1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 */ 28 29 #include <sys/dsl_scan.h> 30 #include <sys/dsl_pool.h> 31 #include <sys/dsl_dataset.h> 32 #include <sys/dsl_prop.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dsl_synctask.h> 35 #include <sys/dnode.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/arc.h> 39 #include <sys/zap.h> 40 #include <sys/zio.h> 41 #include <sys/zfs_context.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/zfs_znode.h> 44 #include <sys/spa_impl.h> 45 #include <sys/vdev_impl.h> 46 #include <sys/zil_impl.h> 47 #include <sys/zio_checksum.h> 48 #include <sys/ddt.h> 49 #include <sys/sa.h> 50 #include <sys/sa_impl.h> 51 #include <sys/zfeature.h> 52 #include <sys/abd.h> 53 #include <sys/range_tree.h> 54 #ifdef _KERNEL 55 #include <sys/zfs_vfsops.h> 56 #endif 57 58 /* 59 * Grand theory statement on scan queue sorting 60 * 61 * Scanning is implemented by recursively traversing all indirection levels 62 * in an object and reading all blocks referenced from said objects. This 63 * results in us approximately traversing the object from lowest logical 64 * offset to the highest. For best performance, we would want the logical 65 * blocks to be physically contiguous. However, this is frequently not the 66 * case with pools given the allocation patterns of copy-on-write filesystems. 67 * So instead, we put the I/Os into a reordering queue and issue them in a 68 * way that will most benefit physical disks (LBA-order). 69 * 70 * Queue management: 71 * 72 * Ideally, we would want to scan all metadata and queue up all block I/O 73 * prior to starting to issue it, because that allows us to do an optimal 74 * sorting job. This can however consume large amounts of memory. Therefore 75 * we continuously monitor the size of the queues and constrain them to 5% 76 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 77 * limit, we clear out a few of the largest extents at the head of the queues 78 * to make room for more scanning. Hopefully, these extents will be fairly 79 * large and contiguous, allowing us to approach sequential I/O throughput 80 * even without a fully sorted tree. 81 * 82 * Metadata scanning takes place in dsl_scan_visit(), which is called from 83 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 84 * metadata on the pool, or we need to make room in memory because our 85 * queues are too large, dsl_scan_visit() is postponed and 86 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 87 * that metadata scanning and queued I/O issuing are mutually exclusive. This 88 * allows us to provide maximum sequential I/O throughput for the majority of 89 * I/O's issued since sequential I/O performance is significantly negatively 90 * impacted if it is interleaved with random I/O. 91 * 92 * Implementation Notes 93 * 94 * One side effect of the queued scanning algorithm is that the scanning code 95 * needs to be notified whenever a block is freed. This is needed to allow 96 * the scanning code to remove these I/Os from the issuing queue. Additionally, 97 * we do not attempt to queue gang blocks to be issued sequentially since this 98 * is very hard to do and would have an extremely limited performance benefit. 99 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 100 * algorithm. 101 * 102 * Backwards compatibility 103 * 104 * This new algorithm is backwards compatible with the legacy on-disk data 105 * structures (and therefore does not require a new feature flag). 106 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 107 * will stop scanning metadata (in logical order) and wait for all outstanding 108 * sorted I/O to complete. Once this is done, we write out a checkpoint 109 * bookmark, indicating that we have scanned everything logically before it. 110 * If the pool is imported on a machine without the new sorting algorithm, 111 * the scan simply resumes from the last checkpoint using the legacy algorithm. 112 */ 113 114 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 115 const zbookmark_phys_t *); 116 117 static scan_cb_t dsl_scan_scrub_cb; 118 119 static int scan_ds_queue_compare(const void *a, const void *b); 120 static int scan_prefetch_queue_compare(const void *a, const void *b); 121 static void scan_ds_queue_clear(dsl_scan_t *scn); 122 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 124 uint64_t *txg); 125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 128 static uint64_t dsl_scan_count_leaves(vdev_t *vd); 129 130 extern int zfs_vdev_async_write_active_min_dirty_percent; 131 132 /* 133 * By default zfs will check to ensure it is not over the hard memory 134 * limit before each txg. If finer-grained control of this is needed 135 * this value can be set to 1 to enable checking before scanning each 136 * block. 137 */ 138 int zfs_scan_strict_mem_lim = B_FALSE; 139 140 /* 141 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 142 * to strike a balance here between keeping the vdev queues full of I/Os 143 * at all times and not overflowing the queues to cause long latency, 144 * which would cause long txg sync times. No matter what, we will not 145 * overload the drives with I/O, since that is protected by 146 * zfs_vdev_scrub_max_active. 147 */ 148 unsigned long zfs_scan_vdev_limit = 4 << 20; 149 150 int zfs_scan_issue_strategy = 0; 151 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 152 unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 153 154 /* 155 * fill_weight is non-tunable at runtime, so we copy it at module init from 156 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 157 * break queue sorting. 158 */ 159 int zfs_scan_fill_weight = 3; 160 static uint64_t fill_weight; 161 162 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 163 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 164 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 165 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 166 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 167 168 int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 169 int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */ 170 int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 171 int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */ 172 int zfs_scan_checkpoint_intval = 7200; /* in seconds */ 173 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 174 int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 175 int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 176 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 177 /* max number of blocks to free in a single TXG */ 178 unsigned long zfs_async_block_max_blocks = ULONG_MAX; 179 /* max number of dedup blocks to free in a single TXG */ 180 unsigned long zfs_max_async_dedup_frees = 100000; 181 182 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 183 184 /* 185 * We wait a few txgs after importing a pool to begin scanning so that 186 * the import / mounting code isn't held up by scrub / resilver IO. 187 * Unfortunately, it is a bit difficult to determine exactly how long 188 * this will take since userspace will trigger fs mounts asynchronously 189 * and the kernel will create zvol minors asynchronously. As a result, 190 * the value provided here is a bit arbitrary, but represents a 191 * reasonable estimate of how many txgs it will take to finish fully 192 * importing a pool 193 */ 194 #define SCAN_IMPORT_WAIT_TXGS 5 195 196 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 197 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 198 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 199 200 /* 201 * Enable/disable the processing of the free_bpobj object. 202 */ 203 int zfs_free_bpobj_enabled = 1; 204 205 /* the order has to match pool_scan_type */ 206 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 207 NULL, 208 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 209 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 210 }; 211 212 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 213 typedef struct { 214 uint64_t sds_dsobj; 215 uint64_t sds_txg; 216 avl_node_t sds_node; 217 } scan_ds_t; 218 219 /* 220 * This controls what conditions are placed on dsl_scan_sync_state(): 221 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 222 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 223 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 224 * write out the scn_phys_cached version. 225 * See dsl_scan_sync_state for details. 226 */ 227 typedef enum { 228 SYNC_OPTIONAL, 229 SYNC_MANDATORY, 230 SYNC_CACHED 231 } state_sync_type_t; 232 233 /* 234 * This struct represents the minimum information needed to reconstruct a 235 * zio for sequential scanning. This is useful because many of these will 236 * accumulate in the sequential IO queues before being issued, so saving 237 * memory matters here. 238 */ 239 typedef struct scan_io { 240 /* fields from blkptr_t */ 241 uint64_t sio_blk_prop; 242 uint64_t sio_phys_birth; 243 uint64_t sio_birth; 244 zio_cksum_t sio_cksum; 245 uint32_t sio_nr_dvas; 246 247 /* fields from zio_t */ 248 uint32_t sio_flags; 249 zbookmark_phys_t sio_zb; 250 251 /* members for queue sorting */ 252 union { 253 avl_node_t sio_addr_node; /* link into issuing queue */ 254 list_node_t sio_list_node; /* link for issuing to disk */ 255 } sio_nodes; 256 257 /* 258 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 259 * depending on how many were in the original bp. Only the 260 * first DVA is really used for sorting and issuing purposes. 261 * The other DVAs (if provided) simply exist so that the zio 262 * layer can find additional copies to repair from in the 263 * event of an error. This array must go at the end of the 264 * struct to allow this for the variable number of elements. 265 */ 266 dva_t sio_dva[0]; 267 } scan_io_t; 268 269 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 270 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 271 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 272 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 273 #define SIO_GET_END_OFFSET(sio) \ 274 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 275 #define SIO_GET_MUSED(sio) \ 276 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 277 278 struct dsl_scan_io_queue { 279 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 280 vdev_t *q_vd; /* top-level vdev that this queue represents */ 281 282 /* trees used for sorting I/Os and extents of I/Os */ 283 range_tree_t *q_exts_by_addr; 284 zfs_btree_t q_exts_by_size; 285 avl_tree_t q_sios_by_addr; 286 uint64_t q_sio_memused; 287 288 /* members for zio rate limiting */ 289 uint64_t q_maxinflight_bytes; 290 uint64_t q_inflight_bytes; 291 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 292 293 /* per txg statistics */ 294 uint64_t q_total_seg_size_this_txg; 295 uint64_t q_segs_this_txg; 296 uint64_t q_total_zio_size_this_txg; 297 uint64_t q_zios_this_txg; 298 }; 299 300 /* private data for dsl_scan_prefetch_cb() */ 301 typedef struct scan_prefetch_ctx { 302 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 303 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 304 boolean_t spc_root; /* is this prefetch for an objset? */ 305 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 306 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 307 } scan_prefetch_ctx_t; 308 309 /* private data for dsl_scan_prefetch() */ 310 typedef struct scan_prefetch_issue_ctx { 311 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 312 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 313 blkptr_t spic_bp; /* bp to prefetch */ 314 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 315 } scan_prefetch_issue_ctx_t; 316 317 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 318 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 319 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 320 scan_io_t *sio); 321 322 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 323 static void scan_io_queues_destroy(dsl_scan_t *scn); 324 325 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 326 327 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 328 static void 329 sio_free(scan_io_t *sio) 330 { 331 ASSERT3U(sio->sio_nr_dvas, >, 0); 332 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 333 334 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 335 } 336 337 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 338 static scan_io_t * 339 sio_alloc(unsigned short nr_dvas) 340 { 341 ASSERT3U(nr_dvas, >, 0); 342 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 343 344 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 345 } 346 347 void 348 scan_init(void) 349 { 350 /* 351 * This is used in ext_size_compare() to weight segments 352 * based on how sparse they are. This cannot be changed 353 * mid-scan and the tree comparison functions don't currently 354 * have a mechanism for passing additional context to the 355 * compare functions. Thus we store this value globally and 356 * we only allow it to be set at module initialization time 357 */ 358 fill_weight = zfs_scan_fill_weight; 359 360 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 361 char name[36]; 362 363 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 364 sio_cache[i] = kmem_cache_create(name, 365 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 366 0, NULL, NULL, NULL, NULL, NULL, 0); 367 } 368 } 369 370 void 371 scan_fini(void) 372 { 373 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 374 kmem_cache_destroy(sio_cache[i]); 375 } 376 } 377 378 static inline boolean_t 379 dsl_scan_is_running(const dsl_scan_t *scn) 380 { 381 return (scn->scn_phys.scn_state == DSS_SCANNING); 382 } 383 384 boolean_t 385 dsl_scan_resilvering(dsl_pool_t *dp) 386 { 387 return (dsl_scan_is_running(dp->dp_scan) && 388 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 389 } 390 391 static inline void 392 sio2bp(const scan_io_t *sio, blkptr_t *bp) 393 { 394 bzero(bp, sizeof (*bp)); 395 bp->blk_prop = sio->sio_blk_prop; 396 bp->blk_phys_birth = sio->sio_phys_birth; 397 bp->blk_birth = sio->sio_birth; 398 bp->blk_fill = 1; /* we always only work with data pointers */ 399 bp->blk_cksum = sio->sio_cksum; 400 401 ASSERT3U(sio->sio_nr_dvas, >, 0); 402 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 403 404 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 405 } 406 407 static inline void 408 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 409 { 410 sio->sio_blk_prop = bp->blk_prop; 411 sio->sio_phys_birth = bp->blk_phys_birth; 412 sio->sio_birth = bp->blk_birth; 413 sio->sio_cksum = bp->blk_cksum; 414 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 415 416 /* 417 * Copy the DVAs to the sio. We need all copies of the block so 418 * that the self healing code can use the alternate copies if the 419 * first is corrupted. We want the DVA at index dva_i to be first 420 * in the sio since this is the primary one that we want to issue. 421 */ 422 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 423 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 424 } 425 } 426 427 int 428 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 429 { 430 int err; 431 dsl_scan_t *scn; 432 spa_t *spa = dp->dp_spa; 433 uint64_t f; 434 435 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 436 scn->scn_dp = dp; 437 438 /* 439 * It's possible that we're resuming a scan after a reboot so 440 * make sure that the scan_async_destroying flag is initialized 441 * appropriately. 442 */ 443 ASSERT(!scn->scn_async_destroying); 444 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 445 SPA_FEATURE_ASYNC_DESTROY); 446 447 /* 448 * Calculate the max number of in-flight bytes for pool-wide 449 * scanning operations (minimum 1MB). Limits for the issuing 450 * phase are done per top-level vdev and are handled separately. 451 */ 452 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 453 dsl_scan_count_leaves(spa->spa_root_vdev), 1ULL << 20); 454 455 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 456 offsetof(scan_ds_t, sds_node)); 457 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 458 sizeof (scan_prefetch_issue_ctx_t), 459 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 460 461 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 462 "scrub_func", sizeof (uint64_t), 1, &f); 463 if (err == 0) { 464 /* 465 * There was an old-style scrub in progress. Restart a 466 * new-style scrub from the beginning. 467 */ 468 scn->scn_restart_txg = txg; 469 zfs_dbgmsg("old-style scrub was in progress; " 470 "restarting new-style scrub in txg %llu", 471 (longlong_t)scn->scn_restart_txg); 472 473 /* 474 * Load the queue obj from the old location so that it 475 * can be freed by dsl_scan_done(). 476 */ 477 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 478 "scrub_queue", sizeof (uint64_t), 1, 479 &scn->scn_phys.scn_queue_obj); 480 } else { 481 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 482 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 483 &scn->scn_phys); 484 /* 485 * Detect if the pool contains the signature of #2094. If it 486 * does properly update the scn->scn_phys structure and notify 487 * the administrator by setting an errata for the pool. 488 */ 489 if (err == EOVERFLOW) { 490 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 491 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 492 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 493 (23 * sizeof (uint64_t))); 494 495 err = zap_lookup(dp->dp_meta_objset, 496 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 497 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 498 if (err == 0) { 499 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 500 501 if (overflow & ~DSL_SCAN_FLAGS_MASK || 502 scn->scn_async_destroying) { 503 spa->spa_errata = 504 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 505 return (EOVERFLOW); 506 } 507 508 bcopy(zaptmp, &scn->scn_phys, 509 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 510 scn->scn_phys.scn_flags = overflow; 511 512 /* Required scrub already in progress. */ 513 if (scn->scn_phys.scn_state == DSS_FINISHED || 514 scn->scn_phys.scn_state == DSS_CANCELED) 515 spa->spa_errata = 516 ZPOOL_ERRATA_ZOL_2094_SCRUB; 517 } 518 } 519 520 if (err == ENOENT) 521 return (0); 522 else if (err) 523 return (err); 524 525 /* 526 * We might be restarting after a reboot, so jump the issued 527 * counter to how far we've scanned. We know we're consistent 528 * up to here. 529 */ 530 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 531 532 if (dsl_scan_is_running(scn) && 533 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 534 /* 535 * A new-type scrub was in progress on an old 536 * pool, and the pool was accessed by old 537 * software. Restart from the beginning, since 538 * the old software may have changed the pool in 539 * the meantime. 540 */ 541 scn->scn_restart_txg = txg; 542 zfs_dbgmsg("new-style scrub was modified " 543 "by old software; restarting in txg %llu", 544 (longlong_t)scn->scn_restart_txg); 545 } else if (dsl_scan_resilvering(dp)) { 546 /* 547 * If a resilver is in progress and there are already 548 * errors, restart it instead of finishing this scan and 549 * then restarting it. If there haven't been any errors 550 * then remember that the incore DTL is valid. 551 */ 552 if (scn->scn_phys.scn_errors > 0) { 553 scn->scn_restart_txg = txg; 554 zfs_dbgmsg("resilver can't excise DTL_MISSING " 555 "when finished; restarting in txg %llu", 556 (u_longlong_t)scn->scn_restart_txg); 557 } else { 558 /* it's safe to excise DTL when finished */ 559 spa->spa_scrub_started = B_TRUE; 560 } 561 } 562 } 563 564 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 565 566 /* reload the queue into the in-core state */ 567 if (scn->scn_phys.scn_queue_obj != 0) { 568 zap_cursor_t zc; 569 zap_attribute_t za; 570 571 for (zap_cursor_init(&zc, dp->dp_meta_objset, 572 scn->scn_phys.scn_queue_obj); 573 zap_cursor_retrieve(&zc, &za) == 0; 574 (void) zap_cursor_advance(&zc)) { 575 scan_ds_queue_insert(scn, 576 zfs_strtonum(za.za_name, NULL), 577 za.za_first_integer); 578 } 579 zap_cursor_fini(&zc); 580 } 581 582 spa_scan_stat_init(spa); 583 return (0); 584 } 585 586 void 587 dsl_scan_fini(dsl_pool_t *dp) 588 { 589 if (dp->dp_scan != NULL) { 590 dsl_scan_t *scn = dp->dp_scan; 591 592 if (scn->scn_taskq != NULL) 593 taskq_destroy(scn->scn_taskq); 594 595 scan_ds_queue_clear(scn); 596 avl_destroy(&scn->scn_queue); 597 scan_ds_prefetch_queue_clear(scn); 598 avl_destroy(&scn->scn_prefetch_queue); 599 600 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 601 dp->dp_scan = NULL; 602 } 603 } 604 605 static boolean_t 606 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 607 { 608 return (scn->scn_restart_txg != 0 && 609 scn->scn_restart_txg <= tx->tx_txg); 610 } 611 612 boolean_t 613 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 614 { 615 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 616 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 617 } 618 619 boolean_t 620 dsl_scan_scrubbing(const dsl_pool_t *dp) 621 { 622 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 623 624 return (scn_phys->scn_state == DSS_SCANNING && 625 scn_phys->scn_func == POOL_SCAN_SCRUB); 626 } 627 628 boolean_t 629 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 630 { 631 return (dsl_scan_scrubbing(scn->scn_dp) && 632 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 633 } 634 635 /* 636 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 637 * Because we can be running in the block sorting algorithm, we do not always 638 * want to write out the record, only when it is "safe" to do so. This safety 639 * condition is achieved by making sure that the sorting queues are empty 640 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 641 * is inconsistent with how much actual scanning progress has been made. The 642 * kind of sync to be performed is specified by the sync_type argument. If the 643 * sync is optional, we only sync if the queues are empty. If the sync is 644 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 645 * third possible state is a "cached" sync. This is done in response to: 646 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 647 * destroyed, so we wouldn't be able to restart scanning from it. 648 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 649 * superseded by a newer snapshot. 650 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 651 * swapped with its clone. 652 * In all cases, a cached sync simply rewrites the last record we've written, 653 * just slightly modified. For the modifications that are performed to the 654 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 655 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 656 */ 657 static void 658 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 659 { 660 int i; 661 spa_t *spa = scn->scn_dp->dp_spa; 662 663 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 664 if (scn->scn_bytes_pending == 0) { 665 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 666 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 667 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 668 669 if (q == NULL) 670 continue; 671 672 mutex_enter(&vd->vdev_scan_io_queue_lock); 673 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 674 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 675 NULL); 676 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 677 mutex_exit(&vd->vdev_scan_io_queue_lock); 678 } 679 680 if (scn->scn_phys.scn_queue_obj != 0) 681 scan_ds_queue_sync(scn, tx); 682 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 683 DMU_POOL_DIRECTORY_OBJECT, 684 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 685 &scn->scn_phys, tx)); 686 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 687 sizeof (scn->scn_phys)); 688 689 if (scn->scn_checkpointing) 690 zfs_dbgmsg("finish scan checkpoint"); 691 692 scn->scn_checkpointing = B_FALSE; 693 scn->scn_last_checkpoint = ddi_get_lbolt(); 694 } else if (sync_type == SYNC_CACHED) { 695 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 696 DMU_POOL_DIRECTORY_OBJECT, 697 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 698 &scn->scn_phys_cached, tx)); 699 } 700 } 701 702 /* ARGSUSED */ 703 static int 704 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 705 { 706 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 707 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 708 709 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd)) 710 return (SET_ERROR(EBUSY)); 711 712 return (0); 713 } 714 715 static void 716 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 717 { 718 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 719 pool_scan_func_t *funcp = arg; 720 dmu_object_type_t ot = 0; 721 dsl_pool_t *dp = scn->scn_dp; 722 spa_t *spa = dp->dp_spa; 723 724 ASSERT(!dsl_scan_is_running(scn)); 725 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 726 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 727 scn->scn_phys.scn_func = *funcp; 728 scn->scn_phys.scn_state = DSS_SCANNING; 729 scn->scn_phys.scn_min_txg = 0; 730 scn->scn_phys.scn_max_txg = tx->tx_txg; 731 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 732 scn->scn_phys.scn_start_time = gethrestime_sec(); 733 scn->scn_phys.scn_errors = 0; 734 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 735 scn->scn_issued_before_pass = 0; 736 scn->scn_restart_txg = 0; 737 scn->scn_done_txg = 0; 738 scn->scn_last_checkpoint = 0; 739 scn->scn_checkpointing = B_FALSE; 740 spa_scan_stat_init(spa); 741 742 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 743 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 744 745 /* rewrite all disk labels */ 746 vdev_config_dirty(spa->spa_root_vdev); 747 748 if (vdev_resilver_needed(spa->spa_root_vdev, 749 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 750 nvlist_t *aux = fnvlist_alloc(); 751 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 752 "healing"); 753 spa_event_notify(spa, NULL, aux, 754 ESC_ZFS_RESILVER_START); 755 nvlist_free(aux); 756 } else { 757 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 758 } 759 760 spa->spa_scrub_started = B_TRUE; 761 /* 762 * If this is an incremental scrub, limit the DDT scrub phase 763 * to just the auto-ditto class (for correctness); the rest 764 * of the scrub should go faster using top-down pruning. 765 */ 766 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 767 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 768 769 /* 770 * When starting a resilver clear any existing rebuild state. 771 * This is required to prevent stale rebuild status from 772 * being reported when a rebuild is run, then a resilver and 773 * finally a scrub. In which case only the scrub status 774 * should be reported by 'zpool status'. 775 */ 776 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 777 vdev_t *rvd = spa->spa_root_vdev; 778 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 779 vdev_t *vd = rvd->vdev_child[i]; 780 vdev_rebuild_clear_sync( 781 (void *)(uintptr_t)vd->vdev_id, tx); 782 } 783 } 784 } 785 786 /* back to the generic stuff */ 787 788 if (dp->dp_blkstats == NULL) { 789 dp->dp_blkstats = 790 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 791 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 792 MUTEX_DEFAULT, NULL); 793 } 794 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 795 796 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 797 ot = DMU_OT_ZAP_OTHER; 798 799 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 800 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 801 802 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 803 804 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 805 806 spa_history_log_internal(spa, "scan setup", tx, 807 "func=%u mintxg=%llu maxtxg=%llu", 808 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg, 809 (u_longlong_t)scn->scn_phys.scn_max_txg); 810 } 811 812 /* 813 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 814 * Can also be called to resume a paused scrub. 815 */ 816 int 817 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 818 { 819 spa_t *spa = dp->dp_spa; 820 dsl_scan_t *scn = dp->dp_scan; 821 822 /* 823 * Purge all vdev caches and probe all devices. We do this here 824 * rather than in sync context because this requires a writer lock 825 * on the spa_config lock, which we can't do from sync context. The 826 * spa_scrub_reopen flag indicates that vdev_open() should not 827 * attempt to start another scrub. 828 */ 829 spa_vdev_state_enter(spa, SCL_NONE); 830 spa->spa_scrub_reopen = B_TRUE; 831 vdev_reopen(spa->spa_root_vdev); 832 spa->spa_scrub_reopen = B_FALSE; 833 (void) spa_vdev_state_exit(spa, NULL, 0); 834 835 if (func == POOL_SCAN_RESILVER) { 836 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 837 return (0); 838 } 839 840 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 841 /* got scrub start cmd, resume paused scrub */ 842 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 843 POOL_SCRUB_NORMAL); 844 if (err == 0) { 845 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 846 return (SET_ERROR(ECANCELED)); 847 } 848 849 return (SET_ERROR(err)); 850 } 851 852 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 853 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 854 } 855 856 /* ARGSUSED */ 857 static void 858 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 859 { 860 static const char *old_names[] = { 861 "scrub_bookmark", 862 "scrub_ddt_bookmark", 863 "scrub_ddt_class_max", 864 "scrub_queue", 865 "scrub_min_txg", 866 "scrub_max_txg", 867 "scrub_func", 868 "scrub_errors", 869 NULL 870 }; 871 872 dsl_pool_t *dp = scn->scn_dp; 873 spa_t *spa = dp->dp_spa; 874 int i; 875 876 /* Remove any remnants of an old-style scrub. */ 877 for (i = 0; old_names[i]; i++) { 878 (void) zap_remove(dp->dp_meta_objset, 879 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 880 } 881 882 if (scn->scn_phys.scn_queue_obj != 0) { 883 VERIFY0(dmu_object_free(dp->dp_meta_objset, 884 scn->scn_phys.scn_queue_obj, tx)); 885 scn->scn_phys.scn_queue_obj = 0; 886 } 887 scan_ds_queue_clear(scn); 888 scan_ds_prefetch_queue_clear(scn); 889 890 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 891 892 /* 893 * If we were "restarted" from a stopped state, don't bother 894 * with anything else. 895 */ 896 if (!dsl_scan_is_running(scn)) { 897 ASSERT(!scn->scn_is_sorted); 898 return; 899 } 900 901 if (scn->scn_is_sorted) { 902 scan_io_queues_destroy(scn); 903 scn->scn_is_sorted = B_FALSE; 904 905 if (scn->scn_taskq != NULL) { 906 taskq_destroy(scn->scn_taskq); 907 scn->scn_taskq = NULL; 908 } 909 } 910 911 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 912 913 spa_notify_waiters(spa); 914 915 if (dsl_scan_restarting(scn, tx)) 916 spa_history_log_internal(spa, "scan aborted, restarting", tx, 917 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 918 else if (!complete) 919 spa_history_log_internal(spa, "scan cancelled", tx, 920 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 921 else 922 spa_history_log_internal(spa, "scan done", tx, 923 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 924 925 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 926 spa->spa_scrub_active = B_FALSE; 927 928 /* 929 * If the scrub/resilver completed, update all DTLs to 930 * reflect this. Whether it succeeded or not, vacate 931 * all temporary scrub DTLs. 932 * 933 * As the scrub does not currently support traversing 934 * data that have been freed but are part of a checkpoint, 935 * we don't mark the scrub as done in the DTLs as faults 936 * may still exist in those vdevs. 937 */ 938 if (complete && 939 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 940 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 941 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 942 943 if (scn->scn_phys.scn_min_txg) { 944 nvlist_t *aux = fnvlist_alloc(); 945 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 946 "healing"); 947 spa_event_notify(spa, NULL, aux, 948 ESC_ZFS_RESILVER_FINISH); 949 nvlist_free(aux); 950 } else { 951 spa_event_notify(spa, NULL, NULL, 952 ESC_ZFS_SCRUB_FINISH); 953 } 954 } else { 955 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 956 0, B_TRUE, B_FALSE); 957 } 958 spa_errlog_rotate(spa); 959 960 /* 961 * Don't clear flag until after vdev_dtl_reassess to ensure that 962 * DTL_MISSING will get updated when possible. 963 */ 964 spa->spa_scrub_started = B_FALSE; 965 966 /* 967 * We may have finished replacing a device. 968 * Let the async thread assess this and handle the detach. 969 */ 970 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 971 972 /* 973 * Clear any resilver_deferred flags in the config. 974 * If there are drives that need resilvering, kick 975 * off an asynchronous request to start resilver. 976 * vdev_clear_resilver_deferred() may update the config 977 * before the resilver can restart. In the event of 978 * a crash during this period, the spa loading code 979 * will find the drives that need to be resilvered 980 * and start the resilver then. 981 */ 982 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 983 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 984 spa_history_log_internal(spa, 985 "starting deferred resilver", tx, "errors=%llu", 986 (u_longlong_t)spa_get_errlog_size(spa)); 987 spa_async_request(spa, SPA_ASYNC_RESILVER); 988 } 989 } 990 991 scn->scn_phys.scn_end_time = gethrestime_sec(); 992 993 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 994 spa->spa_errata = 0; 995 996 ASSERT(!dsl_scan_is_running(scn)); 997 } 998 999 /* ARGSUSED */ 1000 static int 1001 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1002 { 1003 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1004 1005 if (!dsl_scan_is_running(scn)) 1006 return (SET_ERROR(ENOENT)); 1007 return (0); 1008 } 1009 1010 /* ARGSUSED */ 1011 static void 1012 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1013 { 1014 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1015 1016 dsl_scan_done(scn, B_FALSE, tx); 1017 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1018 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1019 } 1020 1021 int 1022 dsl_scan_cancel(dsl_pool_t *dp) 1023 { 1024 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1025 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1026 } 1027 1028 static int 1029 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1030 { 1031 pool_scrub_cmd_t *cmd = arg; 1032 dsl_pool_t *dp = dmu_tx_pool(tx); 1033 dsl_scan_t *scn = dp->dp_scan; 1034 1035 if (*cmd == POOL_SCRUB_PAUSE) { 1036 /* can't pause a scrub when there is no in-progress scrub */ 1037 if (!dsl_scan_scrubbing(dp)) 1038 return (SET_ERROR(ENOENT)); 1039 1040 /* can't pause a paused scrub */ 1041 if (dsl_scan_is_paused_scrub(scn)) 1042 return (SET_ERROR(EBUSY)); 1043 } else if (*cmd != POOL_SCRUB_NORMAL) { 1044 return (SET_ERROR(ENOTSUP)); 1045 } 1046 1047 return (0); 1048 } 1049 1050 static void 1051 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1052 { 1053 pool_scrub_cmd_t *cmd = arg; 1054 dsl_pool_t *dp = dmu_tx_pool(tx); 1055 spa_t *spa = dp->dp_spa; 1056 dsl_scan_t *scn = dp->dp_scan; 1057 1058 if (*cmd == POOL_SCRUB_PAUSE) { 1059 /* can't pause a scrub when there is no in-progress scrub */ 1060 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1061 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1062 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1063 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1064 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1065 spa_notify_waiters(spa); 1066 } else { 1067 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1068 if (dsl_scan_is_paused_scrub(scn)) { 1069 /* 1070 * We need to keep track of how much time we spend 1071 * paused per pass so that we can adjust the scrub rate 1072 * shown in the output of 'zpool status' 1073 */ 1074 spa->spa_scan_pass_scrub_spent_paused += 1075 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1076 spa->spa_scan_pass_scrub_pause = 0; 1077 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1078 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1079 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1080 } 1081 } 1082 } 1083 1084 /* 1085 * Set scrub pause/resume state if it makes sense to do so 1086 */ 1087 int 1088 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1089 { 1090 return (dsl_sync_task(spa_name(dp->dp_spa), 1091 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1092 ZFS_SPACE_CHECK_RESERVED)); 1093 } 1094 1095 1096 /* start a new scan, or restart an existing one. */ 1097 void 1098 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1099 { 1100 if (txg == 0) { 1101 dmu_tx_t *tx; 1102 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1103 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1104 1105 txg = dmu_tx_get_txg(tx); 1106 dp->dp_scan->scn_restart_txg = txg; 1107 dmu_tx_commit(tx); 1108 } else { 1109 dp->dp_scan->scn_restart_txg = txg; 1110 } 1111 zfs_dbgmsg("restarting resilver txg=%llu", (longlong_t)txg); 1112 } 1113 1114 void 1115 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1116 { 1117 zio_free(dp->dp_spa, txg, bp); 1118 } 1119 1120 void 1121 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1122 { 1123 ASSERT(dsl_pool_sync_context(dp)); 1124 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1125 } 1126 1127 static int 1128 scan_ds_queue_compare(const void *a, const void *b) 1129 { 1130 const scan_ds_t *sds_a = a, *sds_b = b; 1131 1132 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1133 return (-1); 1134 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1135 return (0); 1136 return (1); 1137 } 1138 1139 static void 1140 scan_ds_queue_clear(dsl_scan_t *scn) 1141 { 1142 void *cookie = NULL; 1143 scan_ds_t *sds; 1144 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1145 kmem_free(sds, sizeof (*sds)); 1146 } 1147 } 1148 1149 static boolean_t 1150 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1151 { 1152 scan_ds_t srch, *sds; 1153 1154 srch.sds_dsobj = dsobj; 1155 sds = avl_find(&scn->scn_queue, &srch, NULL); 1156 if (sds != NULL && txg != NULL) 1157 *txg = sds->sds_txg; 1158 return (sds != NULL); 1159 } 1160 1161 static void 1162 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1163 { 1164 scan_ds_t *sds; 1165 avl_index_t where; 1166 1167 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1168 sds->sds_dsobj = dsobj; 1169 sds->sds_txg = txg; 1170 1171 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1172 avl_insert(&scn->scn_queue, sds, where); 1173 } 1174 1175 static void 1176 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1177 { 1178 scan_ds_t srch, *sds; 1179 1180 srch.sds_dsobj = dsobj; 1181 1182 sds = avl_find(&scn->scn_queue, &srch, NULL); 1183 VERIFY(sds != NULL); 1184 avl_remove(&scn->scn_queue, sds); 1185 kmem_free(sds, sizeof (*sds)); 1186 } 1187 1188 static void 1189 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1190 { 1191 dsl_pool_t *dp = scn->scn_dp; 1192 spa_t *spa = dp->dp_spa; 1193 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1194 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1195 1196 ASSERT0(scn->scn_bytes_pending); 1197 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1198 1199 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1200 scn->scn_phys.scn_queue_obj, tx)); 1201 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1202 DMU_OT_NONE, 0, tx); 1203 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1204 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1205 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1206 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1207 sds->sds_txg, tx)); 1208 } 1209 } 1210 1211 /* 1212 * Computes the memory limit state that we're currently in. A sorted scan 1213 * needs quite a bit of memory to hold the sorting queue, so we need to 1214 * reasonably constrain the size so it doesn't impact overall system 1215 * performance. We compute two limits: 1216 * 1) Hard memory limit: if the amount of memory used by the sorting 1217 * queues on a pool gets above this value, we stop the metadata 1218 * scanning portion and start issuing the queued up and sorted 1219 * I/Os to reduce memory usage. 1220 * This limit is calculated as a fraction of physmem (by default 5%). 1221 * We constrain the lower bound of the hard limit to an absolute 1222 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1223 * the upper bound to 5% of the total pool size - no chance we'll 1224 * ever need that much memory, but just to keep the value in check. 1225 * 2) Soft memory limit: once we hit the hard memory limit, we start 1226 * issuing I/O to reduce queue memory usage, but we don't want to 1227 * completely empty out the queues, since we might be able to find I/Os 1228 * that will fill in the gaps of our non-sequential IOs at some point 1229 * in the future. So we stop the issuing of I/Os once the amount of 1230 * memory used drops below the soft limit (at which point we stop issuing 1231 * I/O and start scanning metadata again). 1232 * 1233 * This limit is calculated by subtracting a fraction of the hard 1234 * limit from the hard limit. By default this fraction is 5%, so 1235 * the soft limit is 95% of the hard limit. We cap the size of the 1236 * difference between the hard and soft limits at an absolute 1237 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1238 * sufficient to not cause too frequent switching between the 1239 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1240 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1241 * that should take at least a decent fraction of a second). 1242 */ 1243 static boolean_t 1244 dsl_scan_should_clear(dsl_scan_t *scn) 1245 { 1246 spa_t *spa = scn->scn_dp->dp_spa; 1247 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1248 uint64_t alloc, mlim_hard, mlim_soft, mused; 1249 1250 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1251 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1252 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1253 1254 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1255 zfs_scan_mem_lim_min); 1256 mlim_hard = MIN(mlim_hard, alloc / 20); 1257 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1258 zfs_scan_mem_lim_soft_max); 1259 mused = 0; 1260 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1261 vdev_t *tvd = rvd->vdev_child[i]; 1262 dsl_scan_io_queue_t *queue; 1263 1264 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1265 queue = tvd->vdev_scan_io_queue; 1266 if (queue != NULL) { 1267 /* # extents in exts_by_size = # in exts_by_addr */ 1268 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1269 sizeof (range_seg_gap_t) + queue->q_sio_memused; 1270 } 1271 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1272 } 1273 1274 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1275 1276 if (mused == 0) 1277 ASSERT0(scn->scn_bytes_pending); 1278 1279 /* 1280 * If we are above our hard limit, we need to clear out memory. 1281 * If we are below our soft limit, we need to accumulate sequential IOs. 1282 * Otherwise, we should keep doing whatever we are currently doing. 1283 */ 1284 if (mused >= mlim_hard) 1285 return (B_TRUE); 1286 else if (mused < mlim_soft) 1287 return (B_FALSE); 1288 else 1289 return (scn->scn_clearing); 1290 } 1291 1292 static boolean_t 1293 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1294 { 1295 /* we never skip user/group accounting objects */ 1296 if (zb && (int64_t)zb->zb_object < 0) 1297 return (B_FALSE); 1298 1299 if (scn->scn_suspending) 1300 return (B_TRUE); /* we're already suspending */ 1301 1302 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1303 return (B_FALSE); /* we're resuming */ 1304 1305 /* We only know how to resume from level-0 and objset blocks. */ 1306 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1307 return (B_FALSE); 1308 1309 /* 1310 * We suspend if: 1311 * - we have scanned for at least the minimum time (default 1 sec 1312 * for scrub, 3 sec for resilver), and either we have sufficient 1313 * dirty data that we are starting to write more quickly 1314 * (default 30%), someone is explicitly waiting for this txg 1315 * to complete, or we have used up all of the time in the txg 1316 * timeout (default 5 sec). 1317 * or 1318 * - the spa is shutting down because this pool is being exported 1319 * or the machine is rebooting. 1320 * or 1321 * - the scan queue has reached its memory use limit 1322 */ 1323 uint64_t curr_time_ns = gethrtime(); 1324 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1325 uint64_t sync_time_ns = curr_time_ns - 1326 scn->scn_dp->dp_spa->spa_sync_starttime; 1327 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1328 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1329 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1330 1331 if ((NSEC2MSEC(scan_time_ns) > mintime && 1332 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1333 txg_sync_waiting(scn->scn_dp) || 1334 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1335 spa_shutting_down(scn->scn_dp->dp_spa) || 1336 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1337 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1338 dprintf("suspending at first available bookmark " 1339 "%llx/%llx/%llx/%llx\n", 1340 (longlong_t)zb->zb_objset, 1341 (longlong_t)zb->zb_object, 1342 (longlong_t)zb->zb_level, 1343 (longlong_t)zb->zb_blkid); 1344 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1345 zb->zb_objset, 0, 0, 0); 1346 } else if (zb != NULL) { 1347 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1348 (longlong_t)zb->zb_objset, 1349 (longlong_t)zb->zb_object, 1350 (longlong_t)zb->zb_level, 1351 (longlong_t)zb->zb_blkid); 1352 scn->scn_phys.scn_bookmark = *zb; 1353 } else { 1354 #ifdef ZFS_DEBUG 1355 dsl_scan_phys_t *scnp = &scn->scn_phys; 1356 dprintf("suspending at at DDT bookmark " 1357 "%llx/%llx/%llx/%llx\n", 1358 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1359 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1360 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1361 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1362 #endif 1363 } 1364 scn->scn_suspending = B_TRUE; 1365 return (B_TRUE); 1366 } 1367 return (B_FALSE); 1368 } 1369 1370 typedef struct zil_scan_arg { 1371 dsl_pool_t *zsa_dp; 1372 zil_header_t *zsa_zh; 1373 } zil_scan_arg_t; 1374 1375 /* ARGSUSED */ 1376 static int 1377 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1378 { 1379 zil_scan_arg_t *zsa = arg; 1380 dsl_pool_t *dp = zsa->zsa_dp; 1381 dsl_scan_t *scn = dp->dp_scan; 1382 zil_header_t *zh = zsa->zsa_zh; 1383 zbookmark_phys_t zb; 1384 1385 ASSERT(!BP_IS_REDACTED(bp)); 1386 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1387 return (0); 1388 1389 /* 1390 * One block ("stubby") can be allocated a long time ago; we 1391 * want to visit that one because it has been allocated 1392 * (on-disk) even if it hasn't been claimed (even though for 1393 * scrub there's nothing to do to it). 1394 */ 1395 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1396 return (0); 1397 1398 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1399 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1400 1401 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1402 return (0); 1403 } 1404 1405 /* ARGSUSED */ 1406 static int 1407 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) 1408 { 1409 if (lrc->lrc_txtype == TX_WRITE) { 1410 zil_scan_arg_t *zsa = arg; 1411 dsl_pool_t *dp = zsa->zsa_dp; 1412 dsl_scan_t *scn = dp->dp_scan; 1413 zil_header_t *zh = zsa->zsa_zh; 1414 lr_write_t *lr = (lr_write_t *)lrc; 1415 blkptr_t *bp = &lr->lr_blkptr; 1416 zbookmark_phys_t zb; 1417 1418 ASSERT(!BP_IS_REDACTED(bp)); 1419 if (BP_IS_HOLE(bp) || 1420 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1421 return (0); 1422 1423 /* 1424 * birth can be < claim_txg if this record's txg is 1425 * already txg sync'ed (but this log block contains 1426 * other records that are not synced) 1427 */ 1428 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1429 return (0); 1430 1431 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1432 lr->lr_foid, ZB_ZIL_LEVEL, 1433 lr->lr_offset / BP_GET_LSIZE(bp)); 1434 1435 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1436 } 1437 return (0); 1438 } 1439 1440 static void 1441 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1442 { 1443 uint64_t claim_txg = zh->zh_claim_txg; 1444 zil_scan_arg_t zsa = { dp, zh }; 1445 zilog_t *zilog; 1446 1447 ASSERT(spa_writeable(dp->dp_spa)); 1448 1449 /* 1450 * We only want to visit blocks that have been claimed but not yet 1451 * replayed (or, in read-only mode, blocks that *would* be claimed). 1452 */ 1453 if (claim_txg == 0) 1454 return; 1455 1456 zilog = zil_alloc(dp->dp_meta_objset, zh); 1457 1458 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1459 claim_txg, B_FALSE); 1460 1461 zil_free(zilog); 1462 } 1463 1464 /* 1465 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1466 * here is to sort the AVL tree by the order each block will be needed. 1467 */ 1468 static int 1469 scan_prefetch_queue_compare(const void *a, const void *b) 1470 { 1471 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1472 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1473 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1474 1475 return (zbookmark_compare(spc_a->spc_datablkszsec, 1476 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1477 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1478 } 1479 1480 static void 1481 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1482 { 1483 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1484 zfs_refcount_destroy(&spc->spc_refcnt); 1485 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1486 } 1487 } 1488 1489 static scan_prefetch_ctx_t * 1490 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1491 { 1492 scan_prefetch_ctx_t *spc; 1493 1494 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1495 zfs_refcount_create(&spc->spc_refcnt); 1496 zfs_refcount_add(&spc->spc_refcnt, tag); 1497 spc->spc_scn = scn; 1498 if (dnp != NULL) { 1499 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1500 spc->spc_indblkshift = dnp->dn_indblkshift; 1501 spc->spc_root = B_FALSE; 1502 } else { 1503 spc->spc_datablkszsec = 0; 1504 spc->spc_indblkshift = 0; 1505 spc->spc_root = B_TRUE; 1506 } 1507 1508 return (spc); 1509 } 1510 1511 static void 1512 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1513 { 1514 zfs_refcount_add(&spc->spc_refcnt, tag); 1515 } 1516 1517 static void 1518 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1519 { 1520 spa_t *spa = scn->scn_dp->dp_spa; 1521 void *cookie = NULL; 1522 scan_prefetch_issue_ctx_t *spic = NULL; 1523 1524 mutex_enter(&spa->spa_scrub_lock); 1525 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1526 &cookie)) != NULL) { 1527 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1528 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1529 } 1530 mutex_exit(&spa->spa_scrub_lock); 1531 } 1532 1533 static boolean_t 1534 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1535 const zbookmark_phys_t *zb) 1536 { 1537 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1538 dnode_phys_t tmp_dnp; 1539 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1540 1541 if (zb->zb_objset != last_zb->zb_objset) 1542 return (B_TRUE); 1543 if ((int64_t)zb->zb_object < 0) 1544 return (B_FALSE); 1545 1546 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1547 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1548 1549 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1550 return (B_TRUE); 1551 1552 return (B_FALSE); 1553 } 1554 1555 static void 1556 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1557 { 1558 avl_index_t idx; 1559 dsl_scan_t *scn = spc->spc_scn; 1560 spa_t *spa = scn->scn_dp->dp_spa; 1561 scan_prefetch_issue_ctx_t *spic; 1562 1563 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1564 return; 1565 1566 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1567 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1568 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1569 return; 1570 1571 if (dsl_scan_check_prefetch_resume(spc, zb)) 1572 return; 1573 1574 scan_prefetch_ctx_add_ref(spc, scn); 1575 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1576 spic->spic_spc = spc; 1577 spic->spic_bp = *bp; 1578 spic->spic_zb = *zb; 1579 1580 /* 1581 * Add the IO to the queue of blocks to prefetch. This allows us to 1582 * prioritize blocks that we will need first for the main traversal 1583 * thread. 1584 */ 1585 mutex_enter(&spa->spa_scrub_lock); 1586 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1587 /* this block is already queued for prefetch */ 1588 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1589 scan_prefetch_ctx_rele(spc, scn); 1590 mutex_exit(&spa->spa_scrub_lock); 1591 return; 1592 } 1593 1594 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1595 cv_broadcast(&spa->spa_scrub_io_cv); 1596 mutex_exit(&spa->spa_scrub_lock); 1597 } 1598 1599 static void 1600 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1601 uint64_t objset, uint64_t object) 1602 { 1603 int i; 1604 zbookmark_phys_t zb; 1605 scan_prefetch_ctx_t *spc; 1606 1607 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1608 return; 1609 1610 SET_BOOKMARK(&zb, objset, object, 0, 0); 1611 1612 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1613 1614 for (i = 0; i < dnp->dn_nblkptr; i++) { 1615 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1616 zb.zb_blkid = i; 1617 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1618 } 1619 1620 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1621 zb.zb_level = 0; 1622 zb.zb_blkid = DMU_SPILL_BLKID; 1623 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 1624 } 1625 1626 scan_prefetch_ctx_rele(spc, FTAG); 1627 } 1628 1629 static void 1630 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1631 arc_buf_t *buf, void *private) 1632 { 1633 scan_prefetch_ctx_t *spc = private; 1634 dsl_scan_t *scn = spc->spc_scn; 1635 spa_t *spa = scn->scn_dp->dp_spa; 1636 1637 /* broadcast that the IO has completed for rate limiting purposes */ 1638 mutex_enter(&spa->spa_scrub_lock); 1639 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1640 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1641 cv_broadcast(&spa->spa_scrub_io_cv); 1642 mutex_exit(&spa->spa_scrub_lock); 1643 1644 /* if there was an error or we are done prefetching, just cleanup */ 1645 if (buf == NULL || scn->scn_prefetch_stop) 1646 goto out; 1647 1648 if (BP_GET_LEVEL(bp) > 0) { 1649 int i; 1650 blkptr_t *cbp; 1651 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1652 zbookmark_phys_t czb; 1653 1654 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1655 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1656 zb->zb_level - 1, zb->zb_blkid * epb + i); 1657 dsl_scan_prefetch(spc, cbp, &czb); 1658 } 1659 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1660 dnode_phys_t *cdnp; 1661 int i; 1662 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1663 1664 for (i = 0, cdnp = buf->b_data; i < epb; 1665 i += cdnp->dn_extra_slots + 1, 1666 cdnp += cdnp->dn_extra_slots + 1) { 1667 dsl_scan_prefetch_dnode(scn, cdnp, 1668 zb->zb_objset, zb->zb_blkid * epb + i); 1669 } 1670 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1671 objset_phys_t *osp = buf->b_data; 1672 1673 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1674 zb->zb_objset, DMU_META_DNODE_OBJECT); 1675 1676 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1677 dsl_scan_prefetch_dnode(scn, 1678 &osp->os_groupused_dnode, zb->zb_objset, 1679 DMU_GROUPUSED_OBJECT); 1680 dsl_scan_prefetch_dnode(scn, 1681 &osp->os_userused_dnode, zb->zb_objset, 1682 DMU_USERUSED_OBJECT); 1683 } 1684 } 1685 1686 out: 1687 if (buf != NULL) 1688 arc_buf_destroy(buf, private); 1689 scan_prefetch_ctx_rele(spc, scn); 1690 } 1691 1692 /* ARGSUSED */ 1693 static void 1694 dsl_scan_prefetch_thread(void *arg) 1695 { 1696 dsl_scan_t *scn = arg; 1697 spa_t *spa = scn->scn_dp->dp_spa; 1698 scan_prefetch_issue_ctx_t *spic; 1699 1700 /* loop until we are told to stop */ 1701 while (!scn->scn_prefetch_stop) { 1702 arc_flags_t flags = ARC_FLAG_NOWAIT | 1703 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1704 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1705 1706 mutex_enter(&spa->spa_scrub_lock); 1707 1708 /* 1709 * Wait until we have an IO to issue and are not above our 1710 * maximum in flight limit. 1711 */ 1712 while (!scn->scn_prefetch_stop && 1713 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1714 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1715 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1716 } 1717 1718 /* recheck if we should stop since we waited for the cv */ 1719 if (scn->scn_prefetch_stop) { 1720 mutex_exit(&spa->spa_scrub_lock); 1721 break; 1722 } 1723 1724 /* remove the prefetch IO from the tree */ 1725 spic = avl_first(&scn->scn_prefetch_queue); 1726 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1727 avl_remove(&scn->scn_prefetch_queue, spic); 1728 1729 mutex_exit(&spa->spa_scrub_lock); 1730 1731 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1732 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1733 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1734 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1735 zio_flags |= ZIO_FLAG_RAW; 1736 } 1737 1738 /* issue the prefetch asynchronously */ 1739 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1740 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1741 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1742 1743 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1744 } 1745 1746 ASSERT(scn->scn_prefetch_stop); 1747 1748 /* free any prefetches we didn't get to complete */ 1749 mutex_enter(&spa->spa_scrub_lock); 1750 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1751 avl_remove(&scn->scn_prefetch_queue, spic); 1752 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1753 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1754 } 1755 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1756 mutex_exit(&spa->spa_scrub_lock); 1757 } 1758 1759 static boolean_t 1760 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1761 const zbookmark_phys_t *zb) 1762 { 1763 /* 1764 * We never skip over user/group accounting objects (obj<0) 1765 */ 1766 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1767 (int64_t)zb->zb_object >= 0) { 1768 /* 1769 * If we already visited this bp & everything below (in 1770 * a prior txg sync), don't bother doing it again. 1771 */ 1772 if (zbookmark_subtree_completed(dnp, zb, 1773 &scn->scn_phys.scn_bookmark)) 1774 return (B_TRUE); 1775 1776 /* 1777 * If we found the block we're trying to resume from, or 1778 * we went past it to a different object, zero it out to 1779 * indicate that it's OK to start checking for suspending 1780 * again. 1781 */ 1782 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1783 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1784 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1785 (longlong_t)zb->zb_objset, 1786 (longlong_t)zb->zb_object, 1787 (longlong_t)zb->zb_level, 1788 (longlong_t)zb->zb_blkid); 1789 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1790 } 1791 } 1792 return (B_FALSE); 1793 } 1794 1795 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1796 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1797 dmu_objset_type_t ostype, dmu_tx_t *tx); 1798 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 1799 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1800 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1801 1802 /* 1803 * Return nonzero on i/o error. 1804 * Return new buf to write out in *bufp. 1805 */ 1806 inline __attribute__((always_inline)) static int 1807 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1808 dnode_phys_t *dnp, const blkptr_t *bp, 1809 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1810 { 1811 dsl_pool_t *dp = scn->scn_dp; 1812 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1813 int err; 1814 1815 ASSERT(!BP_IS_REDACTED(bp)); 1816 1817 if (BP_GET_LEVEL(bp) > 0) { 1818 arc_flags_t flags = ARC_FLAG_WAIT; 1819 int i; 1820 blkptr_t *cbp; 1821 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1822 arc_buf_t *buf; 1823 1824 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1825 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1826 if (err) { 1827 scn->scn_phys.scn_errors++; 1828 return (err); 1829 } 1830 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1831 zbookmark_phys_t czb; 1832 1833 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1834 zb->zb_level - 1, 1835 zb->zb_blkid * epb + i); 1836 dsl_scan_visitbp(cbp, &czb, dnp, 1837 ds, scn, ostype, tx); 1838 } 1839 arc_buf_destroy(buf, &buf); 1840 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1841 arc_flags_t flags = ARC_FLAG_WAIT; 1842 dnode_phys_t *cdnp; 1843 int i; 1844 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1845 arc_buf_t *buf; 1846 1847 if (BP_IS_PROTECTED(bp)) { 1848 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1849 zio_flags |= ZIO_FLAG_RAW; 1850 } 1851 1852 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1853 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1854 if (err) { 1855 scn->scn_phys.scn_errors++; 1856 return (err); 1857 } 1858 for (i = 0, cdnp = buf->b_data; i < epb; 1859 i += cdnp->dn_extra_slots + 1, 1860 cdnp += cdnp->dn_extra_slots + 1) { 1861 dsl_scan_visitdnode(scn, ds, ostype, 1862 cdnp, zb->zb_blkid * epb + i, tx); 1863 } 1864 1865 arc_buf_destroy(buf, &buf); 1866 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1867 arc_flags_t flags = ARC_FLAG_WAIT; 1868 objset_phys_t *osp; 1869 arc_buf_t *buf; 1870 1871 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1872 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1873 if (err) { 1874 scn->scn_phys.scn_errors++; 1875 return (err); 1876 } 1877 1878 osp = buf->b_data; 1879 1880 dsl_scan_visitdnode(scn, ds, osp->os_type, 1881 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1882 1883 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1884 /* 1885 * We also always visit user/group/project accounting 1886 * objects, and never skip them, even if we are 1887 * suspending. This is necessary so that the 1888 * space deltas from this txg get integrated. 1889 */ 1890 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1891 dsl_scan_visitdnode(scn, ds, osp->os_type, 1892 &osp->os_projectused_dnode, 1893 DMU_PROJECTUSED_OBJECT, tx); 1894 dsl_scan_visitdnode(scn, ds, osp->os_type, 1895 &osp->os_groupused_dnode, 1896 DMU_GROUPUSED_OBJECT, tx); 1897 dsl_scan_visitdnode(scn, ds, osp->os_type, 1898 &osp->os_userused_dnode, 1899 DMU_USERUSED_OBJECT, tx); 1900 } 1901 arc_buf_destroy(buf, &buf); 1902 } 1903 1904 return (0); 1905 } 1906 1907 inline __attribute__((always_inline)) static void 1908 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1909 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1910 uint64_t object, dmu_tx_t *tx) 1911 { 1912 int j; 1913 1914 for (j = 0; j < dnp->dn_nblkptr; j++) { 1915 zbookmark_phys_t czb; 1916 1917 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1918 dnp->dn_nlevels - 1, j); 1919 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1920 &czb, dnp, ds, scn, ostype, tx); 1921 } 1922 1923 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1924 zbookmark_phys_t czb; 1925 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1926 0, DMU_SPILL_BLKID); 1927 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1928 &czb, dnp, ds, scn, ostype, tx); 1929 } 1930 } 1931 1932 /* 1933 * The arguments are in this order because mdb can only print the 1934 * first 5; we want them to be useful. 1935 */ 1936 static void 1937 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1938 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1939 dmu_objset_type_t ostype, dmu_tx_t *tx) 1940 { 1941 dsl_pool_t *dp = scn->scn_dp; 1942 blkptr_t *bp_toread = NULL; 1943 1944 if (dsl_scan_check_suspend(scn, zb)) 1945 return; 1946 1947 if (dsl_scan_check_resume(scn, dnp, zb)) 1948 return; 1949 1950 scn->scn_visited_this_txg++; 1951 1952 /* 1953 * This debugging is commented out to conserve stack space. This 1954 * function is called recursively and the debugging adds several 1955 * bytes to the stack for each call. It can be commented back in 1956 * if required to debug an issue in dsl_scan_visitbp(). 1957 * 1958 * dprintf_bp(bp, 1959 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1960 * ds, ds ? ds->ds_object : 0, 1961 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1962 * bp); 1963 */ 1964 1965 if (BP_IS_HOLE(bp)) { 1966 scn->scn_holes_this_txg++; 1967 return; 1968 } 1969 1970 if (BP_IS_REDACTED(bp)) { 1971 ASSERT(dsl_dataset_feature_is_active(ds, 1972 SPA_FEATURE_REDACTED_DATASETS)); 1973 return; 1974 } 1975 1976 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1977 scn->scn_lt_min_this_txg++; 1978 return; 1979 } 1980 1981 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1982 *bp_toread = *bp; 1983 1984 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1985 goto out; 1986 1987 /* 1988 * If dsl_scan_ddt() has already visited this block, it will have 1989 * already done any translations or scrubbing, so don't call the 1990 * callback again. 1991 */ 1992 if (ddt_class_contains(dp->dp_spa, 1993 scn->scn_phys.scn_ddt_class_max, bp)) { 1994 scn->scn_ddt_contained_this_txg++; 1995 goto out; 1996 } 1997 1998 /* 1999 * If this block is from the future (after cur_max_txg), then we 2000 * are doing this on behalf of a deleted snapshot, and we will 2001 * revisit the future block on the next pass of this dataset. 2002 * Don't scan it now unless we need to because something 2003 * under it was modified. 2004 */ 2005 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2006 scn->scn_gt_max_this_txg++; 2007 goto out; 2008 } 2009 2010 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2011 2012 out: 2013 kmem_free(bp_toread, sizeof (blkptr_t)); 2014 } 2015 2016 static void 2017 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2018 dmu_tx_t *tx) 2019 { 2020 zbookmark_phys_t zb; 2021 scan_prefetch_ctx_t *spc; 2022 2023 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2024 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2025 2026 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2027 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2028 zb.zb_objset, 0, 0, 0); 2029 } else { 2030 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2031 } 2032 2033 scn->scn_objsets_visited_this_txg++; 2034 2035 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2036 dsl_scan_prefetch(spc, bp, &zb); 2037 scan_prefetch_ctx_rele(spc, FTAG); 2038 2039 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2040 2041 dprintf_ds(ds, "finished scan%s", ""); 2042 } 2043 2044 static void 2045 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2046 { 2047 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2048 if (ds->ds_is_snapshot) { 2049 /* 2050 * Note: 2051 * - scn_cur_{min,max}_txg stays the same. 2052 * - Setting the flag is not really necessary if 2053 * scn_cur_max_txg == scn_max_txg, because there 2054 * is nothing after this snapshot that we care 2055 * about. However, we set it anyway and then 2056 * ignore it when we retraverse it in 2057 * dsl_scan_visitds(). 2058 */ 2059 scn_phys->scn_bookmark.zb_objset = 2060 dsl_dataset_phys(ds)->ds_next_snap_obj; 2061 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2062 "reset zb_objset to %llu", 2063 (u_longlong_t)ds->ds_object, 2064 (u_longlong_t)dsl_dataset_phys(ds)-> 2065 ds_next_snap_obj); 2066 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2067 } else { 2068 SET_BOOKMARK(&scn_phys->scn_bookmark, 2069 ZB_DESTROYED_OBJSET, 0, 0, 0); 2070 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2071 "reset bookmark to -1,0,0,0", 2072 (u_longlong_t)ds->ds_object); 2073 } 2074 } 2075 } 2076 2077 /* 2078 * Invoked when a dataset is destroyed. We need to make sure that: 2079 * 2080 * 1) If it is the dataset that was currently being scanned, we write 2081 * a new dsl_scan_phys_t and marking the objset reference in it 2082 * as destroyed. 2083 * 2) Remove it from the work queue, if it was present. 2084 * 2085 * If the dataset was actually a snapshot, instead of marking the dataset 2086 * as destroyed, we instead substitute the next snapshot in line. 2087 */ 2088 void 2089 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2090 { 2091 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2092 dsl_scan_t *scn = dp->dp_scan; 2093 uint64_t mintxg; 2094 2095 if (!dsl_scan_is_running(scn)) 2096 return; 2097 2098 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2099 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2100 2101 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2102 scan_ds_queue_remove(scn, ds->ds_object); 2103 if (ds->ds_is_snapshot) 2104 scan_ds_queue_insert(scn, 2105 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2106 } 2107 2108 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2109 ds->ds_object, &mintxg) == 0) { 2110 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2111 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2112 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2113 if (ds->ds_is_snapshot) { 2114 /* 2115 * We keep the same mintxg; it could be > 2116 * ds_creation_txg if the previous snapshot was 2117 * deleted too. 2118 */ 2119 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2120 scn->scn_phys.scn_queue_obj, 2121 dsl_dataset_phys(ds)->ds_next_snap_obj, 2122 mintxg, tx) == 0); 2123 zfs_dbgmsg("destroying ds %llu; in queue; " 2124 "replacing with %llu", 2125 (u_longlong_t)ds->ds_object, 2126 (u_longlong_t)dsl_dataset_phys(ds)-> 2127 ds_next_snap_obj); 2128 } else { 2129 zfs_dbgmsg("destroying ds %llu; in queue; removing", 2130 (u_longlong_t)ds->ds_object); 2131 } 2132 } 2133 2134 /* 2135 * dsl_scan_sync() should be called after this, and should sync 2136 * out our changed state, but just to be safe, do it here. 2137 */ 2138 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2139 } 2140 2141 static void 2142 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2143 { 2144 if (scn_bookmark->zb_objset == ds->ds_object) { 2145 scn_bookmark->zb_objset = 2146 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2147 zfs_dbgmsg("snapshotting ds %llu; currently traversing; " 2148 "reset zb_objset to %llu", 2149 (u_longlong_t)ds->ds_object, 2150 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2151 } 2152 } 2153 2154 /* 2155 * Called when a dataset is snapshotted. If we were currently traversing 2156 * this snapshot, we reset our bookmark to point at the newly created 2157 * snapshot. We also modify our work queue to remove the old snapshot and 2158 * replace with the new one. 2159 */ 2160 void 2161 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2162 { 2163 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2164 dsl_scan_t *scn = dp->dp_scan; 2165 uint64_t mintxg; 2166 2167 if (!dsl_scan_is_running(scn)) 2168 return; 2169 2170 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2171 2172 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2173 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2174 2175 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2176 scan_ds_queue_remove(scn, ds->ds_object); 2177 scan_ds_queue_insert(scn, 2178 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2179 } 2180 2181 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2182 ds->ds_object, &mintxg) == 0) { 2183 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2184 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2185 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2186 scn->scn_phys.scn_queue_obj, 2187 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2188 zfs_dbgmsg("snapshotting ds %llu; in queue; " 2189 "replacing with %llu", 2190 (u_longlong_t)ds->ds_object, 2191 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2192 } 2193 2194 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2195 } 2196 2197 static void 2198 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2199 zbookmark_phys_t *scn_bookmark) 2200 { 2201 if (scn_bookmark->zb_objset == ds1->ds_object) { 2202 scn_bookmark->zb_objset = ds2->ds_object; 2203 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2204 "reset zb_objset to %llu", 2205 (u_longlong_t)ds1->ds_object, 2206 (u_longlong_t)ds2->ds_object); 2207 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2208 scn_bookmark->zb_objset = ds1->ds_object; 2209 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2210 "reset zb_objset to %llu", 2211 (u_longlong_t)ds2->ds_object, 2212 (u_longlong_t)ds1->ds_object); 2213 } 2214 } 2215 2216 /* 2217 * Called when an origin dataset and its clone are swapped. If we were 2218 * currently traversing the dataset, we need to switch to traversing the 2219 * newly promoted clone. 2220 */ 2221 void 2222 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2223 { 2224 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2225 dsl_scan_t *scn = dp->dp_scan; 2226 uint64_t mintxg1, mintxg2; 2227 boolean_t ds1_queued, ds2_queued; 2228 2229 if (!dsl_scan_is_running(scn)) 2230 return; 2231 2232 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2233 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2234 2235 /* 2236 * Handle the in-memory scan queue. 2237 */ 2238 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2239 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2240 2241 /* Sanity checking. */ 2242 if (ds1_queued) { 2243 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2244 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2245 } 2246 if (ds2_queued) { 2247 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2248 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2249 } 2250 2251 if (ds1_queued && ds2_queued) { 2252 /* 2253 * If both are queued, we don't need to do anything. 2254 * The swapping code below would not handle this case correctly, 2255 * since we can't insert ds2 if it is already there. That's 2256 * because scan_ds_queue_insert() prohibits a duplicate insert 2257 * and panics. 2258 */ 2259 } else if (ds1_queued) { 2260 scan_ds_queue_remove(scn, ds1->ds_object); 2261 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2262 } else if (ds2_queued) { 2263 scan_ds_queue_remove(scn, ds2->ds_object); 2264 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2265 } 2266 2267 /* 2268 * Handle the on-disk scan queue. 2269 * The on-disk state is an out-of-date version of the in-memory state, 2270 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2271 * be different. Therefore we need to apply the swap logic to the 2272 * on-disk state independently of the in-memory state. 2273 */ 2274 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2275 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2276 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2277 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2278 2279 /* Sanity checking. */ 2280 if (ds1_queued) { 2281 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2282 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2283 } 2284 if (ds2_queued) { 2285 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2286 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2287 } 2288 2289 if (ds1_queued && ds2_queued) { 2290 /* 2291 * If both are queued, we don't need to do anything. 2292 * Alternatively, we could check for EEXIST from 2293 * zap_add_int_key() and back out to the original state, but 2294 * that would be more work than checking for this case upfront. 2295 */ 2296 } else if (ds1_queued) { 2297 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2298 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2299 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2300 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2301 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2302 "replacing with %llu", 2303 (u_longlong_t)ds1->ds_object, 2304 (u_longlong_t)ds2->ds_object); 2305 } else if (ds2_queued) { 2306 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2307 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2308 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2309 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2310 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2311 "replacing with %llu", 2312 (u_longlong_t)ds2->ds_object, 2313 (u_longlong_t)ds1->ds_object); 2314 } 2315 2316 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2317 } 2318 2319 /* ARGSUSED */ 2320 static int 2321 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2322 { 2323 uint64_t originobj = *(uint64_t *)arg; 2324 dsl_dataset_t *ds; 2325 int err; 2326 dsl_scan_t *scn = dp->dp_scan; 2327 2328 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2329 return (0); 2330 2331 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2332 if (err) 2333 return (err); 2334 2335 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2336 dsl_dataset_t *prev; 2337 err = dsl_dataset_hold_obj(dp, 2338 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2339 2340 dsl_dataset_rele(ds, FTAG); 2341 if (err) 2342 return (err); 2343 ds = prev; 2344 } 2345 scan_ds_queue_insert(scn, ds->ds_object, 2346 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2347 dsl_dataset_rele(ds, FTAG); 2348 return (0); 2349 } 2350 2351 static void 2352 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2353 { 2354 dsl_pool_t *dp = scn->scn_dp; 2355 dsl_dataset_t *ds; 2356 2357 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2358 2359 if (scn->scn_phys.scn_cur_min_txg >= 2360 scn->scn_phys.scn_max_txg) { 2361 /* 2362 * This can happen if this snapshot was created after the 2363 * scan started, and we already completed a previous snapshot 2364 * that was created after the scan started. This snapshot 2365 * only references blocks with: 2366 * 2367 * birth < our ds_creation_txg 2368 * cur_min_txg is no less than ds_creation_txg. 2369 * We have already visited these blocks. 2370 * or 2371 * birth > scn_max_txg 2372 * The scan requested not to visit these blocks. 2373 * 2374 * Subsequent snapshots (and clones) can reference our 2375 * blocks, or blocks with even higher birth times. 2376 * Therefore we do not need to visit them either, 2377 * so we do not add them to the work queue. 2378 * 2379 * Note that checking for cur_min_txg >= cur_max_txg 2380 * is not sufficient, because in that case we may need to 2381 * visit subsequent snapshots. This happens when min_txg > 0, 2382 * which raises cur_min_txg. In this case we will visit 2383 * this dataset but skip all of its blocks, because the 2384 * rootbp's birth time is < cur_min_txg. Then we will 2385 * add the next snapshots/clones to the work queue. 2386 */ 2387 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2388 dsl_dataset_name(ds, dsname); 2389 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2390 "cur_min_txg (%llu) >= max_txg (%llu)", 2391 (longlong_t)dsobj, dsname, 2392 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2393 (longlong_t)scn->scn_phys.scn_max_txg); 2394 kmem_free(dsname, MAXNAMELEN); 2395 2396 goto out; 2397 } 2398 2399 /* 2400 * Only the ZIL in the head (non-snapshot) is valid. Even though 2401 * snapshots can have ZIL block pointers (which may be the same 2402 * BP as in the head), they must be ignored. In addition, $ORIGIN 2403 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2404 * need to look for a ZIL in it either. So we traverse the ZIL here, 2405 * rather than in scan_recurse(), because the regular snapshot 2406 * block-sharing rules don't apply to it. 2407 */ 2408 if (!dsl_dataset_is_snapshot(ds) && 2409 (dp->dp_origin_snap == NULL || 2410 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2411 objset_t *os; 2412 if (dmu_objset_from_ds(ds, &os) != 0) { 2413 goto out; 2414 } 2415 dsl_scan_zil(dp, &os->os_zil_header); 2416 } 2417 2418 /* 2419 * Iterate over the bps in this ds. 2420 */ 2421 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2422 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2423 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2424 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2425 2426 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2427 dsl_dataset_name(ds, dsname); 2428 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2429 "suspending=%u", 2430 (longlong_t)dsobj, dsname, 2431 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2432 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2433 (int)scn->scn_suspending); 2434 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2435 2436 if (scn->scn_suspending) 2437 goto out; 2438 2439 /* 2440 * We've finished this pass over this dataset. 2441 */ 2442 2443 /* 2444 * If we did not completely visit this dataset, do another pass. 2445 */ 2446 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2447 zfs_dbgmsg("incomplete pass; visiting again"); 2448 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2449 scan_ds_queue_insert(scn, ds->ds_object, 2450 scn->scn_phys.scn_cur_max_txg); 2451 goto out; 2452 } 2453 2454 /* 2455 * Add descendant datasets to work queue. 2456 */ 2457 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2458 scan_ds_queue_insert(scn, 2459 dsl_dataset_phys(ds)->ds_next_snap_obj, 2460 dsl_dataset_phys(ds)->ds_creation_txg); 2461 } 2462 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2463 boolean_t usenext = B_FALSE; 2464 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2465 uint64_t count; 2466 /* 2467 * A bug in a previous version of the code could 2468 * cause upgrade_clones_cb() to not set 2469 * ds_next_snap_obj when it should, leading to a 2470 * missing entry. Therefore we can only use the 2471 * next_clones_obj when its count is correct. 2472 */ 2473 int err = zap_count(dp->dp_meta_objset, 2474 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2475 if (err == 0 && 2476 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2477 usenext = B_TRUE; 2478 } 2479 2480 if (usenext) { 2481 zap_cursor_t zc; 2482 zap_attribute_t za; 2483 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2484 dsl_dataset_phys(ds)->ds_next_clones_obj); 2485 zap_cursor_retrieve(&zc, &za) == 0; 2486 (void) zap_cursor_advance(&zc)) { 2487 scan_ds_queue_insert(scn, 2488 zfs_strtonum(za.za_name, NULL), 2489 dsl_dataset_phys(ds)->ds_creation_txg); 2490 } 2491 zap_cursor_fini(&zc); 2492 } else { 2493 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2494 enqueue_clones_cb, &ds->ds_object, 2495 DS_FIND_CHILDREN)); 2496 } 2497 } 2498 2499 out: 2500 dsl_dataset_rele(ds, FTAG); 2501 } 2502 2503 /* ARGSUSED */ 2504 static int 2505 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2506 { 2507 dsl_dataset_t *ds; 2508 int err; 2509 dsl_scan_t *scn = dp->dp_scan; 2510 2511 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2512 if (err) 2513 return (err); 2514 2515 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2516 dsl_dataset_t *prev; 2517 err = dsl_dataset_hold_obj(dp, 2518 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2519 if (err) { 2520 dsl_dataset_rele(ds, FTAG); 2521 return (err); 2522 } 2523 2524 /* 2525 * If this is a clone, we don't need to worry about it for now. 2526 */ 2527 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2528 dsl_dataset_rele(ds, FTAG); 2529 dsl_dataset_rele(prev, FTAG); 2530 return (0); 2531 } 2532 dsl_dataset_rele(ds, FTAG); 2533 ds = prev; 2534 } 2535 2536 scan_ds_queue_insert(scn, ds->ds_object, 2537 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2538 dsl_dataset_rele(ds, FTAG); 2539 return (0); 2540 } 2541 2542 /* ARGSUSED */ 2543 void 2544 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2545 ddt_entry_t *dde, dmu_tx_t *tx) 2546 { 2547 const ddt_key_t *ddk = &dde->dde_key; 2548 ddt_phys_t *ddp = dde->dde_phys; 2549 blkptr_t bp; 2550 zbookmark_phys_t zb = { 0 }; 2551 int p; 2552 2553 if (!dsl_scan_is_running(scn)) 2554 return; 2555 2556 /* 2557 * This function is special because it is the only thing 2558 * that can add scan_io_t's to the vdev scan queues from 2559 * outside dsl_scan_sync(). For the most part this is ok 2560 * as long as it is called from within syncing context. 2561 * However, dsl_scan_sync() expects that no new sio's will 2562 * be added between when all the work for a scan is done 2563 * and the next txg when the scan is actually marked as 2564 * completed. This check ensures we do not issue new sio's 2565 * during this period. 2566 */ 2567 if (scn->scn_done_txg != 0) 2568 return; 2569 2570 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2571 if (ddp->ddp_phys_birth == 0 || 2572 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2573 continue; 2574 ddt_bp_create(checksum, ddk, ddp, &bp); 2575 2576 scn->scn_visited_this_txg++; 2577 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2578 } 2579 } 2580 2581 /* 2582 * Scrub/dedup interaction. 2583 * 2584 * If there are N references to a deduped block, we don't want to scrub it 2585 * N times -- ideally, we should scrub it exactly once. 2586 * 2587 * We leverage the fact that the dde's replication class (enum ddt_class) 2588 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2589 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2590 * 2591 * To prevent excess scrubbing, the scrub begins by walking the DDT 2592 * to find all blocks with refcnt > 1, and scrubs each of these once. 2593 * Since there are two replication classes which contain blocks with 2594 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2595 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2596 * 2597 * There would be nothing more to say if a block's refcnt couldn't change 2598 * during a scrub, but of course it can so we must account for changes 2599 * in a block's replication class. 2600 * 2601 * Here's an example of what can occur: 2602 * 2603 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2604 * when visited during the top-down scrub phase, it will be scrubbed twice. 2605 * This negates our scrub optimization, but is otherwise harmless. 2606 * 2607 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2608 * on each visit during the top-down scrub phase, it will never be scrubbed. 2609 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2610 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2611 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2612 * while a scrub is in progress, it scrubs the block right then. 2613 */ 2614 static void 2615 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2616 { 2617 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2618 ddt_entry_t dde; 2619 int error; 2620 uint64_t n = 0; 2621 2622 bzero(&dde, sizeof (ddt_entry_t)); 2623 2624 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2625 ddt_t *ddt; 2626 2627 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2628 break; 2629 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2630 (longlong_t)ddb->ddb_class, 2631 (longlong_t)ddb->ddb_type, 2632 (longlong_t)ddb->ddb_checksum, 2633 (longlong_t)ddb->ddb_cursor); 2634 2635 /* There should be no pending changes to the dedup table */ 2636 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2637 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2638 2639 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2640 n++; 2641 2642 if (dsl_scan_check_suspend(scn, NULL)) 2643 break; 2644 } 2645 2646 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " 2647 "suspending=%u", (longlong_t)n, 2648 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2649 2650 ASSERT(error == 0 || error == ENOENT); 2651 ASSERT(error != ENOENT || 2652 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2653 } 2654 2655 static uint64_t 2656 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2657 { 2658 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2659 if (ds->ds_is_snapshot) 2660 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2661 return (smt); 2662 } 2663 2664 static void 2665 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2666 { 2667 scan_ds_t *sds; 2668 dsl_pool_t *dp = scn->scn_dp; 2669 2670 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2671 scn->scn_phys.scn_ddt_class_max) { 2672 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2673 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2674 dsl_scan_ddt(scn, tx); 2675 if (scn->scn_suspending) 2676 return; 2677 } 2678 2679 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2680 /* First do the MOS & ORIGIN */ 2681 2682 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2683 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2684 dsl_scan_visit_rootbp(scn, NULL, 2685 &dp->dp_meta_rootbp, tx); 2686 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2687 if (scn->scn_suspending) 2688 return; 2689 2690 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2691 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2692 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2693 } else { 2694 dsl_scan_visitds(scn, 2695 dp->dp_origin_snap->ds_object, tx); 2696 } 2697 ASSERT(!scn->scn_suspending); 2698 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2699 ZB_DESTROYED_OBJSET) { 2700 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2701 /* 2702 * If we were suspended, continue from here. Note if the 2703 * ds we were suspended on was deleted, the zb_objset may 2704 * be -1, so we will skip this and find a new objset 2705 * below. 2706 */ 2707 dsl_scan_visitds(scn, dsobj, tx); 2708 if (scn->scn_suspending) 2709 return; 2710 } 2711 2712 /* 2713 * In case we suspended right at the end of the ds, zero the 2714 * bookmark so we don't think that we're still trying to resume. 2715 */ 2716 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2717 2718 /* 2719 * Keep pulling things out of the dataset avl queue. Updates to the 2720 * persistent zap-object-as-queue happen only at checkpoints. 2721 */ 2722 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2723 dsl_dataset_t *ds; 2724 uint64_t dsobj = sds->sds_dsobj; 2725 uint64_t txg = sds->sds_txg; 2726 2727 /* dequeue and free the ds from the queue */ 2728 scan_ds_queue_remove(scn, dsobj); 2729 sds = NULL; 2730 2731 /* set up min / max txg */ 2732 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2733 if (txg != 0) { 2734 scn->scn_phys.scn_cur_min_txg = 2735 MAX(scn->scn_phys.scn_min_txg, txg); 2736 } else { 2737 scn->scn_phys.scn_cur_min_txg = 2738 MAX(scn->scn_phys.scn_min_txg, 2739 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2740 } 2741 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2742 dsl_dataset_rele(ds, FTAG); 2743 2744 dsl_scan_visitds(scn, dsobj, tx); 2745 if (scn->scn_suspending) 2746 return; 2747 } 2748 2749 /* No more objsets to fetch, we're done */ 2750 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2751 ASSERT0(scn->scn_suspending); 2752 } 2753 2754 static uint64_t 2755 dsl_scan_count_leaves(vdev_t *vd) 2756 { 2757 uint64_t i, leaves = 0; 2758 2759 /* we only count leaves that belong to the main pool and are readable */ 2760 if (vd->vdev_islog || vd->vdev_isspare || 2761 vd->vdev_isl2cache || !vdev_readable(vd)) 2762 return (0); 2763 2764 if (vd->vdev_ops->vdev_op_leaf) 2765 return (1); 2766 2767 for (i = 0; i < vd->vdev_children; i++) { 2768 leaves += dsl_scan_count_leaves(vd->vdev_child[i]); 2769 } 2770 2771 return (leaves); 2772 } 2773 2774 static void 2775 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2776 { 2777 int i; 2778 uint64_t cur_size = 0; 2779 2780 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2781 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2782 } 2783 2784 q->q_total_zio_size_this_txg += cur_size; 2785 q->q_zios_this_txg++; 2786 } 2787 2788 static void 2789 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2790 uint64_t end) 2791 { 2792 q->q_total_seg_size_this_txg += end - start; 2793 q->q_segs_this_txg++; 2794 } 2795 2796 static boolean_t 2797 scan_io_queue_check_suspend(dsl_scan_t *scn) 2798 { 2799 /* See comment in dsl_scan_check_suspend() */ 2800 uint64_t curr_time_ns = gethrtime(); 2801 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2802 uint64_t sync_time_ns = curr_time_ns - 2803 scn->scn_dp->dp_spa->spa_sync_starttime; 2804 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2805 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2806 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2807 2808 return ((NSEC2MSEC(scan_time_ns) > mintime && 2809 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2810 txg_sync_waiting(scn->scn_dp) || 2811 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2812 spa_shutting_down(scn->scn_dp->dp_spa)); 2813 } 2814 2815 /* 2816 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 2817 * disk. This consumes the io_list and frees the scan_io_t's. This is 2818 * called when emptying queues, either when we're up against the memory 2819 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2820 * processing the list before we finished. Any sios that were not issued 2821 * will remain in the io_list. 2822 */ 2823 static boolean_t 2824 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2825 { 2826 dsl_scan_t *scn = queue->q_scn; 2827 scan_io_t *sio; 2828 int64_t bytes_issued = 0; 2829 boolean_t suspended = B_FALSE; 2830 2831 while ((sio = list_head(io_list)) != NULL) { 2832 blkptr_t bp; 2833 2834 if (scan_io_queue_check_suspend(scn)) { 2835 suspended = B_TRUE; 2836 break; 2837 } 2838 2839 sio2bp(sio, &bp); 2840 bytes_issued += SIO_GET_ASIZE(sio); 2841 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2842 &sio->sio_zb, queue); 2843 (void) list_remove_head(io_list); 2844 scan_io_queues_update_zio_stats(queue, &bp); 2845 sio_free(sio); 2846 } 2847 2848 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2849 2850 return (suspended); 2851 } 2852 2853 /* 2854 * This function removes sios from an IO queue which reside within a given 2855 * range_seg_t and inserts them (in offset order) into a list. Note that 2856 * we only ever return a maximum of 32 sios at once. If there are more sios 2857 * to process within this segment that did not make it onto the list we 2858 * return B_TRUE and otherwise B_FALSE. 2859 */ 2860 static boolean_t 2861 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2862 { 2863 scan_io_t *srch_sio, *sio, *next_sio; 2864 avl_index_t idx; 2865 uint_t num_sios = 0; 2866 int64_t bytes_issued = 0; 2867 2868 ASSERT(rs != NULL); 2869 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2870 2871 srch_sio = sio_alloc(1); 2872 srch_sio->sio_nr_dvas = 1; 2873 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2874 2875 /* 2876 * The exact start of the extent might not contain any matching zios, 2877 * so if that's the case, examine the next one in the tree. 2878 */ 2879 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2880 sio_free(srch_sio); 2881 2882 if (sio == NULL) 2883 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2884 2885 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2886 queue->q_exts_by_addr) && num_sios <= 32) { 2887 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2888 queue->q_exts_by_addr)); 2889 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2890 queue->q_exts_by_addr)); 2891 2892 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2893 avl_remove(&queue->q_sios_by_addr, sio); 2894 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2895 2896 bytes_issued += SIO_GET_ASIZE(sio); 2897 num_sios++; 2898 list_insert_tail(list, sio); 2899 sio = next_sio; 2900 } 2901 2902 /* 2903 * We limit the number of sios we process at once to 32 to avoid 2904 * biting off more than we can chew. If we didn't take everything 2905 * in the segment we update it to reflect the work we were able to 2906 * complete. Otherwise, we remove it from the range tree entirely. 2907 */ 2908 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2909 queue->q_exts_by_addr)) { 2910 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2911 -bytes_issued); 2912 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2913 SIO_GET_OFFSET(sio), rs_get_end(rs, 2914 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2915 2916 return (B_TRUE); 2917 } else { 2918 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2919 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2920 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2921 return (B_FALSE); 2922 } 2923 } 2924 2925 /* 2926 * This is called from the queue emptying thread and selects the next 2927 * extent from which we are to issue I/Os. The behavior of this function 2928 * depends on the state of the scan, the current memory consumption and 2929 * whether or not we are performing a scan shutdown. 2930 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2931 * needs to perform a checkpoint 2932 * 2) We select the largest available extent if we are up against the 2933 * memory limit. 2934 * 3) Otherwise we don't select any extents. 2935 */ 2936 static range_seg_t * 2937 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2938 { 2939 dsl_scan_t *scn = queue->q_scn; 2940 range_tree_t *rt = queue->q_exts_by_addr; 2941 2942 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2943 ASSERT(scn->scn_is_sorted); 2944 2945 /* handle tunable overrides */ 2946 if (scn->scn_checkpointing || scn->scn_clearing) { 2947 if (zfs_scan_issue_strategy == 1) { 2948 return (range_tree_first(rt)); 2949 } else if (zfs_scan_issue_strategy == 2) { 2950 /* 2951 * We need to get the original entry in the by_addr 2952 * tree so we can modify it. 2953 */ 2954 range_seg_t *size_rs = 2955 zfs_btree_first(&queue->q_exts_by_size, NULL); 2956 if (size_rs == NULL) 2957 return (NULL); 2958 uint64_t start = rs_get_start(size_rs, rt); 2959 uint64_t size = rs_get_end(size_rs, rt) - start; 2960 range_seg_t *addr_rs = range_tree_find(rt, start, 2961 size); 2962 ASSERT3P(addr_rs, !=, NULL); 2963 ASSERT3U(rs_get_start(size_rs, rt), ==, 2964 rs_get_start(addr_rs, rt)); 2965 ASSERT3U(rs_get_end(size_rs, rt), ==, 2966 rs_get_end(addr_rs, rt)); 2967 return (addr_rs); 2968 } 2969 } 2970 2971 /* 2972 * During normal clearing, we want to issue our largest segments 2973 * first, keeping IO as sequential as possible, and leaving the 2974 * smaller extents for later with the hope that they might eventually 2975 * grow to larger sequential segments. However, when the scan is 2976 * checkpointing, no new extents will be added to the sorting queue, 2977 * so the way we are sorted now is as good as it will ever get. 2978 * In this case, we instead switch to issuing extents in LBA order. 2979 */ 2980 if (scn->scn_checkpointing) { 2981 return (range_tree_first(rt)); 2982 } else if (scn->scn_clearing) { 2983 /* 2984 * We need to get the original entry in the by_addr 2985 * tree so we can modify it. 2986 */ 2987 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size, 2988 NULL); 2989 if (size_rs == NULL) 2990 return (NULL); 2991 uint64_t start = rs_get_start(size_rs, rt); 2992 uint64_t size = rs_get_end(size_rs, rt) - start; 2993 range_seg_t *addr_rs = range_tree_find(rt, start, size); 2994 ASSERT3P(addr_rs, !=, NULL); 2995 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs, 2996 rt)); 2997 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt)); 2998 return (addr_rs); 2999 } else { 3000 return (NULL); 3001 } 3002 } 3003 3004 static void 3005 scan_io_queues_run_one(void *arg) 3006 { 3007 dsl_scan_io_queue_t *queue = arg; 3008 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3009 boolean_t suspended = B_FALSE; 3010 range_seg_t *rs = NULL; 3011 scan_io_t *sio = NULL; 3012 list_t sio_list; 3013 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3014 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); 3015 3016 ASSERT(queue->q_scn->scn_is_sorted); 3017 3018 list_create(&sio_list, sizeof (scan_io_t), 3019 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3020 mutex_enter(q_lock); 3021 3022 /* calculate maximum in-flight bytes for this txg (min 1MB) */ 3023 queue->q_maxinflight_bytes = 3024 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3025 3026 /* reset per-queue scan statistics for this txg */ 3027 queue->q_total_seg_size_this_txg = 0; 3028 queue->q_segs_this_txg = 0; 3029 queue->q_total_zio_size_this_txg = 0; 3030 queue->q_zios_this_txg = 0; 3031 3032 /* loop until we run out of time or sios */ 3033 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3034 uint64_t seg_start = 0, seg_end = 0; 3035 boolean_t more_left = B_TRUE; 3036 3037 ASSERT(list_is_empty(&sio_list)); 3038 3039 /* loop while we still have sios left to process in this rs */ 3040 while (more_left) { 3041 scan_io_t *first_sio, *last_sio; 3042 3043 /* 3044 * We have selected which extent needs to be 3045 * processed next. Gather up the corresponding sios. 3046 */ 3047 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3048 ASSERT(!list_is_empty(&sio_list)); 3049 first_sio = list_head(&sio_list); 3050 last_sio = list_tail(&sio_list); 3051 3052 seg_end = SIO_GET_END_OFFSET(last_sio); 3053 if (seg_start == 0) 3054 seg_start = SIO_GET_OFFSET(first_sio); 3055 3056 /* 3057 * Issuing sios can take a long time so drop the 3058 * queue lock. The sio queue won't be updated by 3059 * other threads since we're in syncing context so 3060 * we can be sure that our trees will remain exactly 3061 * as we left them. 3062 */ 3063 mutex_exit(q_lock); 3064 suspended = scan_io_queue_issue(queue, &sio_list); 3065 mutex_enter(q_lock); 3066 3067 if (suspended) 3068 break; 3069 } 3070 3071 /* update statistics for debugging purposes */ 3072 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3073 3074 if (suspended) 3075 break; 3076 } 3077 3078 /* 3079 * If we were suspended in the middle of processing, 3080 * requeue any unfinished sios and exit. 3081 */ 3082 while ((sio = list_head(&sio_list)) != NULL) { 3083 list_remove(&sio_list, sio); 3084 scan_io_queue_insert_impl(queue, sio); 3085 } 3086 3087 mutex_exit(q_lock); 3088 list_destroy(&sio_list); 3089 } 3090 3091 /* 3092 * Performs an emptying run on all scan queues in the pool. This just 3093 * punches out one thread per top-level vdev, each of which processes 3094 * only that vdev's scan queue. We can parallelize the I/O here because 3095 * we know that each queue's I/Os only affect its own top-level vdev. 3096 * 3097 * This function waits for the queue runs to complete, and must be 3098 * called from dsl_scan_sync (or in general, syncing context). 3099 */ 3100 static void 3101 scan_io_queues_run(dsl_scan_t *scn) 3102 { 3103 spa_t *spa = scn->scn_dp->dp_spa; 3104 3105 ASSERT(scn->scn_is_sorted); 3106 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3107 3108 if (scn->scn_bytes_pending == 0) 3109 return; 3110 3111 if (scn->scn_taskq == NULL) { 3112 int nthreads = spa->spa_root_vdev->vdev_children; 3113 3114 /* 3115 * We need to make this taskq *always* execute as many 3116 * threads in parallel as we have top-level vdevs and no 3117 * less, otherwise strange serialization of the calls to 3118 * scan_io_queues_run_one can occur during spa_sync runs 3119 * and that significantly impacts performance. 3120 */ 3121 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3122 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3123 } 3124 3125 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3126 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3127 3128 mutex_enter(&vd->vdev_scan_io_queue_lock); 3129 if (vd->vdev_scan_io_queue != NULL) { 3130 VERIFY(taskq_dispatch(scn->scn_taskq, 3131 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3132 TQ_SLEEP) != TASKQID_INVALID); 3133 } 3134 mutex_exit(&vd->vdev_scan_io_queue_lock); 3135 } 3136 3137 /* 3138 * Wait for the queues to finish issuing their IOs for this run 3139 * before we return. There may still be IOs in flight at this 3140 * point. 3141 */ 3142 taskq_wait(scn->scn_taskq); 3143 } 3144 3145 static boolean_t 3146 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3147 { 3148 uint64_t elapsed_nanosecs; 3149 3150 if (zfs_recover) 3151 return (B_FALSE); 3152 3153 if (zfs_async_block_max_blocks != 0 && 3154 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3155 return (B_TRUE); 3156 } 3157 3158 if (zfs_max_async_dedup_frees != 0 && 3159 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3160 return (B_TRUE); 3161 } 3162 3163 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3164 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3165 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3166 txg_sync_waiting(scn->scn_dp)) || 3167 spa_shutting_down(scn->scn_dp->dp_spa)); 3168 } 3169 3170 static int 3171 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3172 { 3173 dsl_scan_t *scn = arg; 3174 3175 if (!scn->scn_is_bptree || 3176 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3177 if (dsl_scan_async_block_should_pause(scn)) 3178 return (SET_ERROR(ERESTART)); 3179 } 3180 3181 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3182 dmu_tx_get_txg(tx), bp, 0)); 3183 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3184 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3185 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3186 scn->scn_visited_this_txg++; 3187 if (BP_GET_DEDUP(bp)) 3188 scn->scn_dedup_frees_this_txg++; 3189 return (0); 3190 } 3191 3192 static void 3193 dsl_scan_update_stats(dsl_scan_t *scn) 3194 { 3195 spa_t *spa = scn->scn_dp->dp_spa; 3196 uint64_t i; 3197 uint64_t seg_size_total = 0, zio_size_total = 0; 3198 uint64_t seg_count_total = 0, zio_count_total = 0; 3199 3200 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3201 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3202 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3203 3204 if (queue == NULL) 3205 continue; 3206 3207 seg_size_total += queue->q_total_seg_size_this_txg; 3208 zio_size_total += queue->q_total_zio_size_this_txg; 3209 seg_count_total += queue->q_segs_this_txg; 3210 zio_count_total += queue->q_zios_this_txg; 3211 } 3212 3213 if (seg_count_total == 0 || zio_count_total == 0) { 3214 scn->scn_avg_seg_size_this_txg = 0; 3215 scn->scn_avg_zio_size_this_txg = 0; 3216 scn->scn_segs_this_txg = 0; 3217 scn->scn_zios_this_txg = 0; 3218 return; 3219 } 3220 3221 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3222 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3223 scn->scn_segs_this_txg = seg_count_total; 3224 scn->scn_zios_this_txg = zio_count_total; 3225 } 3226 3227 static int 3228 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3229 dmu_tx_t *tx) 3230 { 3231 ASSERT(!bp_freed); 3232 return (dsl_scan_free_block_cb(arg, bp, tx)); 3233 } 3234 3235 static int 3236 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3237 dmu_tx_t *tx) 3238 { 3239 ASSERT(!bp_freed); 3240 dsl_scan_t *scn = arg; 3241 const dva_t *dva = &bp->blk_dva[0]; 3242 3243 if (dsl_scan_async_block_should_pause(scn)) 3244 return (SET_ERROR(ERESTART)); 3245 3246 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3247 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3248 DVA_GET_ASIZE(dva), tx); 3249 scn->scn_visited_this_txg++; 3250 return (0); 3251 } 3252 3253 boolean_t 3254 dsl_scan_active(dsl_scan_t *scn) 3255 { 3256 spa_t *spa = scn->scn_dp->dp_spa; 3257 uint64_t used = 0, comp, uncomp; 3258 boolean_t clones_left; 3259 3260 if (spa->spa_load_state != SPA_LOAD_NONE) 3261 return (B_FALSE); 3262 if (spa_shutting_down(spa)) 3263 return (B_FALSE); 3264 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3265 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3266 return (B_TRUE); 3267 3268 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3269 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3270 &used, &comp, &uncomp); 3271 } 3272 clones_left = spa_livelist_delete_check(spa); 3273 return ((used != 0) || (clones_left)); 3274 } 3275 3276 static boolean_t 3277 dsl_scan_check_deferred(vdev_t *vd) 3278 { 3279 boolean_t need_resilver = B_FALSE; 3280 3281 for (int c = 0; c < vd->vdev_children; c++) { 3282 need_resilver |= 3283 dsl_scan_check_deferred(vd->vdev_child[c]); 3284 } 3285 3286 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3287 !vd->vdev_ops->vdev_op_leaf) 3288 return (need_resilver); 3289 3290 if (!vd->vdev_resilver_deferred) 3291 need_resilver = B_TRUE; 3292 3293 return (need_resilver); 3294 } 3295 3296 static boolean_t 3297 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3298 uint64_t phys_birth) 3299 { 3300 vdev_t *vd; 3301 3302 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3303 3304 if (vd->vdev_ops == &vdev_indirect_ops) { 3305 /* 3306 * The indirect vdev can point to multiple 3307 * vdevs. For simplicity, always create 3308 * the resilver zio_t. zio_vdev_io_start() 3309 * will bypass the child resilver i/o's if 3310 * they are on vdevs that don't have DTL's. 3311 */ 3312 return (B_TRUE); 3313 } 3314 3315 if (DVA_GET_GANG(dva)) { 3316 /* 3317 * Gang members may be spread across multiple 3318 * vdevs, so the best estimate we have is the 3319 * scrub range, which has already been checked. 3320 * XXX -- it would be better to change our 3321 * allocation policy to ensure that all 3322 * gang members reside on the same vdev. 3323 */ 3324 return (B_TRUE); 3325 } 3326 3327 /* 3328 * Check if the txg falls within the range which must be 3329 * resilvered. DVAs outside this range can always be skipped. 3330 */ 3331 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 3332 return (B_FALSE); 3333 3334 /* 3335 * Check if the top-level vdev must resilver this offset. 3336 * When the offset does not intersect with a dirty leaf DTL 3337 * then it may be possible to skip the resilver IO. The psize 3338 * is provided instead of asize to simplify the check for RAIDZ. 3339 */ 3340 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize)) 3341 return (B_FALSE); 3342 3343 /* 3344 * Check that this top-level vdev has a device under it which 3345 * is resilvering and is not deferred. 3346 */ 3347 if (!dsl_scan_check_deferred(vd)) 3348 return (B_FALSE); 3349 3350 return (B_TRUE); 3351 } 3352 3353 static int 3354 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3355 { 3356 dsl_scan_t *scn = dp->dp_scan; 3357 spa_t *spa = dp->dp_spa; 3358 int err = 0; 3359 3360 if (spa_suspend_async_destroy(spa)) 3361 return (0); 3362 3363 if (zfs_free_bpobj_enabled && 3364 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3365 scn->scn_is_bptree = B_FALSE; 3366 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3367 scn->scn_zio_root = zio_root(spa, NULL, 3368 NULL, ZIO_FLAG_MUSTSUCCEED); 3369 err = bpobj_iterate(&dp->dp_free_bpobj, 3370 bpobj_dsl_scan_free_block_cb, scn, tx); 3371 VERIFY0(zio_wait(scn->scn_zio_root)); 3372 scn->scn_zio_root = NULL; 3373 3374 if (err != 0 && err != ERESTART) 3375 zfs_panic_recover("error %u from bpobj_iterate()", err); 3376 } 3377 3378 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3379 ASSERT(scn->scn_async_destroying); 3380 scn->scn_is_bptree = B_TRUE; 3381 scn->scn_zio_root = zio_root(spa, NULL, 3382 NULL, ZIO_FLAG_MUSTSUCCEED); 3383 err = bptree_iterate(dp->dp_meta_objset, 3384 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3385 VERIFY0(zio_wait(scn->scn_zio_root)); 3386 scn->scn_zio_root = NULL; 3387 3388 if (err == EIO || err == ECKSUM) { 3389 err = 0; 3390 } else if (err != 0 && err != ERESTART) { 3391 zfs_panic_recover("error %u from " 3392 "traverse_dataset_destroyed()", err); 3393 } 3394 3395 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3396 /* finished; deactivate async destroy feature */ 3397 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3398 ASSERT(!spa_feature_is_active(spa, 3399 SPA_FEATURE_ASYNC_DESTROY)); 3400 VERIFY0(zap_remove(dp->dp_meta_objset, 3401 DMU_POOL_DIRECTORY_OBJECT, 3402 DMU_POOL_BPTREE_OBJ, tx)); 3403 VERIFY0(bptree_free(dp->dp_meta_objset, 3404 dp->dp_bptree_obj, tx)); 3405 dp->dp_bptree_obj = 0; 3406 scn->scn_async_destroying = B_FALSE; 3407 scn->scn_async_stalled = B_FALSE; 3408 } else { 3409 /* 3410 * If we didn't make progress, mark the async 3411 * destroy as stalled, so that we will not initiate 3412 * a spa_sync() on its behalf. Note that we only 3413 * check this if we are not finished, because if the 3414 * bptree had no blocks for us to visit, we can 3415 * finish without "making progress". 3416 */ 3417 scn->scn_async_stalled = 3418 (scn->scn_visited_this_txg == 0); 3419 } 3420 } 3421 if (scn->scn_visited_this_txg) { 3422 zfs_dbgmsg("freed %llu blocks in %llums from " 3423 "free_bpobj/bptree txg %llu; err=%u", 3424 (longlong_t)scn->scn_visited_this_txg, 3425 (longlong_t) 3426 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3427 (longlong_t)tx->tx_txg, err); 3428 scn->scn_visited_this_txg = 0; 3429 scn->scn_dedup_frees_this_txg = 0; 3430 3431 /* 3432 * Write out changes to the DDT that may be required as a 3433 * result of the blocks freed. This ensures that the DDT 3434 * is clean when a scrub/resilver runs. 3435 */ 3436 ddt_sync(spa, tx->tx_txg); 3437 } 3438 if (err != 0) 3439 return (err); 3440 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3441 zfs_free_leak_on_eio && 3442 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3443 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3444 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3445 /* 3446 * We have finished background destroying, but there is still 3447 * some space left in the dp_free_dir. Transfer this leaked 3448 * space to the dp_leak_dir. 3449 */ 3450 if (dp->dp_leak_dir == NULL) { 3451 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3452 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3453 LEAK_DIR_NAME, tx); 3454 VERIFY0(dsl_pool_open_special_dir(dp, 3455 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3456 rrw_exit(&dp->dp_config_rwlock, FTAG); 3457 } 3458 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3459 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3460 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3461 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3462 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3463 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3464 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3465 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3466 } 3467 3468 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3469 !spa_livelist_delete_check(spa)) { 3470 /* finished; verify that space accounting went to zero */ 3471 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3472 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3473 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3474 } 3475 3476 spa_notify_waiters(spa); 3477 3478 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3479 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3480 DMU_POOL_OBSOLETE_BPOBJ)); 3481 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3482 ASSERT(spa_feature_is_active(dp->dp_spa, 3483 SPA_FEATURE_OBSOLETE_COUNTS)); 3484 3485 scn->scn_is_bptree = B_FALSE; 3486 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3487 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3488 dsl_scan_obsolete_block_cb, scn, tx); 3489 if (err != 0 && err != ERESTART) 3490 zfs_panic_recover("error %u from bpobj_iterate()", err); 3491 3492 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3493 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3494 } 3495 return (0); 3496 } 3497 3498 /* 3499 * This is the primary entry point for scans that is called from syncing 3500 * context. Scans must happen entirely during syncing context so that we 3501 * can guarantee that blocks we are currently scanning will not change out 3502 * from under us. While a scan is active, this function controls how quickly 3503 * transaction groups proceed, instead of the normal handling provided by 3504 * txg_sync_thread(). 3505 */ 3506 void 3507 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3508 { 3509 int err = 0; 3510 dsl_scan_t *scn = dp->dp_scan; 3511 spa_t *spa = dp->dp_spa; 3512 state_sync_type_t sync_type = SYNC_OPTIONAL; 3513 3514 if (spa->spa_resilver_deferred && 3515 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3516 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3517 3518 /* 3519 * Check for scn_restart_txg before checking spa_load_state, so 3520 * that we can restart an old-style scan while the pool is being 3521 * imported (see dsl_scan_init). We also restart scans if there 3522 * is a deferred resilver and the user has manually disabled 3523 * deferred resilvers via the tunable. 3524 */ 3525 if (dsl_scan_restarting(scn, tx) || 3526 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3527 pool_scan_func_t func = POOL_SCAN_SCRUB; 3528 dsl_scan_done(scn, B_FALSE, tx); 3529 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3530 func = POOL_SCAN_RESILVER; 3531 zfs_dbgmsg("restarting scan func=%u txg=%llu", 3532 func, (longlong_t)tx->tx_txg); 3533 dsl_scan_setup_sync(&func, tx); 3534 } 3535 3536 /* 3537 * Only process scans in sync pass 1. 3538 */ 3539 if (spa_sync_pass(spa) > 1) 3540 return; 3541 3542 /* 3543 * If the spa is shutting down, then stop scanning. This will 3544 * ensure that the scan does not dirty any new data during the 3545 * shutdown phase. 3546 */ 3547 if (spa_shutting_down(spa)) 3548 return; 3549 3550 /* 3551 * If the scan is inactive due to a stalled async destroy, try again. 3552 */ 3553 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3554 return; 3555 3556 /* reset scan statistics */ 3557 scn->scn_visited_this_txg = 0; 3558 scn->scn_dedup_frees_this_txg = 0; 3559 scn->scn_holes_this_txg = 0; 3560 scn->scn_lt_min_this_txg = 0; 3561 scn->scn_gt_max_this_txg = 0; 3562 scn->scn_ddt_contained_this_txg = 0; 3563 scn->scn_objsets_visited_this_txg = 0; 3564 scn->scn_avg_seg_size_this_txg = 0; 3565 scn->scn_segs_this_txg = 0; 3566 scn->scn_avg_zio_size_this_txg = 0; 3567 scn->scn_zios_this_txg = 0; 3568 scn->scn_suspending = B_FALSE; 3569 scn->scn_sync_start_time = gethrtime(); 3570 spa->spa_scrub_active = B_TRUE; 3571 3572 /* 3573 * First process the async destroys. If we suspend, don't do 3574 * any scrubbing or resilvering. This ensures that there are no 3575 * async destroys while we are scanning, so the scan code doesn't 3576 * have to worry about traversing it. It is also faster to free the 3577 * blocks than to scrub them. 3578 */ 3579 err = dsl_process_async_destroys(dp, tx); 3580 if (err != 0) 3581 return; 3582 3583 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3584 return; 3585 3586 /* 3587 * Wait a few txgs after importing to begin scanning so that 3588 * we can get the pool imported quickly. 3589 */ 3590 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3591 return; 3592 3593 /* 3594 * zfs_scan_suspend_progress can be set to disable scan progress. 3595 * We don't want to spin the txg_sync thread, so we add a delay 3596 * here to simulate the time spent doing a scan. This is mostly 3597 * useful for testing and debugging. 3598 */ 3599 if (zfs_scan_suspend_progress) { 3600 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3601 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3602 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3603 3604 while (zfs_scan_suspend_progress && 3605 !txg_sync_waiting(scn->scn_dp) && 3606 !spa_shutting_down(scn->scn_dp->dp_spa) && 3607 NSEC2MSEC(scan_time_ns) < mintime) { 3608 delay(hz); 3609 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3610 } 3611 return; 3612 } 3613 3614 /* 3615 * It is possible to switch from unsorted to sorted at any time, 3616 * but afterwards the scan will remain sorted unless reloaded from 3617 * a checkpoint after a reboot. 3618 */ 3619 if (!zfs_scan_legacy) { 3620 scn->scn_is_sorted = B_TRUE; 3621 if (scn->scn_last_checkpoint == 0) 3622 scn->scn_last_checkpoint = ddi_get_lbolt(); 3623 } 3624 3625 /* 3626 * For sorted scans, determine what kind of work we will be doing 3627 * this txg based on our memory limitations and whether or not we 3628 * need to perform a checkpoint. 3629 */ 3630 if (scn->scn_is_sorted) { 3631 /* 3632 * If we are over our checkpoint interval, set scn_clearing 3633 * so that we can begin checkpointing immediately. The 3634 * checkpoint allows us to save a consistent bookmark 3635 * representing how much data we have scrubbed so far. 3636 * Otherwise, use the memory limit to determine if we should 3637 * scan for metadata or start issue scrub IOs. We accumulate 3638 * metadata until we hit our hard memory limit at which point 3639 * we issue scrub IOs until we are at our soft memory limit. 3640 */ 3641 if (scn->scn_checkpointing || 3642 ddi_get_lbolt() - scn->scn_last_checkpoint > 3643 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3644 if (!scn->scn_checkpointing) 3645 zfs_dbgmsg("begin scan checkpoint"); 3646 3647 scn->scn_checkpointing = B_TRUE; 3648 scn->scn_clearing = B_TRUE; 3649 } else { 3650 boolean_t should_clear = dsl_scan_should_clear(scn); 3651 if (should_clear && !scn->scn_clearing) { 3652 zfs_dbgmsg("begin scan clearing"); 3653 scn->scn_clearing = B_TRUE; 3654 } else if (!should_clear && scn->scn_clearing) { 3655 zfs_dbgmsg("finish scan clearing"); 3656 scn->scn_clearing = B_FALSE; 3657 } 3658 } 3659 } else { 3660 ASSERT0(scn->scn_checkpointing); 3661 ASSERT0(scn->scn_clearing); 3662 } 3663 3664 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3665 /* Need to scan metadata for more blocks to scrub */ 3666 dsl_scan_phys_t *scnp = &scn->scn_phys; 3667 taskqid_t prefetch_tqid; 3668 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3669 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); 3670 3671 /* 3672 * Recalculate the max number of in-flight bytes for pool-wide 3673 * scanning operations (minimum 1MB). Limits for the issuing 3674 * phase are done per top-level vdev and are handled separately. 3675 */ 3676 scn->scn_maxinflight_bytes = 3677 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3678 3679 if (scnp->scn_ddt_bookmark.ddb_class <= 3680 scnp->scn_ddt_class_max) { 3681 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3682 zfs_dbgmsg("doing scan sync txg %llu; " 3683 "ddt bm=%llu/%llu/%llu/%llx", 3684 (longlong_t)tx->tx_txg, 3685 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3686 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3687 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3688 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3689 } else { 3690 zfs_dbgmsg("doing scan sync txg %llu; " 3691 "bm=%llu/%llu/%llu/%llu", 3692 (longlong_t)tx->tx_txg, 3693 (longlong_t)scnp->scn_bookmark.zb_objset, 3694 (longlong_t)scnp->scn_bookmark.zb_object, 3695 (longlong_t)scnp->scn_bookmark.zb_level, 3696 (longlong_t)scnp->scn_bookmark.zb_blkid); 3697 } 3698 3699 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3700 NULL, ZIO_FLAG_CANFAIL); 3701 3702 scn->scn_prefetch_stop = B_FALSE; 3703 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3704 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3705 ASSERT(prefetch_tqid != TASKQID_INVALID); 3706 3707 dsl_pool_config_enter(dp, FTAG); 3708 dsl_scan_visit(scn, tx); 3709 dsl_pool_config_exit(dp, FTAG); 3710 3711 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3712 scn->scn_prefetch_stop = B_TRUE; 3713 cv_broadcast(&spa->spa_scrub_io_cv); 3714 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3715 3716 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3717 (void) zio_wait(scn->scn_zio_root); 3718 scn->scn_zio_root = NULL; 3719 3720 zfs_dbgmsg("scan visited %llu blocks in %llums " 3721 "(%llu os's, %llu holes, %llu < mintxg, " 3722 "%llu in ddt, %llu > maxtxg)", 3723 (longlong_t)scn->scn_visited_this_txg, 3724 (longlong_t)NSEC2MSEC(gethrtime() - 3725 scn->scn_sync_start_time), 3726 (longlong_t)scn->scn_objsets_visited_this_txg, 3727 (longlong_t)scn->scn_holes_this_txg, 3728 (longlong_t)scn->scn_lt_min_this_txg, 3729 (longlong_t)scn->scn_ddt_contained_this_txg, 3730 (longlong_t)scn->scn_gt_max_this_txg); 3731 3732 if (!scn->scn_suspending) { 3733 ASSERT0(avl_numnodes(&scn->scn_queue)); 3734 scn->scn_done_txg = tx->tx_txg + 1; 3735 if (scn->scn_is_sorted) { 3736 scn->scn_checkpointing = B_TRUE; 3737 scn->scn_clearing = B_TRUE; 3738 } 3739 zfs_dbgmsg("scan complete txg %llu", 3740 (longlong_t)tx->tx_txg); 3741 } 3742 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3743 ASSERT(scn->scn_clearing); 3744 3745 /* need to issue scrubbing IOs from per-vdev queues */ 3746 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3747 NULL, ZIO_FLAG_CANFAIL); 3748 scan_io_queues_run(scn); 3749 (void) zio_wait(scn->scn_zio_root); 3750 scn->scn_zio_root = NULL; 3751 3752 /* calculate and dprintf the current memory usage */ 3753 (void) dsl_scan_should_clear(scn); 3754 dsl_scan_update_stats(scn); 3755 3756 zfs_dbgmsg("scan issued %llu blocks (%llu segs) in %llums " 3757 "(avg_block_size = %llu, avg_seg_size = %llu)", 3758 (longlong_t)scn->scn_zios_this_txg, 3759 (longlong_t)scn->scn_segs_this_txg, 3760 (longlong_t)NSEC2MSEC(gethrtime() - 3761 scn->scn_sync_start_time), 3762 (longlong_t)scn->scn_avg_zio_size_this_txg, 3763 (longlong_t)scn->scn_avg_seg_size_this_txg); 3764 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3765 /* Finished with everything. Mark the scrub as complete */ 3766 zfs_dbgmsg("scan issuing complete txg %llu", 3767 (longlong_t)tx->tx_txg); 3768 ASSERT3U(scn->scn_done_txg, !=, 0); 3769 ASSERT0(spa->spa_scrub_inflight); 3770 ASSERT0(scn->scn_bytes_pending); 3771 dsl_scan_done(scn, B_TRUE, tx); 3772 sync_type = SYNC_MANDATORY; 3773 } 3774 3775 dsl_scan_sync_state(scn, tx, sync_type); 3776 } 3777 3778 static void 3779 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3780 { 3781 int i; 3782 3783 /* 3784 * Don't count embedded bp's, since we already did the work of 3785 * scanning these when we scanned the containing block. 3786 */ 3787 if (BP_IS_EMBEDDED(bp)) 3788 return; 3789 3790 /* 3791 * Update the spa's stats on how many bytes we have issued. 3792 * Sequential scrubs create a zio for each DVA of the bp. Each 3793 * of these will include all DVAs for repair purposes, but the 3794 * zio code will only try the first one unless there is an issue. 3795 * Therefore, we should only count the first DVA for these IOs. 3796 */ 3797 if (scn->scn_is_sorted) { 3798 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3799 DVA_GET_ASIZE(&bp->blk_dva[0])); 3800 } else { 3801 spa_t *spa = scn->scn_dp->dp_spa; 3802 3803 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3804 atomic_add_64(&spa->spa_scan_pass_issued, 3805 DVA_GET_ASIZE(&bp->blk_dva[i])); 3806 } 3807 } 3808 3809 /* 3810 * If we resume after a reboot, zab will be NULL; don't record 3811 * incomplete stats in that case. 3812 */ 3813 if (zab == NULL) 3814 return; 3815 3816 mutex_enter(&zab->zab_lock); 3817 3818 for (i = 0; i < 4; i++) { 3819 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3820 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3821 3822 if (t & DMU_OT_NEWTYPE) 3823 t = DMU_OT_OTHER; 3824 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3825 int equal; 3826 3827 zb->zb_count++; 3828 zb->zb_asize += BP_GET_ASIZE(bp); 3829 zb->zb_lsize += BP_GET_LSIZE(bp); 3830 zb->zb_psize += BP_GET_PSIZE(bp); 3831 zb->zb_gangs += BP_COUNT_GANG(bp); 3832 3833 switch (BP_GET_NDVAS(bp)) { 3834 case 2: 3835 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3836 DVA_GET_VDEV(&bp->blk_dva[1])) 3837 zb->zb_ditto_2_of_2_samevdev++; 3838 break; 3839 case 3: 3840 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3841 DVA_GET_VDEV(&bp->blk_dva[1])) + 3842 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3843 DVA_GET_VDEV(&bp->blk_dva[2])) + 3844 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3845 DVA_GET_VDEV(&bp->blk_dva[2])); 3846 if (equal == 1) 3847 zb->zb_ditto_2_of_3_samevdev++; 3848 else if (equal == 3) 3849 zb->zb_ditto_3_of_3_samevdev++; 3850 break; 3851 } 3852 } 3853 3854 mutex_exit(&zab->zab_lock); 3855 } 3856 3857 static void 3858 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3859 { 3860 avl_index_t idx; 3861 int64_t asize = SIO_GET_ASIZE(sio); 3862 dsl_scan_t *scn = queue->q_scn; 3863 3864 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3865 3866 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3867 /* block is already scheduled for reading */ 3868 atomic_add_64(&scn->scn_bytes_pending, -asize); 3869 sio_free(sio); 3870 return; 3871 } 3872 avl_insert(&queue->q_sios_by_addr, sio, idx); 3873 queue->q_sio_memused += SIO_GET_MUSED(sio); 3874 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3875 } 3876 3877 /* 3878 * Given all the info we got from our metadata scanning process, we 3879 * construct a scan_io_t and insert it into the scan sorting queue. The 3880 * I/O must already be suitable for us to process. This is controlled 3881 * by dsl_scan_enqueue(). 3882 */ 3883 static void 3884 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3885 int zio_flags, const zbookmark_phys_t *zb) 3886 { 3887 dsl_scan_t *scn = queue->q_scn; 3888 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3889 3890 ASSERT0(BP_IS_GANG(bp)); 3891 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3892 3893 bp2sio(bp, sio, dva_i); 3894 sio->sio_flags = zio_flags; 3895 sio->sio_zb = *zb; 3896 3897 /* 3898 * Increment the bytes pending counter now so that we can't 3899 * get an integer underflow in case the worker processes the 3900 * zio before we get to incrementing this counter. 3901 */ 3902 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3903 3904 scan_io_queue_insert_impl(queue, sio); 3905 } 3906 3907 /* 3908 * Given a set of I/O parameters as discovered by the metadata traversal 3909 * process, attempts to place the I/O into the sorted queues (if allowed), 3910 * or immediately executes the I/O. 3911 */ 3912 static void 3913 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3914 const zbookmark_phys_t *zb) 3915 { 3916 spa_t *spa = dp->dp_spa; 3917 3918 ASSERT(!BP_IS_EMBEDDED(bp)); 3919 3920 /* 3921 * Gang blocks are hard to issue sequentially, so we just issue them 3922 * here immediately instead of queuing them. 3923 */ 3924 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3925 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3926 return; 3927 } 3928 3929 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3930 dva_t dva; 3931 vdev_t *vdev; 3932 3933 dva = bp->blk_dva[i]; 3934 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3935 ASSERT(vdev != NULL); 3936 3937 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3938 if (vdev->vdev_scan_io_queue == NULL) 3939 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3940 ASSERT(dp->dp_scan != NULL); 3941 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3942 i, zio_flags, zb); 3943 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3944 } 3945 } 3946 3947 static int 3948 dsl_scan_scrub_cb(dsl_pool_t *dp, 3949 const blkptr_t *bp, const zbookmark_phys_t *zb) 3950 { 3951 dsl_scan_t *scn = dp->dp_scan; 3952 spa_t *spa = dp->dp_spa; 3953 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3954 size_t psize = BP_GET_PSIZE(bp); 3955 boolean_t needs_io = B_FALSE; 3956 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3957 3958 3959 if (phys_birth <= scn->scn_phys.scn_min_txg || 3960 phys_birth >= scn->scn_phys.scn_max_txg) { 3961 count_block(scn, dp->dp_blkstats, bp); 3962 return (0); 3963 } 3964 3965 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3966 ASSERT(!BP_IS_EMBEDDED(bp)); 3967 3968 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3969 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3970 zio_flags |= ZIO_FLAG_SCRUB; 3971 needs_io = B_TRUE; 3972 } else { 3973 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3974 zio_flags |= ZIO_FLAG_RESILVER; 3975 needs_io = B_FALSE; 3976 } 3977 3978 /* If it's an intent log block, failure is expected. */ 3979 if (zb->zb_level == ZB_ZIL_LEVEL) 3980 zio_flags |= ZIO_FLAG_SPECULATIVE; 3981 3982 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 3983 const dva_t *dva = &bp->blk_dva[d]; 3984 3985 /* 3986 * Keep track of how much data we've examined so that 3987 * zpool(1M) status can make useful progress reports. 3988 */ 3989 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 3990 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 3991 3992 /* if it's a resilver, this may not be in the target range */ 3993 if (!needs_io) 3994 needs_io = dsl_scan_need_resilver(spa, dva, psize, 3995 phys_birth); 3996 } 3997 3998 if (needs_io && !zfs_no_scrub_io) { 3999 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4000 } else { 4001 count_block(scn, dp->dp_blkstats, bp); 4002 } 4003 4004 /* do not relocate this block */ 4005 return (0); 4006 } 4007 4008 static void 4009 dsl_scan_scrub_done(zio_t *zio) 4010 { 4011 spa_t *spa = zio->io_spa; 4012 blkptr_t *bp = zio->io_bp; 4013 dsl_scan_io_queue_t *queue = zio->io_private; 4014 4015 abd_free(zio->io_abd); 4016 4017 if (queue == NULL) { 4018 mutex_enter(&spa->spa_scrub_lock); 4019 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4020 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4021 cv_broadcast(&spa->spa_scrub_io_cv); 4022 mutex_exit(&spa->spa_scrub_lock); 4023 } else { 4024 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4025 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4026 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4027 cv_broadcast(&queue->q_zio_cv); 4028 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4029 } 4030 4031 if (zio->io_error && (zio->io_error != ECKSUM || 4032 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4033 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 4034 } 4035 } 4036 4037 /* 4038 * Given a scanning zio's information, executes the zio. The zio need 4039 * not necessarily be only sortable, this function simply executes the 4040 * zio, no matter what it is. The optional queue argument allows the 4041 * caller to specify that they want per top level vdev IO rate limiting 4042 * instead of the legacy global limiting. 4043 */ 4044 static void 4045 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4046 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4047 { 4048 spa_t *spa = dp->dp_spa; 4049 dsl_scan_t *scn = dp->dp_scan; 4050 size_t size = BP_GET_PSIZE(bp); 4051 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4052 4053 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4054 4055 if (queue == NULL) { 4056 mutex_enter(&spa->spa_scrub_lock); 4057 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4058 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4059 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4060 mutex_exit(&spa->spa_scrub_lock); 4061 } else { 4062 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4063 4064 mutex_enter(q_lock); 4065 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4066 cv_wait(&queue->q_zio_cv, q_lock); 4067 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4068 mutex_exit(q_lock); 4069 } 4070 4071 count_block(scn, dp->dp_blkstats, bp); 4072 zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size, 4073 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4074 } 4075 4076 /* 4077 * This is the primary extent sorting algorithm. We balance two parameters: 4078 * 1) how many bytes of I/O are in an extent 4079 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4080 * Since we allow extents to have gaps between their constituent I/Os, it's 4081 * possible to have a fairly large extent that contains the same amount of 4082 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4083 * The algorithm sorts based on a score calculated from the extent's size, 4084 * the relative fill volume (in %) and a "fill weight" parameter that controls 4085 * the split between whether we prefer larger extents or more well populated 4086 * extents: 4087 * 4088 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4089 * 4090 * Example: 4091 * 1) assume extsz = 64 MiB 4092 * 2) assume fill = 32 MiB (extent is half full) 4093 * 3) assume fill_weight = 3 4094 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4095 * SCORE = 32M + (50 * 3 * 32M) / 100 4096 * SCORE = 32M + (4800M / 100) 4097 * SCORE = 32M + 48M 4098 * ^ ^ 4099 * | +--- final total relative fill-based score 4100 * +--------- final total fill-based score 4101 * SCORE = 80M 4102 * 4103 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4104 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4105 * Note that as an optimization, we replace multiplication and division by 4106 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4107 */ 4108 static int 4109 ext_size_compare(const void *x, const void *y) 4110 { 4111 const range_seg_gap_t *rsa = x, *rsb = y; 4112 4113 uint64_t sa = rsa->rs_end - rsa->rs_start; 4114 uint64_t sb = rsb->rs_end - rsb->rs_start; 4115 uint64_t score_a, score_b; 4116 4117 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 4118 fill_weight * rsa->rs_fill) >> 7); 4119 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 4120 fill_weight * rsb->rs_fill) >> 7); 4121 4122 if (score_a > score_b) 4123 return (-1); 4124 if (score_a == score_b) { 4125 if (rsa->rs_start < rsb->rs_start) 4126 return (-1); 4127 if (rsa->rs_start == rsb->rs_start) 4128 return (0); 4129 return (1); 4130 } 4131 return (1); 4132 } 4133 4134 /* 4135 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4136 * based on LBA-order (from lowest to highest). 4137 */ 4138 static int 4139 sio_addr_compare(const void *x, const void *y) 4140 { 4141 const scan_io_t *a = x, *b = y; 4142 4143 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4144 } 4145 4146 /* IO queues are created on demand when they are needed. */ 4147 static dsl_scan_io_queue_t * 4148 scan_io_queue_create(vdev_t *vd) 4149 { 4150 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4151 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4152 4153 q->q_scn = scn; 4154 q->q_vd = vd; 4155 q->q_sio_memused = 0; 4156 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4157 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP, 4158 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap); 4159 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4160 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4161 4162 return (q); 4163 } 4164 4165 /* 4166 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4167 * No further execution of I/O occurs, anything pending in the queue is 4168 * simply freed without being executed. 4169 */ 4170 void 4171 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4172 { 4173 dsl_scan_t *scn = queue->q_scn; 4174 scan_io_t *sio; 4175 void *cookie = NULL; 4176 int64_t bytes_dequeued = 0; 4177 4178 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4179 4180 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4181 NULL) { 4182 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4183 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4184 bytes_dequeued += SIO_GET_ASIZE(sio); 4185 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4186 sio_free(sio); 4187 } 4188 4189 ASSERT0(queue->q_sio_memused); 4190 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4191 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4192 range_tree_destroy(queue->q_exts_by_addr); 4193 avl_destroy(&queue->q_sios_by_addr); 4194 cv_destroy(&queue->q_zio_cv); 4195 4196 kmem_free(queue, sizeof (*queue)); 4197 } 4198 4199 /* 4200 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4201 * called on behalf of vdev_top_transfer when creating or destroying 4202 * a mirror vdev due to zpool attach/detach. 4203 */ 4204 void 4205 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4206 { 4207 mutex_enter(&svd->vdev_scan_io_queue_lock); 4208 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4209 4210 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4211 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4212 svd->vdev_scan_io_queue = NULL; 4213 if (tvd->vdev_scan_io_queue != NULL) 4214 tvd->vdev_scan_io_queue->q_vd = tvd; 4215 4216 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4217 mutex_exit(&svd->vdev_scan_io_queue_lock); 4218 } 4219 4220 static void 4221 scan_io_queues_destroy(dsl_scan_t *scn) 4222 { 4223 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4224 4225 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4226 vdev_t *tvd = rvd->vdev_child[i]; 4227 4228 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4229 if (tvd->vdev_scan_io_queue != NULL) 4230 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4231 tvd->vdev_scan_io_queue = NULL; 4232 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4233 } 4234 } 4235 4236 static void 4237 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4238 { 4239 dsl_pool_t *dp = spa->spa_dsl_pool; 4240 dsl_scan_t *scn = dp->dp_scan; 4241 vdev_t *vdev; 4242 kmutex_t *q_lock; 4243 dsl_scan_io_queue_t *queue; 4244 scan_io_t *srch_sio, *sio; 4245 avl_index_t idx; 4246 uint64_t start, size; 4247 4248 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4249 ASSERT(vdev != NULL); 4250 q_lock = &vdev->vdev_scan_io_queue_lock; 4251 queue = vdev->vdev_scan_io_queue; 4252 4253 mutex_enter(q_lock); 4254 if (queue == NULL) { 4255 mutex_exit(q_lock); 4256 return; 4257 } 4258 4259 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4260 bp2sio(bp, srch_sio, dva_i); 4261 start = SIO_GET_OFFSET(srch_sio); 4262 size = SIO_GET_ASIZE(srch_sio); 4263 4264 /* 4265 * We can find the zio in two states: 4266 * 1) Cold, just sitting in the queue of zio's to be issued at 4267 * some point in the future. In this case, all we do is 4268 * remove the zio from the q_sios_by_addr tree, decrement 4269 * its data volume from the containing range_seg_t and 4270 * resort the q_exts_by_size tree to reflect that the 4271 * range_seg_t has lost some of its 'fill'. We don't shorten 4272 * the range_seg_t - this is usually rare enough not to be 4273 * worth the extra hassle of trying keep track of precise 4274 * extent boundaries. 4275 * 2) Hot, where the zio is currently in-flight in 4276 * dsl_scan_issue_ios. In this case, we can't simply 4277 * reach in and stop the in-flight zio's, so we instead 4278 * block the caller. Eventually, dsl_scan_issue_ios will 4279 * be done with issuing the zio's it gathered and will 4280 * signal us. 4281 */ 4282 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4283 sio_free(srch_sio); 4284 4285 if (sio != NULL) { 4286 int64_t asize = SIO_GET_ASIZE(sio); 4287 blkptr_t tmpbp; 4288 4289 /* Got it while it was cold in the queue */ 4290 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4291 ASSERT3U(size, ==, asize); 4292 avl_remove(&queue->q_sios_by_addr, sio); 4293 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4294 4295 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4296 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4297 4298 /* 4299 * We only update scn_bytes_pending in the cold path, 4300 * otherwise it will already have been accounted for as 4301 * part of the zio's execution. 4302 */ 4303 atomic_add_64(&scn->scn_bytes_pending, -asize); 4304 4305 /* count the block as though we issued it */ 4306 sio2bp(sio, &tmpbp); 4307 count_block(scn, dp->dp_blkstats, &tmpbp); 4308 4309 sio_free(sio); 4310 } 4311 mutex_exit(q_lock); 4312 } 4313 4314 /* 4315 * Callback invoked when a zio_free() zio is executing. This needs to be 4316 * intercepted to prevent the zio from deallocating a particular portion 4317 * of disk space and it then getting reallocated and written to, while we 4318 * still have it queued up for processing. 4319 */ 4320 void 4321 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4322 { 4323 dsl_pool_t *dp = spa->spa_dsl_pool; 4324 dsl_scan_t *scn = dp->dp_scan; 4325 4326 ASSERT(!BP_IS_EMBEDDED(bp)); 4327 ASSERT(scn != NULL); 4328 if (!dsl_scan_is_running(scn)) 4329 return; 4330 4331 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4332 dsl_scan_freed_dva(spa, bp, i); 4333 } 4334 4335 /* 4336 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4337 * not started, start it. Otherwise, only restart if max txg in DTL range is 4338 * greater than the max txg in the current scan. If the DTL max is less than 4339 * the scan max, then the vdev has not missed any new data since the resilver 4340 * started, so a restart is not needed. 4341 */ 4342 void 4343 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4344 { 4345 uint64_t min, max; 4346 4347 if (!vdev_resilver_needed(vd, &min, &max)) 4348 return; 4349 4350 if (!dsl_scan_resilvering(dp)) { 4351 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4352 return; 4353 } 4354 4355 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4356 return; 4357 4358 /* restart is needed, check if it can be deferred */ 4359 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4360 vdev_defer_resilver(vd); 4361 else 4362 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4363 } 4364 4365 /* BEGIN CSTYLED */ 4366 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW, 4367 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 4368 4369 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW, 4370 "Min millisecs to scrub per txg"); 4371 4372 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW, 4373 "Min millisecs to obsolete per txg"); 4374 4375 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW, 4376 "Min millisecs to free per txg"); 4377 4378 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW, 4379 "Min millisecs to resilver per txg"); 4380 4381 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 4382 "Set to prevent scans from progressing"); 4383 4384 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 4385 "Set to disable scrub I/O"); 4386 4387 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 4388 "Set to disable scrub prefetching"); 4389 4390 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW, 4391 "Max number of blocks freed in one txg"); 4392 4393 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW, 4394 "Max number of dedup blocks freed in one txg"); 4395 4396 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 4397 "Enable processing of the free_bpobj"); 4398 4399 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW, 4400 "Fraction of RAM for scan hard limit"); 4401 4402 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW, 4403 "IO issuing strategy during scrubbing. " 4404 "0 = default, 1 = LBA, 2 = size"); 4405 4406 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 4407 "Scrub using legacy non-sequential method"); 4408 4409 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW, 4410 "Scan progress on-disk checkpointing interval"); 4411 4412 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW, 4413 "Max gap in bytes between sequential scrub / resilver I/Os"); 4414 4415 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW, 4416 "Fraction of hard limit used as soft limit"); 4417 4418 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 4419 "Tunable to attempt to reduce lock contention"); 4420 4421 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW, 4422 "Tunable to adjust bias towards more filled segments during scans"); 4423 4424 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 4425 "Process all resilvers immediately"); 4426 /* END CSTYLED */ 4427