xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_scan.c (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24  * Copyright 2016 Gary Mills
25  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27  * Copyright 2019 Joyent, Inc.
28  */
29 
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/arc_impl.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/brt.h>
51 #include <sys/ddt.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/range_tree.h>
57 #include <sys/dbuf.h>
58 #ifdef _KERNEL
59 #include <sys/zfs_vfsops.h>
60 #endif
61 
62 /*
63  * Grand theory statement on scan queue sorting
64  *
65  * Scanning is implemented by recursively traversing all indirection levels
66  * in an object and reading all blocks referenced from said objects. This
67  * results in us approximately traversing the object from lowest logical
68  * offset to the highest. For best performance, we would want the logical
69  * blocks to be physically contiguous. However, this is frequently not the
70  * case with pools given the allocation patterns of copy-on-write filesystems.
71  * So instead, we put the I/Os into a reordering queue and issue them in a
72  * way that will most benefit physical disks (LBA-order).
73  *
74  * Queue management:
75  *
76  * Ideally, we would want to scan all metadata and queue up all block I/O
77  * prior to starting to issue it, because that allows us to do an optimal
78  * sorting job. This can however consume large amounts of memory. Therefore
79  * we continuously monitor the size of the queues and constrain them to 5%
80  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81  * limit, we clear out a few of the largest extents at the head of the queues
82  * to make room for more scanning. Hopefully, these extents will be fairly
83  * large and contiguous, allowing us to approach sequential I/O throughput
84  * even without a fully sorted tree.
85  *
86  * Metadata scanning takes place in dsl_scan_visit(), which is called from
87  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88  * metadata on the pool, or we need to make room in memory because our
89  * queues are too large, dsl_scan_visit() is postponed and
90  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91  * that metadata scanning and queued I/O issuing are mutually exclusive. This
92  * allows us to provide maximum sequential I/O throughput for the majority of
93  * I/O's issued since sequential I/O performance is significantly negatively
94  * impacted if it is interleaved with random I/O.
95  *
96  * Implementation Notes
97  *
98  * One side effect of the queued scanning algorithm is that the scanning code
99  * needs to be notified whenever a block is freed. This is needed to allow
100  * the scanning code to remove these I/Os from the issuing queue. Additionally,
101  * we do not attempt to queue gang blocks to be issued sequentially since this
102  * is very hard to do and would have an extremely limited performance benefit.
103  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
104  * algorithm.
105  *
106  * Backwards compatibility
107  *
108  * This new algorithm is backwards compatible with the legacy on-disk data
109  * structures (and therefore does not require a new feature flag).
110  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111  * will stop scanning metadata (in logical order) and wait for all outstanding
112  * sorted I/O to complete. Once this is done, we write out a checkpoint
113  * bookmark, indicating that we have scanned everything logically before it.
114  * If the pool is imported on a machine without the new sorting algorithm,
115  * the scan simply resumes from the last checkpoint using the legacy algorithm.
116  */
117 
118 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
119     const zbookmark_phys_t *);
120 
121 static scan_cb_t dsl_scan_scrub_cb;
122 
123 static int scan_ds_queue_compare(const void *a, const void *b);
124 static int scan_prefetch_queue_compare(const void *a, const void *b);
125 static void scan_ds_queue_clear(dsl_scan_t *scn);
126 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
127 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
128     uint64_t *txg);
129 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
130 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
131 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
132 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
133 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
134 
135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
136 static int zfs_scan_blkstats = 0;
137 
138 /*
139  * 'zpool status' uses bytes processed per pass to report throughput and
140  * estimate time remaining.  We define a pass to start when the scanning
141  * phase completes for a sequential resilver.  Optionally, this value
142  * may be used to reset the pass statistics every N txgs to provide an
143  * estimated completion time based on currently observed performance.
144  */
145 static uint_t zfs_scan_report_txgs = 0;
146 
147 /*
148  * By default zfs will check to ensure it is not over the hard memory
149  * limit before each txg. If finer-grained control of this is needed
150  * this value can be set to 1 to enable checking before scanning each
151  * block.
152  */
153 static int zfs_scan_strict_mem_lim = B_FALSE;
154 
155 /*
156  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157  * to strike a balance here between keeping the vdev queues full of I/Os
158  * at all times and not overflowing the queues to cause long latency,
159  * which would cause long txg sync times. No matter what, we will not
160  * overload the drives with I/O, since that is protected by
161  * zfs_vdev_scrub_max_active.
162  */
163 static uint64_t zfs_scan_vdev_limit = 16 << 20;
164 
165 static uint_t zfs_scan_issue_strategy = 0;
166 
167 /* don't queue & sort zios, go direct */
168 static int zfs_scan_legacy = B_FALSE;
169 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
170 
171 /*
172  * fill_weight is non-tunable at runtime, so we copy it at module init from
173  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174  * break queue sorting.
175  */
176 static uint_t zfs_scan_fill_weight = 3;
177 static uint64_t fill_weight;
178 
179 /* See dsl_scan_should_clear() for details on the memory limit tunables */
180 static const uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
181 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
182 
183 
184 /* fraction of physmem */
185 static uint_t zfs_scan_mem_lim_fact = 20;
186 
187 /* fraction of mem lim above */
188 static uint_t zfs_scan_mem_lim_soft_fact = 20;
189 
190 /* minimum milliseconds to scrub per txg */
191 static uint_t zfs_scrub_min_time_ms = 1000;
192 
193 /* minimum milliseconds to obsolete per txg */
194 static uint_t zfs_obsolete_min_time_ms = 500;
195 
196 /* minimum milliseconds to free per txg */
197 static uint_t zfs_free_min_time_ms = 1000;
198 
199 /* minimum milliseconds to resilver per txg */
200 static uint_t zfs_resilver_min_time_ms = 3000;
201 
202 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
203 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
204 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
205 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
206 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
207 /* max number of blocks to free in a single TXG */
208 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
209 /* max number of dedup blocks to free in a single TXG */
210 static uint64_t zfs_max_async_dedup_frees = 100000;
211 
212 /* set to disable resilver deferring */
213 static int zfs_resilver_disable_defer = B_FALSE;
214 
215 /*
216  * We wait a few txgs after importing a pool to begin scanning so that
217  * the import / mounting code isn't held up by scrub / resilver IO.
218  * Unfortunately, it is a bit difficult to determine exactly how long
219  * this will take since userspace will trigger fs mounts asynchronously
220  * and the kernel will create zvol minors asynchronously. As a result,
221  * the value provided here is a bit arbitrary, but represents a
222  * reasonable estimate of how many txgs it will take to finish fully
223  * importing a pool
224  */
225 #define	SCAN_IMPORT_WAIT_TXGS 		5
226 
227 #define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
228 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
229 	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
230 
231 /*
232  * Enable/disable the processing of the free_bpobj object.
233  */
234 static int zfs_free_bpobj_enabled = 1;
235 
236 /* Error blocks to be scrubbed in one txg. */
237 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
238 
239 /* the order has to match pool_scan_type */
240 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
241 	NULL,
242 	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
243 	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
244 };
245 
246 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
247 typedef struct {
248 	uint64_t	sds_dsobj;
249 	uint64_t	sds_txg;
250 	avl_node_t	sds_node;
251 } scan_ds_t;
252 
253 /*
254  * This controls what conditions are placed on dsl_scan_sync_state():
255  * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
256  * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
257  * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
258  *	write out the scn_phys_cached version.
259  * See dsl_scan_sync_state for details.
260  */
261 typedef enum {
262 	SYNC_OPTIONAL,
263 	SYNC_MANDATORY,
264 	SYNC_CACHED
265 } state_sync_type_t;
266 
267 /*
268  * This struct represents the minimum information needed to reconstruct a
269  * zio for sequential scanning. This is useful because many of these will
270  * accumulate in the sequential IO queues before being issued, so saving
271  * memory matters here.
272  */
273 typedef struct scan_io {
274 	/* fields from blkptr_t */
275 	uint64_t		sio_blk_prop;
276 	uint64_t		sio_phys_birth;
277 	uint64_t		sio_birth;
278 	zio_cksum_t		sio_cksum;
279 	uint32_t		sio_nr_dvas;
280 
281 	/* fields from zio_t */
282 	uint32_t		sio_flags;
283 	zbookmark_phys_t	sio_zb;
284 
285 	/* members for queue sorting */
286 	union {
287 		avl_node_t	sio_addr_node; /* link into issuing queue */
288 		list_node_t	sio_list_node; /* link for issuing to disk */
289 	} sio_nodes;
290 
291 	/*
292 	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
293 	 * depending on how many were in the original bp. Only the
294 	 * first DVA is really used for sorting and issuing purposes.
295 	 * The other DVAs (if provided) simply exist so that the zio
296 	 * layer can find additional copies to repair from in the
297 	 * event of an error. This array must go at the end of the
298 	 * struct to allow this for the variable number of elements.
299 	 */
300 	dva_t			sio_dva[];
301 } scan_io_t;
302 
303 #define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
304 #define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
305 #define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
306 #define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
307 #define	SIO_GET_END_OFFSET(sio)		\
308 	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
309 #define	SIO_GET_MUSED(sio)		\
310 	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
311 
312 struct dsl_scan_io_queue {
313 	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
314 	vdev_t		*q_vd; /* top-level vdev that this queue represents */
315 	zio_t		*q_zio; /* scn_zio_root child for waiting on IO */
316 
317 	/* trees used for sorting I/Os and extents of I/Os */
318 	range_tree_t	*q_exts_by_addr;
319 	zfs_btree_t	q_exts_by_size;
320 	avl_tree_t	q_sios_by_addr;
321 	uint64_t	q_sio_memused;
322 	uint64_t	q_last_ext_addr;
323 
324 	/* members for zio rate limiting */
325 	uint64_t	q_maxinflight_bytes;
326 	uint64_t	q_inflight_bytes;
327 	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
328 
329 	/* per txg statistics */
330 	uint64_t	q_total_seg_size_this_txg;
331 	uint64_t	q_segs_this_txg;
332 	uint64_t	q_total_zio_size_this_txg;
333 	uint64_t	q_zios_this_txg;
334 };
335 
336 /* private data for dsl_scan_prefetch_cb() */
337 typedef struct scan_prefetch_ctx {
338 	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
339 	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
340 	boolean_t spc_root;		/* is this prefetch for an objset? */
341 	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
342 	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
343 } scan_prefetch_ctx_t;
344 
345 /* private data for dsl_scan_prefetch() */
346 typedef struct scan_prefetch_issue_ctx {
347 	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
348 	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
349 	blkptr_t spic_bp;		/* bp to prefetch */
350 	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
351 } scan_prefetch_issue_ctx_t;
352 
353 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
354     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
355 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
356     scan_io_t *sio);
357 
358 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
359 static void scan_io_queues_destroy(dsl_scan_t *scn);
360 
361 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
362 
363 /* sio->sio_nr_dvas must be set so we know which cache to free from */
364 static void
365 sio_free(scan_io_t *sio)
366 {
367 	ASSERT3U(sio->sio_nr_dvas, >, 0);
368 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
369 
370 	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
371 }
372 
373 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
374 static scan_io_t *
375 sio_alloc(unsigned short nr_dvas)
376 {
377 	ASSERT3U(nr_dvas, >, 0);
378 	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
379 
380 	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
381 }
382 
383 void
384 scan_init(void)
385 {
386 	/*
387 	 * This is used in ext_size_compare() to weight segments
388 	 * based on how sparse they are. This cannot be changed
389 	 * mid-scan and the tree comparison functions don't currently
390 	 * have a mechanism for passing additional context to the
391 	 * compare functions. Thus we store this value globally and
392 	 * we only allow it to be set at module initialization time
393 	 */
394 	fill_weight = zfs_scan_fill_weight;
395 
396 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
397 		char name[36];
398 
399 		(void) snprintf(name, sizeof (name), "sio_cache_%d", i);
400 		sio_cache[i] = kmem_cache_create(name,
401 		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
402 		    0, NULL, NULL, NULL, NULL, NULL, 0);
403 	}
404 }
405 
406 void
407 scan_fini(void)
408 {
409 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
410 		kmem_cache_destroy(sio_cache[i]);
411 	}
412 }
413 
414 static inline boolean_t
415 dsl_scan_is_running(const dsl_scan_t *scn)
416 {
417 	return (scn->scn_phys.scn_state == DSS_SCANNING);
418 }
419 
420 boolean_t
421 dsl_scan_resilvering(dsl_pool_t *dp)
422 {
423 	return (dsl_scan_is_running(dp->dp_scan) &&
424 	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
425 }
426 
427 static inline void
428 sio2bp(const scan_io_t *sio, blkptr_t *bp)
429 {
430 	memset(bp, 0, sizeof (*bp));
431 	bp->blk_prop = sio->sio_blk_prop;
432 	BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
433 	BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
434 	bp->blk_fill = 1;	/* we always only work with data pointers */
435 	bp->blk_cksum = sio->sio_cksum;
436 
437 	ASSERT3U(sio->sio_nr_dvas, >, 0);
438 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
439 
440 	memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
441 }
442 
443 static inline void
444 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
445 {
446 	sio->sio_blk_prop = bp->blk_prop;
447 	sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
448 	sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
449 	sio->sio_cksum = bp->blk_cksum;
450 	sio->sio_nr_dvas = BP_GET_NDVAS(bp);
451 
452 	/*
453 	 * Copy the DVAs to the sio. We need all copies of the block so
454 	 * that the self healing code can use the alternate copies if the
455 	 * first is corrupted. We want the DVA at index dva_i to be first
456 	 * in the sio since this is the primary one that we want to issue.
457 	 */
458 	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
459 		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
460 	}
461 }
462 
463 int
464 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
465 {
466 	int err;
467 	dsl_scan_t *scn;
468 	spa_t *spa = dp->dp_spa;
469 	uint64_t f;
470 
471 	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
472 	scn->scn_dp = dp;
473 
474 	/*
475 	 * It's possible that we're resuming a scan after a reboot so
476 	 * make sure that the scan_async_destroying flag is initialized
477 	 * appropriately.
478 	 */
479 	ASSERT(!scn->scn_async_destroying);
480 	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
481 	    SPA_FEATURE_ASYNC_DESTROY);
482 
483 	/*
484 	 * Calculate the max number of in-flight bytes for pool-wide
485 	 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
486 	 * Limits for the issuing phase are done per top-level vdev and
487 	 * are handled separately.
488 	 */
489 	scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
490 	    zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
491 
492 	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
493 	    offsetof(scan_ds_t, sds_node));
494 	mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL);
495 	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
496 	    sizeof (scan_prefetch_issue_ctx_t),
497 	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
498 
499 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
500 	    "scrub_func", sizeof (uint64_t), 1, &f);
501 	if (err == 0) {
502 		/*
503 		 * There was an old-style scrub in progress.  Restart a
504 		 * new-style scrub from the beginning.
505 		 */
506 		scn->scn_restart_txg = txg;
507 		zfs_dbgmsg("old-style scrub was in progress for %s; "
508 		    "restarting new-style scrub in txg %llu",
509 		    spa->spa_name,
510 		    (longlong_t)scn->scn_restart_txg);
511 
512 		/*
513 		 * Load the queue obj from the old location so that it
514 		 * can be freed by dsl_scan_done().
515 		 */
516 		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
517 		    "scrub_queue", sizeof (uint64_t), 1,
518 		    &scn->scn_phys.scn_queue_obj);
519 	} else {
520 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
521 		    DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
522 		    ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
523 
524 		if (err != 0 && err != ENOENT)
525 			return (err);
526 
527 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
528 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
529 		    &scn->scn_phys);
530 
531 		/*
532 		 * Detect if the pool contains the signature of #2094.  If it
533 		 * does properly update the scn->scn_phys structure and notify
534 		 * the administrator by setting an errata for the pool.
535 		 */
536 		if (err == EOVERFLOW) {
537 			uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
538 			VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
539 			VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
540 			    (23 * sizeof (uint64_t)));
541 
542 			err = zap_lookup(dp->dp_meta_objset,
543 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
544 			    sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
545 			if (err == 0) {
546 				uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
547 
548 				if (overflow & ~DSL_SCAN_FLAGS_MASK ||
549 				    scn->scn_async_destroying) {
550 					spa->spa_errata =
551 					    ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
552 					return (EOVERFLOW);
553 				}
554 
555 				memcpy(&scn->scn_phys, zaptmp,
556 				    SCAN_PHYS_NUMINTS * sizeof (uint64_t));
557 				scn->scn_phys.scn_flags = overflow;
558 
559 				/* Required scrub already in progress. */
560 				if (scn->scn_phys.scn_state == DSS_FINISHED ||
561 				    scn->scn_phys.scn_state == DSS_CANCELED)
562 					spa->spa_errata =
563 					    ZPOOL_ERRATA_ZOL_2094_SCRUB;
564 			}
565 		}
566 
567 		if (err == ENOENT)
568 			return (0);
569 		else if (err)
570 			return (err);
571 
572 		/*
573 		 * We might be restarting after a reboot, so jump the issued
574 		 * counter to how far we've scanned. We know we're consistent
575 		 * up to here.
576 		 */
577 		scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
578 		    scn->scn_phys.scn_skipped;
579 
580 		if (dsl_scan_is_running(scn) &&
581 		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
582 			/*
583 			 * A new-type scrub was in progress on an old
584 			 * pool, and the pool was accessed by old
585 			 * software.  Restart from the beginning, since
586 			 * the old software may have changed the pool in
587 			 * the meantime.
588 			 */
589 			scn->scn_restart_txg = txg;
590 			zfs_dbgmsg("new-style scrub for %s was modified "
591 			    "by old software; restarting in txg %llu",
592 			    spa->spa_name,
593 			    (longlong_t)scn->scn_restart_txg);
594 		} else if (dsl_scan_resilvering(dp)) {
595 			/*
596 			 * If a resilver is in progress and there are already
597 			 * errors, restart it instead of finishing this scan and
598 			 * then restarting it. If there haven't been any errors
599 			 * then remember that the incore DTL is valid.
600 			 */
601 			if (scn->scn_phys.scn_errors > 0) {
602 				scn->scn_restart_txg = txg;
603 				zfs_dbgmsg("resilver can't excise DTL_MISSING "
604 				    "when finished; restarting on %s in txg "
605 				    "%llu",
606 				    spa->spa_name,
607 				    (u_longlong_t)scn->scn_restart_txg);
608 			} else {
609 				/* it's safe to excise DTL when finished */
610 				spa->spa_scrub_started = B_TRUE;
611 			}
612 		}
613 	}
614 
615 	memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
616 
617 	/* reload the queue into the in-core state */
618 	if (scn->scn_phys.scn_queue_obj != 0) {
619 		zap_cursor_t zc;
620 		zap_attribute_t za;
621 
622 		for (zap_cursor_init(&zc, dp->dp_meta_objset,
623 		    scn->scn_phys.scn_queue_obj);
624 		    zap_cursor_retrieve(&zc, &za) == 0;
625 		    (void) zap_cursor_advance(&zc)) {
626 			scan_ds_queue_insert(scn,
627 			    zfs_strtonum(za.za_name, NULL),
628 			    za.za_first_integer);
629 		}
630 		zap_cursor_fini(&zc);
631 	}
632 
633 	spa_scan_stat_init(spa);
634 	vdev_scan_stat_init(spa->spa_root_vdev);
635 
636 	return (0);
637 }
638 
639 void
640 dsl_scan_fini(dsl_pool_t *dp)
641 {
642 	if (dp->dp_scan != NULL) {
643 		dsl_scan_t *scn = dp->dp_scan;
644 
645 		if (scn->scn_taskq != NULL)
646 			taskq_destroy(scn->scn_taskq);
647 
648 		scan_ds_queue_clear(scn);
649 		avl_destroy(&scn->scn_queue);
650 		mutex_destroy(&scn->scn_queue_lock);
651 		scan_ds_prefetch_queue_clear(scn);
652 		avl_destroy(&scn->scn_prefetch_queue);
653 
654 		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
655 		dp->dp_scan = NULL;
656 	}
657 }
658 
659 static boolean_t
660 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
661 {
662 	return (scn->scn_restart_txg != 0 &&
663 	    scn->scn_restart_txg <= tx->tx_txg);
664 }
665 
666 boolean_t
667 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
668 {
669 	return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
670 	    (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
671 }
672 
673 boolean_t
674 dsl_scan_scrubbing(const dsl_pool_t *dp)
675 {
676 	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
677 
678 	return (scn_phys->scn_state == DSS_SCANNING &&
679 	    scn_phys->scn_func == POOL_SCAN_SCRUB);
680 }
681 
682 boolean_t
683 dsl_errorscrubbing(const dsl_pool_t *dp)
684 {
685 	dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
686 
687 	return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
688 	    errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
689 }
690 
691 boolean_t
692 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
693 {
694 	return (dsl_errorscrubbing(scn->scn_dp) &&
695 	    scn->errorscrub_phys.dep_paused_flags);
696 }
697 
698 boolean_t
699 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
700 {
701 	return (dsl_scan_scrubbing(scn->scn_dp) &&
702 	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
703 }
704 
705 static void
706 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
707 {
708 	scn->errorscrub_phys.dep_cursor =
709 	    zap_cursor_serialize(&scn->errorscrub_cursor);
710 
711 	VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
712 	    DMU_POOL_DIRECTORY_OBJECT,
713 	    DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
714 	    &scn->errorscrub_phys, tx));
715 }
716 
717 static void
718 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
719 {
720 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
721 	pool_scan_func_t *funcp = arg;
722 	dsl_pool_t *dp = scn->scn_dp;
723 	spa_t *spa = dp->dp_spa;
724 
725 	ASSERT(!dsl_scan_is_running(scn));
726 	ASSERT(!dsl_errorscrubbing(scn->scn_dp));
727 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
728 
729 	memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
730 	scn->errorscrub_phys.dep_func = *funcp;
731 	scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
732 	scn->errorscrub_phys.dep_start_time = gethrestime_sec();
733 	scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
734 	scn->errorscrub_phys.dep_examined = 0;
735 	scn->errorscrub_phys.dep_errors = 0;
736 	scn->errorscrub_phys.dep_cursor = 0;
737 	zap_cursor_init_serialized(&scn->errorscrub_cursor,
738 	    spa->spa_meta_objset, spa->spa_errlog_last,
739 	    scn->errorscrub_phys.dep_cursor);
740 
741 	vdev_config_dirty(spa->spa_root_vdev);
742 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
743 
744 	dsl_errorscrub_sync_state(scn, tx);
745 
746 	spa_history_log_internal(spa, "error scrub setup", tx,
747 	    "func=%u mintxg=%u maxtxg=%llu",
748 	    *funcp, 0, (u_longlong_t)tx->tx_txg);
749 }
750 
751 static int
752 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
753 {
754 	(void) arg;
755 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
756 
757 	if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
758 		return (SET_ERROR(EBUSY));
759 	}
760 
761 	if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
762 		return (ECANCELED);
763 	}
764 	return (0);
765 }
766 
767 /*
768  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
769  * Because we can be running in the block sorting algorithm, we do not always
770  * want to write out the record, only when it is "safe" to do so. This safety
771  * condition is achieved by making sure that the sorting queues are empty
772  * (scn_queues_pending == 0). When this condition is not true, the sync'd state
773  * is inconsistent with how much actual scanning progress has been made. The
774  * kind of sync to be performed is specified by the sync_type argument. If the
775  * sync is optional, we only sync if the queues are empty. If the sync is
776  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
777  * third possible state is a "cached" sync. This is done in response to:
778  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
779  *	destroyed, so we wouldn't be able to restart scanning from it.
780  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
781  *	superseded by a newer snapshot.
782  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
783  *	swapped with its clone.
784  * In all cases, a cached sync simply rewrites the last record we've written,
785  * just slightly modified. For the modifications that are performed to the
786  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
787  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
788  */
789 static void
790 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
791 {
792 	int i;
793 	spa_t *spa = scn->scn_dp->dp_spa;
794 
795 	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
796 	if (scn->scn_queues_pending == 0) {
797 		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
798 			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
799 			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
800 
801 			if (q == NULL)
802 				continue;
803 
804 			mutex_enter(&vd->vdev_scan_io_queue_lock);
805 			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
806 			ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
807 			    NULL);
808 			ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
809 			mutex_exit(&vd->vdev_scan_io_queue_lock);
810 		}
811 
812 		if (scn->scn_phys.scn_queue_obj != 0)
813 			scan_ds_queue_sync(scn, tx);
814 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
815 		    DMU_POOL_DIRECTORY_OBJECT,
816 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
817 		    &scn->scn_phys, tx));
818 		memcpy(&scn->scn_phys_cached, &scn->scn_phys,
819 		    sizeof (scn->scn_phys));
820 
821 		if (scn->scn_checkpointing)
822 			zfs_dbgmsg("finish scan checkpoint for %s",
823 			    spa->spa_name);
824 
825 		scn->scn_checkpointing = B_FALSE;
826 		scn->scn_last_checkpoint = ddi_get_lbolt();
827 	} else if (sync_type == SYNC_CACHED) {
828 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
829 		    DMU_POOL_DIRECTORY_OBJECT,
830 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
831 		    &scn->scn_phys_cached, tx));
832 	}
833 }
834 
835 int
836 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
837 {
838 	(void) arg;
839 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
840 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
841 
842 	if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
843 	    dsl_errorscrubbing(scn->scn_dp))
844 		return (SET_ERROR(EBUSY));
845 
846 	return (0);
847 }
848 
849 void
850 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
851 {
852 	(void) arg;
853 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
854 	pool_scan_func_t *funcp = arg;
855 	dmu_object_type_t ot = 0;
856 	dsl_pool_t *dp = scn->scn_dp;
857 	spa_t *spa = dp->dp_spa;
858 
859 	ASSERT(!dsl_scan_is_running(scn));
860 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
861 	memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
862 
863 	/*
864 	 * If we are starting a fresh scrub, we erase the error scrub
865 	 * information from disk.
866 	 */
867 	memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
868 	dsl_errorscrub_sync_state(scn, tx);
869 
870 	scn->scn_phys.scn_func = *funcp;
871 	scn->scn_phys.scn_state = DSS_SCANNING;
872 	scn->scn_phys.scn_min_txg = 0;
873 	scn->scn_phys.scn_max_txg = tx->tx_txg;
874 	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
875 	scn->scn_phys.scn_start_time = gethrestime_sec();
876 	scn->scn_phys.scn_errors = 0;
877 	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
878 	scn->scn_issued_before_pass = 0;
879 	scn->scn_restart_txg = 0;
880 	scn->scn_done_txg = 0;
881 	scn->scn_last_checkpoint = 0;
882 	scn->scn_checkpointing = B_FALSE;
883 	spa_scan_stat_init(spa);
884 	vdev_scan_stat_init(spa->spa_root_vdev);
885 
886 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
887 		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
888 
889 		/* rewrite all disk labels */
890 		vdev_config_dirty(spa->spa_root_vdev);
891 
892 		if (vdev_resilver_needed(spa->spa_root_vdev,
893 		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
894 			nvlist_t *aux = fnvlist_alloc();
895 			fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
896 			    "healing");
897 			spa_event_notify(spa, NULL, aux,
898 			    ESC_ZFS_RESILVER_START);
899 			nvlist_free(aux);
900 		} else {
901 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
902 		}
903 
904 		spa->spa_scrub_started = B_TRUE;
905 		/*
906 		 * If this is an incremental scrub, limit the DDT scrub phase
907 		 * to just the auto-ditto class (for correctness); the rest
908 		 * of the scrub should go faster using top-down pruning.
909 		 */
910 		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
911 			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
912 
913 		/*
914 		 * When starting a resilver clear any existing rebuild state.
915 		 * This is required to prevent stale rebuild status from
916 		 * being reported when a rebuild is run, then a resilver and
917 		 * finally a scrub.  In which case only the scrub status
918 		 * should be reported by 'zpool status'.
919 		 */
920 		if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
921 			vdev_t *rvd = spa->spa_root_vdev;
922 			for (uint64_t i = 0; i < rvd->vdev_children; i++) {
923 				vdev_t *vd = rvd->vdev_child[i];
924 				vdev_rebuild_clear_sync(
925 				    (void *)(uintptr_t)vd->vdev_id, tx);
926 			}
927 		}
928 	}
929 
930 	/* back to the generic stuff */
931 
932 	if (zfs_scan_blkstats) {
933 		if (dp->dp_blkstats == NULL) {
934 			dp->dp_blkstats =
935 			    vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
936 		}
937 		memset(&dp->dp_blkstats->zab_type, 0,
938 		    sizeof (dp->dp_blkstats->zab_type));
939 	} else {
940 		if (dp->dp_blkstats) {
941 			vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
942 			dp->dp_blkstats = NULL;
943 		}
944 	}
945 
946 	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
947 		ot = DMU_OT_ZAP_OTHER;
948 
949 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
950 	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
951 
952 	memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
953 
954 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
955 
956 	spa_history_log_internal(spa, "scan setup", tx,
957 	    "func=%u mintxg=%llu maxtxg=%llu",
958 	    *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
959 	    (u_longlong_t)scn->scn_phys.scn_max_txg);
960 }
961 
962 /*
963  * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
964  * error scrub or resilver. Can also be called to resume a paused scrub or
965  * error scrub.
966  */
967 int
968 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
969 {
970 	spa_t *spa = dp->dp_spa;
971 	dsl_scan_t *scn = dp->dp_scan;
972 
973 	/*
974 	 * Purge all vdev caches and probe all devices.  We do this here
975 	 * rather than in sync context because this requires a writer lock
976 	 * on the spa_config lock, which we can't do from sync context.  The
977 	 * spa_scrub_reopen flag indicates that vdev_open() should not
978 	 * attempt to start another scrub.
979 	 */
980 	spa_vdev_state_enter(spa, SCL_NONE);
981 	spa->spa_scrub_reopen = B_TRUE;
982 	vdev_reopen(spa->spa_root_vdev);
983 	spa->spa_scrub_reopen = B_FALSE;
984 	(void) spa_vdev_state_exit(spa, NULL, 0);
985 
986 	if (func == POOL_SCAN_RESILVER) {
987 		dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
988 		return (0);
989 	}
990 
991 	if (func == POOL_SCAN_ERRORSCRUB) {
992 		if (dsl_errorscrub_is_paused(dp->dp_scan)) {
993 			/*
994 			 * got error scrub start cmd, resume paused error scrub.
995 			 */
996 			int err = dsl_scrub_set_pause_resume(scn->scn_dp,
997 			    POOL_SCRUB_NORMAL);
998 			if (err == 0) {
999 				spa_event_notify(spa, NULL, NULL,
1000 				    ESC_ZFS_ERRORSCRUB_RESUME);
1001 				return (ECANCELED);
1002 			}
1003 			return (SET_ERROR(err));
1004 		}
1005 
1006 		return (dsl_sync_task(spa_name(dp->dp_spa),
1007 		    dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1008 		    &func, 0, ZFS_SPACE_CHECK_RESERVED));
1009 	}
1010 
1011 	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1012 		/* got scrub start cmd, resume paused scrub */
1013 		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1014 		    POOL_SCRUB_NORMAL);
1015 		if (err == 0) {
1016 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1017 			return (SET_ERROR(ECANCELED));
1018 		}
1019 		return (SET_ERROR(err));
1020 	}
1021 
1022 	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1023 	    dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
1024 }
1025 
1026 static void
1027 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1028 {
1029 	dsl_pool_t *dp = scn->scn_dp;
1030 	spa_t *spa = dp->dp_spa;
1031 
1032 	if (complete) {
1033 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1034 		spa_history_log_internal(spa, "error scrub done", tx,
1035 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1036 	} else {
1037 		spa_history_log_internal(spa, "error scrub canceled", tx,
1038 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1039 	}
1040 
1041 	scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1042 	spa->spa_scrub_active = B_FALSE;
1043 	spa_errlog_rotate(spa);
1044 	scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1045 	zap_cursor_fini(&scn->errorscrub_cursor);
1046 
1047 	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1048 		spa->spa_errata = 0;
1049 
1050 	ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1051 }
1052 
1053 static void
1054 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1055 {
1056 	static const char *old_names[] = {
1057 		"scrub_bookmark",
1058 		"scrub_ddt_bookmark",
1059 		"scrub_ddt_class_max",
1060 		"scrub_queue",
1061 		"scrub_min_txg",
1062 		"scrub_max_txg",
1063 		"scrub_func",
1064 		"scrub_errors",
1065 		NULL
1066 	};
1067 
1068 	dsl_pool_t *dp = scn->scn_dp;
1069 	spa_t *spa = dp->dp_spa;
1070 	int i;
1071 
1072 	/* Remove any remnants of an old-style scrub. */
1073 	for (i = 0; old_names[i]; i++) {
1074 		(void) zap_remove(dp->dp_meta_objset,
1075 		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1076 	}
1077 
1078 	if (scn->scn_phys.scn_queue_obj != 0) {
1079 		VERIFY0(dmu_object_free(dp->dp_meta_objset,
1080 		    scn->scn_phys.scn_queue_obj, tx));
1081 		scn->scn_phys.scn_queue_obj = 0;
1082 	}
1083 	scan_ds_queue_clear(scn);
1084 	scan_ds_prefetch_queue_clear(scn);
1085 
1086 	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1087 
1088 	/*
1089 	 * If we were "restarted" from a stopped state, don't bother
1090 	 * with anything else.
1091 	 */
1092 	if (!dsl_scan_is_running(scn)) {
1093 		ASSERT(!scn->scn_is_sorted);
1094 		return;
1095 	}
1096 
1097 	if (scn->scn_is_sorted) {
1098 		scan_io_queues_destroy(scn);
1099 		scn->scn_is_sorted = B_FALSE;
1100 
1101 		if (scn->scn_taskq != NULL) {
1102 			taskq_destroy(scn->scn_taskq);
1103 			scn->scn_taskq = NULL;
1104 		}
1105 	}
1106 
1107 	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
1108 
1109 	spa_notify_waiters(spa);
1110 
1111 	if (dsl_scan_restarting(scn, tx))
1112 		spa_history_log_internal(spa, "scan aborted, restarting", tx,
1113 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1114 	else if (!complete)
1115 		spa_history_log_internal(spa, "scan cancelled", tx,
1116 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1117 	else
1118 		spa_history_log_internal(spa, "scan done", tx,
1119 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1120 
1121 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1122 		spa->spa_scrub_active = B_FALSE;
1123 
1124 		/*
1125 		 * If the scrub/resilver completed, update all DTLs to
1126 		 * reflect this.  Whether it succeeded or not, vacate
1127 		 * all temporary scrub DTLs.
1128 		 *
1129 		 * As the scrub does not currently support traversing
1130 		 * data that have been freed but are part of a checkpoint,
1131 		 * we don't mark the scrub as done in the DTLs as faults
1132 		 * may still exist in those vdevs.
1133 		 */
1134 		if (complete &&
1135 		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1136 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1137 			    scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1138 
1139 			if (scn->scn_phys.scn_min_txg) {
1140 				nvlist_t *aux = fnvlist_alloc();
1141 				fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1142 				    "healing");
1143 				spa_event_notify(spa, NULL, aux,
1144 				    ESC_ZFS_RESILVER_FINISH);
1145 				nvlist_free(aux);
1146 			} else {
1147 				spa_event_notify(spa, NULL, NULL,
1148 				    ESC_ZFS_SCRUB_FINISH);
1149 			}
1150 		} else {
1151 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1152 			    0, B_TRUE, B_FALSE);
1153 		}
1154 		spa_errlog_rotate(spa);
1155 
1156 		/*
1157 		 * Don't clear flag until after vdev_dtl_reassess to ensure that
1158 		 * DTL_MISSING will get updated when possible.
1159 		 */
1160 		spa->spa_scrub_started = B_FALSE;
1161 
1162 		/*
1163 		 * We may have finished replacing a device.
1164 		 * Let the async thread assess this and handle the detach.
1165 		 */
1166 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1167 
1168 		/*
1169 		 * Clear any resilver_deferred flags in the config.
1170 		 * If there are drives that need resilvering, kick
1171 		 * off an asynchronous request to start resilver.
1172 		 * vdev_clear_resilver_deferred() may update the config
1173 		 * before the resilver can restart. In the event of
1174 		 * a crash during this period, the spa loading code
1175 		 * will find the drives that need to be resilvered
1176 		 * and start the resilver then.
1177 		 */
1178 		if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1179 		    vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1180 			spa_history_log_internal(spa,
1181 			    "starting deferred resilver", tx, "errors=%llu",
1182 			    (u_longlong_t)spa_approx_errlog_size(spa));
1183 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1184 		}
1185 
1186 		/* Clear recent error events (i.e. duplicate events tracking) */
1187 		if (complete)
1188 			zfs_ereport_clear(spa, NULL);
1189 	}
1190 
1191 	scn->scn_phys.scn_end_time = gethrestime_sec();
1192 
1193 	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1194 		spa->spa_errata = 0;
1195 
1196 	ASSERT(!dsl_scan_is_running(scn));
1197 }
1198 
1199 static int
1200 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1201 {
1202 	pool_scrub_cmd_t *cmd = arg;
1203 	dsl_pool_t *dp = dmu_tx_pool(tx);
1204 	dsl_scan_t *scn = dp->dp_scan;
1205 
1206 	if (*cmd == POOL_SCRUB_PAUSE) {
1207 		/*
1208 		 * can't pause a error scrub when there is no in-progress
1209 		 * error scrub.
1210 		 */
1211 		if (!dsl_errorscrubbing(dp))
1212 			return (SET_ERROR(ENOENT));
1213 
1214 		/* can't pause a paused error scrub */
1215 		if (dsl_errorscrub_is_paused(scn))
1216 			return (SET_ERROR(EBUSY));
1217 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1218 		return (SET_ERROR(ENOTSUP));
1219 	}
1220 
1221 	return (0);
1222 }
1223 
1224 static void
1225 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1226 {
1227 	pool_scrub_cmd_t *cmd = arg;
1228 	dsl_pool_t *dp = dmu_tx_pool(tx);
1229 	spa_t *spa = dp->dp_spa;
1230 	dsl_scan_t *scn = dp->dp_scan;
1231 
1232 	if (*cmd == POOL_SCRUB_PAUSE) {
1233 		spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1234 		scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1235 		dsl_errorscrub_sync_state(scn, tx);
1236 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1237 	} else {
1238 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1239 		if (dsl_errorscrub_is_paused(scn)) {
1240 			/*
1241 			 * We need to keep track of how much time we spend
1242 			 * paused per pass so that we can adjust the error scrub
1243 			 * rate shown in the output of 'zpool status'.
1244 			 */
1245 			spa->spa_scan_pass_errorscrub_spent_paused +=
1246 			    gethrestime_sec() -
1247 			    spa->spa_scan_pass_errorscrub_pause;
1248 
1249 			spa->spa_scan_pass_errorscrub_pause = 0;
1250 			scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1251 
1252 			zap_cursor_init_serialized(
1253 			    &scn->errorscrub_cursor,
1254 			    spa->spa_meta_objset, spa->spa_errlog_last,
1255 			    scn->errorscrub_phys.dep_cursor);
1256 
1257 			dsl_errorscrub_sync_state(scn, tx);
1258 		}
1259 	}
1260 }
1261 
1262 static int
1263 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1264 {
1265 	(void) arg;
1266 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1267 	/* can't cancel a error scrub when there is no one in-progress */
1268 	if (!dsl_errorscrubbing(scn->scn_dp))
1269 		return (SET_ERROR(ENOENT));
1270 	return (0);
1271 }
1272 
1273 static void
1274 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1275 {
1276 	(void) arg;
1277 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1278 
1279 	dsl_errorscrub_done(scn, B_FALSE, tx);
1280 	dsl_errorscrub_sync_state(scn, tx);
1281 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1282 	    ESC_ZFS_ERRORSCRUB_ABORT);
1283 }
1284 
1285 static int
1286 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1287 {
1288 	(void) arg;
1289 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1290 
1291 	if (!dsl_scan_is_running(scn))
1292 		return (SET_ERROR(ENOENT));
1293 	return (0);
1294 }
1295 
1296 static void
1297 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1298 {
1299 	(void) arg;
1300 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1301 
1302 	dsl_scan_done(scn, B_FALSE, tx);
1303 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1304 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1305 }
1306 
1307 int
1308 dsl_scan_cancel(dsl_pool_t *dp)
1309 {
1310 	if (dsl_errorscrubbing(dp)) {
1311 		return (dsl_sync_task(spa_name(dp->dp_spa),
1312 		    dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1313 		    NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1314 	}
1315 	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1316 	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1317 }
1318 
1319 static int
1320 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1321 {
1322 	pool_scrub_cmd_t *cmd = arg;
1323 	dsl_pool_t *dp = dmu_tx_pool(tx);
1324 	dsl_scan_t *scn = dp->dp_scan;
1325 
1326 	if (*cmd == POOL_SCRUB_PAUSE) {
1327 		/* can't pause a scrub when there is no in-progress scrub */
1328 		if (!dsl_scan_scrubbing(dp))
1329 			return (SET_ERROR(ENOENT));
1330 
1331 		/* can't pause a paused scrub */
1332 		if (dsl_scan_is_paused_scrub(scn))
1333 			return (SET_ERROR(EBUSY));
1334 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1335 		return (SET_ERROR(ENOTSUP));
1336 	}
1337 
1338 	return (0);
1339 }
1340 
1341 static void
1342 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1343 {
1344 	pool_scrub_cmd_t *cmd = arg;
1345 	dsl_pool_t *dp = dmu_tx_pool(tx);
1346 	spa_t *spa = dp->dp_spa;
1347 	dsl_scan_t *scn = dp->dp_scan;
1348 
1349 	if (*cmd == POOL_SCRUB_PAUSE) {
1350 		/* can't pause a scrub when there is no in-progress scrub */
1351 		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1352 		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1353 		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1354 		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1355 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1356 		spa_notify_waiters(spa);
1357 	} else {
1358 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1359 		if (dsl_scan_is_paused_scrub(scn)) {
1360 			/*
1361 			 * We need to keep track of how much time we spend
1362 			 * paused per pass so that we can adjust the scrub rate
1363 			 * shown in the output of 'zpool status'
1364 			 */
1365 			spa->spa_scan_pass_scrub_spent_paused +=
1366 			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1367 			spa->spa_scan_pass_scrub_pause = 0;
1368 			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1369 			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1370 			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1371 		}
1372 	}
1373 }
1374 
1375 /*
1376  * Set scrub pause/resume state if it makes sense to do so
1377  */
1378 int
1379 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1380 {
1381 	if (dsl_errorscrubbing(dp)) {
1382 		return (dsl_sync_task(spa_name(dp->dp_spa),
1383 		    dsl_errorscrub_pause_resume_check,
1384 		    dsl_errorscrub_pause_resume_sync, &cmd, 3,
1385 		    ZFS_SPACE_CHECK_RESERVED));
1386 	}
1387 	return (dsl_sync_task(spa_name(dp->dp_spa),
1388 	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1389 	    ZFS_SPACE_CHECK_RESERVED));
1390 }
1391 
1392 
1393 /* start a new scan, or restart an existing one. */
1394 void
1395 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1396 {
1397 	if (txg == 0) {
1398 		dmu_tx_t *tx;
1399 		tx = dmu_tx_create_dd(dp->dp_mos_dir);
1400 		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1401 
1402 		txg = dmu_tx_get_txg(tx);
1403 		dp->dp_scan->scn_restart_txg = txg;
1404 		dmu_tx_commit(tx);
1405 	} else {
1406 		dp->dp_scan->scn_restart_txg = txg;
1407 	}
1408 	zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1409 	    dp->dp_spa->spa_name, (longlong_t)txg);
1410 }
1411 
1412 void
1413 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1414 {
1415 	zio_free(dp->dp_spa, txg, bp);
1416 }
1417 
1418 void
1419 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1420 {
1421 	ASSERT(dsl_pool_sync_context(dp));
1422 	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1423 }
1424 
1425 static int
1426 scan_ds_queue_compare(const void *a, const void *b)
1427 {
1428 	const scan_ds_t *sds_a = a, *sds_b = b;
1429 
1430 	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1431 		return (-1);
1432 	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1433 		return (0);
1434 	return (1);
1435 }
1436 
1437 static void
1438 scan_ds_queue_clear(dsl_scan_t *scn)
1439 {
1440 	void *cookie = NULL;
1441 	scan_ds_t *sds;
1442 	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1443 		kmem_free(sds, sizeof (*sds));
1444 	}
1445 }
1446 
1447 static boolean_t
1448 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1449 {
1450 	scan_ds_t srch, *sds;
1451 
1452 	srch.sds_dsobj = dsobj;
1453 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1454 	if (sds != NULL && txg != NULL)
1455 		*txg = sds->sds_txg;
1456 	return (sds != NULL);
1457 }
1458 
1459 static void
1460 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1461 {
1462 	scan_ds_t *sds;
1463 	avl_index_t where;
1464 
1465 	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1466 	sds->sds_dsobj = dsobj;
1467 	sds->sds_txg = txg;
1468 
1469 	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1470 	avl_insert(&scn->scn_queue, sds, where);
1471 }
1472 
1473 static void
1474 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1475 {
1476 	scan_ds_t srch, *sds;
1477 
1478 	srch.sds_dsobj = dsobj;
1479 
1480 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1481 	VERIFY(sds != NULL);
1482 	avl_remove(&scn->scn_queue, sds);
1483 	kmem_free(sds, sizeof (*sds));
1484 }
1485 
1486 static void
1487 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1488 {
1489 	dsl_pool_t *dp = scn->scn_dp;
1490 	spa_t *spa = dp->dp_spa;
1491 	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1492 	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1493 
1494 	ASSERT0(scn->scn_queues_pending);
1495 	ASSERT(scn->scn_phys.scn_queue_obj != 0);
1496 
1497 	VERIFY0(dmu_object_free(dp->dp_meta_objset,
1498 	    scn->scn_phys.scn_queue_obj, tx));
1499 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1500 	    DMU_OT_NONE, 0, tx);
1501 	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1502 	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1503 		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1504 		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1505 		    sds->sds_txg, tx));
1506 	}
1507 }
1508 
1509 /*
1510  * Computes the memory limit state that we're currently in. A sorted scan
1511  * needs quite a bit of memory to hold the sorting queue, so we need to
1512  * reasonably constrain the size so it doesn't impact overall system
1513  * performance. We compute two limits:
1514  * 1) Hard memory limit: if the amount of memory used by the sorting
1515  *	queues on a pool gets above this value, we stop the metadata
1516  *	scanning portion and start issuing the queued up and sorted
1517  *	I/Os to reduce memory usage.
1518  *	This limit is calculated as a fraction of physmem (by default 5%).
1519  *	We constrain the lower bound of the hard limit to an absolute
1520  *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1521  *	the upper bound to 5% of the total pool size - no chance we'll
1522  *	ever need that much memory, but just to keep the value in check.
1523  * 2) Soft memory limit: once we hit the hard memory limit, we start
1524  *	issuing I/O to reduce queue memory usage, but we don't want to
1525  *	completely empty out the queues, since we might be able to find I/Os
1526  *	that will fill in the gaps of our non-sequential IOs at some point
1527  *	in the future. So we stop the issuing of I/Os once the amount of
1528  *	memory used drops below the soft limit (at which point we stop issuing
1529  *	I/O and start scanning metadata again).
1530  *
1531  *	This limit is calculated by subtracting a fraction of the hard
1532  *	limit from the hard limit. By default this fraction is 5%, so
1533  *	the soft limit is 95% of the hard limit. We cap the size of the
1534  *	difference between the hard and soft limits at an absolute
1535  *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1536  *	sufficient to not cause too frequent switching between the
1537  *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1538  *	worth of queues is about 1.2 GiB of on-pool data, so scanning
1539  *	that should take at least a decent fraction of a second).
1540  */
1541 static boolean_t
1542 dsl_scan_should_clear(dsl_scan_t *scn)
1543 {
1544 	spa_t *spa = scn->scn_dp->dp_spa;
1545 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1546 	uint64_t alloc, mlim_hard, mlim_soft, mused;
1547 
1548 	alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1549 	alloc += metaslab_class_get_alloc(spa_special_class(spa));
1550 	alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1551 
1552 	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1553 	    zfs_scan_mem_lim_min);
1554 	mlim_hard = MIN(mlim_hard, alloc / 20);
1555 	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1556 	    zfs_scan_mem_lim_soft_max);
1557 	mused = 0;
1558 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1559 		vdev_t *tvd = rvd->vdev_child[i];
1560 		dsl_scan_io_queue_t *queue;
1561 
1562 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
1563 		queue = tvd->vdev_scan_io_queue;
1564 		if (queue != NULL) {
1565 			/*
1566 			 * # of extents in exts_by_addr = # in exts_by_size.
1567 			 * B-tree efficiency is ~75%, but can be as low as 50%.
1568 			 */
1569 			mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1570 			    ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) *
1571 			    3 / 2) + queue->q_sio_memused;
1572 		}
1573 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
1574 	}
1575 
1576 	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1577 
1578 	if (mused == 0)
1579 		ASSERT0(scn->scn_queues_pending);
1580 
1581 	/*
1582 	 * If we are above our hard limit, we need to clear out memory.
1583 	 * If we are below our soft limit, we need to accumulate sequential IOs.
1584 	 * Otherwise, we should keep doing whatever we are currently doing.
1585 	 */
1586 	if (mused >= mlim_hard)
1587 		return (B_TRUE);
1588 	else if (mused < mlim_soft)
1589 		return (B_FALSE);
1590 	else
1591 		return (scn->scn_clearing);
1592 }
1593 
1594 static boolean_t
1595 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1596 {
1597 	/* we never skip user/group accounting objects */
1598 	if (zb && (int64_t)zb->zb_object < 0)
1599 		return (B_FALSE);
1600 
1601 	if (scn->scn_suspending)
1602 		return (B_TRUE); /* we're already suspending */
1603 
1604 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1605 		return (B_FALSE); /* we're resuming */
1606 
1607 	/* We only know how to resume from level-0 and objset blocks. */
1608 	if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1609 		return (B_FALSE);
1610 
1611 	/*
1612 	 * We suspend if:
1613 	 *  - we have scanned for at least the minimum time (default 1 sec
1614 	 *    for scrub, 3 sec for resilver), and either we have sufficient
1615 	 *    dirty data that we are starting to write more quickly
1616 	 *    (default 30%), someone is explicitly waiting for this txg
1617 	 *    to complete, or we have used up all of the time in the txg
1618 	 *    timeout (default 5 sec).
1619 	 *  or
1620 	 *  - the spa is shutting down because this pool is being exported
1621 	 *    or the machine is rebooting.
1622 	 *  or
1623 	 *  - the scan queue has reached its memory use limit
1624 	 */
1625 	uint64_t curr_time_ns = gethrtime();
1626 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1627 	uint64_t sync_time_ns = curr_time_ns -
1628 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1629 	uint64_t dirty_min_bytes = zfs_dirty_data_max *
1630 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
1631 	uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1632 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1633 
1634 	if ((NSEC2MSEC(scan_time_ns) > mintime &&
1635 	    (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1636 	    txg_sync_waiting(scn->scn_dp) ||
1637 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1638 	    spa_shutting_down(scn->scn_dp->dp_spa) ||
1639 	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1640 		if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1641 			dprintf("suspending at first available bookmark "
1642 			    "%llx/%llx/%llx/%llx\n",
1643 			    (longlong_t)zb->zb_objset,
1644 			    (longlong_t)zb->zb_object,
1645 			    (longlong_t)zb->zb_level,
1646 			    (longlong_t)zb->zb_blkid);
1647 			SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1648 			    zb->zb_objset, 0, 0, 0);
1649 		} else if (zb != NULL) {
1650 			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1651 			    (longlong_t)zb->zb_objset,
1652 			    (longlong_t)zb->zb_object,
1653 			    (longlong_t)zb->zb_level,
1654 			    (longlong_t)zb->zb_blkid);
1655 			scn->scn_phys.scn_bookmark = *zb;
1656 		} else {
1657 #ifdef ZFS_DEBUG
1658 			dsl_scan_phys_t *scnp = &scn->scn_phys;
1659 			dprintf("suspending at at DDT bookmark "
1660 			    "%llx/%llx/%llx/%llx\n",
1661 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1662 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1663 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1664 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1665 #endif
1666 		}
1667 		scn->scn_suspending = B_TRUE;
1668 		return (B_TRUE);
1669 	}
1670 	return (B_FALSE);
1671 }
1672 
1673 static boolean_t
1674 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1675 {
1676 	/*
1677 	 * We suspend if:
1678 	 *  - we have scrubbed for at least the minimum time (default 1 sec
1679 	 *    for error scrub), someone is explicitly waiting for this txg
1680 	 *    to complete, or we have used up all of the time in the txg
1681 	 *    timeout (default 5 sec).
1682 	 *  or
1683 	 *  - the spa is shutting down because this pool is being exported
1684 	 *    or the machine is rebooting.
1685 	 */
1686 	uint64_t curr_time_ns = gethrtime();
1687 	uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1688 	uint64_t sync_time_ns = curr_time_ns -
1689 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1690 	int mintime = zfs_scrub_min_time_ms;
1691 
1692 	if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1693 	    (txg_sync_waiting(scn->scn_dp) ||
1694 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1695 	    spa_shutting_down(scn->scn_dp->dp_spa)) {
1696 		if (zb) {
1697 			dprintf("error scrub suspending at bookmark "
1698 			    "%llx/%llx/%llx/%llx\n",
1699 			    (longlong_t)zb->zb_objset,
1700 			    (longlong_t)zb->zb_object,
1701 			    (longlong_t)zb->zb_level,
1702 			    (longlong_t)zb->zb_blkid);
1703 		}
1704 		return (B_TRUE);
1705 	}
1706 	return (B_FALSE);
1707 }
1708 
1709 typedef struct zil_scan_arg {
1710 	dsl_pool_t	*zsa_dp;
1711 	zil_header_t	*zsa_zh;
1712 } zil_scan_arg_t;
1713 
1714 static int
1715 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1716     uint64_t claim_txg)
1717 {
1718 	(void) zilog;
1719 	zil_scan_arg_t *zsa = arg;
1720 	dsl_pool_t *dp = zsa->zsa_dp;
1721 	dsl_scan_t *scn = dp->dp_scan;
1722 	zil_header_t *zh = zsa->zsa_zh;
1723 	zbookmark_phys_t zb;
1724 
1725 	ASSERT(!BP_IS_REDACTED(bp));
1726 	if (BP_IS_HOLE(bp) ||
1727 	    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1728 		return (0);
1729 
1730 	/*
1731 	 * One block ("stubby") can be allocated a long time ago; we
1732 	 * want to visit that one because it has been allocated
1733 	 * (on-disk) even if it hasn't been claimed (even though for
1734 	 * scrub there's nothing to do to it).
1735 	 */
1736 	if (claim_txg == 0 &&
1737 	    BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1738 		return (0);
1739 
1740 	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1741 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1742 
1743 	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1744 	return (0);
1745 }
1746 
1747 static int
1748 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1749     uint64_t claim_txg)
1750 {
1751 	(void) zilog;
1752 	if (lrc->lrc_txtype == TX_WRITE) {
1753 		zil_scan_arg_t *zsa = arg;
1754 		dsl_pool_t *dp = zsa->zsa_dp;
1755 		dsl_scan_t *scn = dp->dp_scan;
1756 		zil_header_t *zh = zsa->zsa_zh;
1757 		const lr_write_t *lr = (const lr_write_t *)lrc;
1758 		const blkptr_t *bp = &lr->lr_blkptr;
1759 		zbookmark_phys_t zb;
1760 
1761 		ASSERT(!BP_IS_REDACTED(bp));
1762 		if (BP_IS_HOLE(bp) ||
1763 		    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1764 			return (0);
1765 
1766 		/*
1767 		 * birth can be < claim_txg if this record's txg is
1768 		 * already txg sync'ed (but this log block contains
1769 		 * other records that are not synced)
1770 		 */
1771 		if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg)
1772 			return (0);
1773 
1774 		ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1775 		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1776 		    lr->lr_foid, ZB_ZIL_LEVEL,
1777 		    lr->lr_offset / BP_GET_LSIZE(bp));
1778 
1779 		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1780 	}
1781 	return (0);
1782 }
1783 
1784 static void
1785 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1786 {
1787 	uint64_t claim_txg = zh->zh_claim_txg;
1788 	zil_scan_arg_t zsa = { dp, zh };
1789 	zilog_t *zilog;
1790 
1791 	ASSERT(spa_writeable(dp->dp_spa));
1792 
1793 	/*
1794 	 * We only want to visit blocks that have been claimed but not yet
1795 	 * replayed (or, in read-only mode, blocks that *would* be claimed).
1796 	 */
1797 	if (claim_txg == 0)
1798 		return;
1799 
1800 	zilog = zil_alloc(dp->dp_meta_objset, zh);
1801 
1802 	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1803 	    claim_txg, B_FALSE);
1804 
1805 	zil_free(zilog);
1806 }
1807 
1808 /*
1809  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1810  * here is to sort the AVL tree by the order each block will be needed.
1811  */
1812 static int
1813 scan_prefetch_queue_compare(const void *a, const void *b)
1814 {
1815 	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1816 	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1817 	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1818 
1819 	return (zbookmark_compare(spc_a->spc_datablkszsec,
1820 	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1821 	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1822 }
1823 
1824 static void
1825 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1826 {
1827 	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1828 		zfs_refcount_destroy(&spc->spc_refcnt);
1829 		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1830 	}
1831 }
1832 
1833 static scan_prefetch_ctx_t *
1834 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1835 {
1836 	scan_prefetch_ctx_t *spc;
1837 
1838 	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1839 	zfs_refcount_create(&spc->spc_refcnt);
1840 	zfs_refcount_add(&spc->spc_refcnt, tag);
1841 	spc->spc_scn = scn;
1842 	if (dnp != NULL) {
1843 		spc->spc_datablkszsec = dnp->dn_datablkszsec;
1844 		spc->spc_indblkshift = dnp->dn_indblkshift;
1845 		spc->spc_root = B_FALSE;
1846 	} else {
1847 		spc->spc_datablkszsec = 0;
1848 		spc->spc_indblkshift = 0;
1849 		spc->spc_root = B_TRUE;
1850 	}
1851 
1852 	return (spc);
1853 }
1854 
1855 static void
1856 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1857 {
1858 	zfs_refcount_add(&spc->spc_refcnt, tag);
1859 }
1860 
1861 static void
1862 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1863 {
1864 	spa_t *spa = scn->scn_dp->dp_spa;
1865 	void *cookie = NULL;
1866 	scan_prefetch_issue_ctx_t *spic = NULL;
1867 
1868 	mutex_enter(&spa->spa_scrub_lock);
1869 	while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1870 	    &cookie)) != NULL) {
1871 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1872 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1873 	}
1874 	mutex_exit(&spa->spa_scrub_lock);
1875 }
1876 
1877 static boolean_t
1878 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1879     const zbookmark_phys_t *zb)
1880 {
1881 	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1882 	dnode_phys_t tmp_dnp;
1883 	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1884 
1885 	if (zb->zb_objset != last_zb->zb_objset)
1886 		return (B_TRUE);
1887 	if ((int64_t)zb->zb_object < 0)
1888 		return (B_FALSE);
1889 
1890 	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1891 	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1892 
1893 	if (zbookmark_subtree_completed(dnp, zb, last_zb))
1894 		return (B_TRUE);
1895 
1896 	return (B_FALSE);
1897 }
1898 
1899 static void
1900 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1901 {
1902 	avl_index_t idx;
1903 	dsl_scan_t *scn = spc->spc_scn;
1904 	spa_t *spa = scn->scn_dp->dp_spa;
1905 	scan_prefetch_issue_ctx_t *spic;
1906 
1907 	if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1908 		return;
1909 
1910 	if (BP_IS_HOLE(bp) ||
1911 	    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1912 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1913 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1914 		return;
1915 
1916 	if (dsl_scan_check_prefetch_resume(spc, zb))
1917 		return;
1918 
1919 	scan_prefetch_ctx_add_ref(spc, scn);
1920 	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1921 	spic->spic_spc = spc;
1922 	spic->spic_bp = *bp;
1923 	spic->spic_zb = *zb;
1924 
1925 	/*
1926 	 * Add the IO to the queue of blocks to prefetch. This allows us to
1927 	 * prioritize blocks that we will need first for the main traversal
1928 	 * thread.
1929 	 */
1930 	mutex_enter(&spa->spa_scrub_lock);
1931 	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1932 		/* this block is already queued for prefetch */
1933 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1934 		scan_prefetch_ctx_rele(spc, scn);
1935 		mutex_exit(&spa->spa_scrub_lock);
1936 		return;
1937 	}
1938 
1939 	avl_insert(&scn->scn_prefetch_queue, spic, idx);
1940 	cv_broadcast(&spa->spa_scrub_io_cv);
1941 	mutex_exit(&spa->spa_scrub_lock);
1942 }
1943 
1944 static void
1945 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1946     uint64_t objset, uint64_t object)
1947 {
1948 	int i;
1949 	zbookmark_phys_t zb;
1950 	scan_prefetch_ctx_t *spc;
1951 
1952 	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1953 		return;
1954 
1955 	SET_BOOKMARK(&zb, objset, object, 0, 0);
1956 
1957 	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1958 
1959 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1960 		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1961 		zb.zb_blkid = i;
1962 		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1963 	}
1964 
1965 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1966 		zb.zb_level = 0;
1967 		zb.zb_blkid = DMU_SPILL_BLKID;
1968 		dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1969 	}
1970 
1971 	scan_prefetch_ctx_rele(spc, FTAG);
1972 }
1973 
1974 static void
1975 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1976     arc_buf_t *buf, void *private)
1977 {
1978 	(void) zio;
1979 	scan_prefetch_ctx_t *spc = private;
1980 	dsl_scan_t *scn = spc->spc_scn;
1981 	spa_t *spa = scn->scn_dp->dp_spa;
1982 
1983 	/* broadcast that the IO has completed for rate limiting purposes */
1984 	mutex_enter(&spa->spa_scrub_lock);
1985 	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1986 	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1987 	cv_broadcast(&spa->spa_scrub_io_cv);
1988 	mutex_exit(&spa->spa_scrub_lock);
1989 
1990 	/* if there was an error or we are done prefetching, just cleanup */
1991 	if (buf == NULL || scn->scn_prefetch_stop)
1992 		goto out;
1993 
1994 	if (BP_GET_LEVEL(bp) > 0) {
1995 		int i;
1996 		blkptr_t *cbp;
1997 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1998 		zbookmark_phys_t czb;
1999 
2000 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2001 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2002 			    zb->zb_level - 1, zb->zb_blkid * epb + i);
2003 			dsl_scan_prefetch(spc, cbp, &czb);
2004 		}
2005 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2006 		dnode_phys_t *cdnp;
2007 		int i;
2008 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2009 
2010 		for (i = 0, cdnp = buf->b_data; i < epb;
2011 		    i += cdnp->dn_extra_slots + 1,
2012 		    cdnp += cdnp->dn_extra_slots + 1) {
2013 			dsl_scan_prefetch_dnode(scn, cdnp,
2014 			    zb->zb_objset, zb->zb_blkid * epb + i);
2015 		}
2016 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2017 		objset_phys_t *osp = buf->b_data;
2018 
2019 		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2020 		    zb->zb_objset, DMU_META_DNODE_OBJECT);
2021 
2022 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
2023 			if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2024 				dsl_scan_prefetch_dnode(scn,
2025 				    &osp->os_projectused_dnode, zb->zb_objset,
2026 				    DMU_PROJECTUSED_OBJECT);
2027 			}
2028 			dsl_scan_prefetch_dnode(scn,
2029 			    &osp->os_groupused_dnode, zb->zb_objset,
2030 			    DMU_GROUPUSED_OBJECT);
2031 			dsl_scan_prefetch_dnode(scn,
2032 			    &osp->os_userused_dnode, zb->zb_objset,
2033 			    DMU_USERUSED_OBJECT);
2034 		}
2035 	}
2036 
2037 out:
2038 	if (buf != NULL)
2039 		arc_buf_destroy(buf, private);
2040 	scan_prefetch_ctx_rele(spc, scn);
2041 }
2042 
2043 static void
2044 dsl_scan_prefetch_thread(void *arg)
2045 {
2046 	dsl_scan_t *scn = arg;
2047 	spa_t *spa = scn->scn_dp->dp_spa;
2048 	scan_prefetch_issue_ctx_t *spic;
2049 
2050 	/* loop until we are told to stop */
2051 	while (!scn->scn_prefetch_stop) {
2052 		arc_flags_t flags = ARC_FLAG_NOWAIT |
2053 		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2054 		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2055 
2056 		mutex_enter(&spa->spa_scrub_lock);
2057 
2058 		/*
2059 		 * Wait until we have an IO to issue and are not above our
2060 		 * maximum in flight limit.
2061 		 */
2062 		while (!scn->scn_prefetch_stop &&
2063 		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2064 		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2065 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2066 		}
2067 
2068 		/* recheck if we should stop since we waited for the cv */
2069 		if (scn->scn_prefetch_stop) {
2070 			mutex_exit(&spa->spa_scrub_lock);
2071 			break;
2072 		}
2073 
2074 		/* remove the prefetch IO from the tree */
2075 		spic = avl_first(&scn->scn_prefetch_queue);
2076 		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2077 		avl_remove(&scn->scn_prefetch_queue, spic);
2078 
2079 		mutex_exit(&spa->spa_scrub_lock);
2080 
2081 		if (BP_IS_PROTECTED(&spic->spic_bp)) {
2082 			ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2083 			    BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2084 			ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2085 			zio_flags |= ZIO_FLAG_RAW;
2086 		}
2087 
2088 		/* We don't need data L1 buffer since we do not prefetch L0. */
2089 		blkptr_t *bp = &spic->spic_bp;
2090 		if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2091 		    BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2092 			flags |= ARC_FLAG_NO_BUF;
2093 
2094 		/* issue the prefetch asynchronously */
2095 		(void) arc_read(scn->scn_zio_root, spa, bp,
2096 		    dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2097 		    zio_flags, &flags, &spic->spic_zb);
2098 
2099 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2100 	}
2101 
2102 	ASSERT(scn->scn_prefetch_stop);
2103 
2104 	/* free any prefetches we didn't get to complete */
2105 	mutex_enter(&spa->spa_scrub_lock);
2106 	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2107 		avl_remove(&scn->scn_prefetch_queue, spic);
2108 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
2109 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2110 	}
2111 	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2112 	mutex_exit(&spa->spa_scrub_lock);
2113 }
2114 
2115 static boolean_t
2116 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2117     const zbookmark_phys_t *zb)
2118 {
2119 	/*
2120 	 * We never skip over user/group accounting objects (obj<0)
2121 	 */
2122 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2123 	    (int64_t)zb->zb_object >= 0) {
2124 		/*
2125 		 * If we already visited this bp & everything below (in
2126 		 * a prior txg sync), don't bother doing it again.
2127 		 */
2128 		if (zbookmark_subtree_completed(dnp, zb,
2129 		    &scn->scn_phys.scn_bookmark))
2130 			return (B_TRUE);
2131 
2132 		/*
2133 		 * If we found the block we're trying to resume from, or
2134 		 * we went past it, zero it out to indicate that it's OK
2135 		 * to start checking for suspending again.
2136 		 */
2137 		if (zbookmark_subtree_tbd(dnp, zb,
2138 		    &scn->scn_phys.scn_bookmark)) {
2139 			dprintf("resuming at %llx/%llx/%llx/%llx\n",
2140 			    (longlong_t)zb->zb_objset,
2141 			    (longlong_t)zb->zb_object,
2142 			    (longlong_t)zb->zb_level,
2143 			    (longlong_t)zb->zb_blkid);
2144 			memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2145 		}
2146 	}
2147 	return (B_FALSE);
2148 }
2149 
2150 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2151     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2152     dmu_objset_type_t ostype, dmu_tx_t *tx);
2153 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2154     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2155     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2156 
2157 /*
2158  * Return nonzero on i/o error.
2159  * Return new buf to write out in *bufp.
2160  */
2161 inline __attribute__((always_inline)) static int
2162 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2163     dnode_phys_t *dnp, const blkptr_t *bp,
2164     const zbookmark_phys_t *zb, dmu_tx_t *tx)
2165 {
2166 	dsl_pool_t *dp = scn->scn_dp;
2167 	spa_t *spa = dp->dp_spa;
2168 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2169 	int err;
2170 
2171 	ASSERT(!BP_IS_REDACTED(bp));
2172 
2173 	/*
2174 	 * There is an unlikely case of encountering dnodes with contradicting
2175 	 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2176 	 * or modified before commit 4254acb was merged. As it is not possible
2177 	 * to know which of the two is correct, report an error.
2178 	 */
2179 	if (dnp != NULL &&
2180 	    dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2181 		scn->scn_phys.scn_errors++;
2182 		spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2183 		return (SET_ERROR(EINVAL));
2184 	}
2185 
2186 	if (BP_GET_LEVEL(bp) > 0) {
2187 		arc_flags_t flags = ARC_FLAG_WAIT;
2188 		int i;
2189 		blkptr_t *cbp;
2190 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2191 		arc_buf_t *buf;
2192 
2193 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2194 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2195 		if (err) {
2196 			scn->scn_phys.scn_errors++;
2197 			return (err);
2198 		}
2199 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2200 			zbookmark_phys_t czb;
2201 
2202 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2203 			    zb->zb_level - 1,
2204 			    zb->zb_blkid * epb + i);
2205 			dsl_scan_visitbp(cbp, &czb, dnp,
2206 			    ds, scn, ostype, tx);
2207 		}
2208 		arc_buf_destroy(buf, &buf);
2209 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2210 		arc_flags_t flags = ARC_FLAG_WAIT;
2211 		dnode_phys_t *cdnp;
2212 		int i;
2213 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2214 		arc_buf_t *buf;
2215 
2216 		if (BP_IS_PROTECTED(bp)) {
2217 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2218 			zio_flags |= ZIO_FLAG_RAW;
2219 		}
2220 
2221 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2222 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2223 		if (err) {
2224 			scn->scn_phys.scn_errors++;
2225 			return (err);
2226 		}
2227 		for (i = 0, cdnp = buf->b_data; i < epb;
2228 		    i += cdnp->dn_extra_slots + 1,
2229 		    cdnp += cdnp->dn_extra_slots + 1) {
2230 			dsl_scan_visitdnode(scn, ds, ostype,
2231 			    cdnp, zb->zb_blkid * epb + i, tx);
2232 		}
2233 
2234 		arc_buf_destroy(buf, &buf);
2235 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2236 		arc_flags_t flags = ARC_FLAG_WAIT;
2237 		objset_phys_t *osp;
2238 		arc_buf_t *buf;
2239 
2240 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2241 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2242 		if (err) {
2243 			scn->scn_phys.scn_errors++;
2244 			return (err);
2245 		}
2246 
2247 		osp = buf->b_data;
2248 
2249 		dsl_scan_visitdnode(scn, ds, osp->os_type,
2250 		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2251 
2252 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
2253 			/*
2254 			 * We also always visit user/group/project accounting
2255 			 * objects, and never skip them, even if we are
2256 			 * suspending. This is necessary so that the
2257 			 * space deltas from this txg get integrated.
2258 			 */
2259 			if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2260 				dsl_scan_visitdnode(scn, ds, osp->os_type,
2261 				    &osp->os_projectused_dnode,
2262 				    DMU_PROJECTUSED_OBJECT, tx);
2263 			dsl_scan_visitdnode(scn, ds, osp->os_type,
2264 			    &osp->os_groupused_dnode,
2265 			    DMU_GROUPUSED_OBJECT, tx);
2266 			dsl_scan_visitdnode(scn, ds, osp->os_type,
2267 			    &osp->os_userused_dnode,
2268 			    DMU_USERUSED_OBJECT, tx);
2269 		}
2270 		arc_buf_destroy(buf, &buf);
2271 	} else if (!zfs_blkptr_verify(spa, bp,
2272 	    BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2273 		/*
2274 		 * Sanity check the block pointer contents, this is handled
2275 		 * by arc_read() for the cases above.
2276 		 */
2277 		scn->scn_phys.scn_errors++;
2278 		spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2279 		return (SET_ERROR(EINVAL));
2280 	}
2281 
2282 	return (0);
2283 }
2284 
2285 inline __attribute__((always_inline)) static void
2286 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2287     dmu_objset_type_t ostype, dnode_phys_t *dnp,
2288     uint64_t object, dmu_tx_t *tx)
2289 {
2290 	int j;
2291 
2292 	for (j = 0; j < dnp->dn_nblkptr; j++) {
2293 		zbookmark_phys_t czb;
2294 
2295 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2296 		    dnp->dn_nlevels - 1, j);
2297 		dsl_scan_visitbp(&dnp->dn_blkptr[j],
2298 		    &czb, dnp, ds, scn, ostype, tx);
2299 	}
2300 
2301 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2302 		zbookmark_phys_t czb;
2303 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2304 		    0, DMU_SPILL_BLKID);
2305 		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2306 		    &czb, dnp, ds, scn, ostype, tx);
2307 	}
2308 }
2309 
2310 /*
2311  * The arguments are in this order because mdb can only print the
2312  * first 5; we want them to be useful.
2313  */
2314 static void
2315 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2316     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2317     dmu_objset_type_t ostype, dmu_tx_t *tx)
2318 {
2319 	dsl_pool_t *dp = scn->scn_dp;
2320 
2321 	if (dsl_scan_check_suspend(scn, zb))
2322 		return;
2323 
2324 	if (dsl_scan_check_resume(scn, dnp, zb))
2325 		return;
2326 
2327 	scn->scn_visited_this_txg++;
2328 
2329 	if (BP_IS_HOLE(bp)) {
2330 		scn->scn_holes_this_txg++;
2331 		return;
2332 	}
2333 
2334 	if (BP_IS_REDACTED(bp)) {
2335 		ASSERT(dsl_dataset_feature_is_active(ds,
2336 		    SPA_FEATURE_REDACTED_DATASETS));
2337 		return;
2338 	}
2339 
2340 	/*
2341 	 * Check if this block contradicts any filesystem flags.
2342 	 */
2343 	spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2344 	if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2345 		ASSERT(dsl_dataset_feature_is_active(ds, f));
2346 
2347 	f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2348 	if (f != SPA_FEATURE_NONE)
2349 		ASSERT(dsl_dataset_feature_is_active(ds, f));
2350 
2351 	f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2352 	if (f != SPA_FEATURE_NONE)
2353 		ASSERT(dsl_dataset_feature_is_active(ds, f));
2354 
2355 	if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2356 		scn->scn_lt_min_this_txg++;
2357 		return;
2358 	}
2359 
2360 	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2361 		return;
2362 
2363 	/*
2364 	 * If dsl_scan_ddt() has already visited this block, it will have
2365 	 * already done any translations or scrubbing, so don't call the
2366 	 * callback again.
2367 	 */
2368 	if (ddt_class_contains(dp->dp_spa,
2369 	    scn->scn_phys.scn_ddt_class_max, bp)) {
2370 		scn->scn_ddt_contained_this_txg++;
2371 		return;
2372 	}
2373 
2374 	/*
2375 	 * If this block is from the future (after cur_max_txg), then we
2376 	 * are doing this on behalf of a deleted snapshot, and we will
2377 	 * revisit the future block on the next pass of this dataset.
2378 	 * Don't scan it now unless we need to because something
2379 	 * under it was modified.
2380 	 */
2381 	if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2382 		scn->scn_gt_max_this_txg++;
2383 		return;
2384 	}
2385 
2386 	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2387 }
2388 
2389 static void
2390 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2391     dmu_tx_t *tx)
2392 {
2393 	zbookmark_phys_t zb;
2394 	scan_prefetch_ctx_t *spc;
2395 
2396 	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2397 	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2398 
2399 	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2400 		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2401 		    zb.zb_objset, 0, 0, 0);
2402 	} else {
2403 		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2404 	}
2405 
2406 	scn->scn_objsets_visited_this_txg++;
2407 
2408 	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2409 	dsl_scan_prefetch(spc, bp, &zb);
2410 	scan_prefetch_ctx_rele(spc, FTAG);
2411 
2412 	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2413 
2414 	dprintf_ds(ds, "finished scan%s", "");
2415 }
2416 
2417 static void
2418 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2419 {
2420 	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2421 		if (ds->ds_is_snapshot) {
2422 			/*
2423 			 * Note:
2424 			 *  - scn_cur_{min,max}_txg stays the same.
2425 			 *  - Setting the flag is not really necessary if
2426 			 *    scn_cur_max_txg == scn_max_txg, because there
2427 			 *    is nothing after this snapshot that we care
2428 			 *    about.  However, we set it anyway and then
2429 			 *    ignore it when we retraverse it in
2430 			 *    dsl_scan_visitds().
2431 			 */
2432 			scn_phys->scn_bookmark.zb_objset =
2433 			    dsl_dataset_phys(ds)->ds_next_snap_obj;
2434 			zfs_dbgmsg("destroying ds %llu on %s; currently "
2435 			    "traversing; reset zb_objset to %llu",
2436 			    (u_longlong_t)ds->ds_object,
2437 			    ds->ds_dir->dd_pool->dp_spa->spa_name,
2438 			    (u_longlong_t)dsl_dataset_phys(ds)->
2439 			    ds_next_snap_obj);
2440 			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2441 		} else {
2442 			SET_BOOKMARK(&scn_phys->scn_bookmark,
2443 			    ZB_DESTROYED_OBJSET, 0, 0, 0);
2444 			zfs_dbgmsg("destroying ds %llu on %s; currently "
2445 			    "traversing; reset bookmark to -1,0,0,0",
2446 			    (u_longlong_t)ds->ds_object,
2447 			    ds->ds_dir->dd_pool->dp_spa->spa_name);
2448 		}
2449 	}
2450 }
2451 
2452 /*
2453  * Invoked when a dataset is destroyed. We need to make sure that:
2454  *
2455  * 1) If it is the dataset that was currently being scanned, we write
2456  *	a new dsl_scan_phys_t and marking the objset reference in it
2457  *	as destroyed.
2458  * 2) Remove it from the work queue, if it was present.
2459  *
2460  * If the dataset was actually a snapshot, instead of marking the dataset
2461  * as destroyed, we instead substitute the next snapshot in line.
2462  */
2463 void
2464 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2465 {
2466 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2467 	dsl_scan_t *scn = dp->dp_scan;
2468 	uint64_t mintxg;
2469 
2470 	if (!dsl_scan_is_running(scn))
2471 		return;
2472 
2473 	ds_destroyed_scn_phys(ds, &scn->scn_phys);
2474 	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2475 
2476 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2477 		scan_ds_queue_remove(scn, ds->ds_object);
2478 		if (ds->ds_is_snapshot)
2479 			scan_ds_queue_insert(scn,
2480 			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2481 	}
2482 
2483 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2484 	    ds->ds_object, &mintxg) == 0) {
2485 		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2486 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2487 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2488 		if (ds->ds_is_snapshot) {
2489 			/*
2490 			 * We keep the same mintxg; it could be >
2491 			 * ds_creation_txg if the previous snapshot was
2492 			 * deleted too.
2493 			 */
2494 			VERIFY(zap_add_int_key(dp->dp_meta_objset,
2495 			    scn->scn_phys.scn_queue_obj,
2496 			    dsl_dataset_phys(ds)->ds_next_snap_obj,
2497 			    mintxg, tx) == 0);
2498 			zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2499 			    "replacing with %llu",
2500 			    (u_longlong_t)ds->ds_object,
2501 			    dp->dp_spa->spa_name,
2502 			    (u_longlong_t)dsl_dataset_phys(ds)->
2503 			    ds_next_snap_obj);
2504 		} else {
2505 			zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2506 			    "removing",
2507 			    (u_longlong_t)ds->ds_object,
2508 			    dp->dp_spa->spa_name);
2509 		}
2510 	}
2511 
2512 	/*
2513 	 * dsl_scan_sync() should be called after this, and should sync
2514 	 * out our changed state, but just to be safe, do it here.
2515 	 */
2516 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2517 }
2518 
2519 static void
2520 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2521 {
2522 	if (scn_bookmark->zb_objset == ds->ds_object) {
2523 		scn_bookmark->zb_objset =
2524 		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
2525 		zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2526 		    "reset zb_objset to %llu",
2527 		    (u_longlong_t)ds->ds_object,
2528 		    ds->ds_dir->dd_pool->dp_spa->spa_name,
2529 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2530 	}
2531 }
2532 
2533 /*
2534  * Called when a dataset is snapshotted. If we were currently traversing
2535  * this snapshot, we reset our bookmark to point at the newly created
2536  * snapshot. We also modify our work queue to remove the old snapshot and
2537  * replace with the new one.
2538  */
2539 void
2540 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2541 {
2542 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2543 	dsl_scan_t *scn = dp->dp_scan;
2544 	uint64_t mintxg;
2545 
2546 	if (!dsl_scan_is_running(scn))
2547 		return;
2548 
2549 	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2550 
2551 	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2552 	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2553 
2554 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2555 		scan_ds_queue_remove(scn, ds->ds_object);
2556 		scan_ds_queue_insert(scn,
2557 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2558 	}
2559 
2560 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2561 	    ds->ds_object, &mintxg) == 0) {
2562 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2563 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2564 		VERIFY(zap_add_int_key(dp->dp_meta_objset,
2565 		    scn->scn_phys.scn_queue_obj,
2566 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2567 		zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2568 		    "replacing with %llu",
2569 		    (u_longlong_t)ds->ds_object,
2570 		    dp->dp_spa->spa_name,
2571 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2572 	}
2573 
2574 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2575 }
2576 
2577 static void
2578 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2579     zbookmark_phys_t *scn_bookmark)
2580 {
2581 	if (scn_bookmark->zb_objset == ds1->ds_object) {
2582 		scn_bookmark->zb_objset = ds2->ds_object;
2583 		zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2584 		    "reset zb_objset to %llu",
2585 		    (u_longlong_t)ds1->ds_object,
2586 		    ds1->ds_dir->dd_pool->dp_spa->spa_name,
2587 		    (u_longlong_t)ds2->ds_object);
2588 	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2589 		scn_bookmark->zb_objset = ds1->ds_object;
2590 		zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2591 		    "reset zb_objset to %llu",
2592 		    (u_longlong_t)ds2->ds_object,
2593 		    ds2->ds_dir->dd_pool->dp_spa->spa_name,
2594 		    (u_longlong_t)ds1->ds_object);
2595 	}
2596 }
2597 
2598 /*
2599  * Called when an origin dataset and its clone are swapped.  If we were
2600  * currently traversing the dataset, we need to switch to traversing the
2601  * newly promoted clone.
2602  */
2603 void
2604 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2605 {
2606 	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2607 	dsl_scan_t *scn = dp->dp_scan;
2608 	uint64_t mintxg1, mintxg2;
2609 	boolean_t ds1_queued, ds2_queued;
2610 
2611 	if (!dsl_scan_is_running(scn))
2612 		return;
2613 
2614 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2615 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2616 
2617 	/*
2618 	 * Handle the in-memory scan queue.
2619 	 */
2620 	ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2621 	ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2622 
2623 	/* Sanity checking. */
2624 	if (ds1_queued) {
2625 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2626 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2627 	}
2628 	if (ds2_queued) {
2629 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2630 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2631 	}
2632 
2633 	if (ds1_queued && ds2_queued) {
2634 		/*
2635 		 * If both are queued, we don't need to do anything.
2636 		 * The swapping code below would not handle this case correctly,
2637 		 * since we can't insert ds2 if it is already there. That's
2638 		 * because scan_ds_queue_insert() prohibits a duplicate insert
2639 		 * and panics.
2640 		 */
2641 	} else if (ds1_queued) {
2642 		scan_ds_queue_remove(scn, ds1->ds_object);
2643 		scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2644 	} else if (ds2_queued) {
2645 		scan_ds_queue_remove(scn, ds2->ds_object);
2646 		scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2647 	}
2648 
2649 	/*
2650 	 * Handle the on-disk scan queue.
2651 	 * The on-disk state is an out-of-date version of the in-memory state,
2652 	 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2653 	 * be different. Therefore we need to apply the swap logic to the
2654 	 * on-disk state independently of the in-memory state.
2655 	 */
2656 	ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2657 	    scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2658 	ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2659 	    scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2660 
2661 	/* Sanity checking. */
2662 	if (ds1_queued) {
2663 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2664 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2665 	}
2666 	if (ds2_queued) {
2667 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2668 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2669 	}
2670 
2671 	if (ds1_queued && ds2_queued) {
2672 		/*
2673 		 * If both are queued, we don't need to do anything.
2674 		 * Alternatively, we could check for EEXIST from
2675 		 * zap_add_int_key() and back out to the original state, but
2676 		 * that would be more work than checking for this case upfront.
2677 		 */
2678 	} else if (ds1_queued) {
2679 		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2680 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2681 		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2682 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2683 		zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2684 		    "replacing with %llu",
2685 		    (u_longlong_t)ds1->ds_object,
2686 		    dp->dp_spa->spa_name,
2687 		    (u_longlong_t)ds2->ds_object);
2688 	} else if (ds2_queued) {
2689 		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2690 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2691 		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2692 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2693 		zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2694 		    "replacing with %llu",
2695 		    (u_longlong_t)ds2->ds_object,
2696 		    dp->dp_spa->spa_name,
2697 		    (u_longlong_t)ds1->ds_object);
2698 	}
2699 
2700 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2701 }
2702 
2703 static int
2704 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2705 {
2706 	uint64_t originobj = *(uint64_t *)arg;
2707 	dsl_dataset_t *ds;
2708 	int err;
2709 	dsl_scan_t *scn = dp->dp_scan;
2710 
2711 	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2712 		return (0);
2713 
2714 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2715 	if (err)
2716 		return (err);
2717 
2718 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2719 		dsl_dataset_t *prev;
2720 		err = dsl_dataset_hold_obj(dp,
2721 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2722 
2723 		dsl_dataset_rele(ds, FTAG);
2724 		if (err)
2725 			return (err);
2726 		ds = prev;
2727 	}
2728 	mutex_enter(&scn->scn_queue_lock);
2729 	scan_ds_queue_insert(scn, ds->ds_object,
2730 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2731 	mutex_exit(&scn->scn_queue_lock);
2732 	dsl_dataset_rele(ds, FTAG);
2733 	return (0);
2734 }
2735 
2736 static void
2737 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2738 {
2739 	dsl_pool_t *dp = scn->scn_dp;
2740 	dsl_dataset_t *ds;
2741 
2742 	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2743 
2744 	if (scn->scn_phys.scn_cur_min_txg >=
2745 	    scn->scn_phys.scn_max_txg) {
2746 		/*
2747 		 * This can happen if this snapshot was created after the
2748 		 * scan started, and we already completed a previous snapshot
2749 		 * that was created after the scan started.  This snapshot
2750 		 * only references blocks with:
2751 		 *
2752 		 *	birth < our ds_creation_txg
2753 		 *	cur_min_txg is no less than ds_creation_txg.
2754 		 *	We have already visited these blocks.
2755 		 * or
2756 		 *	birth > scn_max_txg
2757 		 *	The scan requested not to visit these blocks.
2758 		 *
2759 		 * Subsequent snapshots (and clones) can reference our
2760 		 * blocks, or blocks with even higher birth times.
2761 		 * Therefore we do not need to visit them either,
2762 		 * so we do not add them to the work queue.
2763 		 *
2764 		 * Note that checking for cur_min_txg >= cur_max_txg
2765 		 * is not sufficient, because in that case we may need to
2766 		 * visit subsequent snapshots.  This happens when min_txg > 0,
2767 		 * which raises cur_min_txg.  In this case we will visit
2768 		 * this dataset but skip all of its blocks, because the
2769 		 * rootbp's birth time is < cur_min_txg.  Then we will
2770 		 * add the next snapshots/clones to the work queue.
2771 		 */
2772 		char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2773 		dsl_dataset_name(ds, dsname);
2774 		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2775 		    "cur_min_txg (%llu) >= max_txg (%llu)",
2776 		    (longlong_t)dsobj, dsname,
2777 		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2778 		    (longlong_t)scn->scn_phys.scn_max_txg);
2779 		kmem_free(dsname, MAXNAMELEN);
2780 
2781 		goto out;
2782 	}
2783 
2784 	/*
2785 	 * Only the ZIL in the head (non-snapshot) is valid. Even though
2786 	 * snapshots can have ZIL block pointers (which may be the same
2787 	 * BP as in the head), they must be ignored. In addition, $ORIGIN
2788 	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2789 	 * need to look for a ZIL in it either. So we traverse the ZIL here,
2790 	 * rather than in scan_recurse(), because the regular snapshot
2791 	 * block-sharing rules don't apply to it.
2792 	 */
2793 	if (!dsl_dataset_is_snapshot(ds) &&
2794 	    (dp->dp_origin_snap == NULL ||
2795 	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2796 		objset_t *os;
2797 		if (dmu_objset_from_ds(ds, &os) != 0) {
2798 			goto out;
2799 		}
2800 		dsl_scan_zil(dp, &os->os_zil_header);
2801 	}
2802 
2803 	/*
2804 	 * Iterate over the bps in this ds.
2805 	 */
2806 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
2807 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2808 	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2809 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
2810 
2811 	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2812 	dsl_dataset_name(ds, dsname);
2813 	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2814 	    "suspending=%u",
2815 	    (longlong_t)dsobj, dsname,
2816 	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2817 	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
2818 	    (int)scn->scn_suspending);
2819 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2820 
2821 	if (scn->scn_suspending)
2822 		goto out;
2823 
2824 	/*
2825 	 * We've finished this pass over this dataset.
2826 	 */
2827 
2828 	/*
2829 	 * If we did not completely visit this dataset, do another pass.
2830 	 */
2831 	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2832 		zfs_dbgmsg("incomplete pass on %s; visiting again",
2833 		    dp->dp_spa->spa_name);
2834 		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2835 		scan_ds_queue_insert(scn, ds->ds_object,
2836 		    scn->scn_phys.scn_cur_max_txg);
2837 		goto out;
2838 	}
2839 
2840 	/*
2841 	 * Add descendant datasets to work queue.
2842 	 */
2843 	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2844 		scan_ds_queue_insert(scn,
2845 		    dsl_dataset_phys(ds)->ds_next_snap_obj,
2846 		    dsl_dataset_phys(ds)->ds_creation_txg);
2847 	}
2848 	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2849 		boolean_t usenext = B_FALSE;
2850 		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2851 			uint64_t count;
2852 			/*
2853 			 * A bug in a previous version of the code could
2854 			 * cause upgrade_clones_cb() to not set
2855 			 * ds_next_snap_obj when it should, leading to a
2856 			 * missing entry.  Therefore we can only use the
2857 			 * next_clones_obj when its count is correct.
2858 			 */
2859 			int err = zap_count(dp->dp_meta_objset,
2860 			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2861 			if (err == 0 &&
2862 			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
2863 				usenext = B_TRUE;
2864 		}
2865 
2866 		if (usenext) {
2867 			zap_cursor_t zc;
2868 			zap_attribute_t za;
2869 			for (zap_cursor_init(&zc, dp->dp_meta_objset,
2870 			    dsl_dataset_phys(ds)->ds_next_clones_obj);
2871 			    zap_cursor_retrieve(&zc, &za) == 0;
2872 			    (void) zap_cursor_advance(&zc)) {
2873 				scan_ds_queue_insert(scn,
2874 				    zfs_strtonum(za.za_name, NULL),
2875 				    dsl_dataset_phys(ds)->ds_creation_txg);
2876 			}
2877 			zap_cursor_fini(&zc);
2878 		} else {
2879 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2880 			    enqueue_clones_cb, &ds->ds_object,
2881 			    DS_FIND_CHILDREN));
2882 		}
2883 	}
2884 
2885 out:
2886 	dsl_dataset_rele(ds, FTAG);
2887 }
2888 
2889 static int
2890 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2891 {
2892 	(void) arg;
2893 	dsl_dataset_t *ds;
2894 	int err;
2895 	dsl_scan_t *scn = dp->dp_scan;
2896 
2897 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2898 	if (err)
2899 		return (err);
2900 
2901 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2902 		dsl_dataset_t *prev;
2903 		err = dsl_dataset_hold_obj(dp,
2904 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2905 		if (err) {
2906 			dsl_dataset_rele(ds, FTAG);
2907 			return (err);
2908 		}
2909 
2910 		/*
2911 		 * If this is a clone, we don't need to worry about it for now.
2912 		 */
2913 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2914 			dsl_dataset_rele(ds, FTAG);
2915 			dsl_dataset_rele(prev, FTAG);
2916 			return (0);
2917 		}
2918 		dsl_dataset_rele(ds, FTAG);
2919 		ds = prev;
2920 	}
2921 
2922 	mutex_enter(&scn->scn_queue_lock);
2923 	scan_ds_queue_insert(scn, ds->ds_object,
2924 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2925 	mutex_exit(&scn->scn_queue_lock);
2926 	dsl_dataset_rele(ds, FTAG);
2927 	return (0);
2928 }
2929 
2930 void
2931 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2932     ddt_entry_t *dde, dmu_tx_t *tx)
2933 {
2934 	(void) tx;
2935 	const ddt_key_t *ddk = &dde->dde_key;
2936 	ddt_phys_t *ddp = dde->dde_phys;
2937 	blkptr_t bp;
2938 	zbookmark_phys_t zb = { 0 };
2939 
2940 	if (!dsl_scan_is_running(scn))
2941 		return;
2942 
2943 	/*
2944 	 * This function is special because it is the only thing
2945 	 * that can add scan_io_t's to the vdev scan queues from
2946 	 * outside dsl_scan_sync(). For the most part this is ok
2947 	 * as long as it is called from within syncing context.
2948 	 * However, dsl_scan_sync() expects that no new sio's will
2949 	 * be added between when all the work for a scan is done
2950 	 * and the next txg when the scan is actually marked as
2951 	 * completed. This check ensures we do not issue new sio's
2952 	 * during this period.
2953 	 */
2954 	if (scn->scn_done_txg != 0)
2955 		return;
2956 
2957 	for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2958 		if (ddp->ddp_phys_birth == 0 ||
2959 		    ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2960 			continue;
2961 		ddt_bp_create(checksum, ddk, ddp, &bp);
2962 
2963 		scn->scn_visited_this_txg++;
2964 		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2965 	}
2966 }
2967 
2968 /*
2969  * Scrub/dedup interaction.
2970  *
2971  * If there are N references to a deduped block, we don't want to scrub it
2972  * N times -- ideally, we should scrub it exactly once.
2973  *
2974  * We leverage the fact that the dde's replication class (ddt_class_t)
2975  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2976  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2977  *
2978  * To prevent excess scrubbing, the scrub begins by walking the DDT
2979  * to find all blocks with refcnt > 1, and scrubs each of these once.
2980  * Since there are two replication classes which contain blocks with
2981  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2982  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2983  *
2984  * There would be nothing more to say if a block's refcnt couldn't change
2985  * during a scrub, but of course it can so we must account for changes
2986  * in a block's replication class.
2987  *
2988  * Here's an example of what can occur:
2989  *
2990  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2991  * when visited during the top-down scrub phase, it will be scrubbed twice.
2992  * This negates our scrub optimization, but is otherwise harmless.
2993  *
2994  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2995  * on each visit during the top-down scrub phase, it will never be scrubbed.
2996  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2997  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2998  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2999  * while a scrub is in progress, it scrubs the block right then.
3000  */
3001 static void
3002 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3003 {
3004 	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3005 	ddt_entry_t dde = {{{{0}}}};
3006 	int error;
3007 	uint64_t n = 0;
3008 
3009 	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
3010 		ddt_t *ddt;
3011 
3012 		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3013 			break;
3014 		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3015 		    (longlong_t)ddb->ddb_class,
3016 		    (longlong_t)ddb->ddb_type,
3017 		    (longlong_t)ddb->ddb_checksum,
3018 		    (longlong_t)ddb->ddb_cursor);
3019 
3020 		/* There should be no pending changes to the dedup table */
3021 		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3022 		ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3023 
3024 		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
3025 		n++;
3026 
3027 		if (dsl_scan_check_suspend(scn, NULL))
3028 			break;
3029 	}
3030 
3031 	zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
3032 	    "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name,
3033 	    (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
3034 
3035 	ASSERT(error == 0 || error == ENOENT);
3036 	ASSERT(error != ENOENT ||
3037 	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3038 }
3039 
3040 static uint64_t
3041 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3042 {
3043 	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3044 	if (ds->ds_is_snapshot)
3045 		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3046 	return (smt);
3047 }
3048 
3049 static void
3050 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3051 {
3052 	scan_ds_t *sds;
3053 	dsl_pool_t *dp = scn->scn_dp;
3054 
3055 	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3056 	    scn->scn_phys.scn_ddt_class_max) {
3057 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3058 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3059 		dsl_scan_ddt(scn, tx);
3060 		if (scn->scn_suspending)
3061 			return;
3062 	}
3063 
3064 	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3065 		/* First do the MOS & ORIGIN */
3066 
3067 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3068 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3069 		dsl_scan_visit_rootbp(scn, NULL,
3070 		    &dp->dp_meta_rootbp, tx);
3071 		if (scn->scn_suspending)
3072 			return;
3073 
3074 		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3075 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3076 			    enqueue_cb, NULL, DS_FIND_CHILDREN));
3077 		} else {
3078 			dsl_scan_visitds(scn,
3079 			    dp->dp_origin_snap->ds_object, tx);
3080 		}
3081 		ASSERT(!scn->scn_suspending);
3082 	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
3083 	    ZB_DESTROYED_OBJSET) {
3084 		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3085 		/*
3086 		 * If we were suspended, continue from here. Note if the
3087 		 * ds we were suspended on was deleted, the zb_objset may
3088 		 * be -1, so we will skip this and find a new objset
3089 		 * below.
3090 		 */
3091 		dsl_scan_visitds(scn, dsobj, tx);
3092 		if (scn->scn_suspending)
3093 			return;
3094 	}
3095 
3096 	/*
3097 	 * In case we suspended right at the end of the ds, zero the
3098 	 * bookmark so we don't think that we're still trying to resume.
3099 	 */
3100 	memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3101 
3102 	/*
3103 	 * Keep pulling things out of the dataset avl queue. Updates to the
3104 	 * persistent zap-object-as-queue happen only at checkpoints.
3105 	 */
3106 	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3107 		dsl_dataset_t *ds;
3108 		uint64_t dsobj = sds->sds_dsobj;
3109 		uint64_t txg = sds->sds_txg;
3110 
3111 		/* dequeue and free the ds from the queue */
3112 		scan_ds_queue_remove(scn, dsobj);
3113 		sds = NULL;
3114 
3115 		/* set up min / max txg */
3116 		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3117 		if (txg != 0) {
3118 			scn->scn_phys.scn_cur_min_txg =
3119 			    MAX(scn->scn_phys.scn_min_txg, txg);
3120 		} else {
3121 			scn->scn_phys.scn_cur_min_txg =
3122 			    MAX(scn->scn_phys.scn_min_txg,
3123 			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
3124 		}
3125 		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3126 		dsl_dataset_rele(ds, FTAG);
3127 
3128 		dsl_scan_visitds(scn, dsobj, tx);
3129 		if (scn->scn_suspending)
3130 			return;
3131 	}
3132 
3133 	/* No more objsets to fetch, we're done */
3134 	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3135 	ASSERT0(scn->scn_suspending);
3136 }
3137 
3138 static uint64_t
3139 dsl_scan_count_data_disks(spa_t *spa)
3140 {
3141 	vdev_t *rvd = spa->spa_root_vdev;
3142 	uint64_t i, leaves = 0;
3143 
3144 	for (i = 0; i < rvd->vdev_children; i++) {
3145 		vdev_t *vd = rvd->vdev_child[i];
3146 		if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3147 			continue;
3148 		leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3149 	}
3150 	return (leaves);
3151 }
3152 
3153 static void
3154 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3155 {
3156 	int i;
3157 	uint64_t cur_size = 0;
3158 
3159 	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3160 		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3161 	}
3162 
3163 	q->q_total_zio_size_this_txg += cur_size;
3164 	q->q_zios_this_txg++;
3165 }
3166 
3167 static void
3168 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3169     uint64_t end)
3170 {
3171 	q->q_total_seg_size_this_txg += end - start;
3172 	q->q_segs_this_txg++;
3173 }
3174 
3175 static boolean_t
3176 scan_io_queue_check_suspend(dsl_scan_t *scn)
3177 {
3178 	/* See comment in dsl_scan_check_suspend() */
3179 	uint64_t curr_time_ns = gethrtime();
3180 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3181 	uint64_t sync_time_ns = curr_time_ns -
3182 	    scn->scn_dp->dp_spa->spa_sync_starttime;
3183 	uint64_t dirty_min_bytes = zfs_dirty_data_max *
3184 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
3185 	uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3186 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3187 
3188 	return ((NSEC2MSEC(scan_time_ns) > mintime &&
3189 	    (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3190 	    txg_sync_waiting(scn->scn_dp) ||
3191 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3192 	    spa_shutting_down(scn->scn_dp->dp_spa));
3193 }
3194 
3195 /*
3196  * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3197  * disk. This consumes the io_list and frees the scan_io_t's. This is
3198  * called when emptying queues, either when we're up against the memory
3199  * limit or when we have finished scanning. Returns B_TRUE if we stopped
3200  * processing the list before we finished. Any sios that were not issued
3201  * will remain in the io_list.
3202  */
3203 static boolean_t
3204 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3205 {
3206 	dsl_scan_t *scn = queue->q_scn;
3207 	scan_io_t *sio;
3208 	boolean_t suspended = B_FALSE;
3209 
3210 	while ((sio = list_head(io_list)) != NULL) {
3211 		blkptr_t bp;
3212 
3213 		if (scan_io_queue_check_suspend(scn)) {
3214 			suspended = B_TRUE;
3215 			break;
3216 		}
3217 
3218 		sio2bp(sio, &bp);
3219 		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3220 		    &sio->sio_zb, queue);
3221 		(void) list_remove_head(io_list);
3222 		scan_io_queues_update_zio_stats(queue, &bp);
3223 		sio_free(sio);
3224 	}
3225 	return (suspended);
3226 }
3227 
3228 /*
3229  * This function removes sios from an IO queue which reside within a given
3230  * range_seg_t and inserts them (in offset order) into a list. Note that
3231  * we only ever return a maximum of 32 sios at once. If there are more sios
3232  * to process within this segment that did not make it onto the list we
3233  * return B_TRUE and otherwise B_FALSE.
3234  */
3235 static boolean_t
3236 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
3237 {
3238 	scan_io_t *srch_sio, *sio, *next_sio;
3239 	avl_index_t idx;
3240 	uint_t num_sios = 0;
3241 	int64_t bytes_issued = 0;
3242 
3243 	ASSERT(rs != NULL);
3244 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3245 
3246 	srch_sio = sio_alloc(1);
3247 	srch_sio->sio_nr_dvas = 1;
3248 	SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
3249 
3250 	/*
3251 	 * The exact start of the extent might not contain any matching zios,
3252 	 * so if that's the case, examine the next one in the tree.
3253 	 */
3254 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3255 	sio_free(srch_sio);
3256 
3257 	if (sio == NULL)
3258 		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3259 
3260 	while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3261 	    queue->q_exts_by_addr) && num_sios <= 32) {
3262 		ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
3263 		    queue->q_exts_by_addr));
3264 		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
3265 		    queue->q_exts_by_addr));
3266 
3267 		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3268 		avl_remove(&queue->q_sios_by_addr, sio);
3269 		if (avl_is_empty(&queue->q_sios_by_addr))
3270 			atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3271 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
3272 
3273 		bytes_issued += SIO_GET_ASIZE(sio);
3274 		num_sios++;
3275 		list_insert_tail(list, sio);
3276 		sio = next_sio;
3277 	}
3278 
3279 	/*
3280 	 * We limit the number of sios we process at once to 32 to avoid
3281 	 * biting off more than we can chew. If we didn't take everything
3282 	 * in the segment we update it to reflect the work we were able to
3283 	 * complete. Otherwise, we remove it from the range tree entirely.
3284 	 */
3285 	if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3286 	    queue->q_exts_by_addr)) {
3287 		range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3288 		    -bytes_issued);
3289 		range_tree_resize_segment(queue->q_exts_by_addr, rs,
3290 		    SIO_GET_OFFSET(sio), rs_get_end(rs,
3291 		    queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3292 		queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3293 		return (B_TRUE);
3294 	} else {
3295 		uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
3296 		uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
3297 		range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
3298 		queue->q_last_ext_addr = -1;
3299 		return (B_FALSE);
3300 	}
3301 }
3302 
3303 /*
3304  * This is called from the queue emptying thread and selects the next
3305  * extent from which we are to issue I/Os. The behavior of this function
3306  * depends on the state of the scan, the current memory consumption and
3307  * whether or not we are performing a scan shutdown.
3308  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3309  * 	needs to perform a checkpoint
3310  * 2) We select the largest available extent if we are up against the
3311  * 	memory limit.
3312  * 3) Otherwise we don't select any extents.
3313  */
3314 static range_seg_t *
3315 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3316 {
3317 	dsl_scan_t *scn = queue->q_scn;
3318 	range_tree_t *rt = queue->q_exts_by_addr;
3319 
3320 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3321 	ASSERT(scn->scn_is_sorted);
3322 
3323 	if (!scn->scn_checkpointing && !scn->scn_clearing)
3324 		return (NULL);
3325 
3326 	/*
3327 	 * During normal clearing, we want to issue our largest segments
3328 	 * first, keeping IO as sequential as possible, and leaving the
3329 	 * smaller extents for later with the hope that they might eventually
3330 	 * grow to larger sequential segments. However, when the scan is
3331 	 * checkpointing, no new extents will be added to the sorting queue,
3332 	 * so the way we are sorted now is as good as it will ever get.
3333 	 * In this case, we instead switch to issuing extents in LBA order.
3334 	 */
3335 	if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3336 	    zfs_scan_issue_strategy == 1)
3337 		return (range_tree_first(rt));
3338 
3339 	/*
3340 	 * Try to continue previous extent if it is not completed yet.  After
3341 	 * shrink in scan_io_queue_gather() it may no longer be the best, but
3342 	 * otherwise we leave shorter remnant every txg.
3343 	 */
3344 	uint64_t start;
3345 	uint64_t size = 1ULL << rt->rt_shift;
3346 	range_seg_t *addr_rs;
3347 	if (queue->q_last_ext_addr != -1) {
3348 		start = queue->q_last_ext_addr;
3349 		addr_rs = range_tree_find(rt, start, size);
3350 		if (addr_rs != NULL)
3351 			return (addr_rs);
3352 	}
3353 
3354 	/*
3355 	 * Nothing to continue, so find new best extent.
3356 	 */
3357 	uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3358 	if (v == NULL)
3359 		return (NULL);
3360 	queue->q_last_ext_addr = start = *v << rt->rt_shift;
3361 
3362 	/*
3363 	 * We need to get the original entry in the by_addr tree so we can
3364 	 * modify it.
3365 	 */
3366 	addr_rs = range_tree_find(rt, start, size);
3367 	ASSERT3P(addr_rs, !=, NULL);
3368 	ASSERT3U(rs_get_start(addr_rs, rt), ==, start);
3369 	ASSERT3U(rs_get_end(addr_rs, rt), >, start);
3370 	return (addr_rs);
3371 }
3372 
3373 static void
3374 scan_io_queues_run_one(void *arg)
3375 {
3376 	dsl_scan_io_queue_t *queue = arg;
3377 	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3378 	boolean_t suspended = B_FALSE;
3379 	range_seg_t *rs;
3380 	scan_io_t *sio;
3381 	zio_t *zio;
3382 	list_t sio_list;
3383 
3384 	ASSERT(queue->q_scn->scn_is_sorted);
3385 
3386 	list_create(&sio_list, sizeof (scan_io_t),
3387 	    offsetof(scan_io_t, sio_nodes.sio_list_node));
3388 	zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3389 	    NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3390 	mutex_enter(q_lock);
3391 	queue->q_zio = zio;
3392 
3393 	/* Calculate maximum in-flight bytes for this vdev. */
3394 	queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3395 	    (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3396 
3397 	/* reset per-queue scan statistics for this txg */
3398 	queue->q_total_seg_size_this_txg = 0;
3399 	queue->q_segs_this_txg = 0;
3400 	queue->q_total_zio_size_this_txg = 0;
3401 	queue->q_zios_this_txg = 0;
3402 
3403 	/* loop until we run out of time or sios */
3404 	while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3405 		uint64_t seg_start = 0, seg_end = 0;
3406 		boolean_t more_left;
3407 
3408 		ASSERT(list_is_empty(&sio_list));
3409 
3410 		/* loop while we still have sios left to process in this rs */
3411 		do {
3412 			scan_io_t *first_sio, *last_sio;
3413 
3414 			/*
3415 			 * We have selected which extent needs to be
3416 			 * processed next. Gather up the corresponding sios.
3417 			 */
3418 			more_left = scan_io_queue_gather(queue, rs, &sio_list);
3419 			ASSERT(!list_is_empty(&sio_list));
3420 			first_sio = list_head(&sio_list);
3421 			last_sio = list_tail(&sio_list);
3422 
3423 			seg_end = SIO_GET_END_OFFSET(last_sio);
3424 			if (seg_start == 0)
3425 				seg_start = SIO_GET_OFFSET(first_sio);
3426 
3427 			/*
3428 			 * Issuing sios can take a long time so drop the
3429 			 * queue lock. The sio queue won't be updated by
3430 			 * other threads since we're in syncing context so
3431 			 * we can be sure that our trees will remain exactly
3432 			 * as we left them.
3433 			 */
3434 			mutex_exit(q_lock);
3435 			suspended = scan_io_queue_issue(queue, &sio_list);
3436 			mutex_enter(q_lock);
3437 
3438 			if (suspended)
3439 				break;
3440 		} while (more_left);
3441 
3442 		/* update statistics for debugging purposes */
3443 		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3444 
3445 		if (suspended)
3446 			break;
3447 	}
3448 
3449 	/*
3450 	 * If we were suspended in the middle of processing,
3451 	 * requeue any unfinished sios and exit.
3452 	 */
3453 	while ((sio = list_remove_head(&sio_list)) != NULL)
3454 		scan_io_queue_insert_impl(queue, sio);
3455 
3456 	queue->q_zio = NULL;
3457 	mutex_exit(q_lock);
3458 	zio_nowait(zio);
3459 	list_destroy(&sio_list);
3460 }
3461 
3462 /*
3463  * Performs an emptying run on all scan queues in the pool. This just
3464  * punches out one thread per top-level vdev, each of which processes
3465  * only that vdev's scan queue. We can parallelize the I/O here because
3466  * we know that each queue's I/Os only affect its own top-level vdev.
3467  *
3468  * This function waits for the queue runs to complete, and must be
3469  * called from dsl_scan_sync (or in general, syncing context).
3470  */
3471 static void
3472 scan_io_queues_run(dsl_scan_t *scn)
3473 {
3474 	spa_t *spa = scn->scn_dp->dp_spa;
3475 
3476 	ASSERT(scn->scn_is_sorted);
3477 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3478 
3479 	if (scn->scn_queues_pending == 0)
3480 		return;
3481 
3482 	if (scn->scn_taskq == NULL) {
3483 		int nthreads = spa->spa_root_vdev->vdev_children;
3484 
3485 		/*
3486 		 * We need to make this taskq *always* execute as many
3487 		 * threads in parallel as we have top-level vdevs and no
3488 		 * less, otherwise strange serialization of the calls to
3489 		 * scan_io_queues_run_one can occur during spa_sync runs
3490 		 * and that significantly impacts performance.
3491 		 */
3492 		scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3493 		    minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3494 	}
3495 
3496 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3497 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3498 
3499 		mutex_enter(&vd->vdev_scan_io_queue_lock);
3500 		if (vd->vdev_scan_io_queue != NULL) {
3501 			VERIFY(taskq_dispatch(scn->scn_taskq,
3502 			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
3503 			    TQ_SLEEP) != TASKQID_INVALID);
3504 		}
3505 		mutex_exit(&vd->vdev_scan_io_queue_lock);
3506 	}
3507 
3508 	/*
3509 	 * Wait for the queues to finish issuing their IOs for this run
3510 	 * before we return. There may still be IOs in flight at this
3511 	 * point.
3512 	 */
3513 	taskq_wait(scn->scn_taskq);
3514 }
3515 
3516 static boolean_t
3517 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3518 {
3519 	uint64_t elapsed_nanosecs;
3520 
3521 	if (zfs_recover)
3522 		return (B_FALSE);
3523 
3524 	if (zfs_async_block_max_blocks != 0 &&
3525 	    scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3526 		return (B_TRUE);
3527 	}
3528 
3529 	if (zfs_max_async_dedup_frees != 0 &&
3530 	    scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3531 		return (B_TRUE);
3532 	}
3533 
3534 	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3535 	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3536 	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3537 	    txg_sync_waiting(scn->scn_dp)) ||
3538 	    spa_shutting_down(scn->scn_dp->dp_spa));
3539 }
3540 
3541 static int
3542 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3543 {
3544 	dsl_scan_t *scn = arg;
3545 
3546 	if (!scn->scn_is_bptree ||
3547 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3548 		if (dsl_scan_async_block_should_pause(scn))
3549 			return (SET_ERROR(ERESTART));
3550 	}
3551 
3552 	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3553 	    dmu_tx_get_txg(tx), bp, 0));
3554 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3555 	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3556 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3557 	scn->scn_visited_this_txg++;
3558 	if (BP_GET_DEDUP(bp))
3559 		scn->scn_dedup_frees_this_txg++;
3560 	return (0);
3561 }
3562 
3563 static void
3564 dsl_scan_update_stats(dsl_scan_t *scn)
3565 {
3566 	spa_t *spa = scn->scn_dp->dp_spa;
3567 	uint64_t i;
3568 	uint64_t seg_size_total = 0, zio_size_total = 0;
3569 	uint64_t seg_count_total = 0, zio_count_total = 0;
3570 
3571 	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3572 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3573 		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3574 
3575 		if (queue == NULL)
3576 			continue;
3577 
3578 		seg_size_total += queue->q_total_seg_size_this_txg;
3579 		zio_size_total += queue->q_total_zio_size_this_txg;
3580 		seg_count_total += queue->q_segs_this_txg;
3581 		zio_count_total += queue->q_zios_this_txg;
3582 	}
3583 
3584 	if (seg_count_total == 0 || zio_count_total == 0) {
3585 		scn->scn_avg_seg_size_this_txg = 0;
3586 		scn->scn_avg_zio_size_this_txg = 0;
3587 		scn->scn_segs_this_txg = 0;
3588 		scn->scn_zios_this_txg = 0;
3589 		return;
3590 	}
3591 
3592 	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3593 	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3594 	scn->scn_segs_this_txg = seg_count_total;
3595 	scn->scn_zios_this_txg = zio_count_total;
3596 }
3597 
3598 static int
3599 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3600     dmu_tx_t *tx)
3601 {
3602 	ASSERT(!bp_freed);
3603 	return (dsl_scan_free_block_cb(arg, bp, tx));
3604 }
3605 
3606 static int
3607 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3608     dmu_tx_t *tx)
3609 {
3610 	ASSERT(!bp_freed);
3611 	dsl_scan_t *scn = arg;
3612 	const dva_t *dva = &bp->blk_dva[0];
3613 
3614 	if (dsl_scan_async_block_should_pause(scn))
3615 		return (SET_ERROR(ERESTART));
3616 
3617 	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3618 	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3619 	    DVA_GET_ASIZE(dva), tx);
3620 	scn->scn_visited_this_txg++;
3621 	return (0);
3622 }
3623 
3624 boolean_t
3625 dsl_scan_active(dsl_scan_t *scn)
3626 {
3627 	spa_t *spa = scn->scn_dp->dp_spa;
3628 	uint64_t used = 0, comp, uncomp;
3629 	boolean_t clones_left;
3630 
3631 	if (spa->spa_load_state != SPA_LOAD_NONE)
3632 		return (B_FALSE);
3633 	if (spa_shutting_down(spa))
3634 		return (B_FALSE);
3635 	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3636 	    (scn->scn_async_destroying && !scn->scn_async_stalled))
3637 		return (B_TRUE);
3638 
3639 	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3640 		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3641 		    &used, &comp, &uncomp);
3642 	}
3643 	clones_left = spa_livelist_delete_check(spa);
3644 	return ((used != 0) || (clones_left));
3645 }
3646 
3647 boolean_t
3648 dsl_errorscrub_active(dsl_scan_t *scn)
3649 {
3650 	spa_t *spa = scn->scn_dp->dp_spa;
3651 	if (spa->spa_load_state != SPA_LOAD_NONE)
3652 		return (B_FALSE);
3653 	if (spa_shutting_down(spa))
3654 		return (B_FALSE);
3655 	if (dsl_errorscrubbing(scn->scn_dp))
3656 		return (B_TRUE);
3657 	return (B_FALSE);
3658 }
3659 
3660 static boolean_t
3661 dsl_scan_check_deferred(vdev_t *vd)
3662 {
3663 	boolean_t need_resilver = B_FALSE;
3664 
3665 	for (int c = 0; c < vd->vdev_children; c++) {
3666 		need_resilver |=
3667 		    dsl_scan_check_deferred(vd->vdev_child[c]);
3668 	}
3669 
3670 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3671 	    !vd->vdev_ops->vdev_op_leaf)
3672 		return (need_resilver);
3673 
3674 	if (!vd->vdev_resilver_deferred)
3675 		need_resilver = B_TRUE;
3676 
3677 	return (need_resilver);
3678 }
3679 
3680 static boolean_t
3681 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3682     uint64_t phys_birth)
3683 {
3684 	vdev_t *vd;
3685 
3686 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3687 
3688 	if (vd->vdev_ops == &vdev_indirect_ops) {
3689 		/*
3690 		 * The indirect vdev can point to multiple
3691 		 * vdevs.  For simplicity, always create
3692 		 * the resilver zio_t. zio_vdev_io_start()
3693 		 * will bypass the child resilver i/o's if
3694 		 * they are on vdevs that don't have DTL's.
3695 		 */
3696 		return (B_TRUE);
3697 	}
3698 
3699 	if (DVA_GET_GANG(dva)) {
3700 		/*
3701 		 * Gang members may be spread across multiple
3702 		 * vdevs, so the best estimate we have is the
3703 		 * scrub range, which has already been checked.
3704 		 * XXX -- it would be better to change our
3705 		 * allocation policy to ensure that all
3706 		 * gang members reside on the same vdev.
3707 		 */
3708 		return (B_TRUE);
3709 	}
3710 
3711 	/*
3712 	 * Check if the top-level vdev must resilver this offset.
3713 	 * When the offset does not intersect with a dirty leaf DTL
3714 	 * then it may be possible to skip the resilver IO.  The psize
3715 	 * is provided instead of asize to simplify the check for RAIDZ.
3716 	 */
3717 	if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3718 		return (B_FALSE);
3719 
3720 	/*
3721 	 * Check that this top-level vdev has a device under it which
3722 	 * is resilvering and is not deferred.
3723 	 */
3724 	if (!dsl_scan_check_deferred(vd))
3725 		return (B_FALSE);
3726 
3727 	return (B_TRUE);
3728 }
3729 
3730 static int
3731 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3732 {
3733 	dsl_scan_t *scn = dp->dp_scan;
3734 	spa_t *spa = dp->dp_spa;
3735 	int err = 0;
3736 
3737 	if (spa_suspend_async_destroy(spa))
3738 		return (0);
3739 
3740 	if (zfs_free_bpobj_enabled &&
3741 	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3742 		scn->scn_is_bptree = B_FALSE;
3743 		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3744 		scn->scn_zio_root = zio_root(spa, NULL,
3745 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3746 		err = bpobj_iterate(&dp->dp_free_bpobj,
3747 		    bpobj_dsl_scan_free_block_cb, scn, tx);
3748 		VERIFY0(zio_wait(scn->scn_zio_root));
3749 		scn->scn_zio_root = NULL;
3750 
3751 		if (err != 0 && err != ERESTART)
3752 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3753 	}
3754 
3755 	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3756 		ASSERT(scn->scn_async_destroying);
3757 		scn->scn_is_bptree = B_TRUE;
3758 		scn->scn_zio_root = zio_root(spa, NULL,
3759 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3760 		err = bptree_iterate(dp->dp_meta_objset,
3761 		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3762 		VERIFY0(zio_wait(scn->scn_zio_root));
3763 		scn->scn_zio_root = NULL;
3764 
3765 		if (err == EIO || err == ECKSUM) {
3766 			err = 0;
3767 		} else if (err != 0 && err != ERESTART) {
3768 			zfs_panic_recover("error %u from "
3769 			    "traverse_dataset_destroyed()", err);
3770 		}
3771 
3772 		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3773 			/* finished; deactivate async destroy feature */
3774 			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3775 			ASSERT(!spa_feature_is_active(spa,
3776 			    SPA_FEATURE_ASYNC_DESTROY));
3777 			VERIFY0(zap_remove(dp->dp_meta_objset,
3778 			    DMU_POOL_DIRECTORY_OBJECT,
3779 			    DMU_POOL_BPTREE_OBJ, tx));
3780 			VERIFY0(bptree_free(dp->dp_meta_objset,
3781 			    dp->dp_bptree_obj, tx));
3782 			dp->dp_bptree_obj = 0;
3783 			scn->scn_async_destroying = B_FALSE;
3784 			scn->scn_async_stalled = B_FALSE;
3785 		} else {
3786 			/*
3787 			 * If we didn't make progress, mark the async
3788 			 * destroy as stalled, so that we will not initiate
3789 			 * a spa_sync() on its behalf.  Note that we only
3790 			 * check this if we are not finished, because if the
3791 			 * bptree had no blocks for us to visit, we can
3792 			 * finish without "making progress".
3793 			 */
3794 			scn->scn_async_stalled =
3795 			    (scn->scn_visited_this_txg == 0);
3796 		}
3797 	}
3798 	if (scn->scn_visited_this_txg) {
3799 		zfs_dbgmsg("freed %llu blocks in %llums from "
3800 		    "free_bpobj/bptree on %s in txg %llu; err=%u",
3801 		    (longlong_t)scn->scn_visited_this_txg,
3802 		    (longlong_t)
3803 		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3804 		    spa->spa_name, (longlong_t)tx->tx_txg, err);
3805 		scn->scn_visited_this_txg = 0;
3806 		scn->scn_dedup_frees_this_txg = 0;
3807 
3808 		/*
3809 		 * Write out changes to the DDT and the BRT that may be required
3810 		 * as a result of the blocks freed.  This ensures that the DDT
3811 		 * and the BRT are clean when a scrub/resilver runs.
3812 		 */
3813 		ddt_sync(spa, tx->tx_txg);
3814 		brt_sync(spa, tx->tx_txg);
3815 	}
3816 	if (err != 0)
3817 		return (err);
3818 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3819 	    zfs_free_leak_on_eio &&
3820 	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3821 	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3822 	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3823 		/*
3824 		 * We have finished background destroying, but there is still
3825 		 * some space left in the dp_free_dir. Transfer this leaked
3826 		 * space to the dp_leak_dir.
3827 		 */
3828 		if (dp->dp_leak_dir == NULL) {
3829 			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3830 			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3831 			    LEAK_DIR_NAME, tx);
3832 			VERIFY0(dsl_pool_open_special_dir(dp,
3833 			    LEAK_DIR_NAME, &dp->dp_leak_dir));
3834 			rrw_exit(&dp->dp_config_rwlock, FTAG);
3835 		}
3836 		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3837 		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3838 		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3839 		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3840 		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3841 		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3842 		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3843 		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3844 	}
3845 
3846 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3847 	    !spa_livelist_delete_check(spa)) {
3848 		/* finished; verify that space accounting went to zero */
3849 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3850 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3851 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3852 	}
3853 
3854 	spa_notify_waiters(spa);
3855 
3856 	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3857 	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3858 	    DMU_POOL_OBSOLETE_BPOBJ));
3859 	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3860 		ASSERT(spa_feature_is_active(dp->dp_spa,
3861 		    SPA_FEATURE_OBSOLETE_COUNTS));
3862 
3863 		scn->scn_is_bptree = B_FALSE;
3864 		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3865 		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3866 		    dsl_scan_obsolete_block_cb, scn, tx);
3867 		if (err != 0 && err != ERESTART)
3868 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3869 
3870 		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3871 			dsl_pool_destroy_obsolete_bpobj(dp, tx);
3872 	}
3873 	return (0);
3874 }
3875 
3876 static void
3877 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3878 {
3879 	zb->zb_objset = zfs_strtonum(buf, &buf);
3880 	ASSERT(*buf == ':');
3881 	zb->zb_object = zfs_strtonum(buf + 1, &buf);
3882 	ASSERT(*buf == ':');
3883 	zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3884 	ASSERT(*buf == ':');
3885 	zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3886 	ASSERT(*buf == '\0');
3887 }
3888 
3889 static void
3890 name_to_object(char *buf, uint64_t *obj)
3891 {
3892 	*obj = zfs_strtonum(buf, &buf);
3893 	ASSERT(*buf == '\0');
3894 }
3895 
3896 static void
3897 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3898 {
3899 	dsl_pool_t *dp = scn->scn_dp;
3900 	dsl_dataset_t *ds;
3901 	objset_t *os;
3902 	if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3903 		return;
3904 
3905 	if (dmu_objset_from_ds(ds, &os) != 0) {
3906 		dsl_dataset_rele(ds, FTAG);
3907 		return;
3908 	}
3909 
3910 	/*
3911 	 * If the key is not loaded dbuf_dnode_findbp() will error out with
3912 	 * EACCES. However in that case dnode_hold() will eventually call
3913 	 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3914 	 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3915 	 * Avoid this by checking here if the keys are loaded, if not return.
3916 	 * If the keys are not loaded the head_errlog feature is meaningless
3917 	 * as we cannot figure out the birth txg of the block pointer.
3918 	 */
3919 	if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3920 	    ZFS_KEYSTATUS_UNAVAILABLE) {
3921 		dsl_dataset_rele(ds, FTAG);
3922 		return;
3923 	}
3924 
3925 	dnode_t *dn;
3926 	blkptr_t bp;
3927 
3928 	if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3929 		dsl_dataset_rele(ds, FTAG);
3930 		return;
3931 	}
3932 
3933 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
3934 	int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
3935 	    NULL);
3936 
3937 	if (error) {
3938 		rw_exit(&dn->dn_struct_rwlock);
3939 		dnode_rele(dn, FTAG);
3940 		dsl_dataset_rele(ds, FTAG);
3941 		return;
3942 	}
3943 
3944 	if (!error && BP_IS_HOLE(&bp)) {
3945 		rw_exit(&dn->dn_struct_rwlock);
3946 		dnode_rele(dn, FTAG);
3947 		dsl_dataset_rele(ds, FTAG);
3948 		return;
3949 	}
3950 
3951 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
3952 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
3953 
3954 	/* If it's an intent log block, failure is expected. */
3955 	if (zb.zb_level == ZB_ZIL_LEVEL)
3956 		zio_flags |= ZIO_FLAG_SPECULATIVE;
3957 
3958 	ASSERT(!BP_IS_EMBEDDED(&bp));
3959 	scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
3960 	rw_exit(&dn->dn_struct_rwlock);
3961 	dnode_rele(dn, FTAG);
3962 	dsl_dataset_rele(ds, FTAG);
3963 }
3964 
3965 /*
3966  * We keep track of the scrubbed error blocks in "count". This will be used
3967  * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
3968  * function is modelled after check_filesystem().
3969  */
3970 static int
3971 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
3972     int *count)
3973 {
3974 	dsl_dataset_t *ds;
3975 	dsl_pool_t *dp = spa->spa_dsl_pool;
3976 	dsl_scan_t *scn = dp->dp_scan;
3977 
3978 	int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
3979 	if (error != 0)
3980 		return (error);
3981 
3982 	uint64_t latest_txg;
3983 	uint64_t txg_to_consider = spa->spa_syncing_txg;
3984 	boolean_t check_snapshot = B_TRUE;
3985 
3986 	error = find_birth_txg(ds, zep, &latest_txg);
3987 
3988 	/*
3989 	 * If find_birth_txg() errors out, then err on the side of caution and
3990 	 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
3991 	 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
3992 	 * scrub all objects.
3993 	 */
3994 	if (error == 0 && zep->zb_birth == latest_txg) {
3995 		/* Block neither free nor re written. */
3996 		zbookmark_phys_t zb;
3997 		zep_to_zb(fs, zep, &zb);
3998 		scn->scn_zio_root = zio_root(spa, NULL, NULL,
3999 		    ZIO_FLAG_CANFAIL);
4000 		/* We have already acquired the config lock for spa */
4001 		read_by_block_level(scn, zb);
4002 
4003 		(void) zio_wait(scn->scn_zio_root);
4004 		scn->scn_zio_root = NULL;
4005 
4006 		scn->errorscrub_phys.dep_examined++;
4007 		scn->errorscrub_phys.dep_to_examine--;
4008 		(*count)++;
4009 		if ((*count) == zfs_scrub_error_blocks_per_txg ||
4010 		    dsl_error_scrub_check_suspend(scn, &zb)) {
4011 			dsl_dataset_rele(ds, FTAG);
4012 			return (SET_ERROR(EFAULT));
4013 		}
4014 
4015 		check_snapshot = B_FALSE;
4016 	} else if (error == 0) {
4017 		txg_to_consider = latest_txg;
4018 	}
4019 
4020 	/*
4021 	 * Retrieve the number of snapshots if the dataset is not a snapshot.
4022 	 */
4023 	uint64_t snap_count = 0;
4024 	if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4025 
4026 		error = zap_count(spa->spa_meta_objset,
4027 		    dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4028 
4029 		if (error != 0) {
4030 			dsl_dataset_rele(ds, FTAG);
4031 			return (error);
4032 		}
4033 	}
4034 
4035 	if (snap_count == 0) {
4036 		/* Filesystem without snapshots. */
4037 		dsl_dataset_rele(ds, FTAG);
4038 		return (0);
4039 	}
4040 
4041 	uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4042 	uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4043 
4044 	dsl_dataset_rele(ds, FTAG);
4045 
4046 	/* Check only snapshots created from this file system. */
4047 	while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4048 	    snap_obj_txg <= txg_to_consider) {
4049 
4050 		error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4051 		if (error != 0)
4052 			return (error);
4053 
4054 		if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4055 			snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4056 			snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4057 			dsl_dataset_rele(ds, FTAG);
4058 			continue;
4059 		}
4060 
4061 		boolean_t affected = B_TRUE;
4062 		if (check_snapshot) {
4063 			uint64_t blk_txg;
4064 			error = find_birth_txg(ds, zep, &blk_txg);
4065 
4066 			/*
4067 			 * Scrub the snapshot also when zb_birth == 0 or when
4068 			 * find_birth_txg() returns an error.
4069 			 */
4070 			affected = (error == 0 && zep->zb_birth == blk_txg) ||
4071 			    (error != 0) || (zep->zb_birth == 0);
4072 		}
4073 
4074 		/* Scrub snapshots. */
4075 		if (affected) {
4076 			zbookmark_phys_t zb;
4077 			zep_to_zb(snap_obj, zep, &zb);
4078 			scn->scn_zio_root = zio_root(spa, NULL, NULL,
4079 			    ZIO_FLAG_CANFAIL);
4080 			/* We have already acquired the config lock for spa */
4081 			read_by_block_level(scn, zb);
4082 
4083 			(void) zio_wait(scn->scn_zio_root);
4084 			scn->scn_zio_root = NULL;
4085 
4086 			scn->errorscrub_phys.dep_examined++;
4087 			scn->errorscrub_phys.dep_to_examine--;
4088 			(*count)++;
4089 			if ((*count) == zfs_scrub_error_blocks_per_txg ||
4090 			    dsl_error_scrub_check_suspend(scn, &zb)) {
4091 				dsl_dataset_rele(ds, FTAG);
4092 				return (EFAULT);
4093 			}
4094 		}
4095 		snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4096 		snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4097 		dsl_dataset_rele(ds, FTAG);
4098 	}
4099 	return (0);
4100 }
4101 
4102 void
4103 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4104 {
4105 	spa_t *spa = dp->dp_spa;
4106 	dsl_scan_t *scn = dp->dp_scan;
4107 
4108 	/*
4109 	 * Only process scans in sync pass 1.
4110 	 */
4111 
4112 	if (spa_sync_pass(spa) > 1)
4113 		return;
4114 
4115 	/*
4116 	 * If the spa is shutting down, then stop scanning. This will
4117 	 * ensure that the scan does not dirty any new data during the
4118 	 * shutdown phase.
4119 	 */
4120 	if (spa_shutting_down(spa))
4121 		return;
4122 
4123 	if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4124 		return;
4125 	}
4126 
4127 	if (dsl_scan_resilvering(scn->scn_dp)) {
4128 		/* cancel the error scrub if resilver started */
4129 		dsl_scan_cancel(scn->scn_dp);
4130 		return;
4131 	}
4132 
4133 	spa->spa_scrub_active = B_TRUE;
4134 	scn->scn_sync_start_time = gethrtime();
4135 
4136 	/*
4137 	 * zfs_scan_suspend_progress can be set to disable scrub progress.
4138 	 * See more detailed comment in dsl_scan_sync().
4139 	 */
4140 	if (zfs_scan_suspend_progress) {
4141 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4142 		int mintime = zfs_scrub_min_time_ms;
4143 
4144 		while (zfs_scan_suspend_progress &&
4145 		    !txg_sync_waiting(scn->scn_dp) &&
4146 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
4147 		    NSEC2MSEC(scan_time_ns) < mintime) {
4148 			delay(hz);
4149 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4150 		}
4151 		return;
4152 	}
4153 
4154 	int i = 0;
4155 	zap_attribute_t *za;
4156 	zbookmark_phys_t *zb;
4157 	boolean_t limit_exceeded = B_FALSE;
4158 
4159 	za = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP);
4160 	zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4161 
4162 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4163 		for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4164 		    zap_cursor_advance(&scn->errorscrub_cursor)) {
4165 			name_to_bookmark(za->za_name, zb);
4166 
4167 			scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4168 			    NULL, ZIO_FLAG_CANFAIL);
4169 			dsl_pool_config_enter(dp, FTAG);
4170 			read_by_block_level(scn, *zb);
4171 			dsl_pool_config_exit(dp, FTAG);
4172 
4173 			(void) zio_wait(scn->scn_zio_root);
4174 			scn->scn_zio_root = NULL;
4175 
4176 			scn->errorscrub_phys.dep_examined += 1;
4177 			scn->errorscrub_phys.dep_to_examine -= 1;
4178 			i++;
4179 			if (i == zfs_scrub_error_blocks_per_txg ||
4180 			    dsl_error_scrub_check_suspend(scn, zb)) {
4181 				limit_exceeded = B_TRUE;
4182 				break;
4183 			}
4184 		}
4185 
4186 		if (!limit_exceeded)
4187 			dsl_errorscrub_done(scn, B_TRUE, tx);
4188 
4189 		dsl_errorscrub_sync_state(scn, tx);
4190 		kmem_free(za, sizeof (*za));
4191 		kmem_free(zb, sizeof (*zb));
4192 		return;
4193 	}
4194 
4195 	int error = 0;
4196 	for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4197 	    zap_cursor_advance(&scn->errorscrub_cursor)) {
4198 
4199 		zap_cursor_t *head_ds_cursor;
4200 		zap_attribute_t *head_ds_attr;
4201 		zbookmark_err_phys_t head_ds_block;
4202 
4203 		head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4204 		head_ds_attr = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP);
4205 
4206 		uint64_t head_ds_err_obj = za->za_first_integer;
4207 		uint64_t head_ds;
4208 		name_to_object(za->za_name, &head_ds);
4209 		boolean_t config_held = B_FALSE;
4210 		uint64_t top_affected_fs;
4211 
4212 		for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4213 		    head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4214 		    head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4215 
4216 			name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4217 
4218 			/*
4219 			 * In case we are called from spa_sync the pool
4220 			 * config is already held.
4221 			 */
4222 			if (!dsl_pool_config_held(dp)) {
4223 				dsl_pool_config_enter(dp, FTAG);
4224 				config_held = B_TRUE;
4225 			}
4226 
4227 			error = find_top_affected_fs(spa,
4228 			    head_ds, &head_ds_block, &top_affected_fs);
4229 			if (error)
4230 				break;
4231 
4232 			error = scrub_filesystem(spa, top_affected_fs,
4233 			    &head_ds_block, &i);
4234 
4235 			if (error == SET_ERROR(EFAULT)) {
4236 				limit_exceeded = B_TRUE;
4237 				break;
4238 			}
4239 		}
4240 
4241 		zap_cursor_fini(head_ds_cursor);
4242 		kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4243 		kmem_free(head_ds_attr, sizeof (*head_ds_attr));
4244 
4245 		if (config_held)
4246 			dsl_pool_config_exit(dp, FTAG);
4247 	}
4248 
4249 	kmem_free(za, sizeof (*za));
4250 	kmem_free(zb, sizeof (*zb));
4251 	if (!limit_exceeded)
4252 		dsl_errorscrub_done(scn, B_TRUE, tx);
4253 
4254 	dsl_errorscrub_sync_state(scn, tx);
4255 }
4256 
4257 /*
4258  * This is the primary entry point for scans that is called from syncing
4259  * context. Scans must happen entirely during syncing context so that we
4260  * can guarantee that blocks we are currently scanning will not change out
4261  * from under us. While a scan is active, this function controls how quickly
4262  * transaction groups proceed, instead of the normal handling provided by
4263  * txg_sync_thread().
4264  */
4265 void
4266 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4267 {
4268 	int err = 0;
4269 	dsl_scan_t *scn = dp->dp_scan;
4270 	spa_t *spa = dp->dp_spa;
4271 	state_sync_type_t sync_type = SYNC_OPTIONAL;
4272 
4273 	if (spa->spa_resilver_deferred &&
4274 	    !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4275 		spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4276 
4277 	/*
4278 	 * Check for scn_restart_txg before checking spa_load_state, so
4279 	 * that we can restart an old-style scan while the pool is being
4280 	 * imported (see dsl_scan_init). We also restart scans if there
4281 	 * is a deferred resilver and the user has manually disabled
4282 	 * deferred resilvers via the tunable.
4283 	 */
4284 	if (dsl_scan_restarting(scn, tx) ||
4285 	    (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
4286 		pool_scan_func_t func = POOL_SCAN_SCRUB;
4287 		dsl_scan_done(scn, B_FALSE, tx);
4288 		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4289 			func = POOL_SCAN_RESILVER;
4290 		zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
4291 		    func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg);
4292 		dsl_scan_setup_sync(&func, tx);
4293 	}
4294 
4295 	/*
4296 	 * Only process scans in sync pass 1.
4297 	 */
4298 	if (spa_sync_pass(spa) > 1)
4299 		return;
4300 
4301 	/*
4302 	 * If the spa is shutting down, then stop scanning. This will
4303 	 * ensure that the scan does not dirty any new data during the
4304 	 * shutdown phase.
4305 	 */
4306 	if (spa_shutting_down(spa))
4307 		return;
4308 
4309 	/*
4310 	 * If the scan is inactive due to a stalled async destroy, try again.
4311 	 */
4312 	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4313 		return;
4314 
4315 	/* reset scan statistics */
4316 	scn->scn_visited_this_txg = 0;
4317 	scn->scn_dedup_frees_this_txg = 0;
4318 	scn->scn_holes_this_txg = 0;
4319 	scn->scn_lt_min_this_txg = 0;
4320 	scn->scn_gt_max_this_txg = 0;
4321 	scn->scn_ddt_contained_this_txg = 0;
4322 	scn->scn_objsets_visited_this_txg = 0;
4323 	scn->scn_avg_seg_size_this_txg = 0;
4324 	scn->scn_segs_this_txg = 0;
4325 	scn->scn_avg_zio_size_this_txg = 0;
4326 	scn->scn_zios_this_txg = 0;
4327 	scn->scn_suspending = B_FALSE;
4328 	scn->scn_sync_start_time = gethrtime();
4329 	spa->spa_scrub_active = B_TRUE;
4330 
4331 	/*
4332 	 * First process the async destroys.  If we suspend, don't do
4333 	 * any scrubbing or resilvering.  This ensures that there are no
4334 	 * async destroys while we are scanning, so the scan code doesn't
4335 	 * have to worry about traversing it.  It is also faster to free the
4336 	 * blocks than to scrub them.
4337 	 */
4338 	err = dsl_process_async_destroys(dp, tx);
4339 	if (err != 0)
4340 		return;
4341 
4342 	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4343 		return;
4344 
4345 	/*
4346 	 * Wait a few txgs after importing to begin scanning so that
4347 	 * we can get the pool imported quickly.
4348 	 */
4349 	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4350 		return;
4351 
4352 	/*
4353 	 * zfs_scan_suspend_progress can be set to disable scan progress.
4354 	 * We don't want to spin the txg_sync thread, so we add a delay
4355 	 * here to simulate the time spent doing a scan. This is mostly
4356 	 * useful for testing and debugging.
4357 	 */
4358 	if (zfs_scan_suspend_progress) {
4359 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4360 		uint_t mintime = (scn->scn_phys.scn_func ==
4361 		    POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4362 		    zfs_scrub_min_time_ms;
4363 
4364 		while (zfs_scan_suspend_progress &&
4365 		    !txg_sync_waiting(scn->scn_dp) &&
4366 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
4367 		    NSEC2MSEC(scan_time_ns) < mintime) {
4368 			delay(hz);
4369 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4370 		}
4371 		return;
4372 	}
4373 
4374 	/*
4375 	 * Disabled by default, set zfs_scan_report_txgs to report
4376 	 * average performance over the last zfs_scan_report_txgs TXGs.
4377 	 */
4378 	if (zfs_scan_report_txgs != 0 &&
4379 	    tx->tx_txg % zfs_scan_report_txgs == 0) {
4380 		scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4381 		spa_scan_stat_init(spa);
4382 	}
4383 
4384 	/*
4385 	 * It is possible to switch from unsorted to sorted at any time,
4386 	 * but afterwards the scan will remain sorted unless reloaded from
4387 	 * a checkpoint after a reboot.
4388 	 */
4389 	if (!zfs_scan_legacy) {
4390 		scn->scn_is_sorted = B_TRUE;
4391 		if (scn->scn_last_checkpoint == 0)
4392 			scn->scn_last_checkpoint = ddi_get_lbolt();
4393 	}
4394 
4395 	/*
4396 	 * For sorted scans, determine what kind of work we will be doing
4397 	 * this txg based on our memory limitations and whether or not we
4398 	 * need to perform a checkpoint.
4399 	 */
4400 	if (scn->scn_is_sorted) {
4401 		/*
4402 		 * If we are over our checkpoint interval, set scn_clearing
4403 		 * so that we can begin checkpointing immediately. The
4404 		 * checkpoint allows us to save a consistent bookmark
4405 		 * representing how much data we have scrubbed so far.
4406 		 * Otherwise, use the memory limit to determine if we should
4407 		 * scan for metadata or start issue scrub IOs. We accumulate
4408 		 * metadata until we hit our hard memory limit at which point
4409 		 * we issue scrub IOs until we are at our soft memory limit.
4410 		 */
4411 		if (scn->scn_checkpointing ||
4412 		    ddi_get_lbolt() - scn->scn_last_checkpoint >
4413 		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4414 			if (!scn->scn_checkpointing)
4415 				zfs_dbgmsg("begin scan checkpoint for %s",
4416 				    spa->spa_name);
4417 
4418 			scn->scn_checkpointing = B_TRUE;
4419 			scn->scn_clearing = B_TRUE;
4420 		} else {
4421 			boolean_t should_clear = dsl_scan_should_clear(scn);
4422 			if (should_clear && !scn->scn_clearing) {
4423 				zfs_dbgmsg("begin scan clearing for %s",
4424 				    spa->spa_name);
4425 				scn->scn_clearing = B_TRUE;
4426 			} else if (!should_clear && scn->scn_clearing) {
4427 				zfs_dbgmsg("finish scan clearing for %s",
4428 				    spa->spa_name);
4429 				scn->scn_clearing = B_FALSE;
4430 			}
4431 		}
4432 	} else {
4433 		ASSERT0(scn->scn_checkpointing);
4434 		ASSERT0(scn->scn_clearing);
4435 	}
4436 
4437 	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4438 		/* Need to scan metadata for more blocks to scrub */
4439 		dsl_scan_phys_t *scnp = &scn->scn_phys;
4440 		taskqid_t prefetch_tqid;
4441 
4442 		/*
4443 		 * Calculate the max number of in-flight bytes for pool-wide
4444 		 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4445 		 * Limits for the issuing phase are done per top-level vdev and
4446 		 * are handled separately.
4447 		 */
4448 		scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4449 		    zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4450 
4451 		if (scnp->scn_ddt_bookmark.ddb_class <=
4452 		    scnp->scn_ddt_class_max) {
4453 			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4454 			zfs_dbgmsg("doing scan sync for %s txg %llu; "
4455 			    "ddt bm=%llu/%llu/%llu/%llx",
4456 			    spa->spa_name,
4457 			    (longlong_t)tx->tx_txg,
4458 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4459 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4460 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4461 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4462 		} else {
4463 			zfs_dbgmsg("doing scan sync for %s txg %llu; "
4464 			    "bm=%llu/%llu/%llu/%llu",
4465 			    spa->spa_name,
4466 			    (longlong_t)tx->tx_txg,
4467 			    (longlong_t)scnp->scn_bookmark.zb_objset,
4468 			    (longlong_t)scnp->scn_bookmark.zb_object,
4469 			    (longlong_t)scnp->scn_bookmark.zb_level,
4470 			    (longlong_t)scnp->scn_bookmark.zb_blkid);
4471 		}
4472 
4473 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4474 		    NULL, ZIO_FLAG_CANFAIL);
4475 
4476 		scn->scn_prefetch_stop = B_FALSE;
4477 		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4478 		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4479 		ASSERT(prefetch_tqid != TASKQID_INVALID);
4480 
4481 		dsl_pool_config_enter(dp, FTAG);
4482 		dsl_scan_visit(scn, tx);
4483 		dsl_pool_config_exit(dp, FTAG);
4484 
4485 		mutex_enter(&dp->dp_spa->spa_scrub_lock);
4486 		scn->scn_prefetch_stop = B_TRUE;
4487 		cv_broadcast(&spa->spa_scrub_io_cv);
4488 		mutex_exit(&dp->dp_spa->spa_scrub_lock);
4489 
4490 		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4491 		(void) zio_wait(scn->scn_zio_root);
4492 		scn->scn_zio_root = NULL;
4493 
4494 		zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4495 		    "(%llu os's, %llu holes, %llu < mintxg, "
4496 		    "%llu in ddt, %llu > maxtxg)",
4497 		    (longlong_t)scn->scn_visited_this_txg,
4498 		    spa->spa_name,
4499 		    (longlong_t)NSEC2MSEC(gethrtime() -
4500 		    scn->scn_sync_start_time),
4501 		    (longlong_t)scn->scn_objsets_visited_this_txg,
4502 		    (longlong_t)scn->scn_holes_this_txg,
4503 		    (longlong_t)scn->scn_lt_min_this_txg,
4504 		    (longlong_t)scn->scn_ddt_contained_this_txg,
4505 		    (longlong_t)scn->scn_gt_max_this_txg);
4506 
4507 		if (!scn->scn_suspending) {
4508 			ASSERT0(avl_numnodes(&scn->scn_queue));
4509 			scn->scn_done_txg = tx->tx_txg + 1;
4510 			if (scn->scn_is_sorted) {
4511 				scn->scn_checkpointing = B_TRUE;
4512 				scn->scn_clearing = B_TRUE;
4513 				scn->scn_issued_before_pass +=
4514 				    spa->spa_scan_pass_issued;
4515 				spa_scan_stat_init(spa);
4516 			}
4517 			zfs_dbgmsg("scan complete for %s txg %llu",
4518 			    spa->spa_name,
4519 			    (longlong_t)tx->tx_txg);
4520 		}
4521 	} else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4522 		ASSERT(scn->scn_clearing);
4523 
4524 		/* need to issue scrubbing IOs from per-vdev queues */
4525 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4526 		    NULL, ZIO_FLAG_CANFAIL);
4527 		scan_io_queues_run(scn);
4528 		(void) zio_wait(scn->scn_zio_root);
4529 		scn->scn_zio_root = NULL;
4530 
4531 		/* calculate and dprintf the current memory usage */
4532 		(void) dsl_scan_should_clear(scn);
4533 		dsl_scan_update_stats(scn);
4534 
4535 		zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4536 		    "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4537 		    (longlong_t)scn->scn_zios_this_txg,
4538 		    spa->spa_name,
4539 		    (longlong_t)scn->scn_segs_this_txg,
4540 		    (longlong_t)NSEC2MSEC(gethrtime() -
4541 		    scn->scn_sync_start_time),
4542 		    (longlong_t)scn->scn_avg_zio_size_this_txg,
4543 		    (longlong_t)scn->scn_avg_seg_size_this_txg);
4544 	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4545 		/* Finished with everything. Mark the scrub as complete */
4546 		zfs_dbgmsg("scan issuing complete txg %llu for %s",
4547 		    (longlong_t)tx->tx_txg,
4548 		    spa->spa_name);
4549 		ASSERT3U(scn->scn_done_txg, !=, 0);
4550 		ASSERT0(spa->spa_scrub_inflight);
4551 		ASSERT0(scn->scn_queues_pending);
4552 		dsl_scan_done(scn, B_TRUE, tx);
4553 		sync_type = SYNC_MANDATORY;
4554 	}
4555 
4556 	dsl_scan_sync_state(scn, tx, sync_type);
4557 }
4558 
4559 static void
4560 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4561 {
4562 	/*
4563 	 * Don't count embedded bp's, since we already did the work of
4564 	 * scanning these when we scanned the containing block.
4565 	 */
4566 	if (BP_IS_EMBEDDED(bp))
4567 		return;
4568 
4569 	/*
4570 	 * Update the spa's stats on how many bytes we have issued.
4571 	 * Sequential scrubs create a zio for each DVA of the bp. Each
4572 	 * of these will include all DVAs for repair purposes, but the
4573 	 * zio code will only try the first one unless there is an issue.
4574 	 * Therefore, we should only count the first DVA for these IOs.
4575 	 */
4576 	atomic_add_64(&spa->spa_scan_pass_issued,
4577 	    all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4578 }
4579 
4580 static void
4581 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4582 {
4583 	if (BP_IS_EMBEDDED(bp))
4584 		return;
4585 	atomic_add_64(&scn->scn_phys.scn_skipped,
4586 	    all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4587 }
4588 
4589 static void
4590 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4591 {
4592 	/*
4593 	 * If we resume after a reboot, zab will be NULL; don't record
4594 	 * incomplete stats in that case.
4595 	 */
4596 	if (zab == NULL)
4597 		return;
4598 
4599 	for (int i = 0; i < 4; i++) {
4600 		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4601 		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4602 
4603 		if (t & DMU_OT_NEWTYPE)
4604 			t = DMU_OT_OTHER;
4605 		zfs_blkstat_t *zb = &zab->zab_type[l][t];
4606 		int equal;
4607 
4608 		zb->zb_count++;
4609 		zb->zb_asize += BP_GET_ASIZE(bp);
4610 		zb->zb_lsize += BP_GET_LSIZE(bp);
4611 		zb->zb_psize += BP_GET_PSIZE(bp);
4612 		zb->zb_gangs += BP_COUNT_GANG(bp);
4613 
4614 		switch (BP_GET_NDVAS(bp)) {
4615 		case 2:
4616 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4617 			    DVA_GET_VDEV(&bp->blk_dva[1]))
4618 				zb->zb_ditto_2_of_2_samevdev++;
4619 			break;
4620 		case 3:
4621 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4622 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
4623 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4624 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
4625 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4626 			    DVA_GET_VDEV(&bp->blk_dva[2]));
4627 			if (equal == 1)
4628 				zb->zb_ditto_2_of_3_samevdev++;
4629 			else if (equal == 3)
4630 				zb->zb_ditto_3_of_3_samevdev++;
4631 			break;
4632 		}
4633 	}
4634 }
4635 
4636 static void
4637 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4638 {
4639 	avl_index_t idx;
4640 	dsl_scan_t *scn = queue->q_scn;
4641 
4642 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4643 
4644 	if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4645 		atomic_add_64(&scn->scn_queues_pending, 1);
4646 	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4647 		/* block is already scheduled for reading */
4648 		sio_free(sio);
4649 		return;
4650 	}
4651 	avl_insert(&queue->q_sios_by_addr, sio, idx);
4652 	queue->q_sio_memused += SIO_GET_MUSED(sio);
4653 	range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4654 	    SIO_GET_ASIZE(sio));
4655 }
4656 
4657 /*
4658  * Given all the info we got from our metadata scanning process, we
4659  * construct a scan_io_t and insert it into the scan sorting queue. The
4660  * I/O must already be suitable for us to process. This is controlled
4661  * by dsl_scan_enqueue().
4662  */
4663 static void
4664 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4665     int zio_flags, const zbookmark_phys_t *zb)
4666 {
4667 	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4668 
4669 	ASSERT0(BP_IS_GANG(bp));
4670 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4671 
4672 	bp2sio(bp, sio, dva_i);
4673 	sio->sio_flags = zio_flags;
4674 	sio->sio_zb = *zb;
4675 
4676 	queue->q_last_ext_addr = -1;
4677 	scan_io_queue_insert_impl(queue, sio);
4678 }
4679 
4680 /*
4681  * Given a set of I/O parameters as discovered by the metadata traversal
4682  * process, attempts to place the I/O into the sorted queues (if allowed),
4683  * or immediately executes the I/O.
4684  */
4685 static void
4686 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4687     const zbookmark_phys_t *zb)
4688 {
4689 	spa_t *spa = dp->dp_spa;
4690 
4691 	ASSERT(!BP_IS_EMBEDDED(bp));
4692 
4693 	/*
4694 	 * Gang blocks are hard to issue sequentially, so we just issue them
4695 	 * here immediately instead of queuing them.
4696 	 */
4697 	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4698 		scan_exec_io(dp, bp, zio_flags, zb, NULL);
4699 		return;
4700 	}
4701 
4702 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4703 		dva_t dva;
4704 		vdev_t *vdev;
4705 
4706 		dva = bp->blk_dva[i];
4707 		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4708 		ASSERT(vdev != NULL);
4709 
4710 		mutex_enter(&vdev->vdev_scan_io_queue_lock);
4711 		if (vdev->vdev_scan_io_queue == NULL)
4712 			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4713 		ASSERT(dp->dp_scan != NULL);
4714 		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4715 		    i, zio_flags, zb);
4716 		mutex_exit(&vdev->vdev_scan_io_queue_lock);
4717 	}
4718 }
4719 
4720 static int
4721 dsl_scan_scrub_cb(dsl_pool_t *dp,
4722     const blkptr_t *bp, const zbookmark_phys_t *zb)
4723 {
4724 	dsl_scan_t *scn = dp->dp_scan;
4725 	spa_t *spa = dp->dp_spa;
4726 	uint64_t phys_birth = BP_GET_BIRTH(bp);
4727 	size_t psize = BP_GET_PSIZE(bp);
4728 	boolean_t needs_io = B_FALSE;
4729 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4730 
4731 	count_block(dp->dp_blkstats, bp);
4732 	if (phys_birth <= scn->scn_phys.scn_min_txg ||
4733 	    phys_birth >= scn->scn_phys.scn_max_txg) {
4734 		count_block_skipped(scn, bp, B_TRUE);
4735 		return (0);
4736 	}
4737 
4738 	/* Embedded BP's have phys_birth==0, so we reject them above. */
4739 	ASSERT(!BP_IS_EMBEDDED(bp));
4740 
4741 	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4742 	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4743 		zio_flags |= ZIO_FLAG_SCRUB;
4744 		needs_io = B_TRUE;
4745 	} else {
4746 		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4747 		zio_flags |= ZIO_FLAG_RESILVER;
4748 		needs_io = B_FALSE;
4749 	}
4750 
4751 	/* If it's an intent log block, failure is expected. */
4752 	if (zb->zb_level == ZB_ZIL_LEVEL)
4753 		zio_flags |= ZIO_FLAG_SPECULATIVE;
4754 
4755 	for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4756 		const dva_t *dva = &bp->blk_dva[d];
4757 
4758 		/*
4759 		 * Keep track of how much data we've examined so that
4760 		 * zpool(8) status can make useful progress reports.
4761 		 */
4762 		uint64_t asize = DVA_GET_ASIZE(dva);
4763 		scn->scn_phys.scn_examined += asize;
4764 		spa->spa_scan_pass_exam += asize;
4765 
4766 		/* if it's a resilver, this may not be in the target range */
4767 		if (!needs_io)
4768 			needs_io = dsl_scan_need_resilver(spa, dva, psize,
4769 			    phys_birth);
4770 	}
4771 
4772 	if (needs_io && !zfs_no_scrub_io) {
4773 		dsl_scan_enqueue(dp, bp, zio_flags, zb);
4774 	} else {
4775 		count_block_skipped(scn, bp, B_TRUE);
4776 	}
4777 
4778 	/* do not relocate this block */
4779 	return (0);
4780 }
4781 
4782 static void
4783 dsl_scan_scrub_done(zio_t *zio)
4784 {
4785 	spa_t *spa = zio->io_spa;
4786 	blkptr_t *bp = zio->io_bp;
4787 	dsl_scan_io_queue_t *queue = zio->io_private;
4788 
4789 	abd_free(zio->io_abd);
4790 
4791 	if (queue == NULL) {
4792 		mutex_enter(&spa->spa_scrub_lock);
4793 		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4794 		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4795 		cv_broadcast(&spa->spa_scrub_io_cv);
4796 		mutex_exit(&spa->spa_scrub_lock);
4797 	} else {
4798 		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4799 		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4800 		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4801 		cv_broadcast(&queue->q_zio_cv);
4802 		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4803 	}
4804 
4805 	if (zio->io_error && (zio->io_error != ECKSUM ||
4806 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4807 		if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4808 		    !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4809 			atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4810 			    ->errorscrub_phys.dep_errors);
4811 		} else {
4812 			atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4813 			    .scn_errors);
4814 		}
4815 	}
4816 }
4817 
4818 /*
4819  * Given a scanning zio's information, executes the zio. The zio need
4820  * not necessarily be only sortable, this function simply executes the
4821  * zio, no matter what it is. The optional queue argument allows the
4822  * caller to specify that they want per top level vdev IO rate limiting
4823  * instead of the legacy global limiting.
4824  */
4825 static void
4826 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4827     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4828 {
4829 	spa_t *spa = dp->dp_spa;
4830 	dsl_scan_t *scn = dp->dp_scan;
4831 	size_t size = BP_GET_PSIZE(bp);
4832 	abd_t *data = abd_alloc_for_io(size, B_FALSE);
4833 	zio_t *pio;
4834 
4835 	if (queue == NULL) {
4836 		ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4837 		mutex_enter(&spa->spa_scrub_lock);
4838 		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4839 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4840 		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4841 		mutex_exit(&spa->spa_scrub_lock);
4842 		pio = scn->scn_zio_root;
4843 	} else {
4844 		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4845 
4846 		ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4847 		mutex_enter(q_lock);
4848 		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4849 			cv_wait(&queue->q_zio_cv, q_lock);
4850 		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4851 		pio = queue->q_zio;
4852 		mutex_exit(q_lock);
4853 	}
4854 
4855 	ASSERT(pio != NULL);
4856 	count_block_issued(spa, bp, queue == NULL);
4857 	zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4858 	    queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4859 }
4860 
4861 /*
4862  * This is the primary extent sorting algorithm. We balance two parameters:
4863  * 1) how many bytes of I/O are in an extent
4864  * 2) how well the extent is filled with I/O (as a fraction of its total size)
4865  * Since we allow extents to have gaps between their constituent I/Os, it's
4866  * possible to have a fairly large extent that contains the same amount of
4867  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4868  * The algorithm sorts based on a score calculated from the extent's size,
4869  * the relative fill volume (in %) and a "fill weight" parameter that controls
4870  * the split between whether we prefer larger extents or more well populated
4871  * extents:
4872  *
4873  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4874  *
4875  * Example:
4876  * 1) assume extsz = 64 MiB
4877  * 2) assume fill = 32 MiB (extent is half full)
4878  * 3) assume fill_weight = 3
4879  * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4880  *	SCORE = 32M + (50 * 3 * 32M) / 100
4881  *	SCORE = 32M + (4800M / 100)
4882  *	SCORE = 32M + 48M
4883  *	         ^     ^
4884  *	         |     +--- final total relative fill-based score
4885  *	         +--------- final total fill-based score
4886  *	SCORE = 80M
4887  *
4888  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4889  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4890  * Note that as an optimization, we replace multiplication and division by
4891  * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4892  *
4893  * Since we do not care if one extent is only few percent better than another,
4894  * compress the score into 6 bits via binary logarithm AKA highbit64() and
4895  * put into otherwise unused due to ashift high bits of offset.  This allows
4896  * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4897  * with single operation.  Plus it makes scrubs more sequential and reduces
4898  * chances that minor extent change move it within the B-tree.
4899  */
4900 __attribute__((always_inline)) inline
4901 static int
4902 ext_size_compare(const void *x, const void *y)
4903 {
4904 	const uint64_t *a = x, *b = y;
4905 
4906 	return (TREE_CMP(*a, *b));
4907 }
4908 
4909 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4910     ext_size_compare)
4911 
4912 static void
4913 ext_size_create(range_tree_t *rt, void *arg)
4914 {
4915 	(void) rt;
4916 	zfs_btree_t *size_tree = arg;
4917 
4918 	zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
4919 	    sizeof (uint64_t));
4920 }
4921 
4922 static void
4923 ext_size_destroy(range_tree_t *rt, void *arg)
4924 {
4925 	(void) rt;
4926 	zfs_btree_t *size_tree = arg;
4927 	ASSERT0(zfs_btree_numnodes(size_tree));
4928 
4929 	zfs_btree_destroy(size_tree);
4930 }
4931 
4932 static uint64_t
4933 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg)
4934 {
4935 	(void) rt;
4936 	uint64_t size = rsg->rs_end - rsg->rs_start;
4937 	uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
4938 	    fill_weight * rsg->rs_fill) >> 7);
4939 	ASSERT3U(rt->rt_shift, >=, 8);
4940 	return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
4941 }
4942 
4943 static void
4944 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg)
4945 {
4946 	zfs_btree_t *size_tree = arg;
4947 	ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4948 	uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4949 	zfs_btree_add(size_tree, &v);
4950 }
4951 
4952 static void
4953 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
4954 {
4955 	zfs_btree_t *size_tree = arg;
4956 	ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4957 	uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4958 	zfs_btree_remove(size_tree, &v);
4959 }
4960 
4961 static void
4962 ext_size_vacate(range_tree_t *rt, void *arg)
4963 {
4964 	zfs_btree_t *size_tree = arg;
4965 	zfs_btree_clear(size_tree);
4966 	zfs_btree_destroy(size_tree);
4967 
4968 	ext_size_create(rt, arg);
4969 }
4970 
4971 static const range_tree_ops_t ext_size_ops = {
4972 	.rtop_create = ext_size_create,
4973 	.rtop_destroy = ext_size_destroy,
4974 	.rtop_add = ext_size_add,
4975 	.rtop_remove = ext_size_remove,
4976 	.rtop_vacate = ext_size_vacate
4977 };
4978 
4979 /*
4980  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4981  * based on LBA-order (from lowest to highest).
4982  */
4983 static int
4984 sio_addr_compare(const void *x, const void *y)
4985 {
4986 	const scan_io_t *a = x, *b = y;
4987 
4988 	return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4989 }
4990 
4991 /* IO queues are created on demand when they are needed. */
4992 static dsl_scan_io_queue_t *
4993 scan_io_queue_create(vdev_t *vd)
4994 {
4995 	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4996 	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4997 
4998 	q->q_scn = scn;
4999 	q->q_vd = vd;
5000 	q->q_sio_memused = 0;
5001 	q->q_last_ext_addr = -1;
5002 	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5003 	q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP,
5004 	    &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap);
5005 	avl_create(&q->q_sios_by_addr, sio_addr_compare,
5006 	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5007 
5008 	return (q);
5009 }
5010 
5011 /*
5012  * Destroys a scan queue and all segments and scan_io_t's contained in it.
5013  * No further execution of I/O occurs, anything pending in the queue is
5014  * simply freed without being executed.
5015  */
5016 void
5017 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5018 {
5019 	dsl_scan_t *scn = queue->q_scn;
5020 	scan_io_t *sio;
5021 	void *cookie = NULL;
5022 
5023 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5024 
5025 	if (!avl_is_empty(&queue->q_sios_by_addr))
5026 		atomic_add_64(&scn->scn_queues_pending, -1);
5027 	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5028 	    NULL) {
5029 		ASSERT(range_tree_contains(queue->q_exts_by_addr,
5030 		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5031 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
5032 		sio_free(sio);
5033 	}
5034 
5035 	ASSERT0(queue->q_sio_memused);
5036 	range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5037 	range_tree_destroy(queue->q_exts_by_addr);
5038 	avl_destroy(&queue->q_sios_by_addr);
5039 	cv_destroy(&queue->q_zio_cv);
5040 
5041 	kmem_free(queue, sizeof (*queue));
5042 }
5043 
5044 /*
5045  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5046  * called on behalf of vdev_top_transfer when creating or destroying
5047  * a mirror vdev due to zpool attach/detach.
5048  */
5049 void
5050 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5051 {
5052 	mutex_enter(&svd->vdev_scan_io_queue_lock);
5053 	mutex_enter(&tvd->vdev_scan_io_queue_lock);
5054 
5055 	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
5056 	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5057 	svd->vdev_scan_io_queue = NULL;
5058 	if (tvd->vdev_scan_io_queue != NULL)
5059 		tvd->vdev_scan_io_queue->q_vd = tvd;
5060 
5061 	mutex_exit(&tvd->vdev_scan_io_queue_lock);
5062 	mutex_exit(&svd->vdev_scan_io_queue_lock);
5063 }
5064 
5065 static void
5066 scan_io_queues_destroy(dsl_scan_t *scn)
5067 {
5068 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5069 
5070 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5071 		vdev_t *tvd = rvd->vdev_child[i];
5072 
5073 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
5074 		if (tvd->vdev_scan_io_queue != NULL)
5075 			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5076 		tvd->vdev_scan_io_queue = NULL;
5077 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
5078 	}
5079 }
5080 
5081 static void
5082 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5083 {
5084 	dsl_pool_t *dp = spa->spa_dsl_pool;
5085 	dsl_scan_t *scn = dp->dp_scan;
5086 	vdev_t *vdev;
5087 	kmutex_t *q_lock;
5088 	dsl_scan_io_queue_t *queue;
5089 	scan_io_t *srch_sio, *sio;
5090 	avl_index_t idx;
5091 	uint64_t start, size;
5092 
5093 	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5094 	ASSERT(vdev != NULL);
5095 	q_lock = &vdev->vdev_scan_io_queue_lock;
5096 	queue = vdev->vdev_scan_io_queue;
5097 
5098 	mutex_enter(q_lock);
5099 	if (queue == NULL) {
5100 		mutex_exit(q_lock);
5101 		return;
5102 	}
5103 
5104 	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5105 	bp2sio(bp, srch_sio, dva_i);
5106 	start = SIO_GET_OFFSET(srch_sio);
5107 	size = SIO_GET_ASIZE(srch_sio);
5108 
5109 	/*
5110 	 * We can find the zio in two states:
5111 	 * 1) Cold, just sitting in the queue of zio's to be issued at
5112 	 *	some point in the future. In this case, all we do is
5113 	 *	remove the zio from the q_sios_by_addr tree, decrement
5114 	 *	its data volume from the containing range_seg_t and
5115 	 *	resort the q_exts_by_size tree to reflect that the
5116 	 *	range_seg_t has lost some of its 'fill'. We don't shorten
5117 	 *	the range_seg_t - this is usually rare enough not to be
5118 	 *	worth the extra hassle of trying keep track of precise
5119 	 *	extent boundaries.
5120 	 * 2) Hot, where the zio is currently in-flight in
5121 	 *	dsl_scan_issue_ios. In this case, we can't simply
5122 	 *	reach in and stop the in-flight zio's, so we instead
5123 	 *	block the caller. Eventually, dsl_scan_issue_ios will
5124 	 *	be done with issuing the zio's it gathered and will
5125 	 *	signal us.
5126 	 */
5127 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5128 	sio_free(srch_sio);
5129 
5130 	if (sio != NULL) {
5131 		blkptr_t tmpbp;
5132 
5133 		/* Got it while it was cold in the queue */
5134 		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5135 		ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5136 		avl_remove(&queue->q_sios_by_addr, sio);
5137 		if (avl_is_empty(&queue->q_sios_by_addr))
5138 			atomic_add_64(&scn->scn_queues_pending, -1);
5139 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
5140 
5141 		ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
5142 		range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5143 
5144 		/* count the block as though we skipped it */
5145 		sio2bp(sio, &tmpbp);
5146 		count_block_skipped(scn, &tmpbp, B_FALSE);
5147 
5148 		sio_free(sio);
5149 	}
5150 	mutex_exit(q_lock);
5151 }
5152 
5153 /*
5154  * Callback invoked when a zio_free() zio is executing. This needs to be
5155  * intercepted to prevent the zio from deallocating a particular portion
5156  * of disk space and it then getting reallocated and written to, while we
5157  * still have it queued up for processing.
5158  */
5159 void
5160 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5161 {
5162 	dsl_pool_t *dp = spa->spa_dsl_pool;
5163 	dsl_scan_t *scn = dp->dp_scan;
5164 
5165 	ASSERT(!BP_IS_EMBEDDED(bp));
5166 	ASSERT(scn != NULL);
5167 	if (!dsl_scan_is_running(scn))
5168 		return;
5169 
5170 	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5171 		dsl_scan_freed_dva(spa, bp, i);
5172 }
5173 
5174 /*
5175  * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5176  * not started, start it. Otherwise, only restart if max txg in DTL range is
5177  * greater than the max txg in the current scan. If the DTL max is less than
5178  * the scan max, then the vdev has not missed any new data since the resilver
5179  * started, so a restart is not needed.
5180  */
5181 void
5182 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5183 {
5184 	uint64_t min, max;
5185 
5186 	if (!vdev_resilver_needed(vd, &min, &max))
5187 		return;
5188 
5189 	if (!dsl_scan_resilvering(dp)) {
5190 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5191 		return;
5192 	}
5193 
5194 	if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5195 		return;
5196 
5197 	/* restart is needed, check if it can be deferred */
5198 	if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5199 		vdev_defer_resilver(vd);
5200 	else
5201 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5202 }
5203 
5204 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5205 	"Max bytes in flight per leaf vdev for scrubs and resilvers");
5206 
5207 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5208 	"Min millisecs to scrub per txg");
5209 
5210 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5211 	"Min millisecs to obsolete per txg");
5212 
5213 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5214 	"Min millisecs to free per txg");
5215 
5216 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5217 	"Min millisecs to resilver per txg");
5218 
5219 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5220 	"Set to prevent scans from progressing");
5221 
5222 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5223 	"Set to disable scrub I/O");
5224 
5225 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5226 	"Set to disable scrub prefetching");
5227 
5228 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5229 	"Max number of blocks freed in one txg");
5230 
5231 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5232 	"Max number of dedup blocks freed in one txg");
5233 
5234 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5235 	"Enable processing of the free_bpobj");
5236 
5237 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5238 	"Enable block statistics calculation during scrub");
5239 
5240 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5241 	"Fraction of RAM for scan hard limit");
5242 
5243 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5244 	"IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5245 
5246 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5247 	"Scrub using legacy non-sequential method");
5248 
5249 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5250 	"Scan progress on-disk checkpointing interval");
5251 
5252 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5253 	"Max gap in bytes between sequential scrub / resilver I/Os");
5254 
5255 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5256 	"Fraction of hard limit used as soft limit");
5257 
5258 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5259 	"Tunable to attempt to reduce lock contention");
5260 
5261 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5262 	"Tunable to adjust bias towards more filled segments during scans");
5263 
5264 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5265 	"Tunable to report resilver performance over the last N txgs");
5266 
5267 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5268 	"Process all resilvers immediately");
5269 
5270 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5271 	"Error blocks to be scrubbed in one txg");
5272 /* END CSTYLED */
5273