1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 27 * Copyright 2019 Joyent, Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/zil_impl.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/ddt.h> 50 #include <sys/sa.h> 51 #include <sys/sa_impl.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/range_tree.h> 55 #ifdef _KERNEL 56 #include <sys/zfs_vfsops.h> 57 #endif 58 59 /* 60 * Grand theory statement on scan queue sorting 61 * 62 * Scanning is implemented by recursively traversing all indirection levels 63 * in an object and reading all blocks referenced from said objects. This 64 * results in us approximately traversing the object from lowest logical 65 * offset to the highest. For best performance, we would want the logical 66 * blocks to be physically contiguous. However, this is frequently not the 67 * case with pools given the allocation patterns of copy-on-write filesystems. 68 * So instead, we put the I/Os into a reordering queue and issue them in a 69 * way that will most benefit physical disks (LBA-order). 70 * 71 * Queue management: 72 * 73 * Ideally, we would want to scan all metadata and queue up all block I/O 74 * prior to starting to issue it, because that allows us to do an optimal 75 * sorting job. This can however consume large amounts of memory. Therefore 76 * we continuously monitor the size of the queues and constrain them to 5% 77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 78 * limit, we clear out a few of the largest extents at the head of the queues 79 * to make room for more scanning. Hopefully, these extents will be fairly 80 * large and contiguous, allowing us to approach sequential I/O throughput 81 * even without a fully sorted tree. 82 * 83 * Metadata scanning takes place in dsl_scan_visit(), which is called from 84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 85 * metadata on the pool, or we need to make room in memory because our 86 * queues are too large, dsl_scan_visit() is postponed and 87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 88 * that metadata scanning and queued I/O issuing are mutually exclusive. This 89 * allows us to provide maximum sequential I/O throughput for the majority of 90 * I/O's issued since sequential I/O performance is significantly negatively 91 * impacted if it is interleaved with random I/O. 92 * 93 * Implementation Notes 94 * 95 * One side effect of the queued scanning algorithm is that the scanning code 96 * needs to be notified whenever a block is freed. This is needed to allow 97 * the scanning code to remove these I/Os from the issuing queue. Additionally, 98 * we do not attempt to queue gang blocks to be issued sequentially since this 99 * is very hard to do and would have an extremely limited performance benefit. 100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 101 * algorithm. 102 * 103 * Backwards compatibility 104 * 105 * This new algorithm is backwards compatible with the legacy on-disk data 106 * structures (and therefore does not require a new feature flag). 107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 108 * will stop scanning metadata (in logical order) and wait for all outstanding 109 * sorted I/O to complete. Once this is done, we write out a checkpoint 110 * bookmark, indicating that we have scanned everything logically before it. 111 * If the pool is imported on a machine without the new sorting algorithm, 112 * the scan simply resumes from the last checkpoint using the legacy algorithm. 113 */ 114 115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 116 const zbookmark_phys_t *); 117 118 static scan_cb_t dsl_scan_scrub_cb; 119 120 static int scan_ds_queue_compare(const void *a, const void *b); 121 static int scan_prefetch_queue_compare(const void *a, const void *b); 122 static void scan_ds_queue_clear(dsl_scan_t *scn); 123 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 125 uint64_t *txg); 126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 129 static uint64_t dsl_scan_count_data_disks(vdev_t *vd); 130 131 extern int zfs_vdev_async_write_active_min_dirty_percent; 132 static int zfs_scan_blkstats = 0; 133 134 /* 135 * By default zfs will check to ensure it is not over the hard memory 136 * limit before each txg. If finer-grained control of this is needed 137 * this value can be set to 1 to enable checking before scanning each 138 * block. 139 */ 140 static int zfs_scan_strict_mem_lim = B_FALSE; 141 142 /* 143 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 144 * to strike a balance here between keeping the vdev queues full of I/Os 145 * at all times and not overflowing the queues to cause long latency, 146 * which would cause long txg sync times. No matter what, we will not 147 * overload the drives with I/O, since that is protected by 148 * zfs_vdev_scrub_max_active. 149 */ 150 static unsigned long zfs_scan_vdev_limit = 4 << 20; 151 152 static int zfs_scan_issue_strategy = 0; 153 static int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 154 static unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 155 156 /* 157 * fill_weight is non-tunable at runtime, so we copy it at module init from 158 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 159 * break queue sorting. 160 */ 161 static int zfs_scan_fill_weight = 3; 162 static uint64_t fill_weight; 163 164 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 165 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 166 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 167 static int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 168 static int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 169 170 static int zfs_scrub_min_time_ms = 1000; /* min millis to scrub per txg */ 171 static int zfs_obsolete_min_time_ms = 500; /* min millis to obsolete per txg */ 172 static int zfs_free_min_time_ms = 1000; /* min millis to free per txg */ 173 static int zfs_resilver_min_time_ms = 3000; /* min millis to resilver per txg */ 174 static int zfs_scan_checkpoint_intval = 7200; /* in seconds */ 175 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 176 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 177 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 178 static const enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 179 /* max number of blocks to free in a single TXG */ 180 static unsigned long zfs_async_block_max_blocks = ULONG_MAX; 181 /* max number of dedup blocks to free in a single TXG */ 182 static unsigned long zfs_max_async_dedup_frees = 100000; 183 184 /* set to disable resilver deferring */ 185 static int zfs_resilver_disable_defer = B_FALSE; 186 187 /* 188 * We wait a few txgs after importing a pool to begin scanning so that 189 * the import / mounting code isn't held up by scrub / resilver IO. 190 * Unfortunately, it is a bit difficult to determine exactly how long 191 * this will take since userspace will trigger fs mounts asynchronously 192 * and the kernel will create zvol minors asynchronously. As a result, 193 * the value provided here is a bit arbitrary, but represents a 194 * reasonable estimate of how many txgs it will take to finish fully 195 * importing a pool 196 */ 197 #define SCAN_IMPORT_WAIT_TXGS 5 198 199 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 200 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 201 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 202 203 /* 204 * Enable/disable the processing of the free_bpobj object. 205 */ 206 static int zfs_free_bpobj_enabled = 1; 207 208 /* the order has to match pool_scan_type */ 209 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 210 NULL, 211 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 212 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 213 }; 214 215 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 216 typedef struct { 217 uint64_t sds_dsobj; 218 uint64_t sds_txg; 219 avl_node_t sds_node; 220 } scan_ds_t; 221 222 /* 223 * This controls what conditions are placed on dsl_scan_sync_state(): 224 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0 225 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0. 226 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise 227 * write out the scn_phys_cached version. 228 * See dsl_scan_sync_state for details. 229 */ 230 typedef enum { 231 SYNC_OPTIONAL, 232 SYNC_MANDATORY, 233 SYNC_CACHED 234 } state_sync_type_t; 235 236 /* 237 * This struct represents the minimum information needed to reconstruct a 238 * zio for sequential scanning. This is useful because many of these will 239 * accumulate in the sequential IO queues before being issued, so saving 240 * memory matters here. 241 */ 242 typedef struct scan_io { 243 /* fields from blkptr_t */ 244 uint64_t sio_blk_prop; 245 uint64_t sio_phys_birth; 246 uint64_t sio_birth; 247 zio_cksum_t sio_cksum; 248 uint32_t sio_nr_dvas; 249 250 /* fields from zio_t */ 251 uint32_t sio_flags; 252 zbookmark_phys_t sio_zb; 253 254 /* members for queue sorting */ 255 union { 256 avl_node_t sio_addr_node; /* link into issuing queue */ 257 list_node_t sio_list_node; /* link for issuing to disk */ 258 } sio_nodes; 259 260 /* 261 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 262 * depending on how many were in the original bp. Only the 263 * first DVA is really used for sorting and issuing purposes. 264 * The other DVAs (if provided) simply exist so that the zio 265 * layer can find additional copies to repair from in the 266 * event of an error. This array must go at the end of the 267 * struct to allow this for the variable number of elements. 268 */ 269 dva_t sio_dva[0]; 270 } scan_io_t; 271 272 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 273 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 274 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 275 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 276 #define SIO_GET_END_OFFSET(sio) \ 277 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 278 #define SIO_GET_MUSED(sio) \ 279 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 280 281 struct dsl_scan_io_queue { 282 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 283 vdev_t *q_vd; /* top-level vdev that this queue represents */ 284 zio_t *q_zio; /* scn_zio_root child for waiting on IO */ 285 286 /* trees used for sorting I/Os and extents of I/Os */ 287 range_tree_t *q_exts_by_addr; 288 zfs_btree_t q_exts_by_size; 289 avl_tree_t q_sios_by_addr; 290 uint64_t q_sio_memused; 291 uint64_t q_last_ext_addr; 292 293 /* members for zio rate limiting */ 294 uint64_t q_maxinflight_bytes; 295 uint64_t q_inflight_bytes; 296 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 297 298 /* per txg statistics */ 299 uint64_t q_total_seg_size_this_txg; 300 uint64_t q_segs_this_txg; 301 uint64_t q_total_zio_size_this_txg; 302 uint64_t q_zios_this_txg; 303 }; 304 305 /* private data for dsl_scan_prefetch_cb() */ 306 typedef struct scan_prefetch_ctx { 307 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 308 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 309 boolean_t spc_root; /* is this prefetch for an objset? */ 310 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 311 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 312 } scan_prefetch_ctx_t; 313 314 /* private data for dsl_scan_prefetch() */ 315 typedef struct scan_prefetch_issue_ctx { 316 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 317 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 318 blkptr_t spic_bp; /* bp to prefetch */ 319 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 320 } scan_prefetch_issue_ctx_t; 321 322 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 323 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 324 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 325 scan_io_t *sio); 326 327 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 328 static void scan_io_queues_destroy(dsl_scan_t *scn); 329 330 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 331 332 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 333 static void 334 sio_free(scan_io_t *sio) 335 { 336 ASSERT3U(sio->sio_nr_dvas, >, 0); 337 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 338 339 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 340 } 341 342 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 343 static scan_io_t * 344 sio_alloc(unsigned short nr_dvas) 345 { 346 ASSERT3U(nr_dvas, >, 0); 347 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 348 349 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 350 } 351 352 void 353 scan_init(void) 354 { 355 /* 356 * This is used in ext_size_compare() to weight segments 357 * based on how sparse they are. This cannot be changed 358 * mid-scan and the tree comparison functions don't currently 359 * have a mechanism for passing additional context to the 360 * compare functions. Thus we store this value globally and 361 * we only allow it to be set at module initialization time 362 */ 363 fill_weight = zfs_scan_fill_weight; 364 365 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 366 char name[36]; 367 368 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 369 sio_cache[i] = kmem_cache_create(name, 370 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 371 0, NULL, NULL, NULL, NULL, NULL, 0); 372 } 373 } 374 375 void 376 scan_fini(void) 377 { 378 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 379 kmem_cache_destroy(sio_cache[i]); 380 } 381 } 382 383 static inline boolean_t 384 dsl_scan_is_running(const dsl_scan_t *scn) 385 { 386 return (scn->scn_phys.scn_state == DSS_SCANNING); 387 } 388 389 boolean_t 390 dsl_scan_resilvering(dsl_pool_t *dp) 391 { 392 return (dsl_scan_is_running(dp->dp_scan) && 393 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 394 } 395 396 static inline void 397 sio2bp(const scan_io_t *sio, blkptr_t *bp) 398 { 399 memset(bp, 0, sizeof (*bp)); 400 bp->blk_prop = sio->sio_blk_prop; 401 bp->blk_phys_birth = sio->sio_phys_birth; 402 bp->blk_birth = sio->sio_birth; 403 bp->blk_fill = 1; /* we always only work with data pointers */ 404 bp->blk_cksum = sio->sio_cksum; 405 406 ASSERT3U(sio->sio_nr_dvas, >, 0); 407 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 408 409 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t)); 410 } 411 412 static inline void 413 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 414 { 415 sio->sio_blk_prop = bp->blk_prop; 416 sio->sio_phys_birth = bp->blk_phys_birth; 417 sio->sio_birth = bp->blk_birth; 418 sio->sio_cksum = bp->blk_cksum; 419 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 420 421 /* 422 * Copy the DVAs to the sio. We need all copies of the block so 423 * that the self healing code can use the alternate copies if the 424 * first is corrupted. We want the DVA at index dva_i to be first 425 * in the sio since this is the primary one that we want to issue. 426 */ 427 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 428 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 429 } 430 } 431 432 int 433 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 434 { 435 int err; 436 dsl_scan_t *scn; 437 spa_t *spa = dp->dp_spa; 438 uint64_t f; 439 440 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 441 scn->scn_dp = dp; 442 443 /* 444 * It's possible that we're resuming a scan after a reboot so 445 * make sure that the scan_async_destroying flag is initialized 446 * appropriately. 447 */ 448 ASSERT(!scn->scn_async_destroying); 449 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 450 SPA_FEATURE_ASYNC_DESTROY); 451 452 /* 453 * Calculate the max number of in-flight bytes for pool-wide 454 * scanning operations (minimum 1MB). Limits for the issuing 455 * phase are done per top-level vdev and are handled separately. 456 */ 457 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 458 dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20); 459 460 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 461 offsetof(scan_ds_t, sds_node)); 462 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 463 sizeof (scan_prefetch_issue_ctx_t), 464 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 465 466 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 467 "scrub_func", sizeof (uint64_t), 1, &f); 468 if (err == 0) { 469 /* 470 * There was an old-style scrub in progress. Restart a 471 * new-style scrub from the beginning. 472 */ 473 scn->scn_restart_txg = txg; 474 zfs_dbgmsg("old-style scrub was in progress for %s; " 475 "restarting new-style scrub in txg %llu", 476 spa->spa_name, 477 (longlong_t)scn->scn_restart_txg); 478 479 /* 480 * Load the queue obj from the old location so that it 481 * can be freed by dsl_scan_done(). 482 */ 483 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 484 "scrub_queue", sizeof (uint64_t), 1, 485 &scn->scn_phys.scn_queue_obj); 486 } else { 487 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 488 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 489 &scn->scn_phys); 490 /* 491 * Detect if the pool contains the signature of #2094. If it 492 * does properly update the scn->scn_phys structure and notify 493 * the administrator by setting an errata for the pool. 494 */ 495 if (err == EOVERFLOW) { 496 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 497 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 498 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 499 (23 * sizeof (uint64_t))); 500 501 err = zap_lookup(dp->dp_meta_objset, 502 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 503 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 504 if (err == 0) { 505 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 506 507 if (overflow & ~DSL_SCAN_FLAGS_MASK || 508 scn->scn_async_destroying) { 509 spa->spa_errata = 510 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 511 return (EOVERFLOW); 512 } 513 514 memcpy(&scn->scn_phys, zaptmp, 515 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 516 scn->scn_phys.scn_flags = overflow; 517 518 /* Required scrub already in progress. */ 519 if (scn->scn_phys.scn_state == DSS_FINISHED || 520 scn->scn_phys.scn_state == DSS_CANCELED) 521 spa->spa_errata = 522 ZPOOL_ERRATA_ZOL_2094_SCRUB; 523 } 524 } 525 526 if (err == ENOENT) 527 return (0); 528 else if (err) 529 return (err); 530 531 /* 532 * We might be restarting after a reboot, so jump the issued 533 * counter to how far we've scanned. We know we're consistent 534 * up to here. 535 */ 536 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 537 538 if (dsl_scan_is_running(scn) && 539 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 540 /* 541 * A new-type scrub was in progress on an old 542 * pool, and the pool was accessed by old 543 * software. Restart from the beginning, since 544 * the old software may have changed the pool in 545 * the meantime. 546 */ 547 scn->scn_restart_txg = txg; 548 zfs_dbgmsg("new-style scrub for %s was modified " 549 "by old software; restarting in txg %llu", 550 spa->spa_name, 551 (longlong_t)scn->scn_restart_txg); 552 } else if (dsl_scan_resilvering(dp)) { 553 /* 554 * If a resilver is in progress and there are already 555 * errors, restart it instead of finishing this scan and 556 * then restarting it. If there haven't been any errors 557 * then remember that the incore DTL is valid. 558 */ 559 if (scn->scn_phys.scn_errors > 0) { 560 scn->scn_restart_txg = txg; 561 zfs_dbgmsg("resilver can't excise DTL_MISSING " 562 "when finished; restarting on %s in txg " 563 "%llu", 564 spa->spa_name, 565 (u_longlong_t)scn->scn_restart_txg); 566 } else { 567 /* it's safe to excise DTL when finished */ 568 spa->spa_scrub_started = B_TRUE; 569 } 570 } 571 } 572 573 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 574 575 /* reload the queue into the in-core state */ 576 if (scn->scn_phys.scn_queue_obj != 0) { 577 zap_cursor_t zc; 578 zap_attribute_t za; 579 580 for (zap_cursor_init(&zc, dp->dp_meta_objset, 581 scn->scn_phys.scn_queue_obj); 582 zap_cursor_retrieve(&zc, &za) == 0; 583 (void) zap_cursor_advance(&zc)) { 584 scan_ds_queue_insert(scn, 585 zfs_strtonum(za.za_name, NULL), 586 za.za_first_integer); 587 } 588 zap_cursor_fini(&zc); 589 } 590 591 spa_scan_stat_init(spa); 592 return (0); 593 } 594 595 void 596 dsl_scan_fini(dsl_pool_t *dp) 597 { 598 if (dp->dp_scan != NULL) { 599 dsl_scan_t *scn = dp->dp_scan; 600 601 if (scn->scn_taskq != NULL) 602 taskq_destroy(scn->scn_taskq); 603 604 scan_ds_queue_clear(scn); 605 avl_destroy(&scn->scn_queue); 606 scan_ds_prefetch_queue_clear(scn); 607 avl_destroy(&scn->scn_prefetch_queue); 608 609 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 610 dp->dp_scan = NULL; 611 } 612 } 613 614 static boolean_t 615 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 616 { 617 return (scn->scn_restart_txg != 0 && 618 scn->scn_restart_txg <= tx->tx_txg); 619 } 620 621 boolean_t 622 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 623 { 624 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 625 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 626 } 627 628 boolean_t 629 dsl_scan_scrubbing(const dsl_pool_t *dp) 630 { 631 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 632 633 return (scn_phys->scn_state == DSS_SCANNING && 634 scn_phys->scn_func == POOL_SCAN_SCRUB); 635 } 636 637 boolean_t 638 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 639 { 640 return (dsl_scan_scrubbing(scn->scn_dp) && 641 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 642 } 643 644 /* 645 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 646 * Because we can be running in the block sorting algorithm, we do not always 647 * want to write out the record, only when it is "safe" to do so. This safety 648 * condition is achieved by making sure that the sorting queues are empty 649 * (scn_queues_pending == 0). When this condition is not true, the sync'd state 650 * is inconsistent with how much actual scanning progress has been made. The 651 * kind of sync to be performed is specified by the sync_type argument. If the 652 * sync is optional, we only sync if the queues are empty. If the sync is 653 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 654 * third possible state is a "cached" sync. This is done in response to: 655 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 656 * destroyed, so we wouldn't be able to restart scanning from it. 657 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 658 * superseded by a newer snapshot. 659 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 660 * swapped with its clone. 661 * In all cases, a cached sync simply rewrites the last record we've written, 662 * just slightly modified. For the modifications that are performed to the 663 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 664 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 665 */ 666 static void 667 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 668 { 669 int i; 670 spa_t *spa = scn->scn_dp->dp_spa; 671 672 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0); 673 if (scn->scn_queues_pending == 0) { 674 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 675 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 676 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 677 678 if (q == NULL) 679 continue; 680 681 mutex_enter(&vd->vdev_scan_io_queue_lock); 682 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 683 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 684 NULL); 685 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 686 mutex_exit(&vd->vdev_scan_io_queue_lock); 687 } 688 689 if (scn->scn_phys.scn_queue_obj != 0) 690 scan_ds_queue_sync(scn, tx); 691 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 692 DMU_POOL_DIRECTORY_OBJECT, 693 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 694 &scn->scn_phys, tx)); 695 memcpy(&scn->scn_phys_cached, &scn->scn_phys, 696 sizeof (scn->scn_phys)); 697 698 if (scn->scn_checkpointing) 699 zfs_dbgmsg("finish scan checkpoint for %s", 700 spa->spa_name); 701 702 scn->scn_checkpointing = B_FALSE; 703 scn->scn_last_checkpoint = ddi_get_lbolt(); 704 } else if (sync_type == SYNC_CACHED) { 705 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 706 DMU_POOL_DIRECTORY_OBJECT, 707 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 708 &scn->scn_phys_cached, tx)); 709 } 710 } 711 712 int 713 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 714 { 715 (void) arg; 716 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 717 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 718 719 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd)) 720 return (SET_ERROR(EBUSY)); 721 722 return (0); 723 } 724 725 void 726 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 727 { 728 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 729 pool_scan_func_t *funcp = arg; 730 dmu_object_type_t ot = 0; 731 dsl_pool_t *dp = scn->scn_dp; 732 spa_t *spa = dp->dp_spa; 733 734 ASSERT(!dsl_scan_is_running(scn)); 735 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 736 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys)); 737 scn->scn_phys.scn_func = *funcp; 738 scn->scn_phys.scn_state = DSS_SCANNING; 739 scn->scn_phys.scn_min_txg = 0; 740 scn->scn_phys.scn_max_txg = tx->tx_txg; 741 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 742 scn->scn_phys.scn_start_time = gethrestime_sec(); 743 scn->scn_phys.scn_errors = 0; 744 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 745 scn->scn_issued_before_pass = 0; 746 scn->scn_restart_txg = 0; 747 scn->scn_done_txg = 0; 748 scn->scn_last_checkpoint = 0; 749 scn->scn_checkpointing = B_FALSE; 750 spa_scan_stat_init(spa); 751 752 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 753 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 754 755 /* rewrite all disk labels */ 756 vdev_config_dirty(spa->spa_root_vdev); 757 758 if (vdev_resilver_needed(spa->spa_root_vdev, 759 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 760 nvlist_t *aux = fnvlist_alloc(); 761 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 762 "healing"); 763 spa_event_notify(spa, NULL, aux, 764 ESC_ZFS_RESILVER_START); 765 nvlist_free(aux); 766 } else { 767 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 768 } 769 770 spa->spa_scrub_started = B_TRUE; 771 /* 772 * If this is an incremental scrub, limit the DDT scrub phase 773 * to just the auto-ditto class (for correctness); the rest 774 * of the scrub should go faster using top-down pruning. 775 */ 776 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 777 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 778 779 /* 780 * When starting a resilver clear any existing rebuild state. 781 * This is required to prevent stale rebuild status from 782 * being reported when a rebuild is run, then a resilver and 783 * finally a scrub. In which case only the scrub status 784 * should be reported by 'zpool status'. 785 */ 786 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 787 vdev_t *rvd = spa->spa_root_vdev; 788 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 789 vdev_t *vd = rvd->vdev_child[i]; 790 vdev_rebuild_clear_sync( 791 (void *)(uintptr_t)vd->vdev_id, tx); 792 } 793 } 794 } 795 796 /* back to the generic stuff */ 797 798 if (zfs_scan_blkstats) { 799 if (dp->dp_blkstats == NULL) { 800 dp->dp_blkstats = 801 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 802 } 803 memset(&dp->dp_blkstats->zab_type, 0, 804 sizeof (dp->dp_blkstats->zab_type)); 805 } else { 806 if (dp->dp_blkstats) { 807 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 808 dp->dp_blkstats = NULL; 809 } 810 } 811 812 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 813 ot = DMU_OT_ZAP_OTHER; 814 815 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 816 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 817 818 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 819 820 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 821 822 spa_history_log_internal(spa, "scan setup", tx, 823 "func=%u mintxg=%llu maxtxg=%llu", 824 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg, 825 (u_longlong_t)scn->scn_phys.scn_max_txg); 826 } 827 828 /* 829 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 830 * Can also be called to resume a paused scrub. 831 */ 832 int 833 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 834 { 835 spa_t *spa = dp->dp_spa; 836 dsl_scan_t *scn = dp->dp_scan; 837 838 /* 839 * Purge all vdev caches and probe all devices. We do this here 840 * rather than in sync context because this requires a writer lock 841 * on the spa_config lock, which we can't do from sync context. The 842 * spa_scrub_reopen flag indicates that vdev_open() should not 843 * attempt to start another scrub. 844 */ 845 spa_vdev_state_enter(spa, SCL_NONE); 846 spa->spa_scrub_reopen = B_TRUE; 847 vdev_reopen(spa->spa_root_vdev); 848 spa->spa_scrub_reopen = B_FALSE; 849 (void) spa_vdev_state_exit(spa, NULL, 0); 850 851 if (func == POOL_SCAN_RESILVER) { 852 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 853 return (0); 854 } 855 856 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 857 /* got scrub start cmd, resume paused scrub */ 858 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 859 POOL_SCRUB_NORMAL); 860 if (err == 0) { 861 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 862 return (SET_ERROR(ECANCELED)); 863 } 864 865 return (SET_ERROR(err)); 866 } 867 868 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 869 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 870 } 871 872 static void 873 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 874 { 875 static const char *old_names[] = { 876 "scrub_bookmark", 877 "scrub_ddt_bookmark", 878 "scrub_ddt_class_max", 879 "scrub_queue", 880 "scrub_min_txg", 881 "scrub_max_txg", 882 "scrub_func", 883 "scrub_errors", 884 NULL 885 }; 886 887 dsl_pool_t *dp = scn->scn_dp; 888 spa_t *spa = dp->dp_spa; 889 int i; 890 891 /* Remove any remnants of an old-style scrub. */ 892 for (i = 0; old_names[i]; i++) { 893 (void) zap_remove(dp->dp_meta_objset, 894 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 895 } 896 897 if (scn->scn_phys.scn_queue_obj != 0) { 898 VERIFY0(dmu_object_free(dp->dp_meta_objset, 899 scn->scn_phys.scn_queue_obj, tx)); 900 scn->scn_phys.scn_queue_obj = 0; 901 } 902 scan_ds_queue_clear(scn); 903 scan_ds_prefetch_queue_clear(scn); 904 905 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 906 907 /* 908 * If we were "restarted" from a stopped state, don't bother 909 * with anything else. 910 */ 911 if (!dsl_scan_is_running(scn)) { 912 ASSERT(!scn->scn_is_sorted); 913 return; 914 } 915 916 if (scn->scn_is_sorted) { 917 scan_io_queues_destroy(scn); 918 scn->scn_is_sorted = B_FALSE; 919 920 if (scn->scn_taskq != NULL) { 921 taskq_destroy(scn->scn_taskq); 922 scn->scn_taskq = NULL; 923 } 924 } 925 926 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 927 928 spa_notify_waiters(spa); 929 930 if (dsl_scan_restarting(scn, tx)) 931 spa_history_log_internal(spa, "scan aborted, restarting", tx, 932 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 933 else if (!complete) 934 spa_history_log_internal(spa, "scan cancelled", tx, 935 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 936 else 937 spa_history_log_internal(spa, "scan done", tx, 938 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 939 940 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 941 spa->spa_scrub_active = B_FALSE; 942 943 /* 944 * If the scrub/resilver completed, update all DTLs to 945 * reflect this. Whether it succeeded or not, vacate 946 * all temporary scrub DTLs. 947 * 948 * As the scrub does not currently support traversing 949 * data that have been freed but are part of a checkpoint, 950 * we don't mark the scrub as done in the DTLs as faults 951 * may still exist in those vdevs. 952 */ 953 if (complete && 954 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 955 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 956 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 957 958 if (scn->scn_phys.scn_min_txg) { 959 nvlist_t *aux = fnvlist_alloc(); 960 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 961 "healing"); 962 spa_event_notify(spa, NULL, aux, 963 ESC_ZFS_RESILVER_FINISH); 964 nvlist_free(aux); 965 } else { 966 spa_event_notify(spa, NULL, NULL, 967 ESC_ZFS_SCRUB_FINISH); 968 } 969 } else { 970 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 971 0, B_TRUE, B_FALSE); 972 } 973 spa_errlog_rotate(spa); 974 975 /* 976 * Don't clear flag until after vdev_dtl_reassess to ensure that 977 * DTL_MISSING will get updated when possible. 978 */ 979 spa->spa_scrub_started = B_FALSE; 980 981 /* 982 * We may have finished replacing a device. 983 * Let the async thread assess this and handle the detach. 984 */ 985 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 986 987 /* 988 * Clear any resilver_deferred flags in the config. 989 * If there are drives that need resilvering, kick 990 * off an asynchronous request to start resilver. 991 * vdev_clear_resilver_deferred() may update the config 992 * before the resilver can restart. In the event of 993 * a crash during this period, the spa loading code 994 * will find the drives that need to be resilvered 995 * and start the resilver then. 996 */ 997 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 998 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 999 spa_history_log_internal(spa, 1000 "starting deferred resilver", tx, "errors=%llu", 1001 (u_longlong_t)spa_get_errlog_size(spa)); 1002 spa_async_request(spa, SPA_ASYNC_RESILVER); 1003 } 1004 1005 /* Clear recent error events (i.e. duplicate events tracking) */ 1006 if (complete) 1007 zfs_ereport_clear(spa, NULL); 1008 } 1009 1010 scn->scn_phys.scn_end_time = gethrestime_sec(); 1011 1012 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1013 spa->spa_errata = 0; 1014 1015 ASSERT(!dsl_scan_is_running(scn)); 1016 } 1017 1018 static int 1019 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1020 { 1021 (void) arg; 1022 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1023 1024 if (!dsl_scan_is_running(scn)) 1025 return (SET_ERROR(ENOENT)); 1026 return (0); 1027 } 1028 1029 static void 1030 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1031 { 1032 (void) arg; 1033 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1034 1035 dsl_scan_done(scn, B_FALSE, tx); 1036 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1037 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1038 } 1039 1040 int 1041 dsl_scan_cancel(dsl_pool_t *dp) 1042 { 1043 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1044 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1045 } 1046 1047 static int 1048 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1049 { 1050 pool_scrub_cmd_t *cmd = arg; 1051 dsl_pool_t *dp = dmu_tx_pool(tx); 1052 dsl_scan_t *scn = dp->dp_scan; 1053 1054 if (*cmd == POOL_SCRUB_PAUSE) { 1055 /* can't pause a scrub when there is no in-progress scrub */ 1056 if (!dsl_scan_scrubbing(dp)) 1057 return (SET_ERROR(ENOENT)); 1058 1059 /* can't pause a paused scrub */ 1060 if (dsl_scan_is_paused_scrub(scn)) 1061 return (SET_ERROR(EBUSY)); 1062 } else if (*cmd != POOL_SCRUB_NORMAL) { 1063 return (SET_ERROR(ENOTSUP)); 1064 } 1065 1066 return (0); 1067 } 1068 1069 static void 1070 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1071 { 1072 pool_scrub_cmd_t *cmd = arg; 1073 dsl_pool_t *dp = dmu_tx_pool(tx); 1074 spa_t *spa = dp->dp_spa; 1075 dsl_scan_t *scn = dp->dp_scan; 1076 1077 if (*cmd == POOL_SCRUB_PAUSE) { 1078 /* can't pause a scrub when there is no in-progress scrub */ 1079 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1080 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1081 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1082 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1083 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1084 spa_notify_waiters(spa); 1085 } else { 1086 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1087 if (dsl_scan_is_paused_scrub(scn)) { 1088 /* 1089 * We need to keep track of how much time we spend 1090 * paused per pass so that we can adjust the scrub rate 1091 * shown in the output of 'zpool status' 1092 */ 1093 spa->spa_scan_pass_scrub_spent_paused += 1094 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1095 spa->spa_scan_pass_scrub_pause = 0; 1096 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1097 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1098 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1099 } 1100 } 1101 } 1102 1103 /* 1104 * Set scrub pause/resume state if it makes sense to do so 1105 */ 1106 int 1107 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1108 { 1109 return (dsl_sync_task(spa_name(dp->dp_spa), 1110 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1111 ZFS_SPACE_CHECK_RESERVED)); 1112 } 1113 1114 1115 /* start a new scan, or restart an existing one. */ 1116 void 1117 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1118 { 1119 if (txg == 0) { 1120 dmu_tx_t *tx; 1121 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1122 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1123 1124 txg = dmu_tx_get_txg(tx); 1125 dp->dp_scan->scn_restart_txg = txg; 1126 dmu_tx_commit(tx); 1127 } else { 1128 dp->dp_scan->scn_restart_txg = txg; 1129 } 1130 zfs_dbgmsg("restarting resilver for %s at txg=%llu", 1131 dp->dp_spa->spa_name, (longlong_t)txg); 1132 } 1133 1134 void 1135 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1136 { 1137 zio_free(dp->dp_spa, txg, bp); 1138 } 1139 1140 void 1141 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1142 { 1143 ASSERT(dsl_pool_sync_context(dp)); 1144 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1145 } 1146 1147 static int 1148 scan_ds_queue_compare(const void *a, const void *b) 1149 { 1150 const scan_ds_t *sds_a = a, *sds_b = b; 1151 1152 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1153 return (-1); 1154 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1155 return (0); 1156 return (1); 1157 } 1158 1159 static void 1160 scan_ds_queue_clear(dsl_scan_t *scn) 1161 { 1162 void *cookie = NULL; 1163 scan_ds_t *sds; 1164 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1165 kmem_free(sds, sizeof (*sds)); 1166 } 1167 } 1168 1169 static boolean_t 1170 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1171 { 1172 scan_ds_t srch, *sds; 1173 1174 srch.sds_dsobj = dsobj; 1175 sds = avl_find(&scn->scn_queue, &srch, NULL); 1176 if (sds != NULL && txg != NULL) 1177 *txg = sds->sds_txg; 1178 return (sds != NULL); 1179 } 1180 1181 static void 1182 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1183 { 1184 scan_ds_t *sds; 1185 avl_index_t where; 1186 1187 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1188 sds->sds_dsobj = dsobj; 1189 sds->sds_txg = txg; 1190 1191 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1192 avl_insert(&scn->scn_queue, sds, where); 1193 } 1194 1195 static void 1196 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1197 { 1198 scan_ds_t srch, *sds; 1199 1200 srch.sds_dsobj = dsobj; 1201 1202 sds = avl_find(&scn->scn_queue, &srch, NULL); 1203 VERIFY(sds != NULL); 1204 avl_remove(&scn->scn_queue, sds); 1205 kmem_free(sds, sizeof (*sds)); 1206 } 1207 1208 static void 1209 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1210 { 1211 dsl_pool_t *dp = scn->scn_dp; 1212 spa_t *spa = dp->dp_spa; 1213 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1214 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1215 1216 ASSERT0(scn->scn_queues_pending); 1217 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1218 1219 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1220 scn->scn_phys.scn_queue_obj, tx)); 1221 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1222 DMU_OT_NONE, 0, tx); 1223 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1224 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1225 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1226 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1227 sds->sds_txg, tx)); 1228 } 1229 } 1230 1231 /* 1232 * Computes the memory limit state that we're currently in. A sorted scan 1233 * needs quite a bit of memory to hold the sorting queue, so we need to 1234 * reasonably constrain the size so it doesn't impact overall system 1235 * performance. We compute two limits: 1236 * 1) Hard memory limit: if the amount of memory used by the sorting 1237 * queues on a pool gets above this value, we stop the metadata 1238 * scanning portion and start issuing the queued up and sorted 1239 * I/Os to reduce memory usage. 1240 * This limit is calculated as a fraction of physmem (by default 5%). 1241 * We constrain the lower bound of the hard limit to an absolute 1242 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1243 * the upper bound to 5% of the total pool size - no chance we'll 1244 * ever need that much memory, but just to keep the value in check. 1245 * 2) Soft memory limit: once we hit the hard memory limit, we start 1246 * issuing I/O to reduce queue memory usage, but we don't want to 1247 * completely empty out the queues, since we might be able to find I/Os 1248 * that will fill in the gaps of our non-sequential IOs at some point 1249 * in the future. So we stop the issuing of I/Os once the amount of 1250 * memory used drops below the soft limit (at which point we stop issuing 1251 * I/O and start scanning metadata again). 1252 * 1253 * This limit is calculated by subtracting a fraction of the hard 1254 * limit from the hard limit. By default this fraction is 5%, so 1255 * the soft limit is 95% of the hard limit. We cap the size of the 1256 * difference between the hard and soft limits at an absolute 1257 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1258 * sufficient to not cause too frequent switching between the 1259 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1260 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1261 * that should take at least a decent fraction of a second). 1262 */ 1263 static boolean_t 1264 dsl_scan_should_clear(dsl_scan_t *scn) 1265 { 1266 spa_t *spa = scn->scn_dp->dp_spa; 1267 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1268 uint64_t alloc, mlim_hard, mlim_soft, mused; 1269 1270 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1271 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1272 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1273 1274 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1275 zfs_scan_mem_lim_min); 1276 mlim_hard = MIN(mlim_hard, alloc / 20); 1277 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1278 zfs_scan_mem_lim_soft_max); 1279 mused = 0; 1280 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1281 vdev_t *tvd = rvd->vdev_child[i]; 1282 dsl_scan_io_queue_t *queue; 1283 1284 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1285 queue = tvd->vdev_scan_io_queue; 1286 if (queue != NULL) { 1287 /* 1288 * # of extents in exts_by_addr = # in exts_by_size. 1289 * B-tree efficiency is ~75%, but can be as low as 50%. 1290 */ 1291 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1292 ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) * 1293 3 / 2) + queue->q_sio_memused; 1294 } 1295 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1296 } 1297 1298 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1299 1300 if (mused == 0) 1301 ASSERT0(scn->scn_queues_pending); 1302 1303 /* 1304 * If we are above our hard limit, we need to clear out memory. 1305 * If we are below our soft limit, we need to accumulate sequential IOs. 1306 * Otherwise, we should keep doing whatever we are currently doing. 1307 */ 1308 if (mused >= mlim_hard) 1309 return (B_TRUE); 1310 else if (mused < mlim_soft) 1311 return (B_FALSE); 1312 else 1313 return (scn->scn_clearing); 1314 } 1315 1316 static boolean_t 1317 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1318 { 1319 /* we never skip user/group accounting objects */ 1320 if (zb && (int64_t)zb->zb_object < 0) 1321 return (B_FALSE); 1322 1323 if (scn->scn_suspending) 1324 return (B_TRUE); /* we're already suspending */ 1325 1326 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1327 return (B_FALSE); /* we're resuming */ 1328 1329 /* We only know how to resume from level-0 and objset blocks. */ 1330 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1331 return (B_FALSE); 1332 1333 /* 1334 * We suspend if: 1335 * - we have scanned for at least the minimum time (default 1 sec 1336 * for scrub, 3 sec for resilver), and either we have sufficient 1337 * dirty data that we are starting to write more quickly 1338 * (default 30%), someone is explicitly waiting for this txg 1339 * to complete, or we have used up all of the time in the txg 1340 * timeout (default 5 sec). 1341 * or 1342 * - the spa is shutting down because this pool is being exported 1343 * or the machine is rebooting. 1344 * or 1345 * - the scan queue has reached its memory use limit 1346 */ 1347 uint64_t curr_time_ns = gethrtime(); 1348 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1349 uint64_t sync_time_ns = curr_time_ns - 1350 scn->scn_dp->dp_spa->spa_sync_starttime; 1351 uint64_t dirty_min_bytes = zfs_dirty_data_max * 1352 zfs_vdev_async_write_active_min_dirty_percent / 100; 1353 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1354 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1355 1356 if ((NSEC2MSEC(scan_time_ns) > mintime && 1357 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 1358 txg_sync_waiting(scn->scn_dp) || 1359 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1360 spa_shutting_down(scn->scn_dp->dp_spa) || 1361 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1362 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1363 dprintf("suspending at first available bookmark " 1364 "%llx/%llx/%llx/%llx\n", 1365 (longlong_t)zb->zb_objset, 1366 (longlong_t)zb->zb_object, 1367 (longlong_t)zb->zb_level, 1368 (longlong_t)zb->zb_blkid); 1369 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1370 zb->zb_objset, 0, 0, 0); 1371 } else if (zb != NULL) { 1372 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1373 (longlong_t)zb->zb_objset, 1374 (longlong_t)zb->zb_object, 1375 (longlong_t)zb->zb_level, 1376 (longlong_t)zb->zb_blkid); 1377 scn->scn_phys.scn_bookmark = *zb; 1378 } else { 1379 #ifdef ZFS_DEBUG 1380 dsl_scan_phys_t *scnp = &scn->scn_phys; 1381 dprintf("suspending at at DDT bookmark " 1382 "%llx/%llx/%llx/%llx\n", 1383 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1384 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1385 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1386 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1387 #endif 1388 } 1389 scn->scn_suspending = B_TRUE; 1390 return (B_TRUE); 1391 } 1392 return (B_FALSE); 1393 } 1394 1395 typedef struct zil_scan_arg { 1396 dsl_pool_t *zsa_dp; 1397 zil_header_t *zsa_zh; 1398 } zil_scan_arg_t; 1399 1400 static int 1401 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, 1402 uint64_t claim_txg) 1403 { 1404 (void) zilog; 1405 zil_scan_arg_t *zsa = arg; 1406 dsl_pool_t *dp = zsa->zsa_dp; 1407 dsl_scan_t *scn = dp->dp_scan; 1408 zil_header_t *zh = zsa->zsa_zh; 1409 zbookmark_phys_t zb; 1410 1411 ASSERT(!BP_IS_REDACTED(bp)); 1412 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1413 return (0); 1414 1415 /* 1416 * One block ("stubby") can be allocated a long time ago; we 1417 * want to visit that one because it has been allocated 1418 * (on-disk) even if it hasn't been claimed (even though for 1419 * scrub there's nothing to do to it). 1420 */ 1421 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1422 return (0); 1423 1424 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1425 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1426 1427 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1428 return (0); 1429 } 1430 1431 static int 1432 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, 1433 uint64_t claim_txg) 1434 { 1435 (void) zilog; 1436 if (lrc->lrc_txtype == TX_WRITE) { 1437 zil_scan_arg_t *zsa = arg; 1438 dsl_pool_t *dp = zsa->zsa_dp; 1439 dsl_scan_t *scn = dp->dp_scan; 1440 zil_header_t *zh = zsa->zsa_zh; 1441 const lr_write_t *lr = (const lr_write_t *)lrc; 1442 const blkptr_t *bp = &lr->lr_blkptr; 1443 zbookmark_phys_t zb; 1444 1445 ASSERT(!BP_IS_REDACTED(bp)); 1446 if (BP_IS_HOLE(bp) || 1447 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1448 return (0); 1449 1450 /* 1451 * birth can be < claim_txg if this record's txg is 1452 * already txg sync'ed (but this log block contains 1453 * other records that are not synced) 1454 */ 1455 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1456 return (0); 1457 1458 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1459 lr->lr_foid, ZB_ZIL_LEVEL, 1460 lr->lr_offset / BP_GET_LSIZE(bp)); 1461 1462 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1463 } 1464 return (0); 1465 } 1466 1467 static void 1468 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1469 { 1470 uint64_t claim_txg = zh->zh_claim_txg; 1471 zil_scan_arg_t zsa = { dp, zh }; 1472 zilog_t *zilog; 1473 1474 ASSERT(spa_writeable(dp->dp_spa)); 1475 1476 /* 1477 * We only want to visit blocks that have been claimed but not yet 1478 * replayed (or, in read-only mode, blocks that *would* be claimed). 1479 */ 1480 if (claim_txg == 0) 1481 return; 1482 1483 zilog = zil_alloc(dp->dp_meta_objset, zh); 1484 1485 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1486 claim_txg, B_FALSE); 1487 1488 zil_free(zilog); 1489 } 1490 1491 /* 1492 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1493 * here is to sort the AVL tree by the order each block will be needed. 1494 */ 1495 static int 1496 scan_prefetch_queue_compare(const void *a, const void *b) 1497 { 1498 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1499 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1500 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1501 1502 return (zbookmark_compare(spc_a->spc_datablkszsec, 1503 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1504 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1505 } 1506 1507 static void 1508 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag) 1509 { 1510 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1511 zfs_refcount_destroy(&spc->spc_refcnt); 1512 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1513 } 1514 } 1515 1516 static scan_prefetch_ctx_t * 1517 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag) 1518 { 1519 scan_prefetch_ctx_t *spc; 1520 1521 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1522 zfs_refcount_create(&spc->spc_refcnt); 1523 zfs_refcount_add(&spc->spc_refcnt, tag); 1524 spc->spc_scn = scn; 1525 if (dnp != NULL) { 1526 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1527 spc->spc_indblkshift = dnp->dn_indblkshift; 1528 spc->spc_root = B_FALSE; 1529 } else { 1530 spc->spc_datablkszsec = 0; 1531 spc->spc_indblkshift = 0; 1532 spc->spc_root = B_TRUE; 1533 } 1534 1535 return (spc); 1536 } 1537 1538 static void 1539 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag) 1540 { 1541 zfs_refcount_add(&spc->spc_refcnt, tag); 1542 } 1543 1544 static void 1545 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1546 { 1547 spa_t *spa = scn->scn_dp->dp_spa; 1548 void *cookie = NULL; 1549 scan_prefetch_issue_ctx_t *spic = NULL; 1550 1551 mutex_enter(&spa->spa_scrub_lock); 1552 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1553 &cookie)) != NULL) { 1554 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1555 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1556 } 1557 mutex_exit(&spa->spa_scrub_lock); 1558 } 1559 1560 static boolean_t 1561 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1562 const zbookmark_phys_t *zb) 1563 { 1564 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1565 dnode_phys_t tmp_dnp; 1566 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1567 1568 if (zb->zb_objset != last_zb->zb_objset) 1569 return (B_TRUE); 1570 if ((int64_t)zb->zb_object < 0) 1571 return (B_FALSE); 1572 1573 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1574 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1575 1576 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1577 return (B_TRUE); 1578 1579 return (B_FALSE); 1580 } 1581 1582 static void 1583 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1584 { 1585 avl_index_t idx; 1586 dsl_scan_t *scn = spc->spc_scn; 1587 spa_t *spa = scn->scn_dp->dp_spa; 1588 scan_prefetch_issue_ctx_t *spic; 1589 1590 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1591 return; 1592 1593 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1594 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1595 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1596 return; 1597 1598 if (dsl_scan_check_prefetch_resume(spc, zb)) 1599 return; 1600 1601 scan_prefetch_ctx_add_ref(spc, scn); 1602 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1603 spic->spic_spc = spc; 1604 spic->spic_bp = *bp; 1605 spic->spic_zb = *zb; 1606 1607 /* 1608 * Add the IO to the queue of blocks to prefetch. This allows us to 1609 * prioritize blocks that we will need first for the main traversal 1610 * thread. 1611 */ 1612 mutex_enter(&spa->spa_scrub_lock); 1613 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1614 /* this block is already queued for prefetch */ 1615 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1616 scan_prefetch_ctx_rele(spc, scn); 1617 mutex_exit(&spa->spa_scrub_lock); 1618 return; 1619 } 1620 1621 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1622 cv_broadcast(&spa->spa_scrub_io_cv); 1623 mutex_exit(&spa->spa_scrub_lock); 1624 } 1625 1626 static void 1627 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1628 uint64_t objset, uint64_t object) 1629 { 1630 int i; 1631 zbookmark_phys_t zb; 1632 scan_prefetch_ctx_t *spc; 1633 1634 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1635 return; 1636 1637 SET_BOOKMARK(&zb, objset, object, 0, 0); 1638 1639 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1640 1641 for (i = 0; i < dnp->dn_nblkptr; i++) { 1642 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1643 zb.zb_blkid = i; 1644 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1645 } 1646 1647 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1648 zb.zb_level = 0; 1649 zb.zb_blkid = DMU_SPILL_BLKID; 1650 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 1651 } 1652 1653 scan_prefetch_ctx_rele(spc, FTAG); 1654 } 1655 1656 static void 1657 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1658 arc_buf_t *buf, void *private) 1659 { 1660 (void) zio; 1661 scan_prefetch_ctx_t *spc = private; 1662 dsl_scan_t *scn = spc->spc_scn; 1663 spa_t *spa = scn->scn_dp->dp_spa; 1664 1665 /* broadcast that the IO has completed for rate limiting purposes */ 1666 mutex_enter(&spa->spa_scrub_lock); 1667 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1668 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1669 cv_broadcast(&spa->spa_scrub_io_cv); 1670 mutex_exit(&spa->spa_scrub_lock); 1671 1672 /* if there was an error or we are done prefetching, just cleanup */ 1673 if (buf == NULL || scn->scn_prefetch_stop) 1674 goto out; 1675 1676 if (BP_GET_LEVEL(bp) > 0) { 1677 int i; 1678 blkptr_t *cbp; 1679 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1680 zbookmark_phys_t czb; 1681 1682 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1683 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1684 zb->zb_level - 1, zb->zb_blkid * epb + i); 1685 dsl_scan_prefetch(spc, cbp, &czb); 1686 } 1687 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1688 dnode_phys_t *cdnp; 1689 int i; 1690 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1691 1692 for (i = 0, cdnp = buf->b_data; i < epb; 1693 i += cdnp->dn_extra_slots + 1, 1694 cdnp += cdnp->dn_extra_slots + 1) { 1695 dsl_scan_prefetch_dnode(scn, cdnp, 1696 zb->zb_objset, zb->zb_blkid * epb + i); 1697 } 1698 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1699 objset_phys_t *osp = buf->b_data; 1700 1701 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1702 zb->zb_objset, DMU_META_DNODE_OBJECT); 1703 1704 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1705 dsl_scan_prefetch_dnode(scn, 1706 &osp->os_groupused_dnode, zb->zb_objset, 1707 DMU_GROUPUSED_OBJECT); 1708 dsl_scan_prefetch_dnode(scn, 1709 &osp->os_userused_dnode, zb->zb_objset, 1710 DMU_USERUSED_OBJECT); 1711 } 1712 } 1713 1714 out: 1715 if (buf != NULL) 1716 arc_buf_destroy(buf, private); 1717 scan_prefetch_ctx_rele(spc, scn); 1718 } 1719 1720 static void 1721 dsl_scan_prefetch_thread(void *arg) 1722 { 1723 dsl_scan_t *scn = arg; 1724 spa_t *spa = scn->scn_dp->dp_spa; 1725 scan_prefetch_issue_ctx_t *spic; 1726 1727 /* loop until we are told to stop */ 1728 while (!scn->scn_prefetch_stop) { 1729 arc_flags_t flags = ARC_FLAG_NOWAIT | 1730 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1731 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1732 1733 mutex_enter(&spa->spa_scrub_lock); 1734 1735 /* 1736 * Wait until we have an IO to issue and are not above our 1737 * maximum in flight limit. 1738 */ 1739 while (!scn->scn_prefetch_stop && 1740 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1741 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1742 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1743 } 1744 1745 /* recheck if we should stop since we waited for the cv */ 1746 if (scn->scn_prefetch_stop) { 1747 mutex_exit(&spa->spa_scrub_lock); 1748 break; 1749 } 1750 1751 /* remove the prefetch IO from the tree */ 1752 spic = avl_first(&scn->scn_prefetch_queue); 1753 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1754 avl_remove(&scn->scn_prefetch_queue, spic); 1755 1756 mutex_exit(&spa->spa_scrub_lock); 1757 1758 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1759 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1760 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1761 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1762 zio_flags |= ZIO_FLAG_RAW; 1763 } 1764 1765 /* issue the prefetch asynchronously */ 1766 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1767 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1768 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1769 1770 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1771 } 1772 1773 ASSERT(scn->scn_prefetch_stop); 1774 1775 /* free any prefetches we didn't get to complete */ 1776 mutex_enter(&spa->spa_scrub_lock); 1777 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1778 avl_remove(&scn->scn_prefetch_queue, spic); 1779 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1780 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1781 } 1782 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1783 mutex_exit(&spa->spa_scrub_lock); 1784 } 1785 1786 static boolean_t 1787 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1788 const zbookmark_phys_t *zb) 1789 { 1790 /* 1791 * We never skip over user/group accounting objects (obj<0) 1792 */ 1793 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1794 (int64_t)zb->zb_object >= 0) { 1795 /* 1796 * If we already visited this bp & everything below (in 1797 * a prior txg sync), don't bother doing it again. 1798 */ 1799 if (zbookmark_subtree_completed(dnp, zb, 1800 &scn->scn_phys.scn_bookmark)) 1801 return (B_TRUE); 1802 1803 /* 1804 * If we found the block we're trying to resume from, or 1805 * we went past it, zero it out to indicate that it's OK 1806 * to start checking for suspending again. 1807 */ 1808 if (zbookmark_subtree_tbd(dnp, zb, 1809 &scn->scn_phys.scn_bookmark)) { 1810 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1811 (longlong_t)zb->zb_objset, 1812 (longlong_t)zb->zb_object, 1813 (longlong_t)zb->zb_level, 1814 (longlong_t)zb->zb_blkid); 1815 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb)); 1816 } 1817 } 1818 return (B_FALSE); 1819 } 1820 1821 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1822 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1823 dmu_objset_type_t ostype, dmu_tx_t *tx); 1824 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 1825 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1826 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1827 1828 /* 1829 * Return nonzero on i/o error. 1830 * Return new buf to write out in *bufp. 1831 */ 1832 inline __attribute__((always_inline)) static int 1833 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1834 dnode_phys_t *dnp, const blkptr_t *bp, 1835 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1836 { 1837 dsl_pool_t *dp = scn->scn_dp; 1838 spa_t *spa = dp->dp_spa; 1839 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1840 int err; 1841 1842 ASSERT(!BP_IS_REDACTED(bp)); 1843 1844 /* 1845 * There is an unlikely case of encountering dnodes with contradicting 1846 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created 1847 * or modified before commit 4254acb was merged. As it is not possible 1848 * to know which of the two is correct, report an error. 1849 */ 1850 if (dnp != NULL && 1851 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) { 1852 scn->scn_phys.scn_errors++; 1853 spa_log_error(spa, zb); 1854 return (SET_ERROR(EINVAL)); 1855 } 1856 1857 if (BP_GET_LEVEL(bp) > 0) { 1858 arc_flags_t flags = ARC_FLAG_WAIT; 1859 int i; 1860 blkptr_t *cbp; 1861 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1862 arc_buf_t *buf; 1863 1864 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 1865 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1866 if (err) { 1867 scn->scn_phys.scn_errors++; 1868 return (err); 1869 } 1870 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1871 zbookmark_phys_t czb; 1872 1873 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1874 zb->zb_level - 1, 1875 zb->zb_blkid * epb + i); 1876 dsl_scan_visitbp(cbp, &czb, dnp, 1877 ds, scn, ostype, tx); 1878 } 1879 arc_buf_destroy(buf, &buf); 1880 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1881 arc_flags_t flags = ARC_FLAG_WAIT; 1882 dnode_phys_t *cdnp; 1883 int i; 1884 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1885 arc_buf_t *buf; 1886 1887 if (BP_IS_PROTECTED(bp)) { 1888 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1889 zio_flags |= ZIO_FLAG_RAW; 1890 } 1891 1892 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 1893 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1894 if (err) { 1895 scn->scn_phys.scn_errors++; 1896 return (err); 1897 } 1898 for (i = 0, cdnp = buf->b_data; i < epb; 1899 i += cdnp->dn_extra_slots + 1, 1900 cdnp += cdnp->dn_extra_slots + 1) { 1901 dsl_scan_visitdnode(scn, ds, ostype, 1902 cdnp, zb->zb_blkid * epb + i, tx); 1903 } 1904 1905 arc_buf_destroy(buf, &buf); 1906 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1907 arc_flags_t flags = ARC_FLAG_WAIT; 1908 objset_phys_t *osp; 1909 arc_buf_t *buf; 1910 1911 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 1912 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1913 if (err) { 1914 scn->scn_phys.scn_errors++; 1915 return (err); 1916 } 1917 1918 osp = buf->b_data; 1919 1920 dsl_scan_visitdnode(scn, ds, osp->os_type, 1921 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1922 1923 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1924 /* 1925 * We also always visit user/group/project accounting 1926 * objects, and never skip them, even if we are 1927 * suspending. This is necessary so that the 1928 * space deltas from this txg get integrated. 1929 */ 1930 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1931 dsl_scan_visitdnode(scn, ds, osp->os_type, 1932 &osp->os_projectused_dnode, 1933 DMU_PROJECTUSED_OBJECT, tx); 1934 dsl_scan_visitdnode(scn, ds, osp->os_type, 1935 &osp->os_groupused_dnode, 1936 DMU_GROUPUSED_OBJECT, tx); 1937 dsl_scan_visitdnode(scn, ds, osp->os_type, 1938 &osp->os_userused_dnode, 1939 DMU_USERUSED_OBJECT, tx); 1940 } 1941 arc_buf_destroy(buf, &buf); 1942 } else if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) { 1943 /* 1944 * Sanity check the block pointer contents, this is handled 1945 * by arc_read() for the cases above. 1946 */ 1947 scn->scn_phys.scn_errors++; 1948 spa_log_error(spa, zb); 1949 return (SET_ERROR(EINVAL)); 1950 } 1951 1952 return (0); 1953 } 1954 1955 inline __attribute__((always_inline)) static void 1956 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1957 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1958 uint64_t object, dmu_tx_t *tx) 1959 { 1960 int j; 1961 1962 for (j = 0; j < dnp->dn_nblkptr; j++) { 1963 zbookmark_phys_t czb; 1964 1965 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1966 dnp->dn_nlevels - 1, j); 1967 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1968 &czb, dnp, ds, scn, ostype, tx); 1969 } 1970 1971 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1972 zbookmark_phys_t czb; 1973 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1974 0, DMU_SPILL_BLKID); 1975 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1976 &czb, dnp, ds, scn, ostype, tx); 1977 } 1978 } 1979 1980 /* 1981 * The arguments are in this order because mdb can only print the 1982 * first 5; we want them to be useful. 1983 */ 1984 static void 1985 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1986 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1987 dmu_objset_type_t ostype, dmu_tx_t *tx) 1988 { 1989 dsl_pool_t *dp = scn->scn_dp; 1990 blkptr_t *bp_toread = NULL; 1991 1992 if (dsl_scan_check_suspend(scn, zb)) 1993 return; 1994 1995 if (dsl_scan_check_resume(scn, dnp, zb)) 1996 return; 1997 1998 scn->scn_visited_this_txg++; 1999 2000 if (BP_IS_HOLE(bp)) { 2001 scn->scn_holes_this_txg++; 2002 return; 2003 } 2004 2005 if (BP_IS_REDACTED(bp)) { 2006 ASSERT(dsl_dataset_feature_is_active(ds, 2007 SPA_FEATURE_REDACTED_DATASETS)); 2008 return; 2009 } 2010 2011 /* 2012 * Check if this block contradicts any filesystem flags. 2013 */ 2014 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS; 2015 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE) 2016 ASSERT3B(dsl_dataset_feature_is_active(ds, f), ==, B_TRUE); 2017 2018 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp)); 2019 if (f != SPA_FEATURE_NONE) 2020 ASSERT3B(dsl_dataset_feature_is_active(ds, f), ==, B_TRUE); 2021 2022 f = zio_compress_to_feature(BP_GET_COMPRESS(bp)); 2023 if (f != SPA_FEATURE_NONE) 2024 ASSERT3B(dsl_dataset_feature_is_active(ds, f), ==, B_TRUE); 2025 2026 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 2027 scn->scn_lt_min_this_txg++; 2028 return; 2029 } 2030 2031 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 2032 *bp_toread = *bp; 2033 2034 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 2035 goto out; 2036 2037 /* 2038 * If dsl_scan_ddt() has already visited this block, it will have 2039 * already done any translations or scrubbing, so don't call the 2040 * callback again. 2041 */ 2042 if (ddt_class_contains(dp->dp_spa, 2043 scn->scn_phys.scn_ddt_class_max, bp)) { 2044 scn->scn_ddt_contained_this_txg++; 2045 goto out; 2046 } 2047 2048 /* 2049 * If this block is from the future (after cur_max_txg), then we 2050 * are doing this on behalf of a deleted snapshot, and we will 2051 * revisit the future block on the next pass of this dataset. 2052 * Don't scan it now unless we need to because something 2053 * under it was modified. 2054 */ 2055 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2056 scn->scn_gt_max_this_txg++; 2057 goto out; 2058 } 2059 2060 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2061 2062 out: 2063 kmem_free(bp_toread, sizeof (blkptr_t)); 2064 } 2065 2066 static void 2067 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2068 dmu_tx_t *tx) 2069 { 2070 zbookmark_phys_t zb; 2071 scan_prefetch_ctx_t *spc; 2072 2073 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2074 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2075 2076 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2077 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2078 zb.zb_objset, 0, 0, 0); 2079 } else { 2080 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2081 } 2082 2083 scn->scn_objsets_visited_this_txg++; 2084 2085 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2086 dsl_scan_prefetch(spc, bp, &zb); 2087 scan_prefetch_ctx_rele(spc, FTAG); 2088 2089 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2090 2091 dprintf_ds(ds, "finished scan%s", ""); 2092 } 2093 2094 static void 2095 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2096 { 2097 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2098 if (ds->ds_is_snapshot) { 2099 /* 2100 * Note: 2101 * - scn_cur_{min,max}_txg stays the same. 2102 * - Setting the flag is not really necessary if 2103 * scn_cur_max_txg == scn_max_txg, because there 2104 * is nothing after this snapshot that we care 2105 * about. However, we set it anyway and then 2106 * ignore it when we retraverse it in 2107 * dsl_scan_visitds(). 2108 */ 2109 scn_phys->scn_bookmark.zb_objset = 2110 dsl_dataset_phys(ds)->ds_next_snap_obj; 2111 zfs_dbgmsg("destroying ds %llu on %s; currently " 2112 "traversing; reset zb_objset to %llu", 2113 (u_longlong_t)ds->ds_object, 2114 ds->ds_dir->dd_pool->dp_spa->spa_name, 2115 (u_longlong_t)dsl_dataset_phys(ds)-> 2116 ds_next_snap_obj); 2117 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2118 } else { 2119 SET_BOOKMARK(&scn_phys->scn_bookmark, 2120 ZB_DESTROYED_OBJSET, 0, 0, 0); 2121 zfs_dbgmsg("destroying ds %llu on %s; currently " 2122 "traversing; reset bookmark to -1,0,0,0", 2123 (u_longlong_t)ds->ds_object, 2124 ds->ds_dir->dd_pool->dp_spa->spa_name); 2125 } 2126 } 2127 } 2128 2129 /* 2130 * Invoked when a dataset is destroyed. We need to make sure that: 2131 * 2132 * 1) If it is the dataset that was currently being scanned, we write 2133 * a new dsl_scan_phys_t and marking the objset reference in it 2134 * as destroyed. 2135 * 2) Remove it from the work queue, if it was present. 2136 * 2137 * If the dataset was actually a snapshot, instead of marking the dataset 2138 * as destroyed, we instead substitute the next snapshot in line. 2139 */ 2140 void 2141 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2142 { 2143 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2144 dsl_scan_t *scn = dp->dp_scan; 2145 uint64_t mintxg; 2146 2147 if (!dsl_scan_is_running(scn)) 2148 return; 2149 2150 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2151 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2152 2153 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2154 scan_ds_queue_remove(scn, ds->ds_object); 2155 if (ds->ds_is_snapshot) 2156 scan_ds_queue_insert(scn, 2157 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2158 } 2159 2160 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2161 ds->ds_object, &mintxg) == 0) { 2162 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2163 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2164 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2165 if (ds->ds_is_snapshot) { 2166 /* 2167 * We keep the same mintxg; it could be > 2168 * ds_creation_txg if the previous snapshot was 2169 * deleted too. 2170 */ 2171 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2172 scn->scn_phys.scn_queue_obj, 2173 dsl_dataset_phys(ds)->ds_next_snap_obj, 2174 mintxg, tx) == 0); 2175 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2176 "replacing with %llu", 2177 (u_longlong_t)ds->ds_object, 2178 dp->dp_spa->spa_name, 2179 (u_longlong_t)dsl_dataset_phys(ds)-> 2180 ds_next_snap_obj); 2181 } else { 2182 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2183 "removing", 2184 (u_longlong_t)ds->ds_object, 2185 dp->dp_spa->spa_name); 2186 } 2187 } 2188 2189 /* 2190 * dsl_scan_sync() should be called after this, and should sync 2191 * out our changed state, but just to be safe, do it here. 2192 */ 2193 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2194 } 2195 2196 static void 2197 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2198 { 2199 if (scn_bookmark->zb_objset == ds->ds_object) { 2200 scn_bookmark->zb_objset = 2201 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2202 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; " 2203 "reset zb_objset to %llu", 2204 (u_longlong_t)ds->ds_object, 2205 ds->ds_dir->dd_pool->dp_spa->spa_name, 2206 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2207 } 2208 } 2209 2210 /* 2211 * Called when a dataset is snapshotted. If we were currently traversing 2212 * this snapshot, we reset our bookmark to point at the newly created 2213 * snapshot. We also modify our work queue to remove the old snapshot and 2214 * replace with the new one. 2215 */ 2216 void 2217 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2218 { 2219 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2220 dsl_scan_t *scn = dp->dp_scan; 2221 uint64_t mintxg; 2222 2223 if (!dsl_scan_is_running(scn)) 2224 return; 2225 2226 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2227 2228 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2229 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2230 2231 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2232 scan_ds_queue_remove(scn, ds->ds_object); 2233 scan_ds_queue_insert(scn, 2234 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2235 } 2236 2237 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2238 ds->ds_object, &mintxg) == 0) { 2239 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2240 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2241 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2242 scn->scn_phys.scn_queue_obj, 2243 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2244 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; " 2245 "replacing with %llu", 2246 (u_longlong_t)ds->ds_object, 2247 dp->dp_spa->spa_name, 2248 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2249 } 2250 2251 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2252 } 2253 2254 static void 2255 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2256 zbookmark_phys_t *scn_bookmark) 2257 { 2258 if (scn_bookmark->zb_objset == ds1->ds_object) { 2259 scn_bookmark->zb_objset = ds2->ds_object; 2260 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2261 "reset zb_objset to %llu", 2262 (u_longlong_t)ds1->ds_object, 2263 ds1->ds_dir->dd_pool->dp_spa->spa_name, 2264 (u_longlong_t)ds2->ds_object); 2265 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2266 scn_bookmark->zb_objset = ds1->ds_object; 2267 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2268 "reset zb_objset to %llu", 2269 (u_longlong_t)ds2->ds_object, 2270 ds2->ds_dir->dd_pool->dp_spa->spa_name, 2271 (u_longlong_t)ds1->ds_object); 2272 } 2273 } 2274 2275 /* 2276 * Called when an origin dataset and its clone are swapped. If we were 2277 * currently traversing the dataset, we need to switch to traversing the 2278 * newly promoted clone. 2279 */ 2280 void 2281 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2282 { 2283 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2284 dsl_scan_t *scn = dp->dp_scan; 2285 uint64_t mintxg1, mintxg2; 2286 boolean_t ds1_queued, ds2_queued; 2287 2288 if (!dsl_scan_is_running(scn)) 2289 return; 2290 2291 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2292 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2293 2294 /* 2295 * Handle the in-memory scan queue. 2296 */ 2297 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2298 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2299 2300 /* Sanity checking. */ 2301 if (ds1_queued) { 2302 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2303 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2304 } 2305 if (ds2_queued) { 2306 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2307 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2308 } 2309 2310 if (ds1_queued && ds2_queued) { 2311 /* 2312 * If both are queued, we don't need to do anything. 2313 * The swapping code below would not handle this case correctly, 2314 * since we can't insert ds2 if it is already there. That's 2315 * because scan_ds_queue_insert() prohibits a duplicate insert 2316 * and panics. 2317 */ 2318 } else if (ds1_queued) { 2319 scan_ds_queue_remove(scn, ds1->ds_object); 2320 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2321 } else if (ds2_queued) { 2322 scan_ds_queue_remove(scn, ds2->ds_object); 2323 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2324 } 2325 2326 /* 2327 * Handle the on-disk scan queue. 2328 * The on-disk state is an out-of-date version of the in-memory state, 2329 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2330 * be different. Therefore we need to apply the swap logic to the 2331 * on-disk state independently of the in-memory state. 2332 */ 2333 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2334 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2335 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2336 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2337 2338 /* Sanity checking. */ 2339 if (ds1_queued) { 2340 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2341 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2342 } 2343 if (ds2_queued) { 2344 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2345 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2346 } 2347 2348 if (ds1_queued && ds2_queued) { 2349 /* 2350 * If both are queued, we don't need to do anything. 2351 * Alternatively, we could check for EEXIST from 2352 * zap_add_int_key() and back out to the original state, but 2353 * that would be more work than checking for this case upfront. 2354 */ 2355 } else if (ds1_queued) { 2356 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2357 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2358 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2359 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2360 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2361 "replacing with %llu", 2362 (u_longlong_t)ds1->ds_object, 2363 dp->dp_spa->spa_name, 2364 (u_longlong_t)ds2->ds_object); 2365 } else if (ds2_queued) { 2366 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2367 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2368 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2369 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2370 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2371 "replacing with %llu", 2372 (u_longlong_t)ds2->ds_object, 2373 dp->dp_spa->spa_name, 2374 (u_longlong_t)ds1->ds_object); 2375 } 2376 2377 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2378 } 2379 2380 static int 2381 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2382 { 2383 uint64_t originobj = *(uint64_t *)arg; 2384 dsl_dataset_t *ds; 2385 int err; 2386 dsl_scan_t *scn = dp->dp_scan; 2387 2388 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2389 return (0); 2390 2391 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2392 if (err) 2393 return (err); 2394 2395 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2396 dsl_dataset_t *prev; 2397 err = dsl_dataset_hold_obj(dp, 2398 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2399 2400 dsl_dataset_rele(ds, FTAG); 2401 if (err) 2402 return (err); 2403 ds = prev; 2404 } 2405 scan_ds_queue_insert(scn, ds->ds_object, 2406 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2407 dsl_dataset_rele(ds, FTAG); 2408 return (0); 2409 } 2410 2411 static void 2412 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2413 { 2414 dsl_pool_t *dp = scn->scn_dp; 2415 dsl_dataset_t *ds; 2416 2417 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2418 2419 if (scn->scn_phys.scn_cur_min_txg >= 2420 scn->scn_phys.scn_max_txg) { 2421 /* 2422 * This can happen if this snapshot was created after the 2423 * scan started, and we already completed a previous snapshot 2424 * that was created after the scan started. This snapshot 2425 * only references blocks with: 2426 * 2427 * birth < our ds_creation_txg 2428 * cur_min_txg is no less than ds_creation_txg. 2429 * We have already visited these blocks. 2430 * or 2431 * birth > scn_max_txg 2432 * The scan requested not to visit these blocks. 2433 * 2434 * Subsequent snapshots (and clones) can reference our 2435 * blocks, or blocks with even higher birth times. 2436 * Therefore we do not need to visit them either, 2437 * so we do not add them to the work queue. 2438 * 2439 * Note that checking for cur_min_txg >= cur_max_txg 2440 * is not sufficient, because in that case we may need to 2441 * visit subsequent snapshots. This happens when min_txg > 0, 2442 * which raises cur_min_txg. In this case we will visit 2443 * this dataset but skip all of its blocks, because the 2444 * rootbp's birth time is < cur_min_txg. Then we will 2445 * add the next snapshots/clones to the work queue. 2446 */ 2447 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2448 dsl_dataset_name(ds, dsname); 2449 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2450 "cur_min_txg (%llu) >= max_txg (%llu)", 2451 (longlong_t)dsobj, dsname, 2452 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2453 (longlong_t)scn->scn_phys.scn_max_txg); 2454 kmem_free(dsname, MAXNAMELEN); 2455 2456 goto out; 2457 } 2458 2459 /* 2460 * Only the ZIL in the head (non-snapshot) is valid. Even though 2461 * snapshots can have ZIL block pointers (which may be the same 2462 * BP as in the head), they must be ignored. In addition, $ORIGIN 2463 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2464 * need to look for a ZIL in it either. So we traverse the ZIL here, 2465 * rather than in scan_recurse(), because the regular snapshot 2466 * block-sharing rules don't apply to it. 2467 */ 2468 if (!dsl_dataset_is_snapshot(ds) && 2469 (dp->dp_origin_snap == NULL || 2470 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2471 objset_t *os; 2472 if (dmu_objset_from_ds(ds, &os) != 0) { 2473 goto out; 2474 } 2475 dsl_scan_zil(dp, &os->os_zil_header); 2476 } 2477 2478 /* 2479 * Iterate over the bps in this ds. 2480 */ 2481 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2482 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2483 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2484 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2485 2486 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2487 dsl_dataset_name(ds, dsname); 2488 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2489 "suspending=%u", 2490 (longlong_t)dsobj, dsname, 2491 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2492 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2493 (int)scn->scn_suspending); 2494 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2495 2496 if (scn->scn_suspending) 2497 goto out; 2498 2499 /* 2500 * We've finished this pass over this dataset. 2501 */ 2502 2503 /* 2504 * If we did not completely visit this dataset, do another pass. 2505 */ 2506 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2507 zfs_dbgmsg("incomplete pass on %s; visiting again", 2508 dp->dp_spa->spa_name); 2509 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2510 scan_ds_queue_insert(scn, ds->ds_object, 2511 scn->scn_phys.scn_cur_max_txg); 2512 goto out; 2513 } 2514 2515 /* 2516 * Add descendant datasets to work queue. 2517 */ 2518 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2519 scan_ds_queue_insert(scn, 2520 dsl_dataset_phys(ds)->ds_next_snap_obj, 2521 dsl_dataset_phys(ds)->ds_creation_txg); 2522 } 2523 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2524 boolean_t usenext = B_FALSE; 2525 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2526 uint64_t count; 2527 /* 2528 * A bug in a previous version of the code could 2529 * cause upgrade_clones_cb() to not set 2530 * ds_next_snap_obj when it should, leading to a 2531 * missing entry. Therefore we can only use the 2532 * next_clones_obj when its count is correct. 2533 */ 2534 int err = zap_count(dp->dp_meta_objset, 2535 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2536 if (err == 0 && 2537 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2538 usenext = B_TRUE; 2539 } 2540 2541 if (usenext) { 2542 zap_cursor_t zc; 2543 zap_attribute_t za; 2544 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2545 dsl_dataset_phys(ds)->ds_next_clones_obj); 2546 zap_cursor_retrieve(&zc, &za) == 0; 2547 (void) zap_cursor_advance(&zc)) { 2548 scan_ds_queue_insert(scn, 2549 zfs_strtonum(za.za_name, NULL), 2550 dsl_dataset_phys(ds)->ds_creation_txg); 2551 } 2552 zap_cursor_fini(&zc); 2553 } else { 2554 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2555 enqueue_clones_cb, &ds->ds_object, 2556 DS_FIND_CHILDREN)); 2557 } 2558 } 2559 2560 out: 2561 dsl_dataset_rele(ds, FTAG); 2562 } 2563 2564 static int 2565 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2566 { 2567 (void) arg; 2568 dsl_dataset_t *ds; 2569 int err; 2570 dsl_scan_t *scn = dp->dp_scan; 2571 2572 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2573 if (err) 2574 return (err); 2575 2576 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2577 dsl_dataset_t *prev; 2578 err = dsl_dataset_hold_obj(dp, 2579 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2580 if (err) { 2581 dsl_dataset_rele(ds, FTAG); 2582 return (err); 2583 } 2584 2585 /* 2586 * If this is a clone, we don't need to worry about it for now. 2587 */ 2588 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2589 dsl_dataset_rele(ds, FTAG); 2590 dsl_dataset_rele(prev, FTAG); 2591 return (0); 2592 } 2593 dsl_dataset_rele(ds, FTAG); 2594 ds = prev; 2595 } 2596 2597 scan_ds_queue_insert(scn, ds->ds_object, 2598 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2599 dsl_dataset_rele(ds, FTAG); 2600 return (0); 2601 } 2602 2603 void 2604 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2605 ddt_entry_t *dde, dmu_tx_t *tx) 2606 { 2607 (void) tx; 2608 const ddt_key_t *ddk = &dde->dde_key; 2609 ddt_phys_t *ddp = dde->dde_phys; 2610 blkptr_t bp; 2611 zbookmark_phys_t zb = { 0 }; 2612 2613 if (!dsl_scan_is_running(scn)) 2614 return; 2615 2616 /* 2617 * This function is special because it is the only thing 2618 * that can add scan_io_t's to the vdev scan queues from 2619 * outside dsl_scan_sync(). For the most part this is ok 2620 * as long as it is called from within syncing context. 2621 * However, dsl_scan_sync() expects that no new sio's will 2622 * be added between when all the work for a scan is done 2623 * and the next txg when the scan is actually marked as 2624 * completed. This check ensures we do not issue new sio's 2625 * during this period. 2626 */ 2627 if (scn->scn_done_txg != 0) 2628 return; 2629 2630 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2631 if (ddp->ddp_phys_birth == 0 || 2632 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2633 continue; 2634 ddt_bp_create(checksum, ddk, ddp, &bp); 2635 2636 scn->scn_visited_this_txg++; 2637 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2638 } 2639 } 2640 2641 /* 2642 * Scrub/dedup interaction. 2643 * 2644 * If there are N references to a deduped block, we don't want to scrub it 2645 * N times -- ideally, we should scrub it exactly once. 2646 * 2647 * We leverage the fact that the dde's replication class (enum ddt_class) 2648 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2649 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2650 * 2651 * To prevent excess scrubbing, the scrub begins by walking the DDT 2652 * to find all blocks with refcnt > 1, and scrubs each of these once. 2653 * Since there are two replication classes which contain blocks with 2654 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2655 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2656 * 2657 * There would be nothing more to say if a block's refcnt couldn't change 2658 * during a scrub, but of course it can so we must account for changes 2659 * in a block's replication class. 2660 * 2661 * Here's an example of what can occur: 2662 * 2663 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2664 * when visited during the top-down scrub phase, it will be scrubbed twice. 2665 * This negates our scrub optimization, but is otherwise harmless. 2666 * 2667 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2668 * on each visit during the top-down scrub phase, it will never be scrubbed. 2669 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2670 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2671 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2672 * while a scrub is in progress, it scrubs the block right then. 2673 */ 2674 static void 2675 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2676 { 2677 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2678 ddt_entry_t dde = {{{{0}}}}; 2679 int error; 2680 uint64_t n = 0; 2681 2682 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2683 ddt_t *ddt; 2684 2685 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2686 break; 2687 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2688 (longlong_t)ddb->ddb_class, 2689 (longlong_t)ddb->ddb_type, 2690 (longlong_t)ddb->ddb_checksum, 2691 (longlong_t)ddb->ddb_cursor); 2692 2693 /* There should be no pending changes to the dedup table */ 2694 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2695 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2696 2697 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2698 n++; 2699 2700 if (dsl_scan_check_suspend(scn, NULL)) 2701 break; 2702 } 2703 2704 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; " 2705 "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name, 2706 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2707 2708 ASSERT(error == 0 || error == ENOENT); 2709 ASSERT(error != ENOENT || 2710 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2711 } 2712 2713 static uint64_t 2714 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2715 { 2716 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2717 if (ds->ds_is_snapshot) 2718 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2719 return (smt); 2720 } 2721 2722 static void 2723 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2724 { 2725 scan_ds_t *sds; 2726 dsl_pool_t *dp = scn->scn_dp; 2727 2728 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2729 scn->scn_phys.scn_ddt_class_max) { 2730 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2731 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2732 dsl_scan_ddt(scn, tx); 2733 if (scn->scn_suspending) 2734 return; 2735 } 2736 2737 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2738 /* First do the MOS & ORIGIN */ 2739 2740 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2741 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2742 dsl_scan_visit_rootbp(scn, NULL, 2743 &dp->dp_meta_rootbp, tx); 2744 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2745 if (scn->scn_suspending) 2746 return; 2747 2748 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2749 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2750 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2751 } else { 2752 dsl_scan_visitds(scn, 2753 dp->dp_origin_snap->ds_object, tx); 2754 } 2755 ASSERT(!scn->scn_suspending); 2756 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2757 ZB_DESTROYED_OBJSET) { 2758 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2759 /* 2760 * If we were suspended, continue from here. Note if the 2761 * ds we were suspended on was deleted, the zb_objset may 2762 * be -1, so we will skip this and find a new objset 2763 * below. 2764 */ 2765 dsl_scan_visitds(scn, dsobj, tx); 2766 if (scn->scn_suspending) 2767 return; 2768 } 2769 2770 /* 2771 * In case we suspended right at the end of the ds, zero the 2772 * bookmark so we don't think that we're still trying to resume. 2773 */ 2774 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t)); 2775 2776 /* 2777 * Keep pulling things out of the dataset avl queue. Updates to the 2778 * persistent zap-object-as-queue happen only at checkpoints. 2779 */ 2780 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2781 dsl_dataset_t *ds; 2782 uint64_t dsobj = sds->sds_dsobj; 2783 uint64_t txg = sds->sds_txg; 2784 2785 /* dequeue and free the ds from the queue */ 2786 scan_ds_queue_remove(scn, dsobj); 2787 sds = NULL; 2788 2789 /* set up min / max txg */ 2790 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2791 if (txg != 0) { 2792 scn->scn_phys.scn_cur_min_txg = 2793 MAX(scn->scn_phys.scn_min_txg, txg); 2794 } else { 2795 scn->scn_phys.scn_cur_min_txg = 2796 MAX(scn->scn_phys.scn_min_txg, 2797 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2798 } 2799 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2800 dsl_dataset_rele(ds, FTAG); 2801 2802 dsl_scan_visitds(scn, dsobj, tx); 2803 if (scn->scn_suspending) 2804 return; 2805 } 2806 2807 /* No more objsets to fetch, we're done */ 2808 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2809 ASSERT0(scn->scn_suspending); 2810 } 2811 2812 static uint64_t 2813 dsl_scan_count_data_disks(vdev_t *rvd) 2814 { 2815 uint64_t i, leaves = 0; 2816 2817 for (i = 0; i < rvd->vdev_children; i++) { 2818 vdev_t *vd = rvd->vdev_child[i]; 2819 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache) 2820 continue; 2821 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd); 2822 } 2823 return (leaves); 2824 } 2825 2826 static void 2827 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2828 { 2829 int i; 2830 uint64_t cur_size = 0; 2831 2832 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2833 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2834 } 2835 2836 q->q_total_zio_size_this_txg += cur_size; 2837 q->q_zios_this_txg++; 2838 } 2839 2840 static void 2841 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2842 uint64_t end) 2843 { 2844 q->q_total_seg_size_this_txg += end - start; 2845 q->q_segs_this_txg++; 2846 } 2847 2848 static boolean_t 2849 scan_io_queue_check_suspend(dsl_scan_t *scn) 2850 { 2851 /* See comment in dsl_scan_check_suspend() */ 2852 uint64_t curr_time_ns = gethrtime(); 2853 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2854 uint64_t sync_time_ns = curr_time_ns - 2855 scn->scn_dp->dp_spa->spa_sync_starttime; 2856 uint64_t dirty_min_bytes = zfs_dirty_data_max * 2857 zfs_vdev_async_write_active_min_dirty_percent / 100; 2858 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2859 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2860 2861 return ((NSEC2MSEC(scan_time_ns) > mintime && 2862 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 2863 txg_sync_waiting(scn->scn_dp) || 2864 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2865 spa_shutting_down(scn->scn_dp->dp_spa)); 2866 } 2867 2868 /* 2869 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 2870 * disk. This consumes the io_list and frees the scan_io_t's. This is 2871 * called when emptying queues, either when we're up against the memory 2872 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2873 * processing the list before we finished. Any sios that were not issued 2874 * will remain in the io_list. 2875 */ 2876 static boolean_t 2877 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2878 { 2879 dsl_scan_t *scn = queue->q_scn; 2880 scan_io_t *sio; 2881 boolean_t suspended = B_FALSE; 2882 2883 while ((sio = list_head(io_list)) != NULL) { 2884 blkptr_t bp; 2885 2886 if (scan_io_queue_check_suspend(scn)) { 2887 suspended = B_TRUE; 2888 break; 2889 } 2890 2891 sio2bp(sio, &bp); 2892 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2893 &sio->sio_zb, queue); 2894 (void) list_remove_head(io_list); 2895 scan_io_queues_update_zio_stats(queue, &bp); 2896 sio_free(sio); 2897 } 2898 return (suspended); 2899 } 2900 2901 /* 2902 * This function removes sios from an IO queue which reside within a given 2903 * range_seg_t and inserts them (in offset order) into a list. Note that 2904 * we only ever return a maximum of 32 sios at once. If there are more sios 2905 * to process within this segment that did not make it onto the list we 2906 * return B_TRUE and otherwise B_FALSE. 2907 */ 2908 static boolean_t 2909 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2910 { 2911 scan_io_t *srch_sio, *sio, *next_sio; 2912 avl_index_t idx; 2913 uint_t num_sios = 0; 2914 int64_t bytes_issued = 0; 2915 2916 ASSERT(rs != NULL); 2917 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2918 2919 srch_sio = sio_alloc(1); 2920 srch_sio->sio_nr_dvas = 1; 2921 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2922 2923 /* 2924 * The exact start of the extent might not contain any matching zios, 2925 * so if that's the case, examine the next one in the tree. 2926 */ 2927 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2928 sio_free(srch_sio); 2929 2930 if (sio == NULL) 2931 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2932 2933 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2934 queue->q_exts_by_addr) && num_sios <= 32) { 2935 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2936 queue->q_exts_by_addr)); 2937 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2938 queue->q_exts_by_addr)); 2939 2940 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2941 avl_remove(&queue->q_sios_by_addr, sio); 2942 if (avl_is_empty(&queue->q_sios_by_addr)) 2943 atomic_add_64(&queue->q_scn->scn_queues_pending, -1); 2944 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2945 2946 bytes_issued += SIO_GET_ASIZE(sio); 2947 num_sios++; 2948 list_insert_tail(list, sio); 2949 sio = next_sio; 2950 } 2951 2952 /* 2953 * We limit the number of sios we process at once to 32 to avoid 2954 * biting off more than we can chew. If we didn't take everything 2955 * in the segment we update it to reflect the work we were able to 2956 * complete. Otherwise, we remove it from the range tree entirely. 2957 */ 2958 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2959 queue->q_exts_by_addr)) { 2960 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2961 -bytes_issued); 2962 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2963 SIO_GET_OFFSET(sio), rs_get_end(rs, 2964 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2965 queue->q_last_ext_addr = SIO_GET_OFFSET(sio); 2966 return (B_TRUE); 2967 } else { 2968 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2969 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2970 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2971 queue->q_last_ext_addr = -1; 2972 return (B_FALSE); 2973 } 2974 } 2975 2976 /* 2977 * This is called from the queue emptying thread and selects the next 2978 * extent from which we are to issue I/Os. The behavior of this function 2979 * depends on the state of the scan, the current memory consumption and 2980 * whether or not we are performing a scan shutdown. 2981 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2982 * needs to perform a checkpoint 2983 * 2) We select the largest available extent if we are up against the 2984 * memory limit. 2985 * 3) Otherwise we don't select any extents. 2986 */ 2987 static range_seg_t * 2988 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2989 { 2990 dsl_scan_t *scn = queue->q_scn; 2991 range_tree_t *rt = queue->q_exts_by_addr; 2992 2993 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2994 ASSERT(scn->scn_is_sorted); 2995 2996 if (!scn->scn_checkpointing && !scn->scn_clearing) 2997 return (NULL); 2998 2999 /* 3000 * During normal clearing, we want to issue our largest segments 3001 * first, keeping IO as sequential as possible, and leaving the 3002 * smaller extents for later with the hope that they might eventually 3003 * grow to larger sequential segments. However, when the scan is 3004 * checkpointing, no new extents will be added to the sorting queue, 3005 * so the way we are sorted now is as good as it will ever get. 3006 * In this case, we instead switch to issuing extents in LBA order. 3007 */ 3008 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) || 3009 zfs_scan_issue_strategy == 1) 3010 return (range_tree_first(rt)); 3011 3012 /* 3013 * Try to continue previous extent if it is not completed yet. After 3014 * shrink in scan_io_queue_gather() it may no longer be the best, but 3015 * otherwise we leave shorter remnant every txg. 3016 */ 3017 uint64_t start; 3018 uint64_t size = 1 << rt->rt_shift; 3019 range_seg_t *addr_rs; 3020 if (queue->q_last_ext_addr != -1) { 3021 start = queue->q_last_ext_addr; 3022 addr_rs = range_tree_find(rt, start, size); 3023 if (addr_rs != NULL) 3024 return (addr_rs); 3025 } 3026 3027 /* 3028 * Nothing to continue, so find new best extent. 3029 */ 3030 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL); 3031 if (v == NULL) 3032 return (NULL); 3033 queue->q_last_ext_addr = start = *v << rt->rt_shift; 3034 3035 /* 3036 * We need to get the original entry in the by_addr tree so we can 3037 * modify it. 3038 */ 3039 addr_rs = range_tree_find(rt, start, size); 3040 ASSERT3P(addr_rs, !=, NULL); 3041 ASSERT3U(rs_get_start(addr_rs, rt), ==, start); 3042 ASSERT3U(rs_get_end(addr_rs, rt), >, start); 3043 return (addr_rs); 3044 } 3045 3046 static void 3047 scan_io_queues_run_one(void *arg) 3048 { 3049 dsl_scan_io_queue_t *queue = arg; 3050 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3051 boolean_t suspended = B_FALSE; 3052 range_seg_t *rs; 3053 scan_io_t *sio; 3054 zio_t *zio; 3055 list_t sio_list; 3056 3057 ASSERT(queue->q_scn->scn_is_sorted); 3058 3059 list_create(&sio_list, sizeof (scan_io_t), 3060 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3061 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa, 3062 NULL, NULL, NULL, ZIO_FLAG_CANFAIL); 3063 mutex_enter(q_lock); 3064 queue->q_zio = zio; 3065 3066 /* Calculate maximum in-flight bytes for this vdev. */ 3067 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit * 3068 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd))); 3069 3070 /* reset per-queue scan statistics for this txg */ 3071 queue->q_total_seg_size_this_txg = 0; 3072 queue->q_segs_this_txg = 0; 3073 queue->q_total_zio_size_this_txg = 0; 3074 queue->q_zios_this_txg = 0; 3075 3076 /* loop until we run out of time or sios */ 3077 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3078 uint64_t seg_start = 0, seg_end = 0; 3079 boolean_t more_left; 3080 3081 ASSERT(list_is_empty(&sio_list)); 3082 3083 /* loop while we still have sios left to process in this rs */ 3084 do { 3085 scan_io_t *first_sio, *last_sio; 3086 3087 /* 3088 * We have selected which extent needs to be 3089 * processed next. Gather up the corresponding sios. 3090 */ 3091 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3092 ASSERT(!list_is_empty(&sio_list)); 3093 first_sio = list_head(&sio_list); 3094 last_sio = list_tail(&sio_list); 3095 3096 seg_end = SIO_GET_END_OFFSET(last_sio); 3097 if (seg_start == 0) 3098 seg_start = SIO_GET_OFFSET(first_sio); 3099 3100 /* 3101 * Issuing sios can take a long time so drop the 3102 * queue lock. The sio queue won't be updated by 3103 * other threads since we're in syncing context so 3104 * we can be sure that our trees will remain exactly 3105 * as we left them. 3106 */ 3107 mutex_exit(q_lock); 3108 suspended = scan_io_queue_issue(queue, &sio_list); 3109 mutex_enter(q_lock); 3110 3111 if (suspended) 3112 break; 3113 } while (more_left); 3114 3115 /* update statistics for debugging purposes */ 3116 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3117 3118 if (suspended) 3119 break; 3120 } 3121 3122 /* 3123 * If we were suspended in the middle of processing, 3124 * requeue any unfinished sios and exit. 3125 */ 3126 while ((sio = list_head(&sio_list)) != NULL) { 3127 list_remove(&sio_list, sio); 3128 scan_io_queue_insert_impl(queue, sio); 3129 } 3130 3131 queue->q_zio = NULL; 3132 mutex_exit(q_lock); 3133 zio_nowait(zio); 3134 list_destroy(&sio_list); 3135 } 3136 3137 /* 3138 * Performs an emptying run on all scan queues in the pool. This just 3139 * punches out one thread per top-level vdev, each of which processes 3140 * only that vdev's scan queue. We can parallelize the I/O here because 3141 * we know that each queue's I/Os only affect its own top-level vdev. 3142 * 3143 * This function waits for the queue runs to complete, and must be 3144 * called from dsl_scan_sync (or in general, syncing context). 3145 */ 3146 static void 3147 scan_io_queues_run(dsl_scan_t *scn) 3148 { 3149 spa_t *spa = scn->scn_dp->dp_spa; 3150 3151 ASSERT(scn->scn_is_sorted); 3152 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3153 3154 if (scn->scn_queues_pending == 0) 3155 return; 3156 3157 if (scn->scn_taskq == NULL) { 3158 int nthreads = spa->spa_root_vdev->vdev_children; 3159 3160 /* 3161 * We need to make this taskq *always* execute as many 3162 * threads in parallel as we have top-level vdevs and no 3163 * less, otherwise strange serialization of the calls to 3164 * scan_io_queues_run_one can occur during spa_sync runs 3165 * and that significantly impacts performance. 3166 */ 3167 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3168 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3169 } 3170 3171 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3172 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3173 3174 mutex_enter(&vd->vdev_scan_io_queue_lock); 3175 if (vd->vdev_scan_io_queue != NULL) { 3176 VERIFY(taskq_dispatch(scn->scn_taskq, 3177 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3178 TQ_SLEEP) != TASKQID_INVALID); 3179 } 3180 mutex_exit(&vd->vdev_scan_io_queue_lock); 3181 } 3182 3183 /* 3184 * Wait for the queues to finish issuing their IOs for this run 3185 * before we return. There may still be IOs in flight at this 3186 * point. 3187 */ 3188 taskq_wait(scn->scn_taskq); 3189 } 3190 3191 static boolean_t 3192 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3193 { 3194 uint64_t elapsed_nanosecs; 3195 3196 if (zfs_recover) 3197 return (B_FALSE); 3198 3199 if (zfs_async_block_max_blocks != 0 && 3200 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3201 return (B_TRUE); 3202 } 3203 3204 if (zfs_max_async_dedup_frees != 0 && 3205 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3206 return (B_TRUE); 3207 } 3208 3209 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3210 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3211 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3212 txg_sync_waiting(scn->scn_dp)) || 3213 spa_shutting_down(scn->scn_dp->dp_spa)); 3214 } 3215 3216 static int 3217 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3218 { 3219 dsl_scan_t *scn = arg; 3220 3221 if (!scn->scn_is_bptree || 3222 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3223 if (dsl_scan_async_block_should_pause(scn)) 3224 return (SET_ERROR(ERESTART)); 3225 } 3226 3227 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3228 dmu_tx_get_txg(tx), bp, 0)); 3229 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3230 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3231 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3232 scn->scn_visited_this_txg++; 3233 if (BP_GET_DEDUP(bp)) 3234 scn->scn_dedup_frees_this_txg++; 3235 return (0); 3236 } 3237 3238 static void 3239 dsl_scan_update_stats(dsl_scan_t *scn) 3240 { 3241 spa_t *spa = scn->scn_dp->dp_spa; 3242 uint64_t i; 3243 uint64_t seg_size_total = 0, zio_size_total = 0; 3244 uint64_t seg_count_total = 0, zio_count_total = 0; 3245 3246 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3247 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3248 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3249 3250 if (queue == NULL) 3251 continue; 3252 3253 seg_size_total += queue->q_total_seg_size_this_txg; 3254 zio_size_total += queue->q_total_zio_size_this_txg; 3255 seg_count_total += queue->q_segs_this_txg; 3256 zio_count_total += queue->q_zios_this_txg; 3257 } 3258 3259 if (seg_count_total == 0 || zio_count_total == 0) { 3260 scn->scn_avg_seg_size_this_txg = 0; 3261 scn->scn_avg_zio_size_this_txg = 0; 3262 scn->scn_segs_this_txg = 0; 3263 scn->scn_zios_this_txg = 0; 3264 return; 3265 } 3266 3267 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3268 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3269 scn->scn_segs_this_txg = seg_count_total; 3270 scn->scn_zios_this_txg = zio_count_total; 3271 } 3272 3273 static int 3274 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3275 dmu_tx_t *tx) 3276 { 3277 ASSERT(!bp_freed); 3278 return (dsl_scan_free_block_cb(arg, bp, tx)); 3279 } 3280 3281 static int 3282 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3283 dmu_tx_t *tx) 3284 { 3285 ASSERT(!bp_freed); 3286 dsl_scan_t *scn = arg; 3287 const dva_t *dva = &bp->blk_dva[0]; 3288 3289 if (dsl_scan_async_block_should_pause(scn)) 3290 return (SET_ERROR(ERESTART)); 3291 3292 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3293 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3294 DVA_GET_ASIZE(dva), tx); 3295 scn->scn_visited_this_txg++; 3296 return (0); 3297 } 3298 3299 boolean_t 3300 dsl_scan_active(dsl_scan_t *scn) 3301 { 3302 spa_t *spa = scn->scn_dp->dp_spa; 3303 uint64_t used = 0, comp, uncomp; 3304 boolean_t clones_left; 3305 3306 if (spa->spa_load_state != SPA_LOAD_NONE) 3307 return (B_FALSE); 3308 if (spa_shutting_down(spa)) 3309 return (B_FALSE); 3310 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3311 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3312 return (B_TRUE); 3313 3314 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3315 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3316 &used, &comp, &uncomp); 3317 } 3318 clones_left = spa_livelist_delete_check(spa); 3319 return ((used != 0) || (clones_left)); 3320 } 3321 3322 static boolean_t 3323 dsl_scan_check_deferred(vdev_t *vd) 3324 { 3325 boolean_t need_resilver = B_FALSE; 3326 3327 for (int c = 0; c < vd->vdev_children; c++) { 3328 need_resilver |= 3329 dsl_scan_check_deferred(vd->vdev_child[c]); 3330 } 3331 3332 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3333 !vd->vdev_ops->vdev_op_leaf) 3334 return (need_resilver); 3335 3336 if (!vd->vdev_resilver_deferred) 3337 need_resilver = B_TRUE; 3338 3339 return (need_resilver); 3340 } 3341 3342 static boolean_t 3343 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3344 uint64_t phys_birth) 3345 { 3346 vdev_t *vd; 3347 3348 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3349 3350 if (vd->vdev_ops == &vdev_indirect_ops) { 3351 /* 3352 * The indirect vdev can point to multiple 3353 * vdevs. For simplicity, always create 3354 * the resilver zio_t. zio_vdev_io_start() 3355 * will bypass the child resilver i/o's if 3356 * they are on vdevs that don't have DTL's. 3357 */ 3358 return (B_TRUE); 3359 } 3360 3361 if (DVA_GET_GANG(dva)) { 3362 /* 3363 * Gang members may be spread across multiple 3364 * vdevs, so the best estimate we have is the 3365 * scrub range, which has already been checked. 3366 * XXX -- it would be better to change our 3367 * allocation policy to ensure that all 3368 * gang members reside on the same vdev. 3369 */ 3370 return (B_TRUE); 3371 } 3372 3373 /* 3374 * Check if the top-level vdev must resilver this offset. 3375 * When the offset does not intersect with a dirty leaf DTL 3376 * then it may be possible to skip the resilver IO. The psize 3377 * is provided instead of asize to simplify the check for RAIDZ. 3378 */ 3379 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) 3380 return (B_FALSE); 3381 3382 /* 3383 * Check that this top-level vdev has a device under it which 3384 * is resilvering and is not deferred. 3385 */ 3386 if (!dsl_scan_check_deferred(vd)) 3387 return (B_FALSE); 3388 3389 return (B_TRUE); 3390 } 3391 3392 static int 3393 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3394 { 3395 dsl_scan_t *scn = dp->dp_scan; 3396 spa_t *spa = dp->dp_spa; 3397 int err = 0; 3398 3399 if (spa_suspend_async_destroy(spa)) 3400 return (0); 3401 3402 if (zfs_free_bpobj_enabled && 3403 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3404 scn->scn_is_bptree = B_FALSE; 3405 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3406 scn->scn_zio_root = zio_root(spa, NULL, 3407 NULL, ZIO_FLAG_MUSTSUCCEED); 3408 err = bpobj_iterate(&dp->dp_free_bpobj, 3409 bpobj_dsl_scan_free_block_cb, scn, tx); 3410 VERIFY0(zio_wait(scn->scn_zio_root)); 3411 scn->scn_zio_root = NULL; 3412 3413 if (err != 0 && err != ERESTART) 3414 zfs_panic_recover("error %u from bpobj_iterate()", err); 3415 } 3416 3417 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3418 ASSERT(scn->scn_async_destroying); 3419 scn->scn_is_bptree = B_TRUE; 3420 scn->scn_zio_root = zio_root(spa, NULL, 3421 NULL, ZIO_FLAG_MUSTSUCCEED); 3422 err = bptree_iterate(dp->dp_meta_objset, 3423 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3424 VERIFY0(zio_wait(scn->scn_zio_root)); 3425 scn->scn_zio_root = NULL; 3426 3427 if (err == EIO || err == ECKSUM) { 3428 err = 0; 3429 } else if (err != 0 && err != ERESTART) { 3430 zfs_panic_recover("error %u from " 3431 "traverse_dataset_destroyed()", err); 3432 } 3433 3434 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3435 /* finished; deactivate async destroy feature */ 3436 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3437 ASSERT(!spa_feature_is_active(spa, 3438 SPA_FEATURE_ASYNC_DESTROY)); 3439 VERIFY0(zap_remove(dp->dp_meta_objset, 3440 DMU_POOL_DIRECTORY_OBJECT, 3441 DMU_POOL_BPTREE_OBJ, tx)); 3442 VERIFY0(bptree_free(dp->dp_meta_objset, 3443 dp->dp_bptree_obj, tx)); 3444 dp->dp_bptree_obj = 0; 3445 scn->scn_async_destroying = B_FALSE; 3446 scn->scn_async_stalled = B_FALSE; 3447 } else { 3448 /* 3449 * If we didn't make progress, mark the async 3450 * destroy as stalled, so that we will not initiate 3451 * a spa_sync() on its behalf. Note that we only 3452 * check this if we are not finished, because if the 3453 * bptree had no blocks for us to visit, we can 3454 * finish without "making progress". 3455 */ 3456 scn->scn_async_stalled = 3457 (scn->scn_visited_this_txg == 0); 3458 } 3459 } 3460 if (scn->scn_visited_this_txg) { 3461 zfs_dbgmsg("freed %llu blocks in %llums from " 3462 "free_bpobj/bptree on %s in txg %llu; err=%u", 3463 (longlong_t)scn->scn_visited_this_txg, 3464 (longlong_t) 3465 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3466 spa->spa_name, (longlong_t)tx->tx_txg, err); 3467 scn->scn_visited_this_txg = 0; 3468 scn->scn_dedup_frees_this_txg = 0; 3469 3470 /* 3471 * Write out changes to the DDT that may be required as a 3472 * result of the blocks freed. This ensures that the DDT 3473 * is clean when a scrub/resilver runs. 3474 */ 3475 ddt_sync(spa, tx->tx_txg); 3476 } 3477 if (err != 0) 3478 return (err); 3479 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3480 zfs_free_leak_on_eio && 3481 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3482 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3483 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3484 /* 3485 * We have finished background destroying, but there is still 3486 * some space left in the dp_free_dir. Transfer this leaked 3487 * space to the dp_leak_dir. 3488 */ 3489 if (dp->dp_leak_dir == NULL) { 3490 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3491 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3492 LEAK_DIR_NAME, tx); 3493 VERIFY0(dsl_pool_open_special_dir(dp, 3494 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3495 rrw_exit(&dp->dp_config_rwlock, FTAG); 3496 } 3497 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3498 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3499 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3500 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3501 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3502 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3503 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3504 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3505 } 3506 3507 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3508 !spa_livelist_delete_check(spa)) { 3509 /* finished; verify that space accounting went to zero */ 3510 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3511 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3512 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3513 } 3514 3515 spa_notify_waiters(spa); 3516 3517 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3518 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3519 DMU_POOL_OBSOLETE_BPOBJ)); 3520 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3521 ASSERT(spa_feature_is_active(dp->dp_spa, 3522 SPA_FEATURE_OBSOLETE_COUNTS)); 3523 3524 scn->scn_is_bptree = B_FALSE; 3525 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3526 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3527 dsl_scan_obsolete_block_cb, scn, tx); 3528 if (err != 0 && err != ERESTART) 3529 zfs_panic_recover("error %u from bpobj_iterate()", err); 3530 3531 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3532 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3533 } 3534 return (0); 3535 } 3536 3537 /* 3538 * This is the primary entry point for scans that is called from syncing 3539 * context. Scans must happen entirely during syncing context so that we 3540 * can guarantee that blocks we are currently scanning will not change out 3541 * from under us. While a scan is active, this function controls how quickly 3542 * transaction groups proceed, instead of the normal handling provided by 3543 * txg_sync_thread(). 3544 */ 3545 void 3546 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3547 { 3548 int err = 0; 3549 dsl_scan_t *scn = dp->dp_scan; 3550 spa_t *spa = dp->dp_spa; 3551 state_sync_type_t sync_type = SYNC_OPTIONAL; 3552 3553 if (spa->spa_resilver_deferred && 3554 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3555 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3556 3557 /* 3558 * Check for scn_restart_txg before checking spa_load_state, so 3559 * that we can restart an old-style scan while the pool is being 3560 * imported (see dsl_scan_init). We also restart scans if there 3561 * is a deferred resilver and the user has manually disabled 3562 * deferred resilvers via the tunable. 3563 */ 3564 if (dsl_scan_restarting(scn, tx) || 3565 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3566 pool_scan_func_t func = POOL_SCAN_SCRUB; 3567 dsl_scan_done(scn, B_FALSE, tx); 3568 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3569 func = POOL_SCAN_RESILVER; 3570 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu", 3571 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg); 3572 dsl_scan_setup_sync(&func, tx); 3573 } 3574 3575 /* 3576 * Only process scans in sync pass 1. 3577 */ 3578 if (spa_sync_pass(spa) > 1) 3579 return; 3580 3581 /* 3582 * If the spa is shutting down, then stop scanning. This will 3583 * ensure that the scan does not dirty any new data during the 3584 * shutdown phase. 3585 */ 3586 if (spa_shutting_down(spa)) 3587 return; 3588 3589 /* 3590 * If the scan is inactive due to a stalled async destroy, try again. 3591 */ 3592 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3593 return; 3594 3595 /* reset scan statistics */ 3596 scn->scn_visited_this_txg = 0; 3597 scn->scn_dedup_frees_this_txg = 0; 3598 scn->scn_holes_this_txg = 0; 3599 scn->scn_lt_min_this_txg = 0; 3600 scn->scn_gt_max_this_txg = 0; 3601 scn->scn_ddt_contained_this_txg = 0; 3602 scn->scn_objsets_visited_this_txg = 0; 3603 scn->scn_avg_seg_size_this_txg = 0; 3604 scn->scn_segs_this_txg = 0; 3605 scn->scn_avg_zio_size_this_txg = 0; 3606 scn->scn_zios_this_txg = 0; 3607 scn->scn_suspending = B_FALSE; 3608 scn->scn_sync_start_time = gethrtime(); 3609 spa->spa_scrub_active = B_TRUE; 3610 3611 /* 3612 * First process the async destroys. If we suspend, don't do 3613 * any scrubbing or resilvering. This ensures that there are no 3614 * async destroys while we are scanning, so the scan code doesn't 3615 * have to worry about traversing it. It is also faster to free the 3616 * blocks than to scrub them. 3617 */ 3618 err = dsl_process_async_destroys(dp, tx); 3619 if (err != 0) 3620 return; 3621 3622 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3623 return; 3624 3625 /* 3626 * Wait a few txgs after importing to begin scanning so that 3627 * we can get the pool imported quickly. 3628 */ 3629 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3630 return; 3631 3632 /* 3633 * zfs_scan_suspend_progress can be set to disable scan progress. 3634 * We don't want to spin the txg_sync thread, so we add a delay 3635 * here to simulate the time spent doing a scan. This is mostly 3636 * useful for testing and debugging. 3637 */ 3638 if (zfs_scan_suspend_progress) { 3639 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3640 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3641 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3642 3643 while (zfs_scan_suspend_progress && 3644 !txg_sync_waiting(scn->scn_dp) && 3645 !spa_shutting_down(scn->scn_dp->dp_spa) && 3646 NSEC2MSEC(scan_time_ns) < mintime) { 3647 delay(hz); 3648 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3649 } 3650 return; 3651 } 3652 3653 /* 3654 * It is possible to switch from unsorted to sorted at any time, 3655 * but afterwards the scan will remain sorted unless reloaded from 3656 * a checkpoint after a reboot. 3657 */ 3658 if (!zfs_scan_legacy) { 3659 scn->scn_is_sorted = B_TRUE; 3660 if (scn->scn_last_checkpoint == 0) 3661 scn->scn_last_checkpoint = ddi_get_lbolt(); 3662 } 3663 3664 /* 3665 * For sorted scans, determine what kind of work we will be doing 3666 * this txg based on our memory limitations and whether or not we 3667 * need to perform a checkpoint. 3668 */ 3669 if (scn->scn_is_sorted) { 3670 /* 3671 * If we are over our checkpoint interval, set scn_clearing 3672 * so that we can begin checkpointing immediately. The 3673 * checkpoint allows us to save a consistent bookmark 3674 * representing how much data we have scrubbed so far. 3675 * Otherwise, use the memory limit to determine if we should 3676 * scan for metadata or start issue scrub IOs. We accumulate 3677 * metadata until we hit our hard memory limit at which point 3678 * we issue scrub IOs until we are at our soft memory limit. 3679 */ 3680 if (scn->scn_checkpointing || 3681 ddi_get_lbolt() - scn->scn_last_checkpoint > 3682 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3683 if (!scn->scn_checkpointing) 3684 zfs_dbgmsg("begin scan checkpoint for %s", 3685 spa->spa_name); 3686 3687 scn->scn_checkpointing = B_TRUE; 3688 scn->scn_clearing = B_TRUE; 3689 } else { 3690 boolean_t should_clear = dsl_scan_should_clear(scn); 3691 if (should_clear && !scn->scn_clearing) { 3692 zfs_dbgmsg("begin scan clearing for %s", 3693 spa->spa_name); 3694 scn->scn_clearing = B_TRUE; 3695 } else if (!should_clear && scn->scn_clearing) { 3696 zfs_dbgmsg("finish scan clearing for %s", 3697 spa->spa_name); 3698 scn->scn_clearing = B_FALSE; 3699 } 3700 } 3701 } else { 3702 ASSERT0(scn->scn_checkpointing); 3703 ASSERT0(scn->scn_clearing); 3704 } 3705 3706 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3707 /* Need to scan metadata for more blocks to scrub */ 3708 dsl_scan_phys_t *scnp = &scn->scn_phys; 3709 taskqid_t prefetch_tqid; 3710 3711 /* 3712 * Recalculate the max number of in-flight bytes for pool-wide 3713 * scanning operations (minimum 1MB). Limits for the issuing 3714 * phase are done per top-level vdev and are handled separately. 3715 */ 3716 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 3717 dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20); 3718 3719 if (scnp->scn_ddt_bookmark.ddb_class <= 3720 scnp->scn_ddt_class_max) { 3721 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3722 zfs_dbgmsg("doing scan sync for %s txg %llu; " 3723 "ddt bm=%llu/%llu/%llu/%llx", 3724 spa->spa_name, 3725 (longlong_t)tx->tx_txg, 3726 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3727 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3728 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3729 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3730 } else { 3731 zfs_dbgmsg("doing scan sync for %s txg %llu; " 3732 "bm=%llu/%llu/%llu/%llu", 3733 spa->spa_name, 3734 (longlong_t)tx->tx_txg, 3735 (longlong_t)scnp->scn_bookmark.zb_objset, 3736 (longlong_t)scnp->scn_bookmark.zb_object, 3737 (longlong_t)scnp->scn_bookmark.zb_level, 3738 (longlong_t)scnp->scn_bookmark.zb_blkid); 3739 } 3740 3741 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3742 NULL, ZIO_FLAG_CANFAIL); 3743 3744 scn->scn_prefetch_stop = B_FALSE; 3745 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3746 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3747 ASSERT(prefetch_tqid != TASKQID_INVALID); 3748 3749 dsl_pool_config_enter(dp, FTAG); 3750 dsl_scan_visit(scn, tx); 3751 dsl_pool_config_exit(dp, FTAG); 3752 3753 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3754 scn->scn_prefetch_stop = B_TRUE; 3755 cv_broadcast(&spa->spa_scrub_io_cv); 3756 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3757 3758 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3759 (void) zio_wait(scn->scn_zio_root); 3760 scn->scn_zio_root = NULL; 3761 3762 zfs_dbgmsg("scan visited %llu blocks of %s in %llums " 3763 "(%llu os's, %llu holes, %llu < mintxg, " 3764 "%llu in ddt, %llu > maxtxg)", 3765 (longlong_t)scn->scn_visited_this_txg, 3766 spa->spa_name, 3767 (longlong_t)NSEC2MSEC(gethrtime() - 3768 scn->scn_sync_start_time), 3769 (longlong_t)scn->scn_objsets_visited_this_txg, 3770 (longlong_t)scn->scn_holes_this_txg, 3771 (longlong_t)scn->scn_lt_min_this_txg, 3772 (longlong_t)scn->scn_ddt_contained_this_txg, 3773 (longlong_t)scn->scn_gt_max_this_txg); 3774 3775 if (!scn->scn_suspending) { 3776 ASSERT0(avl_numnodes(&scn->scn_queue)); 3777 scn->scn_done_txg = tx->tx_txg + 1; 3778 if (scn->scn_is_sorted) { 3779 scn->scn_checkpointing = B_TRUE; 3780 scn->scn_clearing = B_TRUE; 3781 } 3782 zfs_dbgmsg("scan complete for %s txg %llu", 3783 spa->spa_name, 3784 (longlong_t)tx->tx_txg); 3785 } 3786 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) { 3787 ASSERT(scn->scn_clearing); 3788 3789 /* need to issue scrubbing IOs from per-vdev queues */ 3790 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3791 NULL, ZIO_FLAG_CANFAIL); 3792 scan_io_queues_run(scn); 3793 (void) zio_wait(scn->scn_zio_root); 3794 scn->scn_zio_root = NULL; 3795 3796 /* calculate and dprintf the current memory usage */ 3797 (void) dsl_scan_should_clear(scn); 3798 dsl_scan_update_stats(scn); 3799 3800 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) " 3801 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)", 3802 (longlong_t)scn->scn_zios_this_txg, 3803 spa->spa_name, 3804 (longlong_t)scn->scn_segs_this_txg, 3805 (longlong_t)NSEC2MSEC(gethrtime() - 3806 scn->scn_sync_start_time), 3807 (longlong_t)scn->scn_avg_zio_size_this_txg, 3808 (longlong_t)scn->scn_avg_seg_size_this_txg); 3809 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3810 /* Finished with everything. Mark the scrub as complete */ 3811 zfs_dbgmsg("scan issuing complete txg %llu for %s", 3812 (longlong_t)tx->tx_txg, 3813 spa->spa_name); 3814 ASSERT3U(scn->scn_done_txg, !=, 0); 3815 ASSERT0(spa->spa_scrub_inflight); 3816 ASSERT0(scn->scn_queues_pending); 3817 dsl_scan_done(scn, B_TRUE, tx); 3818 sync_type = SYNC_MANDATORY; 3819 } 3820 3821 dsl_scan_sync_state(scn, tx, sync_type); 3822 } 3823 3824 static void 3825 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all) 3826 { 3827 /* 3828 * Don't count embedded bp's, since we already did the work of 3829 * scanning these when we scanned the containing block. 3830 */ 3831 if (BP_IS_EMBEDDED(bp)) 3832 return; 3833 3834 /* 3835 * Update the spa's stats on how many bytes we have issued. 3836 * Sequential scrubs create a zio for each DVA of the bp. Each 3837 * of these will include all DVAs for repair purposes, but the 3838 * zio code will only try the first one unless there is an issue. 3839 * Therefore, we should only count the first DVA for these IOs. 3840 */ 3841 atomic_add_64(&spa->spa_scan_pass_issued, 3842 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 3843 } 3844 3845 static void 3846 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp) 3847 { 3848 /* 3849 * If we resume after a reboot, zab will be NULL; don't record 3850 * incomplete stats in that case. 3851 */ 3852 if (zab == NULL) 3853 return; 3854 3855 for (int i = 0; i < 4; i++) { 3856 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3857 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3858 3859 if (t & DMU_OT_NEWTYPE) 3860 t = DMU_OT_OTHER; 3861 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3862 int equal; 3863 3864 zb->zb_count++; 3865 zb->zb_asize += BP_GET_ASIZE(bp); 3866 zb->zb_lsize += BP_GET_LSIZE(bp); 3867 zb->zb_psize += BP_GET_PSIZE(bp); 3868 zb->zb_gangs += BP_COUNT_GANG(bp); 3869 3870 switch (BP_GET_NDVAS(bp)) { 3871 case 2: 3872 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3873 DVA_GET_VDEV(&bp->blk_dva[1])) 3874 zb->zb_ditto_2_of_2_samevdev++; 3875 break; 3876 case 3: 3877 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3878 DVA_GET_VDEV(&bp->blk_dva[1])) + 3879 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3880 DVA_GET_VDEV(&bp->blk_dva[2])) + 3881 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3882 DVA_GET_VDEV(&bp->blk_dva[2])); 3883 if (equal == 1) 3884 zb->zb_ditto_2_of_3_samevdev++; 3885 else if (equal == 3) 3886 zb->zb_ditto_3_of_3_samevdev++; 3887 break; 3888 } 3889 } 3890 } 3891 3892 static void 3893 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3894 { 3895 avl_index_t idx; 3896 dsl_scan_t *scn = queue->q_scn; 3897 3898 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3899 3900 if (unlikely(avl_is_empty(&queue->q_sios_by_addr))) 3901 atomic_add_64(&scn->scn_queues_pending, 1); 3902 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3903 /* block is already scheduled for reading */ 3904 sio_free(sio); 3905 return; 3906 } 3907 avl_insert(&queue->q_sios_by_addr, sio, idx); 3908 queue->q_sio_memused += SIO_GET_MUSED(sio); 3909 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), 3910 SIO_GET_ASIZE(sio)); 3911 } 3912 3913 /* 3914 * Given all the info we got from our metadata scanning process, we 3915 * construct a scan_io_t and insert it into the scan sorting queue. The 3916 * I/O must already be suitable for us to process. This is controlled 3917 * by dsl_scan_enqueue(). 3918 */ 3919 static void 3920 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3921 int zio_flags, const zbookmark_phys_t *zb) 3922 { 3923 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3924 3925 ASSERT0(BP_IS_GANG(bp)); 3926 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3927 3928 bp2sio(bp, sio, dva_i); 3929 sio->sio_flags = zio_flags; 3930 sio->sio_zb = *zb; 3931 3932 queue->q_last_ext_addr = -1; 3933 scan_io_queue_insert_impl(queue, sio); 3934 } 3935 3936 /* 3937 * Given a set of I/O parameters as discovered by the metadata traversal 3938 * process, attempts to place the I/O into the sorted queues (if allowed), 3939 * or immediately executes the I/O. 3940 */ 3941 static void 3942 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3943 const zbookmark_phys_t *zb) 3944 { 3945 spa_t *spa = dp->dp_spa; 3946 3947 ASSERT(!BP_IS_EMBEDDED(bp)); 3948 3949 /* 3950 * Gang blocks are hard to issue sequentially, so we just issue them 3951 * here immediately instead of queuing them. 3952 */ 3953 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3954 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3955 return; 3956 } 3957 3958 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3959 dva_t dva; 3960 vdev_t *vdev; 3961 3962 dva = bp->blk_dva[i]; 3963 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3964 ASSERT(vdev != NULL); 3965 3966 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3967 if (vdev->vdev_scan_io_queue == NULL) 3968 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3969 ASSERT(dp->dp_scan != NULL); 3970 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3971 i, zio_flags, zb); 3972 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3973 } 3974 } 3975 3976 static int 3977 dsl_scan_scrub_cb(dsl_pool_t *dp, 3978 const blkptr_t *bp, const zbookmark_phys_t *zb) 3979 { 3980 dsl_scan_t *scn = dp->dp_scan; 3981 spa_t *spa = dp->dp_spa; 3982 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3983 size_t psize = BP_GET_PSIZE(bp); 3984 boolean_t needs_io = B_FALSE; 3985 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3986 3987 count_block(dp->dp_blkstats, bp); 3988 if (phys_birth <= scn->scn_phys.scn_min_txg || 3989 phys_birth >= scn->scn_phys.scn_max_txg) { 3990 count_block_issued(spa, bp, B_TRUE); 3991 return (0); 3992 } 3993 3994 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3995 ASSERT(!BP_IS_EMBEDDED(bp)); 3996 3997 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3998 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3999 zio_flags |= ZIO_FLAG_SCRUB; 4000 needs_io = B_TRUE; 4001 } else { 4002 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 4003 zio_flags |= ZIO_FLAG_RESILVER; 4004 needs_io = B_FALSE; 4005 } 4006 4007 /* If it's an intent log block, failure is expected. */ 4008 if (zb->zb_level == ZB_ZIL_LEVEL) 4009 zio_flags |= ZIO_FLAG_SPECULATIVE; 4010 4011 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 4012 const dva_t *dva = &bp->blk_dva[d]; 4013 4014 /* 4015 * Keep track of how much data we've examined so that 4016 * zpool(8) status can make useful progress reports. 4017 */ 4018 uint64_t asize = DVA_GET_ASIZE(dva); 4019 scn->scn_phys.scn_examined += asize; 4020 spa->spa_scan_pass_exam += asize; 4021 4022 /* if it's a resilver, this may not be in the target range */ 4023 if (!needs_io) 4024 needs_io = dsl_scan_need_resilver(spa, dva, psize, 4025 phys_birth); 4026 } 4027 4028 if (needs_io && !zfs_no_scrub_io) { 4029 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4030 } else { 4031 count_block_issued(spa, bp, B_TRUE); 4032 } 4033 4034 /* do not relocate this block */ 4035 return (0); 4036 } 4037 4038 static void 4039 dsl_scan_scrub_done(zio_t *zio) 4040 { 4041 spa_t *spa = zio->io_spa; 4042 blkptr_t *bp = zio->io_bp; 4043 dsl_scan_io_queue_t *queue = zio->io_private; 4044 4045 abd_free(zio->io_abd); 4046 4047 if (queue == NULL) { 4048 mutex_enter(&spa->spa_scrub_lock); 4049 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4050 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4051 cv_broadcast(&spa->spa_scrub_io_cv); 4052 mutex_exit(&spa->spa_scrub_lock); 4053 } else { 4054 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4055 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4056 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4057 cv_broadcast(&queue->q_zio_cv); 4058 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4059 } 4060 4061 if (zio->io_error && (zio->io_error != ECKSUM || 4062 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4063 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 4064 } 4065 } 4066 4067 /* 4068 * Given a scanning zio's information, executes the zio. The zio need 4069 * not necessarily be only sortable, this function simply executes the 4070 * zio, no matter what it is. The optional queue argument allows the 4071 * caller to specify that they want per top level vdev IO rate limiting 4072 * instead of the legacy global limiting. 4073 */ 4074 static void 4075 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4076 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4077 { 4078 spa_t *spa = dp->dp_spa; 4079 dsl_scan_t *scn = dp->dp_scan; 4080 size_t size = BP_GET_PSIZE(bp); 4081 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4082 zio_t *pio; 4083 4084 if (queue == NULL) { 4085 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4086 mutex_enter(&spa->spa_scrub_lock); 4087 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4088 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4089 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4090 mutex_exit(&spa->spa_scrub_lock); 4091 pio = scn->scn_zio_root; 4092 } else { 4093 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4094 4095 ASSERT3U(queue->q_maxinflight_bytes, >, 0); 4096 mutex_enter(q_lock); 4097 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4098 cv_wait(&queue->q_zio_cv, q_lock); 4099 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4100 pio = queue->q_zio; 4101 mutex_exit(q_lock); 4102 } 4103 4104 ASSERT(pio != NULL); 4105 count_block_issued(spa, bp, queue == NULL); 4106 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done, 4107 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4108 } 4109 4110 /* 4111 * This is the primary extent sorting algorithm. We balance two parameters: 4112 * 1) how many bytes of I/O are in an extent 4113 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4114 * Since we allow extents to have gaps between their constituent I/Os, it's 4115 * possible to have a fairly large extent that contains the same amount of 4116 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4117 * The algorithm sorts based on a score calculated from the extent's size, 4118 * the relative fill volume (in %) and a "fill weight" parameter that controls 4119 * the split between whether we prefer larger extents or more well populated 4120 * extents: 4121 * 4122 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4123 * 4124 * Example: 4125 * 1) assume extsz = 64 MiB 4126 * 2) assume fill = 32 MiB (extent is half full) 4127 * 3) assume fill_weight = 3 4128 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4129 * SCORE = 32M + (50 * 3 * 32M) / 100 4130 * SCORE = 32M + (4800M / 100) 4131 * SCORE = 32M + 48M 4132 * ^ ^ 4133 * | +--- final total relative fill-based score 4134 * +--------- final total fill-based score 4135 * SCORE = 80M 4136 * 4137 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4138 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4139 * Note that as an optimization, we replace multiplication and division by 4140 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4141 * 4142 * Since we do not care if one extent is only few percent better than another, 4143 * compress the score into 6 bits via binary logarithm AKA highbit64() and 4144 * put into otherwise unused due to ashift high bits of offset. This allows 4145 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them 4146 * with single operation. Plus it makes scrubs more sequential and reduces 4147 * chances that minor extent change move it within the B-tree. 4148 */ 4149 static int 4150 ext_size_compare(const void *x, const void *y) 4151 { 4152 const uint64_t *a = x, *b = y; 4153 4154 return (TREE_CMP(*a, *b)); 4155 } 4156 4157 static void 4158 ext_size_create(range_tree_t *rt, void *arg) 4159 { 4160 (void) rt; 4161 zfs_btree_t *size_tree = arg; 4162 4163 zfs_btree_create(size_tree, ext_size_compare, sizeof (uint64_t)); 4164 } 4165 4166 static void 4167 ext_size_destroy(range_tree_t *rt, void *arg) 4168 { 4169 (void) rt; 4170 zfs_btree_t *size_tree = arg; 4171 ASSERT0(zfs_btree_numnodes(size_tree)); 4172 4173 zfs_btree_destroy(size_tree); 4174 } 4175 4176 static uint64_t 4177 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg) 4178 { 4179 (void) rt; 4180 uint64_t size = rsg->rs_end - rsg->rs_start; 4181 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) * 4182 fill_weight * rsg->rs_fill) >> 7); 4183 ASSERT3U(rt->rt_shift, >=, 8); 4184 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start); 4185 } 4186 4187 static void 4188 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg) 4189 { 4190 zfs_btree_t *size_tree = arg; 4191 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); 4192 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); 4193 zfs_btree_add(size_tree, &v); 4194 } 4195 4196 static void 4197 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 4198 { 4199 zfs_btree_t *size_tree = arg; 4200 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); 4201 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); 4202 zfs_btree_remove(size_tree, &v); 4203 } 4204 4205 static void 4206 ext_size_vacate(range_tree_t *rt, void *arg) 4207 { 4208 zfs_btree_t *size_tree = arg; 4209 zfs_btree_clear(size_tree); 4210 zfs_btree_destroy(size_tree); 4211 4212 ext_size_create(rt, arg); 4213 } 4214 4215 static const range_tree_ops_t ext_size_ops = { 4216 .rtop_create = ext_size_create, 4217 .rtop_destroy = ext_size_destroy, 4218 .rtop_add = ext_size_add, 4219 .rtop_remove = ext_size_remove, 4220 .rtop_vacate = ext_size_vacate 4221 }; 4222 4223 /* 4224 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4225 * based on LBA-order (from lowest to highest). 4226 */ 4227 static int 4228 sio_addr_compare(const void *x, const void *y) 4229 { 4230 const scan_io_t *a = x, *b = y; 4231 4232 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4233 } 4234 4235 /* IO queues are created on demand when they are needed. */ 4236 static dsl_scan_io_queue_t * 4237 scan_io_queue_create(vdev_t *vd) 4238 { 4239 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4240 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4241 4242 q->q_scn = scn; 4243 q->q_vd = vd; 4244 q->q_sio_memused = 0; 4245 q->q_last_ext_addr = -1; 4246 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4247 q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP, 4248 &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap); 4249 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4250 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4251 4252 return (q); 4253 } 4254 4255 /* 4256 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4257 * No further execution of I/O occurs, anything pending in the queue is 4258 * simply freed without being executed. 4259 */ 4260 void 4261 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4262 { 4263 dsl_scan_t *scn = queue->q_scn; 4264 scan_io_t *sio; 4265 void *cookie = NULL; 4266 4267 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4268 4269 if (!avl_is_empty(&queue->q_sios_by_addr)) 4270 atomic_add_64(&scn->scn_queues_pending, -1); 4271 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4272 NULL) { 4273 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4274 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4275 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4276 sio_free(sio); 4277 } 4278 4279 ASSERT0(queue->q_sio_memused); 4280 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4281 range_tree_destroy(queue->q_exts_by_addr); 4282 avl_destroy(&queue->q_sios_by_addr); 4283 cv_destroy(&queue->q_zio_cv); 4284 4285 kmem_free(queue, sizeof (*queue)); 4286 } 4287 4288 /* 4289 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4290 * called on behalf of vdev_top_transfer when creating or destroying 4291 * a mirror vdev due to zpool attach/detach. 4292 */ 4293 void 4294 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4295 { 4296 mutex_enter(&svd->vdev_scan_io_queue_lock); 4297 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4298 4299 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4300 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4301 svd->vdev_scan_io_queue = NULL; 4302 if (tvd->vdev_scan_io_queue != NULL) 4303 tvd->vdev_scan_io_queue->q_vd = tvd; 4304 4305 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4306 mutex_exit(&svd->vdev_scan_io_queue_lock); 4307 } 4308 4309 static void 4310 scan_io_queues_destroy(dsl_scan_t *scn) 4311 { 4312 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4313 4314 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4315 vdev_t *tvd = rvd->vdev_child[i]; 4316 4317 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4318 if (tvd->vdev_scan_io_queue != NULL) 4319 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4320 tvd->vdev_scan_io_queue = NULL; 4321 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4322 } 4323 } 4324 4325 static void 4326 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4327 { 4328 dsl_pool_t *dp = spa->spa_dsl_pool; 4329 dsl_scan_t *scn = dp->dp_scan; 4330 vdev_t *vdev; 4331 kmutex_t *q_lock; 4332 dsl_scan_io_queue_t *queue; 4333 scan_io_t *srch_sio, *sio; 4334 avl_index_t idx; 4335 uint64_t start, size; 4336 4337 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4338 ASSERT(vdev != NULL); 4339 q_lock = &vdev->vdev_scan_io_queue_lock; 4340 queue = vdev->vdev_scan_io_queue; 4341 4342 mutex_enter(q_lock); 4343 if (queue == NULL) { 4344 mutex_exit(q_lock); 4345 return; 4346 } 4347 4348 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4349 bp2sio(bp, srch_sio, dva_i); 4350 start = SIO_GET_OFFSET(srch_sio); 4351 size = SIO_GET_ASIZE(srch_sio); 4352 4353 /* 4354 * We can find the zio in two states: 4355 * 1) Cold, just sitting in the queue of zio's to be issued at 4356 * some point in the future. In this case, all we do is 4357 * remove the zio from the q_sios_by_addr tree, decrement 4358 * its data volume from the containing range_seg_t and 4359 * resort the q_exts_by_size tree to reflect that the 4360 * range_seg_t has lost some of its 'fill'. We don't shorten 4361 * the range_seg_t - this is usually rare enough not to be 4362 * worth the extra hassle of trying keep track of precise 4363 * extent boundaries. 4364 * 2) Hot, where the zio is currently in-flight in 4365 * dsl_scan_issue_ios. In this case, we can't simply 4366 * reach in and stop the in-flight zio's, so we instead 4367 * block the caller. Eventually, dsl_scan_issue_ios will 4368 * be done with issuing the zio's it gathered and will 4369 * signal us. 4370 */ 4371 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4372 sio_free(srch_sio); 4373 4374 if (sio != NULL) { 4375 blkptr_t tmpbp; 4376 4377 /* Got it while it was cold in the queue */ 4378 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4379 ASSERT3U(size, ==, SIO_GET_ASIZE(sio)); 4380 avl_remove(&queue->q_sios_by_addr, sio); 4381 if (avl_is_empty(&queue->q_sios_by_addr)) 4382 atomic_add_64(&scn->scn_queues_pending, -1); 4383 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4384 4385 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4386 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4387 4388 /* count the block as though we issued it */ 4389 sio2bp(sio, &tmpbp); 4390 count_block_issued(spa, &tmpbp, B_FALSE); 4391 4392 sio_free(sio); 4393 } 4394 mutex_exit(q_lock); 4395 } 4396 4397 /* 4398 * Callback invoked when a zio_free() zio is executing. This needs to be 4399 * intercepted to prevent the zio from deallocating a particular portion 4400 * of disk space and it then getting reallocated and written to, while we 4401 * still have it queued up for processing. 4402 */ 4403 void 4404 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4405 { 4406 dsl_pool_t *dp = spa->spa_dsl_pool; 4407 dsl_scan_t *scn = dp->dp_scan; 4408 4409 ASSERT(!BP_IS_EMBEDDED(bp)); 4410 ASSERT(scn != NULL); 4411 if (!dsl_scan_is_running(scn)) 4412 return; 4413 4414 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4415 dsl_scan_freed_dva(spa, bp, i); 4416 } 4417 4418 /* 4419 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4420 * not started, start it. Otherwise, only restart if max txg in DTL range is 4421 * greater than the max txg in the current scan. If the DTL max is less than 4422 * the scan max, then the vdev has not missed any new data since the resilver 4423 * started, so a restart is not needed. 4424 */ 4425 void 4426 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4427 { 4428 uint64_t min, max; 4429 4430 if (!vdev_resilver_needed(vd, &min, &max)) 4431 return; 4432 4433 if (!dsl_scan_resilvering(dp)) { 4434 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4435 return; 4436 } 4437 4438 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4439 return; 4440 4441 /* restart is needed, check if it can be deferred */ 4442 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4443 vdev_defer_resilver(vd); 4444 else 4445 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4446 } 4447 4448 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW, 4449 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 4450 4451 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW, 4452 "Min millisecs to scrub per txg"); 4453 4454 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW, 4455 "Min millisecs to obsolete per txg"); 4456 4457 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW, 4458 "Min millisecs to free per txg"); 4459 4460 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW, 4461 "Min millisecs to resilver per txg"); 4462 4463 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 4464 "Set to prevent scans from progressing"); 4465 4466 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 4467 "Set to disable scrub I/O"); 4468 4469 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 4470 "Set to disable scrub prefetching"); 4471 4472 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW, 4473 "Max number of blocks freed in one txg"); 4474 4475 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW, 4476 "Max number of dedup blocks freed in one txg"); 4477 4478 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 4479 "Enable processing of the free_bpobj"); 4480 4481 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW, 4482 "Enable block statistics calculation during scrub"); 4483 4484 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW, 4485 "Fraction of RAM for scan hard limit"); 4486 4487 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW, 4488 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size"); 4489 4490 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 4491 "Scrub using legacy non-sequential method"); 4492 4493 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW, 4494 "Scan progress on-disk checkpointing interval"); 4495 4496 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW, 4497 "Max gap in bytes between sequential scrub / resilver I/Os"); 4498 4499 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW, 4500 "Fraction of hard limit used as soft limit"); 4501 4502 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 4503 "Tunable to attempt to reduce lock contention"); 4504 4505 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW, 4506 "Tunable to adjust bias towards more filled segments during scans"); 4507 4508 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 4509 "Process all resilvers immediately"); 4510