1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 27 * Copyright 2019 Joyent, Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/arc_impl.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/zfs_context.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/zfs_znode.h> 46 #include <sys/spa_impl.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/zil_impl.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/brt.h> 51 #include <sys/ddt.h> 52 #include <sys/sa.h> 53 #include <sys/sa_impl.h> 54 #include <sys/zfeature.h> 55 #include <sys/abd.h> 56 #include <sys/range_tree.h> 57 #include <sys/dbuf.h> 58 #ifdef _KERNEL 59 #include <sys/zfs_vfsops.h> 60 #endif 61 62 /* 63 * Grand theory statement on scan queue sorting 64 * 65 * Scanning is implemented by recursively traversing all indirection levels 66 * in an object and reading all blocks referenced from said objects. This 67 * results in us approximately traversing the object from lowest logical 68 * offset to the highest. For best performance, we would want the logical 69 * blocks to be physically contiguous. However, this is frequently not the 70 * case with pools given the allocation patterns of copy-on-write filesystems. 71 * So instead, we put the I/Os into a reordering queue and issue them in a 72 * way that will most benefit physical disks (LBA-order). 73 * 74 * Queue management: 75 * 76 * Ideally, we would want to scan all metadata and queue up all block I/O 77 * prior to starting to issue it, because that allows us to do an optimal 78 * sorting job. This can however consume large amounts of memory. Therefore 79 * we continuously monitor the size of the queues and constrain them to 5% 80 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 81 * limit, we clear out a few of the largest extents at the head of the queues 82 * to make room for more scanning. Hopefully, these extents will be fairly 83 * large and contiguous, allowing us to approach sequential I/O throughput 84 * even without a fully sorted tree. 85 * 86 * Metadata scanning takes place in dsl_scan_visit(), which is called from 87 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 88 * metadata on the pool, or we need to make room in memory because our 89 * queues are too large, dsl_scan_visit() is postponed and 90 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 91 * that metadata scanning and queued I/O issuing are mutually exclusive. This 92 * allows us to provide maximum sequential I/O throughput for the majority of 93 * I/O's issued since sequential I/O performance is significantly negatively 94 * impacted if it is interleaved with random I/O. 95 * 96 * Implementation Notes 97 * 98 * One side effect of the queued scanning algorithm is that the scanning code 99 * needs to be notified whenever a block is freed. This is needed to allow 100 * the scanning code to remove these I/Os from the issuing queue. Additionally, 101 * we do not attempt to queue gang blocks to be issued sequentially since this 102 * is very hard to do and would have an extremely limited performance benefit. 103 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 104 * algorithm. 105 * 106 * Backwards compatibility 107 * 108 * This new algorithm is backwards compatible with the legacy on-disk data 109 * structures (and therefore does not require a new feature flag). 110 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 111 * will stop scanning metadata (in logical order) and wait for all outstanding 112 * sorted I/O to complete. Once this is done, we write out a checkpoint 113 * bookmark, indicating that we have scanned everything logically before it. 114 * If the pool is imported on a machine without the new sorting algorithm, 115 * the scan simply resumes from the last checkpoint using the legacy algorithm. 116 */ 117 118 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 119 const zbookmark_phys_t *); 120 121 static scan_cb_t dsl_scan_scrub_cb; 122 123 static int scan_ds_queue_compare(const void *a, const void *b); 124 static int scan_prefetch_queue_compare(const void *a, const void *b); 125 static void scan_ds_queue_clear(dsl_scan_t *scn); 126 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 127 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 128 uint64_t *txg); 129 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 130 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 131 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 132 static uint64_t dsl_scan_count_data_disks(spa_t *spa); 133 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb); 134 135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent; 136 static int zfs_scan_blkstats = 0; 137 138 /* 139 * 'zpool status' uses bytes processed per pass to report throughput and 140 * estimate time remaining. We define a pass to start when the scanning 141 * phase completes for a sequential resilver. Optionally, this value 142 * may be used to reset the pass statistics every N txgs to provide an 143 * estimated completion time based on currently observed performance. 144 */ 145 static uint_t zfs_scan_report_txgs = 0; 146 147 /* 148 * By default zfs will check to ensure it is not over the hard memory 149 * limit before each txg. If finer-grained control of this is needed 150 * this value can be set to 1 to enable checking before scanning each 151 * block. 152 */ 153 static int zfs_scan_strict_mem_lim = B_FALSE; 154 155 /* 156 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 157 * to strike a balance here between keeping the vdev queues full of I/Os 158 * at all times and not overflowing the queues to cause long latency, 159 * which would cause long txg sync times. No matter what, we will not 160 * overload the drives with I/O, since that is protected by 161 * zfs_vdev_scrub_max_active. 162 */ 163 static uint64_t zfs_scan_vdev_limit = 16 << 20; 164 165 static uint_t zfs_scan_issue_strategy = 0; 166 167 /* don't queue & sort zios, go direct */ 168 static int zfs_scan_legacy = B_FALSE; 169 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 170 171 /* 172 * fill_weight is non-tunable at runtime, so we copy it at module init from 173 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 174 * break queue sorting. 175 */ 176 static uint_t zfs_scan_fill_weight = 3; 177 static uint64_t fill_weight; 178 179 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 180 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 181 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 182 183 184 /* fraction of physmem */ 185 static uint_t zfs_scan_mem_lim_fact = 20; 186 187 /* fraction of mem lim above */ 188 static uint_t zfs_scan_mem_lim_soft_fact = 20; 189 190 /* minimum milliseconds to scrub per txg */ 191 static uint_t zfs_scrub_min_time_ms = 1000; 192 193 /* minimum milliseconds to obsolete per txg */ 194 static uint_t zfs_obsolete_min_time_ms = 500; 195 196 /* minimum milliseconds to free per txg */ 197 static uint_t zfs_free_min_time_ms = 1000; 198 199 /* minimum milliseconds to resilver per txg */ 200 static uint_t zfs_resilver_min_time_ms = 3000; 201 202 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */ 203 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 204 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 205 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 206 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 207 /* max number of blocks to free in a single TXG */ 208 static uint64_t zfs_async_block_max_blocks = UINT64_MAX; 209 /* max number of dedup blocks to free in a single TXG */ 210 static uint64_t zfs_max_async_dedup_frees = 100000; 211 212 /* set to disable resilver deferring */ 213 static int zfs_resilver_disable_defer = B_FALSE; 214 215 /* Don't defer a resilver if the one in progress only got this far: */ 216 static uint_t zfs_resilver_defer_percent = 10; 217 218 /* 219 * We wait a few txgs after importing a pool to begin scanning so that 220 * the import / mounting code isn't held up by scrub / resilver IO. 221 * Unfortunately, it is a bit difficult to determine exactly how long 222 * this will take since userspace will trigger fs mounts asynchronously 223 * and the kernel will create zvol minors asynchronously. As a result, 224 * the value provided here is a bit arbitrary, but represents a 225 * reasonable estimate of how many txgs it will take to finish fully 226 * importing a pool 227 */ 228 #define SCAN_IMPORT_WAIT_TXGS 5 229 230 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 231 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 232 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 233 234 /* 235 * Enable/disable the processing of the free_bpobj object. 236 */ 237 static int zfs_free_bpobj_enabled = 1; 238 239 /* Error blocks to be scrubbed in one txg. */ 240 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12; 241 242 /* the order has to match pool_scan_type */ 243 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 244 NULL, 245 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 246 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 247 }; 248 249 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 250 typedef struct { 251 uint64_t sds_dsobj; 252 uint64_t sds_txg; 253 avl_node_t sds_node; 254 } scan_ds_t; 255 256 /* 257 * This controls what conditions are placed on dsl_scan_sync_state(): 258 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0 259 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0. 260 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise 261 * write out the scn_phys_cached version. 262 * See dsl_scan_sync_state for details. 263 */ 264 typedef enum { 265 SYNC_OPTIONAL, 266 SYNC_MANDATORY, 267 SYNC_CACHED 268 } state_sync_type_t; 269 270 /* 271 * This struct represents the minimum information needed to reconstruct a 272 * zio for sequential scanning. This is useful because many of these will 273 * accumulate in the sequential IO queues before being issued, so saving 274 * memory matters here. 275 */ 276 typedef struct scan_io { 277 /* fields from blkptr_t */ 278 uint64_t sio_blk_prop; 279 uint64_t sio_phys_birth; 280 uint64_t sio_birth; 281 zio_cksum_t sio_cksum; 282 uint32_t sio_nr_dvas; 283 284 /* fields from zio_t */ 285 uint32_t sio_flags; 286 zbookmark_phys_t sio_zb; 287 288 /* members for queue sorting */ 289 union { 290 avl_node_t sio_addr_node; /* link into issuing queue */ 291 list_node_t sio_list_node; /* link for issuing to disk */ 292 } sio_nodes; 293 294 /* 295 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 296 * depending on how many were in the original bp. Only the 297 * first DVA is really used for sorting and issuing purposes. 298 * The other DVAs (if provided) simply exist so that the zio 299 * layer can find additional copies to repair from in the 300 * event of an error. This array must go at the end of the 301 * struct to allow this for the variable number of elements. 302 */ 303 dva_t sio_dva[]; 304 } scan_io_t; 305 306 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 307 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 308 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 309 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 310 #define SIO_GET_END_OFFSET(sio) \ 311 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 312 #define SIO_GET_MUSED(sio) \ 313 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 314 315 struct dsl_scan_io_queue { 316 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 317 vdev_t *q_vd; /* top-level vdev that this queue represents */ 318 zio_t *q_zio; /* scn_zio_root child for waiting on IO */ 319 320 /* trees used for sorting I/Os and extents of I/Os */ 321 range_tree_t *q_exts_by_addr; 322 zfs_btree_t q_exts_by_size; 323 avl_tree_t q_sios_by_addr; 324 uint64_t q_sio_memused; 325 uint64_t q_last_ext_addr; 326 327 /* members for zio rate limiting */ 328 uint64_t q_maxinflight_bytes; 329 uint64_t q_inflight_bytes; 330 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 331 332 /* per txg statistics */ 333 uint64_t q_total_seg_size_this_txg; 334 uint64_t q_segs_this_txg; 335 uint64_t q_total_zio_size_this_txg; 336 uint64_t q_zios_this_txg; 337 }; 338 339 /* private data for dsl_scan_prefetch_cb() */ 340 typedef struct scan_prefetch_ctx { 341 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 342 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 343 boolean_t spc_root; /* is this prefetch for an objset? */ 344 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 345 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 346 } scan_prefetch_ctx_t; 347 348 /* private data for dsl_scan_prefetch() */ 349 typedef struct scan_prefetch_issue_ctx { 350 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 351 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 352 blkptr_t spic_bp; /* bp to prefetch */ 353 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 354 } scan_prefetch_issue_ctx_t; 355 356 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 357 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 358 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 359 scan_io_t *sio); 360 361 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 362 static void scan_io_queues_destroy(dsl_scan_t *scn); 363 364 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 365 366 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 367 static void 368 sio_free(scan_io_t *sio) 369 { 370 ASSERT3U(sio->sio_nr_dvas, >, 0); 371 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 372 373 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 374 } 375 376 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 377 static scan_io_t * 378 sio_alloc(unsigned short nr_dvas) 379 { 380 ASSERT3U(nr_dvas, >, 0); 381 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 382 383 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 384 } 385 386 void 387 scan_init(void) 388 { 389 /* 390 * This is used in ext_size_compare() to weight segments 391 * based on how sparse they are. This cannot be changed 392 * mid-scan and the tree comparison functions don't currently 393 * have a mechanism for passing additional context to the 394 * compare functions. Thus we store this value globally and 395 * we only allow it to be set at module initialization time 396 */ 397 fill_weight = zfs_scan_fill_weight; 398 399 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 400 char name[36]; 401 402 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 403 sio_cache[i] = kmem_cache_create(name, 404 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 405 0, NULL, NULL, NULL, NULL, NULL, 0); 406 } 407 } 408 409 void 410 scan_fini(void) 411 { 412 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 413 kmem_cache_destroy(sio_cache[i]); 414 } 415 } 416 417 static inline boolean_t 418 dsl_scan_is_running(const dsl_scan_t *scn) 419 { 420 return (scn->scn_phys.scn_state == DSS_SCANNING); 421 } 422 423 boolean_t 424 dsl_scan_resilvering(dsl_pool_t *dp) 425 { 426 return (dsl_scan_is_running(dp->dp_scan) && 427 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 428 } 429 430 static inline void 431 sio2bp(const scan_io_t *sio, blkptr_t *bp) 432 { 433 memset(bp, 0, sizeof (*bp)); 434 bp->blk_prop = sio->sio_blk_prop; 435 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth); 436 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth); 437 bp->blk_fill = 1; /* we always only work with data pointers */ 438 bp->blk_cksum = sio->sio_cksum; 439 440 ASSERT3U(sio->sio_nr_dvas, >, 0); 441 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 442 443 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t)); 444 } 445 446 static inline void 447 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 448 { 449 sio->sio_blk_prop = bp->blk_prop; 450 sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp); 451 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp); 452 sio->sio_cksum = bp->blk_cksum; 453 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 454 455 /* 456 * Copy the DVAs to the sio. We need all copies of the block so 457 * that the self healing code can use the alternate copies if the 458 * first is corrupted. We want the DVA at index dva_i to be first 459 * in the sio since this is the primary one that we want to issue. 460 */ 461 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 462 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 463 } 464 } 465 466 int 467 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 468 { 469 int err; 470 dsl_scan_t *scn; 471 spa_t *spa = dp->dp_spa; 472 uint64_t f; 473 474 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 475 scn->scn_dp = dp; 476 477 /* 478 * It's possible that we're resuming a scan after a reboot so 479 * make sure that the scan_async_destroying flag is initialized 480 * appropriately. 481 */ 482 ASSERT(!scn->scn_async_destroying); 483 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 484 SPA_FEATURE_ASYNC_DESTROY); 485 486 /* 487 * Calculate the max number of in-flight bytes for pool-wide 488 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). 489 * Limits for the issuing phase are done per top-level vdev and 490 * are handled separately. 491 */ 492 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, 493 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); 494 495 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 496 offsetof(scan_ds_t, sds_node)); 497 mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL); 498 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 499 sizeof (scan_prefetch_issue_ctx_t), 500 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 501 502 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 503 "scrub_func", sizeof (uint64_t), 1, &f); 504 if (err == 0) { 505 /* 506 * There was an old-style scrub in progress. Restart a 507 * new-style scrub from the beginning. 508 */ 509 scn->scn_restart_txg = txg; 510 zfs_dbgmsg("old-style scrub was in progress for %s; " 511 "restarting new-style scrub in txg %llu", 512 spa->spa_name, 513 (longlong_t)scn->scn_restart_txg); 514 515 /* 516 * Load the queue obj from the old location so that it 517 * can be freed by dsl_scan_done(). 518 */ 519 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 520 "scrub_queue", sizeof (uint64_t), 1, 521 &scn->scn_phys.scn_queue_obj); 522 } else { 523 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 524 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), 525 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys); 526 527 if (err != 0 && err != ENOENT) 528 return (err); 529 530 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 531 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 532 &scn->scn_phys); 533 534 /* 535 * Detect if the pool contains the signature of #2094. If it 536 * does properly update the scn->scn_phys structure and notify 537 * the administrator by setting an errata for the pool. 538 */ 539 if (err == EOVERFLOW) { 540 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 541 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 542 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 543 (23 * sizeof (uint64_t))); 544 545 err = zap_lookup(dp->dp_meta_objset, 546 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 547 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 548 if (err == 0) { 549 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 550 551 if (overflow & ~DSL_SCAN_FLAGS_MASK || 552 scn->scn_async_destroying) { 553 spa->spa_errata = 554 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 555 return (EOVERFLOW); 556 } 557 558 memcpy(&scn->scn_phys, zaptmp, 559 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 560 scn->scn_phys.scn_flags = overflow; 561 562 /* Required scrub already in progress. */ 563 if (scn->scn_phys.scn_state == DSS_FINISHED || 564 scn->scn_phys.scn_state == DSS_CANCELED) 565 spa->spa_errata = 566 ZPOOL_ERRATA_ZOL_2094_SCRUB; 567 } 568 } 569 570 if (err == ENOENT) 571 return (0); 572 else if (err) 573 return (err); 574 575 /* 576 * We might be restarting after a reboot, so jump the issued 577 * counter to how far we've scanned. We know we're consistent 578 * up to here. 579 */ 580 scn->scn_issued_before_pass = scn->scn_phys.scn_examined - 581 scn->scn_phys.scn_skipped; 582 583 if (dsl_scan_is_running(scn) && 584 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 585 /* 586 * A new-type scrub was in progress on an old 587 * pool, and the pool was accessed by old 588 * software. Restart from the beginning, since 589 * the old software may have changed the pool in 590 * the meantime. 591 */ 592 scn->scn_restart_txg = txg; 593 zfs_dbgmsg("new-style scrub for %s was modified " 594 "by old software; restarting in txg %llu", 595 spa->spa_name, 596 (longlong_t)scn->scn_restart_txg); 597 } else if (dsl_scan_resilvering(dp)) { 598 /* 599 * If a resilver is in progress and there are already 600 * errors, restart it instead of finishing this scan and 601 * then restarting it. If there haven't been any errors 602 * then remember that the incore DTL is valid. 603 */ 604 if (scn->scn_phys.scn_errors > 0) { 605 scn->scn_restart_txg = txg; 606 zfs_dbgmsg("resilver can't excise DTL_MISSING " 607 "when finished; restarting on %s in txg " 608 "%llu", 609 spa->spa_name, 610 (u_longlong_t)scn->scn_restart_txg); 611 } else { 612 /* it's safe to excise DTL when finished */ 613 spa->spa_scrub_started = B_TRUE; 614 } 615 } 616 } 617 618 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 619 620 /* reload the queue into the in-core state */ 621 if (scn->scn_phys.scn_queue_obj != 0) { 622 zap_cursor_t zc; 623 zap_attribute_t *za = zap_attribute_alloc(); 624 625 for (zap_cursor_init(&zc, dp->dp_meta_objset, 626 scn->scn_phys.scn_queue_obj); 627 zap_cursor_retrieve(&zc, za) == 0; 628 (void) zap_cursor_advance(&zc)) { 629 scan_ds_queue_insert(scn, 630 zfs_strtonum(za->za_name, NULL), 631 za->za_first_integer); 632 } 633 zap_cursor_fini(&zc); 634 zap_attribute_free(za); 635 } 636 637 ddt_walk_init(spa, scn->scn_phys.scn_max_txg); 638 639 spa_scan_stat_init(spa); 640 vdev_scan_stat_init(spa->spa_root_vdev); 641 642 return (0); 643 } 644 645 void 646 dsl_scan_fini(dsl_pool_t *dp) 647 { 648 if (dp->dp_scan != NULL) { 649 dsl_scan_t *scn = dp->dp_scan; 650 651 if (scn->scn_taskq != NULL) 652 taskq_destroy(scn->scn_taskq); 653 654 scan_ds_queue_clear(scn); 655 avl_destroy(&scn->scn_queue); 656 mutex_destroy(&scn->scn_queue_lock); 657 scan_ds_prefetch_queue_clear(scn); 658 avl_destroy(&scn->scn_prefetch_queue); 659 660 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 661 dp->dp_scan = NULL; 662 } 663 } 664 665 static boolean_t 666 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 667 { 668 return (scn->scn_restart_txg != 0 && 669 scn->scn_restart_txg <= tx->tx_txg); 670 } 671 672 boolean_t 673 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 674 { 675 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 676 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 677 } 678 679 boolean_t 680 dsl_scan_scrubbing(const dsl_pool_t *dp) 681 { 682 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 683 684 return (scn_phys->scn_state == DSS_SCANNING && 685 scn_phys->scn_func == POOL_SCAN_SCRUB); 686 } 687 688 boolean_t 689 dsl_errorscrubbing(const dsl_pool_t *dp) 690 { 691 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys; 692 693 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING && 694 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB); 695 } 696 697 boolean_t 698 dsl_errorscrub_is_paused(const dsl_scan_t *scn) 699 { 700 return (dsl_errorscrubbing(scn->scn_dp) && 701 scn->errorscrub_phys.dep_paused_flags); 702 } 703 704 boolean_t 705 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 706 { 707 return (dsl_scan_scrubbing(scn->scn_dp) && 708 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 709 } 710 711 static void 712 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx) 713 { 714 scn->errorscrub_phys.dep_cursor = 715 zap_cursor_serialize(&scn->errorscrub_cursor); 716 717 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 718 DMU_POOL_DIRECTORY_OBJECT, 719 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS, 720 &scn->errorscrub_phys, tx)); 721 } 722 723 static void 724 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx) 725 { 726 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 727 pool_scan_func_t *funcp = arg; 728 dsl_pool_t *dp = scn->scn_dp; 729 spa_t *spa = dp->dp_spa; 730 731 ASSERT(!dsl_scan_is_running(scn)); 732 ASSERT(!dsl_errorscrubbing(scn->scn_dp)); 733 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 734 735 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys)); 736 scn->errorscrub_phys.dep_func = *funcp; 737 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING; 738 scn->errorscrub_phys.dep_start_time = gethrestime_sec(); 739 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa); 740 scn->errorscrub_phys.dep_examined = 0; 741 scn->errorscrub_phys.dep_errors = 0; 742 scn->errorscrub_phys.dep_cursor = 0; 743 zap_cursor_init_serialized(&scn->errorscrub_cursor, 744 spa->spa_meta_objset, spa->spa_errlog_last, 745 scn->errorscrub_phys.dep_cursor); 746 747 vdev_config_dirty(spa->spa_root_vdev); 748 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START); 749 750 dsl_errorscrub_sync_state(scn, tx); 751 752 spa_history_log_internal(spa, "error scrub setup", tx, 753 "func=%u mintxg=%u maxtxg=%llu", 754 *funcp, 0, (u_longlong_t)tx->tx_txg); 755 } 756 757 static int 758 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx) 759 { 760 (void) arg; 761 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 762 763 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) { 764 return (SET_ERROR(EBUSY)); 765 } 766 767 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) { 768 return (ECANCELED); 769 } 770 return (0); 771 } 772 773 /* 774 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 775 * Because we can be running in the block sorting algorithm, we do not always 776 * want to write out the record, only when it is "safe" to do so. This safety 777 * condition is achieved by making sure that the sorting queues are empty 778 * (scn_queues_pending == 0). When this condition is not true, the sync'd state 779 * is inconsistent with how much actual scanning progress has been made. The 780 * kind of sync to be performed is specified by the sync_type argument. If the 781 * sync is optional, we only sync if the queues are empty. If the sync is 782 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 783 * third possible state is a "cached" sync. This is done in response to: 784 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 785 * destroyed, so we wouldn't be able to restart scanning from it. 786 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 787 * superseded by a newer snapshot. 788 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 789 * swapped with its clone. 790 * In all cases, a cached sync simply rewrites the last record we've written, 791 * just slightly modified. For the modifications that are performed to the 792 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 793 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 794 */ 795 static void 796 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 797 { 798 int i; 799 spa_t *spa = scn->scn_dp->dp_spa; 800 801 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0); 802 if (scn->scn_queues_pending == 0) { 803 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 804 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 805 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 806 807 if (q == NULL) 808 continue; 809 810 mutex_enter(&vd->vdev_scan_io_queue_lock); 811 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 812 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 813 NULL); 814 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 815 mutex_exit(&vd->vdev_scan_io_queue_lock); 816 } 817 818 if (scn->scn_phys.scn_queue_obj != 0) 819 scan_ds_queue_sync(scn, tx); 820 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 821 DMU_POOL_DIRECTORY_OBJECT, 822 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 823 &scn->scn_phys, tx)); 824 memcpy(&scn->scn_phys_cached, &scn->scn_phys, 825 sizeof (scn->scn_phys)); 826 827 if (scn->scn_checkpointing) 828 zfs_dbgmsg("finish scan checkpoint for %s", 829 spa->spa_name); 830 831 scn->scn_checkpointing = B_FALSE; 832 scn->scn_last_checkpoint = ddi_get_lbolt(); 833 } else if (sync_type == SYNC_CACHED) { 834 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 835 DMU_POOL_DIRECTORY_OBJECT, 836 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 837 &scn->scn_phys_cached, tx)); 838 } 839 } 840 841 int 842 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 843 { 844 (void) arg; 845 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 846 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 847 848 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) || 849 dsl_errorscrubbing(scn->scn_dp)) 850 return (SET_ERROR(EBUSY)); 851 852 return (0); 853 } 854 855 void 856 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 857 { 858 (void) arg; 859 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 860 pool_scan_func_t *funcp = arg; 861 dmu_object_type_t ot = 0; 862 dsl_pool_t *dp = scn->scn_dp; 863 spa_t *spa = dp->dp_spa; 864 865 ASSERT(!dsl_scan_is_running(scn)); 866 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 867 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys)); 868 869 /* 870 * If we are starting a fresh scrub, we erase the error scrub 871 * information from disk. 872 */ 873 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys)); 874 dsl_errorscrub_sync_state(scn, tx); 875 876 scn->scn_phys.scn_func = *funcp; 877 scn->scn_phys.scn_state = DSS_SCANNING; 878 scn->scn_phys.scn_min_txg = 0; 879 scn->scn_phys.scn_max_txg = tx->tx_txg; 880 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 881 scn->scn_phys.scn_start_time = gethrestime_sec(); 882 scn->scn_phys.scn_errors = 0; 883 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 884 scn->scn_issued_before_pass = 0; 885 scn->scn_restart_txg = 0; 886 scn->scn_done_txg = 0; 887 scn->scn_last_checkpoint = 0; 888 scn->scn_checkpointing = B_FALSE; 889 spa_scan_stat_init(spa); 890 vdev_scan_stat_init(spa->spa_root_vdev); 891 892 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 893 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 894 895 /* rewrite all disk labels */ 896 vdev_config_dirty(spa->spa_root_vdev); 897 898 if (vdev_resilver_needed(spa->spa_root_vdev, 899 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 900 nvlist_t *aux = fnvlist_alloc(); 901 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 902 "healing"); 903 spa_event_notify(spa, NULL, aux, 904 ESC_ZFS_RESILVER_START); 905 nvlist_free(aux); 906 } else { 907 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 908 } 909 910 spa->spa_scrub_started = B_TRUE; 911 /* 912 * If this is an incremental scrub, limit the DDT scrub phase 913 * to just the auto-ditto class (for correctness); the rest 914 * of the scrub should go faster using top-down pruning. 915 */ 916 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 917 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 918 919 /* 920 * When starting a resilver clear any existing rebuild state. 921 * This is required to prevent stale rebuild status from 922 * being reported when a rebuild is run, then a resilver and 923 * finally a scrub. In which case only the scrub status 924 * should be reported by 'zpool status'. 925 */ 926 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 927 vdev_t *rvd = spa->spa_root_vdev; 928 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 929 vdev_t *vd = rvd->vdev_child[i]; 930 vdev_rebuild_clear_sync( 931 (void *)(uintptr_t)vd->vdev_id, tx); 932 } 933 } 934 } 935 936 /* back to the generic stuff */ 937 938 if (zfs_scan_blkstats) { 939 if (dp->dp_blkstats == NULL) { 940 dp->dp_blkstats = 941 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 942 } 943 memset(&dp->dp_blkstats->zab_type, 0, 944 sizeof (dp->dp_blkstats->zab_type)); 945 } else { 946 if (dp->dp_blkstats) { 947 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 948 dp->dp_blkstats = NULL; 949 } 950 } 951 952 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 953 ot = DMU_OT_ZAP_OTHER; 954 955 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 956 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 957 958 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 959 960 ddt_walk_init(spa, scn->scn_phys.scn_max_txg); 961 962 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 963 964 spa_history_log_internal(spa, "scan setup", tx, 965 "func=%u mintxg=%llu maxtxg=%llu", 966 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg, 967 (u_longlong_t)scn->scn_phys.scn_max_txg); 968 } 969 970 /* 971 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub, 972 * error scrub or resilver. Can also be called to resume a paused scrub or 973 * error scrub. 974 */ 975 int 976 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 977 { 978 spa_t *spa = dp->dp_spa; 979 dsl_scan_t *scn = dp->dp_scan; 980 981 /* 982 * Purge all vdev caches and probe all devices. We do this here 983 * rather than in sync context because this requires a writer lock 984 * on the spa_config lock, which we can't do from sync context. The 985 * spa_scrub_reopen flag indicates that vdev_open() should not 986 * attempt to start another scrub. 987 */ 988 spa_vdev_state_enter(spa, SCL_NONE); 989 spa->spa_scrub_reopen = B_TRUE; 990 vdev_reopen(spa->spa_root_vdev); 991 spa->spa_scrub_reopen = B_FALSE; 992 (void) spa_vdev_state_exit(spa, NULL, 0); 993 994 if (func == POOL_SCAN_RESILVER) { 995 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 996 return (0); 997 } 998 999 if (func == POOL_SCAN_ERRORSCRUB) { 1000 if (dsl_errorscrub_is_paused(dp->dp_scan)) { 1001 /* 1002 * got error scrub start cmd, resume paused error scrub. 1003 */ 1004 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 1005 POOL_SCRUB_NORMAL); 1006 if (err == 0) { 1007 spa_event_notify(spa, NULL, NULL, 1008 ESC_ZFS_ERRORSCRUB_RESUME); 1009 return (ECANCELED); 1010 } 1011 return (SET_ERROR(err)); 1012 } 1013 1014 return (dsl_sync_task(spa_name(dp->dp_spa), 1015 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync, 1016 &func, 0, ZFS_SPACE_CHECK_RESERVED)); 1017 } 1018 1019 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 1020 /* got scrub start cmd, resume paused scrub */ 1021 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 1022 POOL_SCRUB_NORMAL); 1023 if (err == 0) { 1024 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 1025 return (SET_ERROR(ECANCELED)); 1026 } 1027 return (SET_ERROR(err)); 1028 } 1029 1030 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 1031 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1032 } 1033 1034 static void 1035 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 1036 { 1037 dsl_pool_t *dp = scn->scn_dp; 1038 spa_t *spa = dp->dp_spa; 1039 1040 if (complete) { 1041 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH); 1042 spa_history_log_internal(spa, "error scrub done", tx, 1043 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1044 } else { 1045 spa_history_log_internal(spa, "error scrub canceled", tx, 1046 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1047 } 1048 1049 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED; 1050 spa->spa_scrub_active = B_FALSE; 1051 spa_errlog_rotate(spa); 1052 scn->errorscrub_phys.dep_end_time = gethrestime_sec(); 1053 zap_cursor_fini(&scn->errorscrub_cursor); 1054 1055 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1056 spa->spa_errata = 0; 1057 1058 ASSERT(!dsl_errorscrubbing(scn->scn_dp)); 1059 } 1060 1061 static void 1062 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 1063 { 1064 static const char *old_names[] = { 1065 "scrub_bookmark", 1066 "scrub_ddt_bookmark", 1067 "scrub_ddt_class_max", 1068 "scrub_queue", 1069 "scrub_min_txg", 1070 "scrub_max_txg", 1071 "scrub_func", 1072 "scrub_errors", 1073 NULL 1074 }; 1075 1076 dsl_pool_t *dp = scn->scn_dp; 1077 spa_t *spa = dp->dp_spa; 1078 int i; 1079 1080 /* Remove any remnants of an old-style scrub. */ 1081 for (i = 0; old_names[i]; i++) { 1082 (void) zap_remove(dp->dp_meta_objset, 1083 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 1084 } 1085 1086 if (scn->scn_phys.scn_queue_obj != 0) { 1087 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1088 scn->scn_phys.scn_queue_obj, tx)); 1089 scn->scn_phys.scn_queue_obj = 0; 1090 } 1091 scan_ds_queue_clear(scn); 1092 scan_ds_prefetch_queue_clear(scn); 1093 1094 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1095 1096 /* 1097 * If we were "restarted" from a stopped state, don't bother 1098 * with anything else. 1099 */ 1100 if (!dsl_scan_is_running(scn)) { 1101 ASSERT(!scn->scn_is_sorted); 1102 return; 1103 } 1104 1105 if (scn->scn_is_sorted) { 1106 scan_io_queues_destroy(scn); 1107 scn->scn_is_sorted = B_FALSE; 1108 1109 if (scn->scn_taskq != NULL) { 1110 taskq_destroy(scn->scn_taskq); 1111 scn->scn_taskq = NULL; 1112 } 1113 } 1114 1115 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 1116 1117 spa_notify_waiters(spa); 1118 1119 if (dsl_scan_restarting(scn, tx)) 1120 spa_history_log_internal(spa, "scan aborted, restarting", tx, 1121 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1122 else if (!complete) 1123 spa_history_log_internal(spa, "scan cancelled", tx, 1124 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1125 else 1126 spa_history_log_internal(spa, "scan done", tx, 1127 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1128 1129 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 1130 spa->spa_scrub_active = B_FALSE; 1131 1132 /* 1133 * If the scrub/resilver completed, update all DTLs to 1134 * reflect this. Whether it succeeded or not, vacate 1135 * all temporary scrub DTLs. 1136 * 1137 * As the scrub does not currently support traversing 1138 * data that have been freed but are part of a checkpoint, 1139 * we don't mark the scrub as done in the DTLs as faults 1140 * may still exist in those vdevs. 1141 */ 1142 if (complete && 1143 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 1144 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 1145 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 1146 1147 if (scn->scn_phys.scn_min_txg) { 1148 nvlist_t *aux = fnvlist_alloc(); 1149 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 1150 "healing"); 1151 spa_event_notify(spa, NULL, aux, 1152 ESC_ZFS_RESILVER_FINISH); 1153 nvlist_free(aux); 1154 } else { 1155 spa_event_notify(spa, NULL, NULL, 1156 ESC_ZFS_SCRUB_FINISH); 1157 } 1158 } else { 1159 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 1160 0, B_TRUE, B_FALSE); 1161 } 1162 spa_errlog_rotate(spa); 1163 1164 /* 1165 * Don't clear flag until after vdev_dtl_reassess to ensure that 1166 * DTL_MISSING will get updated when possible. 1167 */ 1168 spa->spa_scrub_started = B_FALSE; 1169 1170 /* 1171 * We may have finished replacing a device. 1172 * Let the async thread assess this and handle the detach. 1173 */ 1174 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 1175 1176 /* 1177 * Clear any resilver_deferred flags in the config. 1178 * If there are drives that need resilvering, kick 1179 * off an asynchronous request to start resilver. 1180 * vdev_clear_resilver_deferred() may update the config 1181 * before the resilver can restart. In the event of 1182 * a crash during this period, the spa loading code 1183 * will find the drives that need to be resilvered 1184 * and start the resilver then. 1185 */ 1186 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 1187 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 1188 spa_history_log_internal(spa, 1189 "starting deferred resilver", tx, "errors=%llu", 1190 (u_longlong_t)spa_approx_errlog_size(spa)); 1191 spa_async_request(spa, SPA_ASYNC_RESILVER); 1192 } 1193 1194 /* Clear recent error events (i.e. duplicate events tracking) */ 1195 if (complete) 1196 zfs_ereport_clear(spa, NULL); 1197 } 1198 1199 scn->scn_phys.scn_end_time = gethrestime_sec(); 1200 1201 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1202 spa->spa_errata = 0; 1203 1204 ASSERT(!dsl_scan_is_running(scn)); 1205 } 1206 1207 static int 1208 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1209 { 1210 pool_scrub_cmd_t *cmd = arg; 1211 dsl_pool_t *dp = dmu_tx_pool(tx); 1212 dsl_scan_t *scn = dp->dp_scan; 1213 1214 if (*cmd == POOL_SCRUB_PAUSE) { 1215 /* 1216 * can't pause a error scrub when there is no in-progress 1217 * error scrub. 1218 */ 1219 if (!dsl_errorscrubbing(dp)) 1220 return (SET_ERROR(ENOENT)); 1221 1222 /* can't pause a paused error scrub */ 1223 if (dsl_errorscrub_is_paused(scn)) 1224 return (SET_ERROR(EBUSY)); 1225 } else if (*cmd != POOL_SCRUB_NORMAL) { 1226 return (SET_ERROR(ENOTSUP)); 1227 } 1228 1229 return (0); 1230 } 1231 1232 static void 1233 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1234 { 1235 pool_scrub_cmd_t *cmd = arg; 1236 dsl_pool_t *dp = dmu_tx_pool(tx); 1237 spa_t *spa = dp->dp_spa; 1238 dsl_scan_t *scn = dp->dp_scan; 1239 1240 if (*cmd == POOL_SCRUB_PAUSE) { 1241 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec(); 1242 scn->errorscrub_phys.dep_paused_flags = B_TRUE; 1243 dsl_errorscrub_sync_state(scn, tx); 1244 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED); 1245 } else { 1246 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1247 if (dsl_errorscrub_is_paused(scn)) { 1248 /* 1249 * We need to keep track of how much time we spend 1250 * paused per pass so that we can adjust the error scrub 1251 * rate shown in the output of 'zpool status'. 1252 */ 1253 spa->spa_scan_pass_errorscrub_spent_paused += 1254 gethrestime_sec() - 1255 spa->spa_scan_pass_errorscrub_pause; 1256 1257 spa->spa_scan_pass_errorscrub_pause = 0; 1258 scn->errorscrub_phys.dep_paused_flags = B_FALSE; 1259 1260 zap_cursor_init_serialized( 1261 &scn->errorscrub_cursor, 1262 spa->spa_meta_objset, spa->spa_errlog_last, 1263 scn->errorscrub_phys.dep_cursor); 1264 1265 dsl_errorscrub_sync_state(scn, tx); 1266 } 1267 } 1268 } 1269 1270 static int 1271 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx) 1272 { 1273 (void) arg; 1274 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1275 /* can't cancel a error scrub when there is no one in-progress */ 1276 if (!dsl_errorscrubbing(scn->scn_dp)) 1277 return (SET_ERROR(ENOENT)); 1278 return (0); 1279 } 1280 1281 static void 1282 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx) 1283 { 1284 (void) arg; 1285 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1286 1287 dsl_errorscrub_done(scn, B_FALSE, tx); 1288 dsl_errorscrub_sync_state(scn, tx); 1289 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, 1290 ESC_ZFS_ERRORSCRUB_ABORT); 1291 } 1292 1293 static int 1294 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1295 { 1296 (void) arg; 1297 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1298 1299 if (!dsl_scan_is_running(scn)) 1300 return (SET_ERROR(ENOENT)); 1301 return (0); 1302 } 1303 1304 static void 1305 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1306 { 1307 (void) arg; 1308 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1309 1310 dsl_scan_done(scn, B_FALSE, tx); 1311 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1312 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1313 } 1314 1315 int 1316 dsl_scan_cancel(dsl_pool_t *dp) 1317 { 1318 if (dsl_errorscrubbing(dp)) { 1319 return (dsl_sync_task(spa_name(dp->dp_spa), 1320 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync, 1321 NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1322 } 1323 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1324 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1325 } 1326 1327 static int 1328 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1329 { 1330 pool_scrub_cmd_t *cmd = arg; 1331 dsl_pool_t *dp = dmu_tx_pool(tx); 1332 dsl_scan_t *scn = dp->dp_scan; 1333 1334 if (*cmd == POOL_SCRUB_PAUSE) { 1335 /* can't pause a scrub when there is no in-progress scrub */ 1336 if (!dsl_scan_scrubbing(dp)) 1337 return (SET_ERROR(ENOENT)); 1338 1339 /* can't pause a paused scrub */ 1340 if (dsl_scan_is_paused_scrub(scn)) 1341 return (SET_ERROR(EBUSY)); 1342 } else if (*cmd != POOL_SCRUB_NORMAL) { 1343 return (SET_ERROR(ENOTSUP)); 1344 } 1345 1346 return (0); 1347 } 1348 1349 static void 1350 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1351 { 1352 pool_scrub_cmd_t *cmd = arg; 1353 dsl_pool_t *dp = dmu_tx_pool(tx); 1354 spa_t *spa = dp->dp_spa; 1355 dsl_scan_t *scn = dp->dp_scan; 1356 1357 if (*cmd == POOL_SCRUB_PAUSE) { 1358 /* can't pause a scrub when there is no in-progress scrub */ 1359 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1360 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1361 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1362 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1363 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1364 spa_notify_waiters(spa); 1365 } else { 1366 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1367 if (dsl_scan_is_paused_scrub(scn)) { 1368 /* 1369 * We need to keep track of how much time we spend 1370 * paused per pass so that we can adjust the scrub rate 1371 * shown in the output of 'zpool status' 1372 */ 1373 spa->spa_scan_pass_scrub_spent_paused += 1374 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1375 spa->spa_scan_pass_scrub_pause = 0; 1376 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1377 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1378 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1379 } 1380 } 1381 } 1382 1383 /* 1384 * Set scrub pause/resume state if it makes sense to do so 1385 */ 1386 int 1387 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1388 { 1389 if (dsl_errorscrubbing(dp)) { 1390 return (dsl_sync_task(spa_name(dp->dp_spa), 1391 dsl_errorscrub_pause_resume_check, 1392 dsl_errorscrub_pause_resume_sync, &cmd, 3, 1393 ZFS_SPACE_CHECK_RESERVED)); 1394 } 1395 return (dsl_sync_task(spa_name(dp->dp_spa), 1396 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1397 ZFS_SPACE_CHECK_RESERVED)); 1398 } 1399 1400 1401 /* start a new scan, or restart an existing one. */ 1402 void 1403 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1404 { 1405 if (txg == 0) { 1406 dmu_tx_t *tx; 1407 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1408 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1409 1410 txg = dmu_tx_get_txg(tx); 1411 dp->dp_scan->scn_restart_txg = txg; 1412 dmu_tx_commit(tx); 1413 } else { 1414 dp->dp_scan->scn_restart_txg = txg; 1415 } 1416 zfs_dbgmsg("restarting resilver for %s at txg=%llu", 1417 dp->dp_spa->spa_name, (longlong_t)txg); 1418 } 1419 1420 void 1421 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1422 { 1423 zio_free(dp->dp_spa, txg, bp); 1424 } 1425 1426 void 1427 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1428 { 1429 ASSERT(dsl_pool_sync_context(dp)); 1430 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1431 } 1432 1433 static int 1434 scan_ds_queue_compare(const void *a, const void *b) 1435 { 1436 const scan_ds_t *sds_a = a, *sds_b = b; 1437 1438 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1439 return (-1); 1440 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1441 return (0); 1442 return (1); 1443 } 1444 1445 static void 1446 scan_ds_queue_clear(dsl_scan_t *scn) 1447 { 1448 void *cookie = NULL; 1449 scan_ds_t *sds; 1450 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1451 kmem_free(sds, sizeof (*sds)); 1452 } 1453 } 1454 1455 static boolean_t 1456 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1457 { 1458 scan_ds_t srch, *sds; 1459 1460 srch.sds_dsobj = dsobj; 1461 sds = avl_find(&scn->scn_queue, &srch, NULL); 1462 if (sds != NULL && txg != NULL) 1463 *txg = sds->sds_txg; 1464 return (sds != NULL); 1465 } 1466 1467 static void 1468 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1469 { 1470 scan_ds_t *sds; 1471 avl_index_t where; 1472 1473 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1474 sds->sds_dsobj = dsobj; 1475 sds->sds_txg = txg; 1476 1477 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1478 avl_insert(&scn->scn_queue, sds, where); 1479 } 1480 1481 static void 1482 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1483 { 1484 scan_ds_t srch, *sds; 1485 1486 srch.sds_dsobj = dsobj; 1487 1488 sds = avl_find(&scn->scn_queue, &srch, NULL); 1489 VERIFY(sds != NULL); 1490 avl_remove(&scn->scn_queue, sds); 1491 kmem_free(sds, sizeof (*sds)); 1492 } 1493 1494 static void 1495 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1496 { 1497 dsl_pool_t *dp = scn->scn_dp; 1498 spa_t *spa = dp->dp_spa; 1499 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1500 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1501 1502 ASSERT0(scn->scn_queues_pending); 1503 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1504 1505 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1506 scn->scn_phys.scn_queue_obj, tx)); 1507 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1508 DMU_OT_NONE, 0, tx); 1509 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1510 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1511 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1512 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1513 sds->sds_txg, tx)); 1514 } 1515 } 1516 1517 /* 1518 * Computes the memory limit state that we're currently in. A sorted scan 1519 * needs quite a bit of memory to hold the sorting queue, so we need to 1520 * reasonably constrain the size so it doesn't impact overall system 1521 * performance. We compute two limits: 1522 * 1) Hard memory limit: if the amount of memory used by the sorting 1523 * queues on a pool gets above this value, we stop the metadata 1524 * scanning portion and start issuing the queued up and sorted 1525 * I/Os to reduce memory usage. 1526 * This limit is calculated as a fraction of physmem (by default 5%). 1527 * We constrain the lower bound of the hard limit to an absolute 1528 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1529 * the upper bound to 5% of the total pool size - no chance we'll 1530 * ever need that much memory, but just to keep the value in check. 1531 * 2) Soft memory limit: once we hit the hard memory limit, we start 1532 * issuing I/O to reduce queue memory usage, but we don't want to 1533 * completely empty out the queues, since we might be able to find I/Os 1534 * that will fill in the gaps of our non-sequential IOs at some point 1535 * in the future. So we stop the issuing of I/Os once the amount of 1536 * memory used drops below the soft limit (at which point we stop issuing 1537 * I/O and start scanning metadata again). 1538 * 1539 * This limit is calculated by subtracting a fraction of the hard 1540 * limit from the hard limit. By default this fraction is 5%, so 1541 * the soft limit is 95% of the hard limit. We cap the size of the 1542 * difference between the hard and soft limits at an absolute 1543 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1544 * sufficient to not cause too frequent switching between the 1545 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1546 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1547 * that should take at least a decent fraction of a second). 1548 */ 1549 static boolean_t 1550 dsl_scan_should_clear(dsl_scan_t *scn) 1551 { 1552 spa_t *spa = scn->scn_dp->dp_spa; 1553 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1554 uint64_t alloc, mlim_hard, mlim_soft, mused; 1555 1556 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1557 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1558 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1559 1560 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1561 zfs_scan_mem_lim_min); 1562 mlim_hard = MIN(mlim_hard, alloc / 20); 1563 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1564 zfs_scan_mem_lim_soft_max); 1565 mused = 0; 1566 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1567 vdev_t *tvd = rvd->vdev_child[i]; 1568 dsl_scan_io_queue_t *queue; 1569 1570 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1571 queue = tvd->vdev_scan_io_queue; 1572 if (queue != NULL) { 1573 /* 1574 * # of extents in exts_by_addr = # in exts_by_size. 1575 * B-tree efficiency is ~75%, but can be as low as 50%. 1576 */ 1577 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1578 ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) * 1579 3 / 2) + queue->q_sio_memused; 1580 } 1581 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1582 } 1583 1584 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1585 1586 if (mused == 0) 1587 ASSERT0(scn->scn_queues_pending); 1588 1589 /* 1590 * If we are above our hard limit, we need to clear out memory. 1591 * If we are below our soft limit, we need to accumulate sequential IOs. 1592 * Otherwise, we should keep doing whatever we are currently doing. 1593 */ 1594 if (mused >= mlim_hard) 1595 return (B_TRUE); 1596 else if (mused < mlim_soft) 1597 return (B_FALSE); 1598 else 1599 return (scn->scn_clearing); 1600 } 1601 1602 static boolean_t 1603 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1604 { 1605 /* we never skip user/group accounting objects */ 1606 if (zb && (int64_t)zb->zb_object < 0) 1607 return (B_FALSE); 1608 1609 if (scn->scn_suspending) 1610 return (B_TRUE); /* we're already suspending */ 1611 1612 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1613 return (B_FALSE); /* we're resuming */ 1614 1615 /* We only know how to resume from level-0 and objset blocks. */ 1616 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1617 return (B_FALSE); 1618 1619 /* 1620 * We suspend if: 1621 * - we have scanned for at least the minimum time (default 1 sec 1622 * for scrub, 3 sec for resilver), and either we have sufficient 1623 * dirty data that we are starting to write more quickly 1624 * (default 30%), someone is explicitly waiting for this txg 1625 * to complete, or we have used up all of the time in the txg 1626 * timeout (default 5 sec). 1627 * or 1628 * - the spa is shutting down because this pool is being exported 1629 * or the machine is rebooting. 1630 * or 1631 * - the scan queue has reached its memory use limit 1632 */ 1633 uint64_t curr_time_ns = gethrtime(); 1634 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1635 uint64_t sync_time_ns = curr_time_ns - 1636 scn->scn_dp->dp_spa->spa_sync_starttime; 1637 uint64_t dirty_min_bytes = zfs_dirty_data_max * 1638 zfs_vdev_async_write_active_min_dirty_percent / 100; 1639 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1640 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1641 1642 if ((NSEC2MSEC(scan_time_ns) > mintime && 1643 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 1644 txg_sync_waiting(scn->scn_dp) || 1645 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1646 spa_shutting_down(scn->scn_dp->dp_spa) || 1647 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) || 1648 !ddt_walk_ready(scn->scn_dp->dp_spa)) { 1649 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1650 dprintf("suspending at first available bookmark " 1651 "%llx/%llx/%llx/%llx\n", 1652 (longlong_t)zb->zb_objset, 1653 (longlong_t)zb->zb_object, 1654 (longlong_t)zb->zb_level, 1655 (longlong_t)zb->zb_blkid); 1656 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1657 zb->zb_objset, 0, 0, 0); 1658 } else if (zb != NULL) { 1659 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1660 (longlong_t)zb->zb_objset, 1661 (longlong_t)zb->zb_object, 1662 (longlong_t)zb->zb_level, 1663 (longlong_t)zb->zb_blkid); 1664 scn->scn_phys.scn_bookmark = *zb; 1665 } else { 1666 #ifdef ZFS_DEBUG 1667 dsl_scan_phys_t *scnp = &scn->scn_phys; 1668 dprintf("suspending at at DDT bookmark " 1669 "%llx/%llx/%llx/%llx\n", 1670 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1671 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1672 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1673 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1674 #endif 1675 } 1676 scn->scn_suspending = B_TRUE; 1677 return (B_TRUE); 1678 } 1679 return (B_FALSE); 1680 } 1681 1682 static boolean_t 1683 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1684 { 1685 /* 1686 * We suspend if: 1687 * - we have scrubbed for at least the minimum time (default 1 sec 1688 * for error scrub), someone is explicitly waiting for this txg 1689 * to complete, or we have used up all of the time in the txg 1690 * timeout (default 5 sec). 1691 * or 1692 * - the spa is shutting down because this pool is being exported 1693 * or the machine is rebooting. 1694 */ 1695 uint64_t curr_time_ns = gethrtime(); 1696 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time; 1697 uint64_t sync_time_ns = curr_time_ns - 1698 scn->scn_dp->dp_spa->spa_sync_starttime; 1699 int mintime = zfs_scrub_min_time_ms; 1700 1701 if ((NSEC2MSEC(error_scrub_time_ns) > mintime && 1702 (txg_sync_waiting(scn->scn_dp) || 1703 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1704 spa_shutting_down(scn->scn_dp->dp_spa)) { 1705 if (zb) { 1706 dprintf("error scrub suspending at bookmark " 1707 "%llx/%llx/%llx/%llx\n", 1708 (longlong_t)zb->zb_objset, 1709 (longlong_t)zb->zb_object, 1710 (longlong_t)zb->zb_level, 1711 (longlong_t)zb->zb_blkid); 1712 } 1713 return (B_TRUE); 1714 } 1715 return (B_FALSE); 1716 } 1717 1718 typedef struct zil_scan_arg { 1719 dsl_pool_t *zsa_dp; 1720 zil_header_t *zsa_zh; 1721 } zil_scan_arg_t; 1722 1723 static int 1724 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, 1725 uint64_t claim_txg) 1726 { 1727 (void) zilog; 1728 zil_scan_arg_t *zsa = arg; 1729 dsl_pool_t *dp = zsa->zsa_dp; 1730 dsl_scan_t *scn = dp->dp_scan; 1731 zil_header_t *zh = zsa->zsa_zh; 1732 zbookmark_phys_t zb; 1733 1734 ASSERT(!BP_IS_REDACTED(bp)); 1735 if (BP_IS_HOLE(bp) || 1736 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) 1737 return (0); 1738 1739 /* 1740 * One block ("stubby") can be allocated a long time ago; we 1741 * want to visit that one because it has been allocated 1742 * (on-disk) even if it hasn't been claimed (even though for 1743 * scrub there's nothing to do to it). 1744 */ 1745 if (claim_txg == 0 && 1746 BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa)) 1747 return (0); 1748 1749 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1750 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1751 1752 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1753 return (0); 1754 } 1755 1756 static int 1757 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, 1758 uint64_t claim_txg) 1759 { 1760 (void) zilog; 1761 if (lrc->lrc_txtype == TX_WRITE) { 1762 zil_scan_arg_t *zsa = arg; 1763 dsl_pool_t *dp = zsa->zsa_dp; 1764 dsl_scan_t *scn = dp->dp_scan; 1765 zil_header_t *zh = zsa->zsa_zh; 1766 const lr_write_t *lr = (const lr_write_t *)lrc; 1767 const blkptr_t *bp = &lr->lr_blkptr; 1768 zbookmark_phys_t zb; 1769 1770 ASSERT(!BP_IS_REDACTED(bp)); 1771 if (BP_IS_HOLE(bp) || 1772 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) 1773 return (0); 1774 1775 /* 1776 * birth can be < claim_txg if this record's txg is 1777 * already txg sync'ed (but this log block contains 1778 * other records that are not synced) 1779 */ 1780 if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg) 1781 return (0); 1782 1783 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 1784 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1785 lr->lr_foid, ZB_ZIL_LEVEL, 1786 lr->lr_offset / BP_GET_LSIZE(bp)); 1787 1788 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1789 } 1790 return (0); 1791 } 1792 1793 static void 1794 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1795 { 1796 uint64_t claim_txg = zh->zh_claim_txg; 1797 zil_scan_arg_t zsa = { dp, zh }; 1798 zilog_t *zilog; 1799 1800 ASSERT(spa_writeable(dp->dp_spa)); 1801 1802 /* 1803 * We only want to visit blocks that have been claimed but not yet 1804 * replayed (or, in read-only mode, blocks that *would* be claimed). 1805 */ 1806 if (claim_txg == 0) 1807 return; 1808 1809 zilog = zil_alloc(dp->dp_meta_objset, zh); 1810 1811 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1812 claim_txg, B_FALSE); 1813 1814 zil_free(zilog); 1815 } 1816 1817 /* 1818 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1819 * here is to sort the AVL tree by the order each block will be needed. 1820 */ 1821 static int 1822 scan_prefetch_queue_compare(const void *a, const void *b) 1823 { 1824 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1825 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1826 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1827 1828 return (zbookmark_compare(spc_a->spc_datablkszsec, 1829 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1830 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1831 } 1832 1833 static void 1834 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag) 1835 { 1836 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1837 zfs_refcount_destroy(&spc->spc_refcnt); 1838 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1839 } 1840 } 1841 1842 static scan_prefetch_ctx_t * 1843 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag) 1844 { 1845 scan_prefetch_ctx_t *spc; 1846 1847 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1848 zfs_refcount_create(&spc->spc_refcnt); 1849 zfs_refcount_add(&spc->spc_refcnt, tag); 1850 spc->spc_scn = scn; 1851 if (dnp != NULL) { 1852 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1853 spc->spc_indblkshift = dnp->dn_indblkshift; 1854 spc->spc_root = B_FALSE; 1855 } else { 1856 spc->spc_datablkszsec = 0; 1857 spc->spc_indblkshift = 0; 1858 spc->spc_root = B_TRUE; 1859 } 1860 1861 return (spc); 1862 } 1863 1864 static void 1865 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag) 1866 { 1867 zfs_refcount_add(&spc->spc_refcnt, tag); 1868 } 1869 1870 static void 1871 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1872 { 1873 spa_t *spa = scn->scn_dp->dp_spa; 1874 void *cookie = NULL; 1875 scan_prefetch_issue_ctx_t *spic = NULL; 1876 1877 mutex_enter(&spa->spa_scrub_lock); 1878 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1879 &cookie)) != NULL) { 1880 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1881 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1882 } 1883 mutex_exit(&spa->spa_scrub_lock); 1884 } 1885 1886 static boolean_t 1887 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1888 const zbookmark_phys_t *zb) 1889 { 1890 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1891 dnode_phys_t tmp_dnp; 1892 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1893 1894 if (zb->zb_objset != last_zb->zb_objset) 1895 return (B_TRUE); 1896 if ((int64_t)zb->zb_object < 0) 1897 return (B_FALSE); 1898 1899 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1900 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1901 1902 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1903 return (B_TRUE); 1904 1905 return (B_FALSE); 1906 } 1907 1908 static void 1909 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1910 { 1911 avl_index_t idx; 1912 dsl_scan_t *scn = spc->spc_scn; 1913 spa_t *spa = scn->scn_dp->dp_spa; 1914 scan_prefetch_issue_ctx_t *spic; 1915 1916 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1917 return; 1918 1919 if (BP_IS_HOLE(bp) || 1920 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg || 1921 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1922 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1923 return; 1924 1925 if (dsl_scan_check_prefetch_resume(spc, zb)) 1926 return; 1927 1928 scan_prefetch_ctx_add_ref(spc, scn); 1929 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1930 spic->spic_spc = spc; 1931 spic->spic_bp = *bp; 1932 spic->spic_zb = *zb; 1933 1934 /* 1935 * Add the IO to the queue of blocks to prefetch. This allows us to 1936 * prioritize blocks that we will need first for the main traversal 1937 * thread. 1938 */ 1939 mutex_enter(&spa->spa_scrub_lock); 1940 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1941 /* this block is already queued for prefetch */ 1942 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1943 scan_prefetch_ctx_rele(spc, scn); 1944 mutex_exit(&spa->spa_scrub_lock); 1945 return; 1946 } 1947 1948 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1949 cv_broadcast(&spa->spa_scrub_io_cv); 1950 mutex_exit(&spa->spa_scrub_lock); 1951 } 1952 1953 static void 1954 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1955 uint64_t objset, uint64_t object) 1956 { 1957 int i; 1958 zbookmark_phys_t zb; 1959 scan_prefetch_ctx_t *spc; 1960 1961 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1962 return; 1963 1964 SET_BOOKMARK(&zb, objset, object, 0, 0); 1965 1966 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1967 1968 for (i = 0; i < dnp->dn_nblkptr; i++) { 1969 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1970 zb.zb_blkid = i; 1971 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1972 } 1973 1974 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1975 zb.zb_level = 0; 1976 zb.zb_blkid = DMU_SPILL_BLKID; 1977 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 1978 } 1979 1980 scan_prefetch_ctx_rele(spc, FTAG); 1981 } 1982 1983 static void 1984 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1985 arc_buf_t *buf, void *private) 1986 { 1987 (void) zio; 1988 scan_prefetch_ctx_t *spc = private; 1989 dsl_scan_t *scn = spc->spc_scn; 1990 spa_t *spa = scn->scn_dp->dp_spa; 1991 1992 /* broadcast that the IO has completed for rate limiting purposes */ 1993 mutex_enter(&spa->spa_scrub_lock); 1994 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1995 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1996 cv_broadcast(&spa->spa_scrub_io_cv); 1997 mutex_exit(&spa->spa_scrub_lock); 1998 1999 /* if there was an error or we are done prefetching, just cleanup */ 2000 if (buf == NULL || scn->scn_prefetch_stop) 2001 goto out; 2002 2003 if (BP_GET_LEVEL(bp) > 0) { 2004 int i; 2005 blkptr_t *cbp; 2006 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2007 zbookmark_phys_t czb; 2008 2009 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 2010 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2011 zb->zb_level - 1, zb->zb_blkid * epb + i); 2012 dsl_scan_prefetch(spc, cbp, &czb); 2013 } 2014 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 2015 dnode_phys_t *cdnp; 2016 int i; 2017 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 2018 2019 for (i = 0, cdnp = buf->b_data; i < epb; 2020 i += cdnp->dn_extra_slots + 1, 2021 cdnp += cdnp->dn_extra_slots + 1) { 2022 dsl_scan_prefetch_dnode(scn, cdnp, 2023 zb->zb_objset, zb->zb_blkid * epb + i); 2024 } 2025 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 2026 objset_phys_t *osp = buf->b_data; 2027 2028 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 2029 zb->zb_objset, DMU_META_DNODE_OBJECT); 2030 2031 if (OBJSET_BUF_HAS_USERUSED(buf)) { 2032 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) { 2033 dsl_scan_prefetch_dnode(scn, 2034 &osp->os_projectused_dnode, zb->zb_objset, 2035 DMU_PROJECTUSED_OBJECT); 2036 } 2037 dsl_scan_prefetch_dnode(scn, 2038 &osp->os_groupused_dnode, zb->zb_objset, 2039 DMU_GROUPUSED_OBJECT); 2040 dsl_scan_prefetch_dnode(scn, 2041 &osp->os_userused_dnode, zb->zb_objset, 2042 DMU_USERUSED_OBJECT); 2043 } 2044 } 2045 2046 out: 2047 if (buf != NULL) 2048 arc_buf_destroy(buf, private); 2049 scan_prefetch_ctx_rele(spc, scn); 2050 } 2051 2052 static void 2053 dsl_scan_prefetch_thread(void *arg) 2054 { 2055 dsl_scan_t *scn = arg; 2056 spa_t *spa = scn->scn_dp->dp_spa; 2057 scan_prefetch_issue_ctx_t *spic; 2058 2059 /* loop until we are told to stop */ 2060 while (!scn->scn_prefetch_stop) { 2061 arc_flags_t flags = ARC_FLAG_NOWAIT | 2062 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 2063 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 2064 2065 mutex_enter(&spa->spa_scrub_lock); 2066 2067 /* 2068 * Wait until we have an IO to issue and are not above our 2069 * maximum in flight limit. 2070 */ 2071 while (!scn->scn_prefetch_stop && 2072 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 2073 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 2074 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2075 } 2076 2077 /* recheck if we should stop since we waited for the cv */ 2078 if (scn->scn_prefetch_stop) { 2079 mutex_exit(&spa->spa_scrub_lock); 2080 break; 2081 } 2082 2083 /* remove the prefetch IO from the tree */ 2084 spic = avl_first(&scn->scn_prefetch_queue); 2085 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 2086 avl_remove(&scn->scn_prefetch_queue, spic); 2087 2088 mutex_exit(&spa->spa_scrub_lock); 2089 2090 if (BP_IS_PROTECTED(&spic->spic_bp)) { 2091 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 2092 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 2093 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 2094 zio_flags |= ZIO_FLAG_RAW; 2095 } 2096 2097 /* We don't need data L1 buffer since we do not prefetch L0. */ 2098 blkptr_t *bp = &spic->spic_bp; 2099 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 2100 BP_GET_TYPE(bp) != DMU_OT_OBJSET) 2101 flags |= ARC_FLAG_NO_BUF; 2102 2103 /* issue the prefetch asynchronously */ 2104 (void) arc_read(scn->scn_zio_root, spa, bp, 2105 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB, 2106 zio_flags, &flags, &spic->spic_zb); 2107 2108 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 2109 } 2110 2111 ASSERT(scn->scn_prefetch_stop); 2112 2113 /* free any prefetches we didn't get to complete */ 2114 mutex_enter(&spa->spa_scrub_lock); 2115 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 2116 avl_remove(&scn->scn_prefetch_queue, spic); 2117 scan_prefetch_ctx_rele(spic->spic_spc, scn); 2118 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 2119 } 2120 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 2121 mutex_exit(&spa->spa_scrub_lock); 2122 } 2123 2124 static boolean_t 2125 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 2126 const zbookmark_phys_t *zb) 2127 { 2128 /* 2129 * We never skip over user/group accounting objects (obj<0) 2130 */ 2131 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 2132 (int64_t)zb->zb_object >= 0) { 2133 /* 2134 * If we already visited this bp & everything below (in 2135 * a prior txg sync), don't bother doing it again. 2136 */ 2137 if (zbookmark_subtree_completed(dnp, zb, 2138 &scn->scn_phys.scn_bookmark)) 2139 return (B_TRUE); 2140 2141 /* 2142 * If we found the block we're trying to resume from, or 2143 * we went past it, zero it out to indicate that it's OK 2144 * to start checking for suspending again. 2145 */ 2146 if (zbookmark_subtree_tbd(dnp, zb, 2147 &scn->scn_phys.scn_bookmark)) { 2148 dprintf("resuming at %llx/%llx/%llx/%llx\n", 2149 (longlong_t)zb->zb_objset, 2150 (longlong_t)zb->zb_object, 2151 (longlong_t)zb->zb_level, 2152 (longlong_t)zb->zb_blkid); 2153 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb)); 2154 } 2155 } 2156 return (B_FALSE); 2157 } 2158 2159 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb, 2160 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 2161 dmu_objset_type_t ostype, dmu_tx_t *tx); 2162 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 2163 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 2164 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 2165 2166 /* 2167 * Return nonzero on i/o error. 2168 * Return new buf to write out in *bufp. 2169 */ 2170 inline __attribute__((always_inline)) static int 2171 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 2172 dnode_phys_t *dnp, const blkptr_t *bp, 2173 const zbookmark_phys_t *zb, dmu_tx_t *tx) 2174 { 2175 dsl_pool_t *dp = scn->scn_dp; 2176 spa_t *spa = dp->dp_spa; 2177 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 2178 int err; 2179 2180 ASSERT(!BP_IS_REDACTED(bp)); 2181 2182 /* 2183 * There is an unlikely case of encountering dnodes with contradicting 2184 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created 2185 * or modified before commit 4254acb was merged. As it is not possible 2186 * to know which of the two is correct, report an error. 2187 */ 2188 if (dnp != NULL && 2189 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) { 2190 scn->scn_phys.scn_errors++; 2191 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp)); 2192 return (SET_ERROR(EINVAL)); 2193 } 2194 2195 if (BP_GET_LEVEL(bp) > 0) { 2196 arc_flags_t flags = ARC_FLAG_WAIT; 2197 int i; 2198 blkptr_t *cbp; 2199 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2200 arc_buf_t *buf; 2201 2202 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2203 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2204 if (err) { 2205 scn->scn_phys.scn_errors++; 2206 return (err); 2207 } 2208 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 2209 zbookmark_phys_t czb; 2210 2211 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2212 zb->zb_level - 1, 2213 zb->zb_blkid * epb + i); 2214 dsl_scan_visitbp(cbp, &czb, dnp, 2215 ds, scn, ostype, tx); 2216 } 2217 arc_buf_destroy(buf, &buf); 2218 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 2219 arc_flags_t flags = ARC_FLAG_WAIT; 2220 dnode_phys_t *cdnp; 2221 int i; 2222 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 2223 arc_buf_t *buf; 2224 2225 if (BP_IS_PROTECTED(bp)) { 2226 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 2227 zio_flags |= ZIO_FLAG_RAW; 2228 } 2229 2230 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2231 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2232 if (err) { 2233 scn->scn_phys.scn_errors++; 2234 return (err); 2235 } 2236 for (i = 0, cdnp = buf->b_data; i < epb; 2237 i += cdnp->dn_extra_slots + 1, 2238 cdnp += cdnp->dn_extra_slots + 1) { 2239 dsl_scan_visitdnode(scn, ds, ostype, 2240 cdnp, zb->zb_blkid * epb + i, tx); 2241 } 2242 2243 arc_buf_destroy(buf, &buf); 2244 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 2245 arc_flags_t flags = ARC_FLAG_WAIT; 2246 objset_phys_t *osp; 2247 arc_buf_t *buf; 2248 2249 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2250 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2251 if (err) { 2252 scn->scn_phys.scn_errors++; 2253 return (err); 2254 } 2255 2256 osp = buf->b_data; 2257 2258 dsl_scan_visitdnode(scn, ds, osp->os_type, 2259 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 2260 2261 if (OBJSET_BUF_HAS_USERUSED(buf)) { 2262 /* 2263 * We also always visit user/group/project accounting 2264 * objects, and never skip them, even if we are 2265 * suspending. This is necessary so that the 2266 * space deltas from this txg get integrated. 2267 */ 2268 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 2269 dsl_scan_visitdnode(scn, ds, osp->os_type, 2270 &osp->os_projectused_dnode, 2271 DMU_PROJECTUSED_OBJECT, tx); 2272 dsl_scan_visitdnode(scn, ds, osp->os_type, 2273 &osp->os_groupused_dnode, 2274 DMU_GROUPUSED_OBJECT, tx); 2275 dsl_scan_visitdnode(scn, ds, osp->os_type, 2276 &osp->os_userused_dnode, 2277 DMU_USERUSED_OBJECT, tx); 2278 } 2279 arc_buf_destroy(buf, &buf); 2280 } else if (!zfs_blkptr_verify(spa, bp, 2281 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 2282 /* 2283 * Sanity check the block pointer contents, this is handled 2284 * by arc_read() for the cases above. 2285 */ 2286 scn->scn_phys.scn_errors++; 2287 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp)); 2288 return (SET_ERROR(EINVAL)); 2289 } 2290 2291 return (0); 2292 } 2293 2294 inline __attribute__((always_inline)) static void 2295 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 2296 dmu_objset_type_t ostype, dnode_phys_t *dnp, 2297 uint64_t object, dmu_tx_t *tx) 2298 { 2299 int j; 2300 2301 for (j = 0; j < dnp->dn_nblkptr; j++) { 2302 zbookmark_phys_t czb; 2303 2304 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 2305 dnp->dn_nlevels - 1, j); 2306 dsl_scan_visitbp(&dnp->dn_blkptr[j], 2307 &czb, dnp, ds, scn, ostype, tx); 2308 } 2309 2310 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 2311 zbookmark_phys_t czb; 2312 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 2313 0, DMU_SPILL_BLKID); 2314 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 2315 &czb, dnp, ds, scn, ostype, tx); 2316 } 2317 } 2318 2319 /* 2320 * The arguments are in this order because mdb can only print the 2321 * first 5; we want them to be useful. 2322 */ 2323 static void 2324 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb, 2325 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 2326 dmu_objset_type_t ostype, dmu_tx_t *tx) 2327 { 2328 dsl_pool_t *dp = scn->scn_dp; 2329 2330 if (dsl_scan_check_suspend(scn, zb)) 2331 return; 2332 2333 if (dsl_scan_check_resume(scn, dnp, zb)) 2334 return; 2335 2336 scn->scn_visited_this_txg++; 2337 2338 if (BP_IS_HOLE(bp)) { 2339 scn->scn_holes_this_txg++; 2340 return; 2341 } 2342 2343 if (BP_IS_REDACTED(bp)) { 2344 ASSERT(dsl_dataset_feature_is_active(ds, 2345 SPA_FEATURE_REDACTED_DATASETS)); 2346 return; 2347 } 2348 2349 /* 2350 * Check if this block contradicts any filesystem flags. 2351 */ 2352 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS; 2353 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE) 2354 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2355 2356 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp)); 2357 if (f != SPA_FEATURE_NONE) 2358 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2359 2360 f = zio_compress_to_feature(BP_GET_COMPRESS(bp)); 2361 if (f != SPA_FEATURE_NONE) 2362 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2363 2364 if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) { 2365 scn->scn_lt_min_this_txg++; 2366 return; 2367 } 2368 2369 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0) 2370 return; 2371 2372 /* 2373 * If dsl_scan_ddt() has already visited this block, it will have 2374 * already done any translations or scrubbing, so don't call the 2375 * callback again. 2376 */ 2377 if (ddt_class_contains(dp->dp_spa, 2378 scn->scn_phys.scn_ddt_class_max, bp)) { 2379 scn->scn_ddt_contained_this_txg++; 2380 return; 2381 } 2382 2383 /* 2384 * If this block is from the future (after cur_max_txg), then we 2385 * are doing this on behalf of a deleted snapshot, and we will 2386 * revisit the future block on the next pass of this dataset. 2387 * Don't scan it now unless we need to because something 2388 * under it was modified. 2389 */ 2390 if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2391 scn->scn_gt_max_this_txg++; 2392 return; 2393 } 2394 2395 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2396 } 2397 2398 static void 2399 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2400 dmu_tx_t *tx) 2401 { 2402 zbookmark_phys_t zb; 2403 scan_prefetch_ctx_t *spc; 2404 2405 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2406 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2407 2408 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2409 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2410 zb.zb_objset, 0, 0, 0); 2411 } else { 2412 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2413 } 2414 2415 scn->scn_objsets_visited_this_txg++; 2416 2417 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2418 dsl_scan_prefetch(spc, bp, &zb); 2419 scan_prefetch_ctx_rele(spc, FTAG); 2420 2421 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2422 2423 dprintf_ds(ds, "finished scan%s", ""); 2424 } 2425 2426 static void 2427 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2428 { 2429 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2430 if (ds->ds_is_snapshot) { 2431 /* 2432 * Note: 2433 * - scn_cur_{min,max}_txg stays the same. 2434 * - Setting the flag is not really necessary if 2435 * scn_cur_max_txg == scn_max_txg, because there 2436 * is nothing after this snapshot that we care 2437 * about. However, we set it anyway and then 2438 * ignore it when we retraverse it in 2439 * dsl_scan_visitds(). 2440 */ 2441 scn_phys->scn_bookmark.zb_objset = 2442 dsl_dataset_phys(ds)->ds_next_snap_obj; 2443 zfs_dbgmsg("destroying ds %llu on %s; currently " 2444 "traversing; reset zb_objset to %llu", 2445 (u_longlong_t)ds->ds_object, 2446 ds->ds_dir->dd_pool->dp_spa->spa_name, 2447 (u_longlong_t)dsl_dataset_phys(ds)-> 2448 ds_next_snap_obj); 2449 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2450 } else { 2451 SET_BOOKMARK(&scn_phys->scn_bookmark, 2452 ZB_DESTROYED_OBJSET, 0, 0, 0); 2453 zfs_dbgmsg("destroying ds %llu on %s; currently " 2454 "traversing; reset bookmark to -1,0,0,0", 2455 (u_longlong_t)ds->ds_object, 2456 ds->ds_dir->dd_pool->dp_spa->spa_name); 2457 } 2458 } 2459 } 2460 2461 /* 2462 * Invoked when a dataset is destroyed. We need to make sure that: 2463 * 2464 * 1) If it is the dataset that was currently being scanned, we write 2465 * a new dsl_scan_phys_t and marking the objset reference in it 2466 * as destroyed. 2467 * 2) Remove it from the work queue, if it was present. 2468 * 2469 * If the dataset was actually a snapshot, instead of marking the dataset 2470 * as destroyed, we instead substitute the next snapshot in line. 2471 */ 2472 void 2473 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2474 { 2475 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2476 dsl_scan_t *scn = dp->dp_scan; 2477 uint64_t mintxg; 2478 2479 if (!dsl_scan_is_running(scn)) 2480 return; 2481 2482 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2483 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2484 2485 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2486 scan_ds_queue_remove(scn, ds->ds_object); 2487 if (ds->ds_is_snapshot) 2488 scan_ds_queue_insert(scn, 2489 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2490 } 2491 2492 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2493 ds->ds_object, &mintxg) == 0) { 2494 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2495 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2496 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2497 if (ds->ds_is_snapshot) { 2498 /* 2499 * We keep the same mintxg; it could be > 2500 * ds_creation_txg if the previous snapshot was 2501 * deleted too. 2502 */ 2503 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2504 scn->scn_phys.scn_queue_obj, 2505 dsl_dataset_phys(ds)->ds_next_snap_obj, 2506 mintxg, tx) == 0); 2507 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2508 "replacing with %llu", 2509 (u_longlong_t)ds->ds_object, 2510 dp->dp_spa->spa_name, 2511 (u_longlong_t)dsl_dataset_phys(ds)-> 2512 ds_next_snap_obj); 2513 } else { 2514 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2515 "removing", 2516 (u_longlong_t)ds->ds_object, 2517 dp->dp_spa->spa_name); 2518 } 2519 } 2520 2521 /* 2522 * dsl_scan_sync() should be called after this, and should sync 2523 * out our changed state, but just to be safe, do it here. 2524 */ 2525 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2526 } 2527 2528 static void 2529 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2530 { 2531 if (scn_bookmark->zb_objset == ds->ds_object) { 2532 scn_bookmark->zb_objset = 2533 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2534 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; " 2535 "reset zb_objset to %llu", 2536 (u_longlong_t)ds->ds_object, 2537 ds->ds_dir->dd_pool->dp_spa->spa_name, 2538 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2539 } 2540 } 2541 2542 /* 2543 * Called when a dataset is snapshotted. If we were currently traversing 2544 * this snapshot, we reset our bookmark to point at the newly created 2545 * snapshot. We also modify our work queue to remove the old snapshot and 2546 * replace with the new one. 2547 */ 2548 void 2549 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2550 { 2551 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2552 dsl_scan_t *scn = dp->dp_scan; 2553 uint64_t mintxg; 2554 2555 if (!dsl_scan_is_running(scn)) 2556 return; 2557 2558 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2559 2560 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2561 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2562 2563 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2564 scan_ds_queue_remove(scn, ds->ds_object); 2565 scan_ds_queue_insert(scn, 2566 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2567 } 2568 2569 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2570 ds->ds_object, &mintxg) == 0) { 2571 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2572 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2573 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2574 scn->scn_phys.scn_queue_obj, 2575 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2576 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; " 2577 "replacing with %llu", 2578 (u_longlong_t)ds->ds_object, 2579 dp->dp_spa->spa_name, 2580 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2581 } 2582 2583 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2584 } 2585 2586 static void 2587 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2588 zbookmark_phys_t *scn_bookmark) 2589 { 2590 if (scn_bookmark->zb_objset == ds1->ds_object) { 2591 scn_bookmark->zb_objset = ds2->ds_object; 2592 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2593 "reset zb_objset to %llu", 2594 (u_longlong_t)ds1->ds_object, 2595 ds1->ds_dir->dd_pool->dp_spa->spa_name, 2596 (u_longlong_t)ds2->ds_object); 2597 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2598 scn_bookmark->zb_objset = ds1->ds_object; 2599 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2600 "reset zb_objset to %llu", 2601 (u_longlong_t)ds2->ds_object, 2602 ds2->ds_dir->dd_pool->dp_spa->spa_name, 2603 (u_longlong_t)ds1->ds_object); 2604 } 2605 } 2606 2607 /* 2608 * Called when an origin dataset and its clone are swapped. If we were 2609 * currently traversing the dataset, we need to switch to traversing the 2610 * newly promoted clone. 2611 */ 2612 void 2613 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2614 { 2615 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2616 dsl_scan_t *scn = dp->dp_scan; 2617 uint64_t mintxg1, mintxg2; 2618 boolean_t ds1_queued, ds2_queued; 2619 2620 if (!dsl_scan_is_running(scn)) 2621 return; 2622 2623 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2624 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2625 2626 /* 2627 * Handle the in-memory scan queue. 2628 */ 2629 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2630 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2631 2632 /* Sanity checking. */ 2633 if (ds1_queued) { 2634 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2635 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2636 } 2637 if (ds2_queued) { 2638 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2639 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2640 } 2641 2642 if (ds1_queued && ds2_queued) { 2643 /* 2644 * If both are queued, we don't need to do anything. 2645 * The swapping code below would not handle this case correctly, 2646 * since we can't insert ds2 if it is already there. That's 2647 * because scan_ds_queue_insert() prohibits a duplicate insert 2648 * and panics. 2649 */ 2650 } else if (ds1_queued) { 2651 scan_ds_queue_remove(scn, ds1->ds_object); 2652 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2653 } else if (ds2_queued) { 2654 scan_ds_queue_remove(scn, ds2->ds_object); 2655 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2656 } 2657 2658 /* 2659 * Handle the on-disk scan queue. 2660 * The on-disk state is an out-of-date version of the in-memory state, 2661 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2662 * be different. Therefore we need to apply the swap logic to the 2663 * on-disk state independently of the in-memory state. 2664 */ 2665 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2666 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2667 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2668 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2669 2670 /* Sanity checking. */ 2671 if (ds1_queued) { 2672 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2673 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2674 } 2675 if (ds2_queued) { 2676 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2677 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2678 } 2679 2680 if (ds1_queued && ds2_queued) { 2681 /* 2682 * If both are queued, we don't need to do anything. 2683 * Alternatively, we could check for EEXIST from 2684 * zap_add_int_key() and back out to the original state, but 2685 * that would be more work than checking for this case upfront. 2686 */ 2687 } else if (ds1_queued) { 2688 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2689 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2690 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2691 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2692 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2693 "replacing with %llu", 2694 (u_longlong_t)ds1->ds_object, 2695 dp->dp_spa->spa_name, 2696 (u_longlong_t)ds2->ds_object); 2697 } else if (ds2_queued) { 2698 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2699 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2700 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2701 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2702 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2703 "replacing with %llu", 2704 (u_longlong_t)ds2->ds_object, 2705 dp->dp_spa->spa_name, 2706 (u_longlong_t)ds1->ds_object); 2707 } 2708 2709 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2710 } 2711 2712 static int 2713 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2714 { 2715 uint64_t originobj = *(uint64_t *)arg; 2716 dsl_dataset_t *ds; 2717 int err; 2718 dsl_scan_t *scn = dp->dp_scan; 2719 2720 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2721 return (0); 2722 2723 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2724 if (err) 2725 return (err); 2726 2727 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2728 dsl_dataset_t *prev; 2729 err = dsl_dataset_hold_obj(dp, 2730 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2731 2732 dsl_dataset_rele(ds, FTAG); 2733 if (err) 2734 return (err); 2735 ds = prev; 2736 } 2737 mutex_enter(&scn->scn_queue_lock); 2738 scan_ds_queue_insert(scn, ds->ds_object, 2739 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2740 mutex_exit(&scn->scn_queue_lock); 2741 dsl_dataset_rele(ds, FTAG); 2742 return (0); 2743 } 2744 2745 static void 2746 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2747 { 2748 dsl_pool_t *dp = scn->scn_dp; 2749 dsl_dataset_t *ds; 2750 2751 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2752 2753 if (scn->scn_phys.scn_cur_min_txg >= 2754 scn->scn_phys.scn_max_txg) { 2755 /* 2756 * This can happen if this snapshot was created after the 2757 * scan started, and we already completed a previous snapshot 2758 * that was created after the scan started. This snapshot 2759 * only references blocks with: 2760 * 2761 * birth < our ds_creation_txg 2762 * cur_min_txg is no less than ds_creation_txg. 2763 * We have already visited these blocks. 2764 * or 2765 * birth > scn_max_txg 2766 * The scan requested not to visit these blocks. 2767 * 2768 * Subsequent snapshots (and clones) can reference our 2769 * blocks, or blocks with even higher birth times. 2770 * Therefore we do not need to visit them either, 2771 * so we do not add them to the work queue. 2772 * 2773 * Note that checking for cur_min_txg >= cur_max_txg 2774 * is not sufficient, because in that case we may need to 2775 * visit subsequent snapshots. This happens when min_txg > 0, 2776 * which raises cur_min_txg. In this case we will visit 2777 * this dataset but skip all of its blocks, because the 2778 * rootbp's birth time is < cur_min_txg. Then we will 2779 * add the next snapshots/clones to the work queue. 2780 */ 2781 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2782 dsl_dataset_name(ds, dsname); 2783 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2784 "cur_min_txg (%llu) >= max_txg (%llu)", 2785 (longlong_t)dsobj, dsname, 2786 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2787 (longlong_t)scn->scn_phys.scn_max_txg); 2788 kmem_free(dsname, MAXNAMELEN); 2789 2790 goto out; 2791 } 2792 2793 /* 2794 * Only the ZIL in the head (non-snapshot) is valid. Even though 2795 * snapshots can have ZIL block pointers (which may be the same 2796 * BP as in the head), they must be ignored. In addition, $ORIGIN 2797 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2798 * need to look for a ZIL in it either. So we traverse the ZIL here, 2799 * rather than in scan_recurse(), because the regular snapshot 2800 * block-sharing rules don't apply to it. 2801 */ 2802 if (!dsl_dataset_is_snapshot(ds) && 2803 (dp->dp_origin_snap == NULL || 2804 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2805 objset_t *os; 2806 if (dmu_objset_from_ds(ds, &os) != 0) { 2807 goto out; 2808 } 2809 dsl_scan_zil(dp, &os->os_zil_header); 2810 } 2811 2812 /* 2813 * Iterate over the bps in this ds. 2814 */ 2815 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2816 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2817 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2818 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2819 2820 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2821 dsl_dataset_name(ds, dsname); 2822 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2823 "suspending=%u", 2824 (longlong_t)dsobj, dsname, 2825 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2826 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2827 (int)scn->scn_suspending); 2828 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2829 2830 if (scn->scn_suspending) 2831 goto out; 2832 2833 /* 2834 * We've finished this pass over this dataset. 2835 */ 2836 2837 /* 2838 * If we did not completely visit this dataset, do another pass. 2839 */ 2840 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2841 zfs_dbgmsg("incomplete pass on %s; visiting again", 2842 dp->dp_spa->spa_name); 2843 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2844 scan_ds_queue_insert(scn, ds->ds_object, 2845 scn->scn_phys.scn_cur_max_txg); 2846 goto out; 2847 } 2848 2849 /* 2850 * Add descendant datasets to work queue. 2851 */ 2852 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2853 scan_ds_queue_insert(scn, 2854 dsl_dataset_phys(ds)->ds_next_snap_obj, 2855 dsl_dataset_phys(ds)->ds_creation_txg); 2856 } 2857 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2858 boolean_t usenext = B_FALSE; 2859 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2860 uint64_t count; 2861 /* 2862 * A bug in a previous version of the code could 2863 * cause upgrade_clones_cb() to not set 2864 * ds_next_snap_obj when it should, leading to a 2865 * missing entry. Therefore we can only use the 2866 * next_clones_obj when its count is correct. 2867 */ 2868 int err = zap_count(dp->dp_meta_objset, 2869 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2870 if (err == 0 && 2871 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2872 usenext = B_TRUE; 2873 } 2874 2875 if (usenext) { 2876 zap_cursor_t zc; 2877 zap_attribute_t *za = zap_attribute_alloc(); 2878 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2879 dsl_dataset_phys(ds)->ds_next_clones_obj); 2880 zap_cursor_retrieve(&zc, za) == 0; 2881 (void) zap_cursor_advance(&zc)) { 2882 scan_ds_queue_insert(scn, 2883 zfs_strtonum(za->za_name, NULL), 2884 dsl_dataset_phys(ds)->ds_creation_txg); 2885 } 2886 zap_cursor_fini(&zc); 2887 zap_attribute_free(za); 2888 } else { 2889 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2890 enqueue_clones_cb, &ds->ds_object, 2891 DS_FIND_CHILDREN)); 2892 } 2893 } 2894 2895 out: 2896 dsl_dataset_rele(ds, FTAG); 2897 } 2898 2899 static int 2900 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2901 { 2902 (void) arg; 2903 dsl_dataset_t *ds; 2904 int err; 2905 dsl_scan_t *scn = dp->dp_scan; 2906 2907 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2908 if (err) 2909 return (err); 2910 2911 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2912 dsl_dataset_t *prev; 2913 err = dsl_dataset_hold_obj(dp, 2914 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2915 if (err) { 2916 dsl_dataset_rele(ds, FTAG); 2917 return (err); 2918 } 2919 2920 /* 2921 * If this is a clone, we don't need to worry about it for now. 2922 */ 2923 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2924 dsl_dataset_rele(ds, FTAG); 2925 dsl_dataset_rele(prev, FTAG); 2926 return (0); 2927 } 2928 dsl_dataset_rele(ds, FTAG); 2929 ds = prev; 2930 } 2931 2932 mutex_enter(&scn->scn_queue_lock); 2933 scan_ds_queue_insert(scn, ds->ds_object, 2934 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2935 mutex_exit(&scn->scn_queue_lock); 2936 dsl_dataset_rele(ds, FTAG); 2937 return (0); 2938 } 2939 2940 void 2941 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2942 ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 2943 { 2944 (void) tx; 2945 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 2946 blkptr_t bp; 2947 zbookmark_phys_t zb = { 0 }; 2948 2949 if (!dsl_scan_is_running(scn)) 2950 return; 2951 2952 /* 2953 * This function is special because it is the only thing 2954 * that can add scan_io_t's to the vdev scan queues from 2955 * outside dsl_scan_sync(). For the most part this is ok 2956 * as long as it is called from within syncing context. 2957 * However, dsl_scan_sync() expects that no new sio's will 2958 * be added between when all the work for a scan is done 2959 * and the next txg when the scan is actually marked as 2960 * completed. This check ensures we do not issue new sio's 2961 * during this period. 2962 */ 2963 if (scn->scn_done_txg != 0) 2964 return; 2965 2966 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 2967 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 2968 uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v); 2969 2970 if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg) 2971 continue; 2972 ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp); 2973 2974 scn->scn_visited_this_txg++; 2975 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2976 } 2977 } 2978 2979 /* 2980 * Scrub/dedup interaction. 2981 * 2982 * If there are N references to a deduped block, we don't want to scrub it 2983 * N times -- ideally, we should scrub it exactly once. 2984 * 2985 * We leverage the fact that the dde's replication class (ddt_class_t) 2986 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2987 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2988 * 2989 * To prevent excess scrubbing, the scrub begins by walking the DDT 2990 * to find all blocks with refcnt > 1, and scrubs each of these once. 2991 * Since there are two replication classes which contain blocks with 2992 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2993 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2994 * 2995 * There would be nothing more to say if a block's refcnt couldn't change 2996 * during a scrub, but of course it can so we must account for changes 2997 * in a block's replication class. 2998 * 2999 * Here's an example of what can occur: 3000 * 3001 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 3002 * when visited during the top-down scrub phase, it will be scrubbed twice. 3003 * This negates our scrub optimization, but is otherwise harmless. 3004 * 3005 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 3006 * on each visit during the top-down scrub phase, it will never be scrubbed. 3007 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 3008 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 3009 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 3010 * while a scrub is in progress, it scrubs the block right then. 3011 */ 3012 static void 3013 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 3014 { 3015 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 3016 ddt_lightweight_entry_t ddlwe = {0}; 3017 int error; 3018 uint64_t n = 0; 3019 3020 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) { 3021 ddt_t *ddt; 3022 3023 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 3024 break; 3025 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 3026 (longlong_t)ddb->ddb_class, 3027 (longlong_t)ddb->ddb_type, 3028 (longlong_t)ddb->ddb_checksum, 3029 (longlong_t)ddb->ddb_cursor); 3030 3031 /* There should be no pending changes to the dedup table */ 3032 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 3033 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 3034 3035 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx); 3036 n++; 3037 3038 if (dsl_scan_check_suspend(scn, NULL)) 3039 break; 3040 } 3041 3042 if (error == EAGAIN) { 3043 dsl_scan_check_suspend(scn, NULL); 3044 error = 0; 3045 3046 zfs_dbgmsg("waiting for ddt to become ready for scan " 3047 "on %s with class_max = %u; suspending=%u", 3048 scn->scn_dp->dp_spa->spa_name, 3049 (int)scn->scn_phys.scn_ddt_class_max, 3050 (int)scn->scn_suspending); 3051 } else 3052 zfs_dbgmsg("scanned %llu ddt entries on %s with " 3053 "class_max = %u; suspending=%u", (longlong_t)n, 3054 scn->scn_dp->dp_spa->spa_name, 3055 (int)scn->scn_phys.scn_ddt_class_max, 3056 (int)scn->scn_suspending); 3057 3058 ASSERT(error == 0 || error == ENOENT); 3059 ASSERT(error != ENOENT || 3060 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 3061 } 3062 3063 static uint64_t 3064 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 3065 { 3066 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 3067 if (ds->ds_is_snapshot) 3068 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 3069 return (smt); 3070 } 3071 3072 static void 3073 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 3074 { 3075 scan_ds_t *sds; 3076 dsl_pool_t *dp = scn->scn_dp; 3077 3078 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 3079 scn->scn_phys.scn_ddt_class_max) { 3080 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 3081 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 3082 dsl_scan_ddt(scn, tx); 3083 if (scn->scn_suspending) 3084 return; 3085 } 3086 3087 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 3088 /* First do the MOS & ORIGIN */ 3089 3090 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 3091 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 3092 dsl_scan_visit_rootbp(scn, NULL, 3093 &dp->dp_meta_rootbp, tx); 3094 if (scn->scn_suspending) 3095 return; 3096 3097 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 3098 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 3099 enqueue_cb, NULL, DS_FIND_CHILDREN)); 3100 } else { 3101 dsl_scan_visitds(scn, 3102 dp->dp_origin_snap->ds_object, tx); 3103 } 3104 ASSERT(!scn->scn_suspending); 3105 } else if (scn->scn_phys.scn_bookmark.zb_objset != 3106 ZB_DESTROYED_OBJSET) { 3107 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 3108 /* 3109 * If we were suspended, continue from here. Note if the 3110 * ds we were suspended on was deleted, the zb_objset may 3111 * be -1, so we will skip this and find a new objset 3112 * below. 3113 */ 3114 dsl_scan_visitds(scn, dsobj, tx); 3115 if (scn->scn_suspending) 3116 return; 3117 } 3118 3119 /* 3120 * In case we suspended right at the end of the ds, zero the 3121 * bookmark so we don't think that we're still trying to resume. 3122 */ 3123 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t)); 3124 3125 /* 3126 * Keep pulling things out of the dataset avl queue. Updates to the 3127 * persistent zap-object-as-queue happen only at checkpoints. 3128 */ 3129 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 3130 dsl_dataset_t *ds; 3131 uint64_t dsobj = sds->sds_dsobj; 3132 uint64_t txg = sds->sds_txg; 3133 3134 /* dequeue and free the ds from the queue */ 3135 scan_ds_queue_remove(scn, dsobj); 3136 sds = NULL; 3137 3138 /* set up min / max txg */ 3139 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 3140 if (txg != 0) { 3141 scn->scn_phys.scn_cur_min_txg = 3142 MAX(scn->scn_phys.scn_min_txg, txg); 3143 } else { 3144 scn->scn_phys.scn_cur_min_txg = 3145 MAX(scn->scn_phys.scn_min_txg, 3146 dsl_dataset_phys(ds)->ds_prev_snap_txg); 3147 } 3148 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 3149 dsl_dataset_rele(ds, FTAG); 3150 3151 dsl_scan_visitds(scn, dsobj, tx); 3152 if (scn->scn_suspending) 3153 return; 3154 } 3155 3156 /* No more objsets to fetch, we're done */ 3157 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 3158 ASSERT0(scn->scn_suspending); 3159 } 3160 3161 static uint64_t 3162 dsl_scan_count_data_disks(spa_t *spa) 3163 { 3164 vdev_t *rvd = spa->spa_root_vdev; 3165 uint64_t i, leaves = 0; 3166 3167 for (i = 0; i < rvd->vdev_children; i++) { 3168 vdev_t *vd = rvd->vdev_child[i]; 3169 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache) 3170 continue; 3171 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd); 3172 } 3173 return (leaves); 3174 } 3175 3176 static void 3177 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 3178 { 3179 int i; 3180 uint64_t cur_size = 0; 3181 3182 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3183 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 3184 } 3185 3186 q->q_total_zio_size_this_txg += cur_size; 3187 q->q_zios_this_txg++; 3188 } 3189 3190 static void 3191 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 3192 uint64_t end) 3193 { 3194 q->q_total_seg_size_this_txg += end - start; 3195 q->q_segs_this_txg++; 3196 } 3197 3198 static boolean_t 3199 scan_io_queue_check_suspend(dsl_scan_t *scn) 3200 { 3201 /* See comment in dsl_scan_check_suspend() */ 3202 uint64_t curr_time_ns = gethrtime(); 3203 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 3204 uint64_t sync_time_ns = curr_time_ns - 3205 scn->scn_dp->dp_spa->spa_sync_starttime; 3206 uint64_t dirty_min_bytes = zfs_dirty_data_max * 3207 zfs_vdev_async_write_active_min_dirty_percent / 100; 3208 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3209 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3210 3211 return ((NSEC2MSEC(scan_time_ns) > mintime && 3212 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 3213 txg_sync_waiting(scn->scn_dp) || 3214 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 3215 spa_shutting_down(scn->scn_dp->dp_spa)); 3216 } 3217 3218 /* 3219 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 3220 * disk. This consumes the io_list and frees the scan_io_t's. This is 3221 * called when emptying queues, either when we're up against the memory 3222 * limit or when we have finished scanning. Returns B_TRUE if we stopped 3223 * processing the list before we finished. Any sios that were not issued 3224 * will remain in the io_list. 3225 */ 3226 static boolean_t 3227 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 3228 { 3229 dsl_scan_t *scn = queue->q_scn; 3230 scan_io_t *sio; 3231 boolean_t suspended = B_FALSE; 3232 3233 while ((sio = list_head(io_list)) != NULL) { 3234 blkptr_t bp; 3235 3236 if (scan_io_queue_check_suspend(scn)) { 3237 suspended = B_TRUE; 3238 break; 3239 } 3240 3241 sio2bp(sio, &bp); 3242 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 3243 &sio->sio_zb, queue); 3244 (void) list_remove_head(io_list); 3245 scan_io_queues_update_zio_stats(queue, &bp); 3246 sio_free(sio); 3247 } 3248 return (suspended); 3249 } 3250 3251 /* 3252 * This function removes sios from an IO queue which reside within a given 3253 * range_seg_t and inserts them (in offset order) into a list. Note that 3254 * we only ever return a maximum of 32 sios at once. If there are more sios 3255 * to process within this segment that did not make it onto the list we 3256 * return B_TRUE and otherwise B_FALSE. 3257 */ 3258 static boolean_t 3259 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 3260 { 3261 scan_io_t *srch_sio, *sio, *next_sio; 3262 avl_index_t idx; 3263 uint_t num_sios = 0; 3264 int64_t bytes_issued = 0; 3265 3266 ASSERT(rs != NULL); 3267 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3268 3269 srch_sio = sio_alloc(1); 3270 srch_sio->sio_nr_dvas = 1; 3271 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 3272 3273 /* 3274 * The exact start of the extent might not contain any matching zios, 3275 * so if that's the case, examine the next one in the tree. 3276 */ 3277 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 3278 sio_free(srch_sio); 3279 3280 if (sio == NULL) 3281 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 3282 3283 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 3284 queue->q_exts_by_addr) && num_sios <= 32) { 3285 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 3286 queue->q_exts_by_addr)); 3287 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 3288 queue->q_exts_by_addr)); 3289 3290 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 3291 avl_remove(&queue->q_sios_by_addr, sio); 3292 if (avl_is_empty(&queue->q_sios_by_addr)) 3293 atomic_add_64(&queue->q_scn->scn_queues_pending, -1); 3294 queue->q_sio_memused -= SIO_GET_MUSED(sio); 3295 3296 bytes_issued += SIO_GET_ASIZE(sio); 3297 num_sios++; 3298 list_insert_tail(list, sio); 3299 sio = next_sio; 3300 } 3301 3302 /* 3303 * We limit the number of sios we process at once to 32 to avoid 3304 * biting off more than we can chew. If we didn't take everything 3305 * in the segment we update it to reflect the work we were able to 3306 * complete. Otherwise, we remove it from the range tree entirely. 3307 */ 3308 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 3309 queue->q_exts_by_addr)) { 3310 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 3311 -bytes_issued); 3312 range_tree_resize_segment(queue->q_exts_by_addr, rs, 3313 SIO_GET_OFFSET(sio), rs_get_end(rs, 3314 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 3315 queue->q_last_ext_addr = SIO_GET_OFFSET(sio); 3316 return (B_TRUE); 3317 } else { 3318 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 3319 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 3320 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 3321 queue->q_last_ext_addr = -1; 3322 return (B_FALSE); 3323 } 3324 } 3325 3326 /* 3327 * This is called from the queue emptying thread and selects the next 3328 * extent from which we are to issue I/Os. The behavior of this function 3329 * depends on the state of the scan, the current memory consumption and 3330 * whether or not we are performing a scan shutdown. 3331 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 3332 * needs to perform a checkpoint 3333 * 2) We select the largest available extent if we are up against the 3334 * memory limit. 3335 * 3) Otherwise we don't select any extents. 3336 */ 3337 static range_seg_t * 3338 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 3339 { 3340 dsl_scan_t *scn = queue->q_scn; 3341 range_tree_t *rt = queue->q_exts_by_addr; 3342 3343 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3344 ASSERT(scn->scn_is_sorted); 3345 3346 if (!scn->scn_checkpointing && !scn->scn_clearing) 3347 return (NULL); 3348 3349 /* 3350 * During normal clearing, we want to issue our largest segments 3351 * first, keeping IO as sequential as possible, and leaving the 3352 * smaller extents for later with the hope that they might eventually 3353 * grow to larger sequential segments. However, when the scan is 3354 * checkpointing, no new extents will be added to the sorting queue, 3355 * so the way we are sorted now is as good as it will ever get. 3356 * In this case, we instead switch to issuing extents in LBA order. 3357 */ 3358 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) || 3359 zfs_scan_issue_strategy == 1) 3360 return (range_tree_first(rt)); 3361 3362 /* 3363 * Try to continue previous extent if it is not completed yet. After 3364 * shrink in scan_io_queue_gather() it may no longer be the best, but 3365 * otherwise we leave shorter remnant every txg. 3366 */ 3367 uint64_t start; 3368 uint64_t size = 1ULL << rt->rt_shift; 3369 range_seg_t *addr_rs; 3370 if (queue->q_last_ext_addr != -1) { 3371 start = queue->q_last_ext_addr; 3372 addr_rs = range_tree_find(rt, start, size); 3373 if (addr_rs != NULL) 3374 return (addr_rs); 3375 } 3376 3377 /* 3378 * Nothing to continue, so find new best extent. 3379 */ 3380 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL); 3381 if (v == NULL) 3382 return (NULL); 3383 queue->q_last_ext_addr = start = *v << rt->rt_shift; 3384 3385 /* 3386 * We need to get the original entry in the by_addr tree so we can 3387 * modify it. 3388 */ 3389 addr_rs = range_tree_find(rt, start, size); 3390 ASSERT3P(addr_rs, !=, NULL); 3391 ASSERT3U(rs_get_start(addr_rs, rt), ==, start); 3392 ASSERT3U(rs_get_end(addr_rs, rt), >, start); 3393 return (addr_rs); 3394 } 3395 3396 static void 3397 scan_io_queues_run_one(void *arg) 3398 { 3399 dsl_scan_io_queue_t *queue = arg; 3400 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3401 boolean_t suspended = B_FALSE; 3402 range_seg_t *rs; 3403 scan_io_t *sio; 3404 zio_t *zio; 3405 list_t sio_list; 3406 3407 ASSERT(queue->q_scn->scn_is_sorted); 3408 3409 list_create(&sio_list, sizeof (scan_io_t), 3410 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3411 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa, 3412 NULL, NULL, NULL, ZIO_FLAG_CANFAIL); 3413 mutex_enter(q_lock); 3414 queue->q_zio = zio; 3415 3416 /* Calculate maximum in-flight bytes for this vdev. */ 3417 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit * 3418 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd))); 3419 3420 /* reset per-queue scan statistics for this txg */ 3421 queue->q_total_seg_size_this_txg = 0; 3422 queue->q_segs_this_txg = 0; 3423 queue->q_total_zio_size_this_txg = 0; 3424 queue->q_zios_this_txg = 0; 3425 3426 /* loop until we run out of time or sios */ 3427 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3428 uint64_t seg_start = 0, seg_end = 0; 3429 boolean_t more_left; 3430 3431 ASSERT(list_is_empty(&sio_list)); 3432 3433 /* loop while we still have sios left to process in this rs */ 3434 do { 3435 scan_io_t *first_sio, *last_sio; 3436 3437 /* 3438 * We have selected which extent needs to be 3439 * processed next. Gather up the corresponding sios. 3440 */ 3441 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3442 ASSERT(!list_is_empty(&sio_list)); 3443 first_sio = list_head(&sio_list); 3444 last_sio = list_tail(&sio_list); 3445 3446 seg_end = SIO_GET_END_OFFSET(last_sio); 3447 if (seg_start == 0) 3448 seg_start = SIO_GET_OFFSET(first_sio); 3449 3450 /* 3451 * Issuing sios can take a long time so drop the 3452 * queue lock. The sio queue won't be updated by 3453 * other threads since we're in syncing context so 3454 * we can be sure that our trees will remain exactly 3455 * as we left them. 3456 */ 3457 mutex_exit(q_lock); 3458 suspended = scan_io_queue_issue(queue, &sio_list); 3459 mutex_enter(q_lock); 3460 3461 if (suspended) 3462 break; 3463 } while (more_left); 3464 3465 /* update statistics for debugging purposes */ 3466 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3467 3468 if (suspended) 3469 break; 3470 } 3471 3472 /* 3473 * If we were suspended in the middle of processing, 3474 * requeue any unfinished sios and exit. 3475 */ 3476 while ((sio = list_remove_head(&sio_list)) != NULL) 3477 scan_io_queue_insert_impl(queue, sio); 3478 3479 queue->q_zio = NULL; 3480 mutex_exit(q_lock); 3481 zio_nowait(zio); 3482 list_destroy(&sio_list); 3483 } 3484 3485 /* 3486 * Performs an emptying run on all scan queues in the pool. This just 3487 * punches out one thread per top-level vdev, each of which processes 3488 * only that vdev's scan queue. We can parallelize the I/O here because 3489 * we know that each queue's I/Os only affect its own top-level vdev. 3490 * 3491 * This function waits for the queue runs to complete, and must be 3492 * called from dsl_scan_sync (or in general, syncing context). 3493 */ 3494 static void 3495 scan_io_queues_run(dsl_scan_t *scn) 3496 { 3497 spa_t *spa = scn->scn_dp->dp_spa; 3498 3499 ASSERT(scn->scn_is_sorted); 3500 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3501 3502 if (scn->scn_queues_pending == 0) 3503 return; 3504 3505 if (scn->scn_taskq == NULL) { 3506 int nthreads = spa->spa_root_vdev->vdev_children; 3507 3508 /* 3509 * We need to make this taskq *always* execute as many 3510 * threads in parallel as we have top-level vdevs and no 3511 * less, otherwise strange serialization of the calls to 3512 * scan_io_queues_run_one can occur during spa_sync runs 3513 * and that significantly impacts performance. 3514 */ 3515 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3516 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3517 } 3518 3519 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3520 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3521 3522 mutex_enter(&vd->vdev_scan_io_queue_lock); 3523 if (vd->vdev_scan_io_queue != NULL) { 3524 VERIFY(taskq_dispatch(scn->scn_taskq, 3525 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3526 TQ_SLEEP) != TASKQID_INVALID); 3527 } 3528 mutex_exit(&vd->vdev_scan_io_queue_lock); 3529 } 3530 3531 /* 3532 * Wait for the queues to finish issuing their IOs for this run 3533 * before we return. There may still be IOs in flight at this 3534 * point. 3535 */ 3536 taskq_wait(scn->scn_taskq); 3537 } 3538 3539 static boolean_t 3540 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3541 { 3542 uint64_t elapsed_nanosecs; 3543 3544 if (zfs_recover) 3545 return (B_FALSE); 3546 3547 if (zfs_async_block_max_blocks != 0 && 3548 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3549 return (B_TRUE); 3550 } 3551 3552 if (zfs_max_async_dedup_frees != 0 && 3553 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3554 return (B_TRUE); 3555 } 3556 3557 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3558 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3559 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3560 txg_sync_waiting(scn->scn_dp)) || 3561 spa_shutting_down(scn->scn_dp->dp_spa)); 3562 } 3563 3564 static int 3565 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3566 { 3567 dsl_scan_t *scn = arg; 3568 3569 if (!scn->scn_is_bptree || 3570 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3571 if (dsl_scan_async_block_should_pause(scn)) 3572 return (SET_ERROR(ERESTART)); 3573 } 3574 3575 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3576 dmu_tx_get_txg(tx), bp, 0)); 3577 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3578 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3579 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3580 scn->scn_visited_this_txg++; 3581 if (BP_GET_DEDUP(bp)) 3582 scn->scn_dedup_frees_this_txg++; 3583 return (0); 3584 } 3585 3586 static void 3587 dsl_scan_update_stats(dsl_scan_t *scn) 3588 { 3589 spa_t *spa = scn->scn_dp->dp_spa; 3590 uint64_t i; 3591 uint64_t seg_size_total = 0, zio_size_total = 0; 3592 uint64_t seg_count_total = 0, zio_count_total = 0; 3593 3594 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3595 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3596 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3597 3598 if (queue == NULL) 3599 continue; 3600 3601 seg_size_total += queue->q_total_seg_size_this_txg; 3602 zio_size_total += queue->q_total_zio_size_this_txg; 3603 seg_count_total += queue->q_segs_this_txg; 3604 zio_count_total += queue->q_zios_this_txg; 3605 } 3606 3607 if (seg_count_total == 0 || zio_count_total == 0) { 3608 scn->scn_avg_seg_size_this_txg = 0; 3609 scn->scn_avg_zio_size_this_txg = 0; 3610 scn->scn_segs_this_txg = 0; 3611 scn->scn_zios_this_txg = 0; 3612 return; 3613 } 3614 3615 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3616 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3617 scn->scn_segs_this_txg = seg_count_total; 3618 scn->scn_zios_this_txg = zio_count_total; 3619 } 3620 3621 static int 3622 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3623 dmu_tx_t *tx) 3624 { 3625 ASSERT(!bp_freed); 3626 return (dsl_scan_free_block_cb(arg, bp, tx)); 3627 } 3628 3629 static int 3630 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3631 dmu_tx_t *tx) 3632 { 3633 ASSERT(!bp_freed); 3634 dsl_scan_t *scn = arg; 3635 const dva_t *dva = &bp->blk_dva[0]; 3636 3637 if (dsl_scan_async_block_should_pause(scn)) 3638 return (SET_ERROR(ERESTART)); 3639 3640 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3641 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3642 DVA_GET_ASIZE(dva), tx); 3643 scn->scn_visited_this_txg++; 3644 return (0); 3645 } 3646 3647 boolean_t 3648 dsl_scan_active(dsl_scan_t *scn) 3649 { 3650 spa_t *spa = scn->scn_dp->dp_spa; 3651 uint64_t used = 0, comp, uncomp; 3652 boolean_t clones_left; 3653 3654 if (spa->spa_load_state != SPA_LOAD_NONE) 3655 return (B_FALSE); 3656 if (spa_shutting_down(spa)) 3657 return (B_FALSE); 3658 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3659 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3660 return (B_TRUE); 3661 3662 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3663 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3664 &used, &comp, &uncomp); 3665 } 3666 clones_left = spa_livelist_delete_check(spa); 3667 return ((used != 0) || (clones_left)); 3668 } 3669 3670 boolean_t 3671 dsl_errorscrub_active(dsl_scan_t *scn) 3672 { 3673 spa_t *spa = scn->scn_dp->dp_spa; 3674 if (spa->spa_load_state != SPA_LOAD_NONE) 3675 return (B_FALSE); 3676 if (spa_shutting_down(spa)) 3677 return (B_FALSE); 3678 if (dsl_errorscrubbing(scn->scn_dp)) 3679 return (B_TRUE); 3680 return (B_FALSE); 3681 } 3682 3683 static boolean_t 3684 dsl_scan_check_deferred(vdev_t *vd) 3685 { 3686 boolean_t need_resilver = B_FALSE; 3687 3688 for (int c = 0; c < vd->vdev_children; c++) { 3689 need_resilver |= 3690 dsl_scan_check_deferred(vd->vdev_child[c]); 3691 } 3692 3693 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3694 !vd->vdev_ops->vdev_op_leaf) 3695 return (need_resilver); 3696 3697 if (!vd->vdev_resilver_deferred) 3698 need_resilver = B_TRUE; 3699 3700 return (need_resilver); 3701 } 3702 3703 static boolean_t 3704 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3705 uint64_t phys_birth) 3706 { 3707 vdev_t *vd; 3708 3709 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3710 3711 if (vd->vdev_ops == &vdev_indirect_ops) { 3712 /* 3713 * The indirect vdev can point to multiple 3714 * vdevs. For simplicity, always create 3715 * the resilver zio_t. zio_vdev_io_start() 3716 * will bypass the child resilver i/o's if 3717 * they are on vdevs that don't have DTL's. 3718 */ 3719 return (B_TRUE); 3720 } 3721 3722 if (DVA_GET_GANG(dva)) { 3723 /* 3724 * Gang members may be spread across multiple 3725 * vdevs, so the best estimate we have is the 3726 * scrub range, which has already been checked. 3727 * XXX -- it would be better to change our 3728 * allocation policy to ensure that all 3729 * gang members reside on the same vdev. 3730 */ 3731 return (B_TRUE); 3732 } 3733 3734 /* 3735 * Check if the top-level vdev must resilver this offset. 3736 * When the offset does not intersect with a dirty leaf DTL 3737 * then it may be possible to skip the resilver IO. The psize 3738 * is provided instead of asize to simplify the check for RAIDZ. 3739 */ 3740 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) 3741 return (B_FALSE); 3742 3743 /* 3744 * Check that this top-level vdev has a device under it which 3745 * is resilvering and is not deferred. 3746 */ 3747 if (!dsl_scan_check_deferred(vd)) 3748 return (B_FALSE); 3749 3750 return (B_TRUE); 3751 } 3752 3753 static int 3754 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3755 { 3756 dsl_scan_t *scn = dp->dp_scan; 3757 spa_t *spa = dp->dp_spa; 3758 int err = 0; 3759 3760 if (spa_suspend_async_destroy(spa)) 3761 return (0); 3762 3763 if (zfs_free_bpobj_enabled && 3764 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3765 scn->scn_is_bptree = B_FALSE; 3766 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3767 scn->scn_zio_root = zio_root(spa, NULL, 3768 NULL, ZIO_FLAG_MUSTSUCCEED); 3769 err = bpobj_iterate(&dp->dp_free_bpobj, 3770 bpobj_dsl_scan_free_block_cb, scn, tx); 3771 VERIFY0(zio_wait(scn->scn_zio_root)); 3772 scn->scn_zio_root = NULL; 3773 3774 if (err != 0 && err != ERESTART) 3775 zfs_panic_recover("error %u from bpobj_iterate()", err); 3776 } 3777 3778 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3779 ASSERT(scn->scn_async_destroying); 3780 scn->scn_is_bptree = B_TRUE; 3781 scn->scn_zio_root = zio_root(spa, NULL, 3782 NULL, ZIO_FLAG_MUSTSUCCEED); 3783 err = bptree_iterate(dp->dp_meta_objset, 3784 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3785 VERIFY0(zio_wait(scn->scn_zio_root)); 3786 scn->scn_zio_root = NULL; 3787 3788 if (err == EIO || err == ECKSUM) { 3789 err = 0; 3790 } else if (err != 0 && err != ERESTART) { 3791 zfs_panic_recover("error %u from " 3792 "traverse_dataset_destroyed()", err); 3793 } 3794 3795 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3796 /* finished; deactivate async destroy feature */ 3797 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3798 ASSERT(!spa_feature_is_active(spa, 3799 SPA_FEATURE_ASYNC_DESTROY)); 3800 VERIFY0(zap_remove(dp->dp_meta_objset, 3801 DMU_POOL_DIRECTORY_OBJECT, 3802 DMU_POOL_BPTREE_OBJ, tx)); 3803 VERIFY0(bptree_free(dp->dp_meta_objset, 3804 dp->dp_bptree_obj, tx)); 3805 dp->dp_bptree_obj = 0; 3806 scn->scn_async_destroying = B_FALSE; 3807 scn->scn_async_stalled = B_FALSE; 3808 } else { 3809 /* 3810 * If we didn't make progress, mark the async 3811 * destroy as stalled, so that we will not initiate 3812 * a spa_sync() on its behalf. Note that we only 3813 * check this if we are not finished, because if the 3814 * bptree had no blocks for us to visit, we can 3815 * finish without "making progress". 3816 */ 3817 scn->scn_async_stalled = 3818 (scn->scn_visited_this_txg == 0); 3819 } 3820 } 3821 if (scn->scn_visited_this_txg) { 3822 zfs_dbgmsg("freed %llu blocks in %llums from " 3823 "free_bpobj/bptree on %s in txg %llu; err=%u", 3824 (longlong_t)scn->scn_visited_this_txg, 3825 (longlong_t) 3826 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3827 spa->spa_name, (longlong_t)tx->tx_txg, err); 3828 scn->scn_visited_this_txg = 0; 3829 scn->scn_dedup_frees_this_txg = 0; 3830 3831 /* 3832 * Write out changes to the DDT and the BRT that may be required 3833 * as a result of the blocks freed. This ensures that the DDT 3834 * and the BRT are clean when a scrub/resilver runs. 3835 */ 3836 ddt_sync(spa, tx->tx_txg); 3837 brt_sync(spa, tx->tx_txg); 3838 } 3839 if (err != 0) 3840 return (err); 3841 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3842 zfs_free_leak_on_eio && 3843 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3844 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3845 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3846 /* 3847 * We have finished background destroying, but there is still 3848 * some space left in the dp_free_dir. Transfer this leaked 3849 * space to the dp_leak_dir. 3850 */ 3851 if (dp->dp_leak_dir == NULL) { 3852 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3853 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3854 LEAK_DIR_NAME, tx); 3855 VERIFY0(dsl_pool_open_special_dir(dp, 3856 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3857 rrw_exit(&dp->dp_config_rwlock, FTAG); 3858 } 3859 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3860 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3861 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3862 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3863 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3864 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3865 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3866 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3867 } 3868 3869 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3870 !spa_livelist_delete_check(spa)) { 3871 /* finished; verify that space accounting went to zero */ 3872 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3873 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3874 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3875 } 3876 3877 spa_notify_waiters(spa); 3878 3879 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3880 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3881 DMU_POOL_OBSOLETE_BPOBJ)); 3882 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3883 ASSERT(spa_feature_is_active(dp->dp_spa, 3884 SPA_FEATURE_OBSOLETE_COUNTS)); 3885 3886 scn->scn_is_bptree = B_FALSE; 3887 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3888 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3889 dsl_scan_obsolete_block_cb, scn, tx); 3890 if (err != 0 && err != ERESTART) 3891 zfs_panic_recover("error %u from bpobj_iterate()", err); 3892 3893 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3894 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3895 } 3896 return (0); 3897 } 3898 3899 static void 3900 name_to_bookmark(char *buf, zbookmark_phys_t *zb) 3901 { 3902 zb->zb_objset = zfs_strtonum(buf, &buf); 3903 ASSERT(*buf == ':'); 3904 zb->zb_object = zfs_strtonum(buf + 1, &buf); 3905 ASSERT(*buf == ':'); 3906 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf); 3907 ASSERT(*buf == ':'); 3908 zb->zb_blkid = zfs_strtonum(buf + 1, &buf); 3909 ASSERT(*buf == '\0'); 3910 } 3911 3912 static void 3913 name_to_object(char *buf, uint64_t *obj) 3914 { 3915 *obj = zfs_strtonum(buf, &buf); 3916 ASSERT(*buf == '\0'); 3917 } 3918 3919 static void 3920 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb) 3921 { 3922 dsl_pool_t *dp = scn->scn_dp; 3923 dsl_dataset_t *ds; 3924 objset_t *os; 3925 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0) 3926 return; 3927 3928 if (dmu_objset_from_ds(ds, &os) != 0) { 3929 dsl_dataset_rele(ds, FTAG); 3930 return; 3931 } 3932 3933 /* 3934 * If the key is not loaded dbuf_dnode_findbp() will error out with 3935 * EACCES. However in that case dnode_hold() will eventually call 3936 * dbuf_read()->zio_wait() which may call spa_log_error(). This will 3937 * lead to a deadlock due to us holding the mutex spa_errlist_lock. 3938 * Avoid this by checking here if the keys are loaded, if not return. 3939 * If the keys are not loaded the head_errlog feature is meaningless 3940 * as we cannot figure out the birth txg of the block pointer. 3941 */ 3942 if (dsl_dataset_get_keystatus(ds->ds_dir) == 3943 ZFS_KEYSTATUS_UNAVAILABLE) { 3944 dsl_dataset_rele(ds, FTAG); 3945 return; 3946 } 3947 3948 dnode_t *dn; 3949 blkptr_t bp; 3950 3951 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) { 3952 dsl_dataset_rele(ds, FTAG); 3953 return; 3954 } 3955 3956 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3957 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL, 3958 NULL); 3959 3960 if (error) { 3961 rw_exit(&dn->dn_struct_rwlock); 3962 dnode_rele(dn, FTAG); 3963 dsl_dataset_rele(ds, FTAG); 3964 return; 3965 } 3966 3967 if (!error && BP_IS_HOLE(&bp)) { 3968 rw_exit(&dn->dn_struct_rwlock); 3969 dnode_rele(dn, FTAG); 3970 dsl_dataset_rele(ds, FTAG); 3971 return; 3972 } 3973 3974 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | 3975 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB; 3976 3977 /* If it's an intent log block, failure is expected. */ 3978 if (zb.zb_level == ZB_ZIL_LEVEL) 3979 zio_flags |= ZIO_FLAG_SPECULATIVE; 3980 3981 ASSERT(!BP_IS_EMBEDDED(&bp)); 3982 scan_exec_io(dp, &bp, zio_flags, &zb, NULL); 3983 rw_exit(&dn->dn_struct_rwlock); 3984 dnode_rele(dn, FTAG); 3985 dsl_dataset_rele(ds, FTAG); 3986 } 3987 3988 /* 3989 * We keep track of the scrubbed error blocks in "count". This will be used 3990 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This 3991 * function is modelled after check_filesystem(). 3992 */ 3993 static int 3994 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep, 3995 int *count) 3996 { 3997 dsl_dataset_t *ds; 3998 dsl_pool_t *dp = spa->spa_dsl_pool; 3999 dsl_scan_t *scn = dp->dp_scan; 4000 4001 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds); 4002 if (error != 0) 4003 return (error); 4004 4005 uint64_t latest_txg; 4006 uint64_t txg_to_consider = spa->spa_syncing_txg; 4007 boolean_t check_snapshot = B_TRUE; 4008 4009 error = find_birth_txg(ds, zep, &latest_txg); 4010 4011 /* 4012 * If find_birth_txg() errors out, then err on the side of caution and 4013 * proceed. In worst case scenario scrub all objects. If zep->zb_birth 4014 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to 4015 * scrub all objects. 4016 */ 4017 if (error == 0 && zep->zb_birth == latest_txg) { 4018 /* Block neither free nor re written. */ 4019 zbookmark_phys_t zb; 4020 zep_to_zb(fs, zep, &zb); 4021 scn->scn_zio_root = zio_root(spa, NULL, NULL, 4022 ZIO_FLAG_CANFAIL); 4023 /* We have already acquired the config lock for spa */ 4024 read_by_block_level(scn, zb); 4025 4026 (void) zio_wait(scn->scn_zio_root); 4027 scn->scn_zio_root = NULL; 4028 4029 scn->errorscrub_phys.dep_examined++; 4030 scn->errorscrub_phys.dep_to_examine--; 4031 (*count)++; 4032 if ((*count) == zfs_scrub_error_blocks_per_txg || 4033 dsl_error_scrub_check_suspend(scn, &zb)) { 4034 dsl_dataset_rele(ds, FTAG); 4035 return (SET_ERROR(EFAULT)); 4036 } 4037 4038 check_snapshot = B_FALSE; 4039 } else if (error == 0) { 4040 txg_to_consider = latest_txg; 4041 } 4042 4043 /* 4044 * Retrieve the number of snapshots if the dataset is not a snapshot. 4045 */ 4046 uint64_t snap_count = 0; 4047 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) { 4048 4049 error = zap_count(spa->spa_meta_objset, 4050 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count); 4051 4052 if (error != 0) { 4053 dsl_dataset_rele(ds, FTAG); 4054 return (error); 4055 } 4056 } 4057 4058 if (snap_count == 0) { 4059 /* Filesystem without snapshots. */ 4060 dsl_dataset_rele(ds, FTAG); 4061 return (0); 4062 } 4063 4064 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4065 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4066 4067 dsl_dataset_rele(ds, FTAG); 4068 4069 /* Check only snapshots created from this file system. */ 4070 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg && 4071 snap_obj_txg <= txg_to_consider) { 4072 4073 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds); 4074 if (error != 0) 4075 return (error); 4076 4077 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) { 4078 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4079 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4080 dsl_dataset_rele(ds, FTAG); 4081 continue; 4082 } 4083 4084 boolean_t affected = B_TRUE; 4085 if (check_snapshot) { 4086 uint64_t blk_txg; 4087 error = find_birth_txg(ds, zep, &blk_txg); 4088 4089 /* 4090 * Scrub the snapshot also when zb_birth == 0 or when 4091 * find_birth_txg() returns an error. 4092 */ 4093 affected = (error == 0 && zep->zb_birth == blk_txg) || 4094 (error != 0) || (zep->zb_birth == 0); 4095 } 4096 4097 /* Scrub snapshots. */ 4098 if (affected) { 4099 zbookmark_phys_t zb; 4100 zep_to_zb(snap_obj, zep, &zb); 4101 scn->scn_zio_root = zio_root(spa, NULL, NULL, 4102 ZIO_FLAG_CANFAIL); 4103 /* We have already acquired the config lock for spa */ 4104 read_by_block_level(scn, zb); 4105 4106 (void) zio_wait(scn->scn_zio_root); 4107 scn->scn_zio_root = NULL; 4108 4109 scn->errorscrub_phys.dep_examined++; 4110 scn->errorscrub_phys.dep_to_examine--; 4111 (*count)++; 4112 if ((*count) == zfs_scrub_error_blocks_per_txg || 4113 dsl_error_scrub_check_suspend(scn, &zb)) { 4114 dsl_dataset_rele(ds, FTAG); 4115 return (EFAULT); 4116 } 4117 } 4118 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4119 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4120 dsl_dataset_rele(ds, FTAG); 4121 } 4122 return (0); 4123 } 4124 4125 void 4126 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx) 4127 { 4128 spa_t *spa = dp->dp_spa; 4129 dsl_scan_t *scn = dp->dp_scan; 4130 4131 /* 4132 * Only process scans in sync pass 1. 4133 */ 4134 4135 if (spa_sync_pass(spa) > 1) 4136 return; 4137 4138 /* 4139 * If the spa is shutting down, then stop scanning. This will 4140 * ensure that the scan does not dirty any new data during the 4141 * shutdown phase. 4142 */ 4143 if (spa_shutting_down(spa)) 4144 return; 4145 4146 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) { 4147 return; 4148 } 4149 4150 if (dsl_scan_resilvering(scn->scn_dp)) { 4151 /* cancel the error scrub if resilver started */ 4152 dsl_scan_cancel(scn->scn_dp); 4153 return; 4154 } 4155 4156 spa->spa_scrub_active = B_TRUE; 4157 scn->scn_sync_start_time = gethrtime(); 4158 4159 /* 4160 * zfs_scan_suspend_progress can be set to disable scrub progress. 4161 * See more detailed comment in dsl_scan_sync(). 4162 */ 4163 if (zfs_scan_suspend_progress) { 4164 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4165 int mintime = zfs_scrub_min_time_ms; 4166 4167 while (zfs_scan_suspend_progress && 4168 !txg_sync_waiting(scn->scn_dp) && 4169 !spa_shutting_down(scn->scn_dp->dp_spa) && 4170 NSEC2MSEC(scan_time_ns) < mintime) { 4171 delay(hz); 4172 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4173 } 4174 return; 4175 } 4176 4177 int i = 0; 4178 zap_attribute_t *za; 4179 zbookmark_phys_t *zb; 4180 boolean_t limit_exceeded = B_FALSE; 4181 4182 za = zap_attribute_alloc(); 4183 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP); 4184 4185 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 4186 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0; 4187 zap_cursor_advance(&scn->errorscrub_cursor)) { 4188 name_to_bookmark(za->za_name, zb); 4189 4190 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4191 NULL, ZIO_FLAG_CANFAIL); 4192 dsl_pool_config_enter(dp, FTAG); 4193 read_by_block_level(scn, *zb); 4194 dsl_pool_config_exit(dp, FTAG); 4195 4196 (void) zio_wait(scn->scn_zio_root); 4197 scn->scn_zio_root = NULL; 4198 4199 scn->errorscrub_phys.dep_examined += 1; 4200 scn->errorscrub_phys.dep_to_examine -= 1; 4201 i++; 4202 if (i == zfs_scrub_error_blocks_per_txg || 4203 dsl_error_scrub_check_suspend(scn, zb)) { 4204 limit_exceeded = B_TRUE; 4205 break; 4206 } 4207 } 4208 4209 if (!limit_exceeded) 4210 dsl_errorscrub_done(scn, B_TRUE, tx); 4211 4212 dsl_errorscrub_sync_state(scn, tx); 4213 zap_attribute_free(za); 4214 kmem_free(zb, sizeof (*zb)); 4215 return; 4216 } 4217 4218 int error = 0; 4219 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0; 4220 zap_cursor_advance(&scn->errorscrub_cursor)) { 4221 4222 zap_cursor_t *head_ds_cursor; 4223 zap_attribute_t *head_ds_attr; 4224 zbookmark_err_phys_t head_ds_block; 4225 4226 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP); 4227 head_ds_attr = zap_attribute_alloc(); 4228 4229 uint64_t head_ds_err_obj = za->za_first_integer; 4230 uint64_t head_ds; 4231 name_to_object(za->za_name, &head_ds); 4232 boolean_t config_held = B_FALSE; 4233 uint64_t top_affected_fs; 4234 4235 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset, 4236 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor, 4237 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) { 4238 4239 name_to_errphys(head_ds_attr->za_name, &head_ds_block); 4240 4241 /* 4242 * In case we are called from spa_sync the pool 4243 * config is already held. 4244 */ 4245 if (!dsl_pool_config_held(dp)) { 4246 dsl_pool_config_enter(dp, FTAG); 4247 config_held = B_TRUE; 4248 } 4249 4250 error = find_top_affected_fs(spa, 4251 head_ds, &head_ds_block, &top_affected_fs); 4252 if (error) 4253 break; 4254 4255 error = scrub_filesystem(spa, top_affected_fs, 4256 &head_ds_block, &i); 4257 4258 if (error == SET_ERROR(EFAULT)) { 4259 limit_exceeded = B_TRUE; 4260 break; 4261 } 4262 } 4263 4264 zap_cursor_fini(head_ds_cursor); 4265 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor)); 4266 zap_attribute_free(head_ds_attr); 4267 4268 if (config_held) 4269 dsl_pool_config_exit(dp, FTAG); 4270 } 4271 4272 zap_attribute_free(za); 4273 kmem_free(zb, sizeof (*zb)); 4274 if (!limit_exceeded) 4275 dsl_errorscrub_done(scn, B_TRUE, tx); 4276 4277 dsl_errorscrub_sync_state(scn, tx); 4278 } 4279 4280 /* 4281 * This is the primary entry point for scans that is called from syncing 4282 * context. Scans must happen entirely during syncing context so that we 4283 * can guarantee that blocks we are currently scanning will not change out 4284 * from under us. While a scan is active, this function controls how quickly 4285 * transaction groups proceed, instead of the normal handling provided by 4286 * txg_sync_thread(). 4287 */ 4288 void 4289 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 4290 { 4291 int err = 0; 4292 dsl_scan_t *scn = dp->dp_scan; 4293 spa_t *spa = dp->dp_spa; 4294 state_sync_type_t sync_type = SYNC_OPTIONAL; 4295 int restart_early = 0; 4296 4297 if (spa->spa_resilver_deferred) { 4298 uint64_t to_issue, issued; 4299 4300 if (!spa_feature_is_active(dp->dp_spa, 4301 SPA_FEATURE_RESILVER_DEFER)) 4302 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 4303 4304 /* 4305 * See print_scan_scrub_resilver_status() issued/total_i 4306 * @ cmd/zpool/zpool_main.c 4307 */ 4308 to_issue = 4309 scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped; 4310 issued = 4311 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 4312 restart_early = 4313 zfs_resilver_disable_defer || 4314 (issued < (to_issue * zfs_resilver_defer_percent / 100)); 4315 } 4316 4317 /* 4318 * Only process scans in sync pass 1. 4319 */ 4320 if (spa_sync_pass(spa) > 1) 4321 return; 4322 4323 4324 /* 4325 * Check for scn_restart_txg before checking spa_load_state, so 4326 * that we can restart an old-style scan while the pool is being 4327 * imported (see dsl_scan_init). We also restart scans if there 4328 * is a deferred resilver and the user has manually disabled 4329 * deferred resilvers via zfs_resilver_disable_defer, or if the 4330 * current scan progress is below zfs_resilver_defer_percent. 4331 */ 4332 if (dsl_scan_restarting(scn, tx) || restart_early) { 4333 pool_scan_func_t func = POOL_SCAN_SCRUB; 4334 dsl_scan_done(scn, B_FALSE, tx); 4335 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 4336 func = POOL_SCAN_RESILVER; 4337 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d", 4338 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg, 4339 restart_early); 4340 dsl_scan_setup_sync(&func, tx); 4341 } 4342 4343 /* 4344 * If the spa is shutting down, then stop scanning. This will 4345 * ensure that the scan does not dirty any new data during the 4346 * shutdown phase. 4347 */ 4348 if (spa_shutting_down(spa)) 4349 return; 4350 4351 /* 4352 * If the scan is inactive due to a stalled async destroy, try again. 4353 */ 4354 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 4355 return; 4356 4357 /* reset scan statistics */ 4358 scn->scn_visited_this_txg = 0; 4359 scn->scn_dedup_frees_this_txg = 0; 4360 scn->scn_holes_this_txg = 0; 4361 scn->scn_lt_min_this_txg = 0; 4362 scn->scn_gt_max_this_txg = 0; 4363 scn->scn_ddt_contained_this_txg = 0; 4364 scn->scn_objsets_visited_this_txg = 0; 4365 scn->scn_avg_seg_size_this_txg = 0; 4366 scn->scn_segs_this_txg = 0; 4367 scn->scn_avg_zio_size_this_txg = 0; 4368 scn->scn_zios_this_txg = 0; 4369 scn->scn_suspending = B_FALSE; 4370 scn->scn_sync_start_time = gethrtime(); 4371 spa->spa_scrub_active = B_TRUE; 4372 4373 /* 4374 * First process the async destroys. If we suspend, don't do 4375 * any scrubbing or resilvering. This ensures that there are no 4376 * async destroys while we are scanning, so the scan code doesn't 4377 * have to worry about traversing it. It is also faster to free the 4378 * blocks than to scrub them. 4379 */ 4380 err = dsl_process_async_destroys(dp, tx); 4381 if (err != 0) 4382 return; 4383 4384 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 4385 return; 4386 4387 /* 4388 * Wait a few txgs after importing to begin scanning so that 4389 * we can get the pool imported quickly. 4390 */ 4391 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 4392 return; 4393 4394 /* 4395 * zfs_scan_suspend_progress can be set to disable scan progress. 4396 * We don't want to spin the txg_sync thread, so we add a delay 4397 * here to simulate the time spent doing a scan. This is mostly 4398 * useful for testing and debugging. 4399 */ 4400 if (zfs_scan_suspend_progress) { 4401 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4402 uint_t mintime = (scn->scn_phys.scn_func == 4403 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : 4404 zfs_scrub_min_time_ms; 4405 4406 while (zfs_scan_suspend_progress && 4407 !txg_sync_waiting(scn->scn_dp) && 4408 !spa_shutting_down(scn->scn_dp->dp_spa) && 4409 NSEC2MSEC(scan_time_ns) < mintime) { 4410 delay(hz); 4411 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4412 } 4413 return; 4414 } 4415 4416 /* 4417 * Disabled by default, set zfs_scan_report_txgs to report 4418 * average performance over the last zfs_scan_report_txgs TXGs. 4419 */ 4420 if (zfs_scan_report_txgs != 0 && 4421 tx->tx_txg % zfs_scan_report_txgs == 0) { 4422 scn->scn_issued_before_pass += spa->spa_scan_pass_issued; 4423 spa_scan_stat_init(spa); 4424 } 4425 4426 /* 4427 * It is possible to switch from unsorted to sorted at any time, 4428 * but afterwards the scan will remain sorted unless reloaded from 4429 * a checkpoint after a reboot. 4430 */ 4431 if (!zfs_scan_legacy) { 4432 scn->scn_is_sorted = B_TRUE; 4433 if (scn->scn_last_checkpoint == 0) 4434 scn->scn_last_checkpoint = ddi_get_lbolt(); 4435 } 4436 4437 /* 4438 * For sorted scans, determine what kind of work we will be doing 4439 * this txg based on our memory limitations and whether or not we 4440 * need to perform a checkpoint. 4441 */ 4442 if (scn->scn_is_sorted) { 4443 /* 4444 * If we are over our checkpoint interval, set scn_clearing 4445 * so that we can begin checkpointing immediately. The 4446 * checkpoint allows us to save a consistent bookmark 4447 * representing how much data we have scrubbed so far. 4448 * Otherwise, use the memory limit to determine if we should 4449 * scan for metadata or start issue scrub IOs. We accumulate 4450 * metadata until we hit our hard memory limit at which point 4451 * we issue scrub IOs until we are at our soft memory limit. 4452 */ 4453 if (scn->scn_checkpointing || 4454 ddi_get_lbolt() - scn->scn_last_checkpoint > 4455 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 4456 if (!scn->scn_checkpointing) 4457 zfs_dbgmsg("begin scan checkpoint for %s", 4458 spa->spa_name); 4459 4460 scn->scn_checkpointing = B_TRUE; 4461 scn->scn_clearing = B_TRUE; 4462 } else { 4463 boolean_t should_clear = dsl_scan_should_clear(scn); 4464 if (should_clear && !scn->scn_clearing) { 4465 zfs_dbgmsg("begin scan clearing for %s", 4466 spa->spa_name); 4467 scn->scn_clearing = B_TRUE; 4468 } else if (!should_clear && scn->scn_clearing) { 4469 zfs_dbgmsg("finish scan clearing for %s", 4470 spa->spa_name); 4471 scn->scn_clearing = B_FALSE; 4472 } 4473 } 4474 } else { 4475 ASSERT0(scn->scn_checkpointing); 4476 ASSERT0(scn->scn_clearing); 4477 } 4478 4479 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 4480 /* Need to scan metadata for more blocks to scrub */ 4481 dsl_scan_phys_t *scnp = &scn->scn_phys; 4482 taskqid_t prefetch_tqid; 4483 4484 /* 4485 * Calculate the max number of in-flight bytes for pool-wide 4486 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). 4487 * Limits for the issuing phase are done per top-level vdev and 4488 * are handled separately. 4489 */ 4490 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, 4491 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); 4492 4493 if (scnp->scn_ddt_bookmark.ddb_class <= 4494 scnp->scn_ddt_class_max) { 4495 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 4496 zfs_dbgmsg("doing scan sync for %s txg %llu; " 4497 "ddt bm=%llu/%llu/%llu/%llx", 4498 spa->spa_name, 4499 (longlong_t)tx->tx_txg, 4500 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 4501 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 4502 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 4503 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 4504 } else { 4505 zfs_dbgmsg("doing scan sync for %s txg %llu; " 4506 "bm=%llu/%llu/%llu/%llu", 4507 spa->spa_name, 4508 (longlong_t)tx->tx_txg, 4509 (longlong_t)scnp->scn_bookmark.zb_objset, 4510 (longlong_t)scnp->scn_bookmark.zb_object, 4511 (longlong_t)scnp->scn_bookmark.zb_level, 4512 (longlong_t)scnp->scn_bookmark.zb_blkid); 4513 } 4514 4515 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4516 NULL, ZIO_FLAG_CANFAIL); 4517 4518 scn->scn_prefetch_stop = B_FALSE; 4519 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 4520 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 4521 ASSERT(prefetch_tqid != TASKQID_INVALID); 4522 4523 dsl_pool_config_enter(dp, FTAG); 4524 dsl_scan_visit(scn, tx); 4525 dsl_pool_config_exit(dp, FTAG); 4526 4527 mutex_enter(&dp->dp_spa->spa_scrub_lock); 4528 scn->scn_prefetch_stop = B_TRUE; 4529 cv_broadcast(&spa->spa_scrub_io_cv); 4530 mutex_exit(&dp->dp_spa->spa_scrub_lock); 4531 4532 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 4533 (void) zio_wait(scn->scn_zio_root); 4534 scn->scn_zio_root = NULL; 4535 4536 zfs_dbgmsg("scan visited %llu blocks of %s in %llums " 4537 "(%llu os's, %llu holes, %llu < mintxg, " 4538 "%llu in ddt, %llu > maxtxg)", 4539 (longlong_t)scn->scn_visited_this_txg, 4540 spa->spa_name, 4541 (longlong_t)NSEC2MSEC(gethrtime() - 4542 scn->scn_sync_start_time), 4543 (longlong_t)scn->scn_objsets_visited_this_txg, 4544 (longlong_t)scn->scn_holes_this_txg, 4545 (longlong_t)scn->scn_lt_min_this_txg, 4546 (longlong_t)scn->scn_ddt_contained_this_txg, 4547 (longlong_t)scn->scn_gt_max_this_txg); 4548 4549 if (!scn->scn_suspending) { 4550 ASSERT0(avl_numnodes(&scn->scn_queue)); 4551 scn->scn_done_txg = tx->tx_txg + 1; 4552 if (scn->scn_is_sorted) { 4553 scn->scn_checkpointing = B_TRUE; 4554 scn->scn_clearing = B_TRUE; 4555 scn->scn_issued_before_pass += 4556 spa->spa_scan_pass_issued; 4557 spa_scan_stat_init(spa); 4558 } 4559 zfs_dbgmsg("scan complete for %s txg %llu", 4560 spa->spa_name, 4561 (longlong_t)tx->tx_txg); 4562 } 4563 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) { 4564 ASSERT(scn->scn_clearing); 4565 4566 /* need to issue scrubbing IOs from per-vdev queues */ 4567 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4568 NULL, ZIO_FLAG_CANFAIL); 4569 scan_io_queues_run(scn); 4570 (void) zio_wait(scn->scn_zio_root); 4571 scn->scn_zio_root = NULL; 4572 4573 /* calculate and dprintf the current memory usage */ 4574 (void) dsl_scan_should_clear(scn); 4575 dsl_scan_update_stats(scn); 4576 4577 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) " 4578 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)", 4579 (longlong_t)scn->scn_zios_this_txg, 4580 spa->spa_name, 4581 (longlong_t)scn->scn_segs_this_txg, 4582 (longlong_t)NSEC2MSEC(gethrtime() - 4583 scn->scn_sync_start_time), 4584 (longlong_t)scn->scn_avg_zio_size_this_txg, 4585 (longlong_t)scn->scn_avg_seg_size_this_txg); 4586 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 4587 /* Finished with everything. Mark the scrub as complete */ 4588 zfs_dbgmsg("scan issuing complete txg %llu for %s", 4589 (longlong_t)tx->tx_txg, 4590 spa->spa_name); 4591 ASSERT3U(scn->scn_done_txg, !=, 0); 4592 ASSERT0(spa->spa_scrub_inflight); 4593 ASSERT0(scn->scn_queues_pending); 4594 dsl_scan_done(scn, B_TRUE, tx); 4595 sync_type = SYNC_MANDATORY; 4596 } 4597 4598 dsl_scan_sync_state(scn, tx, sync_type); 4599 } 4600 4601 static void 4602 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all) 4603 { 4604 /* 4605 * Don't count embedded bp's, since we already did the work of 4606 * scanning these when we scanned the containing block. 4607 */ 4608 if (BP_IS_EMBEDDED(bp)) 4609 return; 4610 4611 /* 4612 * Update the spa's stats on how many bytes we have issued. 4613 * Sequential scrubs create a zio for each DVA of the bp. Each 4614 * of these will include all DVAs for repair purposes, but the 4615 * zio code will only try the first one unless there is an issue. 4616 * Therefore, we should only count the first DVA for these IOs. 4617 */ 4618 atomic_add_64(&spa->spa_scan_pass_issued, 4619 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 4620 } 4621 4622 static void 4623 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all) 4624 { 4625 if (BP_IS_EMBEDDED(bp)) 4626 return; 4627 atomic_add_64(&scn->scn_phys.scn_skipped, 4628 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 4629 } 4630 4631 static void 4632 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp) 4633 { 4634 /* 4635 * If we resume after a reboot, zab will be NULL; don't record 4636 * incomplete stats in that case. 4637 */ 4638 if (zab == NULL) 4639 return; 4640 4641 for (int i = 0; i < 4; i++) { 4642 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 4643 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 4644 4645 if (t & DMU_OT_NEWTYPE) 4646 t = DMU_OT_OTHER; 4647 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 4648 int equal; 4649 4650 zb->zb_count++; 4651 zb->zb_asize += BP_GET_ASIZE(bp); 4652 zb->zb_lsize += BP_GET_LSIZE(bp); 4653 zb->zb_psize += BP_GET_PSIZE(bp); 4654 zb->zb_gangs += BP_COUNT_GANG(bp); 4655 4656 switch (BP_GET_NDVAS(bp)) { 4657 case 2: 4658 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 4659 DVA_GET_VDEV(&bp->blk_dva[1])) 4660 zb->zb_ditto_2_of_2_samevdev++; 4661 break; 4662 case 3: 4663 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 4664 DVA_GET_VDEV(&bp->blk_dva[1])) + 4665 (DVA_GET_VDEV(&bp->blk_dva[0]) == 4666 DVA_GET_VDEV(&bp->blk_dva[2])) + 4667 (DVA_GET_VDEV(&bp->blk_dva[1]) == 4668 DVA_GET_VDEV(&bp->blk_dva[2])); 4669 if (equal == 1) 4670 zb->zb_ditto_2_of_3_samevdev++; 4671 else if (equal == 3) 4672 zb->zb_ditto_3_of_3_samevdev++; 4673 break; 4674 } 4675 } 4676 } 4677 4678 static void 4679 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 4680 { 4681 avl_index_t idx; 4682 dsl_scan_t *scn = queue->q_scn; 4683 4684 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4685 4686 if (unlikely(avl_is_empty(&queue->q_sios_by_addr))) 4687 atomic_add_64(&scn->scn_queues_pending, 1); 4688 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 4689 /* block is already scheduled for reading */ 4690 sio_free(sio); 4691 return; 4692 } 4693 avl_insert(&queue->q_sios_by_addr, sio, idx); 4694 queue->q_sio_memused += SIO_GET_MUSED(sio); 4695 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), 4696 SIO_GET_ASIZE(sio)); 4697 } 4698 4699 /* 4700 * Given all the info we got from our metadata scanning process, we 4701 * construct a scan_io_t and insert it into the scan sorting queue. The 4702 * I/O must already be suitable for us to process. This is controlled 4703 * by dsl_scan_enqueue(). 4704 */ 4705 static void 4706 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 4707 int zio_flags, const zbookmark_phys_t *zb) 4708 { 4709 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 4710 4711 ASSERT0(BP_IS_GANG(bp)); 4712 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4713 4714 bp2sio(bp, sio, dva_i); 4715 sio->sio_flags = zio_flags; 4716 sio->sio_zb = *zb; 4717 4718 queue->q_last_ext_addr = -1; 4719 scan_io_queue_insert_impl(queue, sio); 4720 } 4721 4722 /* 4723 * Given a set of I/O parameters as discovered by the metadata traversal 4724 * process, attempts to place the I/O into the sorted queues (if allowed), 4725 * or immediately executes the I/O. 4726 */ 4727 static void 4728 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4729 const zbookmark_phys_t *zb) 4730 { 4731 spa_t *spa = dp->dp_spa; 4732 4733 ASSERT(!BP_IS_EMBEDDED(bp)); 4734 4735 /* 4736 * Gang blocks are hard to issue sequentially, so we just issue them 4737 * here immediately instead of queuing them. 4738 */ 4739 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 4740 scan_exec_io(dp, bp, zio_flags, zb, NULL); 4741 return; 4742 } 4743 4744 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 4745 dva_t dva; 4746 vdev_t *vdev; 4747 4748 dva = bp->blk_dva[i]; 4749 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 4750 ASSERT(vdev != NULL); 4751 4752 mutex_enter(&vdev->vdev_scan_io_queue_lock); 4753 if (vdev->vdev_scan_io_queue == NULL) 4754 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 4755 ASSERT(dp->dp_scan != NULL); 4756 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 4757 i, zio_flags, zb); 4758 mutex_exit(&vdev->vdev_scan_io_queue_lock); 4759 } 4760 } 4761 4762 static int 4763 dsl_scan_scrub_cb(dsl_pool_t *dp, 4764 const blkptr_t *bp, const zbookmark_phys_t *zb) 4765 { 4766 dsl_scan_t *scn = dp->dp_scan; 4767 spa_t *spa = dp->dp_spa; 4768 uint64_t phys_birth = BP_GET_BIRTH(bp); 4769 size_t psize = BP_GET_PSIZE(bp); 4770 boolean_t needs_io = B_FALSE; 4771 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 4772 4773 count_block(dp->dp_blkstats, bp); 4774 if (phys_birth <= scn->scn_phys.scn_min_txg || 4775 phys_birth >= scn->scn_phys.scn_max_txg) { 4776 count_block_skipped(scn, bp, B_TRUE); 4777 return (0); 4778 } 4779 4780 /* Embedded BP's have phys_birth==0, so we reject them above. */ 4781 ASSERT(!BP_IS_EMBEDDED(bp)); 4782 4783 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 4784 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 4785 zio_flags |= ZIO_FLAG_SCRUB; 4786 needs_io = B_TRUE; 4787 } else { 4788 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 4789 zio_flags |= ZIO_FLAG_RESILVER; 4790 needs_io = B_FALSE; 4791 } 4792 4793 /* If it's an intent log block, failure is expected. */ 4794 if (zb->zb_level == ZB_ZIL_LEVEL) 4795 zio_flags |= ZIO_FLAG_SPECULATIVE; 4796 4797 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 4798 const dva_t *dva = &bp->blk_dva[d]; 4799 4800 /* 4801 * Keep track of how much data we've examined so that 4802 * zpool(8) status can make useful progress reports. 4803 */ 4804 uint64_t asize = DVA_GET_ASIZE(dva); 4805 scn->scn_phys.scn_examined += asize; 4806 spa->spa_scan_pass_exam += asize; 4807 4808 /* if it's a resilver, this may not be in the target range */ 4809 if (!needs_io) 4810 needs_io = dsl_scan_need_resilver(spa, dva, psize, 4811 phys_birth); 4812 } 4813 4814 if (needs_io && !zfs_no_scrub_io) { 4815 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4816 } else { 4817 count_block_skipped(scn, bp, B_TRUE); 4818 } 4819 4820 /* do not relocate this block */ 4821 return (0); 4822 } 4823 4824 static void 4825 dsl_scan_scrub_done(zio_t *zio) 4826 { 4827 spa_t *spa = zio->io_spa; 4828 blkptr_t *bp = zio->io_bp; 4829 dsl_scan_io_queue_t *queue = zio->io_private; 4830 4831 abd_free(zio->io_abd); 4832 4833 if (queue == NULL) { 4834 mutex_enter(&spa->spa_scrub_lock); 4835 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4836 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4837 cv_broadcast(&spa->spa_scrub_io_cv); 4838 mutex_exit(&spa->spa_scrub_lock); 4839 } else { 4840 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4841 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4842 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4843 cv_broadcast(&queue->q_zio_cv); 4844 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4845 } 4846 4847 if (zio->io_error && (zio->io_error != ECKSUM || 4848 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4849 if (dsl_errorscrubbing(spa->spa_dsl_pool) && 4850 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) { 4851 atomic_inc_64(&spa->spa_dsl_pool->dp_scan 4852 ->errorscrub_phys.dep_errors); 4853 } else { 4854 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys 4855 .scn_errors); 4856 } 4857 } 4858 } 4859 4860 /* 4861 * Given a scanning zio's information, executes the zio. The zio need 4862 * not necessarily be only sortable, this function simply executes the 4863 * zio, no matter what it is. The optional queue argument allows the 4864 * caller to specify that they want per top level vdev IO rate limiting 4865 * instead of the legacy global limiting. 4866 */ 4867 static void 4868 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4869 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4870 { 4871 spa_t *spa = dp->dp_spa; 4872 dsl_scan_t *scn = dp->dp_scan; 4873 size_t size = BP_GET_PSIZE(bp); 4874 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4875 zio_t *pio; 4876 4877 if (queue == NULL) { 4878 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4879 mutex_enter(&spa->spa_scrub_lock); 4880 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4881 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4882 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4883 mutex_exit(&spa->spa_scrub_lock); 4884 pio = scn->scn_zio_root; 4885 } else { 4886 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4887 4888 ASSERT3U(queue->q_maxinflight_bytes, >, 0); 4889 mutex_enter(q_lock); 4890 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4891 cv_wait(&queue->q_zio_cv, q_lock); 4892 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4893 pio = queue->q_zio; 4894 mutex_exit(q_lock); 4895 } 4896 4897 ASSERT(pio != NULL); 4898 count_block_issued(spa, bp, queue == NULL); 4899 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done, 4900 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4901 } 4902 4903 /* 4904 * This is the primary extent sorting algorithm. We balance two parameters: 4905 * 1) how many bytes of I/O are in an extent 4906 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4907 * Since we allow extents to have gaps between their constituent I/Os, it's 4908 * possible to have a fairly large extent that contains the same amount of 4909 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4910 * The algorithm sorts based on a score calculated from the extent's size, 4911 * the relative fill volume (in %) and a "fill weight" parameter that controls 4912 * the split between whether we prefer larger extents or more well populated 4913 * extents: 4914 * 4915 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4916 * 4917 * Example: 4918 * 1) assume extsz = 64 MiB 4919 * 2) assume fill = 32 MiB (extent is half full) 4920 * 3) assume fill_weight = 3 4921 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4922 * SCORE = 32M + (50 * 3 * 32M) / 100 4923 * SCORE = 32M + (4800M / 100) 4924 * SCORE = 32M + 48M 4925 * ^ ^ 4926 * | +--- final total relative fill-based score 4927 * +--------- final total fill-based score 4928 * SCORE = 80M 4929 * 4930 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4931 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4932 * Note that as an optimization, we replace multiplication and division by 4933 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4934 * 4935 * Since we do not care if one extent is only few percent better than another, 4936 * compress the score into 6 bits via binary logarithm AKA highbit64() and 4937 * put into otherwise unused due to ashift high bits of offset. This allows 4938 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them 4939 * with single operation. Plus it makes scrubs more sequential and reduces 4940 * chances that minor extent change move it within the B-tree. 4941 */ 4942 __attribute__((always_inline)) inline 4943 static int 4944 ext_size_compare(const void *x, const void *y) 4945 { 4946 const uint64_t *a = x, *b = y; 4947 4948 return (TREE_CMP(*a, *b)); 4949 } 4950 4951 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t, 4952 ext_size_compare) 4953 4954 static void 4955 ext_size_create(range_tree_t *rt, void *arg) 4956 { 4957 (void) rt; 4958 zfs_btree_t *size_tree = arg; 4959 4960 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf, 4961 sizeof (uint64_t)); 4962 } 4963 4964 static void 4965 ext_size_destroy(range_tree_t *rt, void *arg) 4966 { 4967 (void) rt; 4968 zfs_btree_t *size_tree = arg; 4969 ASSERT0(zfs_btree_numnodes(size_tree)); 4970 4971 zfs_btree_destroy(size_tree); 4972 } 4973 4974 static uint64_t 4975 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg) 4976 { 4977 (void) rt; 4978 uint64_t size = rsg->rs_end - rsg->rs_start; 4979 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) * 4980 fill_weight * rsg->rs_fill) >> 7); 4981 ASSERT3U(rt->rt_shift, >=, 8); 4982 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start); 4983 } 4984 4985 static void 4986 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg) 4987 { 4988 zfs_btree_t *size_tree = arg; 4989 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); 4990 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); 4991 zfs_btree_add(size_tree, &v); 4992 } 4993 4994 static void 4995 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 4996 { 4997 zfs_btree_t *size_tree = arg; 4998 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); 4999 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); 5000 zfs_btree_remove(size_tree, &v); 5001 } 5002 5003 static void 5004 ext_size_vacate(range_tree_t *rt, void *arg) 5005 { 5006 zfs_btree_t *size_tree = arg; 5007 zfs_btree_clear(size_tree); 5008 zfs_btree_destroy(size_tree); 5009 5010 ext_size_create(rt, arg); 5011 } 5012 5013 static const range_tree_ops_t ext_size_ops = { 5014 .rtop_create = ext_size_create, 5015 .rtop_destroy = ext_size_destroy, 5016 .rtop_add = ext_size_add, 5017 .rtop_remove = ext_size_remove, 5018 .rtop_vacate = ext_size_vacate 5019 }; 5020 5021 /* 5022 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 5023 * based on LBA-order (from lowest to highest). 5024 */ 5025 static int 5026 sio_addr_compare(const void *x, const void *y) 5027 { 5028 const scan_io_t *a = x, *b = y; 5029 5030 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 5031 } 5032 5033 /* IO queues are created on demand when they are needed. */ 5034 static dsl_scan_io_queue_t * 5035 scan_io_queue_create(vdev_t *vd) 5036 { 5037 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 5038 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 5039 5040 q->q_scn = scn; 5041 q->q_vd = vd; 5042 q->q_sio_memused = 0; 5043 q->q_last_ext_addr = -1; 5044 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 5045 q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP, 5046 &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap); 5047 avl_create(&q->q_sios_by_addr, sio_addr_compare, 5048 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 5049 5050 return (q); 5051 } 5052 5053 /* 5054 * Destroys a scan queue and all segments and scan_io_t's contained in it. 5055 * No further execution of I/O occurs, anything pending in the queue is 5056 * simply freed without being executed. 5057 */ 5058 void 5059 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 5060 { 5061 dsl_scan_t *scn = queue->q_scn; 5062 scan_io_t *sio; 5063 void *cookie = NULL; 5064 5065 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 5066 5067 if (!avl_is_empty(&queue->q_sios_by_addr)) 5068 atomic_add_64(&scn->scn_queues_pending, -1); 5069 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 5070 NULL) { 5071 ASSERT(range_tree_contains(queue->q_exts_by_addr, 5072 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 5073 queue->q_sio_memused -= SIO_GET_MUSED(sio); 5074 sio_free(sio); 5075 } 5076 5077 ASSERT0(queue->q_sio_memused); 5078 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 5079 range_tree_destroy(queue->q_exts_by_addr); 5080 avl_destroy(&queue->q_sios_by_addr); 5081 cv_destroy(&queue->q_zio_cv); 5082 5083 kmem_free(queue, sizeof (*queue)); 5084 } 5085 5086 /* 5087 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 5088 * called on behalf of vdev_top_transfer when creating or destroying 5089 * a mirror vdev due to zpool attach/detach. 5090 */ 5091 void 5092 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 5093 { 5094 mutex_enter(&svd->vdev_scan_io_queue_lock); 5095 mutex_enter(&tvd->vdev_scan_io_queue_lock); 5096 5097 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 5098 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 5099 svd->vdev_scan_io_queue = NULL; 5100 if (tvd->vdev_scan_io_queue != NULL) 5101 tvd->vdev_scan_io_queue->q_vd = tvd; 5102 5103 mutex_exit(&tvd->vdev_scan_io_queue_lock); 5104 mutex_exit(&svd->vdev_scan_io_queue_lock); 5105 } 5106 5107 static void 5108 scan_io_queues_destroy(dsl_scan_t *scn) 5109 { 5110 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 5111 5112 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 5113 vdev_t *tvd = rvd->vdev_child[i]; 5114 5115 mutex_enter(&tvd->vdev_scan_io_queue_lock); 5116 if (tvd->vdev_scan_io_queue != NULL) 5117 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 5118 tvd->vdev_scan_io_queue = NULL; 5119 mutex_exit(&tvd->vdev_scan_io_queue_lock); 5120 } 5121 } 5122 5123 static void 5124 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 5125 { 5126 dsl_pool_t *dp = spa->spa_dsl_pool; 5127 dsl_scan_t *scn = dp->dp_scan; 5128 vdev_t *vdev; 5129 kmutex_t *q_lock; 5130 dsl_scan_io_queue_t *queue; 5131 scan_io_t *srch_sio, *sio; 5132 avl_index_t idx; 5133 uint64_t start, size; 5134 5135 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 5136 ASSERT(vdev != NULL); 5137 q_lock = &vdev->vdev_scan_io_queue_lock; 5138 queue = vdev->vdev_scan_io_queue; 5139 5140 mutex_enter(q_lock); 5141 if (queue == NULL) { 5142 mutex_exit(q_lock); 5143 return; 5144 } 5145 5146 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 5147 bp2sio(bp, srch_sio, dva_i); 5148 start = SIO_GET_OFFSET(srch_sio); 5149 size = SIO_GET_ASIZE(srch_sio); 5150 5151 /* 5152 * We can find the zio in two states: 5153 * 1) Cold, just sitting in the queue of zio's to be issued at 5154 * some point in the future. In this case, all we do is 5155 * remove the zio from the q_sios_by_addr tree, decrement 5156 * its data volume from the containing range_seg_t and 5157 * resort the q_exts_by_size tree to reflect that the 5158 * range_seg_t has lost some of its 'fill'. We don't shorten 5159 * the range_seg_t - this is usually rare enough not to be 5160 * worth the extra hassle of trying keep track of precise 5161 * extent boundaries. 5162 * 2) Hot, where the zio is currently in-flight in 5163 * dsl_scan_issue_ios. In this case, we can't simply 5164 * reach in and stop the in-flight zio's, so we instead 5165 * block the caller. Eventually, dsl_scan_issue_ios will 5166 * be done with issuing the zio's it gathered and will 5167 * signal us. 5168 */ 5169 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 5170 sio_free(srch_sio); 5171 5172 if (sio != NULL) { 5173 blkptr_t tmpbp; 5174 5175 /* Got it while it was cold in the queue */ 5176 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 5177 ASSERT3U(size, ==, SIO_GET_ASIZE(sio)); 5178 avl_remove(&queue->q_sios_by_addr, sio); 5179 if (avl_is_empty(&queue->q_sios_by_addr)) 5180 atomic_add_64(&scn->scn_queues_pending, -1); 5181 queue->q_sio_memused -= SIO_GET_MUSED(sio); 5182 5183 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 5184 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 5185 5186 /* count the block as though we skipped it */ 5187 sio2bp(sio, &tmpbp); 5188 count_block_skipped(scn, &tmpbp, B_FALSE); 5189 5190 sio_free(sio); 5191 } 5192 mutex_exit(q_lock); 5193 } 5194 5195 /* 5196 * Callback invoked when a zio_free() zio is executing. This needs to be 5197 * intercepted to prevent the zio from deallocating a particular portion 5198 * of disk space and it then getting reallocated and written to, while we 5199 * still have it queued up for processing. 5200 */ 5201 void 5202 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 5203 { 5204 dsl_pool_t *dp = spa->spa_dsl_pool; 5205 dsl_scan_t *scn = dp->dp_scan; 5206 5207 ASSERT(!BP_IS_EMBEDDED(bp)); 5208 ASSERT(scn != NULL); 5209 if (!dsl_scan_is_running(scn)) 5210 return; 5211 5212 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 5213 dsl_scan_freed_dva(spa, bp, i); 5214 } 5215 5216 /* 5217 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 5218 * not started, start it. Otherwise, only restart if max txg in DTL range is 5219 * greater than the max txg in the current scan. If the DTL max is less than 5220 * the scan max, then the vdev has not missed any new data since the resilver 5221 * started, so a restart is not needed. 5222 */ 5223 void 5224 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 5225 { 5226 uint64_t min, max; 5227 5228 if (!vdev_resilver_needed(vd, &min, &max)) 5229 return; 5230 5231 if (!dsl_scan_resilvering(dp)) { 5232 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 5233 return; 5234 } 5235 5236 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 5237 return; 5238 5239 /* restart is needed, check if it can be deferred */ 5240 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 5241 vdev_defer_resilver(vd); 5242 else 5243 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 5244 } 5245 5246 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW, 5247 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 5248 5249 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW, 5250 "Min millisecs to scrub per txg"); 5251 5252 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW, 5253 "Min millisecs to obsolete per txg"); 5254 5255 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW, 5256 "Min millisecs to free per txg"); 5257 5258 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW, 5259 "Min millisecs to resilver per txg"); 5260 5261 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 5262 "Set to prevent scans from progressing"); 5263 5264 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 5265 "Set to disable scrub I/O"); 5266 5267 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 5268 "Set to disable scrub prefetching"); 5269 5270 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW, 5271 "Max number of blocks freed in one txg"); 5272 5273 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW, 5274 "Max number of dedup blocks freed in one txg"); 5275 5276 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 5277 "Enable processing of the free_bpobj"); 5278 5279 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW, 5280 "Enable block statistics calculation during scrub"); 5281 5282 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW, 5283 "Fraction of RAM for scan hard limit"); 5284 5285 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW, 5286 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size"); 5287 5288 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 5289 "Scrub using legacy non-sequential method"); 5290 5291 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW, 5292 "Scan progress on-disk checkpointing interval"); 5293 5294 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW, 5295 "Max gap in bytes between sequential scrub / resilver I/Os"); 5296 5297 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW, 5298 "Fraction of hard limit used as soft limit"); 5299 5300 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 5301 "Tunable to attempt to reduce lock contention"); 5302 5303 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW, 5304 "Tunable to adjust bias towards more filled segments during scans"); 5305 5306 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW, 5307 "Tunable to report resilver performance over the last N txgs"); 5308 5309 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 5310 "Process all resilvers immediately"); 5311 5312 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW, 5313 "Issued IO percent complete after which resilvers are deferred"); 5314 5315 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW, 5316 "Error blocks to be scrubbed in one txg"); 5317 /* END CSTYLED */ 5318