1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 27 * Copyright 2019 Joyent, Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/zil_impl.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/ddt.h> 50 #include <sys/sa.h> 51 #include <sys/sa_impl.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/range_tree.h> 55 #ifdef _KERNEL 56 #include <sys/zfs_vfsops.h> 57 #endif 58 59 /* 60 * Grand theory statement on scan queue sorting 61 * 62 * Scanning is implemented by recursively traversing all indirection levels 63 * in an object and reading all blocks referenced from said objects. This 64 * results in us approximately traversing the object from lowest logical 65 * offset to the highest. For best performance, we would want the logical 66 * blocks to be physically contiguous. However, this is frequently not the 67 * case with pools given the allocation patterns of copy-on-write filesystems. 68 * So instead, we put the I/Os into a reordering queue and issue them in a 69 * way that will most benefit physical disks (LBA-order). 70 * 71 * Queue management: 72 * 73 * Ideally, we would want to scan all metadata and queue up all block I/O 74 * prior to starting to issue it, because that allows us to do an optimal 75 * sorting job. This can however consume large amounts of memory. Therefore 76 * we continuously monitor the size of the queues and constrain them to 5% 77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 78 * limit, we clear out a few of the largest extents at the head of the queues 79 * to make room for more scanning. Hopefully, these extents will be fairly 80 * large and contiguous, allowing us to approach sequential I/O throughput 81 * even without a fully sorted tree. 82 * 83 * Metadata scanning takes place in dsl_scan_visit(), which is called from 84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 85 * metadata on the pool, or we need to make room in memory because our 86 * queues are too large, dsl_scan_visit() is postponed and 87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 88 * that metadata scanning and queued I/O issuing are mutually exclusive. This 89 * allows us to provide maximum sequential I/O throughput for the majority of 90 * I/O's issued since sequential I/O performance is significantly negatively 91 * impacted if it is interleaved with random I/O. 92 * 93 * Implementation Notes 94 * 95 * One side effect of the queued scanning algorithm is that the scanning code 96 * needs to be notified whenever a block is freed. This is needed to allow 97 * the scanning code to remove these I/Os from the issuing queue. Additionally, 98 * we do not attempt to queue gang blocks to be issued sequentially since this 99 * is very hard to do and would have an extremely limited performance benefit. 100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 101 * algorithm. 102 * 103 * Backwards compatibility 104 * 105 * This new algorithm is backwards compatible with the legacy on-disk data 106 * structures (and therefore does not require a new feature flag). 107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 108 * will stop scanning metadata (in logical order) and wait for all outstanding 109 * sorted I/O to complete. Once this is done, we write out a checkpoint 110 * bookmark, indicating that we have scanned everything logically before it. 111 * If the pool is imported on a machine without the new sorting algorithm, 112 * the scan simply resumes from the last checkpoint using the legacy algorithm. 113 */ 114 115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 116 const zbookmark_phys_t *); 117 118 static scan_cb_t dsl_scan_scrub_cb; 119 120 static int scan_ds_queue_compare(const void *a, const void *b); 121 static int scan_prefetch_queue_compare(const void *a, const void *b); 122 static void scan_ds_queue_clear(dsl_scan_t *scn); 123 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 125 uint64_t *txg); 126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 129 static uint64_t dsl_scan_count_leaves(vdev_t *vd); 130 131 extern int zfs_vdev_async_write_active_min_dirty_percent; 132 133 /* 134 * By default zfs will check to ensure it is not over the hard memory 135 * limit before each txg. If finer-grained control of this is needed 136 * this value can be set to 1 to enable checking before scanning each 137 * block. 138 */ 139 int zfs_scan_strict_mem_lim = B_FALSE; 140 141 /* 142 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 143 * to strike a balance here between keeping the vdev queues full of I/Os 144 * at all times and not overflowing the queues to cause long latency, 145 * which would cause long txg sync times. No matter what, we will not 146 * overload the drives with I/O, since that is protected by 147 * zfs_vdev_scrub_max_active. 148 */ 149 unsigned long zfs_scan_vdev_limit = 4 << 20; 150 151 int zfs_scan_issue_strategy = 0; 152 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 153 unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 154 155 /* 156 * fill_weight is non-tunable at runtime, so we copy it at module init from 157 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 158 * break queue sorting. 159 */ 160 int zfs_scan_fill_weight = 3; 161 static uint64_t fill_weight; 162 163 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 164 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 165 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 166 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 167 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 168 169 int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 170 int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */ 171 int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 172 int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */ 173 int zfs_scan_checkpoint_intval = 7200; /* in seconds */ 174 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 175 int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 176 int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 177 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 178 /* max number of blocks to free in a single TXG */ 179 unsigned long zfs_async_block_max_blocks = ULONG_MAX; 180 /* max number of dedup blocks to free in a single TXG */ 181 unsigned long zfs_max_async_dedup_frees = 100000; 182 183 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 184 185 /* 186 * We wait a few txgs after importing a pool to begin scanning so that 187 * the import / mounting code isn't held up by scrub / resilver IO. 188 * Unfortunately, it is a bit difficult to determine exactly how long 189 * this will take since userspace will trigger fs mounts asynchronously 190 * and the kernel will create zvol minors asynchronously. As a result, 191 * the value provided here is a bit arbitrary, but represents a 192 * reasonable estimate of how many txgs it will take to finish fully 193 * importing a pool 194 */ 195 #define SCAN_IMPORT_WAIT_TXGS 5 196 197 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 198 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 199 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 200 201 /* 202 * Enable/disable the processing of the free_bpobj object. 203 */ 204 int zfs_free_bpobj_enabled = 1; 205 206 /* the order has to match pool_scan_type */ 207 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 208 NULL, 209 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 210 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 211 }; 212 213 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 214 typedef struct { 215 uint64_t sds_dsobj; 216 uint64_t sds_txg; 217 avl_node_t sds_node; 218 } scan_ds_t; 219 220 /* 221 * This controls what conditions are placed on dsl_scan_sync_state(): 222 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 223 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 224 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 225 * write out the scn_phys_cached version. 226 * See dsl_scan_sync_state for details. 227 */ 228 typedef enum { 229 SYNC_OPTIONAL, 230 SYNC_MANDATORY, 231 SYNC_CACHED 232 } state_sync_type_t; 233 234 /* 235 * This struct represents the minimum information needed to reconstruct a 236 * zio for sequential scanning. This is useful because many of these will 237 * accumulate in the sequential IO queues before being issued, so saving 238 * memory matters here. 239 */ 240 typedef struct scan_io { 241 /* fields from blkptr_t */ 242 uint64_t sio_blk_prop; 243 uint64_t sio_phys_birth; 244 uint64_t sio_birth; 245 zio_cksum_t sio_cksum; 246 uint32_t sio_nr_dvas; 247 248 /* fields from zio_t */ 249 uint32_t sio_flags; 250 zbookmark_phys_t sio_zb; 251 252 /* members for queue sorting */ 253 union { 254 avl_node_t sio_addr_node; /* link into issuing queue */ 255 list_node_t sio_list_node; /* link for issuing to disk */ 256 } sio_nodes; 257 258 /* 259 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 260 * depending on how many were in the original bp. Only the 261 * first DVA is really used for sorting and issuing purposes. 262 * The other DVAs (if provided) simply exist so that the zio 263 * layer can find additional copies to repair from in the 264 * event of an error. This array must go at the end of the 265 * struct to allow this for the variable number of elements. 266 */ 267 dva_t sio_dva[0]; 268 } scan_io_t; 269 270 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 271 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 272 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 273 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 274 #define SIO_GET_END_OFFSET(sio) \ 275 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 276 #define SIO_GET_MUSED(sio) \ 277 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 278 279 struct dsl_scan_io_queue { 280 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 281 vdev_t *q_vd; /* top-level vdev that this queue represents */ 282 283 /* trees used for sorting I/Os and extents of I/Os */ 284 range_tree_t *q_exts_by_addr; 285 zfs_btree_t q_exts_by_size; 286 avl_tree_t q_sios_by_addr; 287 uint64_t q_sio_memused; 288 289 /* members for zio rate limiting */ 290 uint64_t q_maxinflight_bytes; 291 uint64_t q_inflight_bytes; 292 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 293 294 /* per txg statistics */ 295 uint64_t q_total_seg_size_this_txg; 296 uint64_t q_segs_this_txg; 297 uint64_t q_total_zio_size_this_txg; 298 uint64_t q_zios_this_txg; 299 }; 300 301 /* private data for dsl_scan_prefetch_cb() */ 302 typedef struct scan_prefetch_ctx { 303 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 304 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 305 boolean_t spc_root; /* is this prefetch for an objset? */ 306 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 307 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 308 } scan_prefetch_ctx_t; 309 310 /* private data for dsl_scan_prefetch() */ 311 typedef struct scan_prefetch_issue_ctx { 312 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 313 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 314 blkptr_t spic_bp; /* bp to prefetch */ 315 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 316 } scan_prefetch_issue_ctx_t; 317 318 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 319 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 320 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 321 scan_io_t *sio); 322 323 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 324 static void scan_io_queues_destroy(dsl_scan_t *scn); 325 326 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 327 328 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 329 static void 330 sio_free(scan_io_t *sio) 331 { 332 ASSERT3U(sio->sio_nr_dvas, >, 0); 333 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 334 335 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 336 } 337 338 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 339 static scan_io_t * 340 sio_alloc(unsigned short nr_dvas) 341 { 342 ASSERT3U(nr_dvas, >, 0); 343 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 344 345 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 346 } 347 348 void 349 scan_init(void) 350 { 351 /* 352 * This is used in ext_size_compare() to weight segments 353 * based on how sparse they are. This cannot be changed 354 * mid-scan and the tree comparison functions don't currently 355 * have a mechanism for passing additional context to the 356 * compare functions. Thus we store this value globally and 357 * we only allow it to be set at module initialization time 358 */ 359 fill_weight = zfs_scan_fill_weight; 360 361 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 362 char name[36]; 363 364 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 365 sio_cache[i] = kmem_cache_create(name, 366 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 367 0, NULL, NULL, NULL, NULL, NULL, 0); 368 } 369 } 370 371 void 372 scan_fini(void) 373 { 374 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 375 kmem_cache_destroy(sio_cache[i]); 376 } 377 } 378 379 static inline boolean_t 380 dsl_scan_is_running(const dsl_scan_t *scn) 381 { 382 return (scn->scn_phys.scn_state == DSS_SCANNING); 383 } 384 385 boolean_t 386 dsl_scan_resilvering(dsl_pool_t *dp) 387 { 388 return (dsl_scan_is_running(dp->dp_scan) && 389 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 390 } 391 392 static inline void 393 sio2bp(const scan_io_t *sio, blkptr_t *bp) 394 { 395 bzero(bp, sizeof (*bp)); 396 bp->blk_prop = sio->sio_blk_prop; 397 bp->blk_phys_birth = sio->sio_phys_birth; 398 bp->blk_birth = sio->sio_birth; 399 bp->blk_fill = 1; /* we always only work with data pointers */ 400 bp->blk_cksum = sio->sio_cksum; 401 402 ASSERT3U(sio->sio_nr_dvas, >, 0); 403 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 404 405 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 406 } 407 408 static inline void 409 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 410 { 411 sio->sio_blk_prop = bp->blk_prop; 412 sio->sio_phys_birth = bp->blk_phys_birth; 413 sio->sio_birth = bp->blk_birth; 414 sio->sio_cksum = bp->blk_cksum; 415 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 416 417 /* 418 * Copy the DVAs to the sio. We need all copies of the block so 419 * that the self healing code can use the alternate copies if the 420 * first is corrupted. We want the DVA at index dva_i to be first 421 * in the sio since this is the primary one that we want to issue. 422 */ 423 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 424 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 425 } 426 } 427 428 int 429 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 430 { 431 int err; 432 dsl_scan_t *scn; 433 spa_t *spa = dp->dp_spa; 434 uint64_t f; 435 436 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 437 scn->scn_dp = dp; 438 439 /* 440 * It's possible that we're resuming a scan after a reboot so 441 * make sure that the scan_async_destroying flag is initialized 442 * appropriately. 443 */ 444 ASSERT(!scn->scn_async_destroying); 445 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 446 SPA_FEATURE_ASYNC_DESTROY); 447 448 /* 449 * Calculate the max number of in-flight bytes for pool-wide 450 * scanning operations (minimum 1MB). Limits for the issuing 451 * phase are done per top-level vdev and are handled separately. 452 */ 453 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 454 dsl_scan_count_leaves(spa->spa_root_vdev), 1ULL << 20); 455 456 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 457 offsetof(scan_ds_t, sds_node)); 458 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 459 sizeof (scan_prefetch_issue_ctx_t), 460 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 461 462 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 463 "scrub_func", sizeof (uint64_t), 1, &f); 464 if (err == 0) { 465 /* 466 * There was an old-style scrub in progress. Restart a 467 * new-style scrub from the beginning. 468 */ 469 scn->scn_restart_txg = txg; 470 zfs_dbgmsg("old-style scrub was in progress; " 471 "restarting new-style scrub in txg %llu", 472 (longlong_t)scn->scn_restart_txg); 473 474 /* 475 * Load the queue obj from the old location so that it 476 * can be freed by dsl_scan_done(). 477 */ 478 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 479 "scrub_queue", sizeof (uint64_t), 1, 480 &scn->scn_phys.scn_queue_obj); 481 } else { 482 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 483 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 484 &scn->scn_phys); 485 /* 486 * Detect if the pool contains the signature of #2094. If it 487 * does properly update the scn->scn_phys structure and notify 488 * the administrator by setting an errata for the pool. 489 */ 490 if (err == EOVERFLOW) { 491 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 492 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 493 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 494 (23 * sizeof (uint64_t))); 495 496 err = zap_lookup(dp->dp_meta_objset, 497 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 498 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 499 if (err == 0) { 500 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 501 502 if (overflow & ~DSL_SCAN_FLAGS_MASK || 503 scn->scn_async_destroying) { 504 spa->spa_errata = 505 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 506 return (EOVERFLOW); 507 } 508 509 bcopy(zaptmp, &scn->scn_phys, 510 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 511 scn->scn_phys.scn_flags = overflow; 512 513 /* Required scrub already in progress. */ 514 if (scn->scn_phys.scn_state == DSS_FINISHED || 515 scn->scn_phys.scn_state == DSS_CANCELED) 516 spa->spa_errata = 517 ZPOOL_ERRATA_ZOL_2094_SCRUB; 518 } 519 } 520 521 if (err == ENOENT) 522 return (0); 523 else if (err) 524 return (err); 525 526 /* 527 * We might be restarting after a reboot, so jump the issued 528 * counter to how far we've scanned. We know we're consistent 529 * up to here. 530 */ 531 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 532 533 if (dsl_scan_is_running(scn) && 534 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 535 /* 536 * A new-type scrub was in progress on an old 537 * pool, and the pool was accessed by old 538 * software. Restart from the beginning, since 539 * the old software may have changed the pool in 540 * the meantime. 541 */ 542 scn->scn_restart_txg = txg; 543 zfs_dbgmsg("new-style scrub was modified " 544 "by old software; restarting in txg %llu", 545 (longlong_t)scn->scn_restart_txg); 546 } else if (dsl_scan_resilvering(dp)) { 547 /* 548 * If a resilver is in progress and there are already 549 * errors, restart it instead of finishing this scan and 550 * then restarting it. If there haven't been any errors 551 * then remember that the incore DTL is valid. 552 */ 553 if (scn->scn_phys.scn_errors > 0) { 554 scn->scn_restart_txg = txg; 555 zfs_dbgmsg("resilver can't excise DTL_MISSING " 556 "when finished; restarting in txg %llu", 557 (u_longlong_t)scn->scn_restart_txg); 558 } else { 559 /* it's safe to excise DTL when finished */ 560 spa->spa_scrub_started = B_TRUE; 561 } 562 } 563 } 564 565 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 566 567 /* reload the queue into the in-core state */ 568 if (scn->scn_phys.scn_queue_obj != 0) { 569 zap_cursor_t zc; 570 zap_attribute_t za; 571 572 for (zap_cursor_init(&zc, dp->dp_meta_objset, 573 scn->scn_phys.scn_queue_obj); 574 zap_cursor_retrieve(&zc, &za) == 0; 575 (void) zap_cursor_advance(&zc)) { 576 scan_ds_queue_insert(scn, 577 zfs_strtonum(za.za_name, NULL), 578 za.za_first_integer); 579 } 580 zap_cursor_fini(&zc); 581 } 582 583 spa_scan_stat_init(spa); 584 return (0); 585 } 586 587 void 588 dsl_scan_fini(dsl_pool_t *dp) 589 { 590 if (dp->dp_scan != NULL) { 591 dsl_scan_t *scn = dp->dp_scan; 592 593 if (scn->scn_taskq != NULL) 594 taskq_destroy(scn->scn_taskq); 595 596 scan_ds_queue_clear(scn); 597 avl_destroy(&scn->scn_queue); 598 scan_ds_prefetch_queue_clear(scn); 599 avl_destroy(&scn->scn_prefetch_queue); 600 601 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 602 dp->dp_scan = NULL; 603 } 604 } 605 606 static boolean_t 607 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 608 { 609 return (scn->scn_restart_txg != 0 && 610 scn->scn_restart_txg <= tx->tx_txg); 611 } 612 613 boolean_t 614 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 615 { 616 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 617 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 618 } 619 620 boolean_t 621 dsl_scan_scrubbing(const dsl_pool_t *dp) 622 { 623 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 624 625 return (scn_phys->scn_state == DSS_SCANNING && 626 scn_phys->scn_func == POOL_SCAN_SCRUB); 627 } 628 629 boolean_t 630 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 631 { 632 return (dsl_scan_scrubbing(scn->scn_dp) && 633 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 634 } 635 636 /* 637 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 638 * Because we can be running in the block sorting algorithm, we do not always 639 * want to write out the record, only when it is "safe" to do so. This safety 640 * condition is achieved by making sure that the sorting queues are empty 641 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 642 * is inconsistent with how much actual scanning progress has been made. The 643 * kind of sync to be performed is specified by the sync_type argument. If the 644 * sync is optional, we only sync if the queues are empty. If the sync is 645 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 646 * third possible state is a "cached" sync. This is done in response to: 647 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 648 * destroyed, so we wouldn't be able to restart scanning from it. 649 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 650 * superseded by a newer snapshot. 651 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 652 * swapped with its clone. 653 * In all cases, a cached sync simply rewrites the last record we've written, 654 * just slightly modified. For the modifications that are performed to the 655 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 656 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 657 */ 658 static void 659 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 660 { 661 int i; 662 spa_t *spa = scn->scn_dp->dp_spa; 663 664 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 665 if (scn->scn_bytes_pending == 0) { 666 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 667 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 668 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 669 670 if (q == NULL) 671 continue; 672 673 mutex_enter(&vd->vdev_scan_io_queue_lock); 674 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 675 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 676 NULL); 677 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 678 mutex_exit(&vd->vdev_scan_io_queue_lock); 679 } 680 681 if (scn->scn_phys.scn_queue_obj != 0) 682 scan_ds_queue_sync(scn, tx); 683 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 684 DMU_POOL_DIRECTORY_OBJECT, 685 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 686 &scn->scn_phys, tx)); 687 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 688 sizeof (scn->scn_phys)); 689 690 if (scn->scn_checkpointing) 691 zfs_dbgmsg("finish scan checkpoint"); 692 693 scn->scn_checkpointing = B_FALSE; 694 scn->scn_last_checkpoint = ddi_get_lbolt(); 695 } else if (sync_type == SYNC_CACHED) { 696 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 697 DMU_POOL_DIRECTORY_OBJECT, 698 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 699 &scn->scn_phys_cached, tx)); 700 } 701 } 702 703 /* ARGSUSED */ 704 static int 705 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 706 { 707 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 708 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 709 710 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd)) 711 return (SET_ERROR(EBUSY)); 712 713 return (0); 714 } 715 716 void 717 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 718 { 719 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 720 pool_scan_func_t *funcp = arg; 721 dmu_object_type_t ot = 0; 722 dsl_pool_t *dp = scn->scn_dp; 723 spa_t *spa = dp->dp_spa; 724 725 ASSERT(!dsl_scan_is_running(scn)); 726 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 727 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 728 scn->scn_phys.scn_func = *funcp; 729 scn->scn_phys.scn_state = DSS_SCANNING; 730 scn->scn_phys.scn_min_txg = 0; 731 scn->scn_phys.scn_max_txg = tx->tx_txg; 732 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 733 scn->scn_phys.scn_start_time = gethrestime_sec(); 734 scn->scn_phys.scn_errors = 0; 735 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 736 scn->scn_issued_before_pass = 0; 737 scn->scn_restart_txg = 0; 738 scn->scn_done_txg = 0; 739 scn->scn_last_checkpoint = 0; 740 scn->scn_checkpointing = B_FALSE; 741 spa_scan_stat_init(spa); 742 743 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 744 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 745 746 /* rewrite all disk labels */ 747 vdev_config_dirty(spa->spa_root_vdev); 748 749 if (vdev_resilver_needed(spa->spa_root_vdev, 750 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 751 nvlist_t *aux = fnvlist_alloc(); 752 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 753 "healing"); 754 spa_event_notify(spa, NULL, aux, 755 ESC_ZFS_RESILVER_START); 756 nvlist_free(aux); 757 } else { 758 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 759 } 760 761 spa->spa_scrub_started = B_TRUE; 762 /* 763 * If this is an incremental scrub, limit the DDT scrub phase 764 * to just the auto-ditto class (for correctness); the rest 765 * of the scrub should go faster using top-down pruning. 766 */ 767 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 768 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 769 770 /* 771 * When starting a resilver clear any existing rebuild state. 772 * This is required to prevent stale rebuild status from 773 * being reported when a rebuild is run, then a resilver and 774 * finally a scrub. In which case only the scrub status 775 * should be reported by 'zpool status'. 776 */ 777 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 778 vdev_t *rvd = spa->spa_root_vdev; 779 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 780 vdev_t *vd = rvd->vdev_child[i]; 781 vdev_rebuild_clear_sync( 782 (void *)(uintptr_t)vd->vdev_id, tx); 783 } 784 } 785 } 786 787 /* back to the generic stuff */ 788 789 if (dp->dp_blkstats == NULL) { 790 dp->dp_blkstats = 791 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 792 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 793 MUTEX_DEFAULT, NULL); 794 } 795 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 796 797 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 798 ot = DMU_OT_ZAP_OTHER; 799 800 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 801 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 802 803 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 804 805 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 806 807 spa_history_log_internal(spa, "scan setup", tx, 808 "func=%u mintxg=%llu maxtxg=%llu", 809 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg, 810 (u_longlong_t)scn->scn_phys.scn_max_txg); 811 } 812 813 /* 814 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 815 * Can also be called to resume a paused scrub. 816 */ 817 int 818 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 819 { 820 spa_t *spa = dp->dp_spa; 821 dsl_scan_t *scn = dp->dp_scan; 822 823 /* 824 * Purge all vdev caches and probe all devices. We do this here 825 * rather than in sync context because this requires a writer lock 826 * on the spa_config lock, which we can't do from sync context. The 827 * spa_scrub_reopen flag indicates that vdev_open() should not 828 * attempt to start another scrub. 829 */ 830 spa_vdev_state_enter(spa, SCL_NONE); 831 spa->spa_scrub_reopen = B_TRUE; 832 vdev_reopen(spa->spa_root_vdev); 833 spa->spa_scrub_reopen = B_FALSE; 834 (void) spa_vdev_state_exit(spa, NULL, 0); 835 836 if (func == POOL_SCAN_RESILVER) { 837 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 838 return (0); 839 } 840 841 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 842 /* got scrub start cmd, resume paused scrub */ 843 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 844 POOL_SCRUB_NORMAL); 845 if (err == 0) { 846 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 847 return (SET_ERROR(ECANCELED)); 848 } 849 850 return (SET_ERROR(err)); 851 } 852 853 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 854 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 855 } 856 857 /* ARGSUSED */ 858 static void 859 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 860 { 861 static const char *old_names[] = { 862 "scrub_bookmark", 863 "scrub_ddt_bookmark", 864 "scrub_ddt_class_max", 865 "scrub_queue", 866 "scrub_min_txg", 867 "scrub_max_txg", 868 "scrub_func", 869 "scrub_errors", 870 NULL 871 }; 872 873 dsl_pool_t *dp = scn->scn_dp; 874 spa_t *spa = dp->dp_spa; 875 int i; 876 877 /* Remove any remnants of an old-style scrub. */ 878 for (i = 0; old_names[i]; i++) { 879 (void) zap_remove(dp->dp_meta_objset, 880 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 881 } 882 883 if (scn->scn_phys.scn_queue_obj != 0) { 884 VERIFY0(dmu_object_free(dp->dp_meta_objset, 885 scn->scn_phys.scn_queue_obj, tx)); 886 scn->scn_phys.scn_queue_obj = 0; 887 } 888 scan_ds_queue_clear(scn); 889 scan_ds_prefetch_queue_clear(scn); 890 891 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 892 893 /* 894 * If we were "restarted" from a stopped state, don't bother 895 * with anything else. 896 */ 897 if (!dsl_scan_is_running(scn)) { 898 ASSERT(!scn->scn_is_sorted); 899 return; 900 } 901 902 if (scn->scn_is_sorted) { 903 scan_io_queues_destroy(scn); 904 scn->scn_is_sorted = B_FALSE; 905 906 if (scn->scn_taskq != NULL) { 907 taskq_destroy(scn->scn_taskq); 908 scn->scn_taskq = NULL; 909 } 910 } 911 912 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 913 914 spa_notify_waiters(spa); 915 916 if (dsl_scan_restarting(scn, tx)) 917 spa_history_log_internal(spa, "scan aborted, restarting", tx, 918 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 919 else if (!complete) 920 spa_history_log_internal(spa, "scan cancelled", tx, 921 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 922 else 923 spa_history_log_internal(spa, "scan done", tx, 924 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 925 926 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 927 spa->spa_scrub_active = B_FALSE; 928 929 /* 930 * If the scrub/resilver completed, update all DTLs to 931 * reflect this. Whether it succeeded or not, vacate 932 * all temporary scrub DTLs. 933 * 934 * As the scrub does not currently support traversing 935 * data that have been freed but are part of a checkpoint, 936 * we don't mark the scrub as done in the DTLs as faults 937 * may still exist in those vdevs. 938 */ 939 if (complete && 940 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 941 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 942 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 943 944 if (scn->scn_phys.scn_min_txg) { 945 nvlist_t *aux = fnvlist_alloc(); 946 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 947 "healing"); 948 spa_event_notify(spa, NULL, aux, 949 ESC_ZFS_RESILVER_FINISH); 950 nvlist_free(aux); 951 } else { 952 spa_event_notify(spa, NULL, NULL, 953 ESC_ZFS_SCRUB_FINISH); 954 } 955 } else { 956 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 957 0, B_TRUE, B_FALSE); 958 } 959 spa_errlog_rotate(spa); 960 961 /* 962 * Don't clear flag until after vdev_dtl_reassess to ensure that 963 * DTL_MISSING will get updated when possible. 964 */ 965 spa->spa_scrub_started = B_FALSE; 966 967 /* 968 * We may have finished replacing a device. 969 * Let the async thread assess this and handle the detach. 970 */ 971 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 972 973 /* 974 * Clear any resilver_deferred flags in the config. 975 * If there are drives that need resilvering, kick 976 * off an asynchronous request to start resilver. 977 * vdev_clear_resilver_deferred() may update the config 978 * before the resilver can restart. In the event of 979 * a crash during this period, the spa loading code 980 * will find the drives that need to be resilvered 981 * and start the resilver then. 982 */ 983 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 984 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 985 spa_history_log_internal(spa, 986 "starting deferred resilver", tx, "errors=%llu", 987 (u_longlong_t)spa_get_errlog_size(spa)); 988 spa_async_request(spa, SPA_ASYNC_RESILVER); 989 } 990 991 /* Clear recent error events (i.e. duplicate events tracking) */ 992 if (complete) 993 zfs_ereport_clear(spa, NULL); 994 } 995 996 scn->scn_phys.scn_end_time = gethrestime_sec(); 997 998 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 999 spa->spa_errata = 0; 1000 1001 ASSERT(!dsl_scan_is_running(scn)); 1002 } 1003 1004 /* ARGSUSED */ 1005 static int 1006 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1007 { 1008 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1009 1010 if (!dsl_scan_is_running(scn)) 1011 return (SET_ERROR(ENOENT)); 1012 return (0); 1013 } 1014 1015 /* ARGSUSED */ 1016 static void 1017 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1018 { 1019 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1020 1021 dsl_scan_done(scn, B_FALSE, tx); 1022 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1023 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1024 } 1025 1026 int 1027 dsl_scan_cancel(dsl_pool_t *dp) 1028 { 1029 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1030 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1031 } 1032 1033 static int 1034 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1035 { 1036 pool_scrub_cmd_t *cmd = arg; 1037 dsl_pool_t *dp = dmu_tx_pool(tx); 1038 dsl_scan_t *scn = dp->dp_scan; 1039 1040 if (*cmd == POOL_SCRUB_PAUSE) { 1041 /* can't pause a scrub when there is no in-progress scrub */ 1042 if (!dsl_scan_scrubbing(dp)) 1043 return (SET_ERROR(ENOENT)); 1044 1045 /* can't pause a paused scrub */ 1046 if (dsl_scan_is_paused_scrub(scn)) 1047 return (SET_ERROR(EBUSY)); 1048 } else if (*cmd != POOL_SCRUB_NORMAL) { 1049 return (SET_ERROR(ENOTSUP)); 1050 } 1051 1052 return (0); 1053 } 1054 1055 static void 1056 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1057 { 1058 pool_scrub_cmd_t *cmd = arg; 1059 dsl_pool_t *dp = dmu_tx_pool(tx); 1060 spa_t *spa = dp->dp_spa; 1061 dsl_scan_t *scn = dp->dp_scan; 1062 1063 if (*cmd == POOL_SCRUB_PAUSE) { 1064 /* can't pause a scrub when there is no in-progress scrub */ 1065 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1066 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1067 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1068 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1069 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1070 spa_notify_waiters(spa); 1071 } else { 1072 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1073 if (dsl_scan_is_paused_scrub(scn)) { 1074 /* 1075 * We need to keep track of how much time we spend 1076 * paused per pass so that we can adjust the scrub rate 1077 * shown in the output of 'zpool status' 1078 */ 1079 spa->spa_scan_pass_scrub_spent_paused += 1080 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1081 spa->spa_scan_pass_scrub_pause = 0; 1082 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1083 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1084 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1085 } 1086 } 1087 } 1088 1089 /* 1090 * Set scrub pause/resume state if it makes sense to do so 1091 */ 1092 int 1093 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1094 { 1095 return (dsl_sync_task(spa_name(dp->dp_spa), 1096 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1097 ZFS_SPACE_CHECK_RESERVED)); 1098 } 1099 1100 1101 /* start a new scan, or restart an existing one. */ 1102 void 1103 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1104 { 1105 if (txg == 0) { 1106 dmu_tx_t *tx; 1107 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1108 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1109 1110 txg = dmu_tx_get_txg(tx); 1111 dp->dp_scan->scn_restart_txg = txg; 1112 dmu_tx_commit(tx); 1113 } else { 1114 dp->dp_scan->scn_restart_txg = txg; 1115 } 1116 zfs_dbgmsg("restarting resilver txg=%llu", (longlong_t)txg); 1117 } 1118 1119 void 1120 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1121 { 1122 zio_free(dp->dp_spa, txg, bp); 1123 } 1124 1125 void 1126 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1127 { 1128 ASSERT(dsl_pool_sync_context(dp)); 1129 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1130 } 1131 1132 static int 1133 scan_ds_queue_compare(const void *a, const void *b) 1134 { 1135 const scan_ds_t *sds_a = a, *sds_b = b; 1136 1137 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1138 return (-1); 1139 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1140 return (0); 1141 return (1); 1142 } 1143 1144 static void 1145 scan_ds_queue_clear(dsl_scan_t *scn) 1146 { 1147 void *cookie = NULL; 1148 scan_ds_t *sds; 1149 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1150 kmem_free(sds, sizeof (*sds)); 1151 } 1152 } 1153 1154 static boolean_t 1155 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1156 { 1157 scan_ds_t srch, *sds; 1158 1159 srch.sds_dsobj = dsobj; 1160 sds = avl_find(&scn->scn_queue, &srch, NULL); 1161 if (sds != NULL && txg != NULL) 1162 *txg = sds->sds_txg; 1163 return (sds != NULL); 1164 } 1165 1166 static void 1167 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1168 { 1169 scan_ds_t *sds; 1170 avl_index_t where; 1171 1172 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1173 sds->sds_dsobj = dsobj; 1174 sds->sds_txg = txg; 1175 1176 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1177 avl_insert(&scn->scn_queue, sds, where); 1178 } 1179 1180 static void 1181 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1182 { 1183 scan_ds_t srch, *sds; 1184 1185 srch.sds_dsobj = dsobj; 1186 1187 sds = avl_find(&scn->scn_queue, &srch, NULL); 1188 VERIFY(sds != NULL); 1189 avl_remove(&scn->scn_queue, sds); 1190 kmem_free(sds, sizeof (*sds)); 1191 } 1192 1193 static void 1194 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1195 { 1196 dsl_pool_t *dp = scn->scn_dp; 1197 spa_t *spa = dp->dp_spa; 1198 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1199 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1200 1201 ASSERT0(scn->scn_bytes_pending); 1202 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1203 1204 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1205 scn->scn_phys.scn_queue_obj, tx)); 1206 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1207 DMU_OT_NONE, 0, tx); 1208 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1209 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1210 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1211 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1212 sds->sds_txg, tx)); 1213 } 1214 } 1215 1216 /* 1217 * Computes the memory limit state that we're currently in. A sorted scan 1218 * needs quite a bit of memory to hold the sorting queue, so we need to 1219 * reasonably constrain the size so it doesn't impact overall system 1220 * performance. We compute two limits: 1221 * 1) Hard memory limit: if the amount of memory used by the sorting 1222 * queues on a pool gets above this value, we stop the metadata 1223 * scanning portion and start issuing the queued up and sorted 1224 * I/Os to reduce memory usage. 1225 * This limit is calculated as a fraction of physmem (by default 5%). 1226 * We constrain the lower bound of the hard limit to an absolute 1227 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1228 * the upper bound to 5% of the total pool size - no chance we'll 1229 * ever need that much memory, but just to keep the value in check. 1230 * 2) Soft memory limit: once we hit the hard memory limit, we start 1231 * issuing I/O to reduce queue memory usage, but we don't want to 1232 * completely empty out the queues, since we might be able to find I/Os 1233 * that will fill in the gaps of our non-sequential IOs at some point 1234 * in the future. So we stop the issuing of I/Os once the amount of 1235 * memory used drops below the soft limit (at which point we stop issuing 1236 * I/O and start scanning metadata again). 1237 * 1238 * This limit is calculated by subtracting a fraction of the hard 1239 * limit from the hard limit. By default this fraction is 5%, so 1240 * the soft limit is 95% of the hard limit. We cap the size of the 1241 * difference between the hard and soft limits at an absolute 1242 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1243 * sufficient to not cause too frequent switching between the 1244 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1245 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1246 * that should take at least a decent fraction of a second). 1247 */ 1248 static boolean_t 1249 dsl_scan_should_clear(dsl_scan_t *scn) 1250 { 1251 spa_t *spa = scn->scn_dp->dp_spa; 1252 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1253 uint64_t alloc, mlim_hard, mlim_soft, mused; 1254 1255 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1256 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1257 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1258 1259 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1260 zfs_scan_mem_lim_min); 1261 mlim_hard = MIN(mlim_hard, alloc / 20); 1262 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1263 zfs_scan_mem_lim_soft_max); 1264 mused = 0; 1265 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1266 vdev_t *tvd = rvd->vdev_child[i]; 1267 dsl_scan_io_queue_t *queue; 1268 1269 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1270 queue = tvd->vdev_scan_io_queue; 1271 if (queue != NULL) { 1272 /* # extents in exts_by_size = # in exts_by_addr */ 1273 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1274 sizeof (range_seg_gap_t) + queue->q_sio_memused; 1275 } 1276 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1277 } 1278 1279 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1280 1281 if (mused == 0) 1282 ASSERT0(scn->scn_bytes_pending); 1283 1284 /* 1285 * If we are above our hard limit, we need to clear out memory. 1286 * If we are below our soft limit, we need to accumulate sequential IOs. 1287 * Otherwise, we should keep doing whatever we are currently doing. 1288 */ 1289 if (mused >= mlim_hard) 1290 return (B_TRUE); 1291 else if (mused < mlim_soft) 1292 return (B_FALSE); 1293 else 1294 return (scn->scn_clearing); 1295 } 1296 1297 static boolean_t 1298 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1299 { 1300 /* we never skip user/group accounting objects */ 1301 if (zb && (int64_t)zb->zb_object < 0) 1302 return (B_FALSE); 1303 1304 if (scn->scn_suspending) 1305 return (B_TRUE); /* we're already suspending */ 1306 1307 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1308 return (B_FALSE); /* we're resuming */ 1309 1310 /* We only know how to resume from level-0 and objset blocks. */ 1311 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1312 return (B_FALSE); 1313 1314 /* 1315 * We suspend if: 1316 * - we have scanned for at least the minimum time (default 1 sec 1317 * for scrub, 3 sec for resilver), and either we have sufficient 1318 * dirty data that we are starting to write more quickly 1319 * (default 30%), someone is explicitly waiting for this txg 1320 * to complete, or we have used up all of the time in the txg 1321 * timeout (default 5 sec). 1322 * or 1323 * - the spa is shutting down because this pool is being exported 1324 * or the machine is rebooting. 1325 * or 1326 * - the scan queue has reached its memory use limit 1327 */ 1328 uint64_t curr_time_ns = gethrtime(); 1329 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1330 uint64_t sync_time_ns = curr_time_ns - 1331 scn->scn_dp->dp_spa->spa_sync_starttime; 1332 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1333 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1334 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1335 1336 if ((NSEC2MSEC(scan_time_ns) > mintime && 1337 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1338 txg_sync_waiting(scn->scn_dp) || 1339 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1340 spa_shutting_down(scn->scn_dp->dp_spa) || 1341 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1342 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1343 dprintf("suspending at first available bookmark " 1344 "%llx/%llx/%llx/%llx\n", 1345 (longlong_t)zb->zb_objset, 1346 (longlong_t)zb->zb_object, 1347 (longlong_t)zb->zb_level, 1348 (longlong_t)zb->zb_blkid); 1349 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1350 zb->zb_objset, 0, 0, 0); 1351 } else if (zb != NULL) { 1352 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1353 (longlong_t)zb->zb_objset, 1354 (longlong_t)zb->zb_object, 1355 (longlong_t)zb->zb_level, 1356 (longlong_t)zb->zb_blkid); 1357 scn->scn_phys.scn_bookmark = *zb; 1358 } else { 1359 #ifdef ZFS_DEBUG 1360 dsl_scan_phys_t *scnp = &scn->scn_phys; 1361 dprintf("suspending at at DDT bookmark " 1362 "%llx/%llx/%llx/%llx\n", 1363 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1364 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1365 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1366 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1367 #endif 1368 } 1369 scn->scn_suspending = B_TRUE; 1370 return (B_TRUE); 1371 } 1372 return (B_FALSE); 1373 } 1374 1375 typedef struct zil_scan_arg { 1376 dsl_pool_t *zsa_dp; 1377 zil_header_t *zsa_zh; 1378 } zil_scan_arg_t; 1379 1380 /* ARGSUSED */ 1381 static int 1382 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, 1383 uint64_t claim_txg) 1384 { 1385 zil_scan_arg_t *zsa = arg; 1386 dsl_pool_t *dp = zsa->zsa_dp; 1387 dsl_scan_t *scn = dp->dp_scan; 1388 zil_header_t *zh = zsa->zsa_zh; 1389 zbookmark_phys_t zb; 1390 1391 ASSERT(!BP_IS_REDACTED(bp)); 1392 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1393 return (0); 1394 1395 /* 1396 * One block ("stubby") can be allocated a long time ago; we 1397 * want to visit that one because it has been allocated 1398 * (on-disk) even if it hasn't been claimed (even though for 1399 * scrub there's nothing to do to it). 1400 */ 1401 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1402 return (0); 1403 1404 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1405 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1406 1407 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1408 return (0); 1409 } 1410 1411 /* ARGSUSED */ 1412 static int 1413 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, 1414 uint64_t claim_txg) 1415 { 1416 if (lrc->lrc_txtype == TX_WRITE) { 1417 zil_scan_arg_t *zsa = arg; 1418 dsl_pool_t *dp = zsa->zsa_dp; 1419 dsl_scan_t *scn = dp->dp_scan; 1420 zil_header_t *zh = zsa->zsa_zh; 1421 const lr_write_t *lr = (const lr_write_t *)lrc; 1422 const blkptr_t *bp = &lr->lr_blkptr; 1423 zbookmark_phys_t zb; 1424 1425 ASSERT(!BP_IS_REDACTED(bp)); 1426 if (BP_IS_HOLE(bp) || 1427 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1428 return (0); 1429 1430 /* 1431 * birth can be < claim_txg if this record's txg is 1432 * already txg sync'ed (but this log block contains 1433 * other records that are not synced) 1434 */ 1435 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1436 return (0); 1437 1438 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1439 lr->lr_foid, ZB_ZIL_LEVEL, 1440 lr->lr_offset / BP_GET_LSIZE(bp)); 1441 1442 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1443 } 1444 return (0); 1445 } 1446 1447 static void 1448 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1449 { 1450 uint64_t claim_txg = zh->zh_claim_txg; 1451 zil_scan_arg_t zsa = { dp, zh }; 1452 zilog_t *zilog; 1453 1454 ASSERT(spa_writeable(dp->dp_spa)); 1455 1456 /* 1457 * We only want to visit blocks that have been claimed but not yet 1458 * replayed (or, in read-only mode, blocks that *would* be claimed). 1459 */ 1460 if (claim_txg == 0) 1461 return; 1462 1463 zilog = zil_alloc(dp->dp_meta_objset, zh); 1464 1465 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1466 claim_txg, B_FALSE); 1467 1468 zil_free(zilog); 1469 } 1470 1471 /* 1472 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1473 * here is to sort the AVL tree by the order each block will be needed. 1474 */ 1475 static int 1476 scan_prefetch_queue_compare(const void *a, const void *b) 1477 { 1478 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1479 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1480 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1481 1482 return (zbookmark_compare(spc_a->spc_datablkszsec, 1483 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1484 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1485 } 1486 1487 static void 1488 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1489 { 1490 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1491 zfs_refcount_destroy(&spc->spc_refcnt); 1492 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1493 } 1494 } 1495 1496 static scan_prefetch_ctx_t * 1497 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1498 { 1499 scan_prefetch_ctx_t *spc; 1500 1501 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1502 zfs_refcount_create(&spc->spc_refcnt); 1503 zfs_refcount_add(&spc->spc_refcnt, tag); 1504 spc->spc_scn = scn; 1505 if (dnp != NULL) { 1506 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1507 spc->spc_indblkshift = dnp->dn_indblkshift; 1508 spc->spc_root = B_FALSE; 1509 } else { 1510 spc->spc_datablkszsec = 0; 1511 spc->spc_indblkshift = 0; 1512 spc->spc_root = B_TRUE; 1513 } 1514 1515 return (spc); 1516 } 1517 1518 static void 1519 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1520 { 1521 zfs_refcount_add(&spc->spc_refcnt, tag); 1522 } 1523 1524 static void 1525 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1526 { 1527 spa_t *spa = scn->scn_dp->dp_spa; 1528 void *cookie = NULL; 1529 scan_prefetch_issue_ctx_t *spic = NULL; 1530 1531 mutex_enter(&spa->spa_scrub_lock); 1532 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1533 &cookie)) != NULL) { 1534 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1535 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1536 } 1537 mutex_exit(&spa->spa_scrub_lock); 1538 } 1539 1540 static boolean_t 1541 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1542 const zbookmark_phys_t *zb) 1543 { 1544 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1545 dnode_phys_t tmp_dnp; 1546 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1547 1548 if (zb->zb_objset != last_zb->zb_objset) 1549 return (B_TRUE); 1550 if ((int64_t)zb->zb_object < 0) 1551 return (B_FALSE); 1552 1553 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1554 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1555 1556 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1557 return (B_TRUE); 1558 1559 return (B_FALSE); 1560 } 1561 1562 static void 1563 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1564 { 1565 avl_index_t idx; 1566 dsl_scan_t *scn = spc->spc_scn; 1567 spa_t *spa = scn->scn_dp->dp_spa; 1568 scan_prefetch_issue_ctx_t *spic; 1569 1570 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1571 return; 1572 1573 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1574 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1575 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1576 return; 1577 1578 if (dsl_scan_check_prefetch_resume(spc, zb)) 1579 return; 1580 1581 scan_prefetch_ctx_add_ref(spc, scn); 1582 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1583 spic->spic_spc = spc; 1584 spic->spic_bp = *bp; 1585 spic->spic_zb = *zb; 1586 1587 /* 1588 * Add the IO to the queue of blocks to prefetch. This allows us to 1589 * prioritize blocks that we will need first for the main traversal 1590 * thread. 1591 */ 1592 mutex_enter(&spa->spa_scrub_lock); 1593 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1594 /* this block is already queued for prefetch */ 1595 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1596 scan_prefetch_ctx_rele(spc, scn); 1597 mutex_exit(&spa->spa_scrub_lock); 1598 return; 1599 } 1600 1601 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1602 cv_broadcast(&spa->spa_scrub_io_cv); 1603 mutex_exit(&spa->spa_scrub_lock); 1604 } 1605 1606 static void 1607 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1608 uint64_t objset, uint64_t object) 1609 { 1610 int i; 1611 zbookmark_phys_t zb; 1612 scan_prefetch_ctx_t *spc; 1613 1614 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1615 return; 1616 1617 SET_BOOKMARK(&zb, objset, object, 0, 0); 1618 1619 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1620 1621 for (i = 0; i < dnp->dn_nblkptr; i++) { 1622 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1623 zb.zb_blkid = i; 1624 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1625 } 1626 1627 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1628 zb.zb_level = 0; 1629 zb.zb_blkid = DMU_SPILL_BLKID; 1630 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 1631 } 1632 1633 scan_prefetch_ctx_rele(spc, FTAG); 1634 } 1635 1636 static void 1637 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1638 arc_buf_t *buf, void *private) 1639 { 1640 scan_prefetch_ctx_t *spc = private; 1641 dsl_scan_t *scn = spc->spc_scn; 1642 spa_t *spa = scn->scn_dp->dp_spa; 1643 1644 /* broadcast that the IO has completed for rate limiting purposes */ 1645 mutex_enter(&spa->spa_scrub_lock); 1646 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1647 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1648 cv_broadcast(&spa->spa_scrub_io_cv); 1649 mutex_exit(&spa->spa_scrub_lock); 1650 1651 /* if there was an error or we are done prefetching, just cleanup */ 1652 if (buf == NULL || scn->scn_prefetch_stop) 1653 goto out; 1654 1655 if (BP_GET_LEVEL(bp) > 0) { 1656 int i; 1657 blkptr_t *cbp; 1658 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1659 zbookmark_phys_t czb; 1660 1661 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1662 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1663 zb->zb_level - 1, zb->zb_blkid * epb + i); 1664 dsl_scan_prefetch(spc, cbp, &czb); 1665 } 1666 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1667 dnode_phys_t *cdnp; 1668 int i; 1669 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1670 1671 for (i = 0, cdnp = buf->b_data; i < epb; 1672 i += cdnp->dn_extra_slots + 1, 1673 cdnp += cdnp->dn_extra_slots + 1) { 1674 dsl_scan_prefetch_dnode(scn, cdnp, 1675 zb->zb_objset, zb->zb_blkid * epb + i); 1676 } 1677 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1678 objset_phys_t *osp = buf->b_data; 1679 1680 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1681 zb->zb_objset, DMU_META_DNODE_OBJECT); 1682 1683 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1684 dsl_scan_prefetch_dnode(scn, 1685 &osp->os_groupused_dnode, zb->zb_objset, 1686 DMU_GROUPUSED_OBJECT); 1687 dsl_scan_prefetch_dnode(scn, 1688 &osp->os_userused_dnode, zb->zb_objset, 1689 DMU_USERUSED_OBJECT); 1690 } 1691 } 1692 1693 out: 1694 if (buf != NULL) 1695 arc_buf_destroy(buf, private); 1696 scan_prefetch_ctx_rele(spc, scn); 1697 } 1698 1699 /* ARGSUSED */ 1700 static void 1701 dsl_scan_prefetch_thread(void *arg) 1702 { 1703 dsl_scan_t *scn = arg; 1704 spa_t *spa = scn->scn_dp->dp_spa; 1705 scan_prefetch_issue_ctx_t *spic; 1706 1707 /* loop until we are told to stop */ 1708 while (!scn->scn_prefetch_stop) { 1709 arc_flags_t flags = ARC_FLAG_NOWAIT | 1710 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1711 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1712 1713 mutex_enter(&spa->spa_scrub_lock); 1714 1715 /* 1716 * Wait until we have an IO to issue and are not above our 1717 * maximum in flight limit. 1718 */ 1719 while (!scn->scn_prefetch_stop && 1720 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1721 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1722 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1723 } 1724 1725 /* recheck if we should stop since we waited for the cv */ 1726 if (scn->scn_prefetch_stop) { 1727 mutex_exit(&spa->spa_scrub_lock); 1728 break; 1729 } 1730 1731 /* remove the prefetch IO from the tree */ 1732 spic = avl_first(&scn->scn_prefetch_queue); 1733 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1734 avl_remove(&scn->scn_prefetch_queue, spic); 1735 1736 mutex_exit(&spa->spa_scrub_lock); 1737 1738 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1739 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1740 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1741 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1742 zio_flags |= ZIO_FLAG_RAW; 1743 } 1744 1745 /* issue the prefetch asynchronously */ 1746 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1747 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1748 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1749 1750 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1751 } 1752 1753 ASSERT(scn->scn_prefetch_stop); 1754 1755 /* free any prefetches we didn't get to complete */ 1756 mutex_enter(&spa->spa_scrub_lock); 1757 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1758 avl_remove(&scn->scn_prefetch_queue, spic); 1759 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1760 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1761 } 1762 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1763 mutex_exit(&spa->spa_scrub_lock); 1764 } 1765 1766 static boolean_t 1767 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1768 const zbookmark_phys_t *zb) 1769 { 1770 /* 1771 * We never skip over user/group accounting objects (obj<0) 1772 */ 1773 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1774 (int64_t)zb->zb_object >= 0) { 1775 /* 1776 * If we already visited this bp & everything below (in 1777 * a prior txg sync), don't bother doing it again. 1778 */ 1779 if (zbookmark_subtree_completed(dnp, zb, 1780 &scn->scn_phys.scn_bookmark)) 1781 return (B_TRUE); 1782 1783 /* 1784 * If we found the block we're trying to resume from, or 1785 * we went past it to a different object, zero it out to 1786 * indicate that it's OK to start checking for suspending 1787 * again. 1788 */ 1789 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1790 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1791 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1792 (longlong_t)zb->zb_objset, 1793 (longlong_t)zb->zb_object, 1794 (longlong_t)zb->zb_level, 1795 (longlong_t)zb->zb_blkid); 1796 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1797 } 1798 } 1799 return (B_FALSE); 1800 } 1801 1802 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1803 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1804 dmu_objset_type_t ostype, dmu_tx_t *tx); 1805 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 1806 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1807 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1808 1809 /* 1810 * Return nonzero on i/o error. 1811 * Return new buf to write out in *bufp. 1812 */ 1813 inline __attribute__((always_inline)) static int 1814 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1815 dnode_phys_t *dnp, const blkptr_t *bp, 1816 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1817 { 1818 dsl_pool_t *dp = scn->scn_dp; 1819 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1820 int err; 1821 1822 ASSERT(!BP_IS_REDACTED(bp)); 1823 1824 if (BP_GET_LEVEL(bp) > 0) { 1825 arc_flags_t flags = ARC_FLAG_WAIT; 1826 int i; 1827 blkptr_t *cbp; 1828 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1829 arc_buf_t *buf; 1830 1831 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1832 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1833 if (err) { 1834 scn->scn_phys.scn_errors++; 1835 return (err); 1836 } 1837 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1838 zbookmark_phys_t czb; 1839 1840 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1841 zb->zb_level - 1, 1842 zb->zb_blkid * epb + i); 1843 dsl_scan_visitbp(cbp, &czb, dnp, 1844 ds, scn, ostype, tx); 1845 } 1846 arc_buf_destroy(buf, &buf); 1847 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1848 arc_flags_t flags = ARC_FLAG_WAIT; 1849 dnode_phys_t *cdnp; 1850 int i; 1851 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1852 arc_buf_t *buf; 1853 1854 if (BP_IS_PROTECTED(bp)) { 1855 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1856 zio_flags |= ZIO_FLAG_RAW; 1857 } 1858 1859 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1860 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1861 if (err) { 1862 scn->scn_phys.scn_errors++; 1863 return (err); 1864 } 1865 for (i = 0, cdnp = buf->b_data; i < epb; 1866 i += cdnp->dn_extra_slots + 1, 1867 cdnp += cdnp->dn_extra_slots + 1) { 1868 dsl_scan_visitdnode(scn, ds, ostype, 1869 cdnp, zb->zb_blkid * epb + i, tx); 1870 } 1871 1872 arc_buf_destroy(buf, &buf); 1873 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1874 arc_flags_t flags = ARC_FLAG_WAIT; 1875 objset_phys_t *osp; 1876 arc_buf_t *buf; 1877 1878 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1879 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1880 if (err) { 1881 scn->scn_phys.scn_errors++; 1882 return (err); 1883 } 1884 1885 osp = buf->b_data; 1886 1887 dsl_scan_visitdnode(scn, ds, osp->os_type, 1888 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1889 1890 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1891 /* 1892 * We also always visit user/group/project accounting 1893 * objects, and never skip them, even if we are 1894 * suspending. This is necessary so that the 1895 * space deltas from this txg get integrated. 1896 */ 1897 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1898 dsl_scan_visitdnode(scn, ds, osp->os_type, 1899 &osp->os_projectused_dnode, 1900 DMU_PROJECTUSED_OBJECT, tx); 1901 dsl_scan_visitdnode(scn, ds, osp->os_type, 1902 &osp->os_groupused_dnode, 1903 DMU_GROUPUSED_OBJECT, tx); 1904 dsl_scan_visitdnode(scn, ds, osp->os_type, 1905 &osp->os_userused_dnode, 1906 DMU_USERUSED_OBJECT, tx); 1907 } 1908 arc_buf_destroy(buf, &buf); 1909 } 1910 1911 return (0); 1912 } 1913 1914 inline __attribute__((always_inline)) static void 1915 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1916 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1917 uint64_t object, dmu_tx_t *tx) 1918 { 1919 int j; 1920 1921 for (j = 0; j < dnp->dn_nblkptr; j++) { 1922 zbookmark_phys_t czb; 1923 1924 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1925 dnp->dn_nlevels - 1, j); 1926 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1927 &czb, dnp, ds, scn, ostype, tx); 1928 } 1929 1930 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1931 zbookmark_phys_t czb; 1932 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1933 0, DMU_SPILL_BLKID); 1934 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1935 &czb, dnp, ds, scn, ostype, tx); 1936 } 1937 } 1938 1939 /* 1940 * The arguments are in this order because mdb can only print the 1941 * first 5; we want them to be useful. 1942 */ 1943 static void 1944 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1945 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1946 dmu_objset_type_t ostype, dmu_tx_t *tx) 1947 { 1948 dsl_pool_t *dp = scn->scn_dp; 1949 blkptr_t *bp_toread = NULL; 1950 1951 if (dsl_scan_check_suspend(scn, zb)) 1952 return; 1953 1954 if (dsl_scan_check_resume(scn, dnp, zb)) 1955 return; 1956 1957 scn->scn_visited_this_txg++; 1958 1959 /* 1960 * This debugging is commented out to conserve stack space. This 1961 * function is called recursively and the debugging adds several 1962 * bytes to the stack for each call. It can be commented back in 1963 * if required to debug an issue in dsl_scan_visitbp(). 1964 * 1965 * dprintf_bp(bp, 1966 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1967 * ds, ds ? ds->ds_object : 0, 1968 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1969 * bp); 1970 */ 1971 1972 if (BP_IS_HOLE(bp)) { 1973 scn->scn_holes_this_txg++; 1974 return; 1975 } 1976 1977 if (BP_IS_REDACTED(bp)) { 1978 ASSERT(dsl_dataset_feature_is_active(ds, 1979 SPA_FEATURE_REDACTED_DATASETS)); 1980 return; 1981 } 1982 1983 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1984 scn->scn_lt_min_this_txg++; 1985 return; 1986 } 1987 1988 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1989 *bp_toread = *bp; 1990 1991 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1992 goto out; 1993 1994 /* 1995 * If dsl_scan_ddt() has already visited this block, it will have 1996 * already done any translations or scrubbing, so don't call the 1997 * callback again. 1998 */ 1999 if (ddt_class_contains(dp->dp_spa, 2000 scn->scn_phys.scn_ddt_class_max, bp)) { 2001 scn->scn_ddt_contained_this_txg++; 2002 goto out; 2003 } 2004 2005 /* 2006 * If this block is from the future (after cur_max_txg), then we 2007 * are doing this on behalf of a deleted snapshot, and we will 2008 * revisit the future block on the next pass of this dataset. 2009 * Don't scan it now unless we need to because something 2010 * under it was modified. 2011 */ 2012 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2013 scn->scn_gt_max_this_txg++; 2014 goto out; 2015 } 2016 2017 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2018 2019 out: 2020 kmem_free(bp_toread, sizeof (blkptr_t)); 2021 } 2022 2023 static void 2024 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2025 dmu_tx_t *tx) 2026 { 2027 zbookmark_phys_t zb; 2028 scan_prefetch_ctx_t *spc; 2029 2030 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2031 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2032 2033 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2034 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2035 zb.zb_objset, 0, 0, 0); 2036 } else { 2037 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2038 } 2039 2040 scn->scn_objsets_visited_this_txg++; 2041 2042 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2043 dsl_scan_prefetch(spc, bp, &zb); 2044 scan_prefetch_ctx_rele(spc, FTAG); 2045 2046 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2047 2048 dprintf_ds(ds, "finished scan%s", ""); 2049 } 2050 2051 static void 2052 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2053 { 2054 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2055 if (ds->ds_is_snapshot) { 2056 /* 2057 * Note: 2058 * - scn_cur_{min,max}_txg stays the same. 2059 * - Setting the flag is not really necessary if 2060 * scn_cur_max_txg == scn_max_txg, because there 2061 * is nothing after this snapshot that we care 2062 * about. However, we set it anyway and then 2063 * ignore it when we retraverse it in 2064 * dsl_scan_visitds(). 2065 */ 2066 scn_phys->scn_bookmark.zb_objset = 2067 dsl_dataset_phys(ds)->ds_next_snap_obj; 2068 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2069 "reset zb_objset to %llu", 2070 (u_longlong_t)ds->ds_object, 2071 (u_longlong_t)dsl_dataset_phys(ds)-> 2072 ds_next_snap_obj); 2073 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2074 } else { 2075 SET_BOOKMARK(&scn_phys->scn_bookmark, 2076 ZB_DESTROYED_OBJSET, 0, 0, 0); 2077 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2078 "reset bookmark to -1,0,0,0", 2079 (u_longlong_t)ds->ds_object); 2080 } 2081 } 2082 } 2083 2084 /* 2085 * Invoked when a dataset is destroyed. We need to make sure that: 2086 * 2087 * 1) If it is the dataset that was currently being scanned, we write 2088 * a new dsl_scan_phys_t and marking the objset reference in it 2089 * as destroyed. 2090 * 2) Remove it from the work queue, if it was present. 2091 * 2092 * If the dataset was actually a snapshot, instead of marking the dataset 2093 * as destroyed, we instead substitute the next snapshot in line. 2094 */ 2095 void 2096 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2097 { 2098 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2099 dsl_scan_t *scn = dp->dp_scan; 2100 uint64_t mintxg; 2101 2102 if (!dsl_scan_is_running(scn)) 2103 return; 2104 2105 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2106 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2107 2108 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2109 scan_ds_queue_remove(scn, ds->ds_object); 2110 if (ds->ds_is_snapshot) 2111 scan_ds_queue_insert(scn, 2112 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2113 } 2114 2115 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2116 ds->ds_object, &mintxg) == 0) { 2117 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2118 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2119 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2120 if (ds->ds_is_snapshot) { 2121 /* 2122 * We keep the same mintxg; it could be > 2123 * ds_creation_txg if the previous snapshot was 2124 * deleted too. 2125 */ 2126 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2127 scn->scn_phys.scn_queue_obj, 2128 dsl_dataset_phys(ds)->ds_next_snap_obj, 2129 mintxg, tx) == 0); 2130 zfs_dbgmsg("destroying ds %llu; in queue; " 2131 "replacing with %llu", 2132 (u_longlong_t)ds->ds_object, 2133 (u_longlong_t)dsl_dataset_phys(ds)-> 2134 ds_next_snap_obj); 2135 } else { 2136 zfs_dbgmsg("destroying ds %llu; in queue; removing", 2137 (u_longlong_t)ds->ds_object); 2138 } 2139 } 2140 2141 /* 2142 * dsl_scan_sync() should be called after this, and should sync 2143 * out our changed state, but just to be safe, do it here. 2144 */ 2145 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2146 } 2147 2148 static void 2149 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2150 { 2151 if (scn_bookmark->zb_objset == ds->ds_object) { 2152 scn_bookmark->zb_objset = 2153 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2154 zfs_dbgmsg("snapshotting ds %llu; currently traversing; " 2155 "reset zb_objset to %llu", 2156 (u_longlong_t)ds->ds_object, 2157 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2158 } 2159 } 2160 2161 /* 2162 * Called when a dataset is snapshotted. If we were currently traversing 2163 * this snapshot, we reset our bookmark to point at the newly created 2164 * snapshot. We also modify our work queue to remove the old snapshot and 2165 * replace with the new one. 2166 */ 2167 void 2168 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2169 { 2170 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2171 dsl_scan_t *scn = dp->dp_scan; 2172 uint64_t mintxg; 2173 2174 if (!dsl_scan_is_running(scn)) 2175 return; 2176 2177 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2178 2179 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2180 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2181 2182 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2183 scan_ds_queue_remove(scn, ds->ds_object); 2184 scan_ds_queue_insert(scn, 2185 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2186 } 2187 2188 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2189 ds->ds_object, &mintxg) == 0) { 2190 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2191 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2192 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2193 scn->scn_phys.scn_queue_obj, 2194 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2195 zfs_dbgmsg("snapshotting ds %llu; in queue; " 2196 "replacing with %llu", 2197 (u_longlong_t)ds->ds_object, 2198 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2199 } 2200 2201 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2202 } 2203 2204 static void 2205 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2206 zbookmark_phys_t *scn_bookmark) 2207 { 2208 if (scn_bookmark->zb_objset == ds1->ds_object) { 2209 scn_bookmark->zb_objset = ds2->ds_object; 2210 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2211 "reset zb_objset to %llu", 2212 (u_longlong_t)ds1->ds_object, 2213 (u_longlong_t)ds2->ds_object); 2214 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2215 scn_bookmark->zb_objset = ds1->ds_object; 2216 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2217 "reset zb_objset to %llu", 2218 (u_longlong_t)ds2->ds_object, 2219 (u_longlong_t)ds1->ds_object); 2220 } 2221 } 2222 2223 /* 2224 * Called when an origin dataset and its clone are swapped. If we were 2225 * currently traversing the dataset, we need to switch to traversing the 2226 * newly promoted clone. 2227 */ 2228 void 2229 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2230 { 2231 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2232 dsl_scan_t *scn = dp->dp_scan; 2233 uint64_t mintxg1, mintxg2; 2234 boolean_t ds1_queued, ds2_queued; 2235 2236 if (!dsl_scan_is_running(scn)) 2237 return; 2238 2239 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2240 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2241 2242 /* 2243 * Handle the in-memory scan queue. 2244 */ 2245 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2246 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2247 2248 /* Sanity checking. */ 2249 if (ds1_queued) { 2250 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2251 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2252 } 2253 if (ds2_queued) { 2254 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2255 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2256 } 2257 2258 if (ds1_queued && ds2_queued) { 2259 /* 2260 * If both are queued, we don't need to do anything. 2261 * The swapping code below would not handle this case correctly, 2262 * since we can't insert ds2 if it is already there. That's 2263 * because scan_ds_queue_insert() prohibits a duplicate insert 2264 * and panics. 2265 */ 2266 } else if (ds1_queued) { 2267 scan_ds_queue_remove(scn, ds1->ds_object); 2268 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2269 } else if (ds2_queued) { 2270 scan_ds_queue_remove(scn, ds2->ds_object); 2271 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2272 } 2273 2274 /* 2275 * Handle the on-disk scan queue. 2276 * The on-disk state is an out-of-date version of the in-memory state, 2277 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2278 * be different. Therefore we need to apply the swap logic to the 2279 * on-disk state independently of the in-memory state. 2280 */ 2281 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2282 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2283 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2284 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2285 2286 /* Sanity checking. */ 2287 if (ds1_queued) { 2288 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2289 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2290 } 2291 if (ds2_queued) { 2292 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2293 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2294 } 2295 2296 if (ds1_queued && ds2_queued) { 2297 /* 2298 * If both are queued, we don't need to do anything. 2299 * Alternatively, we could check for EEXIST from 2300 * zap_add_int_key() and back out to the original state, but 2301 * that would be more work than checking for this case upfront. 2302 */ 2303 } else if (ds1_queued) { 2304 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2305 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2306 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2307 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2308 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2309 "replacing with %llu", 2310 (u_longlong_t)ds1->ds_object, 2311 (u_longlong_t)ds2->ds_object); 2312 } else if (ds2_queued) { 2313 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2314 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2315 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2316 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2317 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2318 "replacing with %llu", 2319 (u_longlong_t)ds2->ds_object, 2320 (u_longlong_t)ds1->ds_object); 2321 } 2322 2323 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2324 } 2325 2326 /* ARGSUSED */ 2327 static int 2328 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2329 { 2330 uint64_t originobj = *(uint64_t *)arg; 2331 dsl_dataset_t *ds; 2332 int err; 2333 dsl_scan_t *scn = dp->dp_scan; 2334 2335 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2336 return (0); 2337 2338 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2339 if (err) 2340 return (err); 2341 2342 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2343 dsl_dataset_t *prev; 2344 err = dsl_dataset_hold_obj(dp, 2345 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2346 2347 dsl_dataset_rele(ds, FTAG); 2348 if (err) 2349 return (err); 2350 ds = prev; 2351 } 2352 scan_ds_queue_insert(scn, ds->ds_object, 2353 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2354 dsl_dataset_rele(ds, FTAG); 2355 return (0); 2356 } 2357 2358 static void 2359 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2360 { 2361 dsl_pool_t *dp = scn->scn_dp; 2362 dsl_dataset_t *ds; 2363 2364 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2365 2366 if (scn->scn_phys.scn_cur_min_txg >= 2367 scn->scn_phys.scn_max_txg) { 2368 /* 2369 * This can happen if this snapshot was created after the 2370 * scan started, and we already completed a previous snapshot 2371 * that was created after the scan started. This snapshot 2372 * only references blocks with: 2373 * 2374 * birth < our ds_creation_txg 2375 * cur_min_txg is no less than ds_creation_txg. 2376 * We have already visited these blocks. 2377 * or 2378 * birth > scn_max_txg 2379 * The scan requested not to visit these blocks. 2380 * 2381 * Subsequent snapshots (and clones) can reference our 2382 * blocks, or blocks with even higher birth times. 2383 * Therefore we do not need to visit them either, 2384 * so we do not add them to the work queue. 2385 * 2386 * Note that checking for cur_min_txg >= cur_max_txg 2387 * is not sufficient, because in that case we may need to 2388 * visit subsequent snapshots. This happens when min_txg > 0, 2389 * which raises cur_min_txg. In this case we will visit 2390 * this dataset but skip all of its blocks, because the 2391 * rootbp's birth time is < cur_min_txg. Then we will 2392 * add the next snapshots/clones to the work queue. 2393 */ 2394 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2395 dsl_dataset_name(ds, dsname); 2396 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2397 "cur_min_txg (%llu) >= max_txg (%llu)", 2398 (longlong_t)dsobj, dsname, 2399 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2400 (longlong_t)scn->scn_phys.scn_max_txg); 2401 kmem_free(dsname, MAXNAMELEN); 2402 2403 goto out; 2404 } 2405 2406 /* 2407 * Only the ZIL in the head (non-snapshot) is valid. Even though 2408 * snapshots can have ZIL block pointers (which may be the same 2409 * BP as in the head), they must be ignored. In addition, $ORIGIN 2410 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2411 * need to look for a ZIL in it either. So we traverse the ZIL here, 2412 * rather than in scan_recurse(), because the regular snapshot 2413 * block-sharing rules don't apply to it. 2414 */ 2415 if (!dsl_dataset_is_snapshot(ds) && 2416 (dp->dp_origin_snap == NULL || 2417 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2418 objset_t *os; 2419 if (dmu_objset_from_ds(ds, &os) != 0) { 2420 goto out; 2421 } 2422 dsl_scan_zil(dp, &os->os_zil_header); 2423 } 2424 2425 /* 2426 * Iterate over the bps in this ds. 2427 */ 2428 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2429 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2430 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2431 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2432 2433 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2434 dsl_dataset_name(ds, dsname); 2435 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2436 "suspending=%u", 2437 (longlong_t)dsobj, dsname, 2438 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2439 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2440 (int)scn->scn_suspending); 2441 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2442 2443 if (scn->scn_suspending) 2444 goto out; 2445 2446 /* 2447 * We've finished this pass over this dataset. 2448 */ 2449 2450 /* 2451 * If we did not completely visit this dataset, do another pass. 2452 */ 2453 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2454 zfs_dbgmsg("incomplete pass; visiting again"); 2455 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2456 scan_ds_queue_insert(scn, ds->ds_object, 2457 scn->scn_phys.scn_cur_max_txg); 2458 goto out; 2459 } 2460 2461 /* 2462 * Add descendant datasets to work queue. 2463 */ 2464 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2465 scan_ds_queue_insert(scn, 2466 dsl_dataset_phys(ds)->ds_next_snap_obj, 2467 dsl_dataset_phys(ds)->ds_creation_txg); 2468 } 2469 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2470 boolean_t usenext = B_FALSE; 2471 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2472 uint64_t count; 2473 /* 2474 * A bug in a previous version of the code could 2475 * cause upgrade_clones_cb() to not set 2476 * ds_next_snap_obj when it should, leading to a 2477 * missing entry. Therefore we can only use the 2478 * next_clones_obj when its count is correct. 2479 */ 2480 int err = zap_count(dp->dp_meta_objset, 2481 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2482 if (err == 0 && 2483 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2484 usenext = B_TRUE; 2485 } 2486 2487 if (usenext) { 2488 zap_cursor_t zc; 2489 zap_attribute_t za; 2490 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2491 dsl_dataset_phys(ds)->ds_next_clones_obj); 2492 zap_cursor_retrieve(&zc, &za) == 0; 2493 (void) zap_cursor_advance(&zc)) { 2494 scan_ds_queue_insert(scn, 2495 zfs_strtonum(za.za_name, NULL), 2496 dsl_dataset_phys(ds)->ds_creation_txg); 2497 } 2498 zap_cursor_fini(&zc); 2499 } else { 2500 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2501 enqueue_clones_cb, &ds->ds_object, 2502 DS_FIND_CHILDREN)); 2503 } 2504 } 2505 2506 out: 2507 dsl_dataset_rele(ds, FTAG); 2508 } 2509 2510 /* ARGSUSED */ 2511 static int 2512 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2513 { 2514 dsl_dataset_t *ds; 2515 int err; 2516 dsl_scan_t *scn = dp->dp_scan; 2517 2518 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2519 if (err) 2520 return (err); 2521 2522 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2523 dsl_dataset_t *prev; 2524 err = dsl_dataset_hold_obj(dp, 2525 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2526 if (err) { 2527 dsl_dataset_rele(ds, FTAG); 2528 return (err); 2529 } 2530 2531 /* 2532 * If this is a clone, we don't need to worry about it for now. 2533 */ 2534 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2535 dsl_dataset_rele(ds, FTAG); 2536 dsl_dataset_rele(prev, FTAG); 2537 return (0); 2538 } 2539 dsl_dataset_rele(ds, FTAG); 2540 ds = prev; 2541 } 2542 2543 scan_ds_queue_insert(scn, ds->ds_object, 2544 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2545 dsl_dataset_rele(ds, FTAG); 2546 return (0); 2547 } 2548 2549 /* ARGSUSED */ 2550 void 2551 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2552 ddt_entry_t *dde, dmu_tx_t *tx) 2553 { 2554 const ddt_key_t *ddk = &dde->dde_key; 2555 ddt_phys_t *ddp = dde->dde_phys; 2556 blkptr_t bp; 2557 zbookmark_phys_t zb = { 0 }; 2558 int p; 2559 2560 if (!dsl_scan_is_running(scn)) 2561 return; 2562 2563 /* 2564 * This function is special because it is the only thing 2565 * that can add scan_io_t's to the vdev scan queues from 2566 * outside dsl_scan_sync(). For the most part this is ok 2567 * as long as it is called from within syncing context. 2568 * However, dsl_scan_sync() expects that no new sio's will 2569 * be added between when all the work for a scan is done 2570 * and the next txg when the scan is actually marked as 2571 * completed. This check ensures we do not issue new sio's 2572 * during this period. 2573 */ 2574 if (scn->scn_done_txg != 0) 2575 return; 2576 2577 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2578 if (ddp->ddp_phys_birth == 0 || 2579 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2580 continue; 2581 ddt_bp_create(checksum, ddk, ddp, &bp); 2582 2583 scn->scn_visited_this_txg++; 2584 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2585 } 2586 } 2587 2588 /* 2589 * Scrub/dedup interaction. 2590 * 2591 * If there are N references to a deduped block, we don't want to scrub it 2592 * N times -- ideally, we should scrub it exactly once. 2593 * 2594 * We leverage the fact that the dde's replication class (enum ddt_class) 2595 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2596 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2597 * 2598 * To prevent excess scrubbing, the scrub begins by walking the DDT 2599 * to find all blocks with refcnt > 1, and scrubs each of these once. 2600 * Since there are two replication classes which contain blocks with 2601 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2602 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2603 * 2604 * There would be nothing more to say if a block's refcnt couldn't change 2605 * during a scrub, but of course it can so we must account for changes 2606 * in a block's replication class. 2607 * 2608 * Here's an example of what can occur: 2609 * 2610 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2611 * when visited during the top-down scrub phase, it will be scrubbed twice. 2612 * This negates our scrub optimization, but is otherwise harmless. 2613 * 2614 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2615 * on each visit during the top-down scrub phase, it will never be scrubbed. 2616 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2617 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2618 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2619 * while a scrub is in progress, it scrubs the block right then. 2620 */ 2621 static void 2622 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2623 { 2624 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2625 ddt_entry_t dde; 2626 int error; 2627 uint64_t n = 0; 2628 2629 bzero(&dde, sizeof (ddt_entry_t)); 2630 2631 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2632 ddt_t *ddt; 2633 2634 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2635 break; 2636 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2637 (longlong_t)ddb->ddb_class, 2638 (longlong_t)ddb->ddb_type, 2639 (longlong_t)ddb->ddb_checksum, 2640 (longlong_t)ddb->ddb_cursor); 2641 2642 /* There should be no pending changes to the dedup table */ 2643 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2644 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2645 2646 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2647 n++; 2648 2649 if (dsl_scan_check_suspend(scn, NULL)) 2650 break; 2651 } 2652 2653 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " 2654 "suspending=%u", (longlong_t)n, 2655 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2656 2657 ASSERT(error == 0 || error == ENOENT); 2658 ASSERT(error != ENOENT || 2659 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2660 } 2661 2662 static uint64_t 2663 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2664 { 2665 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2666 if (ds->ds_is_snapshot) 2667 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2668 return (smt); 2669 } 2670 2671 static void 2672 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2673 { 2674 scan_ds_t *sds; 2675 dsl_pool_t *dp = scn->scn_dp; 2676 2677 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2678 scn->scn_phys.scn_ddt_class_max) { 2679 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2680 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2681 dsl_scan_ddt(scn, tx); 2682 if (scn->scn_suspending) 2683 return; 2684 } 2685 2686 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2687 /* First do the MOS & ORIGIN */ 2688 2689 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2690 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2691 dsl_scan_visit_rootbp(scn, NULL, 2692 &dp->dp_meta_rootbp, tx); 2693 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2694 if (scn->scn_suspending) 2695 return; 2696 2697 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2698 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2699 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2700 } else { 2701 dsl_scan_visitds(scn, 2702 dp->dp_origin_snap->ds_object, tx); 2703 } 2704 ASSERT(!scn->scn_suspending); 2705 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2706 ZB_DESTROYED_OBJSET) { 2707 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2708 /* 2709 * If we were suspended, continue from here. Note if the 2710 * ds we were suspended on was deleted, the zb_objset may 2711 * be -1, so we will skip this and find a new objset 2712 * below. 2713 */ 2714 dsl_scan_visitds(scn, dsobj, tx); 2715 if (scn->scn_suspending) 2716 return; 2717 } 2718 2719 /* 2720 * In case we suspended right at the end of the ds, zero the 2721 * bookmark so we don't think that we're still trying to resume. 2722 */ 2723 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2724 2725 /* 2726 * Keep pulling things out of the dataset avl queue. Updates to the 2727 * persistent zap-object-as-queue happen only at checkpoints. 2728 */ 2729 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2730 dsl_dataset_t *ds; 2731 uint64_t dsobj = sds->sds_dsobj; 2732 uint64_t txg = sds->sds_txg; 2733 2734 /* dequeue and free the ds from the queue */ 2735 scan_ds_queue_remove(scn, dsobj); 2736 sds = NULL; 2737 2738 /* set up min / max txg */ 2739 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2740 if (txg != 0) { 2741 scn->scn_phys.scn_cur_min_txg = 2742 MAX(scn->scn_phys.scn_min_txg, txg); 2743 } else { 2744 scn->scn_phys.scn_cur_min_txg = 2745 MAX(scn->scn_phys.scn_min_txg, 2746 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2747 } 2748 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2749 dsl_dataset_rele(ds, FTAG); 2750 2751 dsl_scan_visitds(scn, dsobj, tx); 2752 if (scn->scn_suspending) 2753 return; 2754 } 2755 2756 /* No more objsets to fetch, we're done */ 2757 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2758 ASSERT0(scn->scn_suspending); 2759 } 2760 2761 static uint64_t 2762 dsl_scan_count_leaves(vdev_t *vd) 2763 { 2764 uint64_t i, leaves = 0; 2765 2766 /* we only count leaves that belong to the main pool and are readable */ 2767 if (vd->vdev_islog || vd->vdev_isspare || 2768 vd->vdev_isl2cache || !vdev_readable(vd)) 2769 return (0); 2770 2771 if (vd->vdev_ops->vdev_op_leaf) 2772 return (1); 2773 2774 for (i = 0; i < vd->vdev_children; i++) { 2775 leaves += dsl_scan_count_leaves(vd->vdev_child[i]); 2776 } 2777 2778 return (leaves); 2779 } 2780 2781 static void 2782 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2783 { 2784 int i; 2785 uint64_t cur_size = 0; 2786 2787 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2788 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2789 } 2790 2791 q->q_total_zio_size_this_txg += cur_size; 2792 q->q_zios_this_txg++; 2793 } 2794 2795 static void 2796 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2797 uint64_t end) 2798 { 2799 q->q_total_seg_size_this_txg += end - start; 2800 q->q_segs_this_txg++; 2801 } 2802 2803 static boolean_t 2804 scan_io_queue_check_suspend(dsl_scan_t *scn) 2805 { 2806 /* See comment in dsl_scan_check_suspend() */ 2807 uint64_t curr_time_ns = gethrtime(); 2808 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2809 uint64_t sync_time_ns = curr_time_ns - 2810 scn->scn_dp->dp_spa->spa_sync_starttime; 2811 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2812 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2813 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2814 2815 return ((NSEC2MSEC(scan_time_ns) > mintime && 2816 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2817 txg_sync_waiting(scn->scn_dp) || 2818 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2819 spa_shutting_down(scn->scn_dp->dp_spa)); 2820 } 2821 2822 /* 2823 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 2824 * disk. This consumes the io_list and frees the scan_io_t's. This is 2825 * called when emptying queues, either when we're up against the memory 2826 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2827 * processing the list before we finished. Any sios that were not issued 2828 * will remain in the io_list. 2829 */ 2830 static boolean_t 2831 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2832 { 2833 dsl_scan_t *scn = queue->q_scn; 2834 scan_io_t *sio; 2835 int64_t bytes_issued = 0; 2836 boolean_t suspended = B_FALSE; 2837 2838 while ((sio = list_head(io_list)) != NULL) { 2839 blkptr_t bp; 2840 2841 if (scan_io_queue_check_suspend(scn)) { 2842 suspended = B_TRUE; 2843 break; 2844 } 2845 2846 sio2bp(sio, &bp); 2847 bytes_issued += SIO_GET_ASIZE(sio); 2848 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2849 &sio->sio_zb, queue); 2850 (void) list_remove_head(io_list); 2851 scan_io_queues_update_zio_stats(queue, &bp); 2852 sio_free(sio); 2853 } 2854 2855 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2856 2857 return (suspended); 2858 } 2859 2860 /* 2861 * This function removes sios from an IO queue which reside within a given 2862 * range_seg_t and inserts them (in offset order) into a list. Note that 2863 * we only ever return a maximum of 32 sios at once. If there are more sios 2864 * to process within this segment that did not make it onto the list we 2865 * return B_TRUE and otherwise B_FALSE. 2866 */ 2867 static boolean_t 2868 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2869 { 2870 scan_io_t *srch_sio, *sio, *next_sio; 2871 avl_index_t idx; 2872 uint_t num_sios = 0; 2873 int64_t bytes_issued = 0; 2874 2875 ASSERT(rs != NULL); 2876 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2877 2878 srch_sio = sio_alloc(1); 2879 srch_sio->sio_nr_dvas = 1; 2880 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2881 2882 /* 2883 * The exact start of the extent might not contain any matching zios, 2884 * so if that's the case, examine the next one in the tree. 2885 */ 2886 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2887 sio_free(srch_sio); 2888 2889 if (sio == NULL) 2890 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2891 2892 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2893 queue->q_exts_by_addr) && num_sios <= 32) { 2894 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2895 queue->q_exts_by_addr)); 2896 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2897 queue->q_exts_by_addr)); 2898 2899 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2900 avl_remove(&queue->q_sios_by_addr, sio); 2901 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2902 2903 bytes_issued += SIO_GET_ASIZE(sio); 2904 num_sios++; 2905 list_insert_tail(list, sio); 2906 sio = next_sio; 2907 } 2908 2909 /* 2910 * We limit the number of sios we process at once to 32 to avoid 2911 * biting off more than we can chew. If we didn't take everything 2912 * in the segment we update it to reflect the work we were able to 2913 * complete. Otherwise, we remove it from the range tree entirely. 2914 */ 2915 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2916 queue->q_exts_by_addr)) { 2917 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2918 -bytes_issued); 2919 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2920 SIO_GET_OFFSET(sio), rs_get_end(rs, 2921 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2922 2923 return (B_TRUE); 2924 } else { 2925 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2926 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2927 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2928 return (B_FALSE); 2929 } 2930 } 2931 2932 /* 2933 * This is called from the queue emptying thread and selects the next 2934 * extent from which we are to issue I/Os. The behavior of this function 2935 * depends on the state of the scan, the current memory consumption and 2936 * whether or not we are performing a scan shutdown. 2937 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2938 * needs to perform a checkpoint 2939 * 2) We select the largest available extent if we are up against the 2940 * memory limit. 2941 * 3) Otherwise we don't select any extents. 2942 */ 2943 static range_seg_t * 2944 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2945 { 2946 dsl_scan_t *scn = queue->q_scn; 2947 range_tree_t *rt = queue->q_exts_by_addr; 2948 2949 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2950 ASSERT(scn->scn_is_sorted); 2951 2952 /* handle tunable overrides */ 2953 if (scn->scn_checkpointing || scn->scn_clearing) { 2954 if (zfs_scan_issue_strategy == 1) { 2955 return (range_tree_first(rt)); 2956 } else if (zfs_scan_issue_strategy == 2) { 2957 /* 2958 * We need to get the original entry in the by_addr 2959 * tree so we can modify it. 2960 */ 2961 range_seg_t *size_rs = 2962 zfs_btree_first(&queue->q_exts_by_size, NULL); 2963 if (size_rs == NULL) 2964 return (NULL); 2965 uint64_t start = rs_get_start(size_rs, rt); 2966 uint64_t size = rs_get_end(size_rs, rt) - start; 2967 range_seg_t *addr_rs = range_tree_find(rt, start, 2968 size); 2969 ASSERT3P(addr_rs, !=, NULL); 2970 ASSERT3U(rs_get_start(size_rs, rt), ==, 2971 rs_get_start(addr_rs, rt)); 2972 ASSERT3U(rs_get_end(size_rs, rt), ==, 2973 rs_get_end(addr_rs, rt)); 2974 return (addr_rs); 2975 } 2976 } 2977 2978 /* 2979 * During normal clearing, we want to issue our largest segments 2980 * first, keeping IO as sequential as possible, and leaving the 2981 * smaller extents for later with the hope that they might eventually 2982 * grow to larger sequential segments. However, when the scan is 2983 * checkpointing, no new extents will be added to the sorting queue, 2984 * so the way we are sorted now is as good as it will ever get. 2985 * In this case, we instead switch to issuing extents in LBA order. 2986 */ 2987 if (scn->scn_checkpointing) { 2988 return (range_tree_first(rt)); 2989 } else if (scn->scn_clearing) { 2990 /* 2991 * We need to get the original entry in the by_addr 2992 * tree so we can modify it. 2993 */ 2994 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size, 2995 NULL); 2996 if (size_rs == NULL) 2997 return (NULL); 2998 uint64_t start = rs_get_start(size_rs, rt); 2999 uint64_t size = rs_get_end(size_rs, rt) - start; 3000 range_seg_t *addr_rs = range_tree_find(rt, start, size); 3001 ASSERT3P(addr_rs, !=, NULL); 3002 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs, 3003 rt)); 3004 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt)); 3005 return (addr_rs); 3006 } else { 3007 return (NULL); 3008 } 3009 } 3010 3011 static void 3012 scan_io_queues_run_one(void *arg) 3013 { 3014 dsl_scan_io_queue_t *queue = arg; 3015 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3016 boolean_t suspended = B_FALSE; 3017 range_seg_t *rs = NULL; 3018 scan_io_t *sio = NULL; 3019 list_t sio_list; 3020 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3021 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); 3022 3023 ASSERT(queue->q_scn->scn_is_sorted); 3024 3025 list_create(&sio_list, sizeof (scan_io_t), 3026 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3027 mutex_enter(q_lock); 3028 3029 /* calculate maximum in-flight bytes for this txg (min 1MB) */ 3030 queue->q_maxinflight_bytes = 3031 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3032 3033 /* reset per-queue scan statistics for this txg */ 3034 queue->q_total_seg_size_this_txg = 0; 3035 queue->q_segs_this_txg = 0; 3036 queue->q_total_zio_size_this_txg = 0; 3037 queue->q_zios_this_txg = 0; 3038 3039 /* loop until we run out of time or sios */ 3040 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3041 uint64_t seg_start = 0, seg_end = 0; 3042 boolean_t more_left = B_TRUE; 3043 3044 ASSERT(list_is_empty(&sio_list)); 3045 3046 /* loop while we still have sios left to process in this rs */ 3047 while (more_left) { 3048 scan_io_t *first_sio, *last_sio; 3049 3050 /* 3051 * We have selected which extent needs to be 3052 * processed next. Gather up the corresponding sios. 3053 */ 3054 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3055 ASSERT(!list_is_empty(&sio_list)); 3056 first_sio = list_head(&sio_list); 3057 last_sio = list_tail(&sio_list); 3058 3059 seg_end = SIO_GET_END_OFFSET(last_sio); 3060 if (seg_start == 0) 3061 seg_start = SIO_GET_OFFSET(first_sio); 3062 3063 /* 3064 * Issuing sios can take a long time so drop the 3065 * queue lock. The sio queue won't be updated by 3066 * other threads since we're in syncing context so 3067 * we can be sure that our trees will remain exactly 3068 * as we left them. 3069 */ 3070 mutex_exit(q_lock); 3071 suspended = scan_io_queue_issue(queue, &sio_list); 3072 mutex_enter(q_lock); 3073 3074 if (suspended) 3075 break; 3076 } 3077 3078 /* update statistics for debugging purposes */ 3079 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3080 3081 if (suspended) 3082 break; 3083 } 3084 3085 /* 3086 * If we were suspended in the middle of processing, 3087 * requeue any unfinished sios and exit. 3088 */ 3089 while ((sio = list_head(&sio_list)) != NULL) { 3090 list_remove(&sio_list, sio); 3091 scan_io_queue_insert_impl(queue, sio); 3092 } 3093 3094 mutex_exit(q_lock); 3095 list_destroy(&sio_list); 3096 } 3097 3098 /* 3099 * Performs an emptying run on all scan queues in the pool. This just 3100 * punches out one thread per top-level vdev, each of which processes 3101 * only that vdev's scan queue. We can parallelize the I/O here because 3102 * we know that each queue's I/Os only affect its own top-level vdev. 3103 * 3104 * This function waits for the queue runs to complete, and must be 3105 * called from dsl_scan_sync (or in general, syncing context). 3106 */ 3107 static void 3108 scan_io_queues_run(dsl_scan_t *scn) 3109 { 3110 spa_t *spa = scn->scn_dp->dp_spa; 3111 3112 ASSERT(scn->scn_is_sorted); 3113 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3114 3115 if (scn->scn_bytes_pending == 0) 3116 return; 3117 3118 if (scn->scn_taskq == NULL) { 3119 int nthreads = spa->spa_root_vdev->vdev_children; 3120 3121 /* 3122 * We need to make this taskq *always* execute as many 3123 * threads in parallel as we have top-level vdevs and no 3124 * less, otherwise strange serialization of the calls to 3125 * scan_io_queues_run_one can occur during spa_sync runs 3126 * and that significantly impacts performance. 3127 */ 3128 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3129 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3130 } 3131 3132 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3133 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3134 3135 mutex_enter(&vd->vdev_scan_io_queue_lock); 3136 if (vd->vdev_scan_io_queue != NULL) { 3137 VERIFY(taskq_dispatch(scn->scn_taskq, 3138 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3139 TQ_SLEEP) != TASKQID_INVALID); 3140 } 3141 mutex_exit(&vd->vdev_scan_io_queue_lock); 3142 } 3143 3144 /* 3145 * Wait for the queues to finish issuing their IOs for this run 3146 * before we return. There may still be IOs in flight at this 3147 * point. 3148 */ 3149 taskq_wait(scn->scn_taskq); 3150 } 3151 3152 static boolean_t 3153 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3154 { 3155 uint64_t elapsed_nanosecs; 3156 3157 if (zfs_recover) 3158 return (B_FALSE); 3159 3160 if (zfs_async_block_max_blocks != 0 && 3161 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3162 return (B_TRUE); 3163 } 3164 3165 if (zfs_max_async_dedup_frees != 0 && 3166 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3167 return (B_TRUE); 3168 } 3169 3170 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3171 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3172 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3173 txg_sync_waiting(scn->scn_dp)) || 3174 spa_shutting_down(scn->scn_dp->dp_spa)); 3175 } 3176 3177 static int 3178 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3179 { 3180 dsl_scan_t *scn = arg; 3181 3182 if (!scn->scn_is_bptree || 3183 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3184 if (dsl_scan_async_block_should_pause(scn)) 3185 return (SET_ERROR(ERESTART)); 3186 } 3187 3188 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3189 dmu_tx_get_txg(tx), bp, 0)); 3190 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3191 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3192 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3193 scn->scn_visited_this_txg++; 3194 if (BP_GET_DEDUP(bp)) 3195 scn->scn_dedup_frees_this_txg++; 3196 return (0); 3197 } 3198 3199 static void 3200 dsl_scan_update_stats(dsl_scan_t *scn) 3201 { 3202 spa_t *spa = scn->scn_dp->dp_spa; 3203 uint64_t i; 3204 uint64_t seg_size_total = 0, zio_size_total = 0; 3205 uint64_t seg_count_total = 0, zio_count_total = 0; 3206 3207 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3208 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3209 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3210 3211 if (queue == NULL) 3212 continue; 3213 3214 seg_size_total += queue->q_total_seg_size_this_txg; 3215 zio_size_total += queue->q_total_zio_size_this_txg; 3216 seg_count_total += queue->q_segs_this_txg; 3217 zio_count_total += queue->q_zios_this_txg; 3218 } 3219 3220 if (seg_count_total == 0 || zio_count_total == 0) { 3221 scn->scn_avg_seg_size_this_txg = 0; 3222 scn->scn_avg_zio_size_this_txg = 0; 3223 scn->scn_segs_this_txg = 0; 3224 scn->scn_zios_this_txg = 0; 3225 return; 3226 } 3227 3228 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3229 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3230 scn->scn_segs_this_txg = seg_count_total; 3231 scn->scn_zios_this_txg = zio_count_total; 3232 } 3233 3234 static int 3235 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3236 dmu_tx_t *tx) 3237 { 3238 ASSERT(!bp_freed); 3239 return (dsl_scan_free_block_cb(arg, bp, tx)); 3240 } 3241 3242 static int 3243 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3244 dmu_tx_t *tx) 3245 { 3246 ASSERT(!bp_freed); 3247 dsl_scan_t *scn = arg; 3248 const dva_t *dva = &bp->blk_dva[0]; 3249 3250 if (dsl_scan_async_block_should_pause(scn)) 3251 return (SET_ERROR(ERESTART)); 3252 3253 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3254 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3255 DVA_GET_ASIZE(dva), tx); 3256 scn->scn_visited_this_txg++; 3257 return (0); 3258 } 3259 3260 boolean_t 3261 dsl_scan_active(dsl_scan_t *scn) 3262 { 3263 spa_t *spa = scn->scn_dp->dp_spa; 3264 uint64_t used = 0, comp, uncomp; 3265 boolean_t clones_left; 3266 3267 if (spa->spa_load_state != SPA_LOAD_NONE) 3268 return (B_FALSE); 3269 if (spa_shutting_down(spa)) 3270 return (B_FALSE); 3271 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3272 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3273 return (B_TRUE); 3274 3275 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3276 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3277 &used, &comp, &uncomp); 3278 } 3279 clones_left = spa_livelist_delete_check(spa); 3280 return ((used != 0) || (clones_left)); 3281 } 3282 3283 static boolean_t 3284 dsl_scan_check_deferred(vdev_t *vd) 3285 { 3286 boolean_t need_resilver = B_FALSE; 3287 3288 for (int c = 0; c < vd->vdev_children; c++) { 3289 need_resilver |= 3290 dsl_scan_check_deferred(vd->vdev_child[c]); 3291 } 3292 3293 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3294 !vd->vdev_ops->vdev_op_leaf) 3295 return (need_resilver); 3296 3297 if (!vd->vdev_resilver_deferred) 3298 need_resilver = B_TRUE; 3299 3300 return (need_resilver); 3301 } 3302 3303 static boolean_t 3304 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3305 uint64_t phys_birth) 3306 { 3307 vdev_t *vd; 3308 3309 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3310 3311 if (vd->vdev_ops == &vdev_indirect_ops) { 3312 /* 3313 * The indirect vdev can point to multiple 3314 * vdevs. For simplicity, always create 3315 * the resilver zio_t. zio_vdev_io_start() 3316 * will bypass the child resilver i/o's if 3317 * they are on vdevs that don't have DTL's. 3318 */ 3319 return (B_TRUE); 3320 } 3321 3322 if (DVA_GET_GANG(dva)) { 3323 /* 3324 * Gang members may be spread across multiple 3325 * vdevs, so the best estimate we have is the 3326 * scrub range, which has already been checked. 3327 * XXX -- it would be better to change our 3328 * allocation policy to ensure that all 3329 * gang members reside on the same vdev. 3330 */ 3331 return (B_TRUE); 3332 } 3333 3334 /* 3335 * Check if the top-level vdev must resilver this offset. 3336 * When the offset does not intersect with a dirty leaf DTL 3337 * then it may be possible to skip the resilver IO. The psize 3338 * is provided instead of asize to simplify the check for RAIDZ. 3339 */ 3340 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) 3341 return (B_FALSE); 3342 3343 /* 3344 * Check that this top-level vdev has a device under it which 3345 * is resilvering and is not deferred. 3346 */ 3347 if (!dsl_scan_check_deferred(vd)) 3348 return (B_FALSE); 3349 3350 return (B_TRUE); 3351 } 3352 3353 static int 3354 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3355 { 3356 dsl_scan_t *scn = dp->dp_scan; 3357 spa_t *spa = dp->dp_spa; 3358 int err = 0; 3359 3360 if (spa_suspend_async_destroy(spa)) 3361 return (0); 3362 3363 if (zfs_free_bpobj_enabled && 3364 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3365 scn->scn_is_bptree = B_FALSE; 3366 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3367 scn->scn_zio_root = zio_root(spa, NULL, 3368 NULL, ZIO_FLAG_MUSTSUCCEED); 3369 err = bpobj_iterate(&dp->dp_free_bpobj, 3370 bpobj_dsl_scan_free_block_cb, scn, tx); 3371 VERIFY0(zio_wait(scn->scn_zio_root)); 3372 scn->scn_zio_root = NULL; 3373 3374 if (err != 0 && err != ERESTART) 3375 zfs_panic_recover("error %u from bpobj_iterate()", err); 3376 } 3377 3378 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3379 ASSERT(scn->scn_async_destroying); 3380 scn->scn_is_bptree = B_TRUE; 3381 scn->scn_zio_root = zio_root(spa, NULL, 3382 NULL, ZIO_FLAG_MUSTSUCCEED); 3383 err = bptree_iterate(dp->dp_meta_objset, 3384 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3385 VERIFY0(zio_wait(scn->scn_zio_root)); 3386 scn->scn_zio_root = NULL; 3387 3388 if (err == EIO || err == ECKSUM) { 3389 err = 0; 3390 } else if (err != 0 && err != ERESTART) { 3391 zfs_panic_recover("error %u from " 3392 "traverse_dataset_destroyed()", err); 3393 } 3394 3395 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3396 /* finished; deactivate async destroy feature */ 3397 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3398 ASSERT(!spa_feature_is_active(spa, 3399 SPA_FEATURE_ASYNC_DESTROY)); 3400 VERIFY0(zap_remove(dp->dp_meta_objset, 3401 DMU_POOL_DIRECTORY_OBJECT, 3402 DMU_POOL_BPTREE_OBJ, tx)); 3403 VERIFY0(bptree_free(dp->dp_meta_objset, 3404 dp->dp_bptree_obj, tx)); 3405 dp->dp_bptree_obj = 0; 3406 scn->scn_async_destroying = B_FALSE; 3407 scn->scn_async_stalled = B_FALSE; 3408 } else { 3409 /* 3410 * If we didn't make progress, mark the async 3411 * destroy as stalled, so that we will not initiate 3412 * a spa_sync() on its behalf. Note that we only 3413 * check this if we are not finished, because if the 3414 * bptree had no blocks for us to visit, we can 3415 * finish without "making progress". 3416 */ 3417 scn->scn_async_stalled = 3418 (scn->scn_visited_this_txg == 0); 3419 } 3420 } 3421 if (scn->scn_visited_this_txg) { 3422 zfs_dbgmsg("freed %llu blocks in %llums from " 3423 "free_bpobj/bptree txg %llu; err=%u", 3424 (longlong_t)scn->scn_visited_this_txg, 3425 (longlong_t) 3426 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3427 (longlong_t)tx->tx_txg, err); 3428 scn->scn_visited_this_txg = 0; 3429 scn->scn_dedup_frees_this_txg = 0; 3430 3431 /* 3432 * Write out changes to the DDT that may be required as a 3433 * result of the blocks freed. This ensures that the DDT 3434 * is clean when a scrub/resilver runs. 3435 */ 3436 ddt_sync(spa, tx->tx_txg); 3437 } 3438 if (err != 0) 3439 return (err); 3440 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3441 zfs_free_leak_on_eio && 3442 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3443 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3444 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3445 /* 3446 * We have finished background destroying, but there is still 3447 * some space left in the dp_free_dir. Transfer this leaked 3448 * space to the dp_leak_dir. 3449 */ 3450 if (dp->dp_leak_dir == NULL) { 3451 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3452 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3453 LEAK_DIR_NAME, tx); 3454 VERIFY0(dsl_pool_open_special_dir(dp, 3455 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3456 rrw_exit(&dp->dp_config_rwlock, FTAG); 3457 } 3458 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3459 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3460 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3461 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3462 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3463 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3464 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3465 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3466 } 3467 3468 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3469 !spa_livelist_delete_check(spa)) { 3470 /* finished; verify that space accounting went to zero */ 3471 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3472 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3473 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3474 } 3475 3476 spa_notify_waiters(spa); 3477 3478 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3479 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3480 DMU_POOL_OBSOLETE_BPOBJ)); 3481 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3482 ASSERT(spa_feature_is_active(dp->dp_spa, 3483 SPA_FEATURE_OBSOLETE_COUNTS)); 3484 3485 scn->scn_is_bptree = B_FALSE; 3486 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3487 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3488 dsl_scan_obsolete_block_cb, scn, tx); 3489 if (err != 0 && err != ERESTART) 3490 zfs_panic_recover("error %u from bpobj_iterate()", err); 3491 3492 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3493 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3494 } 3495 return (0); 3496 } 3497 3498 /* 3499 * This is the primary entry point for scans that is called from syncing 3500 * context. Scans must happen entirely during syncing context so that we 3501 * can guarantee that blocks we are currently scanning will not change out 3502 * from under us. While a scan is active, this function controls how quickly 3503 * transaction groups proceed, instead of the normal handling provided by 3504 * txg_sync_thread(). 3505 */ 3506 void 3507 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3508 { 3509 int err = 0; 3510 dsl_scan_t *scn = dp->dp_scan; 3511 spa_t *spa = dp->dp_spa; 3512 state_sync_type_t sync_type = SYNC_OPTIONAL; 3513 3514 if (spa->spa_resilver_deferred && 3515 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3516 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3517 3518 /* 3519 * Check for scn_restart_txg before checking spa_load_state, so 3520 * that we can restart an old-style scan while the pool is being 3521 * imported (see dsl_scan_init). We also restart scans if there 3522 * is a deferred resilver and the user has manually disabled 3523 * deferred resilvers via the tunable. 3524 */ 3525 if (dsl_scan_restarting(scn, tx) || 3526 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3527 pool_scan_func_t func = POOL_SCAN_SCRUB; 3528 dsl_scan_done(scn, B_FALSE, tx); 3529 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3530 func = POOL_SCAN_RESILVER; 3531 zfs_dbgmsg("restarting scan func=%u txg=%llu", 3532 func, (longlong_t)tx->tx_txg); 3533 dsl_scan_setup_sync(&func, tx); 3534 } 3535 3536 /* 3537 * Only process scans in sync pass 1. 3538 */ 3539 if (spa_sync_pass(spa) > 1) 3540 return; 3541 3542 /* 3543 * If the spa is shutting down, then stop scanning. This will 3544 * ensure that the scan does not dirty any new data during the 3545 * shutdown phase. 3546 */ 3547 if (spa_shutting_down(spa)) 3548 return; 3549 3550 /* 3551 * If the scan is inactive due to a stalled async destroy, try again. 3552 */ 3553 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3554 return; 3555 3556 /* reset scan statistics */ 3557 scn->scn_visited_this_txg = 0; 3558 scn->scn_dedup_frees_this_txg = 0; 3559 scn->scn_holes_this_txg = 0; 3560 scn->scn_lt_min_this_txg = 0; 3561 scn->scn_gt_max_this_txg = 0; 3562 scn->scn_ddt_contained_this_txg = 0; 3563 scn->scn_objsets_visited_this_txg = 0; 3564 scn->scn_avg_seg_size_this_txg = 0; 3565 scn->scn_segs_this_txg = 0; 3566 scn->scn_avg_zio_size_this_txg = 0; 3567 scn->scn_zios_this_txg = 0; 3568 scn->scn_suspending = B_FALSE; 3569 scn->scn_sync_start_time = gethrtime(); 3570 spa->spa_scrub_active = B_TRUE; 3571 3572 /* 3573 * First process the async destroys. If we suspend, don't do 3574 * any scrubbing or resilvering. This ensures that there are no 3575 * async destroys while we are scanning, so the scan code doesn't 3576 * have to worry about traversing it. It is also faster to free the 3577 * blocks than to scrub them. 3578 */ 3579 err = dsl_process_async_destroys(dp, tx); 3580 if (err != 0) 3581 return; 3582 3583 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3584 return; 3585 3586 /* 3587 * Wait a few txgs after importing to begin scanning so that 3588 * we can get the pool imported quickly. 3589 */ 3590 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3591 return; 3592 3593 /* 3594 * zfs_scan_suspend_progress can be set to disable scan progress. 3595 * We don't want to spin the txg_sync thread, so we add a delay 3596 * here to simulate the time spent doing a scan. This is mostly 3597 * useful for testing and debugging. 3598 */ 3599 if (zfs_scan_suspend_progress) { 3600 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3601 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3602 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3603 3604 while (zfs_scan_suspend_progress && 3605 !txg_sync_waiting(scn->scn_dp) && 3606 !spa_shutting_down(scn->scn_dp->dp_spa) && 3607 NSEC2MSEC(scan_time_ns) < mintime) { 3608 delay(hz); 3609 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3610 } 3611 return; 3612 } 3613 3614 /* 3615 * It is possible to switch from unsorted to sorted at any time, 3616 * but afterwards the scan will remain sorted unless reloaded from 3617 * a checkpoint after a reboot. 3618 */ 3619 if (!zfs_scan_legacy) { 3620 scn->scn_is_sorted = B_TRUE; 3621 if (scn->scn_last_checkpoint == 0) 3622 scn->scn_last_checkpoint = ddi_get_lbolt(); 3623 } 3624 3625 /* 3626 * For sorted scans, determine what kind of work we will be doing 3627 * this txg based on our memory limitations and whether or not we 3628 * need to perform a checkpoint. 3629 */ 3630 if (scn->scn_is_sorted) { 3631 /* 3632 * If we are over our checkpoint interval, set scn_clearing 3633 * so that we can begin checkpointing immediately. The 3634 * checkpoint allows us to save a consistent bookmark 3635 * representing how much data we have scrubbed so far. 3636 * Otherwise, use the memory limit to determine if we should 3637 * scan for metadata or start issue scrub IOs. We accumulate 3638 * metadata until we hit our hard memory limit at which point 3639 * we issue scrub IOs until we are at our soft memory limit. 3640 */ 3641 if (scn->scn_checkpointing || 3642 ddi_get_lbolt() - scn->scn_last_checkpoint > 3643 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3644 if (!scn->scn_checkpointing) 3645 zfs_dbgmsg("begin scan checkpoint"); 3646 3647 scn->scn_checkpointing = B_TRUE; 3648 scn->scn_clearing = B_TRUE; 3649 } else { 3650 boolean_t should_clear = dsl_scan_should_clear(scn); 3651 if (should_clear && !scn->scn_clearing) { 3652 zfs_dbgmsg("begin scan clearing"); 3653 scn->scn_clearing = B_TRUE; 3654 } else if (!should_clear && scn->scn_clearing) { 3655 zfs_dbgmsg("finish scan clearing"); 3656 scn->scn_clearing = B_FALSE; 3657 } 3658 } 3659 } else { 3660 ASSERT0(scn->scn_checkpointing); 3661 ASSERT0(scn->scn_clearing); 3662 } 3663 3664 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3665 /* Need to scan metadata for more blocks to scrub */ 3666 dsl_scan_phys_t *scnp = &scn->scn_phys; 3667 taskqid_t prefetch_tqid; 3668 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3669 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); 3670 3671 /* 3672 * Recalculate the max number of in-flight bytes for pool-wide 3673 * scanning operations (minimum 1MB). Limits for the issuing 3674 * phase are done per top-level vdev and are handled separately. 3675 */ 3676 scn->scn_maxinflight_bytes = 3677 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3678 3679 if (scnp->scn_ddt_bookmark.ddb_class <= 3680 scnp->scn_ddt_class_max) { 3681 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3682 zfs_dbgmsg("doing scan sync txg %llu; " 3683 "ddt bm=%llu/%llu/%llu/%llx", 3684 (longlong_t)tx->tx_txg, 3685 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3686 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3687 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3688 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3689 } else { 3690 zfs_dbgmsg("doing scan sync txg %llu; " 3691 "bm=%llu/%llu/%llu/%llu", 3692 (longlong_t)tx->tx_txg, 3693 (longlong_t)scnp->scn_bookmark.zb_objset, 3694 (longlong_t)scnp->scn_bookmark.zb_object, 3695 (longlong_t)scnp->scn_bookmark.zb_level, 3696 (longlong_t)scnp->scn_bookmark.zb_blkid); 3697 } 3698 3699 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3700 NULL, ZIO_FLAG_CANFAIL); 3701 3702 scn->scn_prefetch_stop = B_FALSE; 3703 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3704 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3705 ASSERT(prefetch_tqid != TASKQID_INVALID); 3706 3707 dsl_pool_config_enter(dp, FTAG); 3708 dsl_scan_visit(scn, tx); 3709 dsl_pool_config_exit(dp, FTAG); 3710 3711 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3712 scn->scn_prefetch_stop = B_TRUE; 3713 cv_broadcast(&spa->spa_scrub_io_cv); 3714 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3715 3716 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3717 (void) zio_wait(scn->scn_zio_root); 3718 scn->scn_zio_root = NULL; 3719 3720 zfs_dbgmsg("scan visited %llu blocks in %llums " 3721 "(%llu os's, %llu holes, %llu < mintxg, " 3722 "%llu in ddt, %llu > maxtxg)", 3723 (longlong_t)scn->scn_visited_this_txg, 3724 (longlong_t)NSEC2MSEC(gethrtime() - 3725 scn->scn_sync_start_time), 3726 (longlong_t)scn->scn_objsets_visited_this_txg, 3727 (longlong_t)scn->scn_holes_this_txg, 3728 (longlong_t)scn->scn_lt_min_this_txg, 3729 (longlong_t)scn->scn_ddt_contained_this_txg, 3730 (longlong_t)scn->scn_gt_max_this_txg); 3731 3732 if (!scn->scn_suspending) { 3733 ASSERT0(avl_numnodes(&scn->scn_queue)); 3734 scn->scn_done_txg = tx->tx_txg + 1; 3735 if (scn->scn_is_sorted) { 3736 scn->scn_checkpointing = B_TRUE; 3737 scn->scn_clearing = B_TRUE; 3738 } 3739 zfs_dbgmsg("scan complete txg %llu", 3740 (longlong_t)tx->tx_txg); 3741 } 3742 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3743 ASSERT(scn->scn_clearing); 3744 3745 /* need to issue scrubbing IOs from per-vdev queues */ 3746 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3747 NULL, ZIO_FLAG_CANFAIL); 3748 scan_io_queues_run(scn); 3749 (void) zio_wait(scn->scn_zio_root); 3750 scn->scn_zio_root = NULL; 3751 3752 /* calculate and dprintf the current memory usage */ 3753 (void) dsl_scan_should_clear(scn); 3754 dsl_scan_update_stats(scn); 3755 3756 zfs_dbgmsg("scan issued %llu blocks (%llu segs) in %llums " 3757 "(avg_block_size = %llu, avg_seg_size = %llu)", 3758 (longlong_t)scn->scn_zios_this_txg, 3759 (longlong_t)scn->scn_segs_this_txg, 3760 (longlong_t)NSEC2MSEC(gethrtime() - 3761 scn->scn_sync_start_time), 3762 (longlong_t)scn->scn_avg_zio_size_this_txg, 3763 (longlong_t)scn->scn_avg_seg_size_this_txg); 3764 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3765 /* Finished with everything. Mark the scrub as complete */ 3766 zfs_dbgmsg("scan issuing complete txg %llu", 3767 (longlong_t)tx->tx_txg); 3768 ASSERT3U(scn->scn_done_txg, !=, 0); 3769 ASSERT0(spa->spa_scrub_inflight); 3770 ASSERT0(scn->scn_bytes_pending); 3771 dsl_scan_done(scn, B_TRUE, tx); 3772 sync_type = SYNC_MANDATORY; 3773 } 3774 3775 dsl_scan_sync_state(scn, tx, sync_type); 3776 } 3777 3778 static void 3779 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3780 { 3781 int i; 3782 3783 /* 3784 * Don't count embedded bp's, since we already did the work of 3785 * scanning these when we scanned the containing block. 3786 */ 3787 if (BP_IS_EMBEDDED(bp)) 3788 return; 3789 3790 /* 3791 * Update the spa's stats on how many bytes we have issued. 3792 * Sequential scrubs create a zio for each DVA of the bp. Each 3793 * of these will include all DVAs for repair purposes, but the 3794 * zio code will only try the first one unless there is an issue. 3795 * Therefore, we should only count the first DVA for these IOs. 3796 */ 3797 if (scn->scn_is_sorted) { 3798 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3799 DVA_GET_ASIZE(&bp->blk_dva[0])); 3800 } else { 3801 spa_t *spa = scn->scn_dp->dp_spa; 3802 3803 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3804 atomic_add_64(&spa->spa_scan_pass_issued, 3805 DVA_GET_ASIZE(&bp->blk_dva[i])); 3806 } 3807 } 3808 3809 /* 3810 * If we resume after a reboot, zab will be NULL; don't record 3811 * incomplete stats in that case. 3812 */ 3813 if (zab == NULL) 3814 return; 3815 3816 mutex_enter(&zab->zab_lock); 3817 3818 for (i = 0; i < 4; i++) { 3819 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3820 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3821 3822 if (t & DMU_OT_NEWTYPE) 3823 t = DMU_OT_OTHER; 3824 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3825 int equal; 3826 3827 zb->zb_count++; 3828 zb->zb_asize += BP_GET_ASIZE(bp); 3829 zb->zb_lsize += BP_GET_LSIZE(bp); 3830 zb->zb_psize += BP_GET_PSIZE(bp); 3831 zb->zb_gangs += BP_COUNT_GANG(bp); 3832 3833 switch (BP_GET_NDVAS(bp)) { 3834 case 2: 3835 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3836 DVA_GET_VDEV(&bp->blk_dva[1])) 3837 zb->zb_ditto_2_of_2_samevdev++; 3838 break; 3839 case 3: 3840 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3841 DVA_GET_VDEV(&bp->blk_dva[1])) + 3842 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3843 DVA_GET_VDEV(&bp->blk_dva[2])) + 3844 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3845 DVA_GET_VDEV(&bp->blk_dva[2])); 3846 if (equal == 1) 3847 zb->zb_ditto_2_of_3_samevdev++; 3848 else if (equal == 3) 3849 zb->zb_ditto_3_of_3_samevdev++; 3850 break; 3851 } 3852 } 3853 3854 mutex_exit(&zab->zab_lock); 3855 } 3856 3857 static void 3858 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3859 { 3860 avl_index_t idx; 3861 int64_t asize = SIO_GET_ASIZE(sio); 3862 dsl_scan_t *scn = queue->q_scn; 3863 3864 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3865 3866 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3867 /* block is already scheduled for reading */ 3868 atomic_add_64(&scn->scn_bytes_pending, -asize); 3869 sio_free(sio); 3870 return; 3871 } 3872 avl_insert(&queue->q_sios_by_addr, sio, idx); 3873 queue->q_sio_memused += SIO_GET_MUSED(sio); 3874 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3875 } 3876 3877 /* 3878 * Given all the info we got from our metadata scanning process, we 3879 * construct a scan_io_t and insert it into the scan sorting queue. The 3880 * I/O must already be suitable for us to process. This is controlled 3881 * by dsl_scan_enqueue(). 3882 */ 3883 static void 3884 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3885 int zio_flags, const zbookmark_phys_t *zb) 3886 { 3887 dsl_scan_t *scn = queue->q_scn; 3888 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3889 3890 ASSERT0(BP_IS_GANG(bp)); 3891 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3892 3893 bp2sio(bp, sio, dva_i); 3894 sio->sio_flags = zio_flags; 3895 sio->sio_zb = *zb; 3896 3897 /* 3898 * Increment the bytes pending counter now so that we can't 3899 * get an integer underflow in case the worker processes the 3900 * zio before we get to incrementing this counter. 3901 */ 3902 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3903 3904 scan_io_queue_insert_impl(queue, sio); 3905 } 3906 3907 /* 3908 * Given a set of I/O parameters as discovered by the metadata traversal 3909 * process, attempts to place the I/O into the sorted queues (if allowed), 3910 * or immediately executes the I/O. 3911 */ 3912 static void 3913 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3914 const zbookmark_phys_t *zb) 3915 { 3916 spa_t *spa = dp->dp_spa; 3917 3918 ASSERT(!BP_IS_EMBEDDED(bp)); 3919 3920 /* 3921 * Gang blocks are hard to issue sequentially, so we just issue them 3922 * here immediately instead of queuing them. 3923 */ 3924 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3925 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3926 return; 3927 } 3928 3929 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3930 dva_t dva; 3931 vdev_t *vdev; 3932 3933 dva = bp->blk_dva[i]; 3934 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3935 ASSERT(vdev != NULL); 3936 3937 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3938 if (vdev->vdev_scan_io_queue == NULL) 3939 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3940 ASSERT(dp->dp_scan != NULL); 3941 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3942 i, zio_flags, zb); 3943 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3944 } 3945 } 3946 3947 static int 3948 dsl_scan_scrub_cb(dsl_pool_t *dp, 3949 const blkptr_t *bp, const zbookmark_phys_t *zb) 3950 { 3951 dsl_scan_t *scn = dp->dp_scan; 3952 spa_t *spa = dp->dp_spa; 3953 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3954 size_t psize = BP_GET_PSIZE(bp); 3955 boolean_t needs_io = B_FALSE; 3956 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3957 3958 3959 if (phys_birth <= scn->scn_phys.scn_min_txg || 3960 phys_birth >= scn->scn_phys.scn_max_txg) { 3961 count_block(scn, dp->dp_blkstats, bp); 3962 return (0); 3963 } 3964 3965 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3966 ASSERT(!BP_IS_EMBEDDED(bp)); 3967 3968 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3969 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3970 zio_flags |= ZIO_FLAG_SCRUB; 3971 needs_io = B_TRUE; 3972 } else { 3973 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3974 zio_flags |= ZIO_FLAG_RESILVER; 3975 needs_io = B_FALSE; 3976 } 3977 3978 /* If it's an intent log block, failure is expected. */ 3979 if (zb->zb_level == ZB_ZIL_LEVEL) 3980 zio_flags |= ZIO_FLAG_SPECULATIVE; 3981 3982 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 3983 const dva_t *dva = &bp->blk_dva[d]; 3984 3985 /* 3986 * Keep track of how much data we've examined so that 3987 * zpool(8) status can make useful progress reports. 3988 */ 3989 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 3990 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 3991 3992 /* if it's a resilver, this may not be in the target range */ 3993 if (!needs_io) 3994 needs_io = dsl_scan_need_resilver(spa, dva, psize, 3995 phys_birth); 3996 } 3997 3998 if (needs_io && !zfs_no_scrub_io) { 3999 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4000 } else { 4001 count_block(scn, dp->dp_blkstats, bp); 4002 } 4003 4004 /* do not relocate this block */ 4005 return (0); 4006 } 4007 4008 static void 4009 dsl_scan_scrub_done(zio_t *zio) 4010 { 4011 spa_t *spa = zio->io_spa; 4012 blkptr_t *bp = zio->io_bp; 4013 dsl_scan_io_queue_t *queue = zio->io_private; 4014 4015 abd_free(zio->io_abd); 4016 4017 if (queue == NULL) { 4018 mutex_enter(&spa->spa_scrub_lock); 4019 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4020 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4021 cv_broadcast(&spa->spa_scrub_io_cv); 4022 mutex_exit(&spa->spa_scrub_lock); 4023 } else { 4024 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4025 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4026 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4027 cv_broadcast(&queue->q_zio_cv); 4028 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4029 } 4030 4031 if (zio->io_error && (zio->io_error != ECKSUM || 4032 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4033 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 4034 } 4035 } 4036 4037 /* 4038 * Given a scanning zio's information, executes the zio. The zio need 4039 * not necessarily be only sortable, this function simply executes the 4040 * zio, no matter what it is. The optional queue argument allows the 4041 * caller to specify that they want per top level vdev IO rate limiting 4042 * instead of the legacy global limiting. 4043 */ 4044 static void 4045 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4046 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4047 { 4048 spa_t *spa = dp->dp_spa; 4049 dsl_scan_t *scn = dp->dp_scan; 4050 size_t size = BP_GET_PSIZE(bp); 4051 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4052 4053 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4054 4055 if (queue == NULL) { 4056 mutex_enter(&spa->spa_scrub_lock); 4057 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4058 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4059 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4060 mutex_exit(&spa->spa_scrub_lock); 4061 } else { 4062 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4063 4064 mutex_enter(q_lock); 4065 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4066 cv_wait(&queue->q_zio_cv, q_lock); 4067 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4068 mutex_exit(q_lock); 4069 } 4070 4071 count_block(scn, dp->dp_blkstats, bp); 4072 zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size, 4073 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4074 } 4075 4076 /* 4077 * This is the primary extent sorting algorithm. We balance two parameters: 4078 * 1) how many bytes of I/O are in an extent 4079 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4080 * Since we allow extents to have gaps between their constituent I/Os, it's 4081 * possible to have a fairly large extent that contains the same amount of 4082 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4083 * The algorithm sorts based on a score calculated from the extent's size, 4084 * the relative fill volume (in %) and a "fill weight" parameter that controls 4085 * the split between whether we prefer larger extents or more well populated 4086 * extents: 4087 * 4088 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4089 * 4090 * Example: 4091 * 1) assume extsz = 64 MiB 4092 * 2) assume fill = 32 MiB (extent is half full) 4093 * 3) assume fill_weight = 3 4094 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4095 * SCORE = 32M + (50 * 3 * 32M) / 100 4096 * SCORE = 32M + (4800M / 100) 4097 * SCORE = 32M + 48M 4098 * ^ ^ 4099 * | +--- final total relative fill-based score 4100 * +--------- final total fill-based score 4101 * SCORE = 80M 4102 * 4103 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4104 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4105 * Note that as an optimization, we replace multiplication and division by 4106 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4107 */ 4108 static int 4109 ext_size_compare(const void *x, const void *y) 4110 { 4111 const range_seg_gap_t *rsa = x, *rsb = y; 4112 4113 uint64_t sa = rsa->rs_end - rsa->rs_start; 4114 uint64_t sb = rsb->rs_end - rsb->rs_start; 4115 uint64_t score_a, score_b; 4116 4117 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 4118 fill_weight * rsa->rs_fill) >> 7); 4119 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 4120 fill_weight * rsb->rs_fill) >> 7); 4121 4122 if (score_a > score_b) 4123 return (-1); 4124 if (score_a == score_b) { 4125 if (rsa->rs_start < rsb->rs_start) 4126 return (-1); 4127 if (rsa->rs_start == rsb->rs_start) 4128 return (0); 4129 return (1); 4130 } 4131 return (1); 4132 } 4133 4134 /* 4135 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4136 * based on LBA-order (from lowest to highest). 4137 */ 4138 static int 4139 sio_addr_compare(const void *x, const void *y) 4140 { 4141 const scan_io_t *a = x, *b = y; 4142 4143 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4144 } 4145 4146 /* IO queues are created on demand when they are needed. */ 4147 static dsl_scan_io_queue_t * 4148 scan_io_queue_create(vdev_t *vd) 4149 { 4150 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4151 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4152 4153 q->q_scn = scn; 4154 q->q_vd = vd; 4155 q->q_sio_memused = 0; 4156 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4157 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP, 4158 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap); 4159 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4160 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4161 4162 return (q); 4163 } 4164 4165 /* 4166 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4167 * No further execution of I/O occurs, anything pending in the queue is 4168 * simply freed without being executed. 4169 */ 4170 void 4171 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4172 { 4173 dsl_scan_t *scn = queue->q_scn; 4174 scan_io_t *sio; 4175 void *cookie = NULL; 4176 int64_t bytes_dequeued = 0; 4177 4178 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4179 4180 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4181 NULL) { 4182 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4183 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4184 bytes_dequeued += SIO_GET_ASIZE(sio); 4185 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4186 sio_free(sio); 4187 } 4188 4189 ASSERT0(queue->q_sio_memused); 4190 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4191 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4192 range_tree_destroy(queue->q_exts_by_addr); 4193 avl_destroy(&queue->q_sios_by_addr); 4194 cv_destroy(&queue->q_zio_cv); 4195 4196 kmem_free(queue, sizeof (*queue)); 4197 } 4198 4199 /* 4200 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4201 * called on behalf of vdev_top_transfer when creating or destroying 4202 * a mirror vdev due to zpool attach/detach. 4203 */ 4204 void 4205 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4206 { 4207 mutex_enter(&svd->vdev_scan_io_queue_lock); 4208 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4209 4210 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4211 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4212 svd->vdev_scan_io_queue = NULL; 4213 if (tvd->vdev_scan_io_queue != NULL) 4214 tvd->vdev_scan_io_queue->q_vd = tvd; 4215 4216 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4217 mutex_exit(&svd->vdev_scan_io_queue_lock); 4218 } 4219 4220 static void 4221 scan_io_queues_destroy(dsl_scan_t *scn) 4222 { 4223 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4224 4225 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4226 vdev_t *tvd = rvd->vdev_child[i]; 4227 4228 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4229 if (tvd->vdev_scan_io_queue != NULL) 4230 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4231 tvd->vdev_scan_io_queue = NULL; 4232 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4233 } 4234 } 4235 4236 static void 4237 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4238 { 4239 dsl_pool_t *dp = spa->spa_dsl_pool; 4240 dsl_scan_t *scn = dp->dp_scan; 4241 vdev_t *vdev; 4242 kmutex_t *q_lock; 4243 dsl_scan_io_queue_t *queue; 4244 scan_io_t *srch_sio, *sio; 4245 avl_index_t idx; 4246 uint64_t start, size; 4247 4248 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4249 ASSERT(vdev != NULL); 4250 q_lock = &vdev->vdev_scan_io_queue_lock; 4251 queue = vdev->vdev_scan_io_queue; 4252 4253 mutex_enter(q_lock); 4254 if (queue == NULL) { 4255 mutex_exit(q_lock); 4256 return; 4257 } 4258 4259 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4260 bp2sio(bp, srch_sio, dva_i); 4261 start = SIO_GET_OFFSET(srch_sio); 4262 size = SIO_GET_ASIZE(srch_sio); 4263 4264 /* 4265 * We can find the zio in two states: 4266 * 1) Cold, just sitting in the queue of zio's to be issued at 4267 * some point in the future. In this case, all we do is 4268 * remove the zio from the q_sios_by_addr tree, decrement 4269 * its data volume from the containing range_seg_t and 4270 * resort the q_exts_by_size tree to reflect that the 4271 * range_seg_t has lost some of its 'fill'. We don't shorten 4272 * the range_seg_t - this is usually rare enough not to be 4273 * worth the extra hassle of trying keep track of precise 4274 * extent boundaries. 4275 * 2) Hot, where the zio is currently in-flight in 4276 * dsl_scan_issue_ios. In this case, we can't simply 4277 * reach in and stop the in-flight zio's, so we instead 4278 * block the caller. Eventually, dsl_scan_issue_ios will 4279 * be done with issuing the zio's it gathered and will 4280 * signal us. 4281 */ 4282 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4283 sio_free(srch_sio); 4284 4285 if (sio != NULL) { 4286 int64_t asize = SIO_GET_ASIZE(sio); 4287 blkptr_t tmpbp; 4288 4289 /* Got it while it was cold in the queue */ 4290 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4291 ASSERT3U(size, ==, asize); 4292 avl_remove(&queue->q_sios_by_addr, sio); 4293 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4294 4295 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4296 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4297 4298 /* 4299 * We only update scn_bytes_pending in the cold path, 4300 * otherwise it will already have been accounted for as 4301 * part of the zio's execution. 4302 */ 4303 atomic_add_64(&scn->scn_bytes_pending, -asize); 4304 4305 /* count the block as though we issued it */ 4306 sio2bp(sio, &tmpbp); 4307 count_block(scn, dp->dp_blkstats, &tmpbp); 4308 4309 sio_free(sio); 4310 } 4311 mutex_exit(q_lock); 4312 } 4313 4314 /* 4315 * Callback invoked when a zio_free() zio is executing. This needs to be 4316 * intercepted to prevent the zio from deallocating a particular portion 4317 * of disk space and it then getting reallocated and written to, while we 4318 * still have it queued up for processing. 4319 */ 4320 void 4321 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4322 { 4323 dsl_pool_t *dp = spa->spa_dsl_pool; 4324 dsl_scan_t *scn = dp->dp_scan; 4325 4326 ASSERT(!BP_IS_EMBEDDED(bp)); 4327 ASSERT(scn != NULL); 4328 if (!dsl_scan_is_running(scn)) 4329 return; 4330 4331 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4332 dsl_scan_freed_dva(spa, bp, i); 4333 } 4334 4335 /* 4336 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4337 * not started, start it. Otherwise, only restart if max txg in DTL range is 4338 * greater than the max txg in the current scan. If the DTL max is less than 4339 * the scan max, then the vdev has not missed any new data since the resilver 4340 * started, so a restart is not needed. 4341 */ 4342 void 4343 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4344 { 4345 uint64_t min, max; 4346 4347 if (!vdev_resilver_needed(vd, &min, &max)) 4348 return; 4349 4350 if (!dsl_scan_resilvering(dp)) { 4351 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4352 return; 4353 } 4354 4355 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4356 return; 4357 4358 /* restart is needed, check if it can be deferred */ 4359 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4360 vdev_defer_resilver(vd); 4361 else 4362 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4363 } 4364 4365 /* BEGIN CSTYLED */ 4366 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW, 4367 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 4368 4369 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW, 4370 "Min millisecs to scrub per txg"); 4371 4372 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW, 4373 "Min millisecs to obsolete per txg"); 4374 4375 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW, 4376 "Min millisecs to free per txg"); 4377 4378 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW, 4379 "Min millisecs to resilver per txg"); 4380 4381 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 4382 "Set to prevent scans from progressing"); 4383 4384 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 4385 "Set to disable scrub I/O"); 4386 4387 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 4388 "Set to disable scrub prefetching"); 4389 4390 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW, 4391 "Max number of blocks freed in one txg"); 4392 4393 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW, 4394 "Max number of dedup blocks freed in one txg"); 4395 4396 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 4397 "Enable processing of the free_bpobj"); 4398 4399 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW, 4400 "Fraction of RAM for scan hard limit"); 4401 4402 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW, 4403 "IO issuing strategy during scrubbing. " 4404 "0 = default, 1 = LBA, 2 = size"); 4405 4406 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 4407 "Scrub using legacy non-sequential method"); 4408 4409 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW, 4410 "Scan progress on-disk checkpointing interval"); 4411 4412 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW, 4413 "Max gap in bytes between sequential scrub / resilver I/Os"); 4414 4415 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW, 4416 "Fraction of hard limit used as soft limit"); 4417 4418 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 4419 "Tunable to attempt to reduce lock contention"); 4420 4421 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW, 4422 "Tunable to adjust bias towards more filled segments during scans"); 4423 4424 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 4425 "Process all resilvers immediately"); 4426 /* END CSTYLED */ 4427