbgmsg("resilver can't excise DTL_MISSING "
610 				    "when finished; restarting on %s in txg "
611 				    "%llu",
612 				    spa->spa_name,
613 				    (u_longlong_t)scn->scn_restart_txg);
614 			} else {
615 				/* it's safe to excise DTL when finished */
616 				spa->spa_scrub_started = B_TRUE;
617 			}
618 		}
619 	}
620 
621 	memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
622 
623 	/* reload the queue into the in-core state */
624 	if (scn->scn_phys.scn_queue_obj != 0) {
625 		zap_cursor_t zc;
626 		zap_attribute_t *za = zap_attribute_alloc();
627 
628 		for (zap_cursor_init(&zc, dp->dp_meta_objset,
629 		    scn->scn_phys.scn_queue_obj);
630 		    zap_cursor_retrieve(&zc, za) == 0;
631 		    (void) zap_cursor_advance(&zc)) {
632 			scan_ds_queue_insert(scn,
633 			    zfs_strtonum(za->za_name, NULL),
634 			    za->za_first_integer);
635 		}
636 		zap_cursor_fini(&zc);
637 		zap_attribute_free(za);
638 	}
639 
640 	ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
641 
642 	spa_scan_stat_init(spa);
643 	vdev_scan_stat_init(spa->spa_root_vdev);
644 
645 	return (0);
646 }
647 
648 void
649 dsl_scan_fini(dsl_pool_t *dp)
650 {
651 	if (dp->dp_scan != NULL) {
652 		dsl_scan_t *scn = dp->dp_scan;
653 
654 		if (scn->scn_taskq != NULL)
655 			taskq_destroy(scn->scn_taskq);
656 
657 		scan_ds_queue_clear(scn);
658 		avl_destroy(&scn->scn_queue);
659 		mutex_destroy(&scn->scn_queue_lock);
660 		scan_ds_prefetch_queue_clear(scn);
661 		avl_destroy(&scn->scn_prefetch_queue);
662 
663 		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
664 		dp->dp_scan = NULL;
665 	}
666 }
667 
668 static boolean_t
669 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
670 {
671 	return (scn->scn_restart_txg != 0 &&
672 	    scn->scn_restart_txg <= tx->tx_txg);
673 }
674 
675 boolean_t
676 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
677 {
678 	return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
679 	    (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
680 }
681 
682 boolean_t
683 dsl_scan_scrubbing(const dsl_pool_t *dp)
684 {
685 	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
686 
687 	return (scn_phys->scn_state == DSS_SCANNING &&
688 	    scn_phys->scn_func == POOL_SCAN_SCRUB);
689 }
690 
691 boolean_t
692 dsl_errorscrubbing(const dsl_pool_t *dp)
693 {
694 	dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
695 
696 	return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
697 	    errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
698 }
699 
700 boolean_t
701 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
702 {
703 	return (dsl_errorscrubbing(scn->scn_dp) &&
704 	    scn->errorscrub_phys.dep_paused_flags);
705 }
706 
707 boolean_t
708 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
709 {
710 	return (dsl_scan_scrubbing(scn->scn_dp) &&
711 	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
712 }
713 
714 static void
715 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
716 {
717 	scn->errorscrub_phys.dep_cursor =
718 	    zap_cursor_serialize(&scn->errorscrub_cursor);
719 
720 	VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
721 	    DMU_POOL_DIRECTORY_OBJECT,
722 	    DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
723 	    &scn->errorscrub_phys, tx));
724 }
725 
726 static void
727 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
728 {
729 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
730 	pool_scan_func_t *funcp = arg;
731 	dsl_pool_t *dp = scn->scn_dp;
732 	spa_t *spa = dp->dp_spa;
733 
734 	ASSERT(!dsl_scan_is_running(scn));
735 	ASSERT(!dsl_errorscrubbing(scn->scn_dp));
736 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
737 
738 	memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
739 	scn->errorscrub_phys.dep_func = *funcp;
740 	scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
741 	scn->errorscrub_phys.dep_start_time = gethrestime_sec();
742 	scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
743 	scn->errorscrub_phys.dep_examined = 0;
744 	scn->errorscrub_phys.dep_errors = 0;
745 	scn->errorscrub_phys.dep_cursor = 0;
746 	zap_cursor_init_serialized(&scn->errorscrub_cursor,
747 	    spa->spa_meta_objset, spa->spa_errlog_last,
748 	    scn->errorscrub_phys.dep_cursor);
749 
750 	vdev_config_dirty(spa->spa_root_vdev);
751 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
752 
753 	dsl_errorscrub_sync_state(scn, tx);
754 
755 	spa_history_log_internal(spa, "error scrub setup", tx,
756 	    "func=%u mintxg=%u maxtxg=%llu",
757 	    *funcp, 0, (u_longlong_t)tx->tx_txg);
758 }
759 
760 static int
761 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
762 {
763 	(void) arg;
764 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
765 
766 	if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
767 		return (SET_ERROR(EBUSY));
768 	}
769 
770 	if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
771 		return (ECANCELED);
772 	}
773 	return (0);
774 }
775 
776 /*
777  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
778  * Because we can be running in the block sorting algorithm, we do not always
779  * want to write out the record, only when it is "safe" to do so. This safety
780  * condition is achieved by making sure that the sorting queues are empty
781  * (scn_queues_pending == 0). When this condition is not true, the sync'd state
782  * is inconsistent with how much actual scanning progress has been made. The
783  * kind of sync to be performed is specified by the sync_type argument. If the
784  * sync is optional, we only sync if the queues are empty. If the sync is
785  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
786  * third possible state is a "cached" sync. This is done in response to:
787  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
788  *	destroyed, so we wouldn't be able to restart scanning from it.
789  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
790  *	superseded by a newer snapshot.
791  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
792  *	swapped with its clone.
793  * In all cases, a cached sync simply rewrites the last record we've written,
794  * just slightly modified. For the modifications that are performed to the
795  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
796  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
797  */
798 static void
799 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
800 {
801 	int i;
802 	spa_t *spa = scn->scn_dp->dp_spa;
803 
804 	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
805 	if (scn->scn_queues_pending == 0) {
806 		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
807 			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
808 			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
809 
810 			if (q == NULL)
811 				continue;
812 
813 			mutex_enter(&vd->vdev_scan_io_queue_lock);
814 			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
815 			ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
816 			    NULL);
817 			ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
818 			mutex_exit(&vd->vdev_scan_io_queue_lock);
819 		}
820 
821 		if (scn->scn_phys.scn_queue_obj != 0)
822 			scan_ds_queue_sync(scn, tx);
823 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
824 		    DMU_POOL_DIRECTORY_OBJECT,
825 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
826 		    &scn->scn_phys, tx));
827 		memcpy(&scn->scn_phys_cached, &scn->scn_phys,
828 		    sizeof (scn->scn_phys));
829 
830 		if (scn->scn_checkpointing)
831 			zfs_dbgmsg("finish scan checkpoint for %s",
832 			    spa->spa_name);
833 
834 		scn->scn_checkpointing = B_FALSE;
835 		scn->scn_last_checkpoint = ddi_get_lbolt();
836 	} else if (sync_type == SYNC_CACHED) {
837 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
838 		    DMU_POOL_DIRECTORY_OBJECT,
839 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
840 		    &scn->scn_phys_cached, tx));
841 	}
842 }
843 
844 int
845 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
846 {
847 	(void) arg;
848 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
849 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
850 
851 	if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
852 	    dsl_errorscrubbing(scn->scn_dp))
853 		return (SET_ERROR(EBUSY));
854 
855 	return (0);
856 }
857 
858 void
859 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
860 {
861 	setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg;
862 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
863 	dmu_object_type_t ot = 0;
864 	dsl_pool_t *dp = scn->scn_dp;
865 	spa_t *spa = dp->dp_spa;
866 
867 	ASSERT(!dsl_scan_is_running(scn));
868 	ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE);
869 	ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS);
870 	memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
871 
872 	/*
873 	 * If we are starting a fresh scrub, we erase the error scrub
874 	 * information from disk.
875 	 */
876 	memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
877 	dsl_errorscrub_sync_state(scn, tx);
878 
879 	scn->scn_phys.scn_func = setup_sync_arg->func;
880 	scn->scn_phys.scn_state = DSS_SCANNING;
881 	scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart;
882 	if (setup_sync_arg->txgend == 0) {
883 		scn->scn_phys.scn_max_txg = tx->tx_txg;
884 	} else {
885 		scn->scn_phys.scn_max_txg = setup_sync_arg->txgend;
886 	}
887 	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
888 	scn->scn_phys.scn_start_time = gethrestime_sec();
889 	scn->scn_phys.scn_errors = 0;
890 	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
891 	scn->scn_issued_before_pass = 0;
892 	scn->scn_restart_txg = 0;
893 	scn->scn_done_txg = 0;
894 	scn->scn_last_checkpoint = 0;
895 	scn->scn_checkpointing = B_FALSE;
896 	spa_scan_stat_init(spa);
897 	vdev_scan_stat_init(spa->spa_root_vdev);
898 
899 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
900 		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
901 
902 		/* rewrite all disk labels */
903 		vdev_config_dirty(spa->spa_root_vdev);
904 
905 		if (vdev_resilver_needed(spa->spa_root_vdev,
906 		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
907 			nvlist_t *aux = fnvlist_alloc();
908 			fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
909 			    "healing");
910 			spa_event_notify(spa, NULL, aux,
911 			    ESC_ZFS_RESILVER_START);
912 			nvlist_free(aux);
913 		} else {
914 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
915 		}
916 
917 		spa->spa_scrub_started = B_TRUE;
918 		/*
919 		 * If this is an incremental scrub, limit the DDT scrub phase
920 		 * to just the auto-ditto class (for correctness); the rest
921 		 * of the scrub should go faster using top-down pruning.
922 		 */
923 		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
924 			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
925 
926 		/*
927 		 * When starting a resilver clear any existing rebuild state.
928 		 * This is required to prevent stale rebuild status from
929 		 * being reported when a rebuild is run, then a resilver and
930 		 * finally a scrub.  In which case only the scrub status
931 		 * should be reported by 'zpool status'.
932 		 */
933 		if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
934 			vdev_t *rvd = spa->spa_root_vdev;
935 			for (uint64_t i = 0; i < rvd->vdev_children; i++) {
936 				vdev_t *vd = rvd->vdev_child[i];
937 				vdev_rebuild_clear_sync(
938 				    (void *)(uintptr_t)vd->vdev_id, tx);
939 			}
940 		}
941 	}
942 
943 	/* back to the generic stuff */
944 
945 	if (zfs_scan_blkstats) {
946 		if (dp->dp_blkstats == NULL) {
947 			dp->dp_blkstats =
948 			    vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
949 		}
950 		memset(&dp->dp_blkstats->zab_type, 0,
951 		    sizeof (dp->dp_blkstats->zab_type));
952 	} else {
953 		if (dp->dp_blkstats) {
954 			vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
955 			dp->dp_blkstats = NULL;
956 		}
957 	}
958 
959 	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
960 		ot = DMU_OT_ZAP_OTHER;
961 
962 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
963 	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
964 
965 	memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
966 
967 	ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
968 
969 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
970 
971 	spa_history_log_internal(spa, "scan setup", tx,
972 	    "func=%u mintxg=%llu maxtxg=%llu",
973 	    setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg,
974 	    (u_longlong_t)scn->scn_phys.scn_max_txg);
975 }
976 
977 /*
978  * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
979  * error scrub or resilver. Can also be called to resume a paused scrub or
980  * error scrub.
981  */
982 int
983 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart,
984     uint64_t txgend)
985 {
986 	spa_t *spa = dp->dp_spa;
987 	dsl_scan_t *scn = dp->dp_scan;
988 	setup_sync_arg_t setup_sync_arg;
989 
990 	if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) {
991 		return (EINVAL);
992 	}
993 
994 	/*
995 	 * Purge all vdev caches and probe all devices.  We do this here
996 	 * rather than in sync context because this requires a writer lock
997 	 * on the spa_config lock, which we can't do from sync context.  The
998 	 * spa_scrub_reopen flag indicates that vdev_open() should not
999 	 * attempt to start another scrub.
1000 	 */
1001 	spa_vdev_state_enter(spa, SCL_NONE);
1002 	spa->spa_scrub_reopen = B_TRUE;
1003 	vdev_reopen(spa->spa_root_vdev);
1004 	spa->spa_scrub_reopen = B_FALSE;
1005 	(void) spa_vdev_state_exit(spa, NULL, 0);
1006 
1007 	if (func == POOL_SCAN_RESILVER) {
1008 		dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
1009 		return (0);
1010 	}
1011 
1012 	if (func == POOL_SCAN_ERRORSCRUB) {
1013 		if (dsl_errorscrub_is_paused(dp->dp_scan)) {
1014 			/*
1015 			 * got error scrub start cmd, resume paused error scrub.
1016 			 */
1017 			int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1018 			    POOL_SCRUB_NORMAL);
1019 			if (err == 0) {
1020 				spa_event_notify(spa, NULL, NULL,
1021 				    ESC_ZFS_ERRORSCRUB_RESUME);
1022 				return (ECANCELED);
1023 			}
1024 			return (SET_ERROR(err));
1025 		}
1026 
1027 		return (dsl_sync_task(spa_name(dp->dp_spa),
1028 		    dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1029 		    &func, 0, ZFS_SPACE_CHECK_RESERVED));
1030 	}
1031 
1032 	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1033 		/* got scrub start cmd, resume paused scrub */
1034 		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1035 		    POOL_SCRUB_NORMAL);
1036 		if (err == 0) {
1037 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1038 			return (SET_ERROR(ECANCELED));
1039 		}
1040 		return (SET_ERROR(err));
1041 	}
1042 
1043 	setup_sync_arg.func = func;
1044 	setup_sync_arg.txgstart = txgstart;
1045 	setup_sync_arg.txgend = txgend;
1046 
1047 	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1048 	    dsl_scan_setup_sync, &setup_sync_arg, 0,
1049 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
1050 }
1051 
1052 static void
1053 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1054 {
1055 	dsl_pool_t *dp = scn->scn_dp;
1056 	spa_t *spa = dp->dp_spa;
1057 
1058 	if (complete) {
1059 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1060 		spa_history_log_internal(spa, "error scrub done", tx,
1061 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1062 	} else {
1063 		spa_history_log_internal(spa, "error scrub canceled", tx,
1064 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1065 	}
1066 
1067 	scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1068 	spa->spa_scrub_active = B_FALSE;
1069 	spa_errlog_rotate(spa);
1070 	scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1071 	zap_cursor_fini(&scn->errorscrub_cursor);
1072 
1073 	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1074 		spa->spa_errata = 0;
1075 
1076 	ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1077 }
1078 
1079 static void
1080 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1081 {
1082 	static const char *old_names[] = {
1083 		"scrub_bookmark",
1084 		"scrub_ddt_bookmark",
1085 		"scrub_ddt_class_max",
1086 		"scrub_queue",
1087 		"scrub_min_txg",
1088 		"scrub_max_txg",
1089 		"scrub_func",
1090 		"scrub_errors",
1091 		NULL
1092 	};
1093 
1094 	dsl_pool_t *dp = scn->scn_dp;
1095 	spa_t *spa = dp->dp_spa;
1096 	int i;
1097 
1098 	/* Remove any remnants of an old-style scrub. */
1099 	for (i = 0; old_names[i]; i++) {
1100 		(void) zap_remove(dp->dp_meta_objset,
1101 		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1102 	}
1103 
1104 	if (scn->scn_phys.scn_queue_obj != 0) {
1105 		VERIFY0(dmu_object_free(dp->dp_meta_objset,
1106 		    scn->scn_phys.scn_queue_obj, tx));
1107 		scn->scn_phys.scn_queue_obj = 0;
1108 	}
1109 	scan_ds_queue_clear(scn);
1110 	scan_ds_prefetch_queue_clear(scn);
1111 
1112 	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1113 
1114 	/*
1115 	 * If we were "restarted" from a stopped state, don't bother
1116 	 * with anything else.
1117 	 */
1118 	if (!dsl_scan_is_running(scn)) {
1119 		ASSERT(!scn->scn_is_sorted);
1120 		return;
1121 	}
1122 
1123 	if (scn->scn_is_sorted) {
1124 		scan_io_queues_destroy(scn);
1125 		scn->scn_is_sorted = B_FALSE;
1126 
1127 		if (scn->scn_taskq != NULL) {
1128 			taskq_destroy(scn->scn_taskq);
1129 			scn->scn_taskq = NULL;
1130 		}
1131 	}
1132 
1133 	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
1134 
1135 	spa_notify_waiters(spa);
1136 
1137 	if (dsl_scan_restarting(scn, tx)) {
1138 		spa_history_log_internal(spa, "scan aborted, restarting", tx,
1139 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1140 	} else if (!complete) {
1141 		spa_history_log_internal(spa, "scan cancelled", tx,
1142 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1143 	} else {
1144 		spa_history_log_internal(spa, "scan done", tx,
1145 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1146 		if (DSL_SCAN_IS_SCRUB(scn)) {
1147 			VERIFY0(zap_update(dp->dp_meta_objset,
1148 			    DMU_POOL_DIRECTORY_OBJECT,
1149 			    DMU_POOL_LAST_SCRUBBED_TXG,
1150 			    sizeof (uint64_t), 1,
1151 			    &scn->scn_phys.scn_max_txg, tx));
1152 			spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg;
1153 		}
1154 	}
1155 
1156 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1157 		spa->spa_scrub_active = B_FALSE;
1158 
1159 		/*
1160 		 * If the scrub/resilver completed, update all DTLs to
1161 		 * reflect this.  Whether it succeeded or not, vacate
1162 		 * all temporary scrub DTLs.
1163 		 *
1164 		 * As the scrub does not currently support traversing
1165 		 * data that have been freed but are part of a checkpoint,
1166 		 * we don't mark the scrub as done in the DTLs as faults
1167 		 * may still exist in those vdevs.
1168 		 */
1169 		if (complete &&
1170 		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1171 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1172 			    scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1173 
1174 			if (scn->scn_phys.scn_min_txg) {
1175 				nvlist_t *aux = fnvlist_alloc();
1176 				fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1177 				    "healing");
1178 				spa_event_notify(spa, NULL, aux,
1179 				    ESC_ZFS_RESILVER_FINISH);
1180 				nvlist_free(aux);
1181 			} else {
1182 				spa_event_notify(spa, NULL, NULL,
1183 				    ESC_ZFS_SCRUB_FINISH);
1184 			}
1185 		} else {
1186 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1187 			    0, B_TRUE, B_FALSE);
1188 		}
1189 		spa_errlog_rotate(spa);
1190 
1191 		/*
1192 		 * Don't clear flag until after vdev_dtl_reassess to ensure that
1193 		 * DTL_MISSING will get updated when possible.
1194 		 */
1195 		spa->spa_scrub_started = B_FALSE;
1196 
1197 		/*
1198 		 * We may have finished replacing a device.
1199 		 * Let the async thread assess this and handle the detach.
1200 		 */
1201 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1202 
1203 		/*
1204 		 * Clear any resilver_deferred flags in the config.
1205 		 * If there are drives that need resilvering, kick
1206 		 * off an asynchronous request to start resilver.
1207 		 * vdev_clear_resilver_deferred() may update the config
1208 		 * before the resilver can restart. In the event of
1209 		 * a crash during this period, the spa loading code
1210 		 * will find the drives that need to be resilvered
1211 		 * and start the resilver then.
1212 		 */
1213 		if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1214 		    vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1215 			spa_history_log_internal(spa,
1216 			    "starting deferred resilver", tx, "errors=%llu",
1217 			    (u_longlong_t)spa_approx_errlog_size(spa));
1218 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1219 		}
1220 
1221 		/* Clear recent error events (i.e. duplicate events tracking) */
1222 		if (complete)
1223 			zfs_ereport_clear(spa, NULL);
1224 	}
1225 
1226 	scn->scn_phys.scn_end_time = gethrestime_sec();
1227 
1228 	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1229 		spa->spa_errata = 0;
1230 
1231 	ASSERT(!dsl_scan_is_running(scn));
1232 }
1233 
1234 static int
1235 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1236 {
1237 	pool_scrub_cmd_t *cmd = arg;
1238 	dsl_pool_t *dp = dmu_tx_pool(tx);
1239 	dsl_scan_t *scn = dp->dp_scan;
1240 
1241 	if (*cmd == POOL_SCRUB_PAUSE) {
1242 		/*
1243 		 * can't pause a error scrub when there is no in-progress
1244 		 * error scrub.
1245 		 */
1246 		if (!dsl_errorscrubbing(dp))
1247 			return (SET_ERROR(ENOENT));
1248 
1249 		/* can't pause a paused error scrub */
1250 		if (dsl_errorscrub_is_paused(scn))
1251 			return (SET_ERROR(EBUSY));
1252 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1253 		return (SET_ERROR(ENOTSUP));
1254 	}
1255 
1256 	return (0);
1257 }
1258 
1259 static void
1260 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1261 {
1262 	pool_scrub_cmd_t *cmd = arg;
1263 	dsl_pool_t *dp = dmu_tx_pool(tx);
1264 	spa_t *spa = dp->dp_spa;
1265 	dsl_scan_t *scn = dp->dp_scan;
1266 
1267 	if (*cmd == POOL_SCRUB_PAUSE) {
1268 		spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1269 		scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1270 		dsl_errorscrub_sync_state(scn, tx);
1271 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1272 	} else {
1273 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1274 		if (dsl_errorscrub_is_paused(scn)) {
1275 			/*
1276 			 * We need to keep track of how much time we spend
1277 			 * paused per pass so that we can adjust the error scrub
1278 			 * rate shown in the output of 'zpool status'.
1279 			 */
1280 			spa->spa_scan_pass_errorscrub_spent_paused +=
1281 			    gethrestime_sec() -
1282 			    spa->spa_scan_pass_errorscrub_pause;
1283 
1284 			spa->spa_scan_pass_errorscrub_pause = 0;
1285 			scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1286 
1287 			zap_cursor_init_serialized(
1288 			    &scn->errorscrub_cursor,
1289 			    spa->spa_meta_objset, spa->spa_errlog_last,
1290 			    scn->errorscrub_phys.dep_cursor);
1291 
1292 			dsl_errorscrub_sync_state(scn, tx);
1293 		}
1294 	}
1295 }
1296 
1297 static int
1298 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1299 {
1300 	(void) arg;
1301 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1302 	/* can't cancel a error scrub when there is no one in-progress */
1303 	if (!dsl_errorscrubbing(scn->scn_dp))
1304 		return (SET_ERROR(ENOENT));
1305 	return (0);
1306 }
1307 
1308 static void
1309 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1310 {
1311 	(void) arg;
1312 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1313 
1314 	dsl_errorscrub_done(scn, B_FALSE, tx);
1315 	dsl_errorscrub_sync_state(scn, tx);
1316 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1317 	    ESC_ZFS_ERRORSCRUB_ABORT);
1318 }
1319 
1320 static int
1321 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1322 {
1323 	(void) arg;
1324 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1325 
1326 	if (!dsl_scan_is_running(scn))
1327 		return (SET_ERROR(ENOENT));
1328 	return (0);
1329 }
1330 
1331 static void
1332 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1333 {
1334 	(void) arg;
1335 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1336 
1337 	dsl_scan_done(scn, B_FALSE, tx);
1338 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1339 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1340 }
1341 
1342 int
1343 dsl_scan_cancel(dsl_pool_t *dp)
1344 {
1345 	if (dsl_errorscrubbing(dp)) {
1346 		return (dsl_sync_task(spa_name(dp->dp_spa),
1347 		    dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1348 		    NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1349 	}
1350 	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1351 	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1352 }
1353 
1354 static int
1355 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1356 {
1357 	pool_scrub_cmd_t *cmd = arg;
1358 	dsl_pool_t *dp = dmu_tx_pool(tx);
1359 	dsl_scan_t *scn = dp->dp_scan;
1360 
1361 	if (*cmd == POOL_SCRUB_PAUSE) {
1362 		/* can't pause a scrub when there is no in-progress scrub */
1363 		if (!dsl_scan_scrubbing(dp))
1364 			return (SET_ERROR(ENOENT));
1365 
1366 		/* can't pause a paused scrub */
1367 		if (dsl_scan_is_paused_scrub(scn))
1368 			return (SET_ERROR(EBUSY));
1369 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1370 		return (SET_ERROR(ENOTSUP));
1371 	}
1372 
1373 	return (0);
1374 }
1375 
1376 static void
1377 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1378 {
1379 	pool_scrub_cmd_t *cmd = arg;
1380 	dsl_pool_t *dp = dmu_tx_pool(tx);
1381 	spa_t *spa = dp->dp_spa;
1382 	dsl_scan_t *scn = dp->dp_scan;
1383 
1384 	if (*cmd == POOL_SCRUB_PAUSE) {
1385 		/* can't pause a scrub when there is no in-progress scrub */
1386 		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1387 		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1388 		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1389 		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1390 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1391 		spa_notify_waiters(spa);
1392 	} else {
1393 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1394 		if (dsl_scan_is_paused_scrub(scn)) {
1395 			/*
1396 			 * We need to keep track of how much time we spend
1397 			 * paused per pass so that we can adjust the scrub rate
1398 			 * shown in the output of 'zpool status'
1399 			 */
1400 			spa->spa_scan_pass_scrub_spent_paused +=
1401 			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1402 			spa->spa_scan_pass_scrub_pause = 0;
1403 			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1404 			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1405 			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1406 		}
1407 	}
1408 }
1409 
1410 /*
1411  * Set scrub pause/resume state if it makes sense to do so
1412  */
1413 int
1414 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1415 {
1416 	if (dsl_errorscrubbing(dp)) {
1417 		return (dsl_sync_task(spa_name(dp->dp_spa),
1418 		    dsl_errorscrub_pause_resume_check,
1419 		    dsl_errorscrub_pause_resume_sync, &cmd, 3,
1420 		    ZFS_SPACE_CHECK_RESERVED));
1421 	}
1422 	return (dsl_sync_task(spa_name(dp->dp_spa),
1423 	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1424 	    ZFS_SPACE_CHECK_RESERVED));
1425 }
1426 
1427 
1428 /* start a new scan, or restart an existing one. */
1429 void
1430 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1431 {
1432 	if (txg == 0) {
1433 		dmu_tx_t *tx;
1434 		tx = dmu_tx_create_dd(dp->dp_mos_dir);
1435 		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1436 
1437 		txg = dmu_tx_get_txg(tx);
1438 		dp->dp_scan->scn_restart_txg = txg;
1439 		dmu_tx_commit(tx);
1440 	} else {
1441 		dp->dp_scan->scn_restart_txg = txg;
1442 	}
1443 	zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1444 	    dp->dp_spa->spa_name, (longlong_t)txg);
1445 }
1446 
1447 void
1448 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1449 {
1450 	zio_free(dp->dp_spa, txg, bp);
1451 }
1452 
1453 void
1454 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1455 {
1456 	ASSERT(dsl_pool_sync_context(dp));
1457 	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1458 }
1459 
1460 static int
1461 scan_ds_queue_compare(const void *a, const void *b)
1462 {
1463 	const scan_ds_t *sds_a = a, *sds_b = b;
1464 
1465 	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1466 		return (-1);
1467 	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1468 		return (0);
1469 	return (1);
1470 }
1471 
1472 static void
1473 scan_ds_queue_clear(dsl_scan_t *scn)
1474 {
1475 	void *cookie = NULL;
1476 	scan_ds_t *sds;
1477 	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1478 		kmem_free(sds, sizeof (*sds));
1479 	}
1480 }
1481 
1482 static boolean_t
1483 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1484 {
1485 	scan_ds_t srch, *sds;
1486 
1487 	srch.sds_dsobj = dsobj;
1488 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1489 	if (sds != NULL && txg != NULL)
1490 		*txg = sds->sds_txg;
1491 	return (sds != NULL);
1492 }
1493 
1494 static void
1495 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1496 {
1497 	scan_ds_t *sds;
1498 	avl_index_t where;
1499 
1500 	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1501 	sds->sds_dsobj = dsobj;
1502 	sds->sds_txg = txg;
1503 
1504 	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1505 	avl_insert(&scn->scn_queue, sds, where);
1506 }
1507 
1508 static void
1509 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1510 {
1511 	scan_ds_t srch, *sds;
1512 
1513 	srch.sds_dsobj = dsobj;
1514 
1515 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1516 	VERIFY(sds != NULL);
1517 	avl_remove(&scn->scn_queue, sds);
1518 	kmem_free(sds, sizeof (*sds));
1519 }
1520 
1521 static void
1522 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1523 {
1524 	dsl_pool_t *dp = scn->scn_dp;
1525 	spa_t *spa = dp->dp_spa;
1526 	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1527 	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1528 
1529 	ASSERT0(scn->scn_queues_pending);
1530 	ASSERT(scn->scn_phys.scn_queue_obj != 0);
1531 
1532 	VERIFY0(dmu_object_free(dp->dp_meta_objset,
1533 	    scn->scn_phys.scn_queue_obj, tx));
1534 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1535 	    DMU_OT_NONE, 0, tx);
1536 	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1537 	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1538 		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1539 		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1540 		    sds->sds_txg, tx));
1541 	}
1542 }
1543 
1544 /*
1545  * Computes the memory limit state that we're currently in. A sorted scan
1546  * needs quite a bit of memory to hold the sorting queue, so we need to
1547  * reasonably constrain the size so it doesn't impact overall system
1548  * performance. We compute two limits:
1549  * 1) Hard memory limit: if the amount of memory used by the sorting
1550  *	queues on a pool gets above this value, we stop the metadata
1551  *	scanning portion and start issuing the queued up and sorted
1552  *	I/Os to reduce memory usage.
1553  *	This limit is calculated as a fraction of physmem (by default 5%).
1554  *	We constrain the lower bound of the hard limit to an absolute
1555  *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1556  *	the upper bound to 5% of the total pool size - no chance we'll
1557  *	ever need that much memory, but just to keep the value in check.
1558  * 2) Soft memory limit: once we hit the hard memory limit, we start
1559  *	issuing I/O to reduce queue memory usage, but we don't want to
1560  *	completely empty out the queues, since we might be able to find I/Os
1561  *	that will fill in the gaps of our non-sequential IOs at some point
1562  *	in the future. So we stop the issuing of I/Os once the amount of
1563  *	memory used drops below the soft limit (at which point we stop issuing
1564  *	I/O and start scanning metadata again).
1565  *
1566  *	This limit is calculated by subtracting a fraction of the hard
1567  *	limit from the hard limit. By default this fraction is 5%, so
1568  *	the soft limit is 95% of the hard limit. We cap the size of the
1569  *	difference between the hard and soft limits at an absolute
1570  *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1571  *	sufficient to not cause too frequent switching between the
1572  *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1573  *	worth of queues is about 1.2 GiB of on-pool data, so scanning
1574  *	that should take at least a decent fraction of a second).
1575  */
1576 static boolean_t
1577 dsl_scan_should_clear(dsl_scan_t *scn)
1578 {
1579 	spa_t *spa = scn->scn_dp->dp_spa;
1580 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1581 	uint64_t alloc, mlim_hard, mlim_soft, mused;
1582 
1583 	alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1584 	alloc += metaslab_class_get_alloc(spa_special_class(spa));
1585 	alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1586 
1587 	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1588 	    zfs_scan_mem_lim_min);
1589 	mlim_hard = MIN(mlim_hard, alloc / 20);
1590 	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1591 	    zfs_scan_mem_lim_soft_max);
1592 	mused = 0;
1593 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1594 		vdev_t *tvd = rvd->vdev_child[i];
1595 		dsl_scan_io_queue_t *queue;
1596 
1597 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
1598 		queue = tvd->vdev_scan_io_queue;
1599 		if (queue != NULL) {
1600 			/*
1601 			 * # of extents in exts_by_addr = # in exts_by_size.
1602 			 * B-tree efficiency is ~75%, but can be as low as 50%.
1603 			 */
1604 			mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1605 			    ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) *
1606 			    3 / 2) + queue->q_sio_memused;
1607 		}
1608 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
1609 	}
1610 
1611 	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1612 
1613 	if (mused == 0)
1614 		ASSERT0(scn->scn_queues_pending);
1615 
1616 	/*
1617 	 * If we are above our hard limit, we need to clear out memory.
1618 	 * If we are below our soft limit, we need to accumulate sequential IOs.
1619 	 * Otherwise, we should keep doing whatever we are currently doing.
1620 	 */
1621 	if (mused >= mlim_hard)
1622 		return (B_TRUE);
1623 	else if (mused < mlim_soft)
1624 		return (B_FALSE);
1625 	else
1626 		return (scn->scn_clearing);
1627 }
1628 
1629 static boolean_t
1630 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1631 {
1632 	/* we never skip user/group accounting objects */
1633 	if (zb && (int64_t)zb->zb_object < 0)
1634 		return (B_FALSE);
1635 
1636 	if (scn->scn_suspending)
1637 		return (B_TRUE); /* we're already suspending */
1638 
1639 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1640 		return (B_FALSE); /* we're resuming */
1641 
1642 	/* We only know how to resume from level-0 and objset blocks. */
1643 	if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1644 		return (B_FALSE);
1645 
1646 	/*
1647 	 * We suspend if:
1648 	 *  - we have scanned for at least the minimum time (default 1 sec
1649 	 *    for scrub, 3 sec for resilver), and either we have sufficient
1650 	 *    dirty data that we are starting to write more quickly
1651 	 *    (default 30%), someone is explicitly waiting for this txg
1652 	 *    to complete, or we have used up all of the time in the txg
1653 	 *    timeout (default 5 sec).
1654 	 *  or
1655 	 *  - the spa is shutting down because this pool is being exported
1656 	 *    or the machine is rebooting.
1657 	 *  or
1658 	 *  - the scan queue has reached its memory use limit
1659 	 */
1660 	uint64_t curr_time_ns = gethrtime();
1661 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1662 	uint64_t sync_time_ns = curr_time_ns -
1663 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1664 	uint64_t dirty_min_bytes = zfs_dirty_data_max *
1665 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
1666 	uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1667 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1668 
1669 	if ((NSEC2MSEC(scan_time_ns) > mintime &&
1670 	    (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1671 	    txg_sync_waiting(scn->scn_dp) ||
1672 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1673 	    spa_shutting_down(scn->scn_dp->dp_spa) ||
1674 	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) ||
1675 	    !ddt_walk_ready(scn->scn_dp->dp_spa)) {
1676 		if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1677 			dprintf("suspending at first available bookmark "
1678 			    "%llx/%llx/%llx/%llx\n",
1679 			    (longlong_t)zb->zb_objset,
1680 			    (longlong_t)zb->zb_object,
1681 			    (longlong_t)zb->zb_level,
1682 			    (longlong_t)zb->zb_blkid);
1683 			SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1684 			    zb->zb_objset, 0, 0, 0);
1685 		} else if (zb != NULL) {
1686 			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1687 			    (longlong_t)zb->zb_objset,
1688 			    (longlong_t)zb->zb_object,
1689 			    (longlong_t)zb->zb_level,
1690 			    (longlong_t)zb->zb_blkid);
1691 			scn->scn_phys.scn_bookmark = *zb;
1692 		} else {
1693 #ifdef ZFS_DEBUG
1694 			dsl_scan_phys_t *scnp = &scn->scn_phys;
1695 			dprintf("suspending at at DDT bookmark "
1696 			    "%llx/%llx/%llx/%llx\n",
1697 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1698 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1699 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1700 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1701 #endif
1702 		}
1703 		scn->scn_suspending = B_TRUE;
1704 		return (B_TRUE);
1705 	}
1706 	return (B_FALSE);
1707 }
1708 
1709 static boolean_t
1710 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1711 {
1712 	/*
1713 	 * We suspend if:
1714 	 *  - we have scrubbed for at least the minimum time (default 1 sec
1715 	 *    for error scrub), someone is explicitly waiting for this txg
1716 	 *    to complete, or we have used up all of the time in the txg
1717 	 *    timeout (default 5 sec).
1718 	 *  or
1719 	 *  - the spa is shutting down because this pool is being exported
1720 	 *    or the machine is rebooting.
1721 	 */
1722 	uint64_t curr_time_ns = gethrtime();
1723 	uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1724 	uint64_t sync_time_ns = curr_time_ns -
1725 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1726 	int mintime = zfs_scrub_min_time_ms;
1727 
1728 	if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1729 	    (txg_sync_waiting(scn->scn_dp) ||
1730 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1731 	    spa_shutting_down(scn->scn_dp->dp_spa)) {
1732 		if (zb) {
1733 			dprintf("error scrub suspending at bookmark "
1734 			    "%llx/%llx/%llx/%llx\n",
1735 			    (longlong_t)zb->zb_objset,
1736 			    (longlong_t)zb->zb_object,
1737 			    (longlong_t)zb->zb_level,
1738 			    (longlong_t)zb->zb_blkid);
1739 		}
1740 		return (B_TRUE);
1741 	}
1742 	return (B_FALSE);
1743 }
1744 
1745 typedef struct zil_scan_arg {
1746 	dsl_pool_t	*zsa_dp;
1747 	zil_header_t	*zsa_zh;
1748 } zil_scan_arg_t;
1749 
1750 static int
1751 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1752     uint64_t claim_txg)
1753 {
1754 	(void) zilog;
1755 	zil_scan_arg_t *zsa = arg;
1756 	dsl_pool_t *dp = zsa->zsa_dp;
1757 	dsl_scan_t *scn = dp->dp_scan;
1758 	zil_header_t *zh = zsa->zsa_zh;
1759 	zbookmark_phys_t zb;
1760 
1761 	ASSERT(!BP_IS_REDACTED(bp));
1762 	if (BP_IS_HOLE(bp) ||
1763 	    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1764 		return (0);
1765 
1766 	/*
1767 	 * One block ("stubby") can be allocated a long time ago; we
1768 	 * want to visit that one because it has been allocated
1769 	 * (on-disk) even if it hasn't been claimed (even though for
1770 	 * scrub there's nothing to do to it).
1771 	 */
1772 	if (claim_txg == 0 &&
1773 	    BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1774 		return (0);
1775 
1776 	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1777 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1778 
1779 	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1780 	return (0);
1781 }
1782 
1783 static int
1784 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1785     uint64_t claim_txg)
1786 {
1787 	(void) zilog;
1788 	if (lrc->lrc_txtype == TX_WRITE) {
1789 		zil_scan_arg_t *zsa = arg;
1790 		dsl_pool_t *dp = zsa->zsa_dp;
1791 		dsl_scan_t *scn = dp->dp_scan;
1792 		zil_header_t *zh = zsa->zsa_zh;
1793 		const lr_write_t *lr = (const lr_write_t *)lrc;
1794 		const blkptr_t *bp = &lr->lr_blkptr;
1795 		zbookmark_phys_t zb;
1796 
1797 		ASSERT(!BP_IS_REDACTED(bp));
1798 		if (BP_IS_HOLE(bp) ||
1799 		    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1800 			return (0);
1801 
1802 		/*
1803 		 * birth can be < claim_txg if this record's txg is
1804 		 * already txg sync'ed (but this log block contains
1805 		 * other records that are not synced)
1806 		 */
1807 		if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg)
1808 			return (0);
1809 
1810 		ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1811 		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1812 		    lr->lr_foid, ZB_ZIL_LEVEL,
1813 		    lr->lr_offset / BP_GET_LSIZE(bp));
1814 
1815 		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1816 	}
1817 	return (0);
1818 }
1819 
1820 static void
1821 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1822 {
1823 	uint64_t claim_txg = zh->zh_claim_txg;
1824 	zil_scan_arg_t zsa = { dp, zh };
1825 	zilog_t *zilog;
1826 
1827 	ASSERT(spa_writeable(dp->dp_spa));
1828 
1829 	/*
1830 	 * We only want to visit blocks that have been claimed but not yet
1831 	 * replayed (or, in read-only mode, blocks that *would* be claimed).
1832 	 */
1833 	if (claim_txg == 0)
1834 		return;
1835 
1836 	zilog = zil_alloc(dp->dp_meta_objset, zh);
1837 
1838 	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1839 	    claim_txg, B_FALSE);
1840 
1841 	zil_free(zilog);
1842 }
1843 
1844 /*
1845  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1846  * here is to sort the AVL tree by the order each block will be needed.
1847  */
1848 static int
1849 scan_prefetch_queue_compare(const void *a, const void *b)
1850 {
1851 	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1852 	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1853 	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1854 
1855 	return (zbookmark_compare(spc_a->spc_datablkszsec,
1856 	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1857 	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1858 }
1859 
1860 static void
1861 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1862 {
1863 	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1864 		zfs_refcount_destroy(&spc->spc_refcnt);
1865 		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1866 	}
1867 }
1868 
1869 static scan_prefetch_ctx_t *
1870 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1871 {
1872 	scan_prefetch_ctx_t *spc;
1873 
1874 	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1875 	zfs_refcount_create(&spc->spc_refcnt);
1876 	zfs_refcount_add(&spc->spc_refcnt, tag);
1877 	spc->spc_scn = scn;
1878 	if (dnp != NULL) {
1879 		spc->spc_datablkszsec = dnp->dn_datablkszsec;
1880 		spc->spc_indblkshift = dnp->dn_indblkshift;
1881 		spc->spc_root = B_FALSE;
1882 	} else {
1883 		spc->spc_datablkszsec = 0;
1884 		spc->spc_indblkshift = 0;
1885 		spc->spc_root = B_TRUE;
1886 	}
1887 
1888 	return (spc);
1889 }
1890 
1891 static void
1892 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1893 {
1894 	zfs_refcount_add(&spc->spc_refcnt, tag);
1895 }
1896 
1897 static void
1898 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1899 {
1900 	spa_t *spa = scn->scn_dp->dp_spa;
1901 	void *cookie = NULL;
1902 	scan_prefetch_issue_ctx_t *spic = NULL;
1903 
1904 	mutex_enter(&spa->spa_scrub_lock);
1905 	while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1906 	    &cookie)) != NULL) {
1907 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1908 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1909 	}
1910 	mutex_exit(&spa->spa_scrub_lock);
1911 }
1912 
1913 static boolean_t
1914 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1915     const zbookmark_phys_t *zb)
1916 {
1917 	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1918 	dnode_phys_t tmp_dnp;
1919 	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1920 
1921 	if (zb->zb_objset != last_zb->zb_objset)
1922 		return (B_TRUE);
1923 	if ((int64_t)zb->zb_object < 0)
1924 		return (B_FALSE);
1925 
1926 	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1927 	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1928 
1929 	if (zbookmark_subtree_completed(dnp, zb, last_zb))
1930 		return (B_TRUE);
1931 
1932 	return (B_FALSE);
1933 }
1934 
1935 static void
1936 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1937 {
1938 	avl_index_t idx;
1939 	dsl_scan_t *scn = spc->spc_scn;
1940 	spa_t *spa = scn->scn_dp->dp_spa;
1941 	scan_prefetch_issue_ctx_t *spic;
1942 
1943 	if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1944 		return;
1945 
1946 	if (BP_IS_HOLE(bp) ||
1947 	    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1948 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1949 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1950 		return;
1951 
1952 	if (dsl_scan_check_prefetch_resume(spc, zb))
1953 		return;
1954 
1955 	scan_prefetch_ctx_add_ref(spc, scn);
1956 	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1957 	spic->spic_spc = spc;
1958 	spic->spic_bp = *bp;
1959 	spic->spic_zb = *zb;
1960 
1961 	/*
1962 	 * Add the IO to the queue of blocks to prefetch. This allows us to
1963 	 * prioritize blocks that we will need first for the main traversal
1964 	 * thread.
1965 	 */
1966 	mutex_enter(&spa->spa_scrub_lock);
1967 	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1968 		/* this block is already queued for prefetch */
1969 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1970 		scan_prefetch_ctx_rele(spc, scn);
1971 		mutex_exit(&spa->spa_scrub_lock);
1972 		return;
1973 	}
1974 
1975 	avl_insert(&scn->scn_prefetch_queue, spic, idx);
1976 	cv_broadcast(&spa->spa_scrub_io_cv);
1977 	mutex_exit(&spa->spa_scrub_lock);
1978 }
1979 
1980 static void
1981 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1982     uint64_t objset, uint64_t object)
1983 {
1984 	int i;
1985 	zbookmark_phys_t zb;
1986 	scan_prefetch_ctx_t *spc;
1987 
1988 	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1989 		return;
1990 
1991 	SET_BOOKMARK(&zb, objset, object, 0, 0);
1992 
1993 	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1994 
1995 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1996 		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1997 		zb.zb_blkid = i;
1998 		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1999 	}
2000 
2001 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2002 		zb.zb_level = 0;
2003 		zb.zb_blkid = DMU_SPILL_BLKID;
2004 		dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
2005 	}
2006 
2007 	scan_prefetch_ctx_rele(spc, FTAG);
2008 }
2009 
2010 static void
2011 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
2012     arc_buf_t *buf, void *private)
2013 {
2014 	(void) zio;
2015 	scan_prefetch_ctx_t *spc = private;
2016 	dsl_scan_t *scn = spc->spc_scn;
2017 	spa_t *spa = scn->scn_dp->dp_spa;
2018 
2019 	/* broadcast that the IO has completed for rate limiting purposes */
2020 	mutex_enter(&spa->spa_scrub_lock);
2021 	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
2022 	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
2023 	cv_broadcast(&spa->spa_scrub_io_cv);
2024 	mutex_exit(&spa->spa_scrub_lock);
2025 
2026 	/* if there was an error or we are done prefetching, just cleanup */
2027 	if (buf == NULL || scn->scn_prefetch_stop)
2028 		goto out;
2029 
2030 	if (BP_GET_LEVEL(bp) > 0) {
2031 		int i;
2032 		blkptr_t *cbp;
2033 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2034 		zbookmark_phys_t czb;
2035 
2036 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2037 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2038 			    zb->zb_level - 1, zb->zb_blkid * epb + i);
2039 			dsl_scan_prefetch(spc, cbp, &czb);
2040 		}
2041 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2042 		dnode_phys_t *cdnp;
2043 		int i;
2044 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2045 
2046 		for (i = 0, cdnp = buf->b_data; i < epb;
2047 		    i += cdnp->dn_extra_slots + 1,
2048 		    cdnp += cdnp->dn_extra_slots + 1) {
2049 			dsl_scan_prefetch_dnode(scn, cdnp,
2050 			    zb->zb_objset, zb->zb_blkid * epb + i);
2051 		}
2052 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2053 		objset_phys_t *osp = buf->b_data;
2054 
2055 		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2056 		    zb->zb_objset, DMU_META_DNODE_OBJECT);
2057 
2058 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
2059 			if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2060 				dsl_scan_prefetch_dnode(scn,
2061 				    &osp->os_projectused_dnode, zb->zb_objset,
2062 				    DMU_PROJECTUSED_OBJECT);
2063 			}
2064 			dsl_scan_prefetch_dnode(scn,
2065 			    &osp->os_groupused_dnode, zb->zb_objset,
2066 			    DMU_GROUPUSED_OBJECT);
2067 			dsl_scan_prefetch_dnode(scn,
2068 			    &osp->os_userused_dnode, zb->zb_objset,
2069 			    DMU_USERUSED_OBJECT);
2070 		}
2071 	}
2072 
2073 out:
2074 	if (buf != NULL)
2075 		arc_buf_destroy(buf, private);
2076 	scan_prefetch_ctx_rele(spc, scn);
2077 }
2078 
2079 static void
2080 dsl_scan_prefetch_thread(void *arg)
2081 {
2082 	dsl_scan_t *scn = arg;
2083 	spa_t *spa = scn->scn_dp->dp_spa;
2084 	scan_prefetch_issue_ctx_t *spic;
2085 
2086 	/* loop until we are told to stop */
2087 	while (!scn->scn_prefetch_stop) {
2088 		arc_flags_t flags = ARC_FLAG_NOWAIT |
2089 		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2090 		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2091 
2092 		mutex_enter(&spa->spa_scrub_lock);
2093 
2094 		/*
2095 		 * Wait until we have an IO to issue and are not above our
2096 		 * maximum in flight limit.
2097 		 */
2098 		while (!scn->scn_prefetch_stop &&
2099 		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2100 		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2101 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2102 		}
2103 
2104 		/* recheck if we should stop since we waited for the cv */
2105 		if (scn->scn_prefetch_stop) {
2106 			mutex_exit(&spa->spa_scrub_lock);
2107 			break;
2108 		}
2109 
2110 		/* remove the prefetch IO from the tree */
2111 		spic = avl_first(&scn->scn_prefetch_queue);
2112 		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2113 		avl_remove(&scn->scn_prefetch_queue, spic);
2114 
2115 		mutex_exit(&spa->spa_scrub_lock);
2116 
2117 		if (BP_IS_PROTECTED(&spic->spic_bp)) {
2118 			ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2119 			    BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2120 			ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2121 			zio_flags |= ZIO_FLAG_RAW;
2122 		}
2123 
2124 		/* We don't need data L1 buffer since we do not prefetch L0. */
2125 		blkptr_t *bp = &spic->spic_bp;
2126 		if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2127 		    BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2128 			flags |= ARC_FLAG_NO_BUF;
2129 
2130 		/* issue the prefetch asynchronously */
2131 		(void) arc_read(scn->scn_zio_root, spa, bp,
2132 		    dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2133 		    zio_flags, &flags, &spic->spic_zb);
2134 
2135 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2136 	}
2137 
2138 	ASSERT(scn->scn_prefetch_stop);
2139 
2140 	/* free any prefetches we didn't get to complete */
2141 	mutex_enter(&spa->spa_scrub_lock);
2142 	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2143 		avl_remove(&scn->scn_prefetch_queue, spic);
2144 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
2145 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2146 	}
2147 	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2148 	mutex_exit(&spa->spa_scrub_lock);
2149 }
2150 
2151 static boolean_t
2152 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2153     const zbookmark_phys_t *zb)
2154 {
2155 	/*
2156 	 * We never skip over user/group accounting objects (obj<0)
2157 	 */
2158 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2159 	    (int64_t)zb->zb_object >= 0) {
2160 		/*
2161 		 * If we already visited this bp & everything below (in
2162 		 * a prior txg sync), don't bother doing it again.
2163 		 */
2164 		if (zbookmark_subtree_completed(dnp, zb,
2165 		    &scn->scn_phys.scn_bookmark))
2166 			return (B_TRUE);
2167 
2168 		/*
2169 		 * If we found the block we're trying to resume from, or
2170 		 * we went past it, zero it out to indicate that it's OK
2171 		 * to start checking for suspending again.
2172 		 */
2173 		if (zbookmark_subtree_tbd(dnp, zb,
2174 		    &scn->scn_phys.scn_bookmark)) {
2175 			dprintf("resuming at %llx/%llx/%llx/%llx\n",
2176 			    (longlong_t)zb->zb_objset,
2177 			    (longlong_t)zb->zb_object,
2178 			    (longlong_t)zb->zb_level,
2179 			    (longlong_t)zb->zb_blkid);
2180 			memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2181 		}
2182 	}
2183 	return (B_FALSE);
2184 }
2185 
2186 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2187     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2188     dmu_objset_type_t ostype, dmu_tx_t *tx);
2189 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2190     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2191     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2192 
2193 /*
2194  * Return nonzero on i/o error.
2195  * Return new buf to write out in *bufp.
2196  */
2197 inline __attribute__((always_inline)) static int
2198 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2199     dnode_phys_t *dnp, const blkptr_t *bp,
2200     const zbookmark_phys_t *zb, dmu_tx_t *tx)
2201 {
2202 	dsl_pool_t *dp = scn->scn_dp;
2203 	spa_t *spa = dp->dp_spa;
2204 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2205 	int err;
2206 
2207 	ASSERT(!BP_IS_REDACTED(bp));
2208 
2209 	/*
2210 	 * There is an unlikely case of encountering dnodes with contradicting
2211 	 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2212 	 * or modified before commit 4254acb was merged. As it is not possible
2213 	 * to know which of the two is correct, report an error.
2214 	 */
2215 	if (dnp != NULL &&
2216 	    dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2217 		scn->scn_phys.scn_errors++;
2218 		spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2219 		return (SET_ERROR(EINVAL));
2220 	}
2221 
2222 	if (BP_GET_LEVEL(bp) > 0) {
2223 		arc_flags_t flags = ARC_FLAG_WAIT;
2224 		int i;
2225 		blkptr_t *cbp;
2226 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2227 		arc_buf_t *buf;
2228 
2229 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2230 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2231 		if (err) {
2232 			scn->scn_phys.scn_errors++;
2233 			return (err);
2234 		}
2235 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2236 			zbookmark_phys_t czb;
2237 
2238 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2239 			    zb->zb_level - 1,
2240 			    zb->zb_blkid * epb + i);
2241 			dsl_scan_visitbp(cbp, &czb, dnp,
2242 			    ds, scn, ostype, tx);
2243 		}
2244 		arc_buf_destroy(buf, &buf);
2245 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2246 		arc_flags_t flags = ARC_FLAG_WAIT;
2247 		dnode_phys_t *cdnp;
2248 		int i;
2249 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2250 		arc_buf_t *buf;
2251 
2252 		if (BP_IS_PROTECTED(bp)) {
2253 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2254 			zio_flags |= ZIO_FLAG_RAW;
2255 		}
2256 
2257 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2258 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2259 		if (err) {
2260 			scn->scn_phys.scn_errors++;
2261 			return (err);
2262 		}
2263 		for (i = 0, cdnp = buf->b_data; i < epb;
2264 		    i += cdnp->dn_extra_slots + 1,
2265 		    cdnp += cdnp->dn_extra_slots + 1) {
2266 			dsl_scan_visitdnode(scn, ds, ostype,
2267 			    cdnp, zb->zb_blkid * epb + i, tx);
2268 		}
2269 
2270 		arc_buf_destroy(buf, &buf);
2271 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2272 		arc_flags_t flags = ARC_FLAG_WAIT;
2273 		objset_phys_t *osp;
2274 		arc_buf_t *buf;
2275 
2276 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2277 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2278 		if (err) {
2279 			scn->scn_phys.scn_errors++;
2280 			return (err);
2281 		}
2282 
2283 		osp = buf->b_data;
2284 
2285 		dsl_scan_visitdnode(scn, ds, osp->os_type,
2286 		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2287 
2288 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
2289 			/*
2290 			 * We also always visit user/group/project accounting
2291 			 * objects, and never skip them, even if we are
2292 			 * suspending. This is necessary so that the
2293 			 * space deltas from this txg get integrated.
2294 			 */
2295 			if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2296 				dsl_scan_visitdnode(scn, ds, osp->os_type,
2297 				    &osp->os_projectused_dnode,
2298 				    DMU_PROJECTUSED_OBJECT, tx);
2299 			dsl_scan_visitdnode(scn, ds, osp->os_type,
2300 			    &osp->os_groupused_dnode,
2301 			    DMU_GROUPUSED_OBJECT, tx);
2302 			dsl_scan_visitdnode(scn, ds, osp->os_type,
2303 			    &osp->os_userused_dnode,
2304 			    DMU_USERUSED_OBJECT, tx);
2305 		}
2306 		arc_buf_destroy(buf, &buf);
2307 	} else if (!zfs_blkptr_verify(spa, bp,
2308 	    BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2309 		/*
2310 		 * Sanity check the block pointer contents, this is handled
2311 		 * by arc_read() for the cases above.
2312 		 */
2313 		scn->scn_phys.scn_errors++;
2314 		spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2315 		return (SET_ERROR(EINVAL));
2316 	}
2317 
2318 	return (0);
2319 }
2320 
2321 inline __attribute__((always_inline)) static void
2322 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2323     dmu_objset_type_t ostype, dnode_phys_t *dnp,
2324     uint64_t object, dmu_tx_t *tx)
2325 {
2326 	int j;
2327 
2328 	for (j = 0; j < dnp->dn_nblkptr; j++) {
2329 		zbookmark_phys_t czb;
2330 
2331 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2332 		    dnp->dn_nlevels - 1, j);
2333 		dsl_scan_visitbp(&dnp->dn_blkptr[j],
2334 		    &czb, dnp, ds, scn, ostype, tx);
2335 	}
2336 
2337 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2338 		zbookmark_phys_t czb;
2339 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2340 		    0, DMU_SPILL_BLKID);
2341 		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2342 		    &czb, dnp, ds, scn, ostype, tx);
2343 	}
2344 }
2345 
2346 /*
2347  * The arguments are in this order because mdb can only print the
2348  * first 5; we want them to be useful.
2349  */
2350 static void
2351 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2352     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2353     dmu_objset_type_t ostype, dmu_tx_t *tx)
2354 {
2355 	dsl_pool_t *dp = scn->scn_dp;
2356 
2357 	if (dsl_scan_check_suspend(scn, zb))
2358 		return;
2359 
2360 	if (dsl_scan_check_resume(scn, dnp, zb))
2361 		return;
2362 
2363 	scn->scn_visited_this_txg++;
2364 
2365 	if (BP_IS_HOLE(bp)) {
2366 		scn->scn_holes_this_txg++;
2367 		return;
2368 	}
2369 
2370 	if (BP_IS_REDACTED(bp)) {
2371 		ASSERT(dsl_dataset_feature_is_active(ds,
2372 		    SPA_FEATURE_REDACTED_DATASETS));
2373 		return;
2374 	}
2375 
2376 	/*
2377 	 * Check if this block contradicts any filesystem flags.
2378 	 */
2379 	spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2380 	if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2381 		ASSERT(dsl_dataset_feature_is_active(ds, f));
2382 
2383 	f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2384 	if (f != SPA_FEATURE_NONE)
2385 		ASSERT(dsl_dataset_feature_is_active(ds, f));
2386 
2387 	f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2388 	if (f != SPA_FEATURE_NONE)
2389 		ASSERT(dsl_dataset_feature_is_active(ds, f));
2390 
2391 	if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2392 		scn->scn_lt_min_this_txg++;
2393 		return;
2394 	}
2395 
2396 	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2397 		return;
2398 
2399 	/*
2400 	 * If dsl_scan_ddt() has already visited this block, it will have
2401 	 * already done any translations or scrubbing, so don't call the
2402 	 * callback again.
2403 	 */
2404 	if (ddt_class_contains(dp->dp_spa,
2405 	    scn->scn_phys.scn_ddt_class_max, bp)) {
2406 		scn->scn_ddt_contained_this_txg++;
2407 		return;
2408 	}
2409 
2410 	/*
2411 	 * If this block is from the future (after cur_max_txg), then we
2412 	 * are doing this on behalf of a deleted snapshot, and we will
2413 	 * revisit the future block on the next pass of this dataset.
2414 	 * Don't scan it now unless we need to because something
2415 	 * under it was modified.
2416 	 */
2417 	if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2418 		scn->scn_gt_max_this_txg++;
2419 		return;
2420 	}
2421 
2422 	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2423 }
2424 
2425 static void
2426 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2427     dmu_tx_t *tx)
2428 {
2429 	zbookmark_phys_t zb;
2430 	scan_prefetch_ctx_t *spc;
2431 
2432 	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2433 	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2434 
2435 	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2436 		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2437 		    zb.zb_objset, 0, 0, 0);
2438 	} else {
2439 		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2440 	}
2441 
2442 	scn->scn_objsets_visited_this_txg++;
2443 
2444 	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2445 	dsl_scan_prefetch(spc, bp, &zb);
2446 	scan_prefetch_ctx_rele(spc, FTAG);
2447 
2448 	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2449 
2450 	dprintf_ds(ds, "finished scan%s", "");
2451 }
2452 
2453 static void
2454 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2455 {
2456 	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2457 		if (ds->ds_is_snapshot) {
2458 			/*
2459 			 * Note:
2460 			 *  - scn_cur_{min,max}_txg stays the same.
2461 			 *  - Setting the flag is not really necessary if
2462 			 *    scn_cur_max_txg == scn_max_txg, because there
2463 			 *    is nothing after this snapshot that we care
2464 			 *    about.  However, we set it anyway and then
2465 			 *    ignore it when we retraverse it in
2466 			 *    dsl_scan_visitds().
2467 			 */
2468 			scn_phys->scn_bookmark.zb_objset =
2469 			    dsl_dataset_phys(ds)->ds_next_snap_obj;
2470 			zfs_dbgmsg("destroying ds %llu on %s; currently "
2471 			    "traversing; reset zb_objset to %llu",
2472 			    (u_longlong_t)ds->ds_object,
2473 			    ds->ds_dir->dd_pool->dp_spa->spa_name,
2474 			    (u_longlong_t)dsl_dataset_phys(ds)->
2475 			    ds_next_snap_obj);
2476 			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2477 		} else {
2478 			SET_BOOKMARK(&scn_phys->scn_bookmark,
2479 			    ZB_DESTROYED_OBJSET, 0, 0, 0);
2480 			zfs_dbgmsg("destroying ds %llu on %s; currently "
2481 			    "traversing; reset bookmark to -1,0,0,0",
2482 			    (u_longlong_t)ds->ds_object,
2483 			    ds->ds_dir->dd_pool->dp_spa->spa_name);
2484 		}
2485 	}
2486 }
2487 
2488 /*
2489  * Invoked when a dataset is destroyed. We need to make sure that:
2490  *
2491  * 1) If it is the dataset that was currently being scanned, we write
2492  *	a new dsl_scan_phys_t and marking the objset reference in it
2493  *	as destroyed.
2494  * 2) Remove it from the work queue, if it was present.
2495  *
2496  * If the dataset was actually a snapshot, instead of marking the dataset
2497  * as destroyed, we instead substitute the next snapshot in line.
2498  */
2499 void
2500 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2501 {
2502 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2503 	dsl_scan_t *scn = dp->dp_scan;
2504 	uint64_t mintxg;
2505 
2506 	if (!dsl_scan_is_running(scn))
2507 		return;
2508 
2509 	ds_destroyed_scn_phys(ds, &scn->scn_phys);
2510 	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2511 
2512 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2513 		scan_ds_queue_remove(scn, ds->ds_object);
2514 		if (ds->ds_is_snapshot)
2515 			scan_ds_queue_insert(scn,
2516 			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2517 	}
2518 
2519 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2520 	    ds->ds_object, &mintxg) == 0) {
2521 		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2522 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2523 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2524 		if (ds->ds_is_snapshot) {
2525 			/*
2526 			 * We keep the same mintxg; it could be >
2527 			 * ds_creation_txg if the previous snapshot was
2528 			 * deleted too.
2529 			 */
2530 			VERIFY(zap_add_int_key(dp->dp_meta_objset,
2531 			    scn->scn_phys.scn_queue_obj,
2532 			    dsl_dataset_phys(ds)->ds_next_snap_obj,
2533 			    mintxg, tx) == 0);
2534 			zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2535 			    "replacing with %llu",
2536 			    (u_longlong_t)ds->ds_object,
2537 			    dp->dp_spa->spa_name,
2538 			    (u_longlong_t)dsl_dataset_phys(ds)->
2539 			    ds_next_snap_obj);
2540 		} else {
2541 			zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2542 			    "removing",
2543 			    (u_longlong_t)ds->ds_object,
2544 			    dp->dp_spa->spa_name);
2545 		}
2546 	}
2547 
2548 	/*
2549 	 * dsl_scan_sync() should be called after this, and should sync
2550 	 * out our changed state, but just to be safe, do it here.
2551 	 */
2552 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2553 }
2554 
2555 static void
2556 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2557 {
2558 	if (scn_bookmark->zb_objset == ds->ds_object) {
2559 		scn_bookmark->zb_objset =
2560 		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
2561 		zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2562 		    "reset zb_objset to %llu",
2563 		    (u_longlong_t)ds->ds_object,
2564 		    ds->ds_dir->dd_pool->dp_spa->spa_name,
2565 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2566 	}
2567 }
2568 
2569 /*
2570  * Called when a dataset is snapshotted. If we were currently traversing
2571  * this snapshot, we reset our bookmark to point at the newly created
2572  * snapshot. We also modify our work queue to remove the old snapshot and
2573  * replace with the new one.
2574  */
2575 void
2576 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2577 {
2578 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2579 	dsl_scan_t *scn = dp->dp_scan;
2580 	uint64_t mintxg;
2581 
2582 	if (!dsl_scan_is_running(scn))
2583 		return;
2584 
2585 	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2586 
2587 	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2588 	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2589 
2590 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2591 		scan_ds_queue_remove(scn, ds->ds_object);
2592 		scan_ds_queue_insert(scn,
2593 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2594 	}
2595 
2596 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2597 	    ds->ds_object, &mintxg) == 0) {
2598 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2599 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2600 		VERIFY(zap_add_int_key(dp->dp_meta_objset,
2601 		    scn->scn_phys.scn_queue_obj,
2602 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2603 		zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2604 		    "replacing with %llu",
2605 		    (u_longlong_t)ds->ds_object,
2606 		    dp->dp_spa->spa_name,
2607 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2608 	}
2609 
2610 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2611 }
2612 
2613 static void
2614 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2615     zbookmark_phys_t *scn_bookmark)
2616 {
2617 	if (scn_bookmark->zb_objset == ds1->ds_object) {
2618 		scn_bookmark->zb_objset = ds2->ds_object;
2619 		zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2620 		    "reset zb_objset to %llu",
2621 		    (u_longlong_t)ds1->ds_object,
2622 		    ds1->ds_dir->dd_pool->dp_spa->spa_name,
2623 		    (u_longlong_t)ds2->ds_object);
2624 	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2625 		scn_bookmark->zb_objset = ds1->ds_object;
2626 		zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2627 		    "reset zb_objset to %llu",
2628 		    (u_longlong_t)ds2->ds_object,
2629 		    ds2->ds_dir->dd_pool->dp_spa->spa_name,
2630 		    (u_longlong_t)ds1->ds_object);
2631 	}
2632 }
2633 
2634 /*
2635  * Called when an origin dataset and its clone are swapped.  If we were
2636  * currently traversing the dataset, we need to switch to traversing the
2637  * newly promoted clone.
2638  */
2639 void
2640 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2641 {
2642 	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2643 	dsl_scan_t *scn = dp->dp_scan;
2644 	uint64_t mintxg1, mintxg2;
2645 	boolean_t ds1_queued, ds2_queued;
2646 
2647 	if (!dsl_scan_is_running(scn))
2648 		return;
2649 
2650 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2651 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2652 
2653 	/*
2654 	 * Handle the in-memory scan queue.
2655 	 */
2656 	ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2657 	ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2658 
2659 	/* Sanity checking. */
2660 	if (ds1_queued) {
2661 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2662 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2663 	}
2664 	if (ds2_queued) {
2665 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2666 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2667 	}
2668 
2669 	if (ds1_queued && ds2_queued) {
2670 		/*
2671 		 * If both are queued, we don't need to do anything.
2672 		 * The swapping code below would not handle this case correctly,
2673 		 * since we can't insert ds2 if it is already there. That's
2674 		 * because scan_ds_queue_insert() prohibits a duplicate insert
2675 		 * and panics.
2676 		 */
2677 	} else if (ds1_queued) {
2678 		scan_ds_queue_remove(scn, ds1->ds_object);
2679 		scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2680 	} else if (ds2_queued) {
2681 		scan_ds_queue_remove(scn, ds2->ds_object);
2682 		scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2683 	}
2684 
2685 	/*
2686 	 * Handle the on-disk scan queue.
2687 	 * The on-disk state is an out-of-date version of the in-memory state,
2688 	 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2689 	 * be different. Therefore we need to apply the swap logic to the
2690 	 * on-disk state independently of the in-memory state.
2691 	 */
2692 	ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2693 	    scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2694 	ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2695 	    scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2696 
2697 	/* Sanity checking. */
2698 	if (ds1_queued) {
2699 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2700 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2701 	}
2702 	if (ds2_queued) {
2703 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2704 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2705 	}
2706 
2707 	if (ds1_queued && ds2_queued) {
2708 		/*
2709 		 * If both are queued, we don't need to do anything.
2710 		 * Alternatively, we could check for EEXIST from
2711 		 * zap_add_int_key() and back out to the original state, but
2712 		 * that would be more work than checking for this case upfront.
2713 		 */
2714 	} else if (ds1_queued) {
2715 		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2716 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2717 		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2718 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2719 		zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2720 		    "replacing with %llu",
2721 		    (u_longlong_t)ds1->ds_object,
2722 		    dp->dp_spa->spa_name,
2723 		    (u_longlong_t)ds2->ds_object);
2724 	} else if (ds2_queued) {
2725 		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2726 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2727 		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2728 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2729 		zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2730 		    "replacing with %llu",
2731 		    (u_longlong_t)ds2->ds_object,
2732 		    dp->dp_spa->spa_name,
2733 		    (u_longlong_t)ds1->ds_object);
2734 	}
2735 
2736 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2737 }
2738 
2739 static int
2740 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2741 {
2742 	uint64_t originobj = *(uint64_t *)arg;
2743 	dsl_dataset_t *ds;
2744 	int err;
2745 	dsl_scan_t *scn = dp->dp_scan;
2746 
2747 	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2748 		return (0);
2749 
2750 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2751 	if (err)
2752 		return (err);
2753 
2754 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2755 		dsl_dataset_t *prev;
2756 		err = dsl_dataset_hold_obj(dp,
2757 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2758 
2759 		dsl_dataset_rele(ds, FTAG);
2760 		if (err)
2761 			return (err);
2762 		ds = prev;
2763 	}
2764 	mutex_enter(&scn->scn_queue_lock);
2765 	scan_ds_queue_insert(scn, ds->ds_object,
2766 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2767 	mutex_exit(&scn->scn_queue_lock);
2768 	dsl_dataset_rele(ds, FTAG);
2769 	return (0);
2770 }
2771 
2772 static void
2773 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2774 {
2775 	dsl_pool_t *dp = scn->scn_dp;
2776 	dsl_dataset_t *ds;
2777 
2778 	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2779 
2780 	if (scn->scn_phys.scn_cur_min_txg >=
2781 	    scn->scn_phys.scn_max_txg) {
2782 		/*
2783 		 * This can happen if this snapshot was created after the
2784 		 * scan started, and we already completed a previous snapshot
2785 		 * that was created after the scan started.  This snapshot
2786 		 * only references blocks with:
2787 		 *
2788 		 *	birth < our ds_creation_txg
2789 		 *	cur_min_txg is no less than ds_creation_txg.
2790 		 *	We have already visited these blocks.
2791 		 * or
2792 		 *	birth > scn_max_txg
2793 		 *	The scan requested not to visit these blocks.
2794 		 *
2795 		 * Subsequent snapshots (and clones) can reference our
2796 		 * blocks, or blocks with even higher birth times.
2797 		 * Therefore we do not need to visit them either,
2798 		 * so we do not add them to the work queue.
2799 		 *
2800 		 * Note that checking for cur_min_txg >= cur_max_txg
2801 		 * is not sufficient, because in that case we may need to
2802 		 * visit subsequent snapshots.  This happens when min_txg > 0,
2803 		 * which raises cur_min_txg.  In this case we will visit
2804 		 * this dataset but skip all of its blocks, because the
2805 		 * rootbp's birth time is < cur_min_txg.  Then we will
2806 		 * add the next snapshots/clones to the work queue.
2807 		 */
2808 		char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2809 		dsl_dataset_name(ds, dsname);
2810 		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2811 		    "cur_min_txg (%llu) >= max_txg (%llu)",
2812 		    (longlong_t)dsobj, dsname,
2813 		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2814 		    (longlong_t)scn->scn_phys.scn_max_txg);
2815 		kmem_free(dsname, MAXNAMELEN);
2816 
2817 		goto out;
2818 	}
2819 
2820 	/*
2821 	 * Only the ZIL in the head (non-snapshot) is valid. Even though
2822 	 * snapshots can have ZIL block pointers (which may be the same
2823 	 * BP as in the head), they must be ignored. In addition, $ORIGIN
2824 	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2825 	 * need to look for a ZIL in it either. So we traverse the ZIL here,
2826 	 * rather than in scan_recurse(), because the regular snapshot
2827 	 * block-sharing rules don't apply to it.
2828 	 */
2829 	if (!dsl_dataset_is_snapshot(ds) &&
2830 	    (dp->dp_origin_snap == NULL ||
2831 	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2832 		objset_t *os;
2833 		if (dmu_objset_from_ds(ds, &os) != 0) {
2834 			goto out;
2835 		}
2836 		dsl_scan_zil(dp, &os->os_zil_header);
2837 	}
2838 
2839 	/*
2840 	 * Iterate over the bps in this ds.
2841 	 */
2842 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
2843 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2844 	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2845 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
2846 
2847 	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2848 	dsl_dataset_name(ds, dsname);
2849 	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2850 	    "suspending=%u",
2851 	    (longlong_t)dsobj, dsname,
2852 	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2853 	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
2854 	    (int)scn->scn_suspending);
2855 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2856 
2857 	if (scn->scn_suspending)
2858 		goto out;
2859 
2860 	/*
2861 	 * We've finished this pass over this dataset.
2862 	 */
2863 
2864 	/*
2865 	 * If we did not completely visit this dataset, do another pass.
2866 	 */
2867 	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2868 		zfs_dbgmsg("incomplete pass on %s; visiting again",
2869 		    dp->dp_spa->spa_name);
2870 		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2871 		scan_ds_queue_insert(scn, ds->ds_object,
2872 		    scn->scn_phys.scn_cur_max_txg);
2873 		goto out;
2874 	}
2875 
2876 	/*
2877 	 * Add descendant datasets to work queue.
2878 	 */
2879 	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2880 		scan_ds_queue_insert(scn,
2881 		    dsl_dataset_phys(ds)->ds_next_snap_obj,
2882 		    dsl_dataset_phys(ds)->ds_creation_txg);
2883 	}
2884 	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2885 		boolean_t usenext = B_FALSE;
2886 		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2887 			uint64_t count;
2888 			/*
2889 			 * A bug in a previous version of the code could
2890 			 * cause upgrade_clones_cb() to not set
2891 			 * ds_next_snap_obj when it should, leading to a
2892 			 * missing entry.  Therefore we can only use the
2893 			 * next_clones_obj when its count is correct.
2894 			 */
2895 			int err = zap_count(dp->dp_meta_objset,
2896 			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2897 			if (err == 0 &&
2898 			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
2899 				usenext = B_TRUE;
2900 		}
2901 
2902 		if (usenext) {
2903 			zap_cursor_t zc;
2904 			zap_attribute_t *za = zap_attribute_alloc();
2905 			for (zap_cursor_init(&zc, dp->dp_meta_objset,
2906 			    dsl_dataset_phys(ds)->ds_next_clones_obj);
2907 			    zap_cursor_retrieve(&zc, za) == 0;
2908 			    (void) zap_cursor_advance(&zc)) {
2909 				scan_ds_queue_insert(scn,
2910 				    zfs_strtonum(za->za_name, NULL),
2911 				    dsl_dataset_phys(ds)->ds_creation_txg);
2912 			}
2913 			zap_cursor_fini(&zc);
2914 			zap_attribute_free(za);
2915 		} else {
2916 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2917 			    enqueue_clones_cb, &ds->ds_object,
2918 			    DS_FIND_CHILDREN));
2919 		}
2920 	}
2921 
2922 out:
2923 	dsl_dataset_rele(ds, FTAG);
2924 }
2925 
2926 static int
2927 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2928 {
2929 	(void) arg;
2930 	dsl_dataset_t *ds;
2931 	int err;
2932 	dsl_scan_t *scn = dp->dp_scan;
2933 
2934 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2935 	if (err)
2936 		return (err);
2937 
2938 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2939 		dsl_dataset_t *prev;
2940 		err = dsl_dataset_hold_obj(dp,
2941 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2942 		if (err) {
2943 			dsl_dataset_rele(ds, FTAG);
2944 			return (err);
2945 		}
2946 
2947 		/*
2948 		 * If this is a clone, we don't need to worry about it for now.
2949 		 */
2950 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2951 			dsl_dataset_rele(ds, FTAG);
2952 			dsl_dataset_rele(prev, FTAG);
2953 			return (0);
2954 		}
2955 		dsl_dataset_rele(ds, FTAG);
2956 		ds = prev;
2957 	}
2958 
2959 	mutex_enter(&scn->scn_queue_lock);
2960 	scan_ds_queue_insert(scn, ds->ds_object,
2961 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2962 	mutex_exit(&scn->scn_queue_lock);
2963 	dsl_dataset_rele(ds, FTAG);
2964 	return (0);
2965 }
2966 
2967 void
2968 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2969     ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
2970 {
2971 	(void) tx;
2972 	const ddt_key_t *ddk = &ddlwe->ddlwe_key;
2973 	blkptr_t bp;
2974 	zbookmark_phys_t zb = { 0 };
2975 
2976 	if (!dsl_scan_is_running(scn))
2977 		return;
2978 
2979 	/*
2980 	 * This function is special because it is the only thing
2981 	 * that can add scan_io_t's to the vdev scan queues from
2982 	 * outside dsl_scan_sync(). For the most part this is ok
2983 	 * as long as it is called from within syncing context.
2984 	 * However, dsl_scan_sync() expects that no new sio's will
2985 	 * be added between when all the work for a scan is done
2986 	 * and the next txg when the scan is actually marked as
2987 	 * completed. This check ensures we do not issue new sio's
2988 	 * during this period.
2989 	 */
2990 	if (scn->scn_done_txg != 0)
2991 		return;
2992 
2993 	for (int p = 0; p < DDT_NPHYS(ddt); p++) {
2994 		ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
2995 		uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v);
2996 
2997 		if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg)
2998 			continue;
2999 		ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp);
3000 
3001 		scn->scn_visited_this_txg++;
3002 		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
3003 	}
3004 }
3005 
3006 /*
3007  * Scrub/dedup interaction.
3008  *
3009  * If there are N references to a deduped block, we don't want to scrub it
3010  * N times -- ideally, we should scrub it exactly once.
3011  *
3012  * We leverage the fact that the dde's replication class (ddt_class_t)
3013  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
3014  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
3015  *
3016  * To prevent excess scrubbing, the scrub begins by walking the DDT
3017  * to find all blocks with refcnt > 1, and scrubs each of these once.
3018  * Since there are two replication classes which contain blocks with
3019  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
3020  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
3021  *
3022  * There would be nothing more to say if a block's refcnt couldn't change
3023  * during a scrub, but of course it can so we must account for changes
3024  * in a block's replication class.
3025  *
3026  * Here's an example of what can occur:
3027  *
3028  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
3029  * when visited during the top-down scrub phase, it will be scrubbed twice.
3030  * This negates our scrub optimization, but is otherwise harmless.
3031  *
3032  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
3033  * on each visit during the top-down scrub phase, it will never be scrubbed.
3034  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
3035  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
3036  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
3037  * while a scrub is in progress, it scrubs the block right then.
3038  */
3039 static void
3040 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3041 {
3042 	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3043 	ddt_lightweight_entry_t ddlwe = {0};
3044 	int error;
3045 	uint64_t n = 0;
3046 
3047 	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) {
3048 		ddt_t *ddt;
3049 
3050 		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3051 			break;
3052 		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3053 		    (longlong_t)ddb->ddb_class,
3054 		    (longlong_t)ddb->ddb_type,
3055 		    (longlong_t)ddb->ddb_checksum,
3056 		    (longlong_t)ddb->ddb_cursor);
3057 
3058 		/* There should be no pending changes to the dedup table */
3059 		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3060 		ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3061 
3062 		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx);
3063 		n++;
3064 
3065 		if (dsl_scan_check_suspend(scn, NULL))
3066 			break;
3067 	}
3068 
3069 	if (error == EAGAIN) {
3070 		dsl_scan_check_suspend(scn, NULL);
3071 		error = 0;
3072 
3073 		zfs_dbgmsg("waiting for ddt to become ready for scan "
3074 		    "on %s with class_max = %u; suspending=%u",
3075 		    scn->scn_dp->dp_spa->spa_name,
3076 		    (int)scn->scn_phys.scn_ddt_class_max,
3077 		    (int)scn->scn_suspending);
3078 	} else
3079 		zfs_dbgmsg("scanned %llu ddt entries on %s with "
3080 		    "class_max = %u; suspending=%u", (longlong_t)n,
3081 		    scn->scn_dp->dp_spa->spa_name,
3082 		    (int)scn->scn_phys.scn_ddt_class_max,
3083 		    (int)scn->scn_suspending);
3084 
3085 	ASSERT(error == 0 || error == ENOENT);
3086 	ASSERT(error != ENOENT ||
3087 	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3088 }
3089 
3090 static uint64_t
3091 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3092 {
3093 	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3094 	if (ds->ds_is_snapshot)
3095 		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3096 	return (smt);
3097 }
3098 
3099 static void
3100 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3101 {
3102 	scan_ds_t *sds;
3103 	dsl_pool_t *dp = scn->scn_dp;
3104 
3105 	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3106 	    scn->scn_phys.scn_ddt_class_max) {
3107 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3108 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3109 		dsl_scan_ddt(scn, tx);
3110 		if (scn->scn_suspending)
3111 			return;
3112 	}
3113 
3114 	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3115 		/* First do the MOS & ORIGIN */
3116 
3117 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3118 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3119 		dsl_scan_visit_rootbp(scn, NULL,
3120 		    &dp->dp_meta_rootbp, tx);
3121 		if (scn->scn_suspending)
3122 			return;
3123 
3124 		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3125 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3126 			    enqueue_cb, NULL, DS_FIND_CHILDREN));
3127 		} else {
3128 			dsl_scan_visitds(scn,
3129 			    dp->dp_origin_snap->ds_object, tx);
3130 		}
3131 		ASSERT(!scn->scn_suspending);
3132 	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
3133 	    ZB_DESTROYED_OBJSET) {
3134 		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3135 		/*
3136 		 * If we were suspended, continue from here. Note if the
3137 		 * ds we were suspended on was deleted, the zb_objset may
3138 		 * be -1, so we will skip this and find a new objset
3139 		 * below.
3140 		 */
3141 		dsl_scan_visitds(scn, dsobj, tx);
3142 		if (scn->scn_suspending)
3143 			return;
3144 	}
3145 
3146 	/*
3147 	 * In case we suspended right at the end of the ds, zero the
3148 	 * bookmark so we don't think that we're still trying to resume.
3149 	 */
3150 	memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3151 
3152 	/*
3153 	 * Keep pulling things out of the dataset avl queue. Updates to the
3154 	 * persistent zap-object-as-queue happen only at checkpoints.
3155 	 */
3156 	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3157 		dsl_dataset_t *ds;
3158 		uint64_t dsobj = sds->sds_dsobj;
3159 		uint64_t txg = sds->sds_txg;
3160 
3161 		/* dequeue and free the ds from the queue */
3162 		scan_ds_queue_remove(scn, dsobj);
3163 		sds = NULL;
3164 
3165 		/* set up min / max txg */
3166 		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3167 		if (txg != 0) {
3168 			scn->scn_phys.scn_cur_min_txg =
3169 			    MAX(scn->scn_phys.scn_min_txg, txg);
3170 		} else {
3171 			scn->scn_phys.scn_cur_min_txg =
3172 			    MAX(scn->scn_phys.scn_min_txg,
3173 			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
3174 		}
3175 		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3176 		dsl_dataset_rele(ds, FTAG);
3177 
3178 		dsl_scan_visitds(scn, dsobj, tx);
3179 		if (scn->scn_suspending)
3180 			return;
3181 	}
3182 
3183 	/* No more objsets to fetch, we're done */
3184 	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3185 	ASSERT0(scn->scn_suspending);
3186 }
3187 
3188 static uint64_t
3189 dsl_scan_count_data_disks(spa_t *spa)
3190 {
3191 	vdev_t *rvd = spa->spa_root_vdev;
3192 	uint64_t i, leaves = 0;
3193 
3194 	for (i = 0; i < rvd->vdev_children; i++) {
3195 		vdev_t *vd = rvd->vdev_child[i];
3196 		if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3197 			continue;
3198 		leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3199 	}
3200 	return (leaves);
3201 }
3202 
3203 static void
3204 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3205 {
3206 	int i;
3207 	uint64_t cur_size = 0;
3208 
3209 	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3210 		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3211 	}
3212 
3213 	q->q_total_zio_size_this_txg += cur_size;
3214 	q->q_zios_this_txg++;
3215 }
3216 
3217 static void
3218 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3219     uint64_t end)
3220 {
3221 	q->q_total_seg_size_this_txg += end - start;
3222 	q->q_segs_this_txg++;
3223 }
3224 
3225 static boolean_t
3226 scan_io_queue_check_suspend(dsl_scan_t *scn)
3227 {
3228 	/* See comment in dsl_scan_check_suspend() */
3229 	uint64_t curr_time_ns = gethrtime();
3230 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3231 	uint64_t sync_time_ns = curr_time_ns -
3232 	    scn->scn_dp->dp_spa->spa_sync_starttime;
3233 	uint64_t dirty_min_bytes = zfs_dirty_data_max *
3234 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
3235 	uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3236 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3237 
3238 	return ((NSEC2MSEC(scan_time_ns) > mintime &&
3239 	    (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3240 	    txg_sync_waiting(scn->scn_dp) ||
3241 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3242 	    spa_shutting_down(scn->scn_dp->dp_spa));
3243 }
3244 
3245 /*
3246  * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3247  * disk. This consumes the io_list and frees the scan_io_t's. This is
3248  * called when emptying queues, either when we're up against the memory
3249  * limit or when we have finished scanning. Returns B_TRUE if we stopped
3250  * processing the list before we finished. Any sios that were not issued
3251  * will remain in the io_list.
3252  */
3253 static boolean_t
3254 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3255 {
3256 	dsl_scan_t *scn = queue->q_scn;
3257 	scan_io_t *sio;
3258 	boolean_t suspended = B_FALSE;
3259 
3260 	while ((sio = list_head(io_list)) != NULL) {
3261 		blkptr_t bp;
3262 
3263 		if (scan_io_queue_check_suspend(scn)) {
3264 			suspended = B_TRUE;
3265 			break;
3266 		}
3267 
3268 		sio2bp(sio, &bp);
3269 		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3270 		    &sio->sio_zb, queue);
3271 		(void) list_remove_head(io_list);
3272 		scan_io_queues_update_zio_stats(queue, &bp);
3273 		sio_free(sio);
3274 	}
3275 	return (suspended);
3276 }
3277 
3278 /*
3279  * This function removes sios from an IO queue which reside within a given
3280  * range_seg_t and inserts them (in offset order) into a list. Note that
3281  * we only ever return a maximum of 32 sios at once. If there are more sios
3282  * to process within this segment that did not make it onto the list we
3283  * return B_TRUE and otherwise B_FALSE.
3284  */
3285 static boolean_t
3286 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
3287 {
3288 	scan_io_t *srch_sio, *sio, *next_sio;
3289 	avl_index_t idx;
3290 	uint_t num_sios = 0;
3291 	int64_t bytes_issued = 0;
3292 
3293 	ASSERT(rs != NULL);
3294 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3295 
3296 	srch_sio = sio_alloc(1);
3297 	srch_sio->sio_nr_dvas = 1;
3298 	SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
3299 
3300 	/*
3301 	 * The exact start of the extent might not contain any matching zios,
3302 	 * so if that's the case, examine the next one in the tree.
3303 	 */
3304 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3305 	sio_free(srch_sio);
3306 
3307 	if (sio == NULL)
3308 		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3309 
3310 	while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3311 	    queue->q_exts_by_addr) && num_sios <= 32) {
3312 		ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
3313 		    queue->q_exts_by_addr));
3314 		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
3315 		    queue->q_exts_by_addr));
3316 
3317 		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3318 		avl_remove(&queue->q_sios_by_addr, sio);
3319 		if (avl_is_empty(&queue->q_sios_by_addr))
3320 			atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3321 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
3322 
3323 		bytes_issued += SIO_GET_ASIZE(sio);
3324 		num_sios++;
3325 		list_insert_tail(list, sio);
3326 		sio = next_sio;
3327 	}
3328 
3329 	/*
3330 	 * We limit the number of sios we process at once to 32 to avoid
3331 	 * biting off more than we can chew. If we didn't take everything
3332 	 * in the segment we update it to reflect the work we were able to
3333 	 * complete. Otherwise, we remove it from the range tree entirely.
3334 	 */
3335 	if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3336 	    queue->q_exts_by_addr)) {
3337 		range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3338 		    -bytes_issued);
3339 		range_tree_resize_segment(queue->q_exts_by_addr, rs,
3340 		    SIO_GET_OFFSET(sio), rs_get_end(rs,
3341 		    queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3342 		queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3343 		return (B_TRUE);
3344 	} else {
3345 		uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
3346 		uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
3347 		range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
3348 		queue->q_last_ext_addr = -1;
3349 		return (B_FALSE);
3350 	}
3351 }
3352 
3353 /*
3354  * This is called from the queue emptying thread and selects the next
3355  * extent from which we are to issue I/Os. The behavior of this function
3356  * depends on the state of the scan, the current memory consumption and
3357  * whether or not we are performing a scan shutdown.
3358  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3359  * 	needs to perform a checkpoint
3360  * 2) We select the largest available extent if we are up against the
3361  * 	memory limit.
3362  * 3) Otherwise we don't select any extents.
3363  */
3364 static range_seg_t *
3365 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3366 {
3367 	dsl_scan_t *scn = queue->q_scn;
3368 	range_tree_t *rt = queue->q_exts_by_addr;
3369 
3370 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3371 	ASSERT(scn->scn_is_sorted);
3372 
3373 	if (!scn->scn_checkpointing && !scn->scn_clearing)
3374 		return (NULL);
3375 
3376 	/*
3377 	 * During normal clearing, we want to issue our largest segments
3378 	 * first, keeping IO as sequential as possible, and leaving the
3379 	 * smaller extents for later with the hope that they might eventually
3380 	 * grow to larger sequential segments. However, when the scan is
3381 	 * checkpointing, no new extents will be added to the sorting queue,
3382 	 * so the way we are sorted now is as good as it will ever get.
3383 	 * In this case, we instead switch to issuing extents in LBA order.
3384 	 */
3385 	if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3386 	    zfs_scan_issue_strategy == 1)
3387 		return (range_tree_first(rt));
3388 
3389 	/*
3390 	 * Try to continue previous extent if it is not completed yet.  After
3391 	 * shrink in scan_io_queue_gather() it may no longer be the best, but
3392 	 * otherwise we leave shorter remnant every txg.
3393 	 */
3394 	uint64_t start;
3395 	uint64_t size = 1ULL << rt->rt_shift;
3396 	range_seg_t *addr_rs;
3397 	if (queue->q_last_ext_addr != -1) {
3398 		start = queue->q_last_ext_addr;
3399 		addr_rs = range_tree_find(rt, start, size);
3400 		if (addr_rs != NULL)
3401 			return (addr_rs);
3402 	}
3403 
3404 	/*
3405 	 * Nothing to continue, so find new best extent.
3406 	 */
3407 	uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3408 	if (v == NULL)
3409 		return (NULL);
3410 	queue->q_last_ext_addr = start = *v << rt->rt_shift;
3411 
3412 	/*
3413 	 * We need to get the original entry in the by_addr tree so we can
3414 	 * modify it.
3415 	 */
3416 	addr_rs = range_tree_find(rt, start, size);
3417 	ASSERT3P(addr_rs, !=, NULL);
3418 	ASSERT3U(rs_get_start(addr_rs, rt), ==, start);
3419 	ASSERT3U(rs_get_end(addr_rs, rt), >, start);
3420 	return (addr_rs);
3421 }
3422 
3423 static void
3424 scan_io_queues_run_one(void *arg)
3425 {
3426 	dsl_scan_io_queue_t *queue = arg;
3427 	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3428 	boolean_t suspended = B_FALSE;
3429 	range_seg_t *rs;
3430 	scan_io_t *sio;
3431 	zio_t *zio;
3432 	list_t sio_list;
3433 
3434 	ASSERT(queue->q_scn->scn_is_sorted);
3435 
3436 	list_create(&sio_list, sizeof (scan_io_t),
3437 	    offsetof(scan_io_t, sio_nodes.sio_list_node));
3438 	zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3439 	    NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3440 	mutex_enter(q_lock);
3441 	queue->q_zio = zio;
3442 
3443 	/* Calculate maximum in-flight bytes for this vdev. */
3444 	queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3445 	    (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3446 
3447 	/* reset per-queue scan statistics for this txg */
3448 	queue->q_total_seg_size_this_txg = 0;
3449 	queue->q_segs_this_txg = 0;
3450 	queue->q_total_zio_size_this_txg = 0;
3451 	queue->q_zios_this_txg = 0;
3452 
3453 	/* loop until we run out of time or sios */
3454 	while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3455 		uint64_t seg_start = 0, seg_end = 0;
3456 		boolean_t more_left;
3457 
3458 		ASSERT(list_is_empty(&sio_list));
3459 
3460 		/* loop while we still have sios left to process in this rs */
3461 		do {
3462 			scan_io_t *first_sio, *last_sio;
3463 
3464 			/*
3465 			 * We have selected which extent needs to be
3466 			 * processed next. Gather up the corresponding sios.
3467 			 */
3468 			more_left = scan_io_queue_gather(queue, rs, &sio_list);
3469 			ASSERT(!list_is_empty(&sio_list));
3470 			first_sio = list_head(&sio_list);
3471 			last_sio = list_tail(&sio_list);
3472 
3473 			seg_end = SIO_GET_END_OFFSET(last_sio);
3474 			if (seg_start == 0)
3475 				seg_start = SIO_GET_OFFSET(first_sio);
3476 
3477 			/*
3478 			 * Issuing sios can take a long time so drop the
3479 			 * queue lock. The sio queue won't be updated by
3480 			 * other threads since we're in syncing context so
3481 			 * we can be sure that our trees will remain exactly
3482 			 * as we left them.
3483 			 */
3484 			mutex_exit(q_lock);
3485 			suspended = scan_io_queue_issue(queue, &sio_list);
3486 			mutex_enter(q_lock);
3487 
3488 			if (suspended)
3489 				break;
3490 		} while (more_left);
3491 
3492 		/* update statistics for debugging purposes */
3493 		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3494 
3495 		if (suspended)
3496 			break;
3497 	}
3498 
3499 	/*
3500 	 * If we were suspended in the middle of processing,
3501 	 * requeue any unfinished sios and exit.
3502 	 */
3503 	while ((sio = list_remove_head(&sio_list)) != NULL)
3504 		scan_io_queue_insert_impl(queue, sio);
3505 
3506 	queue->q_zio = NULL;
3507 	mutex_exit(q_lock);
3508 	zio_nowait(zio);
3509 	list_destroy(&sio_list);
3510 }
3511 
3512 /*
3513  * Performs an emptying run on all scan queues in the pool. This just
3514  * punches out one thread per top-level vdev, each of which processes
3515  * only that vdev's scan queue. We can parallelize the I/O here because
3516  * we know that each queue's I/Os only affect its own top-level vdev.
3517  *
3518  * This function waits for the queue runs to complete, and must be
3519  * called from dsl_scan_sync (or in general, syncing context).
3520  */
3521 static void
3522 scan_io_queues_run(dsl_scan_t *scn)
3523 {
3524 	spa_t *spa = scn->scn_dp->dp_spa;
3525 
3526 	ASSERT(scn->scn_is_sorted);
3527 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3528 
3529 	if (scn->scn_queues_pending == 0)
3530 		return;
3531 
3532 	if (scn->scn_taskq == NULL) {
3533 		int nthreads = spa->spa_root_vdev->vdev_children;
3534 
3535 		/*
3536 		 * We need to make this taskq *always* execute as many
3537 		 * threads in parallel as we have top-level vdevs and no
3538 		 * less, otherwise strange serialization of the calls to
3539 		 * scan_io_queues_run_one can occur during spa_sync runs
3540 		 * and that significantly impacts performance.
3541 		 */
3542 		scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3543 		    minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3544 	}
3545 
3546 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3547 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3548 
3549 		mutex_enter(&vd->vdev_scan_io_queue_lock);
3550 		if (vd->vdev_scan_io_queue != NULL) {
3551 			VERIFY(taskq_dispatch(scn->scn_taskq,
3552 			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
3553 			    TQ_SLEEP) != TASKQID_INVALID);
3554 		}
3555 		mutex_exit(&vd->vdev_scan_io_queue_lock);
3556 	}
3557 
3558 	/*
3559 	 * Wait for the queues to finish issuing their IOs for this run
3560 	 * before we return. There may still be IOs in flight at this
3561 	 * point.
3562 	 */
3563 	taskq_wait(scn->scn_taskq);
3564 }
3565 
3566 static boolean_t
3567 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3568 {
3569 	uint64_t elapsed_nanosecs;
3570 
3571 	if (zfs_recover)
3572 		return (B_FALSE);
3573 
3574 	if (zfs_async_block_max_blocks != 0 &&
3575 	    scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3576 		return (B_TRUE);
3577 	}
3578 
3579 	if (zfs_max_async_dedup_frees != 0 &&
3580 	    scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3581 		return (B_TRUE);
3582 	}
3583 
3584 	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3585 	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3586 	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3587 	    txg_sync_waiting(scn->scn_dp)) ||
3588 	    spa_shutting_down(scn->scn_dp->dp_spa));
3589 }
3590 
3591 static int
3592 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3593 {
3594 	dsl_scan_t *scn = arg;
3595 
3596 	if (!scn->scn_is_bptree ||
3597 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3598 		if (dsl_scan_async_block_should_pause(scn))
3599 			return (SET_ERROR(ERESTART));
3600 	}
3601 
3602 	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3603 	    dmu_tx_get_txg(tx), bp, 0));
3604 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3605 	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3606 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3607 	scn->scn_visited_this_txg++;
3608 	if (BP_GET_DEDUP(bp))
3609 		scn->scn_dedup_frees_this_txg++;
3610 	return (0);
3611 }
3612 
3613 static void
3614 dsl_scan_update_stats(dsl_scan_t *scn)
3615 {
3616 	spa_t *spa = scn->scn_dp->dp_spa;
3617 	uint64_t i;
3618 	uint64_t seg_size_total = 0, zio_size_total = 0;
3619 	uint64_t seg_count_total = 0, zio_count_total = 0;
3620 
3621 	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3622 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3623 		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3624 
3625 		if (queue == NULL)
3626 			continue;
3627 
3628 		seg_size_total += queue->q_total_seg_size_this_txg;
3629 		zio_size_total += queue->q_total_zio_size_this_txg;
3630 		seg_count_total += queue->q_segs_this_txg;
3631 		zio_count_total += queue->q_zios_this_txg;
3632 	}
3633 
3634 	if (seg_count_total == 0 || zio_count_total == 0) {
3635 		scn->scn_avg_seg_size_this_txg = 0;
3636 		scn->scn_avg_zio_size_this_txg = 0;
3637 		scn->scn_segs_this_txg = 0;
3638 		scn->scn_zios_this_txg = 0;
3639 		return;
3640 	}
3641 
3642 	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3643 	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3644 	scn->scn_segs_this_txg = seg_count_total;
3645 	scn->scn_zios_this_txg = zio_count_total;
3646 }
3647 
3648 static int
3649 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3650     dmu_tx_t *tx)
3651 {
3652 	ASSERT(!bp_freed);
3653 	return (dsl_scan_free_block_cb(arg, bp, tx));
3654 }
3655 
3656 static int
3657 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3658     dmu_tx_t *tx)
3659 {
3660 	ASSERT(!bp_freed);
3661 	dsl_scan_t *scn = arg;
3662 	const dva_t *dva = &bp->blk_dva[0];
3663 
3664 	if (dsl_scan_async_block_should_pause(scn))
3665 		return (SET_ERROR(ERESTART));
3666 
3667 	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3668 	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3669 	    DVA_GET_ASIZE(dva), tx);
3670 	scn->scn_visited_this_txg++;
3671 	return (0);
3672 }
3673 
3674 boolean_t
3675 dsl_scan_active(dsl_scan_t *scn)
3676 {
3677 	spa_t *spa = scn->scn_dp->dp_spa;
3678 	uint64_t used = 0, comp, uncomp;
3679 	boolean_t clones_left;
3680 
3681 	if (spa->spa_load_state != SPA_LOAD_NONE)
3682 		return (B_FALSE);
3683 	if (spa_shutting_down(spa))
3684 		return (B_FALSE);
3685 	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3686 	    (scn->scn_async_destroying && !scn->scn_async_stalled))
3687 		return (B_TRUE);
3688 
3689 	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3690 		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3691 		    &used, &comp, &uncomp);
3692 	}
3693 	clones_left = spa_livelist_delete_check(spa);
3694 	return ((used != 0) || (clones_left));
3695 }
3696 
3697 boolean_t
3698 dsl_errorscrub_active(dsl_scan_t *scn)
3699 {
3700 	spa_t *spa = scn->scn_dp->dp_spa;
3701 	if (spa->spa_load_state != SPA_LOAD_NONE)
3702 		return (B_FALSE);
3703 	if (spa_shutting_down(spa))
3704 		return (B_FALSE);
3705 	if (dsl_errorscrubbing(scn->scn_dp))
3706 		return (B_TRUE);
3707 	return (B_FALSE);
3708 }
3709 
3710 static boolean_t
3711 dsl_scan_check_deferred(vdev_t *vd)
3712 {
3713 	boolean_t need_resilver = B_FALSE;
3714 
3715 	for (int c = 0; c < vd->vdev_children; c++) {
3716 		need_resilver |=
3717 		    dsl_scan_check_deferred(vd->vdev_child[c]);
3718 	}
3719 
3720 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3721 	    !vd->vdev_ops->vdev_op_leaf)
3722 		return (need_resilver);
3723 
3724 	if (!vd->vdev_resilver_deferred)
3725 		need_resilver = B_TRUE;
3726 
3727 	return (need_resilver);
3728 }
3729 
3730 static boolean_t
3731 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3732     uint64_t phys_birth)
3733 {
3734 	vdev_t *vd;
3735 
3736 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3737 
3738 	if (vd->vdev_ops == &vdev_indirect_ops) {
3739 		/*
3740 		 * The indirect vdev can point to multiple
3741 		 * vdevs.  For simplicity, always create
3742 		 * the resilver zio_t. zio_vdev_io_start()
3743 		 * will bypass the child resilver i/o's if
3744 		 * they are on vdevs that don't have DTL's.
3745 		 */
3746 		return (B_TRUE);
3747 	}
3748 
3749 	if (DVA_GET_GANG(dva)) {
3750 		/*
3751 		 * Gang members may be spread across multiple
3752 		 * vdevs, so the best estimate we have is the
3753 		 * scrub range, which has already been checked.
3754 		 * XXX -- it would be better to change our
3755 		 * allocation policy to ensure that all
3756 		 * gang members reside on the same vdev.
3757 		 */
3758 		return (B_TRUE);
3759 	}
3760 
3761 	/*
3762 	 * Check if the top-level vdev must resilver this offset.
3763 	 * When the offset does not intersect with a dirty leaf DTL
3764 	 * then it may be possible to skip the resilver IO.  The psize
3765 	 * is provided instead of asize to simplify the check for RAIDZ.
3766 	 */
3767 	if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3768 		return (B_FALSE);
3769 
3770 	/*
3771 	 * Check that this top-level vdev has a device under it which
3772 	 * is resilvering and is not deferred.
3773 	 */
3774 	if (!dsl_scan_check_deferred(vd))
3775 		return (B_FALSE);
3776 
3777 	return (B_TRUE);
3778 }
3779 
3780 static int
3781 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3782 {
3783 	dsl_scan_t *scn = dp->dp_scan;
3784 	spa_t *spa = dp->dp_spa;
3785 	int err = 0;
3786 
3787 	if (spa_suspend_async_destroy(spa))
3788 		return (0);
3789 
3790 	if (zfs_free_bpobj_enabled &&
3791 	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3792 		scn->scn_is_bptree = B_FALSE;
3793 		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3794 		scn->scn_zio_root = zio_root(spa, NULL,
3795 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3796 		err = bpobj_iterate(&dp->dp_free_bpobj,
3797 		    bpobj_dsl_scan_free_block_cb, scn, tx);
3798 		VERIFY0(zio_wait(scn->scn_zio_root));
3799 		scn->scn_zio_root = NULL;
3800 
3801 		if (err != 0 && err != ERESTART)
3802 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3803 	}
3804 
3805 	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3806 		ASSERT(scn->scn_async_destroying);
3807 		scn->scn_is_bptree = B_TRUE;
3808 		scn->scn_zio_root = zio_root(spa, NULL,
3809 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3810 		err = bptree_iterate(dp->dp_meta_objset,
3811 		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3812 		VERIFY0(zio_wait(scn->scn_zio_root));
3813 		scn->scn_zio_root = NULL;
3814 
3815 		if (err == EIO || err == ECKSUM) {
3816 			err = 0;
3817 		} else if (err != 0 && err != ERESTART) {
3818 			zfs_panic_recover("error %u from "
3819 			    "traverse_dataset_destroyed()", err);
3820 		}
3821 
3822 		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3823 			/* finished; deactivate async destroy feature */
3824 			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3825 			ASSERT(!spa_feature_is_active(spa,
3826 			    SPA_FEATURE_ASYNC_DESTROY));
3827 			VERIFY0(zap_remove(dp->dp_meta_objset,
3828 			    DMU_POOL_DIRECTORY_OBJECT,
3829 			    DMU_POOL_BPTREE_OBJ, tx));
3830 			VERIFY0(bptree_free(dp->dp_meta_objset,
3831 			    dp->dp_bptree_obj, tx));
3832 			dp->dp_bptree_obj = 0;
3833 			scn->scn_async_destroying = B_FALSE;
3834 			scn->scn_async_stalled = B_FALSE;
3835 		} else {
3836 			/*
3837 			 * If we didn't make progress, mark the async
3838 			 * destroy as stalled, so that we will not initiate
3839 			 * a spa_sync() on its behalf.  Note that we only
3840 			 * check this if we are not finished, because if the
3841 			 * bptree had no blocks for us to visit, we can
3842 			 * finish without "making progress".
3843 			 */
3844 			scn->scn_async_stalled =
3845 			    (scn->scn_visited_this_txg == 0);
3846 		}
3847 	}
3848 	if (scn->scn_visited_this_txg) {
3849 		zfs_dbgmsg("freed %llu blocks in %llums from "
3850 		    "free_bpobj/bptree on %s in txg %llu; err=%u",
3851 		    (longlong_t)scn->scn_visited_this_txg,
3852 		    (longlong_t)
3853 		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3854 		    spa->spa_name, (longlong_t)tx->tx_txg, err);
3855 		scn->scn_visited_this_txg = 0;
3856 		scn->scn_dedup_frees_this_txg = 0;
3857 
3858 		/*
3859 		 * Write out changes to the DDT and the BRT that may be required
3860 		 * as a result of the blocks freed.  This ensures that the DDT
3861 		 * and the BRT are clean when a scrub/resilver runs.
3862 		 */
3863 		ddt_sync(spa, tx->tx_txg);
3864 		brt_sync(spa, tx->tx_txg);
3865 	}
3866 	if (err != 0)
3867 		return (err);
3868 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3869 	    zfs_free_leak_on_eio &&
3870 	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3871 	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3872 	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3873 		/*
3874 		 * We have finished background destroying, but there is still
3875 		 * some space left in the dp_free_dir. Transfer this leaked
3876 		 * space to the dp_leak_dir.
3877 		 */
3878 		if (dp->dp_leak_dir == NULL) {
3879 			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3880 			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3881 			    LEAK_DIR_NAME, tx);
3882 			VERIFY0(dsl_pool_open_special_dir(dp,
3883 			    LEAK_DIR_NAME, &dp->dp_leak_dir));
3884 			rrw_exit(&dp->dp_config_rwlock, FTAG);
3885 		}
3886 		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3887 		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3888 		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3889 		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3890 		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3891 		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3892 		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3893 		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3894 	}
3895 
3896 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3897 	    !spa_livelist_delete_check(spa)) {
3898 		/* finished; verify that space accounting went to zero */
3899 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3900 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3901 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3902 	}
3903 
3904 	spa_notify_waiters(spa);
3905 
3906 	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3907 	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3908 	    DMU_POOL_OBSOLETE_BPOBJ));
3909 	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3910 		ASSERT(spa_feature_is_active(dp->dp_spa,
3911 		    SPA_FEATURE_OBSOLETE_COUNTS));
3912 
3913 		scn->scn_is_bptree = B_FALSE;
3914 		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3915 		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3916 		    dsl_scan_obsolete_block_cb, scn, tx);
3917 		if (err != 0 && err != ERESTART)
3918 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3919 
3920 		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3921 			dsl_pool_destroy_obsolete_bpobj(dp, tx);
3922 	}
3923 	return (0);
3924 }
3925 
3926 static void
3927 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3928 {
3929 	zb->zb_objset = zfs_strtonum(buf, &buf);
3930 	ASSERT(*buf == ':');
3931 	zb->zb_object = zfs_strtonum(buf + 1, &buf);
3932 	ASSERT(*buf == ':');
3933 	zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3934 	ASSERT(*buf == ':');
3935 	zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3936 	ASSERT(*buf == '\0');
3937 }
3938 
3939 static void
3940 name_to_object(char *buf, uint64_t *obj)
3941 {
3942 	*obj = zfs_strtonum(buf, &buf);
3943 	ASSERT(*buf == '\0');
3944 }
3945 
3946 static void
3947 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3948 {
3949 	dsl_pool_t *dp = scn->scn_dp;
3950 	dsl_dataset_t *ds;
3951 	objset_t *os;
3952 	if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3953 		return;
3954 
3955 	if (dmu_objset_from_ds(ds, &os) != 0) {
3956 		dsl_dataset_rele(ds, FTAG);
3957 		return;
3958 	}
3959 
3960 	/*
3961 	 * If the key is not loaded dbuf_dnode_findbp() will error out with
3962 	 * EACCES. However in that case dnode_hold() will eventually call
3963 	 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3964 	 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3965 	 * Avoid this by checking here if the keys are loaded, if not return.
3966 	 * If the keys are not loaded the head_errlog feature is meaningless
3967 	 * as we cannot figure out the birth txg of the block pointer.
3968 	 */
3969 	if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3970 	    ZFS_KEYSTATUS_UNAVAILABLE) {
3971 		dsl_dataset_rele(ds, FTAG);
3972 		return;
3973 	}
3974 
3975 	dnode_t *dn;
3976 	blkptr_t bp;
3977 
3978 	if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3979 		dsl_dataset_rele(ds, FTAG);
3980 		return;
3981 	}
3982 
3983 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
3984 	int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
3985 	    NULL);
3986 
3987 	if (error) {
3988 		rw_exit(&dn->dn_struct_rwlock);
3989 		dnode_rele(dn, FTAG);
3990 		dsl_dataset_rele(ds, FTAG);
3991 		return;
3992 	}
3993 
3994 	if (!error && BP_IS_HOLE(&bp)) {
3995 		rw_exit(&dn->dn_struct_rwlock);
3996 		dnode_rele(dn, FTAG);
3997 		dsl_dataset_rele(ds, FTAG);
3998 		return;
3999 	}
4000 
4001 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
4002 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
4003 
4004 	/* If it's an intent log block, failure is expected. */
4005 	if (zb.zb_level == ZB_ZIL_LEVEL)
4006 		zio_flags |= ZIO_FLAG_SPECULATIVE;
4007 
4008 	ASSERT(!BP_IS_EMBEDDED(&bp));
4009 	scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
4010 	rw_exit(&dn->dn_struct_rwlock);
4011 	dnode_rele(dn, FTAG);
4012 	dsl_dataset_rele(ds, FTAG);
4013 }
4014 
4015 /*
4016  * We keep track of the scrubbed error blocks in "count". This will be used
4017  * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
4018  * function is modelled after check_filesystem().
4019  */
4020 static int
4021 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
4022     int *count)
4023 {
4024 	dsl_dataset_t *ds;
4025 	dsl_pool_t *dp = spa->spa_dsl_pool;
4026 	dsl_scan_t *scn = dp->dp_scan;
4027 
4028 	int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
4029 	if (error != 0)
4030 		return (error);
4031 
4032 	uint64_t latest_txg;
4033 	uint64_t txg_to_consider = spa->spa_syncing_txg;
4034 	boolean_t check_snapshot = B_TRUE;
4035 
4036 	error = find_birth_txg(ds, zep, &latest_txg);
4037 
4038 	/*
4039 	 * If find_birth_txg() errors out, then err on the side of caution and
4040 	 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
4041 	 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
4042 	 * scrub all objects.
4043 	 */
4044 	if (error == 0 && zep->zb_birth == latest_txg) {
4045 		/* Block neither free nor re written. */
4046 		zbookmark_phys_t zb;
4047 		zep_to_zb(fs, zep, &zb);
4048 		scn->scn_zio_root = zio_root(spa, NULL, NULL,
4049 		    ZIO_FLAG_CANFAIL);
4050 		/* We have already acquired the config lock for spa */
4051 		read_by_block_level(scn, zb);
4052 
4053 		(void) zio_wait(scn->scn_zio_root);
4054 		scn->scn_zio_root = NULL;
4055 
4056 		scn->errorscrub_phys.dep_examined++;
4057 		scn->errorscrub_phys.dep_to_examine--;
4058 		(*count)++;
4059 		if ((*count) == zfs_scrub_error_blocks_per_txg ||
4060 		    dsl_error_scrub_check_suspend(scn, &zb)) {
4061 			dsl_dataset_rele(ds, FTAG);
4062 			return (SET_ERROR(EFAULT));
4063 		}
4064 
4065 		check_snapshot = B_FALSE;
4066 	} else if (error == 0) {
4067 		txg_to_consider = latest_txg;
4068 	}
4069 
4070 	/*
4071 	 * Retrieve the number of snapshots if the dataset is not a snapshot.
4072 	 */
4073 	uint64_t snap_count = 0;
4074 	if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4075 
4076 		error = zap_count(spa->spa_meta_objset,
4077 		    dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4078 
4079 		if (error != 0) {
4080 			dsl_dataset_rele(ds, FTAG);
4081 			return (error);
4082 		}
4083 	}
4084 
4085 	if (snap_count == 0) {
4086 		/* Filesystem without snapshots. */
4087 		dsl_dataset_rele(ds, FTAG);
4088 		return (0);
4089 	}
4090 
4091 	uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4092 	uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4093 
4094 	dsl_dataset_rele(ds, FTAG);
4095 
4096 	/* Check only snapshots created from this file system. */
4097 	while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4098 	    snap_obj_txg <= txg_to_consider) {
4099 
4100 		error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4101 		if (error != 0)
4102 			return (error);
4103 
4104 		if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4105 			snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4106 			snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4107 			dsl_dataset_rele(ds, FTAG);
4108 			continue;
4109 		}
4110 
4111 		boolean_t affected = B_TRUE;
4112 		if (check_snapshot) {
4113 			uint64_t blk_txg;
4114 			error = find_birth_txg(ds, zep, &blk_txg);
4115 
4116 			/*
4117 			 * Scrub the snapshot also when zb_birth == 0 or when
4118 			 * find_birth_txg() returns an error.
4119 			 */
4120 			affected = (error == 0 && zep->zb_birth == blk_txg) ||
4121 			    (error != 0) || (zep->zb_birth == 0);
4122 		}
4123 
4124 		/* Scrub snapshots. */
4125 		if (affected) {
4126 			zbookmark_phys_t zb;
4127 			zep_to_zb(snap_obj, zep, &zb);
4128 			scn->scn_zio_root = zio_root(spa, NULL, NULL,
4129 			    ZIO_FLAG_CANFAIL);
4130 			/* We have already acquired the config lock for spa */
4131 			read_by_block_level(scn, zb);
4132 
4133 			(void) zio_wait(scn->scn_zio_root);
4134 			scn->scn_zio_root = NULL;
4135 
4136 			scn->errorscrub_phys.dep_examined++;
4137 			scn->errorscrub_phys.dep_to_examine--;
4138 			(*count)++;
4139 			if ((*count) == zfs_scrub_error_blocks_per_txg ||
4140 			    dsl_error_scrub_check_suspend(scn, &zb)) {
4141 				dsl_dataset_rele(ds, FTAG);
4142 				return (EFAULT);
4143 			}
4144 		}
4145 		snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4146 		snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4147 		dsl_dataset_rele(ds, FTAG);
4148 	}
4149 	return (0);
4150 }
4151 
4152 void
4153 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4154 {
4155 	spa_t *spa = dp->dp_spa;
4156 	dsl_scan_t *scn = dp->dp_scan;
4157 
4158 	/*
4159 	 * Only process scans in sync pass 1.
4160 	 */
4161 
4162 	if (spa_sync_pass(spa) > 1)
4163 		return;
4164 
4165 	/*
4166 	 * If the spa is shutting down, then stop scanning. This will
4167 	 * ensure that the scan does not dirty any new data during the
4168 	 * shutdown phase.
4169 	 */
4170 	if (spa_shutting_down(spa))
4171 		return;
4172 
4173 	if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4174 		return;
4175 	}
4176 
4177 	if (dsl_scan_resilvering(scn->scn_dp)) {
4178 		/* cancel the error scrub if resilver started */
4179 		dsl_scan_cancel(scn->scn_dp);
4180 		return;
4181 	}
4182 
4183 	spa->spa_scrub_active = B_TRUE;
4184 	scn->scn_sync_start_time = gethrtime();
4185 
4186 	/*
4187 	 * zfs_scan_suspend_progress can be set to disable scrub progress.
4188 	 * See more detailed comment in dsl_scan_sync().
4189 	 */
4190 	if (zfs_scan_suspend_progress) {
4191 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4192 		int mintime = zfs_scrub_min_time_ms;
4193 
4194 		while (zfs_scan_suspend_progress &&
4195 		    !txg_sync_waiting(scn->scn_dp) &&
4196 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
4197 		    NSEC2MSEC(scan_time_ns) < mintime) {
4198 			delay(hz);
4199 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4200 		}
4201 		return;
4202 	}
4203 
4204 	int i = 0;
4205 	zap_attribute_t *za;
4206 	zbookmark_phys_t *zb;
4207 	boolean_t limit_exceeded = B_FALSE;
4208 
4209 	za = zap_attribute_alloc();
4210 	zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4211 
4212 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4213 		for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4214 		    zap_cursor_advance(&scn->errorscrub_cursor)) {
4215 			name_to_bookmark(za->za_name, zb);
4216 
4217 			scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4218 			    NULL, ZIO_FLAG_CANFAIL);
4219 			dsl_pool_config_enter(dp, FTAG);
4220 			read_by_block_level(scn, *zb);
4221 			dsl_pool_config_exit(dp, FTAG);
4222 
4223 			(void) zio_wait(scn->scn_zio_root);
4224 			scn->scn_zio_root = NULL;
4225 
4226 			scn->errorscrub_phys.dep_examined += 1;
4227 			scn->errorscrub_phys.dep_to_examine -= 1;
4228 			i++;
4229 			if (i == zfs_scrub_error_blocks_per_txg ||
4230 			    dsl_error_scrub_check_suspend(scn, zb)) {
4231 				limit_exceeded = B_TRUE;
4232 				break;
4233 			}
4234 		}
4235 
4236 		if (!limit_exceeded)
4237 			dsl_errorscrub_done(scn, B_TRUE, tx);
4238 
4239 		dsl_errorscrub_sync_state(scn, tx);
4240 		zap_attribute_free(za);
4241 		kmem_free(zb, sizeof (*zb));
4242 		return;
4243 	}
4244 
4245 	int error = 0;
4246 	for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4247 	    zap_cursor_advance(&scn->errorscrub_cursor)) {
4248 
4249 		zap_cursor_t *head_ds_cursor;
4250 		zap_attribute_t *head_ds_attr;
4251 		zbookmark_err_phys_t head_ds_block;
4252 
4253 		head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4254 		head_ds_attr = zap_attribute_alloc();
4255 
4256 		uint64_t head_ds_err_obj = za->za_first_integer;
4257 		uint64_t head_ds;
4258 		name_to_object(za->za_name, &head_ds);
4259 		boolean_t config_held = B_FALSE;
4260 		uint64_t top_affected_fs;
4261 
4262 		for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4263 		    head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4264 		    head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4265 
4266 			name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4267 
4268 			/*
4269 			 * In case we are called from spa_sync the pool
4270 			 * config is already held.
4271 			 */
4272 			if (!dsl_pool_config_held(dp)) {
4273 				dsl_pool_config_enter(dp, FTAG);
4274 				config_held = B_TRUE;
4275 			}
4276 
4277 			error = find_top_affected_fs(spa,
4278 			    head_ds, &head_ds_block, &top_affected_fs);
4279 			if (error)
4280 				break;
4281 
4282 			error = scrub_filesystem(spa, top_affected_fs,
4283 			    &head_ds_block, &i);
4284 
4285 			if (error == SET_ERROR(EFAULT)) {
4286 				limit_exceeded = B_TRUE;
4287 				break;
4288 			}
4289 		}
4290 
4291 		zap_cursor_fini(head_ds_cursor);
4292 		kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4293 		zap_attribute_free(head_ds_attr);
4294 
4295 		if (config_held)
4296 			dsl_pool_config_exit(dp, FTAG);
4297 	}
4298 
4299 	zap_attribute_free(za);
4300 	kmem_free(zb, sizeof (*zb));
4301 	if (!limit_exceeded)
4302 		dsl_errorscrub_done(scn, B_TRUE, tx);
4303 
4304 	dsl_errorscrub_sync_state(scn, tx);
4305 }
4306 
4307 /*
4308  * This is the primary entry point for scans that is called from syncing
4309  * context. Scans must happen entirely during syncing context so that we
4310  * can guarantee that blocks we are currently scanning will not change out
4311  * from under us. While a scan is active, this function controls how quickly
4312  * transaction groups proceed, instead of the normal handling provided by
4313  * txg_sync_thread().
4314  */
4315 void
4316 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4317 {
4318 	int err = 0;
4319 	dsl_scan_t *scn = dp->dp_scan;
4320 	spa_t *spa = dp->dp_spa;
4321 	state_sync_type_t sync_type = SYNC_OPTIONAL;
4322 	int restart_early = 0;
4323 
4324 	if (spa->spa_resilver_deferred) {
4325 		uint64_t to_issue, issued;
4326 
4327 		if (!spa_feature_is_active(dp->dp_spa,
4328 		    SPA_FEATURE_RESILVER_DEFER))
4329 			spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4330 
4331 		/*
4332 		 * See print_scan_scrub_resilver_status() issued/total_i
4333 		 * @ cmd/zpool/zpool_main.c
4334 		 */
4335 		to_issue =
4336 		    scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped;
4337 		issued =
4338 		    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
4339 		restart_early =
4340 		    zfs_resilver_disable_defer ||
4341 		    (issued < (to_issue * zfs_resilver_defer_percent / 100));
4342 	}
4343 
4344 	/*
4345 	 * Only process scans in sync pass 1.
4346 	 */
4347 	if (spa_sync_pass(spa) > 1)
4348 		return;
4349 
4350 
4351 	/*
4352 	 * Check for scn_restart_txg before checking spa_load_state, so
4353 	 * that we can restart an old-style scan while the pool is being
4354 	 * imported (see dsl_scan_init). We also restart scans if there
4355 	 * is a deferred resilver and the user has manually disabled
4356 	 * deferred resilvers via zfs_resilver_disable_defer, or if the
4357 	 * current scan progress is below zfs_resilver_defer_percent.
4358 	 */
4359 	if (dsl_scan_restarting(scn, tx) || restart_early) {
4360 		setup_sync_arg_t setup_sync_arg = {
4361 			.func = POOL_SCAN_SCRUB,
4362 			.txgstart = 0,
4363 			.txgend = 0,
4364 		};
4365 		dsl_scan_done(scn, B_FALSE, tx);
4366 		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4367 			setup_sync_arg.func = POOL_SCAN_RESILVER;
4368 		zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d",
4369 		    setup_sync_arg.func, dp->dp_spa->spa_name,
4370 		    (longlong_t)tx->tx_txg, restart_early);
4371 		dsl_scan_setup_sync(&setup_sync_arg, tx);
4372 	}
4373 
4374 	/*
4375 	 * If the spa is shutting down, then stop scanning. This will
4376 	 * ensure that the scan does not dirty any new data during the
4377 	 * shutdown phase.
4378 	 */
4379 	if (spa_shutting_down(spa))
4380 		return;
4381 
4382 	/*
4383 	 * If the scan is inactive due to a stalled async destroy, try again.
4384 	 */
4385 	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4386 		return;
4387 
4388 	/* reset scan statistics */
4389 	scn->scn_visited_this_txg = 0;
4390 	scn->scn_dedup_frees_this_txg = 0;
4391 	scn->scn_holes_this_txg = 0;
4392 	scn->scn_lt_min_this_txg = 0;
4393 	scn->scn_gt_max_this_txg = 0;
4394 	scn->scn_ddt_contained_this_txg = 0;
4395 	scn->scn_objsets_visited_this_txg = 0;
4396 	scn->scn_avg_seg_size_this_txg = 0;
4397 	scn->scn_segs_this_txg = 0;
4398 	scn->scn_avg_zio_size_this_txg = 0;
4399 	scn->scn_zios_this_txg = 0;
4400 	scn->scn_suspending = B_FALSE;
4401 	scn->scn_sync_start_time = gethrtime();
4402 	spa->spa_scrub_active = B_TRUE;
4403 
4404 	/*
4405 	 * First process the async destroys.  If we suspend, don't do
4406 	 * any scrubbing or resilvering.  This ensures that there are no
4407 	 * async destroys while we are scanning, so the scan code doesn't
4408 	 * have to worry about traversing it.  It is also faster to free the
4409 	 * blocks than to scrub them.
4410 	 */
4411 	err = dsl_process_async_destroys(dp, tx);
4412 	if (err != 0)
4413 		return;
4414 
4415 	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4416 		return;
4417 
4418 	/*
4419 	 * Wait a few txgs after importing to begin scanning so that
4420 	 * we can get the pool imported quickly.
4421 	 */
4422 	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4423 		return;
4424 
4425 	/*
4426 	 * zfs_scan_suspend_progress can be set to disable scan progress.
4427 	 * We don't want to spin the txg_sync thread, so we add a delay
4428 	 * here to simulate the time spent doing a scan. This is mostly
4429 	 * useful for testing and debugging.
4430 	 */
4431 	if (zfs_scan_suspend_progress) {
4432 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4433 		uint_t mintime = (scn->scn_phys.scn_func ==
4434 		    POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4435 		    zfs_scrub_min_time_ms;
4436 
4437 		while (zfs_scan_suspend_progress &&
4438 		    !txg_sync_waiting(scn->scn_dp) &&
4439 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
4440 		    NSEC2MSEC(scan_time_ns) < mintime) {
4441 			delay(hz);
4442 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4443 		}
4444 		return;
4445 	}
4446 
4447 	/*
4448 	 * Disabled by default, set zfs_scan_report_txgs to report
4449 	 * average performance over the last zfs_scan_report_txgs TXGs.
4450 	 */
4451 	if (zfs_scan_report_txgs != 0 &&
4452 	    tx->tx_txg % zfs_scan_report_txgs == 0) {
4453 		scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4454 		spa_scan_stat_init(spa);
4455 	}
4456 
4457 	/*
4458 	 * It is possible to switch from unsorted to sorted at any time,
4459 	 * but afterwards the scan will remain sorted unless reloaded from
4460 	 * a checkpoint after a reboot.
4461 	 */
4462 	if (!zfs_scan_legacy) {
4463 		scn->scn_is_sorted = B_TRUE;
4464 		if (scn->scn_last_checkpoint == 0)
4465 			scn->scn_last_checkpoint = ddi_get_lbolt();
4466 	}
4467 
4468 	/*
4469 	 * For sorted scans, determine what kind of work we will be doing
4470 	 * this txg based on our memory limitations and whether or not we
4471 	 * need to perform a checkpoint.
4472 	 */
4473 	if (scn->scn_is_sorted) {
4474 		/*
4475 		 * If we are over our checkpoint interval, set scn_clearing
4476 		 * so that we can begin checkpointing immediately. The
4477 		 * checkpoint allows us to save a consistent bookmark
4478 		 * representing how much data we have scrubbed so far.
4479 		 * Otherwise, use the memory limit to determine if we should
4480 		 * scan for metadata or start issue scrub IOs. We accumulate
4481 		 * metadata until we hit our hard memory limit at which point
4482 		 * we issue scrub IOs until we are at our soft memory limit.
4483 		 */
4484 		if (scn->scn_checkpointing ||
4485 		    ddi_get_lbolt() - scn->scn_last_checkpoint >
4486 		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4487 			if (!scn->scn_checkpointing)
4488 				zfs_dbgmsg("begin scan checkpoint for %s",
4489 				    spa->spa_name);
4490 
4491 			scn->scn_checkpointing = B_TRUE;
4492 			scn->scn_clearing = B_TRUE;
4493 		} else {
4494 			boolean_t should_clear = dsl_scan_should_clear(scn);
4495 			if (should_clear && !scn->scn_clearing) {
4496 				zfs_dbgmsg("begin scan clearing for %s",
4497 				    spa->spa_name);
4498 				scn->scn_clearing = B_TRUE;
4499 			} else if (!should_clear && scn->scn_clearing) {
4500 				zfs_dbgmsg("finish scan clearing for %s",
4501 				    spa->spa_name);
4502 				scn->scn_clearing = B_FALSE;
4503 			}
4504 		}
4505 	} else {
4506 		ASSERT0(scn->scn_checkpointing);
4507 		ASSERT0(scn->scn_clearing);
4508 	}
4509 
4510 	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4511 		/* Need to scan metadata for more blocks to scrub */
4512 		dsl_scan_phys_t *scnp = &scn->scn_phys;
4513 		taskqid_t prefetch_tqid;
4514 
4515 		/*
4516 		 * Calculate the max number of in-flight bytes for pool-wide
4517 		 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4518 		 * Limits for the issuing phase are done per top-level vdev and
4519 		 * are handled separately.
4520 		 */
4521 		scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4522 		    zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4523 
4524 		if (scnp->scn_ddt_bookmark.ddb_class <=
4525 		    scnp->scn_ddt_class_max) {
4526 			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4527 			zfs_dbgmsg("doing scan sync for %s txg %llu; "
4528 			    "ddt bm=%llu/%llu/%llu/%llx",
4529 			    spa->spa_name,
4530 			    (longlong_t)tx->tx_txg,
4531 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4532 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4533 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4534 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4535 		} else {
4536 			zfs_dbgmsg("doing scan sync for %s txg %llu; "
4537 			    "bm=%llu/%llu/%llu/%llu",
4538 			    spa->spa_name,
4539 			    (longlong_t)tx->tx_txg,
4540 			    (longlong_t)scnp->scn_bookmark.zb_objset,
4541 			    (longlong_t)scnp->scn_bookmark.zb_object,
4542 			    (longlong_t)scnp->scn_bookmark.zb_level,
4543 			    (longlong_t)scnp->scn_bookmark.zb_blkid);
4544 		}
4545 
4546 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4547 		    NULL, ZIO_FLAG_CANFAIL);
4548 
4549 		scn->scn_prefetch_stop = B_FALSE;
4550 		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4551 		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4552 		ASSERT(prefetch_tqid != TASKQID_INVALID);
4553 
4554 		dsl_pool_config_enter(dp, FTAG);
4555 		dsl_scan_visit(scn, tx);
4556 		dsl_pool_config_exit(dp, FTAG);
4557 
4558 		mutex_enter(&dp->dp_spa->spa_scrub_lock);
4559 		scn->scn_prefetch_stop = B_TRUE;
4560 		cv_broadcast(&spa->spa_scrub_io_cv);
4561 		mutex_exit(&dp->dp_spa->spa_scrub_lock);
4562 
4563 		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4564 		(void) zio_wait(scn->scn_zio_root);
4565 		scn->scn_zio_root = NULL;
4566 
4567 		zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4568 		    "(%llu os's, %llu holes, %llu < mintxg, "
4569 		    "%llu in ddt, %llu > maxtxg)",
4570 		    (longlong_t)scn->scn_visited_this_txg,
4571 		    spa->spa_name,
4572 		    (longlong_t)NSEC2MSEC(gethrtime() -
4573 		    scn->scn_sync_start_time),
4574 		    (longlong_t)scn->scn_objsets_visited_this_txg,
4575 		    (longlong_t)scn->scn_holes_this_txg,
4576 		    (longlong_t)scn->scn_lt_min_this_txg,
4577 		    (longlong_t)scn->scn_ddt_contained_this_txg,
4578 		    (longlong_t)scn->scn_gt_max_this_txg);
4579 
4580 		if (!scn->scn_suspending) {
4581 			ASSERT0(avl_numnodes(&scn->scn_queue));
4582 			scn->scn_done_txg = tx->tx_txg + 1;
4583 			if (scn->scn_is_sorted) {
4584 				scn->scn_checkpointing = B_TRUE;
4585 				scn->scn_clearing = B_TRUE;
4586 				scn->scn_issued_before_pass +=
4587 				    spa->spa_scan_pass_issued;
4588 				spa_scan_stat_init(spa);
4589 			}
4590 			zfs_dbgmsg("scan complete for %s txg %llu",
4591 			    spa->spa_name,
4592 			    (longlong_t)tx->tx_txg);
4593 		}
4594 	} else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4595 		ASSERT(scn->scn_clearing);
4596 
4597 		/* need to issue scrubbing IOs from per-vdev queues */
4598 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4599 		    NULL, ZIO_FLAG_CANFAIL);
4600 		scan_io_queues_run(scn);
4601 		(void) zio_wait(scn->scn_zio_root);
4602 		scn->scn_zio_root = NULL;
4603 
4604 		/* calculate and dprintf the current memory usage */
4605 		(void) dsl_scan_should_clear(scn);
4606 		dsl_scan_update_stats(scn);
4607 
4608 		zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4609 		    "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4610 		    (longlong_t)scn->scn_zios_this_txg,
4611 		    spa->spa_name,
4612 		    (longlong_t)scn->scn_segs_this_txg,
4613 		    (longlong_t)NSEC2MSEC(gethrtime() -
4614 		    scn->scn_sync_start_time),
4615 		    (longlong_t)scn->scn_avg_zio_size_this_txg,
4616 		    (longlong_t)scn->scn_avg_seg_size_this_txg);
4617 	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4618 		/* Finished with everything. Mark the scrub as complete */
4619 		zfs_dbgmsg("scan issuing complete txg %llu for %s",
4620 		    (longlong_t)tx->tx_txg,
4621 		    spa->spa_name);
4622 		ASSERT3U(scn->scn_done_txg, !=, 0);
4623 		ASSERT0(spa->spa_scrub_inflight);
4624 		ASSERT0(scn->scn_queues_pending);
4625 		dsl_scan_done(scn, B_TRUE, tx);
4626 		sync_type = SYNC_MANDATORY;
4627 	}
4628 
4629 	dsl_scan_sync_state(scn, tx, sync_type);
4630 }
4631 
4632 static void
4633 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4634 {
4635 	/*
4636 	 * Don't count embedded bp's, since we already did the work of
4637 	 * scanning these when we scanned the containing block.
4638 	 */
4639 	if (BP_IS_EMBEDDED(bp))
4640 		return;
4641 
4642 	/*
4643 	 * Update the spa's stats on how many bytes we have issued.
4644 	 * Sequential scrubs create a zio for each DVA of the bp. Each
4645 	 * of these will include all DVAs for repair purposes, but the
4646 	 * zio code will only try the first one unless there is an issue.
4647 	 * Therefore, we should only count the first DVA for these IOs.
4648 	 */
4649 	atomic_add_64(&spa->spa_scan_pass_issued,
4650 	    all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4651 }
4652 
4653 static void
4654 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4655 {
4656 	if (BP_IS_EMBEDDED(bp))
4657 		return;
4658 	atomic_add_64(&scn->scn_phys.scn_skipped,
4659 	    all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4660 }
4661 
4662 static void
4663 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4664 {
4665 	/*
4666 	 * If we resume after a reboot, zab will be NULL; don't record
4667 	 * incomplete stats in that case.
4668 	 */
4669 	if (zab == NULL)
4670 		return;
4671 
4672 	for (int i = 0; i < 4; i++) {
4673 		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4674 		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4675 
4676 		if (t & DMU_OT_NEWTYPE)
4677 			t = DMU_OT_OTHER;
4678 		zfs_blkstat_t *zb = &zab->zab_type[l][t];
4679 		int equal;
4680 
4681 		zb->zb_count++;
4682 		zb->zb_asize += BP_GET_ASIZE(bp);
4683 		zb->zb_lsize += BP_GET_LSIZE(bp);
4684 		zb->zb_psize += BP_GET_PSIZE(bp);
4685 		zb->zb_gangs += BP_COUNT_GANG(bp);
4686 
4687 		switch (BP_GET_NDVAS(bp)) {
4688 		case 2:
4689 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4690 			    DVA_GET_VDEV(&bp->blk_dva[1]))
4691 				zb->zb_ditto_2_of_2_samevdev++;
4692 			break;
4693 		case 3:
4694 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4695 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
4696 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4697 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
4698 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4699 			    DVA_GET_VDEV(&bp->blk_dva[2]));
4700 			if (equal == 1)
4701 				zb->zb_ditto_2_of_3_samevdev++;
4702 			else if (equal == 3)
4703 				zb->zb_ditto_3_of_3_samevdev++;
4704 			break;
4705 		}
4706 	}
4707 }
4708 
4709 static void
4710 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4711 {
4712 	avl_index_t idx;
4713 	dsl_scan_t *scn = queue->q_scn;
4714 
4715 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4716 
4717 	if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4718 		atomic_add_64(&scn->scn_queues_pending, 1);
4719 	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4720 		/* block is already scheduled for reading */
4721 		sio_free(sio);
4722 		return;
4723 	}
4724 	avl_insert(&queue->q_sios_by_addr, sio, idx);
4725 	queue->q_sio_memused += SIO_GET_MUSED(sio);
4726 	range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4727 	    SIO_GET_ASIZE(sio));
4728 }
4729 
4730 /*
4731  * Given all the info we got from our metadata scanning process, we
4732  * construct a scan_io_t and insert it into the scan sorting queue. The
4733  * I/O must already be suitable for us to process. This is controlled
4734  * by dsl_scan_enqueue().
4735  */
4736 static void
4737 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4738     int zio_flags, const zbookmark_phys_t *zb)
4739 {
4740 	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4741 
4742 	ASSERT0(BP_IS_GANG(bp));
4743 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4744 
4745 	bp2sio(bp, sio, dva_i);
4746 	sio->sio_flags = zio_flags;
4747 	sio->sio_zb = *zb;
4748 
4749 	queue->q_last_ext_addr = -1;
4750 	scan_io_queue_insert_impl(queue, sio);
4751 }
4752 
4753 /*
4754  * Given a set of I/O parameters as discovered by the metadata traversal
4755  * process, attempts to place the I/O into the sorted queues (if allowed),
4756  * or immediately executes the I/O.
4757  */
4758 static void
4759 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4760     const zbookmark_phys_t *zb)
4761 {
4762 	spa_t *spa = dp->dp_spa;
4763 
4764 	ASSERT(!BP_IS_EMBEDDED(bp));
4765 
4766 	/*
4767 	 * Gang blocks are hard to issue sequentially, so we just issue them
4768 	 * here immediately instead of queuing them.
4769 	 */
4770 	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4771 		scan_exec_io(dp, bp, zio_flags, zb, NULL);
4772 		return;
4773 	}
4774 
4775 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4776 		dva_t dva;
4777 		vdev_t *vdev;
4778 
4779 		dva = bp->blk_dva[i];
4780 		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4781 		ASSERT(vdev != NULL);
4782 
4783 		mutex_enter(&vdev->vdev_scan_io_queue_lock);
4784 		if (vdev->vdev_scan_io_queue == NULL)
4785 			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4786 		ASSERT(dp->dp_scan != NULL);
4787 		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4788 		    i, zio_flags, zb);
4789 		mutex_exit(&vdev->vdev_scan_io_queue_lock);
4790 	}
4791 }
4792 
4793 static int
4794 dsl_scan_scrub_cb(dsl_pool_t *dp,
4795     const blkptr_t *bp, const zbookmark_phys_t *zb)
4796 {
4797 	dsl_scan_t *scn = dp->dp_scan;
4798 	spa_t *spa = dp->dp_spa;
4799 	uint64_t phys_birth = BP_GET_BIRTH(bp);
4800 	size_t psize = BP_GET_PSIZE(bp);
4801 	boolean_t needs_io = B_FALSE;
4802 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4803 
4804 	count_block(dp->dp_blkstats, bp);
4805 	if (phys_birth <= scn->scn_phys.scn_min_txg ||
4806 	    phys_birth >= scn->scn_phys.scn_max_txg) {
4807 		count_block_skipped(scn, bp, B_TRUE);
4808 		return (0);
4809 	}
4810 
4811 	/* Embedded BP's have phys_birth==0, so we reject them above. */
4812 	ASSERT(!BP_IS_EMBEDDED(bp));
4813 
4814 	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4815 	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4816 		zio_flags |= ZIO_FLAG_SCRUB;
4817 		needs_io = B_TRUE;
4818 	} else {
4819 		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4820 		zio_flags |= ZIO_FLAG_RESILVER;
4821 		needs_io = B_FALSE;
4822 	}
4823 
4824 	/* If it's an intent log block, failure is expected. */
4825 	if (zb->zb_level == ZB_ZIL_LEVEL)
4826 		zio_flags |= ZIO_FLAG_SPECULATIVE;
4827 
4828 	for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4829 		const dva_t *dva = &bp->blk_dva[d];
4830 
4831 		/*
4832 		 * Keep track of how much data we've examined so that
4833 		 * zpool(8) status can make useful progress reports.
4834 		 */
4835 		uint64_t asize = DVA_GET_ASIZE(dva);
4836 		scn->scn_phys.scn_examined += asize;
4837 		spa->spa_scan_pass_exam += asize;
4838 
4839 		/* if it's a resilver, this may not be in the target range */
4840 		if (!needs_io)
4841 			needs_io = dsl_scan_need_resilver(spa, dva, psize,
4842 			    phys_birth);
4843 	}
4844 
4845 	if (needs_io && !zfs_no_scrub_io) {
4846 		dsl_scan_enqueue(dp, bp, zio_flags, zb);
4847 	} else {
4848 		count_block_skipped(scn, bp, B_TRUE);
4849 	}
4850 
4851 	/* do not relocate this block */
4852 	return (0);
4853 }
4854 
4855 static void
4856 dsl_scan_scrub_done(zio_t *zio)
4857 {
4858 	spa_t *spa = zio->io_spa;
4859 	blkptr_t *bp = zio->io_bp;
4860 	dsl_scan_io_queue_t *queue = zio->io_private;
4861 
4862 	abd_free(zio->io_abd);
4863 
4864 	if (queue == NULL) {
4865 		mutex_enter(&spa->spa_scrub_lock);
4866 		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4867 		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4868 		cv_broadcast(&spa->spa_scrub_io_cv);
4869 		mutex_exit(&spa->spa_scrub_lock);
4870 	} else {
4871 		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4872 		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4873 		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4874 		cv_broadcast(&queue->q_zio_cv);
4875 		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4876 	}
4877 
4878 	if (zio->io_error && (zio->io_error != ECKSUM ||
4879 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4880 		if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4881 		    !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4882 			atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4883 			    ->errorscrub_phys.dep_errors);
4884 		} else {
4885 			atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4886 			    .scn_errors);
4887 		}
4888 	}
4889 }
4890 
4891 /*
4892  * Given a scanning zio's information, executes the zio. The zio need
4893  * not necessarily be only sortable, this function simply executes the
4894  * zio, no matter what it is. The optional queue argument allows the
4895  * caller to specify that they want per top level vdev IO rate limiting
4896  * instead of the legacy global limiting.
4897  */
4898 static void
4899 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4900     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4901 {
4902 	spa_t *spa = dp->dp_spa;
4903 	dsl_scan_t *scn = dp->dp_scan;
4904 	size_t size = BP_GET_PSIZE(bp);
4905 	abd_t *data = abd_alloc_for_io(size, B_FALSE);
4906 	zio_t *pio;
4907 
4908 	if (queue == NULL) {
4909 		ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4910 		mutex_enter(&spa->spa_scrub_lock);
4911 		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4912 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4913 		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4914 		mutex_exit(&spa->spa_scrub_lock);
4915 		pio = scn->scn_zio_root;
4916 	} else {
4917 		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4918 
4919 		ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4920 		mutex_enter(q_lock);
4921 		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4922 			cv_wait(&queue->q_zio_cv, q_lock);
4923 		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4924 		pio = queue->q_zio;
4925 		mutex_exit(q_lock);
4926 	}
4927 
4928 	ASSERT(pio != NULL);
4929 	count_block_issued(spa, bp, queue == NULL);
4930 	zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4931 	    queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4932 }
4933 
4934 /*
4935  * This is the primary extent sorting algorithm. We balance two parameters:
4936  * 1) how many bytes of I/O are in an extent
4937  * 2) how well the extent is filled with I/O (as a fraction of its total size)
4938  * Since we allow extents to have gaps between their constituent I/Os, it's
4939  * possible to have a fairly large extent that contains the same amount of
4940  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4941  * The algorithm sorts based on a score calculated from the extent's size,
4942  * the relative fill volume (in %) and a "fill weight" parameter that controls
4943  * the split between whether we prefer larger extents or more well populated
4944  * extents:
4945  *
4946  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4947  *
4948  * Example:
4949  * 1) assume extsz = 64 MiB
4950  * 2) assume fill = 32 MiB (extent is half full)
4951  * 3) assume fill_weight = 3
4952  * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4953  *	SCORE = 32M + (50 * 3 * 32M) / 100
4954  *	SCORE = 32M + (4800M / 100)
4955  *	SCORE = 32M + 48M
4956  *	         ^     ^
4957  *	         |     +--- final total relative fill-based score
4958  *	         +--------- final total fill-based score
4959  *	SCORE = 80M
4960  *
4961  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4962  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4963  * Note that as an optimization, we replace multiplication and division by
4964  * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4965  *
4966  * Since we do not care if one extent is only few percent better than another,
4967  * compress the score into 6 bits via binary logarithm AKA highbit64() and
4968  * put into otherwise unused due to ashift high bits of offset.  This allows
4969  * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4970  * with single operation.  Plus it makes scrubs more sequential and reduces
4971  * chances that minor extent change move it within the B-tree.
4972  */
4973 __attribute__((always_inline)) inline
4974 static int
4975 ext_size_compare(const void *x, const void *y)
4976 {
4977 	const uint64_t *a = x, *b = y;
4978 
4979 	return (TREE_CMP(*a, *b));
4980 }
4981 
4982 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4983     ext_size_compare)
4984 
4985 static void
4986 ext_size_create(range_tree_t *rt, void *arg)
4987 {
4988 	(void) rt;
4989 	zfs_btree_t *size_tree = arg;
4990 
4991 	zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
4992 	    sizeof (uint64_t));
4993 }
4994 
4995 static void
4996 ext_size_destroy(range_tree_t *rt, void *arg)
4997 {
4998 	(void) rt;
4999 	zfs_btree_t *size_tree = arg;
5000 	ASSERT0(zfs_btree_numnodes(size_tree));
5001 
5002 	zfs_btree_destroy(size_tree);
5003 }
5004 
5005 static uint64_t
5006 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg)
5007 {
5008 	(void) rt;
5009 	uint64_t size = rsg->rs_end - rsg->rs_start;
5010 	uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
5011 	    fill_weight * rsg->rs_fill) >> 7);
5012 	ASSERT3U(rt->rt_shift, >=, 8);
5013 	return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
5014 }
5015 
5016 static void
5017 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg)
5018 {
5019 	zfs_btree_t *size_tree = arg;
5020 	ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
5021 	uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
5022 	zfs_btree_add(size_tree, &v);
5023 }
5024 
5025 static void
5026 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
5027 {
5028 	zfs_btree_t *size_tree = arg;
5029 	ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
5030 	uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
5031 	zfs_btree_remove(size_tree, &v);
5032 }
5033 
5034 static void
5035 ext_size_vacate(range_tree_t *rt, void *arg)
5036 {
5037 	zfs_btree_t *size_tree = arg;
5038 	zfs_btree_clear(size_tree);
5039 	zfs_btree_destroy(size_tree);
5040 
5041 	ext_size_create(rt, arg);
5042 }
5043 
5044 static const range_tree_ops_t ext_size_ops = {
5045 	.rtop_create = ext_size_create,
5046 	.rtop_destroy = ext_size_destroy,
5047 	.rtop_add = ext_size_add,
5048 	.rtop_remove = ext_size_remove,
5049 	.rtop_vacate = ext_size_vacate
5050 };
5051 
5052 /*
5053  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
5054  * based on LBA-order (from lowest to highest).
5055  */
5056 static int
5057 sio_addr_compare(const void *x, const void *y)
5058 {
5059 	const scan_io_t *a = x, *b = y;
5060 
5061 	return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
5062 }
5063 
5064 /* IO queues are created on demand when they are needed. */
5065 static dsl_scan_io_queue_t *
5066 scan_io_queue_create(vdev_t *vd)
5067 {
5068 	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
5069 	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
5070 
5071 	q->q_scn = scn;
5072 	q->q_vd = vd;
5073 	q->q_sio_memused = 0;
5074 	q->q_last_ext_addr = -1;
5075 	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5076 	q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP,
5077 	    &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap);
5078 	avl_create(&q->q_sios_by_addr, sio_addr_compare,
5079 	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5080 
5081 	return (q);
5082 }
5083 
5084 /*
5085  * Destroys a scan queue and all segments and scan_io_t's contained in it.
5086  * No further execution of I/O occurs, anything pending in the queue is
5087  * simply freed without being executed.
5088  */
5089 void
5090 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5091 {
5092 	dsl_scan_t *scn = queue->q_scn;
5093 	scan_io_t *sio;
5094 	void *cookie = NULL;
5095 
5096 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5097 
5098 	if (!avl_is_empty(&queue->q_sios_by_addr))
5099 		atomic_add_64(&scn->scn_queues_pending, -1);
5100 	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5101 	    NULL) {
5102 		ASSERT(range_tree_contains(queue->q_exts_by_addr,
5103 		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5104 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
5105 		sio_free(sio);
5106 	}
5107 
5108 	ASSERT0(queue->q_sio_memused);
5109 	range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5110 	range_tree_destroy(queue->q_exts_by_addr);
5111 	avl_destroy(&queue->q_sios_by_addr);
5112 	cv_destroy(&queue->q_zio_cv);
5113 
5114 	kmem_free(queue, sizeof (*queue));
5115 }
5116 
5117 /*
5118  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5119  * called on behalf of vdev_top_transfer when creating or destroying
5120  * a mirror vdev due to zpool attach/detach.
5121  */
5122 void
5123 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5124 {
5125 	mutex_enter(&svd->vdev_scan_io_queue_lock);
5126 	mutex_enter(&tvd->vdev_scan_io_queue_lock);
5127 
5128 	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
5129 	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5130 	svd->vdev_scan_io_queue = NULL;
5131 	if (tvd->vdev_scan_io_queue != NULL)
5132 		tvd->vdev_scan_io_queue->q_vd = tvd;
5133 
5134 	mutex_exit(&tvd->vdev_scan_io_queue_lock);
5135 	mutex_exit(&svd->vdev_scan_io_queue_lock);
5136 }
5137 
5138 static void
5139 scan_io_queues_destroy(dsl_scan_t *scn)
5140 {
5141 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5142 
5143 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5144 		vdev_t *tvd = rvd->vdev_child[i];
5145 
5146 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
5147 		if (tvd->vdev_scan_io_queue != NULL)
5148 			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5149 		tvd->vdev_scan_io_queue = NULL;
5150 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
5151 	}
5152 }
5153 
5154 static void
5155 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5156 {
5157 	dsl_pool_t *dp = spa->spa_dsl_pool;
5158 	dsl_scan_t *scn = dp->dp_scan;
5159 	vdev_t *vdev;
5160 	kmutex_t *q_lock;
5161 	dsl_scan_io_queue_t *queue;
5162 	scan_io_t *srch_sio, *sio;
5163 	avl_index_t idx;
5164 	uint64_t start, size;
5165 
5166 	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5167 	ASSERT(vdev != NULL);
5168 	q_lock = &vdev->vdev_scan_io_queue_lock;
5169 	queue = vdev->vdev_scan_io_queue;
5170 
5171 	mutex_enter(q_lock);
5172 	if (queue == NULL) {
5173 		mutex_exit(q_lock);
5174 		return;
5175 	}
5176 
5177 	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5178 	bp2sio(bp, srch_sio, dva_i);
5179 	start = SIO_GET_OFFSET(srch_sio);
5180 	size = SIO_GET_ASIZE(srch_sio);
5181 
5182 	/*
5183 	 * We can find the zio in two states:
5184 	 * 1) Cold, just sitting in the queue of zio's to be issued at
5185 	 *	some point in the future. In this case, all we do is
5186 	 *	remove the zio from the q_sios_by_addr tree, decrement
5187 	 *	its data volume from the containing range_seg_t and
5188 	 *	resort the q_exts_by_size tree to reflect that the
5189 	 *	range_seg_t has lost some of its 'fill'. We don't shorten
5190 	 *	the range_seg_t - this is usually rare enough not to be
5191 	 *	worth the extra hassle of trying keep track of precise
5192 	 *	extent boundaries.
5193 	 * 2) Hot, where the zio is currently in-flight in
5194 	 *	dsl_scan_issue_ios. In this case, we can't simply
5195 	 *	reach in and stop the in-flight zio's, so we instead
5196 	 *	block the caller. Eventually, dsl_scan_issue_ios will
5197 	 *	be done with issuing the zio's it gathered and will
5198 	 *	signal us.
5199 	 */
5200 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5201 	sio_free(srch_sio);
5202 
5203 	if (sio != NULL) {
5204 		blkptr_t tmpbp;
5205 
5206 		/* Got it while it was cold in the queue */
5207 		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5208 		ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5209 		avl_remove(&queue->q_sios_by_addr, sio);
5210 		if (avl_is_empty(&queue->q_sios_by_addr))
5211 			atomic_add_64(&scn->scn_queues_pending, -1);
5212 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
5213 
5214 		ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
5215 		range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5216 
5217 		/* count the block as though we skipped it */
5218 		sio2bp(sio, &tmpbp);
5219 		count_block_skipped(scn, &tmpbp, B_FALSE);
5220 
5221 		sio_free(sio);
5222 	}
5223 	mutex_exit(q_lock);
5224 }
5225 
5226 /*
5227  * Callback invoked when a zio_free() zio is executing. This needs to be
5228  * intercepted to prevent the zio from deallocating a particular portion
5229  * of disk space and it then getting reallocated and written to, while we
5230  * still have it queued up for processing.
5231  */
5232 void
5233 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5234 {
5235 	dsl_pool_t *dp = spa->spa_dsl_pool;
5236 	dsl_scan_t *scn = dp->dp_scan;
5237 
5238 	ASSERT(!BP_IS_EMBEDDED(bp));
5239 	ASSERT(scn != NULL);
5240 	if (!dsl_scan_is_running(scn))
5241 		return;
5242 
5243 	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5244 		dsl_scan_freed_dva(spa, bp, i);
5245 }
5246 
5247 /*
5248  * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5249  * not started, start it. Otherwise, only restart if max txg in DTL range is
5250  * greater than the max txg in the current scan. If the DTL max is less than
5251  * the scan max, then the vdev has not missed any new data since the resilver
5252  * started, so a restart is not needed.
5253  */
5254 void
5255 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5256 {
5257 	uint64_t min, max;
5258 
5259 	if (!vdev_resilver_needed(vd, &min, &max))
5260 		return;
5261 
5262 	if (!dsl_scan_resilvering(dp)) {
5263 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5264 		return;
5265 	}
5266 
5267 	if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5268 		return;
5269 
5270 	/* restart is needed, check if it can be deferred */
5271 	if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5272 		vdev_defer_resilver(vd);
5273 	else
5274 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5275 }
5276 
5277 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5278 	"Max bytes in flight per leaf vdev for scrubs and resilvers");
5279 
5280 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5281 	"Min millisecs to scrub per txg");
5282 
5283 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5284 	"Min millisecs to obsolete per txg");
5285 
5286 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5287 	"Min millisecs to free per txg");
5288 
5289 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5290 	"Min millisecs to resilver per txg");
5291 
5292 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5293 	"Set to prevent scans from progressing");
5294 
5295 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5296 	"Set to disable scrub I/O");
5297 
5298 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5299 	"Set to disable scrub prefetching");
5300 
5301 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5302 	"Max number of blocks freed in one txg");
5303 
5304 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5305 	"Max number of dedup blocks freed in one txg");
5306 
5307 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5308 	"Enable processing of the free_bpobj");
5309 
5310 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5311 	"Enable block statistics calculation during scrub");
5312 
5313 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5314 	"Fraction of RAM for scan hard limit");
5315 
5316 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5317 	"IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5318 
5319 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5320 	"Scrub using legacy non-sequential method");
5321 
5322 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5323 	"Scan progress on-disk checkpointing interval");
5324 
5325 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5326 	"Max gap in bytes between sequential scrub / resilver I/Os");
5327 
5328 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5329 	"Fraction of hard limit used as soft limit");
5330 
5331 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5332 	"Tunable to attempt to reduce lock contention");
5333 
5334 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5335 	"Tunable to adjust bias towards more filled segments during scans");
5336 
5337 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5338 	"Tunable to report resilver performance over the last N txgs");
5339 
5340 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5341 	"Process all resilvers immediately");
5342 
5343 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW,
5344 	"Issued IO percent complete after which resilvers are deferred");
5345 
5346 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5347 	"Error blocks to be scrubbed in one txg");
5348