xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_scan.c (revision 90b5fc95832da64a5f56295e687379732c33718f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2016 Gary Mills
25  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27  * Copyright 2019 Joyent, Inc.
28  */
29 
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/zil_impl.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/ddt.h>
50 #include <sys/sa.h>
51 #include <sys/sa_impl.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/range_tree.h>
55 #ifdef _KERNEL
56 #include <sys/zfs_vfsops.h>
57 #endif
58 
59 /*
60  * Grand theory statement on scan queue sorting
61  *
62  * Scanning is implemented by recursively traversing all indirection levels
63  * in an object and reading all blocks referenced from said objects. This
64  * results in us approximately traversing the object from lowest logical
65  * offset to the highest. For best performance, we would want the logical
66  * blocks to be physically contiguous. However, this is frequently not the
67  * case with pools given the allocation patterns of copy-on-write filesystems.
68  * So instead, we put the I/Os into a reordering queue and issue them in a
69  * way that will most benefit physical disks (LBA-order).
70  *
71  * Queue management:
72  *
73  * Ideally, we would want to scan all metadata and queue up all block I/O
74  * prior to starting to issue it, because that allows us to do an optimal
75  * sorting job. This can however consume large amounts of memory. Therefore
76  * we continuously monitor the size of the queues and constrain them to 5%
77  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
78  * limit, we clear out a few of the largest extents at the head of the queues
79  * to make room for more scanning. Hopefully, these extents will be fairly
80  * large and contiguous, allowing us to approach sequential I/O throughput
81  * even without a fully sorted tree.
82  *
83  * Metadata scanning takes place in dsl_scan_visit(), which is called from
84  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
85  * metadata on the pool, or we need to make room in memory because our
86  * queues are too large, dsl_scan_visit() is postponed and
87  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
88  * that metadata scanning and queued I/O issuing are mutually exclusive. This
89  * allows us to provide maximum sequential I/O throughput for the majority of
90  * I/O's issued since sequential I/O performance is significantly negatively
91  * impacted if it is interleaved with random I/O.
92  *
93  * Implementation Notes
94  *
95  * One side effect of the queued scanning algorithm is that the scanning code
96  * needs to be notified whenever a block is freed. This is needed to allow
97  * the scanning code to remove these I/Os from the issuing queue. Additionally,
98  * we do not attempt to queue gang blocks to be issued sequentially since this
99  * is very hard to do and would have an extremely limited performance benefit.
100  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
101  * algorithm.
102  *
103  * Backwards compatibility
104  *
105  * This new algorithm is backwards compatible with the legacy on-disk data
106  * structures (and therefore does not require a new feature flag).
107  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
108  * will stop scanning metadata (in logical order) and wait for all outstanding
109  * sorted I/O to complete. Once this is done, we write out a checkpoint
110  * bookmark, indicating that we have scanned everything logically before it.
111  * If the pool is imported on a machine without the new sorting algorithm,
112  * the scan simply resumes from the last checkpoint using the legacy algorithm.
113  */
114 
115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
116     const zbookmark_phys_t *);
117 
118 static scan_cb_t dsl_scan_scrub_cb;
119 
120 static int scan_ds_queue_compare(const void *a, const void *b);
121 static int scan_prefetch_queue_compare(const void *a, const void *b);
122 static void scan_ds_queue_clear(dsl_scan_t *scn);
123 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
125     uint64_t *txg);
126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
129 static uint64_t dsl_scan_count_leaves(vdev_t *vd);
130 
131 extern int zfs_vdev_async_write_active_min_dirty_percent;
132 
133 /*
134  * By default zfs will check to ensure it is not over the hard memory
135  * limit before each txg. If finer-grained control of this is needed
136  * this value can be set to 1 to enable checking before scanning each
137  * block.
138  */
139 int zfs_scan_strict_mem_lim = B_FALSE;
140 
141 /*
142  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
143  * to strike a balance here between keeping the vdev queues full of I/Os
144  * at all times and not overflowing the queues to cause long latency,
145  * which would cause long txg sync times. No matter what, we will not
146  * overload the drives with I/O, since that is protected by
147  * zfs_vdev_scrub_max_active.
148  */
149 unsigned long zfs_scan_vdev_limit = 4 << 20;
150 
151 int zfs_scan_issue_strategy = 0;
152 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */
153 unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
154 
155 /*
156  * fill_weight is non-tunable at runtime, so we copy it at module init from
157  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
158  * break queue sorting.
159  */
160 int zfs_scan_fill_weight = 3;
161 static uint64_t fill_weight;
162 
163 /* See dsl_scan_should_clear() for details on the memory limit tunables */
164 uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
165 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
166 int zfs_scan_mem_lim_fact = 20;		/* fraction of physmem */
167 int zfs_scan_mem_lim_soft_fact = 20;	/* fraction of mem lim above */
168 
169 int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
170 int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */
171 int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
172 int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */
173 int zfs_scan_checkpoint_intval = 7200; /* in seconds */
174 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
175 int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
176 int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
177 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
178 /* max number of blocks to free in a single TXG */
179 unsigned long zfs_async_block_max_blocks = ULONG_MAX;
180 /* max number of dedup blocks to free in a single TXG */
181 unsigned long zfs_max_async_dedup_frees = 100000;
182 
183 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */
184 
185 /*
186  * We wait a few txgs after importing a pool to begin scanning so that
187  * the import / mounting code isn't held up by scrub / resilver IO.
188  * Unfortunately, it is a bit difficult to determine exactly how long
189  * this will take since userspace will trigger fs mounts asynchronously
190  * and the kernel will create zvol minors asynchronously. As a result,
191  * the value provided here is a bit arbitrary, but represents a
192  * reasonable estimate of how many txgs it will take to finish fully
193  * importing a pool
194  */
195 #define	SCAN_IMPORT_WAIT_TXGS 		5
196 
197 #define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
198 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
199 	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
200 
201 /*
202  * Enable/disable the processing of the free_bpobj object.
203  */
204 int zfs_free_bpobj_enabled = 1;
205 
206 /* the order has to match pool_scan_type */
207 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
208 	NULL,
209 	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
210 	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
211 };
212 
213 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
214 typedef struct {
215 	uint64_t	sds_dsobj;
216 	uint64_t	sds_txg;
217 	avl_node_t	sds_node;
218 } scan_ds_t;
219 
220 /*
221  * This controls what conditions are placed on dsl_scan_sync_state():
222  * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
223  * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
224  * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
225  *	write out the scn_phys_cached version.
226  * See dsl_scan_sync_state for details.
227  */
228 typedef enum {
229 	SYNC_OPTIONAL,
230 	SYNC_MANDATORY,
231 	SYNC_CACHED
232 } state_sync_type_t;
233 
234 /*
235  * This struct represents the minimum information needed to reconstruct a
236  * zio for sequential scanning. This is useful because many of these will
237  * accumulate in the sequential IO queues before being issued, so saving
238  * memory matters here.
239  */
240 typedef struct scan_io {
241 	/* fields from blkptr_t */
242 	uint64_t		sio_blk_prop;
243 	uint64_t		sio_phys_birth;
244 	uint64_t		sio_birth;
245 	zio_cksum_t		sio_cksum;
246 	uint32_t		sio_nr_dvas;
247 
248 	/* fields from zio_t */
249 	uint32_t		sio_flags;
250 	zbookmark_phys_t	sio_zb;
251 
252 	/* members for queue sorting */
253 	union {
254 		avl_node_t	sio_addr_node; /* link into issuing queue */
255 		list_node_t	sio_list_node; /* link for issuing to disk */
256 	} sio_nodes;
257 
258 	/*
259 	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
260 	 * depending on how many were in the original bp. Only the
261 	 * first DVA is really used for sorting and issuing purposes.
262 	 * The other DVAs (if provided) simply exist so that the zio
263 	 * layer can find additional copies to repair from in the
264 	 * event of an error. This array must go at the end of the
265 	 * struct to allow this for the variable number of elements.
266 	 */
267 	dva_t			sio_dva[0];
268 } scan_io_t;
269 
270 #define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
271 #define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
272 #define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
273 #define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
274 #define	SIO_GET_END_OFFSET(sio)		\
275 	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
276 #define	SIO_GET_MUSED(sio)		\
277 	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
278 
279 struct dsl_scan_io_queue {
280 	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
281 	vdev_t		*q_vd; /* top-level vdev that this queue represents */
282 
283 	/* trees used for sorting I/Os and extents of I/Os */
284 	range_tree_t	*q_exts_by_addr;
285 	zfs_btree_t		q_exts_by_size;
286 	avl_tree_t	q_sios_by_addr;
287 	uint64_t	q_sio_memused;
288 
289 	/* members for zio rate limiting */
290 	uint64_t	q_maxinflight_bytes;
291 	uint64_t	q_inflight_bytes;
292 	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
293 
294 	/* per txg statistics */
295 	uint64_t	q_total_seg_size_this_txg;
296 	uint64_t	q_segs_this_txg;
297 	uint64_t	q_total_zio_size_this_txg;
298 	uint64_t	q_zios_this_txg;
299 };
300 
301 /* private data for dsl_scan_prefetch_cb() */
302 typedef struct scan_prefetch_ctx {
303 	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
304 	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
305 	boolean_t spc_root;		/* is this prefetch for an objset? */
306 	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
307 	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
308 } scan_prefetch_ctx_t;
309 
310 /* private data for dsl_scan_prefetch() */
311 typedef struct scan_prefetch_issue_ctx {
312 	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
313 	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
314 	blkptr_t spic_bp;		/* bp to prefetch */
315 	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
316 } scan_prefetch_issue_ctx_t;
317 
318 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
319     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
320 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
321     scan_io_t *sio);
322 
323 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
324 static void scan_io_queues_destroy(dsl_scan_t *scn);
325 
326 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
327 
328 /* sio->sio_nr_dvas must be set so we know which cache to free from */
329 static void
330 sio_free(scan_io_t *sio)
331 {
332 	ASSERT3U(sio->sio_nr_dvas, >, 0);
333 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
334 
335 	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
336 }
337 
338 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
339 static scan_io_t *
340 sio_alloc(unsigned short nr_dvas)
341 {
342 	ASSERT3U(nr_dvas, >, 0);
343 	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
344 
345 	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
346 }
347 
348 void
349 scan_init(void)
350 {
351 	/*
352 	 * This is used in ext_size_compare() to weight segments
353 	 * based on how sparse they are. This cannot be changed
354 	 * mid-scan and the tree comparison functions don't currently
355 	 * have a mechanism for passing additional context to the
356 	 * compare functions. Thus we store this value globally and
357 	 * we only allow it to be set at module initialization time
358 	 */
359 	fill_weight = zfs_scan_fill_weight;
360 
361 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
362 		char name[36];
363 
364 		(void) snprintf(name, sizeof (name), "sio_cache_%d", i);
365 		sio_cache[i] = kmem_cache_create(name,
366 		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
367 		    0, NULL, NULL, NULL, NULL, NULL, 0);
368 	}
369 }
370 
371 void
372 scan_fini(void)
373 {
374 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
375 		kmem_cache_destroy(sio_cache[i]);
376 	}
377 }
378 
379 static inline boolean_t
380 dsl_scan_is_running(const dsl_scan_t *scn)
381 {
382 	return (scn->scn_phys.scn_state == DSS_SCANNING);
383 }
384 
385 boolean_t
386 dsl_scan_resilvering(dsl_pool_t *dp)
387 {
388 	return (dsl_scan_is_running(dp->dp_scan) &&
389 	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
390 }
391 
392 static inline void
393 sio2bp(const scan_io_t *sio, blkptr_t *bp)
394 {
395 	bzero(bp, sizeof (*bp));
396 	bp->blk_prop = sio->sio_blk_prop;
397 	bp->blk_phys_birth = sio->sio_phys_birth;
398 	bp->blk_birth = sio->sio_birth;
399 	bp->blk_fill = 1;	/* we always only work with data pointers */
400 	bp->blk_cksum = sio->sio_cksum;
401 
402 	ASSERT3U(sio->sio_nr_dvas, >, 0);
403 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
404 
405 	bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t));
406 }
407 
408 static inline void
409 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
410 {
411 	sio->sio_blk_prop = bp->blk_prop;
412 	sio->sio_phys_birth = bp->blk_phys_birth;
413 	sio->sio_birth = bp->blk_birth;
414 	sio->sio_cksum = bp->blk_cksum;
415 	sio->sio_nr_dvas = BP_GET_NDVAS(bp);
416 
417 	/*
418 	 * Copy the DVAs to the sio. We need all copies of the block so
419 	 * that the self healing code can use the alternate copies if the
420 	 * first is corrupted. We want the DVA at index dva_i to be first
421 	 * in the sio since this is the primary one that we want to issue.
422 	 */
423 	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
424 		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
425 	}
426 }
427 
428 int
429 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
430 {
431 	int err;
432 	dsl_scan_t *scn;
433 	spa_t *spa = dp->dp_spa;
434 	uint64_t f;
435 
436 	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
437 	scn->scn_dp = dp;
438 
439 	/*
440 	 * It's possible that we're resuming a scan after a reboot so
441 	 * make sure that the scan_async_destroying flag is initialized
442 	 * appropriately.
443 	 */
444 	ASSERT(!scn->scn_async_destroying);
445 	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
446 	    SPA_FEATURE_ASYNC_DESTROY);
447 
448 	/*
449 	 * Calculate the max number of in-flight bytes for pool-wide
450 	 * scanning operations (minimum 1MB). Limits for the issuing
451 	 * phase are done per top-level vdev and are handled separately.
452 	 */
453 	scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
454 	    dsl_scan_count_leaves(spa->spa_root_vdev), 1ULL << 20);
455 
456 	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
457 	    offsetof(scan_ds_t, sds_node));
458 	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
459 	    sizeof (scan_prefetch_issue_ctx_t),
460 	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
461 
462 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
463 	    "scrub_func", sizeof (uint64_t), 1, &f);
464 	if (err == 0) {
465 		/*
466 		 * There was an old-style scrub in progress.  Restart a
467 		 * new-style scrub from the beginning.
468 		 */
469 		scn->scn_restart_txg = txg;
470 		zfs_dbgmsg("old-style scrub was in progress; "
471 		    "restarting new-style scrub in txg %llu",
472 		    (longlong_t)scn->scn_restart_txg);
473 
474 		/*
475 		 * Load the queue obj from the old location so that it
476 		 * can be freed by dsl_scan_done().
477 		 */
478 		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
479 		    "scrub_queue", sizeof (uint64_t), 1,
480 		    &scn->scn_phys.scn_queue_obj);
481 	} else {
482 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
483 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
484 		    &scn->scn_phys);
485 		/*
486 		 * Detect if the pool contains the signature of #2094.  If it
487 		 * does properly update the scn->scn_phys structure and notify
488 		 * the administrator by setting an errata for the pool.
489 		 */
490 		if (err == EOVERFLOW) {
491 			uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
492 			VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
493 			VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
494 			    (23 * sizeof (uint64_t)));
495 
496 			err = zap_lookup(dp->dp_meta_objset,
497 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
498 			    sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
499 			if (err == 0) {
500 				uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
501 
502 				if (overflow & ~DSL_SCAN_FLAGS_MASK ||
503 				    scn->scn_async_destroying) {
504 					spa->spa_errata =
505 					    ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
506 					return (EOVERFLOW);
507 				}
508 
509 				bcopy(zaptmp, &scn->scn_phys,
510 				    SCAN_PHYS_NUMINTS * sizeof (uint64_t));
511 				scn->scn_phys.scn_flags = overflow;
512 
513 				/* Required scrub already in progress. */
514 				if (scn->scn_phys.scn_state == DSS_FINISHED ||
515 				    scn->scn_phys.scn_state == DSS_CANCELED)
516 					spa->spa_errata =
517 					    ZPOOL_ERRATA_ZOL_2094_SCRUB;
518 			}
519 		}
520 
521 		if (err == ENOENT)
522 			return (0);
523 		else if (err)
524 			return (err);
525 
526 		/*
527 		 * We might be restarting after a reboot, so jump the issued
528 		 * counter to how far we've scanned. We know we're consistent
529 		 * up to here.
530 		 */
531 		scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
532 
533 		if (dsl_scan_is_running(scn) &&
534 		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
535 			/*
536 			 * A new-type scrub was in progress on an old
537 			 * pool, and the pool was accessed by old
538 			 * software.  Restart from the beginning, since
539 			 * the old software may have changed the pool in
540 			 * the meantime.
541 			 */
542 			scn->scn_restart_txg = txg;
543 			zfs_dbgmsg("new-style scrub was modified "
544 			    "by old software; restarting in txg %llu",
545 			    (longlong_t)scn->scn_restart_txg);
546 		} else if (dsl_scan_resilvering(dp)) {
547 			/*
548 			 * If a resilver is in progress and there are already
549 			 * errors, restart it instead of finishing this scan and
550 			 * then restarting it. If there haven't been any errors
551 			 * then remember that the incore DTL is valid.
552 			 */
553 			if (scn->scn_phys.scn_errors > 0) {
554 				scn->scn_restart_txg = txg;
555 				zfs_dbgmsg("resilver can't excise DTL_MISSING "
556 				    "when finished; restarting in txg %llu",
557 				    (u_longlong_t)scn->scn_restart_txg);
558 			} else {
559 				/* it's safe to excise DTL when finished */
560 				spa->spa_scrub_started = B_TRUE;
561 			}
562 		}
563 	}
564 
565 	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
566 
567 	/* reload the queue into the in-core state */
568 	if (scn->scn_phys.scn_queue_obj != 0) {
569 		zap_cursor_t zc;
570 		zap_attribute_t za;
571 
572 		for (zap_cursor_init(&zc, dp->dp_meta_objset,
573 		    scn->scn_phys.scn_queue_obj);
574 		    zap_cursor_retrieve(&zc, &za) == 0;
575 		    (void) zap_cursor_advance(&zc)) {
576 			scan_ds_queue_insert(scn,
577 			    zfs_strtonum(za.za_name, NULL),
578 			    za.za_first_integer);
579 		}
580 		zap_cursor_fini(&zc);
581 	}
582 
583 	spa_scan_stat_init(spa);
584 	return (0);
585 }
586 
587 void
588 dsl_scan_fini(dsl_pool_t *dp)
589 {
590 	if (dp->dp_scan != NULL) {
591 		dsl_scan_t *scn = dp->dp_scan;
592 
593 		if (scn->scn_taskq != NULL)
594 			taskq_destroy(scn->scn_taskq);
595 
596 		scan_ds_queue_clear(scn);
597 		avl_destroy(&scn->scn_queue);
598 		scan_ds_prefetch_queue_clear(scn);
599 		avl_destroy(&scn->scn_prefetch_queue);
600 
601 		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
602 		dp->dp_scan = NULL;
603 	}
604 }
605 
606 static boolean_t
607 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
608 {
609 	return (scn->scn_restart_txg != 0 &&
610 	    scn->scn_restart_txg <= tx->tx_txg);
611 }
612 
613 boolean_t
614 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
615 {
616 	return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
617 	    (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
618 }
619 
620 boolean_t
621 dsl_scan_scrubbing(const dsl_pool_t *dp)
622 {
623 	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
624 
625 	return (scn_phys->scn_state == DSS_SCANNING &&
626 	    scn_phys->scn_func == POOL_SCAN_SCRUB);
627 }
628 
629 boolean_t
630 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
631 {
632 	return (dsl_scan_scrubbing(scn->scn_dp) &&
633 	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
634 }
635 
636 /*
637  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
638  * Because we can be running in the block sorting algorithm, we do not always
639  * want to write out the record, only when it is "safe" to do so. This safety
640  * condition is achieved by making sure that the sorting queues are empty
641  * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
642  * is inconsistent with how much actual scanning progress has been made. The
643  * kind of sync to be performed is specified by the sync_type argument. If the
644  * sync is optional, we only sync if the queues are empty. If the sync is
645  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
646  * third possible state is a "cached" sync. This is done in response to:
647  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
648  *	destroyed, so we wouldn't be able to restart scanning from it.
649  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
650  *	superseded by a newer snapshot.
651  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
652  *	swapped with its clone.
653  * In all cases, a cached sync simply rewrites the last record we've written,
654  * just slightly modified. For the modifications that are performed to the
655  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
656  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
657  */
658 static void
659 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
660 {
661 	int i;
662 	spa_t *spa = scn->scn_dp->dp_spa;
663 
664 	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
665 	if (scn->scn_bytes_pending == 0) {
666 		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
667 			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
668 			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
669 
670 			if (q == NULL)
671 				continue;
672 
673 			mutex_enter(&vd->vdev_scan_io_queue_lock);
674 			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
675 			ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
676 			    NULL);
677 			ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
678 			mutex_exit(&vd->vdev_scan_io_queue_lock);
679 		}
680 
681 		if (scn->scn_phys.scn_queue_obj != 0)
682 			scan_ds_queue_sync(scn, tx);
683 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
684 		    DMU_POOL_DIRECTORY_OBJECT,
685 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
686 		    &scn->scn_phys, tx));
687 		bcopy(&scn->scn_phys, &scn->scn_phys_cached,
688 		    sizeof (scn->scn_phys));
689 
690 		if (scn->scn_checkpointing)
691 			zfs_dbgmsg("finish scan checkpoint");
692 
693 		scn->scn_checkpointing = B_FALSE;
694 		scn->scn_last_checkpoint = ddi_get_lbolt();
695 	} else if (sync_type == SYNC_CACHED) {
696 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
697 		    DMU_POOL_DIRECTORY_OBJECT,
698 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
699 		    &scn->scn_phys_cached, tx));
700 	}
701 }
702 
703 /* ARGSUSED */
704 static int
705 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
706 {
707 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
708 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
709 
710 	if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd))
711 		return (SET_ERROR(EBUSY));
712 
713 	return (0);
714 }
715 
716 void
717 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
718 {
719 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
720 	pool_scan_func_t *funcp = arg;
721 	dmu_object_type_t ot = 0;
722 	dsl_pool_t *dp = scn->scn_dp;
723 	spa_t *spa = dp->dp_spa;
724 
725 	ASSERT(!dsl_scan_is_running(scn));
726 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
727 	bzero(&scn->scn_phys, sizeof (scn->scn_phys));
728 	scn->scn_phys.scn_func = *funcp;
729 	scn->scn_phys.scn_state = DSS_SCANNING;
730 	scn->scn_phys.scn_min_txg = 0;
731 	scn->scn_phys.scn_max_txg = tx->tx_txg;
732 	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
733 	scn->scn_phys.scn_start_time = gethrestime_sec();
734 	scn->scn_phys.scn_errors = 0;
735 	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
736 	scn->scn_issued_before_pass = 0;
737 	scn->scn_restart_txg = 0;
738 	scn->scn_done_txg = 0;
739 	scn->scn_last_checkpoint = 0;
740 	scn->scn_checkpointing = B_FALSE;
741 	spa_scan_stat_init(spa);
742 
743 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
744 		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
745 
746 		/* rewrite all disk labels */
747 		vdev_config_dirty(spa->spa_root_vdev);
748 
749 		if (vdev_resilver_needed(spa->spa_root_vdev,
750 		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
751 			nvlist_t *aux = fnvlist_alloc();
752 			fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
753 			    "healing");
754 			spa_event_notify(spa, NULL, aux,
755 			    ESC_ZFS_RESILVER_START);
756 			nvlist_free(aux);
757 		} else {
758 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
759 		}
760 
761 		spa->spa_scrub_started = B_TRUE;
762 		/*
763 		 * If this is an incremental scrub, limit the DDT scrub phase
764 		 * to just the auto-ditto class (for correctness); the rest
765 		 * of the scrub should go faster using top-down pruning.
766 		 */
767 		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
768 			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
769 
770 		/*
771 		 * When starting a resilver clear any existing rebuild state.
772 		 * This is required to prevent stale rebuild status from
773 		 * being reported when a rebuild is run, then a resilver and
774 		 * finally a scrub.  In which case only the scrub status
775 		 * should be reported by 'zpool status'.
776 		 */
777 		if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
778 			vdev_t *rvd = spa->spa_root_vdev;
779 			for (uint64_t i = 0; i < rvd->vdev_children; i++) {
780 				vdev_t *vd = rvd->vdev_child[i];
781 				vdev_rebuild_clear_sync(
782 				    (void *)(uintptr_t)vd->vdev_id, tx);
783 			}
784 		}
785 	}
786 
787 	/* back to the generic stuff */
788 
789 	if (dp->dp_blkstats == NULL) {
790 		dp->dp_blkstats =
791 		    vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
792 		mutex_init(&dp->dp_blkstats->zab_lock, NULL,
793 		    MUTEX_DEFAULT, NULL);
794 	}
795 	bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));
796 
797 	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
798 		ot = DMU_OT_ZAP_OTHER;
799 
800 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
801 	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
802 
803 	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
804 
805 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
806 
807 	spa_history_log_internal(spa, "scan setup", tx,
808 	    "func=%u mintxg=%llu maxtxg=%llu",
809 	    *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
810 	    (u_longlong_t)scn->scn_phys.scn_max_txg);
811 }
812 
813 /*
814  * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
815  * Can also be called to resume a paused scrub.
816  */
817 int
818 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
819 {
820 	spa_t *spa = dp->dp_spa;
821 	dsl_scan_t *scn = dp->dp_scan;
822 
823 	/*
824 	 * Purge all vdev caches and probe all devices.  We do this here
825 	 * rather than in sync context because this requires a writer lock
826 	 * on the spa_config lock, which we can't do from sync context.  The
827 	 * spa_scrub_reopen flag indicates that vdev_open() should not
828 	 * attempt to start another scrub.
829 	 */
830 	spa_vdev_state_enter(spa, SCL_NONE);
831 	spa->spa_scrub_reopen = B_TRUE;
832 	vdev_reopen(spa->spa_root_vdev);
833 	spa->spa_scrub_reopen = B_FALSE;
834 	(void) spa_vdev_state_exit(spa, NULL, 0);
835 
836 	if (func == POOL_SCAN_RESILVER) {
837 		dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
838 		return (0);
839 	}
840 
841 	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
842 		/* got scrub start cmd, resume paused scrub */
843 		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
844 		    POOL_SCRUB_NORMAL);
845 		if (err == 0) {
846 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
847 			return (SET_ERROR(ECANCELED));
848 		}
849 
850 		return (SET_ERROR(err));
851 	}
852 
853 	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
854 	    dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
855 }
856 
857 /* ARGSUSED */
858 static void
859 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
860 {
861 	static const char *old_names[] = {
862 		"scrub_bookmark",
863 		"scrub_ddt_bookmark",
864 		"scrub_ddt_class_max",
865 		"scrub_queue",
866 		"scrub_min_txg",
867 		"scrub_max_txg",
868 		"scrub_func",
869 		"scrub_errors",
870 		NULL
871 	};
872 
873 	dsl_pool_t *dp = scn->scn_dp;
874 	spa_t *spa = dp->dp_spa;
875 	int i;
876 
877 	/* Remove any remnants of an old-style scrub. */
878 	for (i = 0; old_names[i]; i++) {
879 		(void) zap_remove(dp->dp_meta_objset,
880 		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
881 	}
882 
883 	if (scn->scn_phys.scn_queue_obj != 0) {
884 		VERIFY0(dmu_object_free(dp->dp_meta_objset,
885 		    scn->scn_phys.scn_queue_obj, tx));
886 		scn->scn_phys.scn_queue_obj = 0;
887 	}
888 	scan_ds_queue_clear(scn);
889 	scan_ds_prefetch_queue_clear(scn);
890 
891 	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
892 
893 	/*
894 	 * If we were "restarted" from a stopped state, don't bother
895 	 * with anything else.
896 	 */
897 	if (!dsl_scan_is_running(scn)) {
898 		ASSERT(!scn->scn_is_sorted);
899 		return;
900 	}
901 
902 	if (scn->scn_is_sorted) {
903 		scan_io_queues_destroy(scn);
904 		scn->scn_is_sorted = B_FALSE;
905 
906 		if (scn->scn_taskq != NULL) {
907 			taskq_destroy(scn->scn_taskq);
908 			scn->scn_taskq = NULL;
909 		}
910 	}
911 
912 	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
913 
914 	spa_notify_waiters(spa);
915 
916 	if (dsl_scan_restarting(scn, tx))
917 		spa_history_log_internal(spa, "scan aborted, restarting", tx,
918 		    "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
919 	else if (!complete)
920 		spa_history_log_internal(spa, "scan cancelled", tx,
921 		    "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
922 	else
923 		spa_history_log_internal(spa, "scan done", tx,
924 		    "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
925 
926 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
927 		spa->spa_scrub_active = B_FALSE;
928 
929 		/*
930 		 * If the scrub/resilver completed, update all DTLs to
931 		 * reflect this.  Whether it succeeded or not, vacate
932 		 * all temporary scrub DTLs.
933 		 *
934 		 * As the scrub does not currently support traversing
935 		 * data that have been freed but are part of a checkpoint,
936 		 * we don't mark the scrub as done in the DTLs as faults
937 		 * may still exist in those vdevs.
938 		 */
939 		if (complete &&
940 		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
941 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
942 			    scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
943 
944 			if (scn->scn_phys.scn_min_txg) {
945 				nvlist_t *aux = fnvlist_alloc();
946 				fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
947 				    "healing");
948 				spa_event_notify(spa, NULL, aux,
949 				    ESC_ZFS_RESILVER_FINISH);
950 				nvlist_free(aux);
951 			} else {
952 				spa_event_notify(spa, NULL, NULL,
953 				    ESC_ZFS_SCRUB_FINISH);
954 			}
955 		} else {
956 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
957 			    0, B_TRUE, B_FALSE);
958 		}
959 		spa_errlog_rotate(spa);
960 
961 		/*
962 		 * Don't clear flag until after vdev_dtl_reassess to ensure that
963 		 * DTL_MISSING will get updated when possible.
964 		 */
965 		spa->spa_scrub_started = B_FALSE;
966 
967 		/*
968 		 * We may have finished replacing a device.
969 		 * Let the async thread assess this and handle the detach.
970 		 */
971 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
972 
973 		/*
974 		 * Clear any resilver_deferred flags in the config.
975 		 * If there are drives that need resilvering, kick
976 		 * off an asynchronous request to start resilver.
977 		 * vdev_clear_resilver_deferred() may update the config
978 		 * before the resilver can restart. In the event of
979 		 * a crash during this period, the spa loading code
980 		 * will find the drives that need to be resilvered
981 		 * and start the resilver then.
982 		 */
983 		if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
984 		    vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
985 			spa_history_log_internal(spa,
986 			    "starting deferred resilver", tx, "errors=%llu",
987 			    (u_longlong_t)spa_get_errlog_size(spa));
988 			spa_async_request(spa, SPA_ASYNC_RESILVER);
989 		}
990 	}
991 
992 	scn->scn_phys.scn_end_time = gethrestime_sec();
993 
994 	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
995 		spa->spa_errata = 0;
996 
997 	ASSERT(!dsl_scan_is_running(scn));
998 }
999 
1000 /* ARGSUSED */
1001 static int
1002 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1003 {
1004 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1005 
1006 	if (!dsl_scan_is_running(scn))
1007 		return (SET_ERROR(ENOENT));
1008 	return (0);
1009 }
1010 
1011 /* ARGSUSED */
1012 static void
1013 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1014 {
1015 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1016 
1017 	dsl_scan_done(scn, B_FALSE, tx);
1018 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1019 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1020 }
1021 
1022 int
1023 dsl_scan_cancel(dsl_pool_t *dp)
1024 {
1025 	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1026 	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1027 }
1028 
1029 static int
1030 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1031 {
1032 	pool_scrub_cmd_t *cmd = arg;
1033 	dsl_pool_t *dp = dmu_tx_pool(tx);
1034 	dsl_scan_t *scn = dp->dp_scan;
1035 
1036 	if (*cmd == POOL_SCRUB_PAUSE) {
1037 		/* can't pause a scrub when there is no in-progress scrub */
1038 		if (!dsl_scan_scrubbing(dp))
1039 			return (SET_ERROR(ENOENT));
1040 
1041 		/* can't pause a paused scrub */
1042 		if (dsl_scan_is_paused_scrub(scn))
1043 			return (SET_ERROR(EBUSY));
1044 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1045 		return (SET_ERROR(ENOTSUP));
1046 	}
1047 
1048 	return (0);
1049 }
1050 
1051 static void
1052 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1053 {
1054 	pool_scrub_cmd_t *cmd = arg;
1055 	dsl_pool_t *dp = dmu_tx_pool(tx);
1056 	spa_t *spa = dp->dp_spa;
1057 	dsl_scan_t *scn = dp->dp_scan;
1058 
1059 	if (*cmd == POOL_SCRUB_PAUSE) {
1060 		/* can't pause a scrub when there is no in-progress scrub */
1061 		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1062 		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1063 		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1064 		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1065 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1066 		spa_notify_waiters(spa);
1067 	} else {
1068 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1069 		if (dsl_scan_is_paused_scrub(scn)) {
1070 			/*
1071 			 * We need to keep track of how much time we spend
1072 			 * paused per pass so that we can adjust the scrub rate
1073 			 * shown in the output of 'zpool status'
1074 			 */
1075 			spa->spa_scan_pass_scrub_spent_paused +=
1076 			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1077 			spa->spa_scan_pass_scrub_pause = 0;
1078 			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1079 			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1080 			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1081 		}
1082 	}
1083 }
1084 
1085 /*
1086  * Set scrub pause/resume state if it makes sense to do so
1087  */
1088 int
1089 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1090 {
1091 	return (dsl_sync_task(spa_name(dp->dp_spa),
1092 	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1093 	    ZFS_SPACE_CHECK_RESERVED));
1094 }
1095 
1096 
1097 /* start a new scan, or restart an existing one. */
1098 void
1099 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1100 {
1101 	if (txg == 0) {
1102 		dmu_tx_t *tx;
1103 		tx = dmu_tx_create_dd(dp->dp_mos_dir);
1104 		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1105 
1106 		txg = dmu_tx_get_txg(tx);
1107 		dp->dp_scan->scn_restart_txg = txg;
1108 		dmu_tx_commit(tx);
1109 	} else {
1110 		dp->dp_scan->scn_restart_txg = txg;
1111 	}
1112 	zfs_dbgmsg("restarting resilver txg=%llu", (longlong_t)txg);
1113 }
1114 
1115 void
1116 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1117 {
1118 	zio_free(dp->dp_spa, txg, bp);
1119 }
1120 
1121 void
1122 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1123 {
1124 	ASSERT(dsl_pool_sync_context(dp));
1125 	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1126 }
1127 
1128 static int
1129 scan_ds_queue_compare(const void *a, const void *b)
1130 {
1131 	const scan_ds_t *sds_a = a, *sds_b = b;
1132 
1133 	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1134 		return (-1);
1135 	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1136 		return (0);
1137 	return (1);
1138 }
1139 
1140 static void
1141 scan_ds_queue_clear(dsl_scan_t *scn)
1142 {
1143 	void *cookie = NULL;
1144 	scan_ds_t *sds;
1145 	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1146 		kmem_free(sds, sizeof (*sds));
1147 	}
1148 }
1149 
1150 static boolean_t
1151 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1152 {
1153 	scan_ds_t srch, *sds;
1154 
1155 	srch.sds_dsobj = dsobj;
1156 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1157 	if (sds != NULL && txg != NULL)
1158 		*txg = sds->sds_txg;
1159 	return (sds != NULL);
1160 }
1161 
1162 static void
1163 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1164 {
1165 	scan_ds_t *sds;
1166 	avl_index_t where;
1167 
1168 	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1169 	sds->sds_dsobj = dsobj;
1170 	sds->sds_txg = txg;
1171 
1172 	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1173 	avl_insert(&scn->scn_queue, sds, where);
1174 }
1175 
1176 static void
1177 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1178 {
1179 	scan_ds_t srch, *sds;
1180 
1181 	srch.sds_dsobj = dsobj;
1182 
1183 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1184 	VERIFY(sds != NULL);
1185 	avl_remove(&scn->scn_queue, sds);
1186 	kmem_free(sds, sizeof (*sds));
1187 }
1188 
1189 static void
1190 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1191 {
1192 	dsl_pool_t *dp = scn->scn_dp;
1193 	spa_t *spa = dp->dp_spa;
1194 	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1195 	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1196 
1197 	ASSERT0(scn->scn_bytes_pending);
1198 	ASSERT(scn->scn_phys.scn_queue_obj != 0);
1199 
1200 	VERIFY0(dmu_object_free(dp->dp_meta_objset,
1201 	    scn->scn_phys.scn_queue_obj, tx));
1202 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1203 	    DMU_OT_NONE, 0, tx);
1204 	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1205 	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1206 		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1207 		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1208 		    sds->sds_txg, tx));
1209 	}
1210 }
1211 
1212 /*
1213  * Computes the memory limit state that we're currently in. A sorted scan
1214  * needs quite a bit of memory to hold the sorting queue, so we need to
1215  * reasonably constrain the size so it doesn't impact overall system
1216  * performance. We compute two limits:
1217  * 1) Hard memory limit: if the amount of memory used by the sorting
1218  *	queues on a pool gets above this value, we stop the metadata
1219  *	scanning portion and start issuing the queued up and sorted
1220  *	I/Os to reduce memory usage.
1221  *	This limit is calculated as a fraction of physmem (by default 5%).
1222  *	We constrain the lower bound of the hard limit to an absolute
1223  *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1224  *	the upper bound to 5% of the total pool size - no chance we'll
1225  *	ever need that much memory, but just to keep the value in check.
1226  * 2) Soft memory limit: once we hit the hard memory limit, we start
1227  *	issuing I/O to reduce queue memory usage, but we don't want to
1228  *	completely empty out the queues, since we might be able to find I/Os
1229  *	that will fill in the gaps of our non-sequential IOs at some point
1230  *	in the future. So we stop the issuing of I/Os once the amount of
1231  *	memory used drops below the soft limit (at which point we stop issuing
1232  *	I/O and start scanning metadata again).
1233  *
1234  *	This limit is calculated by subtracting a fraction of the hard
1235  *	limit from the hard limit. By default this fraction is 5%, so
1236  *	the soft limit is 95% of the hard limit. We cap the size of the
1237  *	difference between the hard and soft limits at an absolute
1238  *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1239  *	sufficient to not cause too frequent switching between the
1240  *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1241  *	worth of queues is about 1.2 GiB of on-pool data, so scanning
1242  *	that should take at least a decent fraction of a second).
1243  */
1244 static boolean_t
1245 dsl_scan_should_clear(dsl_scan_t *scn)
1246 {
1247 	spa_t *spa = scn->scn_dp->dp_spa;
1248 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1249 	uint64_t alloc, mlim_hard, mlim_soft, mused;
1250 
1251 	alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1252 	alloc += metaslab_class_get_alloc(spa_special_class(spa));
1253 	alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1254 
1255 	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1256 	    zfs_scan_mem_lim_min);
1257 	mlim_hard = MIN(mlim_hard, alloc / 20);
1258 	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1259 	    zfs_scan_mem_lim_soft_max);
1260 	mused = 0;
1261 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1262 		vdev_t *tvd = rvd->vdev_child[i];
1263 		dsl_scan_io_queue_t *queue;
1264 
1265 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
1266 		queue = tvd->vdev_scan_io_queue;
1267 		if (queue != NULL) {
1268 			/* # extents in exts_by_size = # in exts_by_addr */
1269 			mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1270 			    sizeof (range_seg_gap_t) + queue->q_sio_memused;
1271 		}
1272 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
1273 	}
1274 
1275 	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1276 
1277 	if (mused == 0)
1278 		ASSERT0(scn->scn_bytes_pending);
1279 
1280 	/*
1281 	 * If we are above our hard limit, we need to clear out memory.
1282 	 * If we are below our soft limit, we need to accumulate sequential IOs.
1283 	 * Otherwise, we should keep doing whatever we are currently doing.
1284 	 */
1285 	if (mused >= mlim_hard)
1286 		return (B_TRUE);
1287 	else if (mused < mlim_soft)
1288 		return (B_FALSE);
1289 	else
1290 		return (scn->scn_clearing);
1291 }
1292 
1293 static boolean_t
1294 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1295 {
1296 	/* we never skip user/group accounting objects */
1297 	if (zb && (int64_t)zb->zb_object < 0)
1298 		return (B_FALSE);
1299 
1300 	if (scn->scn_suspending)
1301 		return (B_TRUE); /* we're already suspending */
1302 
1303 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1304 		return (B_FALSE); /* we're resuming */
1305 
1306 	/* We only know how to resume from level-0 and objset blocks. */
1307 	if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1308 		return (B_FALSE);
1309 
1310 	/*
1311 	 * We suspend if:
1312 	 *  - we have scanned for at least the minimum time (default 1 sec
1313 	 *    for scrub, 3 sec for resilver), and either we have sufficient
1314 	 *    dirty data that we are starting to write more quickly
1315 	 *    (default 30%), someone is explicitly waiting for this txg
1316 	 *    to complete, or we have used up all of the time in the txg
1317 	 *    timeout (default 5 sec).
1318 	 *  or
1319 	 *  - the spa is shutting down because this pool is being exported
1320 	 *    or the machine is rebooting.
1321 	 *  or
1322 	 *  - the scan queue has reached its memory use limit
1323 	 */
1324 	uint64_t curr_time_ns = gethrtime();
1325 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1326 	uint64_t sync_time_ns = curr_time_ns -
1327 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1328 	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
1329 	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1330 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1331 
1332 	if ((NSEC2MSEC(scan_time_ns) > mintime &&
1333 	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
1334 	    txg_sync_waiting(scn->scn_dp) ||
1335 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1336 	    spa_shutting_down(scn->scn_dp->dp_spa) ||
1337 	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1338 		if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1339 			dprintf("suspending at first available bookmark "
1340 			    "%llx/%llx/%llx/%llx\n",
1341 			    (longlong_t)zb->zb_objset,
1342 			    (longlong_t)zb->zb_object,
1343 			    (longlong_t)zb->zb_level,
1344 			    (longlong_t)zb->zb_blkid);
1345 			SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1346 			    zb->zb_objset, 0, 0, 0);
1347 		} else if (zb != NULL) {
1348 			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1349 			    (longlong_t)zb->zb_objset,
1350 			    (longlong_t)zb->zb_object,
1351 			    (longlong_t)zb->zb_level,
1352 			    (longlong_t)zb->zb_blkid);
1353 			scn->scn_phys.scn_bookmark = *zb;
1354 		} else {
1355 #ifdef ZFS_DEBUG
1356 			dsl_scan_phys_t *scnp = &scn->scn_phys;
1357 			dprintf("suspending at at DDT bookmark "
1358 			    "%llx/%llx/%llx/%llx\n",
1359 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1360 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1361 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1362 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1363 #endif
1364 		}
1365 		scn->scn_suspending = B_TRUE;
1366 		return (B_TRUE);
1367 	}
1368 	return (B_FALSE);
1369 }
1370 
1371 typedef struct zil_scan_arg {
1372 	dsl_pool_t	*zsa_dp;
1373 	zil_header_t	*zsa_zh;
1374 } zil_scan_arg_t;
1375 
1376 /* ARGSUSED */
1377 static int
1378 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1379     uint64_t claim_txg)
1380 {
1381 	zil_scan_arg_t *zsa = arg;
1382 	dsl_pool_t *dp = zsa->zsa_dp;
1383 	dsl_scan_t *scn = dp->dp_scan;
1384 	zil_header_t *zh = zsa->zsa_zh;
1385 	zbookmark_phys_t zb;
1386 
1387 	ASSERT(!BP_IS_REDACTED(bp));
1388 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1389 		return (0);
1390 
1391 	/*
1392 	 * One block ("stubby") can be allocated a long time ago; we
1393 	 * want to visit that one because it has been allocated
1394 	 * (on-disk) even if it hasn't been claimed (even though for
1395 	 * scrub there's nothing to do to it).
1396 	 */
1397 	if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1398 		return (0);
1399 
1400 	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1401 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1402 
1403 	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1404 	return (0);
1405 }
1406 
1407 /* ARGSUSED */
1408 static int
1409 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1410     uint64_t claim_txg)
1411 {
1412 	if (lrc->lrc_txtype == TX_WRITE) {
1413 		zil_scan_arg_t *zsa = arg;
1414 		dsl_pool_t *dp = zsa->zsa_dp;
1415 		dsl_scan_t *scn = dp->dp_scan;
1416 		zil_header_t *zh = zsa->zsa_zh;
1417 		const lr_write_t *lr = (const lr_write_t *)lrc;
1418 		const blkptr_t *bp = &lr->lr_blkptr;
1419 		zbookmark_phys_t zb;
1420 
1421 		ASSERT(!BP_IS_REDACTED(bp));
1422 		if (BP_IS_HOLE(bp) ||
1423 		    bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1424 			return (0);
1425 
1426 		/*
1427 		 * birth can be < claim_txg if this record's txg is
1428 		 * already txg sync'ed (but this log block contains
1429 		 * other records that are not synced)
1430 		 */
1431 		if (claim_txg == 0 || bp->blk_birth < claim_txg)
1432 			return (0);
1433 
1434 		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1435 		    lr->lr_foid, ZB_ZIL_LEVEL,
1436 		    lr->lr_offset / BP_GET_LSIZE(bp));
1437 
1438 		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1439 	}
1440 	return (0);
1441 }
1442 
1443 static void
1444 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1445 {
1446 	uint64_t claim_txg = zh->zh_claim_txg;
1447 	zil_scan_arg_t zsa = { dp, zh };
1448 	zilog_t *zilog;
1449 
1450 	ASSERT(spa_writeable(dp->dp_spa));
1451 
1452 	/*
1453 	 * We only want to visit blocks that have been claimed but not yet
1454 	 * replayed (or, in read-only mode, blocks that *would* be claimed).
1455 	 */
1456 	if (claim_txg == 0)
1457 		return;
1458 
1459 	zilog = zil_alloc(dp->dp_meta_objset, zh);
1460 
1461 	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1462 	    claim_txg, B_FALSE);
1463 
1464 	zil_free(zilog);
1465 }
1466 
1467 /*
1468  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1469  * here is to sort the AVL tree by the order each block will be needed.
1470  */
1471 static int
1472 scan_prefetch_queue_compare(const void *a, const void *b)
1473 {
1474 	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1475 	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1476 	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1477 
1478 	return (zbookmark_compare(spc_a->spc_datablkszsec,
1479 	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1480 	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1481 }
1482 
1483 static void
1484 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
1485 {
1486 	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1487 		zfs_refcount_destroy(&spc->spc_refcnt);
1488 		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1489 	}
1490 }
1491 
1492 static scan_prefetch_ctx_t *
1493 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
1494 {
1495 	scan_prefetch_ctx_t *spc;
1496 
1497 	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1498 	zfs_refcount_create(&spc->spc_refcnt);
1499 	zfs_refcount_add(&spc->spc_refcnt, tag);
1500 	spc->spc_scn = scn;
1501 	if (dnp != NULL) {
1502 		spc->spc_datablkszsec = dnp->dn_datablkszsec;
1503 		spc->spc_indblkshift = dnp->dn_indblkshift;
1504 		spc->spc_root = B_FALSE;
1505 	} else {
1506 		spc->spc_datablkszsec = 0;
1507 		spc->spc_indblkshift = 0;
1508 		spc->spc_root = B_TRUE;
1509 	}
1510 
1511 	return (spc);
1512 }
1513 
1514 static void
1515 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
1516 {
1517 	zfs_refcount_add(&spc->spc_refcnt, tag);
1518 }
1519 
1520 static void
1521 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1522 {
1523 	spa_t *spa = scn->scn_dp->dp_spa;
1524 	void *cookie = NULL;
1525 	scan_prefetch_issue_ctx_t *spic = NULL;
1526 
1527 	mutex_enter(&spa->spa_scrub_lock);
1528 	while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1529 	    &cookie)) != NULL) {
1530 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1531 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1532 	}
1533 	mutex_exit(&spa->spa_scrub_lock);
1534 }
1535 
1536 static boolean_t
1537 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1538     const zbookmark_phys_t *zb)
1539 {
1540 	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1541 	dnode_phys_t tmp_dnp;
1542 	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1543 
1544 	if (zb->zb_objset != last_zb->zb_objset)
1545 		return (B_TRUE);
1546 	if ((int64_t)zb->zb_object < 0)
1547 		return (B_FALSE);
1548 
1549 	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1550 	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1551 
1552 	if (zbookmark_subtree_completed(dnp, zb, last_zb))
1553 		return (B_TRUE);
1554 
1555 	return (B_FALSE);
1556 }
1557 
1558 static void
1559 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1560 {
1561 	avl_index_t idx;
1562 	dsl_scan_t *scn = spc->spc_scn;
1563 	spa_t *spa = scn->scn_dp->dp_spa;
1564 	scan_prefetch_issue_ctx_t *spic;
1565 
1566 	if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1567 		return;
1568 
1569 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1570 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1571 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1572 		return;
1573 
1574 	if (dsl_scan_check_prefetch_resume(spc, zb))
1575 		return;
1576 
1577 	scan_prefetch_ctx_add_ref(spc, scn);
1578 	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1579 	spic->spic_spc = spc;
1580 	spic->spic_bp = *bp;
1581 	spic->spic_zb = *zb;
1582 
1583 	/*
1584 	 * Add the IO to the queue of blocks to prefetch. This allows us to
1585 	 * prioritize blocks that we will need first for the main traversal
1586 	 * thread.
1587 	 */
1588 	mutex_enter(&spa->spa_scrub_lock);
1589 	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1590 		/* this block is already queued for prefetch */
1591 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1592 		scan_prefetch_ctx_rele(spc, scn);
1593 		mutex_exit(&spa->spa_scrub_lock);
1594 		return;
1595 	}
1596 
1597 	avl_insert(&scn->scn_prefetch_queue, spic, idx);
1598 	cv_broadcast(&spa->spa_scrub_io_cv);
1599 	mutex_exit(&spa->spa_scrub_lock);
1600 }
1601 
1602 static void
1603 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1604     uint64_t objset, uint64_t object)
1605 {
1606 	int i;
1607 	zbookmark_phys_t zb;
1608 	scan_prefetch_ctx_t *spc;
1609 
1610 	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1611 		return;
1612 
1613 	SET_BOOKMARK(&zb, objset, object, 0, 0);
1614 
1615 	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1616 
1617 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1618 		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1619 		zb.zb_blkid = i;
1620 		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1621 	}
1622 
1623 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1624 		zb.zb_level = 0;
1625 		zb.zb_blkid = DMU_SPILL_BLKID;
1626 		dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1627 	}
1628 
1629 	scan_prefetch_ctx_rele(spc, FTAG);
1630 }
1631 
1632 static void
1633 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1634     arc_buf_t *buf, void *private)
1635 {
1636 	scan_prefetch_ctx_t *spc = private;
1637 	dsl_scan_t *scn = spc->spc_scn;
1638 	spa_t *spa = scn->scn_dp->dp_spa;
1639 
1640 	/* broadcast that the IO has completed for rate limiting purposes */
1641 	mutex_enter(&spa->spa_scrub_lock);
1642 	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1643 	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1644 	cv_broadcast(&spa->spa_scrub_io_cv);
1645 	mutex_exit(&spa->spa_scrub_lock);
1646 
1647 	/* if there was an error or we are done prefetching, just cleanup */
1648 	if (buf == NULL || scn->scn_prefetch_stop)
1649 		goto out;
1650 
1651 	if (BP_GET_LEVEL(bp) > 0) {
1652 		int i;
1653 		blkptr_t *cbp;
1654 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1655 		zbookmark_phys_t czb;
1656 
1657 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1658 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1659 			    zb->zb_level - 1, zb->zb_blkid * epb + i);
1660 			dsl_scan_prefetch(spc, cbp, &czb);
1661 		}
1662 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1663 		dnode_phys_t *cdnp;
1664 		int i;
1665 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1666 
1667 		for (i = 0, cdnp = buf->b_data; i < epb;
1668 		    i += cdnp->dn_extra_slots + 1,
1669 		    cdnp += cdnp->dn_extra_slots + 1) {
1670 			dsl_scan_prefetch_dnode(scn, cdnp,
1671 			    zb->zb_objset, zb->zb_blkid * epb + i);
1672 		}
1673 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1674 		objset_phys_t *osp = buf->b_data;
1675 
1676 		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1677 		    zb->zb_objset, DMU_META_DNODE_OBJECT);
1678 
1679 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1680 			dsl_scan_prefetch_dnode(scn,
1681 			    &osp->os_groupused_dnode, zb->zb_objset,
1682 			    DMU_GROUPUSED_OBJECT);
1683 			dsl_scan_prefetch_dnode(scn,
1684 			    &osp->os_userused_dnode, zb->zb_objset,
1685 			    DMU_USERUSED_OBJECT);
1686 		}
1687 	}
1688 
1689 out:
1690 	if (buf != NULL)
1691 		arc_buf_destroy(buf, private);
1692 	scan_prefetch_ctx_rele(spc, scn);
1693 }
1694 
1695 /* ARGSUSED */
1696 static void
1697 dsl_scan_prefetch_thread(void *arg)
1698 {
1699 	dsl_scan_t *scn = arg;
1700 	spa_t *spa = scn->scn_dp->dp_spa;
1701 	scan_prefetch_issue_ctx_t *spic;
1702 
1703 	/* loop until we are told to stop */
1704 	while (!scn->scn_prefetch_stop) {
1705 		arc_flags_t flags = ARC_FLAG_NOWAIT |
1706 		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1707 		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1708 
1709 		mutex_enter(&spa->spa_scrub_lock);
1710 
1711 		/*
1712 		 * Wait until we have an IO to issue and are not above our
1713 		 * maximum in flight limit.
1714 		 */
1715 		while (!scn->scn_prefetch_stop &&
1716 		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1717 		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1718 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1719 		}
1720 
1721 		/* recheck if we should stop since we waited for the cv */
1722 		if (scn->scn_prefetch_stop) {
1723 			mutex_exit(&spa->spa_scrub_lock);
1724 			break;
1725 		}
1726 
1727 		/* remove the prefetch IO from the tree */
1728 		spic = avl_first(&scn->scn_prefetch_queue);
1729 		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1730 		avl_remove(&scn->scn_prefetch_queue, spic);
1731 
1732 		mutex_exit(&spa->spa_scrub_lock);
1733 
1734 		if (BP_IS_PROTECTED(&spic->spic_bp)) {
1735 			ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1736 			    BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1737 			ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1738 			zio_flags |= ZIO_FLAG_RAW;
1739 		}
1740 
1741 		/* issue the prefetch asynchronously */
1742 		(void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1743 		    &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1744 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1745 
1746 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1747 	}
1748 
1749 	ASSERT(scn->scn_prefetch_stop);
1750 
1751 	/* free any prefetches we didn't get to complete */
1752 	mutex_enter(&spa->spa_scrub_lock);
1753 	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1754 		avl_remove(&scn->scn_prefetch_queue, spic);
1755 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1756 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1757 	}
1758 	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1759 	mutex_exit(&spa->spa_scrub_lock);
1760 }
1761 
1762 static boolean_t
1763 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1764     const zbookmark_phys_t *zb)
1765 {
1766 	/*
1767 	 * We never skip over user/group accounting objects (obj<0)
1768 	 */
1769 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1770 	    (int64_t)zb->zb_object >= 0) {
1771 		/*
1772 		 * If we already visited this bp & everything below (in
1773 		 * a prior txg sync), don't bother doing it again.
1774 		 */
1775 		if (zbookmark_subtree_completed(dnp, zb,
1776 		    &scn->scn_phys.scn_bookmark))
1777 			return (B_TRUE);
1778 
1779 		/*
1780 		 * If we found the block we're trying to resume from, or
1781 		 * we went past it to a different object, zero it out to
1782 		 * indicate that it's OK to start checking for suspending
1783 		 * again.
1784 		 */
1785 		if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
1786 		    zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
1787 			dprintf("resuming at %llx/%llx/%llx/%llx\n",
1788 			    (longlong_t)zb->zb_objset,
1789 			    (longlong_t)zb->zb_object,
1790 			    (longlong_t)zb->zb_level,
1791 			    (longlong_t)zb->zb_blkid);
1792 			bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
1793 		}
1794 	}
1795 	return (B_FALSE);
1796 }
1797 
1798 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1799     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1800     dmu_objset_type_t ostype, dmu_tx_t *tx);
1801 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
1802     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1803     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1804 
1805 /*
1806  * Return nonzero on i/o error.
1807  * Return new buf to write out in *bufp.
1808  */
1809 inline __attribute__((always_inline)) static int
1810 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1811     dnode_phys_t *dnp, const blkptr_t *bp,
1812     const zbookmark_phys_t *zb, dmu_tx_t *tx)
1813 {
1814 	dsl_pool_t *dp = scn->scn_dp;
1815 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1816 	int err;
1817 
1818 	ASSERT(!BP_IS_REDACTED(bp));
1819 
1820 	if (BP_GET_LEVEL(bp) > 0) {
1821 		arc_flags_t flags = ARC_FLAG_WAIT;
1822 		int i;
1823 		blkptr_t *cbp;
1824 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1825 		arc_buf_t *buf;
1826 
1827 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1828 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1829 		if (err) {
1830 			scn->scn_phys.scn_errors++;
1831 			return (err);
1832 		}
1833 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1834 			zbookmark_phys_t czb;
1835 
1836 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1837 			    zb->zb_level - 1,
1838 			    zb->zb_blkid * epb + i);
1839 			dsl_scan_visitbp(cbp, &czb, dnp,
1840 			    ds, scn, ostype, tx);
1841 		}
1842 		arc_buf_destroy(buf, &buf);
1843 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1844 		arc_flags_t flags = ARC_FLAG_WAIT;
1845 		dnode_phys_t *cdnp;
1846 		int i;
1847 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1848 		arc_buf_t *buf;
1849 
1850 		if (BP_IS_PROTECTED(bp)) {
1851 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1852 			zio_flags |= ZIO_FLAG_RAW;
1853 		}
1854 
1855 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1856 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1857 		if (err) {
1858 			scn->scn_phys.scn_errors++;
1859 			return (err);
1860 		}
1861 		for (i = 0, cdnp = buf->b_data; i < epb;
1862 		    i += cdnp->dn_extra_slots + 1,
1863 		    cdnp += cdnp->dn_extra_slots + 1) {
1864 			dsl_scan_visitdnode(scn, ds, ostype,
1865 			    cdnp, zb->zb_blkid * epb + i, tx);
1866 		}
1867 
1868 		arc_buf_destroy(buf, &buf);
1869 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1870 		arc_flags_t flags = ARC_FLAG_WAIT;
1871 		objset_phys_t *osp;
1872 		arc_buf_t *buf;
1873 
1874 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1875 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1876 		if (err) {
1877 			scn->scn_phys.scn_errors++;
1878 			return (err);
1879 		}
1880 
1881 		osp = buf->b_data;
1882 
1883 		dsl_scan_visitdnode(scn, ds, osp->os_type,
1884 		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1885 
1886 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1887 			/*
1888 			 * We also always visit user/group/project accounting
1889 			 * objects, and never skip them, even if we are
1890 			 * suspending. This is necessary so that the
1891 			 * space deltas from this txg get integrated.
1892 			 */
1893 			if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1894 				dsl_scan_visitdnode(scn, ds, osp->os_type,
1895 				    &osp->os_projectused_dnode,
1896 				    DMU_PROJECTUSED_OBJECT, tx);
1897 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1898 			    &osp->os_groupused_dnode,
1899 			    DMU_GROUPUSED_OBJECT, tx);
1900 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1901 			    &osp->os_userused_dnode,
1902 			    DMU_USERUSED_OBJECT, tx);
1903 		}
1904 		arc_buf_destroy(buf, &buf);
1905 	}
1906 
1907 	return (0);
1908 }
1909 
1910 inline __attribute__((always_inline)) static void
1911 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1912     dmu_objset_type_t ostype, dnode_phys_t *dnp,
1913     uint64_t object, dmu_tx_t *tx)
1914 {
1915 	int j;
1916 
1917 	for (j = 0; j < dnp->dn_nblkptr; j++) {
1918 		zbookmark_phys_t czb;
1919 
1920 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1921 		    dnp->dn_nlevels - 1, j);
1922 		dsl_scan_visitbp(&dnp->dn_blkptr[j],
1923 		    &czb, dnp, ds, scn, ostype, tx);
1924 	}
1925 
1926 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1927 		zbookmark_phys_t czb;
1928 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1929 		    0, DMU_SPILL_BLKID);
1930 		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1931 		    &czb, dnp, ds, scn, ostype, tx);
1932 	}
1933 }
1934 
1935 /*
1936  * The arguments are in this order because mdb can only print the
1937  * first 5; we want them to be useful.
1938  */
1939 static void
1940 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1941     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1942     dmu_objset_type_t ostype, dmu_tx_t *tx)
1943 {
1944 	dsl_pool_t *dp = scn->scn_dp;
1945 	blkptr_t *bp_toread = NULL;
1946 
1947 	if (dsl_scan_check_suspend(scn, zb))
1948 		return;
1949 
1950 	if (dsl_scan_check_resume(scn, dnp, zb))
1951 		return;
1952 
1953 	scn->scn_visited_this_txg++;
1954 
1955 	/*
1956 	 * This debugging is commented out to conserve stack space.  This
1957 	 * function is called recursively and the debugging adds several
1958 	 * bytes to the stack for each call.  It can be commented back in
1959 	 * if required to debug an issue in dsl_scan_visitbp().
1960 	 *
1961 	 * dprintf_bp(bp,
1962 	 *     "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
1963 	 *     ds, ds ? ds->ds_object : 0,
1964 	 *     zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1965 	 *     bp);
1966 	 */
1967 
1968 	if (BP_IS_HOLE(bp)) {
1969 		scn->scn_holes_this_txg++;
1970 		return;
1971 	}
1972 
1973 	if (BP_IS_REDACTED(bp)) {
1974 		ASSERT(dsl_dataset_feature_is_active(ds,
1975 		    SPA_FEATURE_REDACTED_DATASETS));
1976 		return;
1977 	}
1978 
1979 	if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
1980 		scn->scn_lt_min_this_txg++;
1981 		return;
1982 	}
1983 
1984 	bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
1985 	*bp_toread = *bp;
1986 
1987 	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
1988 		goto out;
1989 
1990 	/*
1991 	 * If dsl_scan_ddt() has already visited this block, it will have
1992 	 * already done any translations or scrubbing, so don't call the
1993 	 * callback again.
1994 	 */
1995 	if (ddt_class_contains(dp->dp_spa,
1996 	    scn->scn_phys.scn_ddt_class_max, bp)) {
1997 		scn->scn_ddt_contained_this_txg++;
1998 		goto out;
1999 	}
2000 
2001 	/*
2002 	 * If this block is from the future (after cur_max_txg), then we
2003 	 * are doing this on behalf of a deleted snapshot, and we will
2004 	 * revisit the future block on the next pass of this dataset.
2005 	 * Don't scan it now unless we need to because something
2006 	 * under it was modified.
2007 	 */
2008 	if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2009 		scn->scn_gt_max_this_txg++;
2010 		goto out;
2011 	}
2012 
2013 	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2014 
2015 out:
2016 	kmem_free(bp_toread, sizeof (blkptr_t));
2017 }
2018 
2019 static void
2020 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2021     dmu_tx_t *tx)
2022 {
2023 	zbookmark_phys_t zb;
2024 	scan_prefetch_ctx_t *spc;
2025 
2026 	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2027 	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2028 
2029 	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2030 		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2031 		    zb.zb_objset, 0, 0, 0);
2032 	} else {
2033 		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2034 	}
2035 
2036 	scn->scn_objsets_visited_this_txg++;
2037 
2038 	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2039 	dsl_scan_prefetch(spc, bp, &zb);
2040 	scan_prefetch_ctx_rele(spc, FTAG);
2041 
2042 	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2043 
2044 	dprintf_ds(ds, "finished scan%s", "");
2045 }
2046 
2047 static void
2048 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2049 {
2050 	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2051 		if (ds->ds_is_snapshot) {
2052 			/*
2053 			 * Note:
2054 			 *  - scn_cur_{min,max}_txg stays the same.
2055 			 *  - Setting the flag is not really necessary if
2056 			 *    scn_cur_max_txg == scn_max_txg, because there
2057 			 *    is nothing after this snapshot that we care
2058 			 *    about.  However, we set it anyway and then
2059 			 *    ignore it when we retraverse it in
2060 			 *    dsl_scan_visitds().
2061 			 */
2062 			scn_phys->scn_bookmark.zb_objset =
2063 			    dsl_dataset_phys(ds)->ds_next_snap_obj;
2064 			zfs_dbgmsg("destroying ds %llu; currently traversing; "
2065 			    "reset zb_objset to %llu",
2066 			    (u_longlong_t)ds->ds_object,
2067 			    (u_longlong_t)dsl_dataset_phys(ds)->
2068 			    ds_next_snap_obj);
2069 			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2070 		} else {
2071 			SET_BOOKMARK(&scn_phys->scn_bookmark,
2072 			    ZB_DESTROYED_OBJSET, 0, 0, 0);
2073 			zfs_dbgmsg("destroying ds %llu; currently traversing; "
2074 			    "reset bookmark to -1,0,0,0",
2075 			    (u_longlong_t)ds->ds_object);
2076 		}
2077 	}
2078 }
2079 
2080 /*
2081  * Invoked when a dataset is destroyed. We need to make sure that:
2082  *
2083  * 1) If it is the dataset that was currently being scanned, we write
2084  *	a new dsl_scan_phys_t and marking the objset reference in it
2085  *	as destroyed.
2086  * 2) Remove it from the work queue, if it was present.
2087  *
2088  * If the dataset was actually a snapshot, instead of marking the dataset
2089  * as destroyed, we instead substitute the next snapshot in line.
2090  */
2091 void
2092 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2093 {
2094 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2095 	dsl_scan_t *scn = dp->dp_scan;
2096 	uint64_t mintxg;
2097 
2098 	if (!dsl_scan_is_running(scn))
2099 		return;
2100 
2101 	ds_destroyed_scn_phys(ds, &scn->scn_phys);
2102 	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2103 
2104 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2105 		scan_ds_queue_remove(scn, ds->ds_object);
2106 		if (ds->ds_is_snapshot)
2107 			scan_ds_queue_insert(scn,
2108 			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2109 	}
2110 
2111 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2112 	    ds->ds_object, &mintxg) == 0) {
2113 		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2114 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2115 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2116 		if (ds->ds_is_snapshot) {
2117 			/*
2118 			 * We keep the same mintxg; it could be >
2119 			 * ds_creation_txg if the previous snapshot was
2120 			 * deleted too.
2121 			 */
2122 			VERIFY(zap_add_int_key(dp->dp_meta_objset,
2123 			    scn->scn_phys.scn_queue_obj,
2124 			    dsl_dataset_phys(ds)->ds_next_snap_obj,
2125 			    mintxg, tx) == 0);
2126 			zfs_dbgmsg("destroying ds %llu; in queue; "
2127 			    "replacing with %llu",
2128 			    (u_longlong_t)ds->ds_object,
2129 			    (u_longlong_t)dsl_dataset_phys(ds)->
2130 			    ds_next_snap_obj);
2131 		} else {
2132 			zfs_dbgmsg("destroying ds %llu; in queue; removing",
2133 			    (u_longlong_t)ds->ds_object);
2134 		}
2135 	}
2136 
2137 	/*
2138 	 * dsl_scan_sync() should be called after this, and should sync
2139 	 * out our changed state, but just to be safe, do it here.
2140 	 */
2141 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2142 }
2143 
2144 static void
2145 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2146 {
2147 	if (scn_bookmark->zb_objset == ds->ds_object) {
2148 		scn_bookmark->zb_objset =
2149 		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
2150 		zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
2151 		    "reset zb_objset to %llu",
2152 		    (u_longlong_t)ds->ds_object,
2153 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2154 	}
2155 }
2156 
2157 /*
2158  * Called when a dataset is snapshotted. If we were currently traversing
2159  * this snapshot, we reset our bookmark to point at the newly created
2160  * snapshot. We also modify our work queue to remove the old snapshot and
2161  * replace with the new one.
2162  */
2163 void
2164 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2165 {
2166 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2167 	dsl_scan_t *scn = dp->dp_scan;
2168 	uint64_t mintxg;
2169 
2170 	if (!dsl_scan_is_running(scn))
2171 		return;
2172 
2173 	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2174 
2175 	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2176 	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2177 
2178 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2179 		scan_ds_queue_remove(scn, ds->ds_object);
2180 		scan_ds_queue_insert(scn,
2181 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2182 	}
2183 
2184 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2185 	    ds->ds_object, &mintxg) == 0) {
2186 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2187 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2188 		VERIFY(zap_add_int_key(dp->dp_meta_objset,
2189 		    scn->scn_phys.scn_queue_obj,
2190 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2191 		zfs_dbgmsg("snapshotting ds %llu; in queue; "
2192 		    "replacing with %llu",
2193 		    (u_longlong_t)ds->ds_object,
2194 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2195 	}
2196 
2197 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2198 }
2199 
2200 static void
2201 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2202     zbookmark_phys_t *scn_bookmark)
2203 {
2204 	if (scn_bookmark->zb_objset == ds1->ds_object) {
2205 		scn_bookmark->zb_objset = ds2->ds_object;
2206 		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2207 		    "reset zb_objset to %llu",
2208 		    (u_longlong_t)ds1->ds_object,
2209 		    (u_longlong_t)ds2->ds_object);
2210 	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2211 		scn_bookmark->zb_objset = ds1->ds_object;
2212 		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2213 		    "reset zb_objset to %llu",
2214 		    (u_longlong_t)ds2->ds_object,
2215 		    (u_longlong_t)ds1->ds_object);
2216 	}
2217 }
2218 
2219 /*
2220  * Called when an origin dataset and its clone are swapped.  If we were
2221  * currently traversing the dataset, we need to switch to traversing the
2222  * newly promoted clone.
2223  */
2224 void
2225 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2226 {
2227 	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2228 	dsl_scan_t *scn = dp->dp_scan;
2229 	uint64_t mintxg1, mintxg2;
2230 	boolean_t ds1_queued, ds2_queued;
2231 
2232 	if (!dsl_scan_is_running(scn))
2233 		return;
2234 
2235 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2236 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2237 
2238 	/*
2239 	 * Handle the in-memory scan queue.
2240 	 */
2241 	ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2242 	ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2243 
2244 	/* Sanity checking. */
2245 	if (ds1_queued) {
2246 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2247 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2248 	}
2249 	if (ds2_queued) {
2250 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2251 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2252 	}
2253 
2254 	if (ds1_queued && ds2_queued) {
2255 		/*
2256 		 * If both are queued, we don't need to do anything.
2257 		 * The swapping code below would not handle this case correctly,
2258 		 * since we can't insert ds2 if it is already there. That's
2259 		 * because scan_ds_queue_insert() prohibits a duplicate insert
2260 		 * and panics.
2261 		 */
2262 	} else if (ds1_queued) {
2263 		scan_ds_queue_remove(scn, ds1->ds_object);
2264 		scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2265 	} else if (ds2_queued) {
2266 		scan_ds_queue_remove(scn, ds2->ds_object);
2267 		scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2268 	}
2269 
2270 	/*
2271 	 * Handle the on-disk scan queue.
2272 	 * The on-disk state is an out-of-date version of the in-memory state,
2273 	 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2274 	 * be different. Therefore we need to apply the swap logic to the
2275 	 * on-disk state independently of the in-memory state.
2276 	 */
2277 	ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2278 	    scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2279 	ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2280 	    scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2281 
2282 	/* Sanity checking. */
2283 	if (ds1_queued) {
2284 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2285 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2286 	}
2287 	if (ds2_queued) {
2288 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2289 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2290 	}
2291 
2292 	if (ds1_queued && ds2_queued) {
2293 		/*
2294 		 * If both are queued, we don't need to do anything.
2295 		 * Alternatively, we could check for EEXIST from
2296 		 * zap_add_int_key() and back out to the original state, but
2297 		 * that would be more work than checking for this case upfront.
2298 		 */
2299 	} else if (ds1_queued) {
2300 		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2301 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2302 		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2303 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2304 		zfs_dbgmsg("clone_swap ds %llu; in queue; "
2305 		    "replacing with %llu",
2306 		    (u_longlong_t)ds1->ds_object,
2307 		    (u_longlong_t)ds2->ds_object);
2308 	} else if (ds2_queued) {
2309 		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2310 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2311 		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2312 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2313 		zfs_dbgmsg("clone_swap ds %llu; in queue; "
2314 		    "replacing with %llu",
2315 		    (u_longlong_t)ds2->ds_object,
2316 		    (u_longlong_t)ds1->ds_object);
2317 	}
2318 
2319 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2320 }
2321 
2322 /* ARGSUSED */
2323 static int
2324 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2325 {
2326 	uint64_t originobj = *(uint64_t *)arg;
2327 	dsl_dataset_t *ds;
2328 	int err;
2329 	dsl_scan_t *scn = dp->dp_scan;
2330 
2331 	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2332 		return (0);
2333 
2334 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2335 	if (err)
2336 		return (err);
2337 
2338 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2339 		dsl_dataset_t *prev;
2340 		err = dsl_dataset_hold_obj(dp,
2341 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2342 
2343 		dsl_dataset_rele(ds, FTAG);
2344 		if (err)
2345 			return (err);
2346 		ds = prev;
2347 	}
2348 	scan_ds_queue_insert(scn, ds->ds_object,
2349 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2350 	dsl_dataset_rele(ds, FTAG);
2351 	return (0);
2352 }
2353 
2354 static void
2355 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2356 {
2357 	dsl_pool_t *dp = scn->scn_dp;
2358 	dsl_dataset_t *ds;
2359 
2360 	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2361 
2362 	if (scn->scn_phys.scn_cur_min_txg >=
2363 	    scn->scn_phys.scn_max_txg) {
2364 		/*
2365 		 * This can happen if this snapshot was created after the
2366 		 * scan started, and we already completed a previous snapshot
2367 		 * that was created after the scan started.  This snapshot
2368 		 * only references blocks with:
2369 		 *
2370 		 *	birth < our ds_creation_txg
2371 		 *	cur_min_txg is no less than ds_creation_txg.
2372 		 *	We have already visited these blocks.
2373 		 * or
2374 		 *	birth > scn_max_txg
2375 		 *	The scan requested not to visit these blocks.
2376 		 *
2377 		 * Subsequent snapshots (and clones) can reference our
2378 		 * blocks, or blocks with even higher birth times.
2379 		 * Therefore we do not need to visit them either,
2380 		 * so we do not add them to the work queue.
2381 		 *
2382 		 * Note that checking for cur_min_txg >= cur_max_txg
2383 		 * is not sufficient, because in that case we may need to
2384 		 * visit subsequent snapshots.  This happens when min_txg > 0,
2385 		 * which raises cur_min_txg.  In this case we will visit
2386 		 * this dataset but skip all of its blocks, because the
2387 		 * rootbp's birth time is < cur_min_txg.  Then we will
2388 		 * add the next snapshots/clones to the work queue.
2389 		 */
2390 		char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2391 		dsl_dataset_name(ds, dsname);
2392 		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2393 		    "cur_min_txg (%llu) >= max_txg (%llu)",
2394 		    (longlong_t)dsobj, dsname,
2395 		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2396 		    (longlong_t)scn->scn_phys.scn_max_txg);
2397 		kmem_free(dsname, MAXNAMELEN);
2398 
2399 		goto out;
2400 	}
2401 
2402 	/*
2403 	 * Only the ZIL in the head (non-snapshot) is valid. Even though
2404 	 * snapshots can have ZIL block pointers (which may be the same
2405 	 * BP as in the head), they must be ignored. In addition, $ORIGIN
2406 	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2407 	 * need to look for a ZIL in it either. So we traverse the ZIL here,
2408 	 * rather than in scan_recurse(), because the regular snapshot
2409 	 * block-sharing rules don't apply to it.
2410 	 */
2411 	if (!dsl_dataset_is_snapshot(ds) &&
2412 	    (dp->dp_origin_snap == NULL ||
2413 	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2414 		objset_t *os;
2415 		if (dmu_objset_from_ds(ds, &os) != 0) {
2416 			goto out;
2417 		}
2418 		dsl_scan_zil(dp, &os->os_zil_header);
2419 	}
2420 
2421 	/*
2422 	 * Iterate over the bps in this ds.
2423 	 */
2424 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
2425 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2426 	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2427 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
2428 
2429 	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2430 	dsl_dataset_name(ds, dsname);
2431 	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2432 	    "suspending=%u",
2433 	    (longlong_t)dsobj, dsname,
2434 	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2435 	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
2436 	    (int)scn->scn_suspending);
2437 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2438 
2439 	if (scn->scn_suspending)
2440 		goto out;
2441 
2442 	/*
2443 	 * We've finished this pass over this dataset.
2444 	 */
2445 
2446 	/*
2447 	 * If we did not completely visit this dataset, do another pass.
2448 	 */
2449 	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2450 		zfs_dbgmsg("incomplete pass; visiting again");
2451 		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2452 		scan_ds_queue_insert(scn, ds->ds_object,
2453 		    scn->scn_phys.scn_cur_max_txg);
2454 		goto out;
2455 	}
2456 
2457 	/*
2458 	 * Add descendant datasets to work queue.
2459 	 */
2460 	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2461 		scan_ds_queue_insert(scn,
2462 		    dsl_dataset_phys(ds)->ds_next_snap_obj,
2463 		    dsl_dataset_phys(ds)->ds_creation_txg);
2464 	}
2465 	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2466 		boolean_t usenext = B_FALSE;
2467 		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2468 			uint64_t count;
2469 			/*
2470 			 * A bug in a previous version of the code could
2471 			 * cause upgrade_clones_cb() to not set
2472 			 * ds_next_snap_obj when it should, leading to a
2473 			 * missing entry.  Therefore we can only use the
2474 			 * next_clones_obj when its count is correct.
2475 			 */
2476 			int err = zap_count(dp->dp_meta_objset,
2477 			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2478 			if (err == 0 &&
2479 			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
2480 				usenext = B_TRUE;
2481 		}
2482 
2483 		if (usenext) {
2484 			zap_cursor_t zc;
2485 			zap_attribute_t za;
2486 			for (zap_cursor_init(&zc, dp->dp_meta_objset,
2487 			    dsl_dataset_phys(ds)->ds_next_clones_obj);
2488 			    zap_cursor_retrieve(&zc, &za) == 0;
2489 			    (void) zap_cursor_advance(&zc)) {
2490 				scan_ds_queue_insert(scn,
2491 				    zfs_strtonum(za.za_name, NULL),
2492 				    dsl_dataset_phys(ds)->ds_creation_txg);
2493 			}
2494 			zap_cursor_fini(&zc);
2495 		} else {
2496 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2497 			    enqueue_clones_cb, &ds->ds_object,
2498 			    DS_FIND_CHILDREN));
2499 		}
2500 	}
2501 
2502 out:
2503 	dsl_dataset_rele(ds, FTAG);
2504 }
2505 
2506 /* ARGSUSED */
2507 static int
2508 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2509 {
2510 	dsl_dataset_t *ds;
2511 	int err;
2512 	dsl_scan_t *scn = dp->dp_scan;
2513 
2514 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2515 	if (err)
2516 		return (err);
2517 
2518 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2519 		dsl_dataset_t *prev;
2520 		err = dsl_dataset_hold_obj(dp,
2521 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2522 		if (err) {
2523 			dsl_dataset_rele(ds, FTAG);
2524 			return (err);
2525 		}
2526 
2527 		/*
2528 		 * If this is a clone, we don't need to worry about it for now.
2529 		 */
2530 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2531 			dsl_dataset_rele(ds, FTAG);
2532 			dsl_dataset_rele(prev, FTAG);
2533 			return (0);
2534 		}
2535 		dsl_dataset_rele(ds, FTAG);
2536 		ds = prev;
2537 	}
2538 
2539 	scan_ds_queue_insert(scn, ds->ds_object,
2540 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2541 	dsl_dataset_rele(ds, FTAG);
2542 	return (0);
2543 }
2544 
2545 /* ARGSUSED */
2546 void
2547 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2548     ddt_entry_t *dde, dmu_tx_t *tx)
2549 {
2550 	const ddt_key_t *ddk = &dde->dde_key;
2551 	ddt_phys_t *ddp = dde->dde_phys;
2552 	blkptr_t bp;
2553 	zbookmark_phys_t zb = { 0 };
2554 	int p;
2555 
2556 	if (!dsl_scan_is_running(scn))
2557 		return;
2558 
2559 	/*
2560 	 * This function is special because it is the only thing
2561 	 * that can add scan_io_t's to the vdev scan queues from
2562 	 * outside dsl_scan_sync(). For the most part this is ok
2563 	 * as long as it is called from within syncing context.
2564 	 * However, dsl_scan_sync() expects that no new sio's will
2565 	 * be added between when all the work for a scan is done
2566 	 * and the next txg when the scan is actually marked as
2567 	 * completed. This check ensures we do not issue new sio's
2568 	 * during this period.
2569 	 */
2570 	if (scn->scn_done_txg != 0)
2571 		return;
2572 
2573 	for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2574 		if (ddp->ddp_phys_birth == 0 ||
2575 		    ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2576 			continue;
2577 		ddt_bp_create(checksum, ddk, ddp, &bp);
2578 
2579 		scn->scn_visited_this_txg++;
2580 		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2581 	}
2582 }
2583 
2584 /*
2585  * Scrub/dedup interaction.
2586  *
2587  * If there are N references to a deduped block, we don't want to scrub it
2588  * N times -- ideally, we should scrub it exactly once.
2589  *
2590  * We leverage the fact that the dde's replication class (enum ddt_class)
2591  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2592  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2593  *
2594  * To prevent excess scrubbing, the scrub begins by walking the DDT
2595  * to find all blocks with refcnt > 1, and scrubs each of these once.
2596  * Since there are two replication classes which contain blocks with
2597  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2598  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2599  *
2600  * There would be nothing more to say if a block's refcnt couldn't change
2601  * during a scrub, but of course it can so we must account for changes
2602  * in a block's replication class.
2603  *
2604  * Here's an example of what can occur:
2605  *
2606  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2607  * when visited during the top-down scrub phase, it will be scrubbed twice.
2608  * This negates our scrub optimization, but is otherwise harmless.
2609  *
2610  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2611  * on each visit during the top-down scrub phase, it will never be scrubbed.
2612  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2613  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2614  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2615  * while a scrub is in progress, it scrubs the block right then.
2616  */
2617 static void
2618 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2619 {
2620 	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2621 	ddt_entry_t dde;
2622 	int error;
2623 	uint64_t n = 0;
2624 
2625 	bzero(&dde, sizeof (ddt_entry_t));
2626 
2627 	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2628 		ddt_t *ddt;
2629 
2630 		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2631 			break;
2632 		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2633 		    (longlong_t)ddb->ddb_class,
2634 		    (longlong_t)ddb->ddb_type,
2635 		    (longlong_t)ddb->ddb_checksum,
2636 		    (longlong_t)ddb->ddb_cursor);
2637 
2638 		/* There should be no pending changes to the dedup table */
2639 		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2640 		ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2641 
2642 		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2643 		n++;
2644 
2645 		if (dsl_scan_check_suspend(scn, NULL))
2646 			break;
2647 	}
2648 
2649 	zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
2650 	    "suspending=%u", (longlong_t)n,
2651 	    (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2652 
2653 	ASSERT(error == 0 || error == ENOENT);
2654 	ASSERT(error != ENOENT ||
2655 	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2656 }
2657 
2658 static uint64_t
2659 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2660 {
2661 	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2662 	if (ds->ds_is_snapshot)
2663 		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2664 	return (smt);
2665 }
2666 
2667 static void
2668 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2669 {
2670 	scan_ds_t *sds;
2671 	dsl_pool_t *dp = scn->scn_dp;
2672 
2673 	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2674 	    scn->scn_phys.scn_ddt_class_max) {
2675 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2676 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2677 		dsl_scan_ddt(scn, tx);
2678 		if (scn->scn_suspending)
2679 			return;
2680 	}
2681 
2682 	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2683 		/* First do the MOS & ORIGIN */
2684 
2685 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2686 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2687 		dsl_scan_visit_rootbp(scn, NULL,
2688 		    &dp->dp_meta_rootbp, tx);
2689 		spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2690 		if (scn->scn_suspending)
2691 			return;
2692 
2693 		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2694 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2695 			    enqueue_cb, NULL, DS_FIND_CHILDREN));
2696 		} else {
2697 			dsl_scan_visitds(scn,
2698 			    dp->dp_origin_snap->ds_object, tx);
2699 		}
2700 		ASSERT(!scn->scn_suspending);
2701 	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
2702 	    ZB_DESTROYED_OBJSET) {
2703 		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2704 		/*
2705 		 * If we were suspended, continue from here. Note if the
2706 		 * ds we were suspended on was deleted, the zb_objset may
2707 		 * be -1, so we will skip this and find a new objset
2708 		 * below.
2709 		 */
2710 		dsl_scan_visitds(scn, dsobj, tx);
2711 		if (scn->scn_suspending)
2712 			return;
2713 	}
2714 
2715 	/*
2716 	 * In case we suspended right at the end of the ds, zero the
2717 	 * bookmark so we don't think that we're still trying to resume.
2718 	 */
2719 	bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));
2720 
2721 	/*
2722 	 * Keep pulling things out of the dataset avl queue. Updates to the
2723 	 * persistent zap-object-as-queue happen only at checkpoints.
2724 	 */
2725 	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2726 		dsl_dataset_t *ds;
2727 		uint64_t dsobj = sds->sds_dsobj;
2728 		uint64_t txg = sds->sds_txg;
2729 
2730 		/* dequeue and free the ds from the queue */
2731 		scan_ds_queue_remove(scn, dsobj);
2732 		sds = NULL;
2733 
2734 		/* set up min / max txg */
2735 		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2736 		if (txg != 0) {
2737 			scn->scn_phys.scn_cur_min_txg =
2738 			    MAX(scn->scn_phys.scn_min_txg, txg);
2739 		} else {
2740 			scn->scn_phys.scn_cur_min_txg =
2741 			    MAX(scn->scn_phys.scn_min_txg,
2742 			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2743 		}
2744 		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2745 		dsl_dataset_rele(ds, FTAG);
2746 
2747 		dsl_scan_visitds(scn, dsobj, tx);
2748 		if (scn->scn_suspending)
2749 			return;
2750 	}
2751 
2752 	/* No more objsets to fetch, we're done */
2753 	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2754 	ASSERT0(scn->scn_suspending);
2755 }
2756 
2757 static uint64_t
2758 dsl_scan_count_leaves(vdev_t *vd)
2759 {
2760 	uint64_t i, leaves = 0;
2761 
2762 	/* we only count leaves that belong to the main pool and are readable */
2763 	if (vd->vdev_islog || vd->vdev_isspare ||
2764 	    vd->vdev_isl2cache || !vdev_readable(vd))
2765 		return (0);
2766 
2767 	if (vd->vdev_ops->vdev_op_leaf)
2768 		return (1);
2769 
2770 	for (i = 0; i < vd->vdev_children; i++) {
2771 		leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
2772 	}
2773 
2774 	return (leaves);
2775 }
2776 
2777 static void
2778 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2779 {
2780 	int i;
2781 	uint64_t cur_size = 0;
2782 
2783 	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2784 		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2785 	}
2786 
2787 	q->q_total_zio_size_this_txg += cur_size;
2788 	q->q_zios_this_txg++;
2789 }
2790 
2791 static void
2792 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2793     uint64_t end)
2794 {
2795 	q->q_total_seg_size_this_txg += end - start;
2796 	q->q_segs_this_txg++;
2797 }
2798 
2799 static boolean_t
2800 scan_io_queue_check_suspend(dsl_scan_t *scn)
2801 {
2802 	/* See comment in dsl_scan_check_suspend() */
2803 	uint64_t curr_time_ns = gethrtime();
2804 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2805 	uint64_t sync_time_ns = curr_time_ns -
2806 	    scn->scn_dp->dp_spa->spa_sync_starttime;
2807 	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
2808 	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2809 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2810 
2811 	return ((NSEC2MSEC(scan_time_ns) > mintime &&
2812 	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
2813 	    txg_sync_waiting(scn->scn_dp) ||
2814 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2815 	    spa_shutting_down(scn->scn_dp->dp_spa));
2816 }
2817 
2818 /*
2819  * Given a list of scan_io_t's in io_list, this issues the I/Os out to
2820  * disk. This consumes the io_list and frees the scan_io_t's. This is
2821  * called when emptying queues, either when we're up against the memory
2822  * limit or when we have finished scanning. Returns B_TRUE if we stopped
2823  * processing the list before we finished. Any sios that were not issued
2824  * will remain in the io_list.
2825  */
2826 static boolean_t
2827 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2828 {
2829 	dsl_scan_t *scn = queue->q_scn;
2830 	scan_io_t *sio;
2831 	int64_t bytes_issued = 0;
2832 	boolean_t suspended = B_FALSE;
2833 
2834 	while ((sio = list_head(io_list)) != NULL) {
2835 		blkptr_t bp;
2836 
2837 		if (scan_io_queue_check_suspend(scn)) {
2838 			suspended = B_TRUE;
2839 			break;
2840 		}
2841 
2842 		sio2bp(sio, &bp);
2843 		bytes_issued += SIO_GET_ASIZE(sio);
2844 		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2845 		    &sio->sio_zb, queue);
2846 		(void) list_remove_head(io_list);
2847 		scan_io_queues_update_zio_stats(queue, &bp);
2848 		sio_free(sio);
2849 	}
2850 
2851 	atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
2852 
2853 	return (suspended);
2854 }
2855 
2856 /*
2857  * This function removes sios from an IO queue which reside within a given
2858  * range_seg_t and inserts them (in offset order) into a list. Note that
2859  * we only ever return a maximum of 32 sios at once. If there are more sios
2860  * to process within this segment that did not make it onto the list we
2861  * return B_TRUE and otherwise B_FALSE.
2862  */
2863 static boolean_t
2864 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2865 {
2866 	scan_io_t *srch_sio, *sio, *next_sio;
2867 	avl_index_t idx;
2868 	uint_t num_sios = 0;
2869 	int64_t bytes_issued = 0;
2870 
2871 	ASSERT(rs != NULL);
2872 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2873 
2874 	srch_sio = sio_alloc(1);
2875 	srch_sio->sio_nr_dvas = 1;
2876 	SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
2877 
2878 	/*
2879 	 * The exact start of the extent might not contain any matching zios,
2880 	 * so if that's the case, examine the next one in the tree.
2881 	 */
2882 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2883 	sio_free(srch_sio);
2884 
2885 	if (sio == NULL)
2886 		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2887 
2888 	while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2889 	    queue->q_exts_by_addr) && num_sios <= 32) {
2890 		ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
2891 		    queue->q_exts_by_addr));
2892 		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
2893 		    queue->q_exts_by_addr));
2894 
2895 		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2896 		avl_remove(&queue->q_sios_by_addr, sio);
2897 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
2898 
2899 		bytes_issued += SIO_GET_ASIZE(sio);
2900 		num_sios++;
2901 		list_insert_tail(list, sio);
2902 		sio = next_sio;
2903 	}
2904 
2905 	/*
2906 	 * We limit the number of sios we process at once to 32 to avoid
2907 	 * biting off more than we can chew. If we didn't take everything
2908 	 * in the segment we update it to reflect the work we were able to
2909 	 * complete. Otherwise, we remove it from the range tree entirely.
2910 	 */
2911 	if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2912 	    queue->q_exts_by_addr)) {
2913 		range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2914 		    -bytes_issued);
2915 		range_tree_resize_segment(queue->q_exts_by_addr, rs,
2916 		    SIO_GET_OFFSET(sio), rs_get_end(rs,
2917 		    queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
2918 
2919 		return (B_TRUE);
2920 	} else {
2921 		uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
2922 		uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
2923 		range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
2924 		return (B_FALSE);
2925 	}
2926 }
2927 
2928 /*
2929  * This is called from the queue emptying thread and selects the next
2930  * extent from which we are to issue I/Os. The behavior of this function
2931  * depends on the state of the scan, the current memory consumption and
2932  * whether or not we are performing a scan shutdown.
2933  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2934  * 	needs to perform a checkpoint
2935  * 2) We select the largest available extent if we are up against the
2936  * 	memory limit.
2937  * 3) Otherwise we don't select any extents.
2938  */
2939 static range_seg_t *
2940 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2941 {
2942 	dsl_scan_t *scn = queue->q_scn;
2943 	range_tree_t *rt = queue->q_exts_by_addr;
2944 
2945 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2946 	ASSERT(scn->scn_is_sorted);
2947 
2948 	/* handle tunable overrides */
2949 	if (scn->scn_checkpointing || scn->scn_clearing) {
2950 		if (zfs_scan_issue_strategy == 1) {
2951 			return (range_tree_first(rt));
2952 		} else if (zfs_scan_issue_strategy == 2) {
2953 			/*
2954 			 * We need to get the original entry in the by_addr
2955 			 * tree so we can modify it.
2956 			 */
2957 			range_seg_t *size_rs =
2958 			    zfs_btree_first(&queue->q_exts_by_size, NULL);
2959 			if (size_rs == NULL)
2960 				return (NULL);
2961 			uint64_t start = rs_get_start(size_rs, rt);
2962 			uint64_t size = rs_get_end(size_rs, rt) - start;
2963 			range_seg_t *addr_rs = range_tree_find(rt, start,
2964 			    size);
2965 			ASSERT3P(addr_rs, !=, NULL);
2966 			ASSERT3U(rs_get_start(size_rs, rt), ==,
2967 			    rs_get_start(addr_rs, rt));
2968 			ASSERT3U(rs_get_end(size_rs, rt), ==,
2969 			    rs_get_end(addr_rs, rt));
2970 			return (addr_rs);
2971 		}
2972 	}
2973 
2974 	/*
2975 	 * During normal clearing, we want to issue our largest segments
2976 	 * first, keeping IO as sequential as possible, and leaving the
2977 	 * smaller extents for later with the hope that they might eventually
2978 	 * grow to larger sequential segments. However, when the scan is
2979 	 * checkpointing, no new extents will be added to the sorting queue,
2980 	 * so the way we are sorted now is as good as it will ever get.
2981 	 * In this case, we instead switch to issuing extents in LBA order.
2982 	 */
2983 	if (scn->scn_checkpointing) {
2984 		return (range_tree_first(rt));
2985 	} else if (scn->scn_clearing) {
2986 		/*
2987 		 * We need to get the original entry in the by_addr
2988 		 * tree so we can modify it.
2989 		 */
2990 		range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size,
2991 		    NULL);
2992 		if (size_rs == NULL)
2993 			return (NULL);
2994 		uint64_t start = rs_get_start(size_rs, rt);
2995 		uint64_t size = rs_get_end(size_rs, rt) - start;
2996 		range_seg_t *addr_rs = range_tree_find(rt, start, size);
2997 		ASSERT3P(addr_rs, !=, NULL);
2998 		ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs,
2999 		    rt));
3000 		ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt));
3001 		return (addr_rs);
3002 	} else {
3003 		return (NULL);
3004 	}
3005 }
3006 
3007 static void
3008 scan_io_queues_run_one(void *arg)
3009 {
3010 	dsl_scan_io_queue_t *queue = arg;
3011 	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3012 	boolean_t suspended = B_FALSE;
3013 	range_seg_t *rs = NULL;
3014 	scan_io_t *sio = NULL;
3015 	list_t sio_list;
3016 	uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
3017 	uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);
3018 
3019 	ASSERT(queue->q_scn->scn_is_sorted);
3020 
3021 	list_create(&sio_list, sizeof (scan_io_t),
3022 	    offsetof(scan_io_t, sio_nodes.sio_list_node));
3023 	mutex_enter(q_lock);
3024 
3025 	/* calculate maximum in-flight bytes for this txg (min 1MB) */
3026 	queue->q_maxinflight_bytes =
3027 	    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
3028 
3029 	/* reset per-queue scan statistics for this txg */
3030 	queue->q_total_seg_size_this_txg = 0;
3031 	queue->q_segs_this_txg = 0;
3032 	queue->q_total_zio_size_this_txg = 0;
3033 	queue->q_zios_this_txg = 0;
3034 
3035 	/* loop until we run out of time or sios */
3036 	while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3037 		uint64_t seg_start = 0, seg_end = 0;
3038 		boolean_t more_left = B_TRUE;
3039 
3040 		ASSERT(list_is_empty(&sio_list));
3041 
3042 		/* loop while we still have sios left to process in this rs */
3043 		while (more_left) {
3044 			scan_io_t *first_sio, *last_sio;
3045 
3046 			/*
3047 			 * We have selected which extent needs to be
3048 			 * processed next. Gather up the corresponding sios.
3049 			 */
3050 			more_left = scan_io_queue_gather(queue, rs, &sio_list);
3051 			ASSERT(!list_is_empty(&sio_list));
3052 			first_sio = list_head(&sio_list);
3053 			last_sio = list_tail(&sio_list);
3054 
3055 			seg_end = SIO_GET_END_OFFSET(last_sio);
3056 			if (seg_start == 0)
3057 				seg_start = SIO_GET_OFFSET(first_sio);
3058 
3059 			/*
3060 			 * Issuing sios can take a long time so drop the
3061 			 * queue lock. The sio queue won't be updated by
3062 			 * other threads since we're in syncing context so
3063 			 * we can be sure that our trees will remain exactly
3064 			 * as we left them.
3065 			 */
3066 			mutex_exit(q_lock);
3067 			suspended = scan_io_queue_issue(queue, &sio_list);
3068 			mutex_enter(q_lock);
3069 
3070 			if (suspended)
3071 				break;
3072 		}
3073 
3074 		/* update statistics for debugging purposes */
3075 		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3076 
3077 		if (suspended)
3078 			break;
3079 	}
3080 
3081 	/*
3082 	 * If we were suspended in the middle of processing,
3083 	 * requeue any unfinished sios and exit.
3084 	 */
3085 	while ((sio = list_head(&sio_list)) != NULL) {
3086 		list_remove(&sio_list, sio);
3087 		scan_io_queue_insert_impl(queue, sio);
3088 	}
3089 
3090 	mutex_exit(q_lock);
3091 	list_destroy(&sio_list);
3092 }
3093 
3094 /*
3095  * Performs an emptying run on all scan queues in the pool. This just
3096  * punches out one thread per top-level vdev, each of which processes
3097  * only that vdev's scan queue. We can parallelize the I/O here because
3098  * we know that each queue's I/Os only affect its own top-level vdev.
3099  *
3100  * This function waits for the queue runs to complete, and must be
3101  * called from dsl_scan_sync (or in general, syncing context).
3102  */
3103 static void
3104 scan_io_queues_run(dsl_scan_t *scn)
3105 {
3106 	spa_t *spa = scn->scn_dp->dp_spa;
3107 
3108 	ASSERT(scn->scn_is_sorted);
3109 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3110 
3111 	if (scn->scn_bytes_pending == 0)
3112 		return;
3113 
3114 	if (scn->scn_taskq == NULL) {
3115 		int nthreads = spa->spa_root_vdev->vdev_children;
3116 
3117 		/*
3118 		 * We need to make this taskq *always* execute as many
3119 		 * threads in parallel as we have top-level vdevs and no
3120 		 * less, otherwise strange serialization of the calls to
3121 		 * scan_io_queues_run_one can occur during spa_sync runs
3122 		 * and that significantly impacts performance.
3123 		 */
3124 		scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3125 		    minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3126 	}
3127 
3128 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3129 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3130 
3131 		mutex_enter(&vd->vdev_scan_io_queue_lock);
3132 		if (vd->vdev_scan_io_queue != NULL) {
3133 			VERIFY(taskq_dispatch(scn->scn_taskq,
3134 			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
3135 			    TQ_SLEEP) != TASKQID_INVALID);
3136 		}
3137 		mutex_exit(&vd->vdev_scan_io_queue_lock);
3138 	}
3139 
3140 	/*
3141 	 * Wait for the queues to finish issuing their IOs for this run
3142 	 * before we return. There may still be IOs in flight at this
3143 	 * point.
3144 	 */
3145 	taskq_wait(scn->scn_taskq);
3146 }
3147 
3148 static boolean_t
3149 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3150 {
3151 	uint64_t elapsed_nanosecs;
3152 
3153 	if (zfs_recover)
3154 		return (B_FALSE);
3155 
3156 	if (zfs_async_block_max_blocks != 0 &&
3157 	    scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3158 		return (B_TRUE);
3159 	}
3160 
3161 	if (zfs_max_async_dedup_frees != 0 &&
3162 	    scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3163 		return (B_TRUE);
3164 	}
3165 
3166 	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3167 	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3168 	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3169 	    txg_sync_waiting(scn->scn_dp)) ||
3170 	    spa_shutting_down(scn->scn_dp->dp_spa));
3171 }
3172 
3173 static int
3174 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3175 {
3176 	dsl_scan_t *scn = arg;
3177 
3178 	if (!scn->scn_is_bptree ||
3179 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3180 		if (dsl_scan_async_block_should_pause(scn))
3181 			return (SET_ERROR(ERESTART));
3182 	}
3183 
3184 	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3185 	    dmu_tx_get_txg(tx), bp, 0));
3186 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3187 	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3188 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3189 	scn->scn_visited_this_txg++;
3190 	if (BP_GET_DEDUP(bp))
3191 		scn->scn_dedup_frees_this_txg++;
3192 	return (0);
3193 }
3194 
3195 static void
3196 dsl_scan_update_stats(dsl_scan_t *scn)
3197 {
3198 	spa_t *spa = scn->scn_dp->dp_spa;
3199 	uint64_t i;
3200 	uint64_t seg_size_total = 0, zio_size_total = 0;
3201 	uint64_t seg_count_total = 0, zio_count_total = 0;
3202 
3203 	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3204 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3205 		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3206 
3207 		if (queue == NULL)
3208 			continue;
3209 
3210 		seg_size_total += queue->q_total_seg_size_this_txg;
3211 		zio_size_total += queue->q_total_zio_size_this_txg;
3212 		seg_count_total += queue->q_segs_this_txg;
3213 		zio_count_total += queue->q_zios_this_txg;
3214 	}
3215 
3216 	if (seg_count_total == 0 || zio_count_total == 0) {
3217 		scn->scn_avg_seg_size_this_txg = 0;
3218 		scn->scn_avg_zio_size_this_txg = 0;
3219 		scn->scn_segs_this_txg = 0;
3220 		scn->scn_zios_this_txg = 0;
3221 		return;
3222 	}
3223 
3224 	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3225 	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3226 	scn->scn_segs_this_txg = seg_count_total;
3227 	scn->scn_zios_this_txg = zio_count_total;
3228 }
3229 
3230 static int
3231 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3232     dmu_tx_t *tx)
3233 {
3234 	ASSERT(!bp_freed);
3235 	return (dsl_scan_free_block_cb(arg, bp, tx));
3236 }
3237 
3238 static int
3239 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3240     dmu_tx_t *tx)
3241 {
3242 	ASSERT(!bp_freed);
3243 	dsl_scan_t *scn = arg;
3244 	const dva_t *dva = &bp->blk_dva[0];
3245 
3246 	if (dsl_scan_async_block_should_pause(scn))
3247 		return (SET_ERROR(ERESTART));
3248 
3249 	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3250 	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3251 	    DVA_GET_ASIZE(dva), tx);
3252 	scn->scn_visited_this_txg++;
3253 	return (0);
3254 }
3255 
3256 boolean_t
3257 dsl_scan_active(dsl_scan_t *scn)
3258 {
3259 	spa_t *spa = scn->scn_dp->dp_spa;
3260 	uint64_t used = 0, comp, uncomp;
3261 	boolean_t clones_left;
3262 
3263 	if (spa->spa_load_state != SPA_LOAD_NONE)
3264 		return (B_FALSE);
3265 	if (spa_shutting_down(spa))
3266 		return (B_FALSE);
3267 	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3268 	    (scn->scn_async_destroying && !scn->scn_async_stalled))
3269 		return (B_TRUE);
3270 
3271 	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3272 		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3273 		    &used, &comp, &uncomp);
3274 	}
3275 	clones_left = spa_livelist_delete_check(spa);
3276 	return ((used != 0) || (clones_left));
3277 }
3278 
3279 static boolean_t
3280 dsl_scan_check_deferred(vdev_t *vd)
3281 {
3282 	boolean_t need_resilver = B_FALSE;
3283 
3284 	for (int c = 0; c < vd->vdev_children; c++) {
3285 		need_resilver |=
3286 		    dsl_scan_check_deferred(vd->vdev_child[c]);
3287 	}
3288 
3289 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3290 	    !vd->vdev_ops->vdev_op_leaf)
3291 		return (need_resilver);
3292 
3293 	if (!vd->vdev_resilver_deferred)
3294 		need_resilver = B_TRUE;
3295 
3296 	return (need_resilver);
3297 }
3298 
3299 static boolean_t
3300 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3301     uint64_t phys_birth)
3302 {
3303 	vdev_t *vd;
3304 
3305 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3306 
3307 	if (vd->vdev_ops == &vdev_indirect_ops) {
3308 		/*
3309 		 * The indirect vdev can point to multiple
3310 		 * vdevs.  For simplicity, always create
3311 		 * the resilver zio_t. zio_vdev_io_start()
3312 		 * will bypass the child resilver i/o's if
3313 		 * they are on vdevs that don't have DTL's.
3314 		 */
3315 		return (B_TRUE);
3316 	}
3317 
3318 	if (DVA_GET_GANG(dva)) {
3319 		/*
3320 		 * Gang members may be spread across multiple
3321 		 * vdevs, so the best estimate we have is the
3322 		 * scrub range, which has already been checked.
3323 		 * XXX -- it would be better to change our
3324 		 * allocation policy to ensure that all
3325 		 * gang members reside on the same vdev.
3326 		 */
3327 		return (B_TRUE);
3328 	}
3329 
3330 	/*
3331 	 * Check if the top-level vdev must resilver this offset.
3332 	 * When the offset does not intersect with a dirty leaf DTL
3333 	 * then it may be possible to skip the resilver IO.  The psize
3334 	 * is provided instead of asize to simplify the check for RAIDZ.
3335 	 */
3336 	if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3337 		return (B_FALSE);
3338 
3339 	/*
3340 	 * Check that this top-level vdev has a device under it which
3341 	 * is resilvering and is not deferred.
3342 	 */
3343 	if (!dsl_scan_check_deferred(vd))
3344 		return (B_FALSE);
3345 
3346 	return (B_TRUE);
3347 }
3348 
3349 static int
3350 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3351 {
3352 	dsl_scan_t *scn = dp->dp_scan;
3353 	spa_t *spa = dp->dp_spa;
3354 	int err = 0;
3355 
3356 	if (spa_suspend_async_destroy(spa))
3357 		return (0);
3358 
3359 	if (zfs_free_bpobj_enabled &&
3360 	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3361 		scn->scn_is_bptree = B_FALSE;
3362 		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3363 		scn->scn_zio_root = zio_root(spa, NULL,
3364 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3365 		err = bpobj_iterate(&dp->dp_free_bpobj,
3366 		    bpobj_dsl_scan_free_block_cb, scn, tx);
3367 		VERIFY0(zio_wait(scn->scn_zio_root));
3368 		scn->scn_zio_root = NULL;
3369 
3370 		if (err != 0 && err != ERESTART)
3371 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3372 	}
3373 
3374 	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3375 		ASSERT(scn->scn_async_destroying);
3376 		scn->scn_is_bptree = B_TRUE;
3377 		scn->scn_zio_root = zio_root(spa, NULL,
3378 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3379 		err = bptree_iterate(dp->dp_meta_objset,
3380 		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3381 		VERIFY0(zio_wait(scn->scn_zio_root));
3382 		scn->scn_zio_root = NULL;
3383 
3384 		if (err == EIO || err == ECKSUM) {
3385 			err = 0;
3386 		} else if (err != 0 && err != ERESTART) {
3387 			zfs_panic_recover("error %u from "
3388 			    "traverse_dataset_destroyed()", err);
3389 		}
3390 
3391 		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3392 			/* finished; deactivate async destroy feature */
3393 			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3394 			ASSERT(!spa_feature_is_active(spa,
3395 			    SPA_FEATURE_ASYNC_DESTROY));
3396 			VERIFY0(zap_remove(dp->dp_meta_objset,
3397 			    DMU_POOL_DIRECTORY_OBJECT,
3398 			    DMU_POOL_BPTREE_OBJ, tx));
3399 			VERIFY0(bptree_free(dp->dp_meta_objset,
3400 			    dp->dp_bptree_obj, tx));
3401 			dp->dp_bptree_obj = 0;
3402 			scn->scn_async_destroying = B_FALSE;
3403 			scn->scn_async_stalled = B_FALSE;
3404 		} else {
3405 			/*
3406 			 * If we didn't make progress, mark the async
3407 			 * destroy as stalled, so that we will not initiate
3408 			 * a spa_sync() on its behalf.  Note that we only
3409 			 * check this if we are not finished, because if the
3410 			 * bptree had no blocks for us to visit, we can
3411 			 * finish without "making progress".
3412 			 */
3413 			scn->scn_async_stalled =
3414 			    (scn->scn_visited_this_txg == 0);
3415 		}
3416 	}
3417 	if (scn->scn_visited_this_txg) {
3418 		zfs_dbgmsg("freed %llu blocks in %llums from "
3419 		    "free_bpobj/bptree txg %llu; err=%u",
3420 		    (longlong_t)scn->scn_visited_this_txg,
3421 		    (longlong_t)
3422 		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3423 		    (longlong_t)tx->tx_txg, err);
3424 		scn->scn_visited_this_txg = 0;
3425 		scn->scn_dedup_frees_this_txg = 0;
3426 
3427 		/*
3428 		 * Write out changes to the DDT that may be required as a
3429 		 * result of the blocks freed.  This ensures that the DDT
3430 		 * is clean when a scrub/resilver runs.
3431 		 */
3432 		ddt_sync(spa, tx->tx_txg);
3433 	}
3434 	if (err != 0)
3435 		return (err);
3436 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3437 	    zfs_free_leak_on_eio &&
3438 	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3439 	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3440 	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3441 		/*
3442 		 * We have finished background destroying, but there is still
3443 		 * some space left in the dp_free_dir. Transfer this leaked
3444 		 * space to the dp_leak_dir.
3445 		 */
3446 		if (dp->dp_leak_dir == NULL) {
3447 			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3448 			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3449 			    LEAK_DIR_NAME, tx);
3450 			VERIFY0(dsl_pool_open_special_dir(dp,
3451 			    LEAK_DIR_NAME, &dp->dp_leak_dir));
3452 			rrw_exit(&dp->dp_config_rwlock, FTAG);
3453 		}
3454 		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3455 		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3456 		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3457 		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3458 		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3459 		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3460 		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3461 		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3462 	}
3463 
3464 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3465 	    !spa_livelist_delete_check(spa)) {
3466 		/* finished; verify that space accounting went to zero */
3467 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3468 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3469 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3470 	}
3471 
3472 	spa_notify_waiters(spa);
3473 
3474 	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3475 	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3476 	    DMU_POOL_OBSOLETE_BPOBJ));
3477 	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3478 		ASSERT(spa_feature_is_active(dp->dp_spa,
3479 		    SPA_FEATURE_OBSOLETE_COUNTS));
3480 
3481 		scn->scn_is_bptree = B_FALSE;
3482 		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3483 		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3484 		    dsl_scan_obsolete_block_cb, scn, tx);
3485 		if (err != 0 && err != ERESTART)
3486 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3487 
3488 		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3489 			dsl_pool_destroy_obsolete_bpobj(dp, tx);
3490 	}
3491 	return (0);
3492 }
3493 
3494 /*
3495  * This is the primary entry point for scans that is called from syncing
3496  * context. Scans must happen entirely during syncing context so that we
3497  * can guarantee that blocks we are currently scanning will not change out
3498  * from under us. While a scan is active, this function controls how quickly
3499  * transaction groups proceed, instead of the normal handling provided by
3500  * txg_sync_thread().
3501  */
3502 void
3503 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3504 {
3505 	int err = 0;
3506 	dsl_scan_t *scn = dp->dp_scan;
3507 	spa_t *spa = dp->dp_spa;
3508 	state_sync_type_t sync_type = SYNC_OPTIONAL;
3509 
3510 	if (spa->spa_resilver_deferred &&
3511 	    !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3512 		spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3513 
3514 	/*
3515 	 * Check for scn_restart_txg before checking spa_load_state, so
3516 	 * that we can restart an old-style scan while the pool is being
3517 	 * imported (see dsl_scan_init). We also restart scans if there
3518 	 * is a deferred resilver and the user has manually disabled
3519 	 * deferred resilvers via the tunable.
3520 	 */
3521 	if (dsl_scan_restarting(scn, tx) ||
3522 	    (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3523 		pool_scan_func_t func = POOL_SCAN_SCRUB;
3524 		dsl_scan_done(scn, B_FALSE, tx);
3525 		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3526 			func = POOL_SCAN_RESILVER;
3527 		zfs_dbgmsg("restarting scan func=%u txg=%llu",
3528 		    func, (longlong_t)tx->tx_txg);
3529 		dsl_scan_setup_sync(&func, tx);
3530 	}
3531 
3532 	/*
3533 	 * Only process scans in sync pass 1.
3534 	 */
3535 	if (spa_sync_pass(spa) > 1)
3536 		return;
3537 
3538 	/*
3539 	 * If the spa is shutting down, then stop scanning. This will
3540 	 * ensure that the scan does not dirty any new data during the
3541 	 * shutdown phase.
3542 	 */
3543 	if (spa_shutting_down(spa))
3544 		return;
3545 
3546 	/*
3547 	 * If the scan is inactive due to a stalled async destroy, try again.
3548 	 */
3549 	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3550 		return;
3551 
3552 	/* reset scan statistics */
3553 	scn->scn_visited_this_txg = 0;
3554 	scn->scn_dedup_frees_this_txg = 0;
3555 	scn->scn_holes_this_txg = 0;
3556 	scn->scn_lt_min_this_txg = 0;
3557 	scn->scn_gt_max_this_txg = 0;
3558 	scn->scn_ddt_contained_this_txg = 0;
3559 	scn->scn_objsets_visited_this_txg = 0;
3560 	scn->scn_avg_seg_size_this_txg = 0;
3561 	scn->scn_segs_this_txg = 0;
3562 	scn->scn_avg_zio_size_this_txg = 0;
3563 	scn->scn_zios_this_txg = 0;
3564 	scn->scn_suspending = B_FALSE;
3565 	scn->scn_sync_start_time = gethrtime();
3566 	spa->spa_scrub_active = B_TRUE;
3567 
3568 	/*
3569 	 * First process the async destroys.  If we suspend, don't do
3570 	 * any scrubbing or resilvering.  This ensures that there are no
3571 	 * async destroys while we are scanning, so the scan code doesn't
3572 	 * have to worry about traversing it.  It is also faster to free the
3573 	 * blocks than to scrub them.
3574 	 */
3575 	err = dsl_process_async_destroys(dp, tx);
3576 	if (err != 0)
3577 		return;
3578 
3579 	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3580 		return;
3581 
3582 	/*
3583 	 * Wait a few txgs after importing to begin scanning so that
3584 	 * we can get the pool imported quickly.
3585 	 */
3586 	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3587 		return;
3588 
3589 	/*
3590 	 * zfs_scan_suspend_progress can be set to disable scan progress.
3591 	 * We don't want to spin the txg_sync thread, so we add a delay
3592 	 * here to simulate the time spent doing a scan. This is mostly
3593 	 * useful for testing and debugging.
3594 	 */
3595 	if (zfs_scan_suspend_progress) {
3596 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3597 		int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3598 		    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3599 
3600 		while (zfs_scan_suspend_progress &&
3601 		    !txg_sync_waiting(scn->scn_dp) &&
3602 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
3603 		    NSEC2MSEC(scan_time_ns) < mintime) {
3604 			delay(hz);
3605 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3606 		}
3607 		return;
3608 	}
3609 
3610 	/*
3611 	 * It is possible to switch from unsorted to sorted at any time,
3612 	 * but afterwards the scan will remain sorted unless reloaded from
3613 	 * a checkpoint after a reboot.
3614 	 */
3615 	if (!zfs_scan_legacy) {
3616 		scn->scn_is_sorted = B_TRUE;
3617 		if (scn->scn_last_checkpoint == 0)
3618 			scn->scn_last_checkpoint = ddi_get_lbolt();
3619 	}
3620 
3621 	/*
3622 	 * For sorted scans, determine what kind of work we will be doing
3623 	 * this txg based on our memory limitations and whether or not we
3624 	 * need to perform a checkpoint.
3625 	 */
3626 	if (scn->scn_is_sorted) {
3627 		/*
3628 		 * If we are over our checkpoint interval, set scn_clearing
3629 		 * so that we can begin checkpointing immediately. The
3630 		 * checkpoint allows us to save a consistent bookmark
3631 		 * representing how much data we have scrubbed so far.
3632 		 * Otherwise, use the memory limit to determine if we should
3633 		 * scan for metadata or start issue scrub IOs. We accumulate
3634 		 * metadata until we hit our hard memory limit at which point
3635 		 * we issue scrub IOs until we are at our soft memory limit.
3636 		 */
3637 		if (scn->scn_checkpointing ||
3638 		    ddi_get_lbolt() - scn->scn_last_checkpoint >
3639 		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3640 			if (!scn->scn_checkpointing)
3641 				zfs_dbgmsg("begin scan checkpoint");
3642 
3643 			scn->scn_checkpointing = B_TRUE;
3644 			scn->scn_clearing = B_TRUE;
3645 		} else {
3646 			boolean_t should_clear = dsl_scan_should_clear(scn);
3647 			if (should_clear && !scn->scn_clearing) {
3648 				zfs_dbgmsg("begin scan clearing");
3649 				scn->scn_clearing = B_TRUE;
3650 			} else if (!should_clear && scn->scn_clearing) {
3651 				zfs_dbgmsg("finish scan clearing");
3652 				scn->scn_clearing = B_FALSE;
3653 			}
3654 		}
3655 	} else {
3656 		ASSERT0(scn->scn_checkpointing);
3657 		ASSERT0(scn->scn_clearing);
3658 	}
3659 
3660 	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3661 		/* Need to scan metadata for more blocks to scrub */
3662 		dsl_scan_phys_t *scnp = &scn->scn_phys;
3663 		taskqid_t prefetch_tqid;
3664 		uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
3665 		uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);
3666 
3667 		/*
3668 		 * Recalculate the max number of in-flight bytes for pool-wide
3669 		 * scanning operations (minimum 1MB). Limits for the issuing
3670 		 * phase are done per top-level vdev and are handled separately.
3671 		 */
3672 		scn->scn_maxinflight_bytes =
3673 		    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
3674 
3675 		if (scnp->scn_ddt_bookmark.ddb_class <=
3676 		    scnp->scn_ddt_class_max) {
3677 			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3678 			zfs_dbgmsg("doing scan sync txg %llu; "
3679 			    "ddt bm=%llu/%llu/%llu/%llx",
3680 			    (longlong_t)tx->tx_txg,
3681 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3682 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3683 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3684 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3685 		} else {
3686 			zfs_dbgmsg("doing scan sync txg %llu; "
3687 			    "bm=%llu/%llu/%llu/%llu",
3688 			    (longlong_t)tx->tx_txg,
3689 			    (longlong_t)scnp->scn_bookmark.zb_objset,
3690 			    (longlong_t)scnp->scn_bookmark.zb_object,
3691 			    (longlong_t)scnp->scn_bookmark.zb_level,
3692 			    (longlong_t)scnp->scn_bookmark.zb_blkid);
3693 		}
3694 
3695 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3696 		    NULL, ZIO_FLAG_CANFAIL);
3697 
3698 		scn->scn_prefetch_stop = B_FALSE;
3699 		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3700 		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3701 		ASSERT(prefetch_tqid != TASKQID_INVALID);
3702 
3703 		dsl_pool_config_enter(dp, FTAG);
3704 		dsl_scan_visit(scn, tx);
3705 		dsl_pool_config_exit(dp, FTAG);
3706 
3707 		mutex_enter(&dp->dp_spa->spa_scrub_lock);
3708 		scn->scn_prefetch_stop = B_TRUE;
3709 		cv_broadcast(&spa->spa_scrub_io_cv);
3710 		mutex_exit(&dp->dp_spa->spa_scrub_lock);
3711 
3712 		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3713 		(void) zio_wait(scn->scn_zio_root);
3714 		scn->scn_zio_root = NULL;
3715 
3716 		zfs_dbgmsg("scan visited %llu blocks in %llums "
3717 		    "(%llu os's, %llu holes, %llu < mintxg, "
3718 		    "%llu in ddt, %llu > maxtxg)",
3719 		    (longlong_t)scn->scn_visited_this_txg,
3720 		    (longlong_t)NSEC2MSEC(gethrtime() -
3721 		    scn->scn_sync_start_time),
3722 		    (longlong_t)scn->scn_objsets_visited_this_txg,
3723 		    (longlong_t)scn->scn_holes_this_txg,
3724 		    (longlong_t)scn->scn_lt_min_this_txg,
3725 		    (longlong_t)scn->scn_ddt_contained_this_txg,
3726 		    (longlong_t)scn->scn_gt_max_this_txg);
3727 
3728 		if (!scn->scn_suspending) {
3729 			ASSERT0(avl_numnodes(&scn->scn_queue));
3730 			scn->scn_done_txg = tx->tx_txg + 1;
3731 			if (scn->scn_is_sorted) {
3732 				scn->scn_checkpointing = B_TRUE;
3733 				scn->scn_clearing = B_TRUE;
3734 			}
3735 			zfs_dbgmsg("scan complete txg %llu",
3736 			    (longlong_t)tx->tx_txg);
3737 		}
3738 	} else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
3739 		ASSERT(scn->scn_clearing);
3740 
3741 		/* need to issue scrubbing IOs from per-vdev queues */
3742 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3743 		    NULL, ZIO_FLAG_CANFAIL);
3744 		scan_io_queues_run(scn);
3745 		(void) zio_wait(scn->scn_zio_root);
3746 		scn->scn_zio_root = NULL;
3747 
3748 		/* calculate and dprintf the current memory usage */
3749 		(void) dsl_scan_should_clear(scn);
3750 		dsl_scan_update_stats(scn);
3751 
3752 		zfs_dbgmsg("scan issued %llu blocks (%llu segs) in %llums "
3753 		    "(avg_block_size = %llu, avg_seg_size = %llu)",
3754 		    (longlong_t)scn->scn_zios_this_txg,
3755 		    (longlong_t)scn->scn_segs_this_txg,
3756 		    (longlong_t)NSEC2MSEC(gethrtime() -
3757 		    scn->scn_sync_start_time),
3758 		    (longlong_t)scn->scn_avg_zio_size_this_txg,
3759 		    (longlong_t)scn->scn_avg_seg_size_this_txg);
3760 	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3761 		/* Finished with everything. Mark the scrub as complete */
3762 		zfs_dbgmsg("scan issuing complete txg %llu",
3763 		    (longlong_t)tx->tx_txg);
3764 		ASSERT3U(scn->scn_done_txg, !=, 0);
3765 		ASSERT0(spa->spa_scrub_inflight);
3766 		ASSERT0(scn->scn_bytes_pending);
3767 		dsl_scan_done(scn, B_TRUE, tx);
3768 		sync_type = SYNC_MANDATORY;
3769 	}
3770 
3771 	dsl_scan_sync_state(scn, tx, sync_type);
3772 }
3773 
3774 static void
3775 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
3776 {
3777 	int i;
3778 
3779 	/*
3780 	 * Don't count embedded bp's, since we already did the work of
3781 	 * scanning these when we scanned the containing block.
3782 	 */
3783 	if (BP_IS_EMBEDDED(bp))
3784 		return;
3785 
3786 	/*
3787 	 * Update the spa's stats on how many bytes we have issued.
3788 	 * Sequential scrubs create a zio for each DVA of the bp. Each
3789 	 * of these will include all DVAs for repair purposes, but the
3790 	 * zio code will only try the first one unless there is an issue.
3791 	 * Therefore, we should only count the first DVA for these IOs.
3792 	 */
3793 	if (scn->scn_is_sorted) {
3794 		atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
3795 		    DVA_GET_ASIZE(&bp->blk_dva[0]));
3796 	} else {
3797 		spa_t *spa = scn->scn_dp->dp_spa;
3798 
3799 		for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3800 			atomic_add_64(&spa->spa_scan_pass_issued,
3801 			    DVA_GET_ASIZE(&bp->blk_dva[i]));
3802 		}
3803 	}
3804 
3805 	/*
3806 	 * If we resume after a reboot, zab will be NULL; don't record
3807 	 * incomplete stats in that case.
3808 	 */
3809 	if (zab == NULL)
3810 		return;
3811 
3812 	mutex_enter(&zab->zab_lock);
3813 
3814 	for (i = 0; i < 4; i++) {
3815 		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3816 		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3817 
3818 		if (t & DMU_OT_NEWTYPE)
3819 			t = DMU_OT_OTHER;
3820 		zfs_blkstat_t *zb = &zab->zab_type[l][t];
3821 		int equal;
3822 
3823 		zb->zb_count++;
3824 		zb->zb_asize += BP_GET_ASIZE(bp);
3825 		zb->zb_lsize += BP_GET_LSIZE(bp);
3826 		zb->zb_psize += BP_GET_PSIZE(bp);
3827 		zb->zb_gangs += BP_COUNT_GANG(bp);
3828 
3829 		switch (BP_GET_NDVAS(bp)) {
3830 		case 2:
3831 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3832 			    DVA_GET_VDEV(&bp->blk_dva[1]))
3833 				zb->zb_ditto_2_of_2_samevdev++;
3834 			break;
3835 		case 3:
3836 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3837 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
3838 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3839 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
3840 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3841 			    DVA_GET_VDEV(&bp->blk_dva[2]));
3842 			if (equal == 1)
3843 				zb->zb_ditto_2_of_3_samevdev++;
3844 			else if (equal == 3)
3845 				zb->zb_ditto_3_of_3_samevdev++;
3846 			break;
3847 		}
3848 	}
3849 
3850 	mutex_exit(&zab->zab_lock);
3851 }
3852 
3853 static void
3854 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3855 {
3856 	avl_index_t idx;
3857 	int64_t asize = SIO_GET_ASIZE(sio);
3858 	dsl_scan_t *scn = queue->q_scn;
3859 
3860 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3861 
3862 	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3863 		/* block is already scheduled for reading */
3864 		atomic_add_64(&scn->scn_bytes_pending, -asize);
3865 		sio_free(sio);
3866 		return;
3867 	}
3868 	avl_insert(&queue->q_sios_by_addr, sio, idx);
3869 	queue->q_sio_memused += SIO_GET_MUSED(sio);
3870 	range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
3871 }
3872 
3873 /*
3874  * Given all the info we got from our metadata scanning process, we
3875  * construct a scan_io_t and insert it into the scan sorting queue. The
3876  * I/O must already be suitable for us to process. This is controlled
3877  * by dsl_scan_enqueue().
3878  */
3879 static void
3880 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3881     int zio_flags, const zbookmark_phys_t *zb)
3882 {
3883 	dsl_scan_t *scn = queue->q_scn;
3884 	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3885 
3886 	ASSERT0(BP_IS_GANG(bp));
3887 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3888 
3889 	bp2sio(bp, sio, dva_i);
3890 	sio->sio_flags = zio_flags;
3891 	sio->sio_zb = *zb;
3892 
3893 	/*
3894 	 * Increment the bytes pending counter now so that we can't
3895 	 * get an integer underflow in case the worker processes the
3896 	 * zio before we get to incrementing this counter.
3897 	 */
3898 	atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
3899 
3900 	scan_io_queue_insert_impl(queue, sio);
3901 }
3902 
3903 /*
3904  * Given a set of I/O parameters as discovered by the metadata traversal
3905  * process, attempts to place the I/O into the sorted queues (if allowed),
3906  * or immediately executes the I/O.
3907  */
3908 static void
3909 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3910     const zbookmark_phys_t *zb)
3911 {
3912 	spa_t *spa = dp->dp_spa;
3913 
3914 	ASSERT(!BP_IS_EMBEDDED(bp));
3915 
3916 	/*
3917 	 * Gang blocks are hard to issue sequentially, so we just issue them
3918 	 * here immediately instead of queuing them.
3919 	 */
3920 	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3921 		scan_exec_io(dp, bp, zio_flags, zb, NULL);
3922 		return;
3923 	}
3924 
3925 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3926 		dva_t dva;
3927 		vdev_t *vdev;
3928 
3929 		dva = bp->blk_dva[i];
3930 		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3931 		ASSERT(vdev != NULL);
3932 
3933 		mutex_enter(&vdev->vdev_scan_io_queue_lock);
3934 		if (vdev->vdev_scan_io_queue == NULL)
3935 			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3936 		ASSERT(dp->dp_scan != NULL);
3937 		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3938 		    i, zio_flags, zb);
3939 		mutex_exit(&vdev->vdev_scan_io_queue_lock);
3940 	}
3941 }
3942 
3943 static int
3944 dsl_scan_scrub_cb(dsl_pool_t *dp,
3945     const blkptr_t *bp, const zbookmark_phys_t *zb)
3946 {
3947 	dsl_scan_t *scn = dp->dp_scan;
3948 	spa_t *spa = dp->dp_spa;
3949 	uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3950 	size_t psize = BP_GET_PSIZE(bp);
3951 	boolean_t needs_io = B_FALSE;
3952 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3953 
3954 
3955 	if (phys_birth <= scn->scn_phys.scn_min_txg ||
3956 	    phys_birth >= scn->scn_phys.scn_max_txg) {
3957 		count_block(scn, dp->dp_blkstats, bp);
3958 		return (0);
3959 	}
3960 
3961 	/* Embedded BP's have phys_birth==0, so we reject them above. */
3962 	ASSERT(!BP_IS_EMBEDDED(bp));
3963 
3964 	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
3965 	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
3966 		zio_flags |= ZIO_FLAG_SCRUB;
3967 		needs_io = B_TRUE;
3968 	} else {
3969 		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
3970 		zio_flags |= ZIO_FLAG_RESILVER;
3971 		needs_io = B_FALSE;
3972 	}
3973 
3974 	/* If it's an intent log block, failure is expected. */
3975 	if (zb->zb_level == ZB_ZIL_LEVEL)
3976 		zio_flags |= ZIO_FLAG_SPECULATIVE;
3977 
3978 	for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
3979 		const dva_t *dva = &bp->blk_dva[d];
3980 
3981 		/*
3982 		 * Keep track of how much data we've examined so that
3983 		 * zpool(8) status can make useful progress reports.
3984 		 */
3985 		scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
3986 		spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
3987 
3988 		/* if it's a resilver, this may not be in the target range */
3989 		if (!needs_io)
3990 			needs_io = dsl_scan_need_resilver(spa, dva, psize,
3991 			    phys_birth);
3992 	}
3993 
3994 	if (needs_io && !zfs_no_scrub_io) {
3995 		dsl_scan_enqueue(dp, bp, zio_flags, zb);
3996 	} else {
3997 		count_block(scn, dp->dp_blkstats, bp);
3998 	}
3999 
4000 	/* do not relocate this block */
4001 	return (0);
4002 }
4003 
4004 static void
4005 dsl_scan_scrub_done(zio_t *zio)
4006 {
4007 	spa_t *spa = zio->io_spa;
4008 	blkptr_t *bp = zio->io_bp;
4009 	dsl_scan_io_queue_t *queue = zio->io_private;
4010 
4011 	abd_free(zio->io_abd);
4012 
4013 	if (queue == NULL) {
4014 		mutex_enter(&spa->spa_scrub_lock);
4015 		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4016 		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4017 		cv_broadcast(&spa->spa_scrub_io_cv);
4018 		mutex_exit(&spa->spa_scrub_lock);
4019 	} else {
4020 		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4021 		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4022 		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4023 		cv_broadcast(&queue->q_zio_cv);
4024 		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4025 	}
4026 
4027 	if (zio->io_error && (zio->io_error != ECKSUM ||
4028 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4029 		atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
4030 	}
4031 }
4032 
4033 /*
4034  * Given a scanning zio's information, executes the zio. The zio need
4035  * not necessarily be only sortable, this function simply executes the
4036  * zio, no matter what it is. The optional queue argument allows the
4037  * caller to specify that they want per top level vdev IO rate limiting
4038  * instead of the legacy global limiting.
4039  */
4040 static void
4041 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4042     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4043 {
4044 	spa_t *spa = dp->dp_spa;
4045 	dsl_scan_t *scn = dp->dp_scan;
4046 	size_t size = BP_GET_PSIZE(bp);
4047 	abd_t *data = abd_alloc_for_io(size, B_FALSE);
4048 
4049 	ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4050 
4051 	if (queue == NULL) {
4052 		mutex_enter(&spa->spa_scrub_lock);
4053 		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4054 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4055 		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4056 		mutex_exit(&spa->spa_scrub_lock);
4057 	} else {
4058 		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4059 
4060 		mutex_enter(q_lock);
4061 		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4062 			cv_wait(&queue->q_zio_cv, q_lock);
4063 		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4064 		mutex_exit(q_lock);
4065 	}
4066 
4067 	count_block(scn, dp->dp_blkstats, bp);
4068 	zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size,
4069 	    dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4070 }
4071 
4072 /*
4073  * This is the primary extent sorting algorithm. We balance two parameters:
4074  * 1) how many bytes of I/O are in an extent
4075  * 2) how well the extent is filled with I/O (as a fraction of its total size)
4076  * Since we allow extents to have gaps between their constituent I/Os, it's
4077  * possible to have a fairly large extent that contains the same amount of
4078  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4079  * The algorithm sorts based on a score calculated from the extent's size,
4080  * the relative fill volume (in %) and a "fill weight" parameter that controls
4081  * the split between whether we prefer larger extents or more well populated
4082  * extents:
4083  *
4084  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4085  *
4086  * Example:
4087  * 1) assume extsz = 64 MiB
4088  * 2) assume fill = 32 MiB (extent is half full)
4089  * 3) assume fill_weight = 3
4090  * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4091  *	SCORE = 32M + (50 * 3 * 32M) / 100
4092  *	SCORE = 32M + (4800M / 100)
4093  *	SCORE = 32M + 48M
4094  *	         ^     ^
4095  *	         |     +--- final total relative fill-based score
4096  *	         +--------- final total fill-based score
4097  *	SCORE = 80M
4098  *
4099  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4100  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4101  * Note that as an optimization, we replace multiplication and division by
4102  * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4103  */
4104 static int
4105 ext_size_compare(const void *x, const void *y)
4106 {
4107 	const range_seg_gap_t *rsa = x, *rsb = y;
4108 
4109 	uint64_t sa = rsa->rs_end - rsa->rs_start;
4110 	uint64_t sb = rsb->rs_end - rsb->rs_start;
4111 	uint64_t score_a, score_b;
4112 
4113 	score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
4114 	    fill_weight * rsa->rs_fill) >> 7);
4115 	score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
4116 	    fill_weight * rsb->rs_fill) >> 7);
4117 
4118 	if (score_a > score_b)
4119 		return (-1);
4120 	if (score_a == score_b) {
4121 		if (rsa->rs_start < rsb->rs_start)
4122 			return (-1);
4123 		if (rsa->rs_start == rsb->rs_start)
4124 			return (0);
4125 		return (1);
4126 	}
4127 	return (1);
4128 }
4129 
4130 /*
4131  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4132  * based on LBA-order (from lowest to highest).
4133  */
4134 static int
4135 sio_addr_compare(const void *x, const void *y)
4136 {
4137 	const scan_io_t *a = x, *b = y;
4138 
4139 	return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4140 }
4141 
4142 /* IO queues are created on demand when they are needed. */
4143 static dsl_scan_io_queue_t *
4144 scan_io_queue_create(vdev_t *vd)
4145 {
4146 	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4147 	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4148 
4149 	q->q_scn = scn;
4150 	q->q_vd = vd;
4151 	q->q_sio_memused = 0;
4152 	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4153 	q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP,
4154 	    &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap);
4155 	avl_create(&q->q_sios_by_addr, sio_addr_compare,
4156 	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
4157 
4158 	return (q);
4159 }
4160 
4161 /*
4162  * Destroys a scan queue and all segments and scan_io_t's contained in it.
4163  * No further execution of I/O occurs, anything pending in the queue is
4164  * simply freed without being executed.
4165  */
4166 void
4167 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4168 {
4169 	dsl_scan_t *scn = queue->q_scn;
4170 	scan_io_t *sio;
4171 	void *cookie = NULL;
4172 	int64_t bytes_dequeued = 0;
4173 
4174 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4175 
4176 	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
4177 	    NULL) {
4178 		ASSERT(range_tree_contains(queue->q_exts_by_addr,
4179 		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
4180 		bytes_dequeued += SIO_GET_ASIZE(sio);
4181 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4182 		sio_free(sio);
4183 	}
4184 
4185 	ASSERT0(queue->q_sio_memused);
4186 	atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
4187 	range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
4188 	range_tree_destroy(queue->q_exts_by_addr);
4189 	avl_destroy(&queue->q_sios_by_addr);
4190 	cv_destroy(&queue->q_zio_cv);
4191 
4192 	kmem_free(queue, sizeof (*queue));
4193 }
4194 
4195 /*
4196  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4197  * called on behalf of vdev_top_transfer when creating or destroying
4198  * a mirror vdev due to zpool attach/detach.
4199  */
4200 void
4201 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
4202 {
4203 	mutex_enter(&svd->vdev_scan_io_queue_lock);
4204 	mutex_enter(&tvd->vdev_scan_io_queue_lock);
4205 
4206 	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
4207 	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
4208 	svd->vdev_scan_io_queue = NULL;
4209 	if (tvd->vdev_scan_io_queue != NULL)
4210 		tvd->vdev_scan_io_queue->q_vd = tvd;
4211 
4212 	mutex_exit(&tvd->vdev_scan_io_queue_lock);
4213 	mutex_exit(&svd->vdev_scan_io_queue_lock);
4214 }
4215 
4216 static void
4217 scan_io_queues_destroy(dsl_scan_t *scn)
4218 {
4219 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4220 
4221 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4222 		vdev_t *tvd = rvd->vdev_child[i];
4223 
4224 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
4225 		if (tvd->vdev_scan_io_queue != NULL)
4226 			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4227 		tvd->vdev_scan_io_queue = NULL;
4228 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
4229 	}
4230 }
4231 
4232 static void
4233 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4234 {
4235 	dsl_pool_t *dp = spa->spa_dsl_pool;
4236 	dsl_scan_t *scn = dp->dp_scan;
4237 	vdev_t *vdev;
4238 	kmutex_t *q_lock;
4239 	dsl_scan_io_queue_t *queue;
4240 	scan_io_t *srch_sio, *sio;
4241 	avl_index_t idx;
4242 	uint64_t start, size;
4243 
4244 	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4245 	ASSERT(vdev != NULL);
4246 	q_lock = &vdev->vdev_scan_io_queue_lock;
4247 	queue = vdev->vdev_scan_io_queue;
4248 
4249 	mutex_enter(q_lock);
4250 	if (queue == NULL) {
4251 		mutex_exit(q_lock);
4252 		return;
4253 	}
4254 
4255 	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4256 	bp2sio(bp, srch_sio, dva_i);
4257 	start = SIO_GET_OFFSET(srch_sio);
4258 	size = SIO_GET_ASIZE(srch_sio);
4259 
4260 	/*
4261 	 * We can find the zio in two states:
4262 	 * 1) Cold, just sitting in the queue of zio's to be issued at
4263 	 *	some point in the future. In this case, all we do is
4264 	 *	remove the zio from the q_sios_by_addr tree, decrement
4265 	 *	its data volume from the containing range_seg_t and
4266 	 *	resort the q_exts_by_size tree to reflect that the
4267 	 *	range_seg_t has lost some of its 'fill'. We don't shorten
4268 	 *	the range_seg_t - this is usually rare enough not to be
4269 	 *	worth the extra hassle of trying keep track of precise
4270 	 *	extent boundaries.
4271 	 * 2) Hot, where the zio is currently in-flight in
4272 	 *	dsl_scan_issue_ios. In this case, we can't simply
4273 	 *	reach in and stop the in-flight zio's, so we instead
4274 	 *	block the caller. Eventually, dsl_scan_issue_ios will
4275 	 *	be done with issuing the zio's it gathered and will
4276 	 *	signal us.
4277 	 */
4278 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4279 	sio_free(srch_sio);
4280 
4281 	if (sio != NULL) {
4282 		int64_t asize = SIO_GET_ASIZE(sio);
4283 		blkptr_t tmpbp;
4284 
4285 		/* Got it while it was cold in the queue */
4286 		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4287 		ASSERT3U(size, ==, asize);
4288 		avl_remove(&queue->q_sios_by_addr, sio);
4289 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4290 
4291 		ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4292 		range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4293 
4294 		/*
4295 		 * We only update scn_bytes_pending in the cold path,
4296 		 * otherwise it will already have been accounted for as
4297 		 * part of the zio's execution.
4298 		 */
4299 		atomic_add_64(&scn->scn_bytes_pending, -asize);
4300 
4301 		/* count the block as though we issued it */
4302 		sio2bp(sio, &tmpbp);
4303 		count_block(scn, dp->dp_blkstats, &tmpbp);
4304 
4305 		sio_free(sio);
4306 	}
4307 	mutex_exit(q_lock);
4308 }
4309 
4310 /*
4311  * Callback invoked when a zio_free() zio is executing. This needs to be
4312  * intercepted to prevent the zio from deallocating a particular portion
4313  * of disk space and it then getting reallocated and written to, while we
4314  * still have it queued up for processing.
4315  */
4316 void
4317 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4318 {
4319 	dsl_pool_t *dp = spa->spa_dsl_pool;
4320 	dsl_scan_t *scn = dp->dp_scan;
4321 
4322 	ASSERT(!BP_IS_EMBEDDED(bp));
4323 	ASSERT(scn != NULL);
4324 	if (!dsl_scan_is_running(scn))
4325 		return;
4326 
4327 	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4328 		dsl_scan_freed_dva(spa, bp, i);
4329 }
4330 
4331 /*
4332  * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
4333  * not started, start it. Otherwise, only restart if max txg in DTL range is
4334  * greater than the max txg in the current scan. If the DTL max is less than
4335  * the scan max, then the vdev has not missed any new data since the resilver
4336  * started, so a restart is not needed.
4337  */
4338 void
4339 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
4340 {
4341 	uint64_t min, max;
4342 
4343 	if (!vdev_resilver_needed(vd, &min, &max))
4344 		return;
4345 
4346 	if (!dsl_scan_resilvering(dp)) {
4347 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4348 		return;
4349 	}
4350 
4351 	if (max <= dp->dp_scan->scn_phys.scn_max_txg)
4352 		return;
4353 
4354 	/* restart is needed, check if it can be deferred */
4355 	if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4356 		vdev_defer_resilver(vd);
4357 	else
4358 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4359 }
4360 
4361 /* BEGIN CSTYLED */
4362 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW,
4363 	"Max bytes in flight per leaf vdev for scrubs and resilvers");
4364 
4365 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW,
4366 	"Min millisecs to scrub per txg");
4367 
4368 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW,
4369 	"Min millisecs to obsolete per txg");
4370 
4371 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW,
4372 	"Min millisecs to free per txg");
4373 
4374 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW,
4375 	"Min millisecs to resilver per txg");
4376 
4377 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
4378 	"Set to prevent scans from progressing");
4379 
4380 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
4381 	"Set to disable scrub I/O");
4382 
4383 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
4384 	"Set to disable scrub prefetching");
4385 
4386 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW,
4387 	"Max number of blocks freed in one txg");
4388 
4389 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW,
4390 	"Max number of dedup blocks freed in one txg");
4391 
4392 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
4393 	"Enable processing of the free_bpobj");
4394 
4395 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW,
4396 	"Fraction of RAM for scan hard limit");
4397 
4398 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW,
4399 	"IO issuing strategy during scrubbing. "
4400 	"0 = default, 1 = LBA, 2 = size");
4401 
4402 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
4403 	"Scrub using legacy non-sequential method");
4404 
4405 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW,
4406 	"Scan progress on-disk checkpointing interval");
4407 
4408 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW,
4409 	"Max gap in bytes between sequential scrub / resilver I/Os");
4410 
4411 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW,
4412 	"Fraction of hard limit used as soft limit");
4413 
4414 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
4415 	"Tunable to attempt to reduce lock contention");
4416 
4417 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW,
4418 	"Tunable to adjust bias towards more filled segments during scans");
4419 
4420 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
4421 	"Process all resilvers immediately");
4422 /* END CSTYLED */
4423