1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 27 * Copyright 2019 Joyent, Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/zil_impl.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/ddt.h> 50 #include <sys/sa.h> 51 #include <sys/sa_impl.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/range_tree.h> 55 #ifdef _KERNEL 56 #include <sys/zfs_vfsops.h> 57 #endif 58 59 /* 60 * Grand theory statement on scan queue sorting 61 * 62 * Scanning is implemented by recursively traversing all indirection levels 63 * in an object and reading all blocks referenced from said objects. This 64 * results in us approximately traversing the object from lowest logical 65 * offset to the highest. For best performance, we would want the logical 66 * blocks to be physically contiguous. However, this is frequently not the 67 * case with pools given the allocation patterns of copy-on-write filesystems. 68 * So instead, we put the I/Os into a reordering queue and issue them in a 69 * way that will most benefit physical disks (LBA-order). 70 * 71 * Queue management: 72 * 73 * Ideally, we would want to scan all metadata and queue up all block I/O 74 * prior to starting to issue it, because that allows us to do an optimal 75 * sorting job. This can however consume large amounts of memory. Therefore 76 * we continuously monitor the size of the queues and constrain them to 5% 77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 78 * limit, we clear out a few of the largest extents at the head of the queues 79 * to make room for more scanning. Hopefully, these extents will be fairly 80 * large and contiguous, allowing us to approach sequential I/O throughput 81 * even without a fully sorted tree. 82 * 83 * Metadata scanning takes place in dsl_scan_visit(), which is called from 84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 85 * metadata on the pool, or we need to make room in memory because our 86 * queues are too large, dsl_scan_visit() is postponed and 87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 88 * that metadata scanning and queued I/O issuing are mutually exclusive. This 89 * allows us to provide maximum sequential I/O throughput for the majority of 90 * I/O's issued since sequential I/O performance is significantly negatively 91 * impacted if it is interleaved with random I/O. 92 * 93 * Implementation Notes 94 * 95 * One side effect of the queued scanning algorithm is that the scanning code 96 * needs to be notified whenever a block is freed. This is needed to allow 97 * the scanning code to remove these I/Os from the issuing queue. Additionally, 98 * we do not attempt to queue gang blocks to be issued sequentially since this 99 * is very hard to do and would have an extremely limited performance benefit. 100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 101 * algorithm. 102 * 103 * Backwards compatibility 104 * 105 * This new algorithm is backwards compatible with the legacy on-disk data 106 * structures (and therefore does not require a new feature flag). 107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 108 * will stop scanning metadata (in logical order) and wait for all outstanding 109 * sorted I/O to complete. Once this is done, we write out a checkpoint 110 * bookmark, indicating that we have scanned everything logically before it. 111 * If the pool is imported on a machine without the new sorting algorithm, 112 * the scan simply resumes from the last checkpoint using the legacy algorithm. 113 */ 114 115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 116 const zbookmark_phys_t *); 117 118 static scan_cb_t dsl_scan_scrub_cb; 119 120 static int scan_ds_queue_compare(const void *a, const void *b); 121 static int scan_prefetch_queue_compare(const void *a, const void *b); 122 static void scan_ds_queue_clear(dsl_scan_t *scn); 123 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 125 uint64_t *txg); 126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 129 static uint64_t dsl_scan_count_data_disks(vdev_t *vd); 130 131 extern int zfs_vdev_async_write_active_min_dirty_percent; 132 133 /* 134 * By default zfs will check to ensure it is not over the hard memory 135 * limit before each txg. If finer-grained control of this is needed 136 * this value can be set to 1 to enable checking before scanning each 137 * block. 138 */ 139 static int zfs_scan_strict_mem_lim = B_FALSE; 140 141 /* 142 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 143 * to strike a balance here between keeping the vdev queues full of I/Os 144 * at all times and not overflowing the queues to cause long latency, 145 * which would cause long txg sync times. No matter what, we will not 146 * overload the drives with I/O, since that is protected by 147 * zfs_vdev_scrub_max_active. 148 */ 149 static unsigned long zfs_scan_vdev_limit = 4 << 20; 150 151 static int zfs_scan_issue_strategy = 0; 152 static int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 153 static unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 154 155 /* 156 * fill_weight is non-tunable at runtime, so we copy it at module init from 157 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 158 * break queue sorting. 159 */ 160 static int zfs_scan_fill_weight = 3; 161 static uint64_t fill_weight; 162 163 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 164 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 165 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 166 static int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 167 static int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 168 169 static int zfs_scrub_min_time_ms = 1000; /* min millis to scrub per txg */ 170 static int zfs_obsolete_min_time_ms = 500; /* min millis to obsolete per txg */ 171 static int zfs_free_min_time_ms = 1000; /* min millis to free per txg */ 172 static int zfs_resilver_min_time_ms = 3000; /* min millis to resilver per txg */ 173 static int zfs_scan_checkpoint_intval = 7200; /* in seconds */ 174 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 175 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 176 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 177 static const enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 178 /* max number of blocks to free in a single TXG */ 179 static unsigned long zfs_async_block_max_blocks = ULONG_MAX; 180 /* max number of dedup blocks to free in a single TXG */ 181 static unsigned long zfs_max_async_dedup_frees = 100000; 182 183 /* set to disable resilver deferring */ 184 static int zfs_resilver_disable_defer = B_FALSE; 185 186 /* 187 * We wait a few txgs after importing a pool to begin scanning so that 188 * the import / mounting code isn't held up by scrub / resilver IO. 189 * Unfortunately, it is a bit difficult to determine exactly how long 190 * this will take since userspace will trigger fs mounts asynchronously 191 * and the kernel will create zvol minors asynchronously. As a result, 192 * the value provided here is a bit arbitrary, but represents a 193 * reasonable estimate of how many txgs it will take to finish fully 194 * importing a pool 195 */ 196 #define SCAN_IMPORT_WAIT_TXGS 5 197 198 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 199 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 200 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 201 202 /* 203 * Enable/disable the processing of the free_bpobj object. 204 */ 205 static int zfs_free_bpobj_enabled = 1; 206 207 /* the order has to match pool_scan_type */ 208 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 209 NULL, 210 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 211 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 212 }; 213 214 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 215 typedef struct { 216 uint64_t sds_dsobj; 217 uint64_t sds_txg; 218 avl_node_t sds_node; 219 } scan_ds_t; 220 221 /* 222 * This controls what conditions are placed on dsl_scan_sync_state(): 223 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 224 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 225 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 226 * write out the scn_phys_cached version. 227 * See dsl_scan_sync_state for details. 228 */ 229 typedef enum { 230 SYNC_OPTIONAL, 231 SYNC_MANDATORY, 232 SYNC_CACHED 233 } state_sync_type_t; 234 235 /* 236 * This struct represents the minimum information needed to reconstruct a 237 * zio for sequential scanning. This is useful because many of these will 238 * accumulate in the sequential IO queues before being issued, so saving 239 * memory matters here. 240 */ 241 typedef struct scan_io { 242 /* fields from blkptr_t */ 243 uint64_t sio_blk_prop; 244 uint64_t sio_phys_birth; 245 uint64_t sio_birth; 246 zio_cksum_t sio_cksum; 247 uint32_t sio_nr_dvas; 248 249 /* fields from zio_t */ 250 uint32_t sio_flags; 251 zbookmark_phys_t sio_zb; 252 253 /* members for queue sorting */ 254 union { 255 avl_node_t sio_addr_node; /* link into issuing queue */ 256 list_node_t sio_list_node; /* link for issuing to disk */ 257 } sio_nodes; 258 259 /* 260 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 261 * depending on how many were in the original bp. Only the 262 * first DVA is really used for sorting and issuing purposes. 263 * The other DVAs (if provided) simply exist so that the zio 264 * layer can find additional copies to repair from in the 265 * event of an error. This array must go at the end of the 266 * struct to allow this for the variable number of elements. 267 */ 268 dva_t sio_dva[0]; 269 } scan_io_t; 270 271 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 272 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 273 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 274 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 275 #define SIO_GET_END_OFFSET(sio) \ 276 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 277 #define SIO_GET_MUSED(sio) \ 278 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 279 280 struct dsl_scan_io_queue { 281 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 282 vdev_t *q_vd; /* top-level vdev that this queue represents */ 283 284 /* trees used for sorting I/Os and extents of I/Os */ 285 range_tree_t *q_exts_by_addr; 286 zfs_btree_t q_exts_by_size; 287 avl_tree_t q_sios_by_addr; 288 uint64_t q_sio_memused; 289 290 /* members for zio rate limiting */ 291 uint64_t q_maxinflight_bytes; 292 uint64_t q_inflight_bytes; 293 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 294 295 /* per txg statistics */ 296 uint64_t q_total_seg_size_this_txg; 297 uint64_t q_segs_this_txg; 298 uint64_t q_total_zio_size_this_txg; 299 uint64_t q_zios_this_txg; 300 }; 301 302 /* private data for dsl_scan_prefetch_cb() */ 303 typedef struct scan_prefetch_ctx { 304 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 305 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 306 boolean_t spc_root; /* is this prefetch for an objset? */ 307 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 308 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 309 } scan_prefetch_ctx_t; 310 311 /* private data for dsl_scan_prefetch() */ 312 typedef struct scan_prefetch_issue_ctx { 313 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 314 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 315 blkptr_t spic_bp; /* bp to prefetch */ 316 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 317 } scan_prefetch_issue_ctx_t; 318 319 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 320 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 321 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 322 scan_io_t *sio); 323 324 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 325 static void scan_io_queues_destroy(dsl_scan_t *scn); 326 327 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 328 329 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 330 static void 331 sio_free(scan_io_t *sio) 332 { 333 ASSERT3U(sio->sio_nr_dvas, >, 0); 334 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 335 336 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 337 } 338 339 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 340 static scan_io_t * 341 sio_alloc(unsigned short nr_dvas) 342 { 343 ASSERT3U(nr_dvas, >, 0); 344 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 345 346 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 347 } 348 349 void 350 scan_init(void) 351 { 352 /* 353 * This is used in ext_size_compare() to weight segments 354 * based on how sparse they are. This cannot be changed 355 * mid-scan and the tree comparison functions don't currently 356 * have a mechanism for passing additional context to the 357 * compare functions. Thus we store this value globally and 358 * we only allow it to be set at module initialization time 359 */ 360 fill_weight = zfs_scan_fill_weight; 361 362 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 363 char name[36]; 364 365 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 366 sio_cache[i] = kmem_cache_create(name, 367 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 368 0, NULL, NULL, NULL, NULL, NULL, 0); 369 } 370 } 371 372 void 373 scan_fini(void) 374 { 375 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 376 kmem_cache_destroy(sio_cache[i]); 377 } 378 } 379 380 static inline boolean_t 381 dsl_scan_is_running(const dsl_scan_t *scn) 382 { 383 return (scn->scn_phys.scn_state == DSS_SCANNING); 384 } 385 386 boolean_t 387 dsl_scan_resilvering(dsl_pool_t *dp) 388 { 389 return (dsl_scan_is_running(dp->dp_scan) && 390 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 391 } 392 393 static inline void 394 sio2bp(const scan_io_t *sio, blkptr_t *bp) 395 { 396 bzero(bp, sizeof (*bp)); 397 bp->blk_prop = sio->sio_blk_prop; 398 bp->blk_phys_birth = sio->sio_phys_birth; 399 bp->blk_birth = sio->sio_birth; 400 bp->blk_fill = 1; /* we always only work with data pointers */ 401 bp->blk_cksum = sio->sio_cksum; 402 403 ASSERT3U(sio->sio_nr_dvas, >, 0); 404 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 405 406 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 407 } 408 409 static inline void 410 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 411 { 412 sio->sio_blk_prop = bp->blk_prop; 413 sio->sio_phys_birth = bp->blk_phys_birth; 414 sio->sio_birth = bp->blk_birth; 415 sio->sio_cksum = bp->blk_cksum; 416 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 417 418 /* 419 * Copy the DVAs to the sio. We need all copies of the block so 420 * that the self healing code can use the alternate copies if the 421 * first is corrupted. We want the DVA at index dva_i to be first 422 * in the sio since this is the primary one that we want to issue. 423 */ 424 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 425 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 426 } 427 } 428 429 int 430 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 431 { 432 int err; 433 dsl_scan_t *scn; 434 spa_t *spa = dp->dp_spa; 435 uint64_t f; 436 437 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 438 scn->scn_dp = dp; 439 440 /* 441 * It's possible that we're resuming a scan after a reboot so 442 * make sure that the scan_async_destroying flag is initialized 443 * appropriately. 444 */ 445 ASSERT(!scn->scn_async_destroying); 446 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 447 SPA_FEATURE_ASYNC_DESTROY); 448 449 /* 450 * Calculate the max number of in-flight bytes for pool-wide 451 * scanning operations (minimum 1MB). Limits for the issuing 452 * phase are done per top-level vdev and are handled separately. 453 */ 454 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 455 dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20); 456 457 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 458 offsetof(scan_ds_t, sds_node)); 459 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 460 sizeof (scan_prefetch_issue_ctx_t), 461 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 462 463 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 464 "scrub_func", sizeof (uint64_t), 1, &f); 465 if (err == 0) { 466 /* 467 * There was an old-style scrub in progress. Restart a 468 * new-style scrub from the beginning. 469 */ 470 scn->scn_restart_txg = txg; 471 zfs_dbgmsg("old-style scrub was in progress for %s; " 472 "restarting new-style scrub in txg %llu", 473 spa->spa_name, 474 (longlong_t)scn->scn_restart_txg); 475 476 /* 477 * Load the queue obj from the old location so that it 478 * can be freed by dsl_scan_done(). 479 */ 480 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 481 "scrub_queue", sizeof (uint64_t), 1, 482 &scn->scn_phys.scn_queue_obj); 483 } else { 484 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 485 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 486 &scn->scn_phys); 487 /* 488 * Detect if the pool contains the signature of #2094. If it 489 * does properly update the scn->scn_phys structure and notify 490 * the administrator by setting an errata for the pool. 491 */ 492 if (err == EOVERFLOW) { 493 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 494 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 495 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 496 (23 * sizeof (uint64_t))); 497 498 err = zap_lookup(dp->dp_meta_objset, 499 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 500 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 501 if (err == 0) { 502 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 503 504 if (overflow & ~DSL_SCAN_FLAGS_MASK || 505 scn->scn_async_destroying) { 506 spa->spa_errata = 507 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 508 return (EOVERFLOW); 509 } 510 511 bcopy(zaptmp, &scn->scn_phys, 512 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 513 scn->scn_phys.scn_flags = overflow; 514 515 /* Required scrub already in progress. */ 516 if (scn->scn_phys.scn_state == DSS_FINISHED || 517 scn->scn_phys.scn_state == DSS_CANCELED) 518 spa->spa_errata = 519 ZPOOL_ERRATA_ZOL_2094_SCRUB; 520 } 521 } 522 523 if (err == ENOENT) 524 return (0); 525 else if (err) 526 return (err); 527 528 /* 529 * We might be restarting after a reboot, so jump the issued 530 * counter to how far we've scanned. We know we're consistent 531 * up to here. 532 */ 533 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 534 535 if (dsl_scan_is_running(scn) && 536 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 537 /* 538 * A new-type scrub was in progress on an old 539 * pool, and the pool was accessed by old 540 * software. Restart from the beginning, since 541 * the old software may have changed the pool in 542 * the meantime. 543 */ 544 scn->scn_restart_txg = txg; 545 zfs_dbgmsg("new-style scrub for %s was modified " 546 "by old software; restarting in txg %llu", 547 spa->spa_name, 548 (longlong_t)scn->scn_restart_txg); 549 } else if (dsl_scan_resilvering(dp)) { 550 /* 551 * If a resilver is in progress and there are already 552 * errors, restart it instead of finishing this scan and 553 * then restarting it. If there haven't been any errors 554 * then remember that the incore DTL is valid. 555 */ 556 if (scn->scn_phys.scn_errors > 0) { 557 scn->scn_restart_txg = txg; 558 zfs_dbgmsg("resilver can't excise DTL_MISSING " 559 "when finished; restarting on %s in txg " 560 "%llu", 561 spa->spa_name, 562 (u_longlong_t)scn->scn_restart_txg); 563 } else { 564 /* it's safe to excise DTL when finished */ 565 spa->spa_scrub_started = B_TRUE; 566 } 567 } 568 } 569 570 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 571 572 /* reload the queue into the in-core state */ 573 if (scn->scn_phys.scn_queue_obj != 0) { 574 zap_cursor_t zc; 575 zap_attribute_t za; 576 577 for (zap_cursor_init(&zc, dp->dp_meta_objset, 578 scn->scn_phys.scn_queue_obj); 579 zap_cursor_retrieve(&zc, &za) == 0; 580 (void) zap_cursor_advance(&zc)) { 581 scan_ds_queue_insert(scn, 582 zfs_strtonum(za.za_name, NULL), 583 za.za_first_integer); 584 } 585 zap_cursor_fini(&zc); 586 } 587 588 spa_scan_stat_init(spa); 589 return (0); 590 } 591 592 void 593 dsl_scan_fini(dsl_pool_t *dp) 594 { 595 if (dp->dp_scan != NULL) { 596 dsl_scan_t *scn = dp->dp_scan; 597 598 if (scn->scn_taskq != NULL) 599 taskq_destroy(scn->scn_taskq); 600 601 scan_ds_queue_clear(scn); 602 avl_destroy(&scn->scn_queue); 603 scan_ds_prefetch_queue_clear(scn); 604 avl_destroy(&scn->scn_prefetch_queue); 605 606 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 607 dp->dp_scan = NULL; 608 } 609 } 610 611 static boolean_t 612 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 613 { 614 return (scn->scn_restart_txg != 0 && 615 scn->scn_restart_txg <= tx->tx_txg); 616 } 617 618 boolean_t 619 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 620 { 621 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 622 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 623 } 624 625 boolean_t 626 dsl_scan_scrubbing(const dsl_pool_t *dp) 627 { 628 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 629 630 return (scn_phys->scn_state == DSS_SCANNING && 631 scn_phys->scn_func == POOL_SCAN_SCRUB); 632 } 633 634 boolean_t 635 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 636 { 637 return (dsl_scan_scrubbing(scn->scn_dp) && 638 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 639 } 640 641 /* 642 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 643 * Because we can be running in the block sorting algorithm, we do not always 644 * want to write out the record, only when it is "safe" to do so. This safety 645 * condition is achieved by making sure that the sorting queues are empty 646 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 647 * is inconsistent with how much actual scanning progress has been made. The 648 * kind of sync to be performed is specified by the sync_type argument. If the 649 * sync is optional, we only sync if the queues are empty. If the sync is 650 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 651 * third possible state is a "cached" sync. This is done in response to: 652 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 653 * destroyed, so we wouldn't be able to restart scanning from it. 654 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 655 * superseded by a newer snapshot. 656 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 657 * swapped with its clone. 658 * In all cases, a cached sync simply rewrites the last record we've written, 659 * just slightly modified. For the modifications that are performed to the 660 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 661 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 662 */ 663 static void 664 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 665 { 666 int i; 667 spa_t *spa = scn->scn_dp->dp_spa; 668 669 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 670 if (scn->scn_bytes_pending == 0) { 671 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 672 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 673 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 674 675 if (q == NULL) 676 continue; 677 678 mutex_enter(&vd->vdev_scan_io_queue_lock); 679 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 680 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 681 NULL); 682 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 683 mutex_exit(&vd->vdev_scan_io_queue_lock); 684 } 685 686 if (scn->scn_phys.scn_queue_obj != 0) 687 scan_ds_queue_sync(scn, tx); 688 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 689 DMU_POOL_DIRECTORY_OBJECT, 690 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 691 &scn->scn_phys, tx)); 692 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 693 sizeof (scn->scn_phys)); 694 695 if (scn->scn_checkpointing) 696 zfs_dbgmsg("finish scan checkpoint for %s", 697 spa->spa_name); 698 699 scn->scn_checkpointing = B_FALSE; 700 scn->scn_last_checkpoint = ddi_get_lbolt(); 701 } else if (sync_type == SYNC_CACHED) { 702 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 703 DMU_POOL_DIRECTORY_OBJECT, 704 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 705 &scn->scn_phys_cached, tx)); 706 } 707 } 708 709 int 710 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 711 { 712 (void) arg; 713 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 714 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 715 716 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd)) 717 return (SET_ERROR(EBUSY)); 718 719 return (0); 720 } 721 722 void 723 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 724 { 725 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 726 pool_scan_func_t *funcp = arg; 727 dmu_object_type_t ot = 0; 728 dsl_pool_t *dp = scn->scn_dp; 729 spa_t *spa = dp->dp_spa; 730 731 ASSERT(!dsl_scan_is_running(scn)); 732 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 733 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 734 scn->scn_phys.scn_func = *funcp; 735 scn->scn_phys.scn_state = DSS_SCANNING; 736 scn->scn_phys.scn_min_txg = 0; 737 scn->scn_phys.scn_max_txg = tx->tx_txg; 738 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 739 scn->scn_phys.scn_start_time = gethrestime_sec(); 740 scn->scn_phys.scn_errors = 0; 741 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 742 scn->scn_issued_before_pass = 0; 743 scn->scn_restart_txg = 0; 744 scn->scn_done_txg = 0; 745 scn->scn_last_checkpoint = 0; 746 scn->scn_checkpointing = B_FALSE; 747 spa_scan_stat_init(spa); 748 749 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 750 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 751 752 /* rewrite all disk labels */ 753 vdev_config_dirty(spa->spa_root_vdev); 754 755 if (vdev_resilver_needed(spa->spa_root_vdev, 756 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 757 nvlist_t *aux = fnvlist_alloc(); 758 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 759 "healing"); 760 spa_event_notify(spa, NULL, aux, 761 ESC_ZFS_RESILVER_START); 762 nvlist_free(aux); 763 } else { 764 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 765 } 766 767 spa->spa_scrub_started = B_TRUE; 768 /* 769 * If this is an incremental scrub, limit the DDT scrub phase 770 * to just the auto-ditto class (for correctness); the rest 771 * of the scrub should go faster using top-down pruning. 772 */ 773 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 774 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 775 776 /* 777 * When starting a resilver clear any existing rebuild state. 778 * This is required to prevent stale rebuild status from 779 * being reported when a rebuild is run, then a resilver and 780 * finally a scrub. In which case only the scrub status 781 * should be reported by 'zpool status'. 782 */ 783 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 784 vdev_t *rvd = spa->spa_root_vdev; 785 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 786 vdev_t *vd = rvd->vdev_child[i]; 787 vdev_rebuild_clear_sync( 788 (void *)(uintptr_t)vd->vdev_id, tx); 789 } 790 } 791 } 792 793 /* back to the generic stuff */ 794 795 if (dp->dp_blkstats == NULL) { 796 dp->dp_blkstats = 797 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 798 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 799 MUTEX_DEFAULT, NULL); 800 } 801 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 802 803 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 804 ot = DMU_OT_ZAP_OTHER; 805 806 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 807 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 808 809 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 810 811 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 812 813 spa_history_log_internal(spa, "scan setup", tx, 814 "func=%u mintxg=%llu maxtxg=%llu", 815 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg, 816 (u_longlong_t)scn->scn_phys.scn_max_txg); 817 } 818 819 /* 820 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 821 * Can also be called to resume a paused scrub. 822 */ 823 int 824 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 825 { 826 spa_t *spa = dp->dp_spa; 827 dsl_scan_t *scn = dp->dp_scan; 828 829 /* 830 * Purge all vdev caches and probe all devices. We do this here 831 * rather than in sync context because this requires a writer lock 832 * on the spa_config lock, which we can't do from sync context. The 833 * spa_scrub_reopen flag indicates that vdev_open() should not 834 * attempt to start another scrub. 835 */ 836 spa_vdev_state_enter(spa, SCL_NONE); 837 spa->spa_scrub_reopen = B_TRUE; 838 vdev_reopen(spa->spa_root_vdev); 839 spa->spa_scrub_reopen = B_FALSE; 840 (void) spa_vdev_state_exit(spa, NULL, 0); 841 842 if (func == POOL_SCAN_RESILVER) { 843 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 844 return (0); 845 } 846 847 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 848 /* got scrub start cmd, resume paused scrub */ 849 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 850 POOL_SCRUB_NORMAL); 851 if (err == 0) { 852 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 853 return (SET_ERROR(ECANCELED)); 854 } 855 856 return (SET_ERROR(err)); 857 } 858 859 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 860 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 861 } 862 863 static void 864 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 865 { 866 static const char *old_names[] = { 867 "scrub_bookmark", 868 "scrub_ddt_bookmark", 869 "scrub_ddt_class_max", 870 "scrub_queue", 871 "scrub_min_txg", 872 "scrub_max_txg", 873 "scrub_func", 874 "scrub_errors", 875 NULL 876 }; 877 878 dsl_pool_t *dp = scn->scn_dp; 879 spa_t *spa = dp->dp_spa; 880 int i; 881 882 /* Remove any remnants of an old-style scrub. */ 883 for (i = 0; old_names[i]; i++) { 884 (void) zap_remove(dp->dp_meta_objset, 885 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 886 } 887 888 if (scn->scn_phys.scn_queue_obj != 0) { 889 VERIFY0(dmu_object_free(dp->dp_meta_objset, 890 scn->scn_phys.scn_queue_obj, tx)); 891 scn->scn_phys.scn_queue_obj = 0; 892 } 893 scan_ds_queue_clear(scn); 894 scan_ds_prefetch_queue_clear(scn); 895 896 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 897 898 /* 899 * If we were "restarted" from a stopped state, don't bother 900 * with anything else. 901 */ 902 if (!dsl_scan_is_running(scn)) { 903 ASSERT(!scn->scn_is_sorted); 904 return; 905 } 906 907 if (scn->scn_is_sorted) { 908 scan_io_queues_destroy(scn); 909 scn->scn_is_sorted = B_FALSE; 910 911 if (scn->scn_taskq != NULL) { 912 taskq_destroy(scn->scn_taskq); 913 scn->scn_taskq = NULL; 914 } 915 } 916 917 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 918 919 spa_notify_waiters(spa); 920 921 if (dsl_scan_restarting(scn, tx)) 922 spa_history_log_internal(spa, "scan aborted, restarting", tx, 923 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 924 else if (!complete) 925 spa_history_log_internal(spa, "scan cancelled", tx, 926 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 927 else 928 spa_history_log_internal(spa, "scan done", tx, 929 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 930 931 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 932 spa->spa_scrub_active = B_FALSE; 933 934 /* 935 * If the scrub/resilver completed, update all DTLs to 936 * reflect this. Whether it succeeded or not, vacate 937 * all temporary scrub DTLs. 938 * 939 * As the scrub does not currently support traversing 940 * data that have been freed but are part of a checkpoint, 941 * we don't mark the scrub as done in the DTLs as faults 942 * may still exist in those vdevs. 943 */ 944 if (complete && 945 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 946 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 947 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 948 949 if (scn->scn_phys.scn_min_txg) { 950 nvlist_t *aux = fnvlist_alloc(); 951 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 952 "healing"); 953 spa_event_notify(spa, NULL, aux, 954 ESC_ZFS_RESILVER_FINISH); 955 nvlist_free(aux); 956 } else { 957 spa_event_notify(spa, NULL, NULL, 958 ESC_ZFS_SCRUB_FINISH); 959 } 960 } else { 961 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 962 0, B_TRUE, B_FALSE); 963 } 964 spa_errlog_rotate(spa); 965 966 /* 967 * Don't clear flag until after vdev_dtl_reassess to ensure that 968 * DTL_MISSING will get updated when possible. 969 */ 970 spa->spa_scrub_started = B_FALSE; 971 972 /* 973 * We may have finished replacing a device. 974 * Let the async thread assess this and handle the detach. 975 */ 976 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 977 978 /* 979 * Clear any resilver_deferred flags in the config. 980 * If there are drives that need resilvering, kick 981 * off an asynchronous request to start resilver. 982 * vdev_clear_resilver_deferred() may update the config 983 * before the resilver can restart. In the event of 984 * a crash during this period, the spa loading code 985 * will find the drives that need to be resilvered 986 * and start the resilver then. 987 */ 988 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 989 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 990 spa_history_log_internal(spa, 991 "starting deferred resilver", tx, "errors=%llu", 992 (u_longlong_t)spa_get_errlog_size(spa)); 993 spa_async_request(spa, SPA_ASYNC_RESILVER); 994 } 995 996 /* Clear recent error events (i.e. duplicate events tracking) */ 997 if (complete) 998 zfs_ereport_clear(spa, NULL); 999 } 1000 1001 scn->scn_phys.scn_end_time = gethrestime_sec(); 1002 1003 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1004 spa->spa_errata = 0; 1005 1006 ASSERT(!dsl_scan_is_running(scn)); 1007 } 1008 1009 static int 1010 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1011 { 1012 (void) arg; 1013 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1014 1015 if (!dsl_scan_is_running(scn)) 1016 return (SET_ERROR(ENOENT)); 1017 return (0); 1018 } 1019 1020 static void 1021 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1022 { 1023 (void) arg; 1024 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1025 1026 dsl_scan_done(scn, B_FALSE, tx); 1027 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1028 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1029 } 1030 1031 int 1032 dsl_scan_cancel(dsl_pool_t *dp) 1033 { 1034 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1035 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1036 } 1037 1038 static int 1039 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1040 { 1041 pool_scrub_cmd_t *cmd = arg; 1042 dsl_pool_t *dp = dmu_tx_pool(tx); 1043 dsl_scan_t *scn = dp->dp_scan; 1044 1045 if (*cmd == POOL_SCRUB_PAUSE) { 1046 /* can't pause a scrub when there is no in-progress scrub */ 1047 if (!dsl_scan_scrubbing(dp)) 1048 return (SET_ERROR(ENOENT)); 1049 1050 /* can't pause a paused scrub */ 1051 if (dsl_scan_is_paused_scrub(scn)) 1052 return (SET_ERROR(EBUSY)); 1053 } else if (*cmd != POOL_SCRUB_NORMAL) { 1054 return (SET_ERROR(ENOTSUP)); 1055 } 1056 1057 return (0); 1058 } 1059 1060 static void 1061 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1062 { 1063 pool_scrub_cmd_t *cmd = arg; 1064 dsl_pool_t *dp = dmu_tx_pool(tx); 1065 spa_t *spa = dp->dp_spa; 1066 dsl_scan_t *scn = dp->dp_scan; 1067 1068 if (*cmd == POOL_SCRUB_PAUSE) { 1069 /* can't pause a scrub when there is no in-progress scrub */ 1070 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1071 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1072 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1073 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1074 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1075 spa_notify_waiters(spa); 1076 } else { 1077 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1078 if (dsl_scan_is_paused_scrub(scn)) { 1079 /* 1080 * We need to keep track of how much time we spend 1081 * paused per pass so that we can adjust the scrub rate 1082 * shown in the output of 'zpool status' 1083 */ 1084 spa->spa_scan_pass_scrub_spent_paused += 1085 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1086 spa->spa_scan_pass_scrub_pause = 0; 1087 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1088 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1089 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1090 } 1091 } 1092 } 1093 1094 /* 1095 * Set scrub pause/resume state if it makes sense to do so 1096 */ 1097 int 1098 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1099 { 1100 return (dsl_sync_task(spa_name(dp->dp_spa), 1101 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1102 ZFS_SPACE_CHECK_RESERVED)); 1103 } 1104 1105 1106 /* start a new scan, or restart an existing one. */ 1107 void 1108 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1109 { 1110 if (txg == 0) { 1111 dmu_tx_t *tx; 1112 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1113 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1114 1115 txg = dmu_tx_get_txg(tx); 1116 dp->dp_scan->scn_restart_txg = txg; 1117 dmu_tx_commit(tx); 1118 } else { 1119 dp->dp_scan->scn_restart_txg = txg; 1120 } 1121 zfs_dbgmsg("restarting resilver for %s at txg=%llu", 1122 dp->dp_spa->spa_name, (longlong_t)txg); 1123 } 1124 1125 void 1126 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1127 { 1128 zio_free(dp->dp_spa, txg, bp); 1129 } 1130 1131 void 1132 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1133 { 1134 ASSERT(dsl_pool_sync_context(dp)); 1135 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1136 } 1137 1138 static int 1139 scan_ds_queue_compare(const void *a, const void *b) 1140 { 1141 const scan_ds_t *sds_a = a, *sds_b = b; 1142 1143 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1144 return (-1); 1145 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1146 return (0); 1147 return (1); 1148 } 1149 1150 static void 1151 scan_ds_queue_clear(dsl_scan_t *scn) 1152 { 1153 void *cookie = NULL; 1154 scan_ds_t *sds; 1155 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1156 kmem_free(sds, sizeof (*sds)); 1157 } 1158 } 1159 1160 static boolean_t 1161 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1162 { 1163 scan_ds_t srch, *sds; 1164 1165 srch.sds_dsobj = dsobj; 1166 sds = avl_find(&scn->scn_queue, &srch, NULL); 1167 if (sds != NULL && txg != NULL) 1168 *txg = sds->sds_txg; 1169 return (sds != NULL); 1170 } 1171 1172 static void 1173 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1174 { 1175 scan_ds_t *sds; 1176 avl_index_t where; 1177 1178 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1179 sds->sds_dsobj = dsobj; 1180 sds->sds_txg = txg; 1181 1182 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1183 avl_insert(&scn->scn_queue, sds, where); 1184 } 1185 1186 static void 1187 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1188 { 1189 scan_ds_t srch, *sds; 1190 1191 srch.sds_dsobj = dsobj; 1192 1193 sds = avl_find(&scn->scn_queue, &srch, NULL); 1194 VERIFY(sds != NULL); 1195 avl_remove(&scn->scn_queue, sds); 1196 kmem_free(sds, sizeof (*sds)); 1197 } 1198 1199 static void 1200 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1201 { 1202 dsl_pool_t *dp = scn->scn_dp; 1203 spa_t *spa = dp->dp_spa; 1204 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1205 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1206 1207 ASSERT0(scn->scn_bytes_pending); 1208 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1209 1210 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1211 scn->scn_phys.scn_queue_obj, tx)); 1212 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1213 DMU_OT_NONE, 0, tx); 1214 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1215 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1216 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1217 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1218 sds->sds_txg, tx)); 1219 } 1220 } 1221 1222 /* 1223 * Computes the memory limit state that we're currently in. A sorted scan 1224 * needs quite a bit of memory to hold the sorting queue, so we need to 1225 * reasonably constrain the size so it doesn't impact overall system 1226 * performance. We compute two limits: 1227 * 1) Hard memory limit: if the amount of memory used by the sorting 1228 * queues on a pool gets above this value, we stop the metadata 1229 * scanning portion and start issuing the queued up and sorted 1230 * I/Os to reduce memory usage. 1231 * This limit is calculated as a fraction of physmem (by default 5%). 1232 * We constrain the lower bound of the hard limit to an absolute 1233 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1234 * the upper bound to 5% of the total pool size - no chance we'll 1235 * ever need that much memory, but just to keep the value in check. 1236 * 2) Soft memory limit: once we hit the hard memory limit, we start 1237 * issuing I/O to reduce queue memory usage, but we don't want to 1238 * completely empty out the queues, since we might be able to find I/Os 1239 * that will fill in the gaps of our non-sequential IOs at some point 1240 * in the future. So we stop the issuing of I/Os once the amount of 1241 * memory used drops below the soft limit (at which point we stop issuing 1242 * I/O and start scanning metadata again). 1243 * 1244 * This limit is calculated by subtracting a fraction of the hard 1245 * limit from the hard limit. By default this fraction is 5%, so 1246 * the soft limit is 95% of the hard limit. We cap the size of the 1247 * difference between the hard and soft limits at an absolute 1248 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1249 * sufficient to not cause too frequent switching between the 1250 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1251 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1252 * that should take at least a decent fraction of a second). 1253 */ 1254 static boolean_t 1255 dsl_scan_should_clear(dsl_scan_t *scn) 1256 { 1257 spa_t *spa = scn->scn_dp->dp_spa; 1258 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1259 uint64_t alloc, mlim_hard, mlim_soft, mused; 1260 1261 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1262 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1263 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1264 1265 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1266 zfs_scan_mem_lim_min); 1267 mlim_hard = MIN(mlim_hard, alloc / 20); 1268 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1269 zfs_scan_mem_lim_soft_max); 1270 mused = 0; 1271 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1272 vdev_t *tvd = rvd->vdev_child[i]; 1273 dsl_scan_io_queue_t *queue; 1274 1275 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1276 queue = tvd->vdev_scan_io_queue; 1277 if (queue != NULL) { 1278 /* # extents in exts_by_size = # in exts_by_addr */ 1279 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1280 sizeof (range_seg_gap_t) + queue->q_sio_memused; 1281 } 1282 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1283 } 1284 1285 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1286 1287 if (mused == 0) 1288 ASSERT0(scn->scn_bytes_pending); 1289 1290 /* 1291 * If we are above our hard limit, we need to clear out memory. 1292 * If we are below our soft limit, we need to accumulate sequential IOs. 1293 * Otherwise, we should keep doing whatever we are currently doing. 1294 */ 1295 if (mused >= mlim_hard) 1296 return (B_TRUE); 1297 else if (mused < mlim_soft) 1298 return (B_FALSE); 1299 else 1300 return (scn->scn_clearing); 1301 } 1302 1303 static boolean_t 1304 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1305 { 1306 /* we never skip user/group accounting objects */ 1307 if (zb && (int64_t)zb->zb_object < 0) 1308 return (B_FALSE); 1309 1310 if (scn->scn_suspending) 1311 return (B_TRUE); /* we're already suspending */ 1312 1313 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1314 return (B_FALSE); /* we're resuming */ 1315 1316 /* We only know how to resume from level-0 and objset blocks. */ 1317 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1318 return (B_FALSE); 1319 1320 /* 1321 * We suspend if: 1322 * - we have scanned for at least the minimum time (default 1 sec 1323 * for scrub, 3 sec for resilver), and either we have sufficient 1324 * dirty data that we are starting to write more quickly 1325 * (default 30%), someone is explicitly waiting for this txg 1326 * to complete, or we have used up all of the time in the txg 1327 * timeout (default 5 sec). 1328 * or 1329 * - the spa is shutting down because this pool is being exported 1330 * or the machine is rebooting. 1331 * or 1332 * - the scan queue has reached its memory use limit 1333 */ 1334 uint64_t curr_time_ns = gethrtime(); 1335 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1336 uint64_t sync_time_ns = curr_time_ns - 1337 scn->scn_dp->dp_spa->spa_sync_starttime; 1338 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1339 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1340 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1341 1342 if ((NSEC2MSEC(scan_time_ns) > mintime && 1343 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1344 txg_sync_waiting(scn->scn_dp) || 1345 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1346 spa_shutting_down(scn->scn_dp->dp_spa) || 1347 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1348 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1349 dprintf("suspending at first available bookmark " 1350 "%llx/%llx/%llx/%llx\n", 1351 (longlong_t)zb->zb_objset, 1352 (longlong_t)zb->zb_object, 1353 (longlong_t)zb->zb_level, 1354 (longlong_t)zb->zb_blkid); 1355 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1356 zb->zb_objset, 0, 0, 0); 1357 } else if (zb != NULL) { 1358 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1359 (longlong_t)zb->zb_objset, 1360 (longlong_t)zb->zb_object, 1361 (longlong_t)zb->zb_level, 1362 (longlong_t)zb->zb_blkid); 1363 scn->scn_phys.scn_bookmark = *zb; 1364 } else { 1365 #ifdef ZFS_DEBUG 1366 dsl_scan_phys_t *scnp = &scn->scn_phys; 1367 dprintf("suspending at at DDT bookmark " 1368 "%llx/%llx/%llx/%llx\n", 1369 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1370 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1371 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1372 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1373 #endif 1374 } 1375 scn->scn_suspending = B_TRUE; 1376 return (B_TRUE); 1377 } 1378 return (B_FALSE); 1379 } 1380 1381 typedef struct zil_scan_arg { 1382 dsl_pool_t *zsa_dp; 1383 zil_header_t *zsa_zh; 1384 } zil_scan_arg_t; 1385 1386 static int 1387 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, 1388 uint64_t claim_txg) 1389 { 1390 (void) zilog; 1391 zil_scan_arg_t *zsa = arg; 1392 dsl_pool_t *dp = zsa->zsa_dp; 1393 dsl_scan_t *scn = dp->dp_scan; 1394 zil_header_t *zh = zsa->zsa_zh; 1395 zbookmark_phys_t zb; 1396 1397 ASSERT(!BP_IS_REDACTED(bp)); 1398 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1399 return (0); 1400 1401 /* 1402 * One block ("stubby") can be allocated a long time ago; we 1403 * want to visit that one because it has been allocated 1404 * (on-disk) even if it hasn't been claimed (even though for 1405 * scrub there's nothing to do to it). 1406 */ 1407 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1408 return (0); 1409 1410 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1411 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1412 1413 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1414 return (0); 1415 } 1416 1417 static int 1418 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, 1419 uint64_t claim_txg) 1420 { 1421 (void) zilog; 1422 if (lrc->lrc_txtype == TX_WRITE) { 1423 zil_scan_arg_t *zsa = arg; 1424 dsl_pool_t *dp = zsa->zsa_dp; 1425 dsl_scan_t *scn = dp->dp_scan; 1426 zil_header_t *zh = zsa->zsa_zh; 1427 const lr_write_t *lr = (const lr_write_t *)lrc; 1428 const blkptr_t *bp = &lr->lr_blkptr; 1429 zbookmark_phys_t zb; 1430 1431 ASSERT(!BP_IS_REDACTED(bp)); 1432 if (BP_IS_HOLE(bp) || 1433 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1434 return (0); 1435 1436 /* 1437 * birth can be < claim_txg if this record's txg is 1438 * already txg sync'ed (but this log block contains 1439 * other records that are not synced) 1440 */ 1441 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1442 return (0); 1443 1444 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1445 lr->lr_foid, ZB_ZIL_LEVEL, 1446 lr->lr_offset / BP_GET_LSIZE(bp)); 1447 1448 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1449 } 1450 return (0); 1451 } 1452 1453 static void 1454 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1455 { 1456 uint64_t claim_txg = zh->zh_claim_txg; 1457 zil_scan_arg_t zsa = { dp, zh }; 1458 zilog_t *zilog; 1459 1460 ASSERT(spa_writeable(dp->dp_spa)); 1461 1462 /* 1463 * We only want to visit blocks that have been claimed but not yet 1464 * replayed (or, in read-only mode, blocks that *would* be claimed). 1465 */ 1466 if (claim_txg == 0) 1467 return; 1468 1469 zilog = zil_alloc(dp->dp_meta_objset, zh); 1470 1471 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1472 claim_txg, B_FALSE); 1473 1474 zil_free(zilog); 1475 } 1476 1477 /* 1478 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1479 * here is to sort the AVL tree by the order each block will be needed. 1480 */ 1481 static int 1482 scan_prefetch_queue_compare(const void *a, const void *b) 1483 { 1484 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1485 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1486 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1487 1488 return (zbookmark_compare(spc_a->spc_datablkszsec, 1489 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1490 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1491 } 1492 1493 static void 1494 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1495 { 1496 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1497 zfs_refcount_destroy(&spc->spc_refcnt); 1498 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1499 } 1500 } 1501 1502 static scan_prefetch_ctx_t * 1503 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1504 { 1505 scan_prefetch_ctx_t *spc; 1506 1507 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1508 zfs_refcount_create(&spc->spc_refcnt); 1509 zfs_refcount_add(&spc->spc_refcnt, tag); 1510 spc->spc_scn = scn; 1511 if (dnp != NULL) { 1512 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1513 spc->spc_indblkshift = dnp->dn_indblkshift; 1514 spc->spc_root = B_FALSE; 1515 } else { 1516 spc->spc_datablkszsec = 0; 1517 spc->spc_indblkshift = 0; 1518 spc->spc_root = B_TRUE; 1519 } 1520 1521 return (spc); 1522 } 1523 1524 static void 1525 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1526 { 1527 zfs_refcount_add(&spc->spc_refcnt, tag); 1528 } 1529 1530 static void 1531 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1532 { 1533 spa_t *spa = scn->scn_dp->dp_spa; 1534 void *cookie = NULL; 1535 scan_prefetch_issue_ctx_t *spic = NULL; 1536 1537 mutex_enter(&spa->spa_scrub_lock); 1538 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1539 &cookie)) != NULL) { 1540 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1541 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1542 } 1543 mutex_exit(&spa->spa_scrub_lock); 1544 } 1545 1546 static boolean_t 1547 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1548 const zbookmark_phys_t *zb) 1549 { 1550 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1551 dnode_phys_t tmp_dnp; 1552 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1553 1554 if (zb->zb_objset != last_zb->zb_objset) 1555 return (B_TRUE); 1556 if ((int64_t)zb->zb_object < 0) 1557 return (B_FALSE); 1558 1559 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1560 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1561 1562 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1563 return (B_TRUE); 1564 1565 return (B_FALSE); 1566 } 1567 1568 static void 1569 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1570 { 1571 avl_index_t idx; 1572 dsl_scan_t *scn = spc->spc_scn; 1573 spa_t *spa = scn->scn_dp->dp_spa; 1574 scan_prefetch_issue_ctx_t *spic; 1575 1576 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1577 return; 1578 1579 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1580 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1581 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1582 return; 1583 1584 if (dsl_scan_check_prefetch_resume(spc, zb)) 1585 return; 1586 1587 scan_prefetch_ctx_add_ref(spc, scn); 1588 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1589 spic->spic_spc = spc; 1590 spic->spic_bp = *bp; 1591 spic->spic_zb = *zb; 1592 1593 /* 1594 * Add the IO to the queue of blocks to prefetch. This allows us to 1595 * prioritize blocks that we will need first for the main traversal 1596 * thread. 1597 */ 1598 mutex_enter(&spa->spa_scrub_lock); 1599 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1600 /* this block is already queued for prefetch */ 1601 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1602 scan_prefetch_ctx_rele(spc, scn); 1603 mutex_exit(&spa->spa_scrub_lock); 1604 return; 1605 } 1606 1607 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1608 cv_broadcast(&spa->spa_scrub_io_cv); 1609 mutex_exit(&spa->spa_scrub_lock); 1610 } 1611 1612 static void 1613 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1614 uint64_t objset, uint64_t object) 1615 { 1616 int i; 1617 zbookmark_phys_t zb; 1618 scan_prefetch_ctx_t *spc; 1619 1620 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1621 return; 1622 1623 SET_BOOKMARK(&zb, objset, object, 0, 0); 1624 1625 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1626 1627 for (i = 0; i < dnp->dn_nblkptr; i++) { 1628 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1629 zb.zb_blkid = i; 1630 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1631 } 1632 1633 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1634 zb.zb_level = 0; 1635 zb.zb_blkid = DMU_SPILL_BLKID; 1636 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 1637 } 1638 1639 scan_prefetch_ctx_rele(spc, FTAG); 1640 } 1641 1642 static void 1643 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1644 arc_buf_t *buf, void *private) 1645 { 1646 (void) zio; 1647 scan_prefetch_ctx_t *spc = private; 1648 dsl_scan_t *scn = spc->spc_scn; 1649 spa_t *spa = scn->scn_dp->dp_spa; 1650 1651 /* broadcast that the IO has completed for rate limiting purposes */ 1652 mutex_enter(&spa->spa_scrub_lock); 1653 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1654 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1655 cv_broadcast(&spa->spa_scrub_io_cv); 1656 mutex_exit(&spa->spa_scrub_lock); 1657 1658 /* if there was an error or we are done prefetching, just cleanup */ 1659 if (buf == NULL || scn->scn_prefetch_stop) 1660 goto out; 1661 1662 if (BP_GET_LEVEL(bp) > 0) { 1663 int i; 1664 blkptr_t *cbp; 1665 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1666 zbookmark_phys_t czb; 1667 1668 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1669 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1670 zb->zb_level - 1, zb->zb_blkid * epb + i); 1671 dsl_scan_prefetch(spc, cbp, &czb); 1672 } 1673 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1674 dnode_phys_t *cdnp; 1675 int i; 1676 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1677 1678 for (i = 0, cdnp = buf->b_data; i < epb; 1679 i += cdnp->dn_extra_slots + 1, 1680 cdnp += cdnp->dn_extra_slots + 1) { 1681 dsl_scan_prefetch_dnode(scn, cdnp, 1682 zb->zb_objset, zb->zb_blkid * epb + i); 1683 } 1684 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1685 objset_phys_t *osp = buf->b_data; 1686 1687 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1688 zb->zb_objset, DMU_META_DNODE_OBJECT); 1689 1690 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1691 dsl_scan_prefetch_dnode(scn, 1692 &osp->os_groupused_dnode, zb->zb_objset, 1693 DMU_GROUPUSED_OBJECT); 1694 dsl_scan_prefetch_dnode(scn, 1695 &osp->os_userused_dnode, zb->zb_objset, 1696 DMU_USERUSED_OBJECT); 1697 } 1698 } 1699 1700 out: 1701 if (buf != NULL) 1702 arc_buf_destroy(buf, private); 1703 scan_prefetch_ctx_rele(spc, scn); 1704 } 1705 1706 static void 1707 dsl_scan_prefetch_thread(void *arg) 1708 { 1709 dsl_scan_t *scn = arg; 1710 spa_t *spa = scn->scn_dp->dp_spa; 1711 scan_prefetch_issue_ctx_t *spic; 1712 1713 /* loop until we are told to stop */ 1714 while (!scn->scn_prefetch_stop) { 1715 arc_flags_t flags = ARC_FLAG_NOWAIT | 1716 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1717 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1718 1719 mutex_enter(&spa->spa_scrub_lock); 1720 1721 /* 1722 * Wait until we have an IO to issue and are not above our 1723 * maximum in flight limit. 1724 */ 1725 while (!scn->scn_prefetch_stop && 1726 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1727 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1728 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1729 } 1730 1731 /* recheck if we should stop since we waited for the cv */ 1732 if (scn->scn_prefetch_stop) { 1733 mutex_exit(&spa->spa_scrub_lock); 1734 break; 1735 } 1736 1737 /* remove the prefetch IO from the tree */ 1738 spic = avl_first(&scn->scn_prefetch_queue); 1739 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1740 avl_remove(&scn->scn_prefetch_queue, spic); 1741 1742 mutex_exit(&spa->spa_scrub_lock); 1743 1744 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1745 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1746 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1747 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1748 zio_flags |= ZIO_FLAG_RAW; 1749 } 1750 1751 /* issue the prefetch asynchronously */ 1752 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1753 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1754 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1755 1756 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1757 } 1758 1759 ASSERT(scn->scn_prefetch_stop); 1760 1761 /* free any prefetches we didn't get to complete */ 1762 mutex_enter(&spa->spa_scrub_lock); 1763 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1764 avl_remove(&scn->scn_prefetch_queue, spic); 1765 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1766 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1767 } 1768 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1769 mutex_exit(&spa->spa_scrub_lock); 1770 } 1771 1772 static boolean_t 1773 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1774 const zbookmark_phys_t *zb) 1775 { 1776 /* 1777 * We never skip over user/group accounting objects (obj<0) 1778 */ 1779 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1780 (int64_t)zb->zb_object >= 0) { 1781 /* 1782 * If we already visited this bp & everything below (in 1783 * a prior txg sync), don't bother doing it again. 1784 */ 1785 if (zbookmark_subtree_completed(dnp, zb, 1786 &scn->scn_phys.scn_bookmark)) 1787 return (B_TRUE); 1788 1789 /* 1790 * If we found the block we're trying to resume from, or 1791 * we went past it to a different object, zero it out to 1792 * indicate that it's OK to start checking for suspending 1793 * again. 1794 */ 1795 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1796 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1797 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1798 (longlong_t)zb->zb_objset, 1799 (longlong_t)zb->zb_object, 1800 (longlong_t)zb->zb_level, 1801 (longlong_t)zb->zb_blkid); 1802 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1803 } 1804 } 1805 return (B_FALSE); 1806 } 1807 1808 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1809 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1810 dmu_objset_type_t ostype, dmu_tx_t *tx); 1811 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 1812 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1813 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1814 1815 /* 1816 * Return nonzero on i/o error. 1817 * Return new buf to write out in *bufp. 1818 */ 1819 inline __attribute__((always_inline)) static int 1820 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1821 dnode_phys_t *dnp, const blkptr_t *bp, 1822 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1823 { 1824 dsl_pool_t *dp = scn->scn_dp; 1825 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1826 int err; 1827 1828 ASSERT(!BP_IS_REDACTED(bp)); 1829 1830 if (BP_GET_LEVEL(bp) > 0) { 1831 arc_flags_t flags = ARC_FLAG_WAIT; 1832 int i; 1833 blkptr_t *cbp; 1834 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1835 arc_buf_t *buf; 1836 1837 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1838 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1839 if (err) { 1840 scn->scn_phys.scn_errors++; 1841 return (err); 1842 } 1843 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1844 zbookmark_phys_t czb; 1845 1846 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1847 zb->zb_level - 1, 1848 zb->zb_blkid * epb + i); 1849 dsl_scan_visitbp(cbp, &czb, dnp, 1850 ds, scn, ostype, tx); 1851 } 1852 arc_buf_destroy(buf, &buf); 1853 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1854 arc_flags_t flags = ARC_FLAG_WAIT; 1855 dnode_phys_t *cdnp; 1856 int i; 1857 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1858 arc_buf_t *buf; 1859 1860 if (BP_IS_PROTECTED(bp)) { 1861 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1862 zio_flags |= ZIO_FLAG_RAW; 1863 } 1864 1865 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1866 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1867 if (err) { 1868 scn->scn_phys.scn_errors++; 1869 return (err); 1870 } 1871 for (i = 0, cdnp = buf->b_data; i < epb; 1872 i += cdnp->dn_extra_slots + 1, 1873 cdnp += cdnp->dn_extra_slots + 1) { 1874 dsl_scan_visitdnode(scn, ds, ostype, 1875 cdnp, zb->zb_blkid * epb + i, tx); 1876 } 1877 1878 arc_buf_destroy(buf, &buf); 1879 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1880 arc_flags_t flags = ARC_FLAG_WAIT; 1881 objset_phys_t *osp; 1882 arc_buf_t *buf; 1883 1884 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1885 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1886 if (err) { 1887 scn->scn_phys.scn_errors++; 1888 return (err); 1889 } 1890 1891 osp = buf->b_data; 1892 1893 dsl_scan_visitdnode(scn, ds, osp->os_type, 1894 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1895 1896 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1897 /* 1898 * We also always visit user/group/project accounting 1899 * objects, and never skip them, even if we are 1900 * suspending. This is necessary so that the 1901 * space deltas from this txg get integrated. 1902 */ 1903 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1904 dsl_scan_visitdnode(scn, ds, osp->os_type, 1905 &osp->os_projectused_dnode, 1906 DMU_PROJECTUSED_OBJECT, tx); 1907 dsl_scan_visitdnode(scn, ds, osp->os_type, 1908 &osp->os_groupused_dnode, 1909 DMU_GROUPUSED_OBJECT, tx); 1910 dsl_scan_visitdnode(scn, ds, osp->os_type, 1911 &osp->os_userused_dnode, 1912 DMU_USERUSED_OBJECT, tx); 1913 } 1914 arc_buf_destroy(buf, &buf); 1915 } 1916 1917 return (0); 1918 } 1919 1920 inline __attribute__((always_inline)) static void 1921 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1922 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1923 uint64_t object, dmu_tx_t *tx) 1924 { 1925 int j; 1926 1927 for (j = 0; j < dnp->dn_nblkptr; j++) { 1928 zbookmark_phys_t czb; 1929 1930 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1931 dnp->dn_nlevels - 1, j); 1932 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1933 &czb, dnp, ds, scn, ostype, tx); 1934 } 1935 1936 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1937 zbookmark_phys_t czb; 1938 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1939 0, DMU_SPILL_BLKID); 1940 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1941 &czb, dnp, ds, scn, ostype, tx); 1942 } 1943 } 1944 1945 /* 1946 * The arguments are in this order because mdb can only print the 1947 * first 5; we want them to be useful. 1948 */ 1949 static void 1950 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1951 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1952 dmu_objset_type_t ostype, dmu_tx_t *tx) 1953 { 1954 dsl_pool_t *dp = scn->scn_dp; 1955 blkptr_t *bp_toread = NULL; 1956 1957 if (dsl_scan_check_suspend(scn, zb)) 1958 return; 1959 1960 if (dsl_scan_check_resume(scn, dnp, zb)) 1961 return; 1962 1963 scn->scn_visited_this_txg++; 1964 1965 /* 1966 * This debugging is commented out to conserve stack space. This 1967 * function is called recursively and the debugging adds several 1968 * bytes to the stack for each call. It can be commented back in 1969 * if required to debug an issue in dsl_scan_visitbp(). 1970 * 1971 * dprintf_bp(bp, 1972 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1973 * ds, ds ? ds->ds_object : 0, 1974 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1975 * bp); 1976 */ 1977 1978 if (BP_IS_HOLE(bp)) { 1979 scn->scn_holes_this_txg++; 1980 return; 1981 } 1982 1983 if (BP_IS_REDACTED(bp)) { 1984 ASSERT(dsl_dataset_feature_is_active(ds, 1985 SPA_FEATURE_REDACTED_DATASETS)); 1986 return; 1987 } 1988 1989 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1990 scn->scn_lt_min_this_txg++; 1991 return; 1992 } 1993 1994 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1995 *bp_toread = *bp; 1996 1997 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1998 goto out; 1999 2000 /* 2001 * If dsl_scan_ddt() has already visited this block, it will have 2002 * already done any translations or scrubbing, so don't call the 2003 * callback again. 2004 */ 2005 if (ddt_class_contains(dp->dp_spa, 2006 scn->scn_phys.scn_ddt_class_max, bp)) { 2007 scn->scn_ddt_contained_this_txg++; 2008 goto out; 2009 } 2010 2011 /* 2012 * If this block is from the future (after cur_max_txg), then we 2013 * are doing this on behalf of a deleted snapshot, and we will 2014 * revisit the future block on the next pass of this dataset. 2015 * Don't scan it now unless we need to because something 2016 * under it was modified. 2017 */ 2018 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2019 scn->scn_gt_max_this_txg++; 2020 goto out; 2021 } 2022 2023 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2024 2025 out: 2026 kmem_free(bp_toread, sizeof (blkptr_t)); 2027 } 2028 2029 static void 2030 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2031 dmu_tx_t *tx) 2032 { 2033 zbookmark_phys_t zb; 2034 scan_prefetch_ctx_t *spc; 2035 2036 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2037 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2038 2039 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2040 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2041 zb.zb_objset, 0, 0, 0); 2042 } else { 2043 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2044 } 2045 2046 scn->scn_objsets_visited_this_txg++; 2047 2048 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2049 dsl_scan_prefetch(spc, bp, &zb); 2050 scan_prefetch_ctx_rele(spc, FTAG); 2051 2052 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2053 2054 dprintf_ds(ds, "finished scan%s", ""); 2055 } 2056 2057 static void 2058 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2059 { 2060 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2061 if (ds->ds_is_snapshot) { 2062 /* 2063 * Note: 2064 * - scn_cur_{min,max}_txg stays the same. 2065 * - Setting the flag is not really necessary if 2066 * scn_cur_max_txg == scn_max_txg, because there 2067 * is nothing after this snapshot that we care 2068 * about. However, we set it anyway and then 2069 * ignore it when we retraverse it in 2070 * dsl_scan_visitds(). 2071 */ 2072 scn_phys->scn_bookmark.zb_objset = 2073 dsl_dataset_phys(ds)->ds_next_snap_obj; 2074 zfs_dbgmsg("destroying ds %llu on %s; currently " 2075 "traversing; reset zb_objset to %llu", 2076 (u_longlong_t)ds->ds_object, 2077 ds->ds_dir->dd_pool->dp_spa->spa_name, 2078 (u_longlong_t)dsl_dataset_phys(ds)-> 2079 ds_next_snap_obj); 2080 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2081 } else { 2082 SET_BOOKMARK(&scn_phys->scn_bookmark, 2083 ZB_DESTROYED_OBJSET, 0, 0, 0); 2084 zfs_dbgmsg("destroying ds %llu on %s; currently " 2085 "traversing; reset bookmark to -1,0,0,0", 2086 (u_longlong_t)ds->ds_object, 2087 ds->ds_dir->dd_pool->dp_spa->spa_name); 2088 } 2089 } 2090 } 2091 2092 /* 2093 * Invoked when a dataset is destroyed. We need to make sure that: 2094 * 2095 * 1) If it is the dataset that was currently being scanned, we write 2096 * a new dsl_scan_phys_t and marking the objset reference in it 2097 * as destroyed. 2098 * 2) Remove it from the work queue, if it was present. 2099 * 2100 * If the dataset was actually a snapshot, instead of marking the dataset 2101 * as destroyed, we instead substitute the next snapshot in line. 2102 */ 2103 void 2104 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2105 { 2106 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2107 dsl_scan_t *scn = dp->dp_scan; 2108 uint64_t mintxg; 2109 2110 if (!dsl_scan_is_running(scn)) 2111 return; 2112 2113 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2114 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2115 2116 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2117 scan_ds_queue_remove(scn, ds->ds_object); 2118 if (ds->ds_is_snapshot) 2119 scan_ds_queue_insert(scn, 2120 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2121 } 2122 2123 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2124 ds->ds_object, &mintxg) == 0) { 2125 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2126 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2127 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2128 if (ds->ds_is_snapshot) { 2129 /* 2130 * We keep the same mintxg; it could be > 2131 * ds_creation_txg if the previous snapshot was 2132 * deleted too. 2133 */ 2134 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2135 scn->scn_phys.scn_queue_obj, 2136 dsl_dataset_phys(ds)->ds_next_snap_obj, 2137 mintxg, tx) == 0); 2138 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2139 "replacing with %llu", 2140 (u_longlong_t)ds->ds_object, 2141 dp->dp_spa->spa_name, 2142 (u_longlong_t)dsl_dataset_phys(ds)-> 2143 ds_next_snap_obj); 2144 } else { 2145 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2146 "removing", 2147 (u_longlong_t)ds->ds_object, 2148 dp->dp_spa->spa_name); 2149 } 2150 } 2151 2152 /* 2153 * dsl_scan_sync() should be called after this, and should sync 2154 * out our changed state, but just to be safe, do it here. 2155 */ 2156 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2157 } 2158 2159 static void 2160 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2161 { 2162 if (scn_bookmark->zb_objset == ds->ds_object) { 2163 scn_bookmark->zb_objset = 2164 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2165 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; " 2166 "reset zb_objset to %llu", 2167 (u_longlong_t)ds->ds_object, 2168 ds->ds_dir->dd_pool->dp_spa->spa_name, 2169 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2170 } 2171 } 2172 2173 /* 2174 * Called when a dataset is snapshotted. If we were currently traversing 2175 * this snapshot, we reset our bookmark to point at the newly created 2176 * snapshot. We also modify our work queue to remove the old snapshot and 2177 * replace with the new one. 2178 */ 2179 void 2180 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2181 { 2182 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2183 dsl_scan_t *scn = dp->dp_scan; 2184 uint64_t mintxg; 2185 2186 if (!dsl_scan_is_running(scn)) 2187 return; 2188 2189 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2190 2191 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2192 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2193 2194 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2195 scan_ds_queue_remove(scn, ds->ds_object); 2196 scan_ds_queue_insert(scn, 2197 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2198 } 2199 2200 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2201 ds->ds_object, &mintxg) == 0) { 2202 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2203 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2204 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2205 scn->scn_phys.scn_queue_obj, 2206 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2207 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; " 2208 "replacing with %llu", 2209 (u_longlong_t)ds->ds_object, 2210 dp->dp_spa->spa_name, 2211 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2212 } 2213 2214 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2215 } 2216 2217 static void 2218 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2219 zbookmark_phys_t *scn_bookmark) 2220 { 2221 if (scn_bookmark->zb_objset == ds1->ds_object) { 2222 scn_bookmark->zb_objset = ds2->ds_object; 2223 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2224 "reset zb_objset to %llu", 2225 (u_longlong_t)ds1->ds_object, 2226 ds1->ds_dir->dd_pool->dp_spa->spa_name, 2227 (u_longlong_t)ds2->ds_object); 2228 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2229 scn_bookmark->zb_objset = ds1->ds_object; 2230 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2231 "reset zb_objset to %llu", 2232 (u_longlong_t)ds2->ds_object, 2233 ds2->ds_dir->dd_pool->dp_spa->spa_name, 2234 (u_longlong_t)ds1->ds_object); 2235 } 2236 } 2237 2238 /* 2239 * Called when an origin dataset and its clone are swapped. If we were 2240 * currently traversing the dataset, we need to switch to traversing the 2241 * newly promoted clone. 2242 */ 2243 void 2244 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2245 { 2246 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2247 dsl_scan_t *scn = dp->dp_scan; 2248 uint64_t mintxg1, mintxg2; 2249 boolean_t ds1_queued, ds2_queued; 2250 2251 if (!dsl_scan_is_running(scn)) 2252 return; 2253 2254 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2255 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2256 2257 /* 2258 * Handle the in-memory scan queue. 2259 */ 2260 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2261 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2262 2263 /* Sanity checking. */ 2264 if (ds1_queued) { 2265 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2266 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2267 } 2268 if (ds2_queued) { 2269 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2270 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2271 } 2272 2273 if (ds1_queued && ds2_queued) { 2274 /* 2275 * If both are queued, we don't need to do anything. 2276 * The swapping code below would not handle this case correctly, 2277 * since we can't insert ds2 if it is already there. That's 2278 * because scan_ds_queue_insert() prohibits a duplicate insert 2279 * and panics. 2280 */ 2281 } else if (ds1_queued) { 2282 scan_ds_queue_remove(scn, ds1->ds_object); 2283 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2284 } else if (ds2_queued) { 2285 scan_ds_queue_remove(scn, ds2->ds_object); 2286 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2287 } 2288 2289 /* 2290 * Handle the on-disk scan queue. 2291 * The on-disk state is an out-of-date version of the in-memory state, 2292 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2293 * be different. Therefore we need to apply the swap logic to the 2294 * on-disk state independently of the in-memory state. 2295 */ 2296 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2297 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2298 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2299 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2300 2301 /* Sanity checking. */ 2302 if (ds1_queued) { 2303 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2304 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2305 } 2306 if (ds2_queued) { 2307 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2308 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2309 } 2310 2311 if (ds1_queued && ds2_queued) { 2312 /* 2313 * If both are queued, we don't need to do anything. 2314 * Alternatively, we could check for EEXIST from 2315 * zap_add_int_key() and back out to the original state, but 2316 * that would be more work than checking for this case upfront. 2317 */ 2318 } else if (ds1_queued) { 2319 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2320 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2321 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2322 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2323 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2324 "replacing with %llu", 2325 (u_longlong_t)ds1->ds_object, 2326 dp->dp_spa->spa_name, 2327 (u_longlong_t)ds2->ds_object); 2328 } else if (ds2_queued) { 2329 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2330 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2331 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2332 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2333 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2334 "replacing with %llu", 2335 (u_longlong_t)ds2->ds_object, 2336 dp->dp_spa->spa_name, 2337 (u_longlong_t)ds1->ds_object); 2338 } 2339 2340 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2341 } 2342 2343 static int 2344 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2345 { 2346 uint64_t originobj = *(uint64_t *)arg; 2347 dsl_dataset_t *ds; 2348 int err; 2349 dsl_scan_t *scn = dp->dp_scan; 2350 2351 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2352 return (0); 2353 2354 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2355 if (err) 2356 return (err); 2357 2358 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2359 dsl_dataset_t *prev; 2360 err = dsl_dataset_hold_obj(dp, 2361 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2362 2363 dsl_dataset_rele(ds, FTAG); 2364 if (err) 2365 return (err); 2366 ds = prev; 2367 } 2368 scan_ds_queue_insert(scn, ds->ds_object, 2369 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2370 dsl_dataset_rele(ds, FTAG); 2371 return (0); 2372 } 2373 2374 static void 2375 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2376 { 2377 dsl_pool_t *dp = scn->scn_dp; 2378 dsl_dataset_t *ds; 2379 2380 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2381 2382 if (scn->scn_phys.scn_cur_min_txg >= 2383 scn->scn_phys.scn_max_txg) { 2384 /* 2385 * This can happen if this snapshot was created after the 2386 * scan started, and we already completed a previous snapshot 2387 * that was created after the scan started. This snapshot 2388 * only references blocks with: 2389 * 2390 * birth < our ds_creation_txg 2391 * cur_min_txg is no less than ds_creation_txg. 2392 * We have already visited these blocks. 2393 * or 2394 * birth > scn_max_txg 2395 * The scan requested not to visit these blocks. 2396 * 2397 * Subsequent snapshots (and clones) can reference our 2398 * blocks, or blocks with even higher birth times. 2399 * Therefore we do not need to visit them either, 2400 * so we do not add them to the work queue. 2401 * 2402 * Note that checking for cur_min_txg >= cur_max_txg 2403 * is not sufficient, because in that case we may need to 2404 * visit subsequent snapshots. This happens when min_txg > 0, 2405 * which raises cur_min_txg. In this case we will visit 2406 * this dataset but skip all of its blocks, because the 2407 * rootbp's birth time is < cur_min_txg. Then we will 2408 * add the next snapshots/clones to the work queue. 2409 */ 2410 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2411 dsl_dataset_name(ds, dsname); 2412 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2413 "cur_min_txg (%llu) >= max_txg (%llu)", 2414 (longlong_t)dsobj, dsname, 2415 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2416 (longlong_t)scn->scn_phys.scn_max_txg); 2417 kmem_free(dsname, MAXNAMELEN); 2418 2419 goto out; 2420 } 2421 2422 /* 2423 * Only the ZIL in the head (non-snapshot) is valid. Even though 2424 * snapshots can have ZIL block pointers (which may be the same 2425 * BP as in the head), they must be ignored. In addition, $ORIGIN 2426 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2427 * need to look for a ZIL in it either. So we traverse the ZIL here, 2428 * rather than in scan_recurse(), because the regular snapshot 2429 * block-sharing rules don't apply to it. 2430 */ 2431 if (!dsl_dataset_is_snapshot(ds) && 2432 (dp->dp_origin_snap == NULL || 2433 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2434 objset_t *os; 2435 if (dmu_objset_from_ds(ds, &os) != 0) { 2436 goto out; 2437 } 2438 dsl_scan_zil(dp, &os->os_zil_header); 2439 } 2440 2441 /* 2442 * Iterate over the bps in this ds. 2443 */ 2444 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2445 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2446 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2447 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2448 2449 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2450 dsl_dataset_name(ds, dsname); 2451 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2452 "suspending=%u", 2453 (longlong_t)dsobj, dsname, 2454 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2455 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2456 (int)scn->scn_suspending); 2457 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2458 2459 if (scn->scn_suspending) 2460 goto out; 2461 2462 /* 2463 * We've finished this pass over this dataset. 2464 */ 2465 2466 /* 2467 * If we did not completely visit this dataset, do another pass. 2468 */ 2469 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2470 zfs_dbgmsg("incomplete pass on %s; visiting again", 2471 dp->dp_spa->spa_name); 2472 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2473 scan_ds_queue_insert(scn, ds->ds_object, 2474 scn->scn_phys.scn_cur_max_txg); 2475 goto out; 2476 } 2477 2478 /* 2479 * Add descendant datasets to work queue. 2480 */ 2481 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2482 scan_ds_queue_insert(scn, 2483 dsl_dataset_phys(ds)->ds_next_snap_obj, 2484 dsl_dataset_phys(ds)->ds_creation_txg); 2485 } 2486 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2487 boolean_t usenext = B_FALSE; 2488 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2489 uint64_t count; 2490 /* 2491 * A bug in a previous version of the code could 2492 * cause upgrade_clones_cb() to not set 2493 * ds_next_snap_obj when it should, leading to a 2494 * missing entry. Therefore we can only use the 2495 * next_clones_obj when its count is correct. 2496 */ 2497 int err = zap_count(dp->dp_meta_objset, 2498 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2499 if (err == 0 && 2500 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2501 usenext = B_TRUE; 2502 } 2503 2504 if (usenext) { 2505 zap_cursor_t zc; 2506 zap_attribute_t za; 2507 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2508 dsl_dataset_phys(ds)->ds_next_clones_obj); 2509 zap_cursor_retrieve(&zc, &za) == 0; 2510 (void) zap_cursor_advance(&zc)) { 2511 scan_ds_queue_insert(scn, 2512 zfs_strtonum(za.za_name, NULL), 2513 dsl_dataset_phys(ds)->ds_creation_txg); 2514 } 2515 zap_cursor_fini(&zc); 2516 } else { 2517 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2518 enqueue_clones_cb, &ds->ds_object, 2519 DS_FIND_CHILDREN)); 2520 } 2521 } 2522 2523 out: 2524 dsl_dataset_rele(ds, FTAG); 2525 } 2526 2527 static int 2528 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2529 { 2530 (void) arg; 2531 dsl_dataset_t *ds; 2532 int err; 2533 dsl_scan_t *scn = dp->dp_scan; 2534 2535 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2536 if (err) 2537 return (err); 2538 2539 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2540 dsl_dataset_t *prev; 2541 err = dsl_dataset_hold_obj(dp, 2542 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2543 if (err) { 2544 dsl_dataset_rele(ds, FTAG); 2545 return (err); 2546 } 2547 2548 /* 2549 * If this is a clone, we don't need to worry about it for now. 2550 */ 2551 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2552 dsl_dataset_rele(ds, FTAG); 2553 dsl_dataset_rele(prev, FTAG); 2554 return (0); 2555 } 2556 dsl_dataset_rele(ds, FTAG); 2557 ds = prev; 2558 } 2559 2560 scan_ds_queue_insert(scn, ds->ds_object, 2561 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2562 dsl_dataset_rele(ds, FTAG); 2563 return (0); 2564 } 2565 2566 void 2567 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2568 ddt_entry_t *dde, dmu_tx_t *tx) 2569 { 2570 (void) tx; 2571 const ddt_key_t *ddk = &dde->dde_key; 2572 ddt_phys_t *ddp = dde->dde_phys; 2573 blkptr_t bp; 2574 zbookmark_phys_t zb = { 0 }; 2575 2576 if (!dsl_scan_is_running(scn)) 2577 return; 2578 2579 /* 2580 * This function is special because it is the only thing 2581 * that can add scan_io_t's to the vdev scan queues from 2582 * outside dsl_scan_sync(). For the most part this is ok 2583 * as long as it is called from within syncing context. 2584 * However, dsl_scan_sync() expects that no new sio's will 2585 * be added between when all the work for a scan is done 2586 * and the next txg when the scan is actually marked as 2587 * completed. This check ensures we do not issue new sio's 2588 * during this period. 2589 */ 2590 if (scn->scn_done_txg != 0) 2591 return; 2592 2593 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2594 if (ddp->ddp_phys_birth == 0 || 2595 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2596 continue; 2597 ddt_bp_create(checksum, ddk, ddp, &bp); 2598 2599 scn->scn_visited_this_txg++; 2600 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2601 } 2602 } 2603 2604 /* 2605 * Scrub/dedup interaction. 2606 * 2607 * If there are N references to a deduped block, we don't want to scrub it 2608 * N times -- ideally, we should scrub it exactly once. 2609 * 2610 * We leverage the fact that the dde's replication class (enum ddt_class) 2611 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2612 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2613 * 2614 * To prevent excess scrubbing, the scrub begins by walking the DDT 2615 * to find all blocks with refcnt > 1, and scrubs each of these once. 2616 * Since there are two replication classes which contain blocks with 2617 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2618 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2619 * 2620 * There would be nothing more to say if a block's refcnt couldn't change 2621 * during a scrub, but of course it can so we must account for changes 2622 * in a block's replication class. 2623 * 2624 * Here's an example of what can occur: 2625 * 2626 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2627 * when visited during the top-down scrub phase, it will be scrubbed twice. 2628 * This negates our scrub optimization, but is otherwise harmless. 2629 * 2630 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2631 * on each visit during the top-down scrub phase, it will never be scrubbed. 2632 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2633 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2634 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2635 * while a scrub is in progress, it scrubs the block right then. 2636 */ 2637 static void 2638 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2639 { 2640 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2641 ddt_entry_t dde; 2642 int error; 2643 uint64_t n = 0; 2644 2645 bzero(&dde, sizeof (ddt_entry_t)); 2646 2647 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2648 ddt_t *ddt; 2649 2650 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2651 break; 2652 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2653 (longlong_t)ddb->ddb_class, 2654 (longlong_t)ddb->ddb_type, 2655 (longlong_t)ddb->ddb_checksum, 2656 (longlong_t)ddb->ddb_cursor); 2657 2658 /* There should be no pending changes to the dedup table */ 2659 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2660 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2661 2662 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2663 n++; 2664 2665 if (dsl_scan_check_suspend(scn, NULL)) 2666 break; 2667 } 2668 2669 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; " 2670 "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name, 2671 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2672 2673 ASSERT(error == 0 || error == ENOENT); 2674 ASSERT(error != ENOENT || 2675 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2676 } 2677 2678 static uint64_t 2679 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2680 { 2681 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2682 if (ds->ds_is_snapshot) 2683 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2684 return (smt); 2685 } 2686 2687 static void 2688 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2689 { 2690 scan_ds_t *sds; 2691 dsl_pool_t *dp = scn->scn_dp; 2692 2693 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2694 scn->scn_phys.scn_ddt_class_max) { 2695 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2696 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2697 dsl_scan_ddt(scn, tx); 2698 if (scn->scn_suspending) 2699 return; 2700 } 2701 2702 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2703 /* First do the MOS & ORIGIN */ 2704 2705 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2706 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2707 dsl_scan_visit_rootbp(scn, NULL, 2708 &dp->dp_meta_rootbp, tx); 2709 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2710 if (scn->scn_suspending) 2711 return; 2712 2713 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2714 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2715 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2716 } else { 2717 dsl_scan_visitds(scn, 2718 dp->dp_origin_snap->ds_object, tx); 2719 } 2720 ASSERT(!scn->scn_suspending); 2721 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2722 ZB_DESTROYED_OBJSET) { 2723 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2724 /* 2725 * If we were suspended, continue from here. Note if the 2726 * ds we were suspended on was deleted, the zb_objset may 2727 * be -1, so we will skip this and find a new objset 2728 * below. 2729 */ 2730 dsl_scan_visitds(scn, dsobj, tx); 2731 if (scn->scn_suspending) 2732 return; 2733 } 2734 2735 /* 2736 * In case we suspended right at the end of the ds, zero the 2737 * bookmark so we don't think that we're still trying to resume. 2738 */ 2739 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2740 2741 /* 2742 * Keep pulling things out of the dataset avl queue. Updates to the 2743 * persistent zap-object-as-queue happen only at checkpoints. 2744 */ 2745 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2746 dsl_dataset_t *ds; 2747 uint64_t dsobj = sds->sds_dsobj; 2748 uint64_t txg = sds->sds_txg; 2749 2750 /* dequeue and free the ds from the queue */ 2751 scan_ds_queue_remove(scn, dsobj); 2752 sds = NULL; 2753 2754 /* set up min / max txg */ 2755 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2756 if (txg != 0) { 2757 scn->scn_phys.scn_cur_min_txg = 2758 MAX(scn->scn_phys.scn_min_txg, txg); 2759 } else { 2760 scn->scn_phys.scn_cur_min_txg = 2761 MAX(scn->scn_phys.scn_min_txg, 2762 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2763 } 2764 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2765 dsl_dataset_rele(ds, FTAG); 2766 2767 dsl_scan_visitds(scn, dsobj, tx); 2768 if (scn->scn_suspending) 2769 return; 2770 } 2771 2772 /* No more objsets to fetch, we're done */ 2773 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2774 ASSERT0(scn->scn_suspending); 2775 } 2776 2777 static uint64_t 2778 dsl_scan_count_data_disks(vdev_t *rvd) 2779 { 2780 uint64_t i, leaves = 0; 2781 2782 for (i = 0; i < rvd->vdev_children; i++) { 2783 vdev_t *vd = rvd->vdev_child[i]; 2784 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache) 2785 continue; 2786 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd); 2787 } 2788 return (leaves); 2789 } 2790 2791 static void 2792 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2793 { 2794 int i; 2795 uint64_t cur_size = 0; 2796 2797 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2798 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2799 } 2800 2801 q->q_total_zio_size_this_txg += cur_size; 2802 q->q_zios_this_txg++; 2803 } 2804 2805 static void 2806 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2807 uint64_t end) 2808 { 2809 q->q_total_seg_size_this_txg += end - start; 2810 q->q_segs_this_txg++; 2811 } 2812 2813 static boolean_t 2814 scan_io_queue_check_suspend(dsl_scan_t *scn) 2815 { 2816 /* See comment in dsl_scan_check_suspend() */ 2817 uint64_t curr_time_ns = gethrtime(); 2818 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2819 uint64_t sync_time_ns = curr_time_ns - 2820 scn->scn_dp->dp_spa->spa_sync_starttime; 2821 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2822 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2823 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2824 2825 return ((NSEC2MSEC(scan_time_ns) > mintime && 2826 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2827 txg_sync_waiting(scn->scn_dp) || 2828 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2829 spa_shutting_down(scn->scn_dp->dp_spa)); 2830 } 2831 2832 /* 2833 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 2834 * disk. This consumes the io_list and frees the scan_io_t's. This is 2835 * called when emptying queues, either when we're up against the memory 2836 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2837 * processing the list before we finished. Any sios that were not issued 2838 * will remain in the io_list. 2839 */ 2840 static boolean_t 2841 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2842 { 2843 dsl_scan_t *scn = queue->q_scn; 2844 scan_io_t *sio; 2845 int64_t bytes_issued = 0; 2846 boolean_t suspended = B_FALSE; 2847 2848 while ((sio = list_head(io_list)) != NULL) { 2849 blkptr_t bp; 2850 2851 if (scan_io_queue_check_suspend(scn)) { 2852 suspended = B_TRUE; 2853 break; 2854 } 2855 2856 sio2bp(sio, &bp); 2857 bytes_issued += SIO_GET_ASIZE(sio); 2858 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2859 &sio->sio_zb, queue); 2860 (void) list_remove_head(io_list); 2861 scan_io_queues_update_zio_stats(queue, &bp); 2862 sio_free(sio); 2863 } 2864 2865 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2866 2867 return (suspended); 2868 } 2869 2870 /* 2871 * This function removes sios from an IO queue which reside within a given 2872 * range_seg_t and inserts them (in offset order) into a list. Note that 2873 * we only ever return a maximum of 32 sios at once. If there are more sios 2874 * to process within this segment that did not make it onto the list we 2875 * return B_TRUE and otherwise B_FALSE. 2876 */ 2877 static boolean_t 2878 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2879 { 2880 scan_io_t *srch_sio, *sio, *next_sio; 2881 avl_index_t idx; 2882 uint_t num_sios = 0; 2883 int64_t bytes_issued = 0; 2884 2885 ASSERT(rs != NULL); 2886 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2887 2888 srch_sio = sio_alloc(1); 2889 srch_sio->sio_nr_dvas = 1; 2890 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2891 2892 /* 2893 * The exact start of the extent might not contain any matching zios, 2894 * so if that's the case, examine the next one in the tree. 2895 */ 2896 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2897 sio_free(srch_sio); 2898 2899 if (sio == NULL) 2900 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2901 2902 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2903 queue->q_exts_by_addr) && num_sios <= 32) { 2904 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2905 queue->q_exts_by_addr)); 2906 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2907 queue->q_exts_by_addr)); 2908 2909 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2910 avl_remove(&queue->q_sios_by_addr, sio); 2911 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2912 2913 bytes_issued += SIO_GET_ASIZE(sio); 2914 num_sios++; 2915 list_insert_tail(list, sio); 2916 sio = next_sio; 2917 } 2918 2919 /* 2920 * We limit the number of sios we process at once to 32 to avoid 2921 * biting off more than we can chew. If we didn't take everything 2922 * in the segment we update it to reflect the work we were able to 2923 * complete. Otherwise, we remove it from the range tree entirely. 2924 */ 2925 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2926 queue->q_exts_by_addr)) { 2927 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2928 -bytes_issued); 2929 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2930 SIO_GET_OFFSET(sio), rs_get_end(rs, 2931 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2932 2933 return (B_TRUE); 2934 } else { 2935 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2936 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2937 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2938 return (B_FALSE); 2939 } 2940 } 2941 2942 /* 2943 * This is called from the queue emptying thread and selects the next 2944 * extent from which we are to issue I/Os. The behavior of this function 2945 * depends on the state of the scan, the current memory consumption and 2946 * whether or not we are performing a scan shutdown. 2947 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2948 * needs to perform a checkpoint 2949 * 2) We select the largest available extent if we are up against the 2950 * memory limit. 2951 * 3) Otherwise we don't select any extents. 2952 */ 2953 static range_seg_t * 2954 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2955 { 2956 dsl_scan_t *scn = queue->q_scn; 2957 range_tree_t *rt = queue->q_exts_by_addr; 2958 2959 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2960 ASSERT(scn->scn_is_sorted); 2961 2962 /* handle tunable overrides */ 2963 if (scn->scn_checkpointing || scn->scn_clearing) { 2964 if (zfs_scan_issue_strategy == 1) { 2965 return (range_tree_first(rt)); 2966 } else if (zfs_scan_issue_strategy == 2) { 2967 /* 2968 * We need to get the original entry in the by_addr 2969 * tree so we can modify it. 2970 */ 2971 range_seg_t *size_rs = 2972 zfs_btree_first(&queue->q_exts_by_size, NULL); 2973 if (size_rs == NULL) 2974 return (NULL); 2975 uint64_t start = rs_get_start(size_rs, rt); 2976 uint64_t size = rs_get_end(size_rs, rt) - start; 2977 range_seg_t *addr_rs = range_tree_find(rt, start, 2978 size); 2979 ASSERT3P(addr_rs, !=, NULL); 2980 ASSERT3U(rs_get_start(size_rs, rt), ==, 2981 rs_get_start(addr_rs, rt)); 2982 ASSERT3U(rs_get_end(size_rs, rt), ==, 2983 rs_get_end(addr_rs, rt)); 2984 return (addr_rs); 2985 } 2986 } 2987 2988 /* 2989 * During normal clearing, we want to issue our largest segments 2990 * first, keeping IO as sequential as possible, and leaving the 2991 * smaller extents for later with the hope that they might eventually 2992 * grow to larger sequential segments. However, when the scan is 2993 * checkpointing, no new extents will be added to the sorting queue, 2994 * so the way we are sorted now is as good as it will ever get. 2995 * In this case, we instead switch to issuing extents in LBA order. 2996 */ 2997 if (scn->scn_checkpointing) { 2998 return (range_tree_first(rt)); 2999 } else if (scn->scn_clearing) { 3000 /* 3001 * We need to get the original entry in the by_addr 3002 * tree so we can modify it. 3003 */ 3004 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size, 3005 NULL); 3006 if (size_rs == NULL) 3007 return (NULL); 3008 uint64_t start = rs_get_start(size_rs, rt); 3009 uint64_t size = rs_get_end(size_rs, rt) - start; 3010 range_seg_t *addr_rs = range_tree_find(rt, start, size); 3011 ASSERT3P(addr_rs, !=, NULL); 3012 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs, 3013 rt)); 3014 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt)); 3015 return (addr_rs); 3016 } else { 3017 return (NULL); 3018 } 3019 } 3020 3021 static void 3022 scan_io_queues_run_one(void *arg) 3023 { 3024 dsl_scan_io_queue_t *queue = arg; 3025 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3026 boolean_t suspended = B_FALSE; 3027 range_seg_t *rs = NULL; 3028 scan_io_t *sio = NULL; 3029 list_t sio_list; 3030 3031 ASSERT(queue->q_scn->scn_is_sorted); 3032 3033 list_create(&sio_list, sizeof (scan_io_t), 3034 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3035 mutex_enter(q_lock); 3036 3037 /* Calculate maximum in-flight bytes for this vdev. */ 3038 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit * 3039 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd))); 3040 3041 /* reset per-queue scan statistics for this txg */ 3042 queue->q_total_seg_size_this_txg = 0; 3043 queue->q_segs_this_txg = 0; 3044 queue->q_total_zio_size_this_txg = 0; 3045 queue->q_zios_this_txg = 0; 3046 3047 /* loop until we run out of time or sios */ 3048 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3049 uint64_t seg_start = 0, seg_end = 0; 3050 boolean_t more_left = B_TRUE; 3051 3052 ASSERT(list_is_empty(&sio_list)); 3053 3054 /* loop while we still have sios left to process in this rs */ 3055 while (more_left) { 3056 scan_io_t *first_sio, *last_sio; 3057 3058 /* 3059 * We have selected which extent needs to be 3060 * processed next. Gather up the corresponding sios. 3061 */ 3062 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3063 ASSERT(!list_is_empty(&sio_list)); 3064 first_sio = list_head(&sio_list); 3065 last_sio = list_tail(&sio_list); 3066 3067 seg_end = SIO_GET_END_OFFSET(last_sio); 3068 if (seg_start == 0) 3069 seg_start = SIO_GET_OFFSET(first_sio); 3070 3071 /* 3072 * Issuing sios can take a long time so drop the 3073 * queue lock. The sio queue won't be updated by 3074 * other threads since we're in syncing context so 3075 * we can be sure that our trees will remain exactly 3076 * as we left them. 3077 */ 3078 mutex_exit(q_lock); 3079 suspended = scan_io_queue_issue(queue, &sio_list); 3080 mutex_enter(q_lock); 3081 3082 if (suspended) 3083 break; 3084 } 3085 3086 /* update statistics for debugging purposes */ 3087 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3088 3089 if (suspended) 3090 break; 3091 } 3092 3093 /* 3094 * If we were suspended in the middle of processing, 3095 * requeue any unfinished sios and exit. 3096 */ 3097 while ((sio = list_head(&sio_list)) != NULL) { 3098 list_remove(&sio_list, sio); 3099 scan_io_queue_insert_impl(queue, sio); 3100 } 3101 3102 mutex_exit(q_lock); 3103 list_destroy(&sio_list); 3104 } 3105 3106 /* 3107 * Performs an emptying run on all scan queues in the pool. This just 3108 * punches out one thread per top-level vdev, each of which processes 3109 * only that vdev's scan queue. We can parallelize the I/O here because 3110 * we know that each queue's I/Os only affect its own top-level vdev. 3111 * 3112 * This function waits for the queue runs to complete, and must be 3113 * called from dsl_scan_sync (or in general, syncing context). 3114 */ 3115 static void 3116 scan_io_queues_run(dsl_scan_t *scn) 3117 { 3118 spa_t *spa = scn->scn_dp->dp_spa; 3119 3120 ASSERT(scn->scn_is_sorted); 3121 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3122 3123 if (scn->scn_bytes_pending == 0) 3124 return; 3125 3126 if (scn->scn_taskq == NULL) { 3127 int nthreads = spa->spa_root_vdev->vdev_children; 3128 3129 /* 3130 * We need to make this taskq *always* execute as many 3131 * threads in parallel as we have top-level vdevs and no 3132 * less, otherwise strange serialization of the calls to 3133 * scan_io_queues_run_one can occur during spa_sync runs 3134 * and that significantly impacts performance. 3135 */ 3136 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3137 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3138 } 3139 3140 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3141 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3142 3143 mutex_enter(&vd->vdev_scan_io_queue_lock); 3144 if (vd->vdev_scan_io_queue != NULL) { 3145 VERIFY(taskq_dispatch(scn->scn_taskq, 3146 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3147 TQ_SLEEP) != TASKQID_INVALID); 3148 } 3149 mutex_exit(&vd->vdev_scan_io_queue_lock); 3150 } 3151 3152 /* 3153 * Wait for the queues to finish issuing their IOs for this run 3154 * before we return. There may still be IOs in flight at this 3155 * point. 3156 */ 3157 taskq_wait(scn->scn_taskq); 3158 } 3159 3160 static boolean_t 3161 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3162 { 3163 uint64_t elapsed_nanosecs; 3164 3165 if (zfs_recover) 3166 return (B_FALSE); 3167 3168 if (zfs_async_block_max_blocks != 0 && 3169 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3170 return (B_TRUE); 3171 } 3172 3173 if (zfs_max_async_dedup_frees != 0 && 3174 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3175 return (B_TRUE); 3176 } 3177 3178 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3179 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3180 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3181 txg_sync_waiting(scn->scn_dp)) || 3182 spa_shutting_down(scn->scn_dp->dp_spa)); 3183 } 3184 3185 static int 3186 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3187 { 3188 dsl_scan_t *scn = arg; 3189 3190 if (!scn->scn_is_bptree || 3191 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3192 if (dsl_scan_async_block_should_pause(scn)) 3193 return (SET_ERROR(ERESTART)); 3194 } 3195 3196 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3197 dmu_tx_get_txg(tx), bp, 0)); 3198 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3199 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3200 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3201 scn->scn_visited_this_txg++; 3202 if (BP_GET_DEDUP(bp)) 3203 scn->scn_dedup_frees_this_txg++; 3204 return (0); 3205 } 3206 3207 static void 3208 dsl_scan_update_stats(dsl_scan_t *scn) 3209 { 3210 spa_t *spa = scn->scn_dp->dp_spa; 3211 uint64_t i; 3212 uint64_t seg_size_total = 0, zio_size_total = 0; 3213 uint64_t seg_count_total = 0, zio_count_total = 0; 3214 3215 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3216 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3217 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3218 3219 if (queue == NULL) 3220 continue; 3221 3222 seg_size_total += queue->q_total_seg_size_this_txg; 3223 zio_size_total += queue->q_total_zio_size_this_txg; 3224 seg_count_total += queue->q_segs_this_txg; 3225 zio_count_total += queue->q_zios_this_txg; 3226 } 3227 3228 if (seg_count_total == 0 || zio_count_total == 0) { 3229 scn->scn_avg_seg_size_this_txg = 0; 3230 scn->scn_avg_zio_size_this_txg = 0; 3231 scn->scn_segs_this_txg = 0; 3232 scn->scn_zios_this_txg = 0; 3233 return; 3234 } 3235 3236 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3237 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3238 scn->scn_segs_this_txg = seg_count_total; 3239 scn->scn_zios_this_txg = zio_count_total; 3240 } 3241 3242 static int 3243 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3244 dmu_tx_t *tx) 3245 { 3246 ASSERT(!bp_freed); 3247 return (dsl_scan_free_block_cb(arg, bp, tx)); 3248 } 3249 3250 static int 3251 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3252 dmu_tx_t *tx) 3253 { 3254 ASSERT(!bp_freed); 3255 dsl_scan_t *scn = arg; 3256 const dva_t *dva = &bp->blk_dva[0]; 3257 3258 if (dsl_scan_async_block_should_pause(scn)) 3259 return (SET_ERROR(ERESTART)); 3260 3261 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3262 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3263 DVA_GET_ASIZE(dva), tx); 3264 scn->scn_visited_this_txg++; 3265 return (0); 3266 } 3267 3268 boolean_t 3269 dsl_scan_active(dsl_scan_t *scn) 3270 { 3271 spa_t *spa = scn->scn_dp->dp_spa; 3272 uint64_t used = 0, comp, uncomp; 3273 boolean_t clones_left; 3274 3275 if (spa->spa_load_state != SPA_LOAD_NONE) 3276 return (B_FALSE); 3277 if (spa_shutting_down(spa)) 3278 return (B_FALSE); 3279 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3280 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3281 return (B_TRUE); 3282 3283 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3284 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3285 &used, &comp, &uncomp); 3286 } 3287 clones_left = spa_livelist_delete_check(spa); 3288 return ((used != 0) || (clones_left)); 3289 } 3290 3291 static boolean_t 3292 dsl_scan_check_deferred(vdev_t *vd) 3293 { 3294 boolean_t need_resilver = B_FALSE; 3295 3296 for (int c = 0; c < vd->vdev_children; c++) { 3297 need_resilver |= 3298 dsl_scan_check_deferred(vd->vdev_child[c]); 3299 } 3300 3301 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3302 !vd->vdev_ops->vdev_op_leaf) 3303 return (need_resilver); 3304 3305 if (!vd->vdev_resilver_deferred) 3306 need_resilver = B_TRUE; 3307 3308 return (need_resilver); 3309 } 3310 3311 static boolean_t 3312 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3313 uint64_t phys_birth) 3314 { 3315 vdev_t *vd; 3316 3317 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3318 3319 if (vd->vdev_ops == &vdev_indirect_ops) { 3320 /* 3321 * The indirect vdev can point to multiple 3322 * vdevs. For simplicity, always create 3323 * the resilver zio_t. zio_vdev_io_start() 3324 * will bypass the child resilver i/o's if 3325 * they are on vdevs that don't have DTL's. 3326 */ 3327 return (B_TRUE); 3328 } 3329 3330 if (DVA_GET_GANG(dva)) { 3331 /* 3332 * Gang members may be spread across multiple 3333 * vdevs, so the best estimate we have is the 3334 * scrub range, which has already been checked. 3335 * XXX -- it would be better to change our 3336 * allocation policy to ensure that all 3337 * gang members reside on the same vdev. 3338 */ 3339 return (B_TRUE); 3340 } 3341 3342 /* 3343 * Check if the top-level vdev must resilver this offset. 3344 * When the offset does not intersect with a dirty leaf DTL 3345 * then it may be possible to skip the resilver IO. The psize 3346 * is provided instead of asize to simplify the check for RAIDZ. 3347 */ 3348 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) 3349 return (B_FALSE); 3350 3351 /* 3352 * Check that this top-level vdev has a device under it which 3353 * is resilvering and is not deferred. 3354 */ 3355 if (!dsl_scan_check_deferred(vd)) 3356 return (B_FALSE); 3357 3358 return (B_TRUE); 3359 } 3360 3361 static int 3362 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3363 { 3364 dsl_scan_t *scn = dp->dp_scan; 3365 spa_t *spa = dp->dp_spa; 3366 int err = 0; 3367 3368 if (spa_suspend_async_destroy(spa)) 3369 return (0); 3370 3371 if (zfs_free_bpobj_enabled && 3372 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3373 scn->scn_is_bptree = B_FALSE; 3374 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3375 scn->scn_zio_root = zio_root(spa, NULL, 3376 NULL, ZIO_FLAG_MUSTSUCCEED); 3377 err = bpobj_iterate(&dp->dp_free_bpobj, 3378 bpobj_dsl_scan_free_block_cb, scn, tx); 3379 VERIFY0(zio_wait(scn->scn_zio_root)); 3380 scn->scn_zio_root = NULL; 3381 3382 if (err != 0 && err != ERESTART) 3383 zfs_panic_recover("error %u from bpobj_iterate()", err); 3384 } 3385 3386 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3387 ASSERT(scn->scn_async_destroying); 3388 scn->scn_is_bptree = B_TRUE; 3389 scn->scn_zio_root = zio_root(spa, NULL, 3390 NULL, ZIO_FLAG_MUSTSUCCEED); 3391 err = bptree_iterate(dp->dp_meta_objset, 3392 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3393 VERIFY0(zio_wait(scn->scn_zio_root)); 3394 scn->scn_zio_root = NULL; 3395 3396 if (err == EIO || err == ECKSUM) { 3397 err = 0; 3398 } else if (err != 0 && err != ERESTART) { 3399 zfs_panic_recover("error %u from " 3400 "traverse_dataset_destroyed()", err); 3401 } 3402 3403 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3404 /* finished; deactivate async destroy feature */ 3405 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3406 ASSERT(!spa_feature_is_active(spa, 3407 SPA_FEATURE_ASYNC_DESTROY)); 3408 VERIFY0(zap_remove(dp->dp_meta_objset, 3409 DMU_POOL_DIRECTORY_OBJECT, 3410 DMU_POOL_BPTREE_OBJ, tx)); 3411 VERIFY0(bptree_free(dp->dp_meta_objset, 3412 dp->dp_bptree_obj, tx)); 3413 dp->dp_bptree_obj = 0; 3414 scn->scn_async_destroying = B_FALSE; 3415 scn->scn_async_stalled = B_FALSE; 3416 } else { 3417 /* 3418 * If we didn't make progress, mark the async 3419 * destroy as stalled, so that we will not initiate 3420 * a spa_sync() on its behalf. Note that we only 3421 * check this if we are not finished, because if the 3422 * bptree had no blocks for us to visit, we can 3423 * finish without "making progress". 3424 */ 3425 scn->scn_async_stalled = 3426 (scn->scn_visited_this_txg == 0); 3427 } 3428 } 3429 if (scn->scn_visited_this_txg) { 3430 zfs_dbgmsg("freed %llu blocks in %llums from " 3431 "free_bpobj/bptree on %s in txg %llu; err=%u", 3432 (longlong_t)scn->scn_visited_this_txg, 3433 (longlong_t) 3434 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3435 spa->spa_name, (longlong_t)tx->tx_txg, err); 3436 scn->scn_visited_this_txg = 0; 3437 scn->scn_dedup_frees_this_txg = 0; 3438 3439 /* 3440 * Write out changes to the DDT that may be required as a 3441 * result of the blocks freed. This ensures that the DDT 3442 * is clean when a scrub/resilver runs. 3443 */ 3444 ddt_sync(spa, tx->tx_txg); 3445 } 3446 if (err != 0) 3447 return (err); 3448 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3449 zfs_free_leak_on_eio && 3450 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3451 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3452 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3453 /* 3454 * We have finished background destroying, but there is still 3455 * some space left in the dp_free_dir. Transfer this leaked 3456 * space to the dp_leak_dir. 3457 */ 3458 if (dp->dp_leak_dir == NULL) { 3459 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3460 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3461 LEAK_DIR_NAME, tx); 3462 VERIFY0(dsl_pool_open_special_dir(dp, 3463 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3464 rrw_exit(&dp->dp_config_rwlock, FTAG); 3465 } 3466 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3467 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3468 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3469 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3470 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3471 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3472 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3473 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3474 } 3475 3476 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3477 !spa_livelist_delete_check(spa)) { 3478 /* finished; verify that space accounting went to zero */ 3479 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3480 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3481 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3482 } 3483 3484 spa_notify_waiters(spa); 3485 3486 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3487 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3488 DMU_POOL_OBSOLETE_BPOBJ)); 3489 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3490 ASSERT(spa_feature_is_active(dp->dp_spa, 3491 SPA_FEATURE_OBSOLETE_COUNTS)); 3492 3493 scn->scn_is_bptree = B_FALSE; 3494 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3495 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3496 dsl_scan_obsolete_block_cb, scn, tx); 3497 if (err != 0 && err != ERESTART) 3498 zfs_panic_recover("error %u from bpobj_iterate()", err); 3499 3500 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3501 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3502 } 3503 return (0); 3504 } 3505 3506 /* 3507 * This is the primary entry point for scans that is called from syncing 3508 * context. Scans must happen entirely during syncing context so that we 3509 * can guarantee that blocks we are currently scanning will not change out 3510 * from under us. While a scan is active, this function controls how quickly 3511 * transaction groups proceed, instead of the normal handling provided by 3512 * txg_sync_thread(). 3513 */ 3514 void 3515 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3516 { 3517 int err = 0; 3518 dsl_scan_t *scn = dp->dp_scan; 3519 spa_t *spa = dp->dp_spa; 3520 state_sync_type_t sync_type = SYNC_OPTIONAL; 3521 3522 if (spa->spa_resilver_deferred && 3523 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3524 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3525 3526 /* 3527 * Check for scn_restart_txg before checking spa_load_state, so 3528 * that we can restart an old-style scan while the pool is being 3529 * imported (see dsl_scan_init). We also restart scans if there 3530 * is a deferred resilver and the user has manually disabled 3531 * deferred resilvers via the tunable. 3532 */ 3533 if (dsl_scan_restarting(scn, tx) || 3534 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3535 pool_scan_func_t func = POOL_SCAN_SCRUB; 3536 dsl_scan_done(scn, B_FALSE, tx); 3537 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3538 func = POOL_SCAN_RESILVER; 3539 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu", 3540 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg); 3541 dsl_scan_setup_sync(&func, tx); 3542 } 3543 3544 /* 3545 * Only process scans in sync pass 1. 3546 */ 3547 if (spa_sync_pass(spa) > 1) 3548 return; 3549 3550 /* 3551 * If the spa is shutting down, then stop scanning. This will 3552 * ensure that the scan does not dirty any new data during the 3553 * shutdown phase. 3554 */ 3555 if (spa_shutting_down(spa)) 3556 return; 3557 3558 /* 3559 * If the scan is inactive due to a stalled async destroy, try again. 3560 */ 3561 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3562 return; 3563 3564 /* reset scan statistics */ 3565 scn->scn_visited_this_txg = 0; 3566 scn->scn_dedup_frees_this_txg = 0; 3567 scn->scn_holes_this_txg = 0; 3568 scn->scn_lt_min_this_txg = 0; 3569 scn->scn_gt_max_this_txg = 0; 3570 scn->scn_ddt_contained_this_txg = 0; 3571 scn->scn_objsets_visited_this_txg = 0; 3572 scn->scn_avg_seg_size_this_txg = 0; 3573 scn->scn_segs_this_txg = 0; 3574 scn->scn_avg_zio_size_this_txg = 0; 3575 scn->scn_zios_this_txg = 0; 3576 scn->scn_suspending = B_FALSE; 3577 scn->scn_sync_start_time = gethrtime(); 3578 spa->spa_scrub_active = B_TRUE; 3579 3580 /* 3581 * First process the async destroys. If we suspend, don't do 3582 * any scrubbing or resilvering. This ensures that there are no 3583 * async destroys while we are scanning, so the scan code doesn't 3584 * have to worry about traversing it. It is also faster to free the 3585 * blocks than to scrub them. 3586 */ 3587 err = dsl_process_async_destroys(dp, tx); 3588 if (err != 0) 3589 return; 3590 3591 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3592 return; 3593 3594 /* 3595 * Wait a few txgs after importing to begin scanning so that 3596 * we can get the pool imported quickly. 3597 */ 3598 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3599 return; 3600 3601 /* 3602 * zfs_scan_suspend_progress can be set to disable scan progress. 3603 * We don't want to spin the txg_sync thread, so we add a delay 3604 * here to simulate the time spent doing a scan. This is mostly 3605 * useful for testing and debugging. 3606 */ 3607 if (zfs_scan_suspend_progress) { 3608 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3609 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3610 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3611 3612 while (zfs_scan_suspend_progress && 3613 !txg_sync_waiting(scn->scn_dp) && 3614 !spa_shutting_down(scn->scn_dp->dp_spa) && 3615 NSEC2MSEC(scan_time_ns) < mintime) { 3616 delay(hz); 3617 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3618 } 3619 return; 3620 } 3621 3622 /* 3623 * It is possible to switch from unsorted to sorted at any time, 3624 * but afterwards the scan will remain sorted unless reloaded from 3625 * a checkpoint after a reboot. 3626 */ 3627 if (!zfs_scan_legacy) { 3628 scn->scn_is_sorted = B_TRUE; 3629 if (scn->scn_last_checkpoint == 0) 3630 scn->scn_last_checkpoint = ddi_get_lbolt(); 3631 } 3632 3633 /* 3634 * For sorted scans, determine what kind of work we will be doing 3635 * this txg based on our memory limitations and whether or not we 3636 * need to perform a checkpoint. 3637 */ 3638 if (scn->scn_is_sorted) { 3639 /* 3640 * If we are over our checkpoint interval, set scn_clearing 3641 * so that we can begin checkpointing immediately. The 3642 * checkpoint allows us to save a consistent bookmark 3643 * representing how much data we have scrubbed so far. 3644 * Otherwise, use the memory limit to determine if we should 3645 * scan for metadata or start issue scrub IOs. We accumulate 3646 * metadata until we hit our hard memory limit at which point 3647 * we issue scrub IOs until we are at our soft memory limit. 3648 */ 3649 if (scn->scn_checkpointing || 3650 ddi_get_lbolt() - scn->scn_last_checkpoint > 3651 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3652 if (!scn->scn_checkpointing) 3653 zfs_dbgmsg("begin scan checkpoint for %s", 3654 spa->spa_name); 3655 3656 scn->scn_checkpointing = B_TRUE; 3657 scn->scn_clearing = B_TRUE; 3658 } else { 3659 boolean_t should_clear = dsl_scan_should_clear(scn); 3660 if (should_clear && !scn->scn_clearing) { 3661 zfs_dbgmsg("begin scan clearing for %s", 3662 spa->spa_name); 3663 scn->scn_clearing = B_TRUE; 3664 } else if (!should_clear && scn->scn_clearing) { 3665 zfs_dbgmsg("finish scan clearing for %s", 3666 spa->spa_name); 3667 scn->scn_clearing = B_FALSE; 3668 } 3669 } 3670 } else { 3671 ASSERT0(scn->scn_checkpointing); 3672 ASSERT0(scn->scn_clearing); 3673 } 3674 3675 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3676 /* Need to scan metadata for more blocks to scrub */ 3677 dsl_scan_phys_t *scnp = &scn->scn_phys; 3678 taskqid_t prefetch_tqid; 3679 3680 /* 3681 * Recalculate the max number of in-flight bytes for pool-wide 3682 * scanning operations (minimum 1MB). Limits for the issuing 3683 * phase are done per top-level vdev and are handled separately. 3684 */ 3685 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 3686 dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20); 3687 3688 if (scnp->scn_ddt_bookmark.ddb_class <= 3689 scnp->scn_ddt_class_max) { 3690 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3691 zfs_dbgmsg("doing scan sync for %s txg %llu; " 3692 "ddt bm=%llu/%llu/%llu/%llx", 3693 spa->spa_name, 3694 (longlong_t)tx->tx_txg, 3695 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3696 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3697 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3698 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3699 } else { 3700 zfs_dbgmsg("doing scan sync for %s txg %llu; " 3701 "bm=%llu/%llu/%llu/%llu", 3702 spa->spa_name, 3703 (longlong_t)tx->tx_txg, 3704 (longlong_t)scnp->scn_bookmark.zb_objset, 3705 (longlong_t)scnp->scn_bookmark.zb_object, 3706 (longlong_t)scnp->scn_bookmark.zb_level, 3707 (longlong_t)scnp->scn_bookmark.zb_blkid); 3708 } 3709 3710 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3711 NULL, ZIO_FLAG_CANFAIL); 3712 3713 scn->scn_prefetch_stop = B_FALSE; 3714 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3715 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3716 ASSERT(prefetch_tqid != TASKQID_INVALID); 3717 3718 dsl_pool_config_enter(dp, FTAG); 3719 dsl_scan_visit(scn, tx); 3720 dsl_pool_config_exit(dp, FTAG); 3721 3722 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3723 scn->scn_prefetch_stop = B_TRUE; 3724 cv_broadcast(&spa->spa_scrub_io_cv); 3725 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3726 3727 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3728 (void) zio_wait(scn->scn_zio_root); 3729 scn->scn_zio_root = NULL; 3730 3731 zfs_dbgmsg("scan visited %llu blocks of %s in %llums " 3732 "(%llu os's, %llu holes, %llu < mintxg, " 3733 "%llu in ddt, %llu > maxtxg)", 3734 (longlong_t)scn->scn_visited_this_txg, 3735 spa->spa_name, 3736 (longlong_t)NSEC2MSEC(gethrtime() - 3737 scn->scn_sync_start_time), 3738 (longlong_t)scn->scn_objsets_visited_this_txg, 3739 (longlong_t)scn->scn_holes_this_txg, 3740 (longlong_t)scn->scn_lt_min_this_txg, 3741 (longlong_t)scn->scn_ddt_contained_this_txg, 3742 (longlong_t)scn->scn_gt_max_this_txg); 3743 3744 if (!scn->scn_suspending) { 3745 ASSERT0(avl_numnodes(&scn->scn_queue)); 3746 scn->scn_done_txg = tx->tx_txg + 1; 3747 if (scn->scn_is_sorted) { 3748 scn->scn_checkpointing = B_TRUE; 3749 scn->scn_clearing = B_TRUE; 3750 } 3751 zfs_dbgmsg("scan complete for %s txg %llu", 3752 spa->spa_name, 3753 (longlong_t)tx->tx_txg); 3754 } 3755 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3756 ASSERT(scn->scn_clearing); 3757 3758 /* need to issue scrubbing IOs from per-vdev queues */ 3759 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3760 NULL, ZIO_FLAG_CANFAIL); 3761 scan_io_queues_run(scn); 3762 (void) zio_wait(scn->scn_zio_root); 3763 scn->scn_zio_root = NULL; 3764 3765 /* calculate and dprintf the current memory usage */ 3766 (void) dsl_scan_should_clear(scn); 3767 dsl_scan_update_stats(scn); 3768 3769 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) " 3770 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)", 3771 (longlong_t)scn->scn_zios_this_txg, 3772 spa->spa_name, 3773 (longlong_t)scn->scn_segs_this_txg, 3774 (longlong_t)NSEC2MSEC(gethrtime() - 3775 scn->scn_sync_start_time), 3776 (longlong_t)scn->scn_avg_zio_size_this_txg, 3777 (longlong_t)scn->scn_avg_seg_size_this_txg); 3778 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3779 /* Finished with everything. Mark the scrub as complete */ 3780 zfs_dbgmsg("scan issuing complete txg %llu for %s", 3781 (longlong_t)tx->tx_txg, 3782 spa->spa_name); 3783 ASSERT3U(scn->scn_done_txg, !=, 0); 3784 ASSERT0(spa->spa_scrub_inflight); 3785 ASSERT0(scn->scn_bytes_pending); 3786 dsl_scan_done(scn, B_TRUE, tx); 3787 sync_type = SYNC_MANDATORY; 3788 } 3789 3790 dsl_scan_sync_state(scn, tx, sync_type); 3791 } 3792 3793 static void 3794 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3795 { 3796 int i; 3797 3798 /* 3799 * Don't count embedded bp's, since we already did the work of 3800 * scanning these when we scanned the containing block. 3801 */ 3802 if (BP_IS_EMBEDDED(bp)) 3803 return; 3804 3805 /* 3806 * Update the spa's stats on how many bytes we have issued. 3807 * Sequential scrubs create a zio for each DVA of the bp. Each 3808 * of these will include all DVAs for repair purposes, but the 3809 * zio code will only try the first one unless there is an issue. 3810 * Therefore, we should only count the first DVA for these IOs. 3811 */ 3812 if (scn->scn_is_sorted) { 3813 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3814 DVA_GET_ASIZE(&bp->blk_dva[0])); 3815 } else { 3816 spa_t *spa = scn->scn_dp->dp_spa; 3817 3818 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3819 atomic_add_64(&spa->spa_scan_pass_issued, 3820 DVA_GET_ASIZE(&bp->blk_dva[i])); 3821 } 3822 } 3823 3824 /* 3825 * If we resume after a reboot, zab will be NULL; don't record 3826 * incomplete stats in that case. 3827 */ 3828 if (zab == NULL) 3829 return; 3830 3831 mutex_enter(&zab->zab_lock); 3832 3833 for (i = 0; i < 4; i++) { 3834 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3835 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3836 3837 if (t & DMU_OT_NEWTYPE) 3838 t = DMU_OT_OTHER; 3839 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3840 int equal; 3841 3842 zb->zb_count++; 3843 zb->zb_asize += BP_GET_ASIZE(bp); 3844 zb->zb_lsize += BP_GET_LSIZE(bp); 3845 zb->zb_psize += BP_GET_PSIZE(bp); 3846 zb->zb_gangs += BP_COUNT_GANG(bp); 3847 3848 switch (BP_GET_NDVAS(bp)) { 3849 case 2: 3850 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3851 DVA_GET_VDEV(&bp->blk_dva[1])) 3852 zb->zb_ditto_2_of_2_samevdev++; 3853 break; 3854 case 3: 3855 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3856 DVA_GET_VDEV(&bp->blk_dva[1])) + 3857 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3858 DVA_GET_VDEV(&bp->blk_dva[2])) + 3859 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3860 DVA_GET_VDEV(&bp->blk_dva[2])); 3861 if (equal == 1) 3862 zb->zb_ditto_2_of_3_samevdev++; 3863 else if (equal == 3) 3864 zb->zb_ditto_3_of_3_samevdev++; 3865 break; 3866 } 3867 } 3868 3869 mutex_exit(&zab->zab_lock); 3870 } 3871 3872 static void 3873 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3874 { 3875 avl_index_t idx; 3876 int64_t asize = SIO_GET_ASIZE(sio); 3877 dsl_scan_t *scn = queue->q_scn; 3878 3879 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3880 3881 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3882 /* block is already scheduled for reading */ 3883 atomic_add_64(&scn->scn_bytes_pending, -asize); 3884 sio_free(sio); 3885 return; 3886 } 3887 avl_insert(&queue->q_sios_by_addr, sio, idx); 3888 queue->q_sio_memused += SIO_GET_MUSED(sio); 3889 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3890 } 3891 3892 /* 3893 * Given all the info we got from our metadata scanning process, we 3894 * construct a scan_io_t and insert it into the scan sorting queue. The 3895 * I/O must already be suitable for us to process. This is controlled 3896 * by dsl_scan_enqueue(). 3897 */ 3898 static void 3899 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3900 int zio_flags, const zbookmark_phys_t *zb) 3901 { 3902 dsl_scan_t *scn = queue->q_scn; 3903 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3904 3905 ASSERT0(BP_IS_GANG(bp)); 3906 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3907 3908 bp2sio(bp, sio, dva_i); 3909 sio->sio_flags = zio_flags; 3910 sio->sio_zb = *zb; 3911 3912 /* 3913 * Increment the bytes pending counter now so that we can't 3914 * get an integer underflow in case the worker processes the 3915 * zio before we get to incrementing this counter. 3916 */ 3917 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3918 3919 scan_io_queue_insert_impl(queue, sio); 3920 } 3921 3922 /* 3923 * Given a set of I/O parameters as discovered by the metadata traversal 3924 * process, attempts to place the I/O into the sorted queues (if allowed), 3925 * or immediately executes the I/O. 3926 */ 3927 static void 3928 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3929 const zbookmark_phys_t *zb) 3930 { 3931 spa_t *spa = dp->dp_spa; 3932 3933 ASSERT(!BP_IS_EMBEDDED(bp)); 3934 3935 /* 3936 * Gang blocks are hard to issue sequentially, so we just issue them 3937 * here immediately instead of queuing them. 3938 */ 3939 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3940 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3941 return; 3942 } 3943 3944 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3945 dva_t dva; 3946 vdev_t *vdev; 3947 3948 dva = bp->blk_dva[i]; 3949 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3950 ASSERT(vdev != NULL); 3951 3952 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3953 if (vdev->vdev_scan_io_queue == NULL) 3954 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3955 ASSERT(dp->dp_scan != NULL); 3956 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3957 i, zio_flags, zb); 3958 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3959 } 3960 } 3961 3962 static int 3963 dsl_scan_scrub_cb(dsl_pool_t *dp, 3964 const blkptr_t *bp, const zbookmark_phys_t *zb) 3965 { 3966 dsl_scan_t *scn = dp->dp_scan; 3967 spa_t *spa = dp->dp_spa; 3968 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3969 size_t psize = BP_GET_PSIZE(bp); 3970 boolean_t needs_io = B_FALSE; 3971 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3972 3973 3974 if (phys_birth <= scn->scn_phys.scn_min_txg || 3975 phys_birth >= scn->scn_phys.scn_max_txg) { 3976 count_block(scn, dp->dp_blkstats, bp); 3977 return (0); 3978 } 3979 3980 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3981 ASSERT(!BP_IS_EMBEDDED(bp)); 3982 3983 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3984 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3985 zio_flags |= ZIO_FLAG_SCRUB; 3986 needs_io = B_TRUE; 3987 } else { 3988 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3989 zio_flags |= ZIO_FLAG_RESILVER; 3990 needs_io = B_FALSE; 3991 } 3992 3993 /* If it's an intent log block, failure is expected. */ 3994 if (zb->zb_level == ZB_ZIL_LEVEL) 3995 zio_flags |= ZIO_FLAG_SPECULATIVE; 3996 3997 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 3998 const dva_t *dva = &bp->blk_dva[d]; 3999 4000 /* 4001 * Keep track of how much data we've examined so that 4002 * zpool(8) status can make useful progress reports. 4003 */ 4004 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 4005 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 4006 4007 /* if it's a resilver, this may not be in the target range */ 4008 if (!needs_io) 4009 needs_io = dsl_scan_need_resilver(spa, dva, psize, 4010 phys_birth); 4011 } 4012 4013 if (needs_io && !zfs_no_scrub_io) { 4014 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4015 } else { 4016 count_block(scn, dp->dp_blkstats, bp); 4017 } 4018 4019 /* do not relocate this block */ 4020 return (0); 4021 } 4022 4023 static void 4024 dsl_scan_scrub_done(zio_t *zio) 4025 { 4026 spa_t *spa = zio->io_spa; 4027 blkptr_t *bp = zio->io_bp; 4028 dsl_scan_io_queue_t *queue = zio->io_private; 4029 4030 abd_free(zio->io_abd); 4031 4032 if (queue == NULL) { 4033 mutex_enter(&spa->spa_scrub_lock); 4034 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4035 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4036 cv_broadcast(&spa->spa_scrub_io_cv); 4037 mutex_exit(&spa->spa_scrub_lock); 4038 } else { 4039 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4040 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4041 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4042 cv_broadcast(&queue->q_zio_cv); 4043 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4044 } 4045 4046 if (zio->io_error && (zio->io_error != ECKSUM || 4047 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4048 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 4049 } 4050 } 4051 4052 /* 4053 * Given a scanning zio's information, executes the zio. The zio need 4054 * not necessarily be only sortable, this function simply executes the 4055 * zio, no matter what it is. The optional queue argument allows the 4056 * caller to specify that they want per top level vdev IO rate limiting 4057 * instead of the legacy global limiting. 4058 */ 4059 static void 4060 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4061 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4062 { 4063 spa_t *spa = dp->dp_spa; 4064 dsl_scan_t *scn = dp->dp_scan; 4065 size_t size = BP_GET_PSIZE(bp); 4066 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4067 4068 if (queue == NULL) { 4069 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4070 mutex_enter(&spa->spa_scrub_lock); 4071 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4072 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4073 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4074 mutex_exit(&spa->spa_scrub_lock); 4075 } else { 4076 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4077 4078 ASSERT3U(queue->q_maxinflight_bytes, >, 0); 4079 mutex_enter(q_lock); 4080 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4081 cv_wait(&queue->q_zio_cv, q_lock); 4082 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4083 mutex_exit(q_lock); 4084 } 4085 4086 count_block(scn, dp->dp_blkstats, bp); 4087 zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size, 4088 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4089 } 4090 4091 /* 4092 * This is the primary extent sorting algorithm. We balance two parameters: 4093 * 1) how many bytes of I/O are in an extent 4094 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4095 * Since we allow extents to have gaps between their constituent I/Os, it's 4096 * possible to have a fairly large extent that contains the same amount of 4097 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4098 * The algorithm sorts based on a score calculated from the extent's size, 4099 * the relative fill volume (in %) and a "fill weight" parameter that controls 4100 * the split between whether we prefer larger extents or more well populated 4101 * extents: 4102 * 4103 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4104 * 4105 * Example: 4106 * 1) assume extsz = 64 MiB 4107 * 2) assume fill = 32 MiB (extent is half full) 4108 * 3) assume fill_weight = 3 4109 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4110 * SCORE = 32M + (50 * 3 * 32M) / 100 4111 * SCORE = 32M + (4800M / 100) 4112 * SCORE = 32M + 48M 4113 * ^ ^ 4114 * | +--- final total relative fill-based score 4115 * +--------- final total fill-based score 4116 * SCORE = 80M 4117 * 4118 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4119 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4120 * Note that as an optimization, we replace multiplication and division by 4121 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4122 */ 4123 static int 4124 ext_size_compare(const void *x, const void *y) 4125 { 4126 const range_seg_gap_t *rsa = x, *rsb = y; 4127 4128 uint64_t sa = rsa->rs_end - rsa->rs_start; 4129 uint64_t sb = rsb->rs_end - rsb->rs_start; 4130 uint64_t score_a, score_b; 4131 4132 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 4133 fill_weight * rsa->rs_fill) >> 7); 4134 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 4135 fill_weight * rsb->rs_fill) >> 7); 4136 4137 if (score_a > score_b) 4138 return (-1); 4139 if (score_a == score_b) { 4140 if (rsa->rs_start < rsb->rs_start) 4141 return (-1); 4142 if (rsa->rs_start == rsb->rs_start) 4143 return (0); 4144 return (1); 4145 } 4146 return (1); 4147 } 4148 4149 /* 4150 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4151 * based on LBA-order (from lowest to highest). 4152 */ 4153 static int 4154 sio_addr_compare(const void *x, const void *y) 4155 { 4156 const scan_io_t *a = x, *b = y; 4157 4158 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4159 } 4160 4161 /* IO queues are created on demand when they are needed. */ 4162 static dsl_scan_io_queue_t * 4163 scan_io_queue_create(vdev_t *vd) 4164 { 4165 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4166 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4167 4168 q->q_scn = scn; 4169 q->q_vd = vd; 4170 q->q_sio_memused = 0; 4171 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4172 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP, 4173 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap); 4174 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4175 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4176 4177 return (q); 4178 } 4179 4180 /* 4181 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4182 * No further execution of I/O occurs, anything pending in the queue is 4183 * simply freed without being executed. 4184 */ 4185 void 4186 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4187 { 4188 dsl_scan_t *scn = queue->q_scn; 4189 scan_io_t *sio; 4190 void *cookie = NULL; 4191 int64_t bytes_dequeued = 0; 4192 4193 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4194 4195 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4196 NULL) { 4197 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4198 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4199 bytes_dequeued += SIO_GET_ASIZE(sio); 4200 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4201 sio_free(sio); 4202 } 4203 4204 ASSERT0(queue->q_sio_memused); 4205 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4206 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4207 range_tree_destroy(queue->q_exts_by_addr); 4208 avl_destroy(&queue->q_sios_by_addr); 4209 cv_destroy(&queue->q_zio_cv); 4210 4211 kmem_free(queue, sizeof (*queue)); 4212 } 4213 4214 /* 4215 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4216 * called on behalf of vdev_top_transfer when creating or destroying 4217 * a mirror vdev due to zpool attach/detach. 4218 */ 4219 void 4220 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4221 { 4222 mutex_enter(&svd->vdev_scan_io_queue_lock); 4223 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4224 4225 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4226 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4227 svd->vdev_scan_io_queue = NULL; 4228 if (tvd->vdev_scan_io_queue != NULL) 4229 tvd->vdev_scan_io_queue->q_vd = tvd; 4230 4231 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4232 mutex_exit(&svd->vdev_scan_io_queue_lock); 4233 } 4234 4235 static void 4236 scan_io_queues_destroy(dsl_scan_t *scn) 4237 { 4238 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4239 4240 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4241 vdev_t *tvd = rvd->vdev_child[i]; 4242 4243 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4244 if (tvd->vdev_scan_io_queue != NULL) 4245 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4246 tvd->vdev_scan_io_queue = NULL; 4247 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4248 } 4249 } 4250 4251 static void 4252 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4253 { 4254 dsl_pool_t *dp = spa->spa_dsl_pool; 4255 dsl_scan_t *scn = dp->dp_scan; 4256 vdev_t *vdev; 4257 kmutex_t *q_lock; 4258 dsl_scan_io_queue_t *queue; 4259 scan_io_t *srch_sio, *sio; 4260 avl_index_t idx; 4261 uint64_t start, size; 4262 4263 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4264 ASSERT(vdev != NULL); 4265 q_lock = &vdev->vdev_scan_io_queue_lock; 4266 queue = vdev->vdev_scan_io_queue; 4267 4268 mutex_enter(q_lock); 4269 if (queue == NULL) { 4270 mutex_exit(q_lock); 4271 return; 4272 } 4273 4274 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4275 bp2sio(bp, srch_sio, dva_i); 4276 start = SIO_GET_OFFSET(srch_sio); 4277 size = SIO_GET_ASIZE(srch_sio); 4278 4279 /* 4280 * We can find the zio in two states: 4281 * 1) Cold, just sitting in the queue of zio's to be issued at 4282 * some point in the future. In this case, all we do is 4283 * remove the zio from the q_sios_by_addr tree, decrement 4284 * its data volume from the containing range_seg_t and 4285 * resort the q_exts_by_size tree to reflect that the 4286 * range_seg_t has lost some of its 'fill'. We don't shorten 4287 * the range_seg_t - this is usually rare enough not to be 4288 * worth the extra hassle of trying keep track of precise 4289 * extent boundaries. 4290 * 2) Hot, where the zio is currently in-flight in 4291 * dsl_scan_issue_ios. In this case, we can't simply 4292 * reach in and stop the in-flight zio's, so we instead 4293 * block the caller. Eventually, dsl_scan_issue_ios will 4294 * be done with issuing the zio's it gathered and will 4295 * signal us. 4296 */ 4297 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4298 sio_free(srch_sio); 4299 4300 if (sio != NULL) { 4301 int64_t asize = SIO_GET_ASIZE(sio); 4302 blkptr_t tmpbp; 4303 4304 /* Got it while it was cold in the queue */ 4305 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4306 ASSERT3U(size, ==, asize); 4307 avl_remove(&queue->q_sios_by_addr, sio); 4308 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4309 4310 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4311 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4312 4313 /* 4314 * We only update scn_bytes_pending in the cold path, 4315 * otherwise it will already have been accounted for as 4316 * part of the zio's execution. 4317 */ 4318 atomic_add_64(&scn->scn_bytes_pending, -asize); 4319 4320 /* count the block as though we issued it */ 4321 sio2bp(sio, &tmpbp); 4322 count_block(scn, dp->dp_blkstats, &tmpbp); 4323 4324 sio_free(sio); 4325 } 4326 mutex_exit(q_lock); 4327 } 4328 4329 /* 4330 * Callback invoked when a zio_free() zio is executing. This needs to be 4331 * intercepted to prevent the zio from deallocating a particular portion 4332 * of disk space and it then getting reallocated and written to, while we 4333 * still have it queued up for processing. 4334 */ 4335 void 4336 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4337 { 4338 dsl_pool_t *dp = spa->spa_dsl_pool; 4339 dsl_scan_t *scn = dp->dp_scan; 4340 4341 ASSERT(!BP_IS_EMBEDDED(bp)); 4342 ASSERT(scn != NULL); 4343 if (!dsl_scan_is_running(scn)) 4344 return; 4345 4346 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4347 dsl_scan_freed_dva(spa, bp, i); 4348 } 4349 4350 /* 4351 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4352 * not started, start it. Otherwise, only restart if max txg in DTL range is 4353 * greater than the max txg in the current scan. If the DTL max is less than 4354 * the scan max, then the vdev has not missed any new data since the resilver 4355 * started, so a restart is not needed. 4356 */ 4357 void 4358 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4359 { 4360 uint64_t min, max; 4361 4362 if (!vdev_resilver_needed(vd, &min, &max)) 4363 return; 4364 4365 if (!dsl_scan_resilvering(dp)) { 4366 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4367 return; 4368 } 4369 4370 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4371 return; 4372 4373 /* restart is needed, check if it can be deferred */ 4374 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4375 vdev_defer_resilver(vd); 4376 else 4377 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4378 } 4379 4380 /* BEGIN CSTYLED */ 4381 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW, 4382 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 4383 4384 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW, 4385 "Min millisecs to scrub per txg"); 4386 4387 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW, 4388 "Min millisecs to obsolete per txg"); 4389 4390 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW, 4391 "Min millisecs to free per txg"); 4392 4393 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW, 4394 "Min millisecs to resilver per txg"); 4395 4396 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 4397 "Set to prevent scans from progressing"); 4398 4399 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 4400 "Set to disable scrub I/O"); 4401 4402 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 4403 "Set to disable scrub prefetching"); 4404 4405 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW, 4406 "Max number of blocks freed in one txg"); 4407 4408 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW, 4409 "Max number of dedup blocks freed in one txg"); 4410 4411 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 4412 "Enable processing of the free_bpobj"); 4413 4414 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW, 4415 "Fraction of RAM for scan hard limit"); 4416 4417 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW, 4418 "IO issuing strategy during scrubbing. " 4419 "0 = default, 1 = LBA, 2 = size"); 4420 4421 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 4422 "Scrub using legacy non-sequential method"); 4423 4424 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW, 4425 "Scan progress on-disk checkpointing interval"); 4426 4427 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW, 4428 "Max gap in bytes between sequential scrub / resilver I/Os"); 4429 4430 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW, 4431 "Fraction of hard limit used as soft limit"); 4432 4433 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 4434 "Tunable to attempt to reduce lock contention"); 4435 4436 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW, 4437 "Tunable to adjust bias towards more filled segments during scans"); 4438 4439 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 4440 "Process all resilvers immediately"); 4441 /* END CSTYLED */ 4442