1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 27 * Copyright 2019 Joyent, Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/zil_impl.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/ddt.h> 50 #include <sys/sa.h> 51 #include <sys/sa_impl.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/range_tree.h> 55 #ifdef _KERNEL 56 #include <sys/zfs_vfsops.h> 57 #endif 58 59 /* 60 * Grand theory statement on scan queue sorting 61 * 62 * Scanning is implemented by recursively traversing all indirection levels 63 * in an object and reading all blocks referenced from said objects. This 64 * results in us approximately traversing the object from lowest logical 65 * offset to the highest. For best performance, we would want the logical 66 * blocks to be physically contiguous. However, this is frequently not the 67 * case with pools given the allocation patterns of copy-on-write filesystems. 68 * So instead, we put the I/Os into a reordering queue and issue them in a 69 * way that will most benefit physical disks (LBA-order). 70 * 71 * Queue management: 72 * 73 * Ideally, we would want to scan all metadata and queue up all block I/O 74 * prior to starting to issue it, because that allows us to do an optimal 75 * sorting job. This can however consume large amounts of memory. Therefore 76 * we continuously monitor the size of the queues and constrain them to 5% 77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 78 * limit, we clear out a few of the largest extents at the head of the queues 79 * to make room for more scanning. Hopefully, these extents will be fairly 80 * large and contiguous, allowing us to approach sequential I/O throughput 81 * even without a fully sorted tree. 82 * 83 * Metadata scanning takes place in dsl_scan_visit(), which is called from 84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 85 * metadata on the pool, or we need to make room in memory because our 86 * queues are too large, dsl_scan_visit() is postponed and 87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 88 * that metadata scanning and queued I/O issuing are mutually exclusive. This 89 * allows us to provide maximum sequential I/O throughput for the majority of 90 * I/O's issued since sequential I/O performance is significantly negatively 91 * impacted if it is interleaved with random I/O. 92 * 93 * Implementation Notes 94 * 95 * One side effect of the queued scanning algorithm is that the scanning code 96 * needs to be notified whenever a block is freed. This is needed to allow 97 * the scanning code to remove these I/Os from the issuing queue. Additionally, 98 * we do not attempt to queue gang blocks to be issued sequentially since this 99 * is very hard to do and would have an extremely limited performance benefit. 100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 101 * algorithm. 102 * 103 * Backwards compatibility 104 * 105 * This new algorithm is backwards compatible with the legacy on-disk data 106 * structures (and therefore does not require a new feature flag). 107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 108 * will stop scanning metadata (in logical order) and wait for all outstanding 109 * sorted I/O to complete. Once this is done, we write out a checkpoint 110 * bookmark, indicating that we have scanned everything logically before it. 111 * If the pool is imported on a machine without the new sorting algorithm, 112 * the scan simply resumes from the last checkpoint using the legacy algorithm. 113 */ 114 115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 116 const zbookmark_phys_t *); 117 118 static scan_cb_t dsl_scan_scrub_cb; 119 120 static int scan_ds_queue_compare(const void *a, const void *b); 121 static int scan_prefetch_queue_compare(const void *a, const void *b); 122 static void scan_ds_queue_clear(dsl_scan_t *scn); 123 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 125 uint64_t *txg); 126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 129 static uint64_t dsl_scan_count_data_disks(vdev_t *vd); 130 131 extern int zfs_vdev_async_write_active_min_dirty_percent; 132 static int zfs_scan_blkstats = 0; 133 134 /* 135 * By default zfs will check to ensure it is not over the hard memory 136 * limit before each txg. If finer-grained control of this is needed 137 * this value can be set to 1 to enable checking before scanning each 138 * block. 139 */ 140 static int zfs_scan_strict_mem_lim = B_FALSE; 141 142 /* 143 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 144 * to strike a balance here between keeping the vdev queues full of I/Os 145 * at all times and not overflowing the queues to cause long latency, 146 * which would cause long txg sync times. No matter what, we will not 147 * overload the drives with I/O, since that is protected by 148 * zfs_vdev_scrub_max_active. 149 */ 150 static unsigned long zfs_scan_vdev_limit = 4 << 20; 151 152 static int zfs_scan_issue_strategy = 0; 153 static int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 154 static unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 155 156 /* 157 * fill_weight is non-tunable at runtime, so we copy it at module init from 158 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 159 * break queue sorting. 160 */ 161 static int zfs_scan_fill_weight = 3; 162 static uint64_t fill_weight; 163 164 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 165 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 166 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 167 static int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 168 static int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 169 170 static int zfs_scrub_min_time_ms = 1000; /* min millis to scrub per txg */ 171 static int zfs_obsolete_min_time_ms = 500; /* min millis to obsolete per txg */ 172 static int zfs_free_min_time_ms = 1000; /* min millis to free per txg */ 173 static int zfs_resilver_min_time_ms = 3000; /* min millis to resilver per txg */ 174 static int zfs_scan_checkpoint_intval = 7200; /* in seconds */ 175 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 176 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 177 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 178 static const enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 179 /* max number of blocks to free in a single TXG */ 180 static unsigned long zfs_async_block_max_blocks = ULONG_MAX; 181 /* max number of dedup blocks to free in a single TXG */ 182 static unsigned long zfs_max_async_dedup_frees = 100000; 183 184 /* set to disable resilver deferring */ 185 static int zfs_resilver_disable_defer = B_FALSE; 186 187 /* 188 * We wait a few txgs after importing a pool to begin scanning so that 189 * the import / mounting code isn't held up by scrub / resilver IO. 190 * Unfortunately, it is a bit difficult to determine exactly how long 191 * this will take since userspace will trigger fs mounts asynchronously 192 * and the kernel will create zvol minors asynchronously. As a result, 193 * the value provided here is a bit arbitrary, but represents a 194 * reasonable estimate of how many txgs it will take to finish fully 195 * importing a pool 196 */ 197 #define SCAN_IMPORT_WAIT_TXGS 5 198 199 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 200 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 201 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 202 203 /* 204 * Enable/disable the processing of the free_bpobj object. 205 */ 206 static int zfs_free_bpobj_enabled = 1; 207 208 /* the order has to match pool_scan_type */ 209 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 210 NULL, 211 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 212 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 213 }; 214 215 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 216 typedef struct { 217 uint64_t sds_dsobj; 218 uint64_t sds_txg; 219 avl_node_t sds_node; 220 } scan_ds_t; 221 222 /* 223 * This controls what conditions are placed on dsl_scan_sync_state(): 224 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0 225 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0. 226 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise 227 * write out the scn_phys_cached version. 228 * See dsl_scan_sync_state for details. 229 */ 230 typedef enum { 231 SYNC_OPTIONAL, 232 SYNC_MANDATORY, 233 SYNC_CACHED 234 } state_sync_type_t; 235 236 /* 237 * This struct represents the minimum information needed to reconstruct a 238 * zio for sequential scanning. This is useful because many of these will 239 * accumulate in the sequential IO queues before being issued, so saving 240 * memory matters here. 241 */ 242 typedef struct scan_io { 243 /* fields from blkptr_t */ 244 uint64_t sio_blk_prop; 245 uint64_t sio_phys_birth; 246 uint64_t sio_birth; 247 zio_cksum_t sio_cksum; 248 uint32_t sio_nr_dvas; 249 250 /* fields from zio_t */ 251 uint32_t sio_flags; 252 zbookmark_phys_t sio_zb; 253 254 /* members for queue sorting */ 255 union { 256 avl_node_t sio_addr_node; /* link into issuing queue */ 257 list_node_t sio_list_node; /* link for issuing to disk */ 258 } sio_nodes; 259 260 /* 261 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 262 * depending on how many were in the original bp. Only the 263 * first DVA is really used for sorting and issuing purposes. 264 * The other DVAs (if provided) simply exist so that the zio 265 * layer can find additional copies to repair from in the 266 * event of an error. This array must go at the end of the 267 * struct to allow this for the variable number of elements. 268 */ 269 dva_t sio_dva[0]; 270 } scan_io_t; 271 272 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 273 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 274 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 275 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 276 #define SIO_GET_END_OFFSET(sio) \ 277 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 278 #define SIO_GET_MUSED(sio) \ 279 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 280 281 struct dsl_scan_io_queue { 282 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 283 vdev_t *q_vd; /* top-level vdev that this queue represents */ 284 zio_t *q_zio; /* scn_zio_root child for waiting on IO */ 285 286 /* trees used for sorting I/Os and extents of I/Os */ 287 range_tree_t *q_exts_by_addr; 288 zfs_btree_t q_exts_by_size; 289 avl_tree_t q_sios_by_addr; 290 uint64_t q_sio_memused; 291 uint64_t q_last_ext_addr; 292 293 /* members for zio rate limiting */ 294 uint64_t q_maxinflight_bytes; 295 uint64_t q_inflight_bytes; 296 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 297 298 /* per txg statistics */ 299 uint64_t q_total_seg_size_this_txg; 300 uint64_t q_segs_this_txg; 301 uint64_t q_total_zio_size_this_txg; 302 uint64_t q_zios_this_txg; 303 }; 304 305 /* private data for dsl_scan_prefetch_cb() */ 306 typedef struct scan_prefetch_ctx { 307 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 308 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 309 boolean_t spc_root; /* is this prefetch for an objset? */ 310 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 311 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 312 } scan_prefetch_ctx_t; 313 314 /* private data for dsl_scan_prefetch() */ 315 typedef struct scan_prefetch_issue_ctx { 316 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 317 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 318 blkptr_t spic_bp; /* bp to prefetch */ 319 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 320 } scan_prefetch_issue_ctx_t; 321 322 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 323 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 324 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 325 scan_io_t *sio); 326 327 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 328 static void scan_io_queues_destroy(dsl_scan_t *scn); 329 330 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 331 332 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 333 static void 334 sio_free(scan_io_t *sio) 335 { 336 ASSERT3U(sio->sio_nr_dvas, >, 0); 337 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 338 339 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 340 } 341 342 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 343 static scan_io_t * 344 sio_alloc(unsigned short nr_dvas) 345 { 346 ASSERT3U(nr_dvas, >, 0); 347 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 348 349 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 350 } 351 352 void 353 scan_init(void) 354 { 355 /* 356 * This is used in ext_size_compare() to weight segments 357 * based on how sparse they are. This cannot be changed 358 * mid-scan and the tree comparison functions don't currently 359 * have a mechanism for passing additional context to the 360 * compare functions. Thus we store this value globally and 361 * we only allow it to be set at module initialization time 362 */ 363 fill_weight = zfs_scan_fill_weight; 364 365 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 366 char name[36]; 367 368 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 369 sio_cache[i] = kmem_cache_create(name, 370 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 371 0, NULL, NULL, NULL, NULL, NULL, 0); 372 } 373 } 374 375 void 376 scan_fini(void) 377 { 378 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 379 kmem_cache_destroy(sio_cache[i]); 380 } 381 } 382 383 static inline boolean_t 384 dsl_scan_is_running(const dsl_scan_t *scn) 385 { 386 return (scn->scn_phys.scn_state == DSS_SCANNING); 387 } 388 389 boolean_t 390 dsl_scan_resilvering(dsl_pool_t *dp) 391 { 392 return (dsl_scan_is_running(dp->dp_scan) && 393 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 394 } 395 396 static inline void 397 sio2bp(const scan_io_t *sio, blkptr_t *bp) 398 { 399 memset(bp, 0, sizeof (*bp)); 400 bp->blk_prop = sio->sio_blk_prop; 401 bp->blk_phys_birth = sio->sio_phys_birth; 402 bp->blk_birth = sio->sio_birth; 403 bp->blk_fill = 1; /* we always only work with data pointers */ 404 bp->blk_cksum = sio->sio_cksum; 405 406 ASSERT3U(sio->sio_nr_dvas, >, 0); 407 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 408 409 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t)); 410 } 411 412 static inline void 413 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 414 { 415 sio->sio_blk_prop = bp->blk_prop; 416 sio->sio_phys_birth = bp->blk_phys_birth; 417 sio->sio_birth = bp->blk_birth; 418 sio->sio_cksum = bp->blk_cksum; 419 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 420 421 /* 422 * Copy the DVAs to the sio. We need all copies of the block so 423 * that the self healing code can use the alternate copies if the 424 * first is corrupted. We want the DVA at index dva_i to be first 425 * in the sio since this is the primary one that we want to issue. 426 */ 427 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 428 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 429 } 430 } 431 432 int 433 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 434 { 435 int err; 436 dsl_scan_t *scn; 437 spa_t *spa = dp->dp_spa; 438 uint64_t f; 439 440 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 441 scn->scn_dp = dp; 442 443 /* 444 * It's possible that we're resuming a scan after a reboot so 445 * make sure that the scan_async_destroying flag is initialized 446 * appropriately. 447 */ 448 ASSERT(!scn->scn_async_destroying); 449 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 450 SPA_FEATURE_ASYNC_DESTROY); 451 452 /* 453 * Calculate the max number of in-flight bytes for pool-wide 454 * scanning operations (minimum 1MB). Limits for the issuing 455 * phase are done per top-level vdev and are handled separately. 456 */ 457 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 458 dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20); 459 460 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 461 offsetof(scan_ds_t, sds_node)); 462 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 463 sizeof (scan_prefetch_issue_ctx_t), 464 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 465 466 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 467 "scrub_func", sizeof (uint64_t), 1, &f); 468 if (err == 0) { 469 /* 470 * There was an old-style scrub in progress. Restart a 471 * new-style scrub from the beginning. 472 */ 473 scn->scn_restart_txg = txg; 474 zfs_dbgmsg("old-style scrub was in progress for %s; " 475 "restarting new-style scrub in txg %llu", 476 spa->spa_name, 477 (longlong_t)scn->scn_restart_txg); 478 479 /* 480 * Load the queue obj from the old location so that it 481 * can be freed by dsl_scan_done(). 482 */ 483 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 484 "scrub_queue", sizeof (uint64_t), 1, 485 &scn->scn_phys.scn_queue_obj); 486 } else { 487 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 488 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 489 &scn->scn_phys); 490 /* 491 * Detect if the pool contains the signature of #2094. If it 492 * does properly update the scn->scn_phys structure and notify 493 * the administrator by setting an errata for the pool. 494 */ 495 if (err == EOVERFLOW) { 496 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 497 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 498 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 499 (23 * sizeof (uint64_t))); 500 501 err = zap_lookup(dp->dp_meta_objset, 502 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 503 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 504 if (err == 0) { 505 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 506 507 if (overflow & ~DSL_SCAN_FLAGS_MASK || 508 scn->scn_async_destroying) { 509 spa->spa_errata = 510 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 511 return (EOVERFLOW); 512 } 513 514 memcpy(&scn->scn_phys, zaptmp, 515 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 516 scn->scn_phys.scn_flags = overflow; 517 518 /* Required scrub already in progress. */ 519 if (scn->scn_phys.scn_state == DSS_FINISHED || 520 scn->scn_phys.scn_state == DSS_CANCELED) 521 spa->spa_errata = 522 ZPOOL_ERRATA_ZOL_2094_SCRUB; 523 } 524 } 525 526 if (err == ENOENT) 527 return (0); 528 else if (err) 529 return (err); 530 531 /* 532 * We might be restarting after a reboot, so jump the issued 533 * counter to how far we've scanned. We know we're consistent 534 * up to here. 535 */ 536 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 537 538 if (dsl_scan_is_running(scn) && 539 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 540 /* 541 * A new-type scrub was in progress on an old 542 * pool, and the pool was accessed by old 543 * software. Restart from the beginning, since 544 * the old software may have changed the pool in 545 * the meantime. 546 */ 547 scn->scn_restart_txg = txg; 548 zfs_dbgmsg("new-style scrub for %s was modified " 549 "by old software; restarting in txg %llu", 550 spa->spa_name, 551 (longlong_t)scn->scn_restart_txg); 552 } else if (dsl_scan_resilvering(dp)) { 553 /* 554 * If a resilver is in progress and there are already 555 * errors, restart it instead of finishing this scan and 556 * then restarting it. If there haven't been any errors 557 * then remember that the incore DTL is valid. 558 */ 559 if (scn->scn_phys.scn_errors > 0) { 560 scn->scn_restart_txg = txg; 561 zfs_dbgmsg("resilver can't excise DTL_MISSING " 562 "when finished; restarting on %s in txg " 563 "%llu", 564 spa->spa_name, 565 (u_longlong_t)scn->scn_restart_txg); 566 } else { 567 /* it's safe to excise DTL when finished */ 568 spa->spa_scrub_started = B_TRUE; 569 } 570 } 571 } 572 573 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 574 575 /* reload the queue into the in-core state */ 576 if (scn->scn_phys.scn_queue_obj != 0) { 577 zap_cursor_t zc; 578 zap_attribute_t za; 579 580 for (zap_cursor_init(&zc, dp->dp_meta_objset, 581 scn->scn_phys.scn_queue_obj); 582 zap_cursor_retrieve(&zc, &za) == 0; 583 (void) zap_cursor_advance(&zc)) { 584 scan_ds_queue_insert(scn, 585 zfs_strtonum(za.za_name, NULL), 586 za.za_first_integer); 587 } 588 zap_cursor_fini(&zc); 589 } 590 591 spa_scan_stat_init(spa); 592 return (0); 593 } 594 595 void 596 dsl_scan_fini(dsl_pool_t *dp) 597 { 598 if (dp->dp_scan != NULL) { 599 dsl_scan_t *scn = dp->dp_scan; 600 601 if (scn->scn_taskq != NULL) 602 taskq_destroy(scn->scn_taskq); 603 604 scan_ds_queue_clear(scn); 605 avl_destroy(&scn->scn_queue); 606 scan_ds_prefetch_queue_clear(scn); 607 avl_destroy(&scn->scn_prefetch_queue); 608 609 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 610 dp->dp_scan = NULL; 611 } 612 } 613 614 static boolean_t 615 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 616 { 617 return (scn->scn_restart_txg != 0 && 618 scn->scn_restart_txg <= tx->tx_txg); 619 } 620 621 boolean_t 622 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 623 { 624 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 625 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 626 } 627 628 boolean_t 629 dsl_scan_scrubbing(const dsl_pool_t *dp) 630 { 631 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 632 633 return (scn_phys->scn_state == DSS_SCANNING && 634 scn_phys->scn_func == POOL_SCAN_SCRUB); 635 } 636 637 boolean_t 638 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 639 { 640 return (dsl_scan_scrubbing(scn->scn_dp) && 641 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 642 } 643 644 /* 645 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 646 * Because we can be running in the block sorting algorithm, we do not always 647 * want to write out the record, only when it is "safe" to do so. This safety 648 * condition is achieved by making sure that the sorting queues are empty 649 * (scn_queues_pending == 0). When this condition is not true, the sync'd state 650 * is inconsistent with how much actual scanning progress has been made. The 651 * kind of sync to be performed is specified by the sync_type argument. If the 652 * sync is optional, we only sync if the queues are empty. If the sync is 653 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 654 * third possible state is a "cached" sync. This is done in response to: 655 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 656 * destroyed, so we wouldn't be able to restart scanning from it. 657 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 658 * superseded by a newer snapshot. 659 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 660 * swapped with its clone. 661 * In all cases, a cached sync simply rewrites the last record we've written, 662 * just slightly modified. For the modifications that are performed to the 663 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 664 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 665 */ 666 static void 667 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 668 { 669 int i; 670 spa_t *spa = scn->scn_dp->dp_spa; 671 672 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0); 673 if (scn->scn_queues_pending == 0) { 674 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 675 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 676 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 677 678 if (q == NULL) 679 continue; 680 681 mutex_enter(&vd->vdev_scan_io_queue_lock); 682 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 683 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 684 NULL); 685 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 686 mutex_exit(&vd->vdev_scan_io_queue_lock); 687 } 688 689 if (scn->scn_phys.scn_queue_obj != 0) 690 scan_ds_queue_sync(scn, tx); 691 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 692 DMU_POOL_DIRECTORY_OBJECT, 693 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 694 &scn->scn_phys, tx)); 695 memcpy(&scn->scn_phys_cached, &scn->scn_phys, 696 sizeof (scn->scn_phys)); 697 698 if (scn->scn_checkpointing) 699 zfs_dbgmsg("finish scan checkpoint for %s", 700 spa->spa_name); 701 702 scn->scn_checkpointing = B_FALSE; 703 scn->scn_last_checkpoint = ddi_get_lbolt(); 704 } else if (sync_type == SYNC_CACHED) { 705 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 706 DMU_POOL_DIRECTORY_OBJECT, 707 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 708 &scn->scn_phys_cached, tx)); 709 } 710 } 711 712 int 713 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 714 { 715 (void) arg; 716 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 717 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 718 719 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd)) 720 return (SET_ERROR(EBUSY)); 721 722 return (0); 723 } 724 725 void 726 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 727 { 728 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 729 pool_scan_func_t *funcp = arg; 730 dmu_object_type_t ot = 0; 731 dsl_pool_t *dp = scn->scn_dp; 732 spa_t *spa = dp->dp_spa; 733 734 ASSERT(!dsl_scan_is_running(scn)); 735 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 736 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys)); 737 scn->scn_phys.scn_func = *funcp; 738 scn->scn_phys.scn_state = DSS_SCANNING; 739 scn->scn_phys.scn_min_txg = 0; 740 scn->scn_phys.scn_max_txg = tx->tx_txg; 741 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 742 scn->scn_phys.scn_start_time = gethrestime_sec(); 743 scn->scn_phys.scn_errors = 0; 744 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 745 scn->scn_issued_before_pass = 0; 746 scn->scn_restart_txg = 0; 747 scn->scn_done_txg = 0; 748 scn->scn_last_checkpoint = 0; 749 scn->scn_checkpointing = B_FALSE; 750 spa_scan_stat_init(spa); 751 752 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 753 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 754 755 /* rewrite all disk labels */ 756 vdev_config_dirty(spa->spa_root_vdev); 757 758 if (vdev_resilver_needed(spa->spa_root_vdev, 759 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 760 nvlist_t *aux = fnvlist_alloc(); 761 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 762 "healing"); 763 spa_event_notify(spa, NULL, aux, 764 ESC_ZFS_RESILVER_START); 765 nvlist_free(aux); 766 } else { 767 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 768 } 769 770 spa->spa_scrub_started = B_TRUE; 771 /* 772 * If this is an incremental scrub, limit the DDT scrub phase 773 * to just the auto-ditto class (for correctness); the rest 774 * of the scrub should go faster using top-down pruning. 775 */ 776 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 777 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 778 779 /* 780 * When starting a resilver clear any existing rebuild state. 781 * This is required to prevent stale rebuild status from 782 * being reported when a rebuild is run, then a resilver and 783 * finally a scrub. In which case only the scrub status 784 * should be reported by 'zpool status'. 785 */ 786 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 787 vdev_t *rvd = spa->spa_root_vdev; 788 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 789 vdev_t *vd = rvd->vdev_child[i]; 790 vdev_rebuild_clear_sync( 791 (void *)(uintptr_t)vd->vdev_id, tx); 792 } 793 } 794 } 795 796 /* back to the generic stuff */ 797 798 if (zfs_scan_blkstats) { 799 if (dp->dp_blkstats == NULL) { 800 dp->dp_blkstats = 801 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 802 } 803 memset(&dp->dp_blkstats->zab_type, 0, 804 sizeof (dp->dp_blkstats->zab_type)); 805 } else { 806 if (dp->dp_blkstats) { 807 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 808 dp->dp_blkstats = NULL; 809 } 810 } 811 812 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 813 ot = DMU_OT_ZAP_OTHER; 814 815 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 816 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 817 818 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 819 820 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 821 822 spa_history_log_internal(spa, "scan setup", tx, 823 "func=%u mintxg=%llu maxtxg=%llu", 824 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg, 825 (u_longlong_t)scn->scn_phys.scn_max_txg); 826 } 827 828 /* 829 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 830 * Can also be called to resume a paused scrub. 831 */ 832 int 833 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 834 { 835 spa_t *spa = dp->dp_spa; 836 dsl_scan_t *scn = dp->dp_scan; 837 838 /* 839 * Purge all vdev caches and probe all devices. We do this here 840 * rather than in sync context because this requires a writer lock 841 * on the spa_config lock, which we can't do from sync context. The 842 * spa_scrub_reopen flag indicates that vdev_open() should not 843 * attempt to start another scrub. 844 */ 845 spa_vdev_state_enter(spa, SCL_NONE); 846 spa->spa_scrub_reopen = B_TRUE; 847 vdev_reopen(spa->spa_root_vdev); 848 spa->spa_scrub_reopen = B_FALSE; 849 (void) spa_vdev_state_exit(spa, NULL, 0); 850 851 if (func == POOL_SCAN_RESILVER) { 852 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 853 return (0); 854 } 855 856 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 857 /* got scrub start cmd, resume paused scrub */ 858 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 859 POOL_SCRUB_NORMAL); 860 if (err == 0) { 861 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 862 return (SET_ERROR(ECANCELED)); 863 } 864 865 return (SET_ERROR(err)); 866 } 867 868 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 869 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 870 } 871 872 static void 873 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 874 { 875 static const char *old_names[] = { 876 "scrub_bookmark", 877 "scrub_ddt_bookmark", 878 "scrub_ddt_class_max", 879 "scrub_queue", 880 "scrub_min_txg", 881 "scrub_max_txg", 882 "scrub_func", 883 "scrub_errors", 884 NULL 885 }; 886 887 dsl_pool_t *dp = scn->scn_dp; 888 spa_t *spa = dp->dp_spa; 889 int i; 890 891 /* Remove any remnants of an old-style scrub. */ 892 for (i = 0; old_names[i]; i++) { 893 (void) zap_remove(dp->dp_meta_objset, 894 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 895 } 896 897 if (scn->scn_phys.scn_queue_obj != 0) { 898 VERIFY0(dmu_object_free(dp->dp_meta_objset, 899 scn->scn_phys.scn_queue_obj, tx)); 900 scn->scn_phys.scn_queue_obj = 0; 901 } 902 scan_ds_queue_clear(scn); 903 scan_ds_prefetch_queue_clear(scn); 904 905 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 906 907 /* 908 * If we were "restarted" from a stopped state, don't bother 909 * with anything else. 910 */ 911 if (!dsl_scan_is_running(scn)) { 912 ASSERT(!scn->scn_is_sorted); 913 return; 914 } 915 916 if (scn->scn_is_sorted) { 917 scan_io_queues_destroy(scn); 918 scn->scn_is_sorted = B_FALSE; 919 920 if (scn->scn_taskq != NULL) { 921 taskq_destroy(scn->scn_taskq); 922 scn->scn_taskq = NULL; 923 } 924 } 925 926 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 927 928 spa_notify_waiters(spa); 929 930 if (dsl_scan_restarting(scn, tx)) 931 spa_history_log_internal(spa, "scan aborted, restarting", tx, 932 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 933 else if (!complete) 934 spa_history_log_internal(spa, "scan cancelled", tx, 935 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 936 else 937 spa_history_log_internal(spa, "scan done", tx, 938 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 939 940 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 941 spa->spa_scrub_active = B_FALSE; 942 943 /* 944 * If the scrub/resilver completed, update all DTLs to 945 * reflect this. Whether it succeeded or not, vacate 946 * all temporary scrub DTLs. 947 * 948 * As the scrub does not currently support traversing 949 * data that have been freed but are part of a checkpoint, 950 * we don't mark the scrub as done in the DTLs as faults 951 * may still exist in those vdevs. 952 */ 953 if (complete && 954 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 955 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 956 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 957 958 if (scn->scn_phys.scn_min_txg) { 959 nvlist_t *aux = fnvlist_alloc(); 960 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 961 "healing"); 962 spa_event_notify(spa, NULL, aux, 963 ESC_ZFS_RESILVER_FINISH); 964 nvlist_free(aux); 965 } else { 966 spa_event_notify(spa, NULL, NULL, 967 ESC_ZFS_SCRUB_FINISH); 968 } 969 } else { 970 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 971 0, B_TRUE, B_FALSE); 972 } 973 spa_errlog_rotate(spa); 974 975 /* 976 * Don't clear flag until after vdev_dtl_reassess to ensure that 977 * DTL_MISSING will get updated when possible. 978 */ 979 spa->spa_scrub_started = B_FALSE; 980 981 /* 982 * We may have finished replacing a device. 983 * Let the async thread assess this and handle the detach. 984 */ 985 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 986 987 /* 988 * Clear any resilver_deferred flags in the config. 989 * If there are drives that need resilvering, kick 990 * off an asynchronous request to start resilver. 991 * vdev_clear_resilver_deferred() may update the config 992 * before the resilver can restart. In the event of 993 * a crash during this period, the spa loading code 994 * will find the drives that need to be resilvered 995 * and start the resilver then. 996 */ 997 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 998 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 999 spa_history_log_internal(spa, 1000 "starting deferred resilver", tx, "errors=%llu", 1001 (u_longlong_t)spa_get_errlog_size(spa)); 1002 spa_async_request(spa, SPA_ASYNC_RESILVER); 1003 } 1004 1005 /* Clear recent error events (i.e. duplicate events tracking) */ 1006 if (complete) 1007 zfs_ereport_clear(spa, NULL); 1008 } 1009 1010 scn->scn_phys.scn_end_time = gethrestime_sec(); 1011 1012 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1013 spa->spa_errata = 0; 1014 1015 ASSERT(!dsl_scan_is_running(scn)); 1016 } 1017 1018 static int 1019 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1020 { 1021 (void) arg; 1022 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1023 1024 if (!dsl_scan_is_running(scn)) 1025 return (SET_ERROR(ENOENT)); 1026 return (0); 1027 } 1028 1029 static void 1030 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1031 { 1032 (void) arg; 1033 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1034 1035 dsl_scan_done(scn, B_FALSE, tx); 1036 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1037 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1038 } 1039 1040 int 1041 dsl_scan_cancel(dsl_pool_t *dp) 1042 { 1043 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1044 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1045 } 1046 1047 static int 1048 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1049 { 1050 pool_scrub_cmd_t *cmd = arg; 1051 dsl_pool_t *dp = dmu_tx_pool(tx); 1052 dsl_scan_t *scn = dp->dp_scan; 1053 1054 if (*cmd == POOL_SCRUB_PAUSE) { 1055 /* can't pause a scrub when there is no in-progress scrub */ 1056 if (!dsl_scan_scrubbing(dp)) 1057 return (SET_ERROR(ENOENT)); 1058 1059 /* can't pause a paused scrub */ 1060 if (dsl_scan_is_paused_scrub(scn)) 1061 return (SET_ERROR(EBUSY)); 1062 } else if (*cmd != POOL_SCRUB_NORMAL) { 1063 return (SET_ERROR(ENOTSUP)); 1064 } 1065 1066 return (0); 1067 } 1068 1069 static void 1070 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1071 { 1072 pool_scrub_cmd_t *cmd = arg; 1073 dsl_pool_t *dp = dmu_tx_pool(tx); 1074 spa_t *spa = dp->dp_spa; 1075 dsl_scan_t *scn = dp->dp_scan; 1076 1077 if (*cmd == POOL_SCRUB_PAUSE) { 1078 /* can't pause a scrub when there is no in-progress scrub */ 1079 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1080 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1081 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1082 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1083 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1084 spa_notify_waiters(spa); 1085 } else { 1086 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1087 if (dsl_scan_is_paused_scrub(scn)) { 1088 /* 1089 * We need to keep track of how much time we spend 1090 * paused per pass so that we can adjust the scrub rate 1091 * shown in the output of 'zpool status' 1092 */ 1093 spa->spa_scan_pass_scrub_spent_paused += 1094 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1095 spa->spa_scan_pass_scrub_pause = 0; 1096 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1097 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1098 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1099 } 1100 } 1101 } 1102 1103 /* 1104 * Set scrub pause/resume state if it makes sense to do so 1105 */ 1106 int 1107 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1108 { 1109 return (dsl_sync_task(spa_name(dp->dp_spa), 1110 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1111 ZFS_SPACE_CHECK_RESERVED)); 1112 } 1113 1114 1115 /* start a new scan, or restart an existing one. */ 1116 void 1117 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1118 { 1119 if (txg == 0) { 1120 dmu_tx_t *tx; 1121 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1122 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1123 1124 txg = dmu_tx_get_txg(tx); 1125 dp->dp_scan->scn_restart_txg = txg; 1126 dmu_tx_commit(tx); 1127 } else { 1128 dp->dp_scan->scn_restart_txg = txg; 1129 } 1130 zfs_dbgmsg("restarting resilver for %s at txg=%llu", 1131 dp->dp_spa->spa_name, (longlong_t)txg); 1132 } 1133 1134 void 1135 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1136 { 1137 zio_free(dp->dp_spa, txg, bp); 1138 } 1139 1140 void 1141 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1142 { 1143 ASSERT(dsl_pool_sync_context(dp)); 1144 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1145 } 1146 1147 static int 1148 scan_ds_queue_compare(const void *a, const void *b) 1149 { 1150 const scan_ds_t *sds_a = a, *sds_b = b; 1151 1152 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1153 return (-1); 1154 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1155 return (0); 1156 return (1); 1157 } 1158 1159 static void 1160 scan_ds_queue_clear(dsl_scan_t *scn) 1161 { 1162 void *cookie = NULL; 1163 scan_ds_t *sds; 1164 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1165 kmem_free(sds, sizeof (*sds)); 1166 } 1167 } 1168 1169 static boolean_t 1170 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1171 { 1172 scan_ds_t srch, *sds; 1173 1174 srch.sds_dsobj = dsobj; 1175 sds = avl_find(&scn->scn_queue, &srch, NULL); 1176 if (sds != NULL && txg != NULL) 1177 *txg = sds->sds_txg; 1178 return (sds != NULL); 1179 } 1180 1181 static void 1182 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1183 { 1184 scan_ds_t *sds; 1185 avl_index_t where; 1186 1187 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1188 sds->sds_dsobj = dsobj; 1189 sds->sds_txg = txg; 1190 1191 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1192 avl_insert(&scn->scn_queue, sds, where); 1193 } 1194 1195 static void 1196 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1197 { 1198 scan_ds_t srch, *sds; 1199 1200 srch.sds_dsobj = dsobj; 1201 1202 sds = avl_find(&scn->scn_queue, &srch, NULL); 1203 VERIFY(sds != NULL); 1204 avl_remove(&scn->scn_queue, sds); 1205 kmem_free(sds, sizeof (*sds)); 1206 } 1207 1208 static void 1209 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1210 { 1211 dsl_pool_t *dp = scn->scn_dp; 1212 spa_t *spa = dp->dp_spa; 1213 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1214 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1215 1216 ASSERT0(scn->scn_queues_pending); 1217 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1218 1219 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1220 scn->scn_phys.scn_queue_obj, tx)); 1221 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1222 DMU_OT_NONE, 0, tx); 1223 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1224 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1225 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1226 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1227 sds->sds_txg, tx)); 1228 } 1229 } 1230 1231 /* 1232 * Computes the memory limit state that we're currently in. A sorted scan 1233 * needs quite a bit of memory to hold the sorting queue, so we need to 1234 * reasonably constrain the size so it doesn't impact overall system 1235 * performance. We compute two limits: 1236 * 1) Hard memory limit: if the amount of memory used by the sorting 1237 * queues on a pool gets above this value, we stop the metadata 1238 * scanning portion and start issuing the queued up and sorted 1239 * I/Os to reduce memory usage. 1240 * This limit is calculated as a fraction of physmem (by default 5%). 1241 * We constrain the lower bound of the hard limit to an absolute 1242 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1243 * the upper bound to 5% of the total pool size - no chance we'll 1244 * ever need that much memory, but just to keep the value in check. 1245 * 2) Soft memory limit: once we hit the hard memory limit, we start 1246 * issuing I/O to reduce queue memory usage, but we don't want to 1247 * completely empty out the queues, since we might be able to find I/Os 1248 * that will fill in the gaps of our non-sequential IOs at some point 1249 * in the future. So we stop the issuing of I/Os once the amount of 1250 * memory used drops below the soft limit (at which point we stop issuing 1251 * I/O and start scanning metadata again). 1252 * 1253 * This limit is calculated by subtracting a fraction of the hard 1254 * limit from the hard limit. By default this fraction is 5%, so 1255 * the soft limit is 95% of the hard limit. We cap the size of the 1256 * difference between the hard and soft limits at an absolute 1257 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1258 * sufficient to not cause too frequent switching between the 1259 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1260 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1261 * that should take at least a decent fraction of a second). 1262 */ 1263 static boolean_t 1264 dsl_scan_should_clear(dsl_scan_t *scn) 1265 { 1266 spa_t *spa = scn->scn_dp->dp_spa; 1267 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1268 uint64_t alloc, mlim_hard, mlim_soft, mused; 1269 1270 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1271 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1272 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1273 1274 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1275 zfs_scan_mem_lim_min); 1276 mlim_hard = MIN(mlim_hard, alloc / 20); 1277 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1278 zfs_scan_mem_lim_soft_max); 1279 mused = 0; 1280 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1281 vdev_t *tvd = rvd->vdev_child[i]; 1282 dsl_scan_io_queue_t *queue; 1283 1284 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1285 queue = tvd->vdev_scan_io_queue; 1286 if (queue != NULL) { 1287 /* 1288 * # of extents in exts_by_addr = # in exts_by_size. 1289 * B-tree efficiency is ~75%, but can be as low as 50%. 1290 */ 1291 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1292 ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) * 1293 3 / 2) + queue->q_sio_memused; 1294 } 1295 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1296 } 1297 1298 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1299 1300 if (mused == 0) 1301 ASSERT0(scn->scn_queues_pending); 1302 1303 /* 1304 * If we are above our hard limit, we need to clear out memory. 1305 * If we are below our soft limit, we need to accumulate sequential IOs. 1306 * Otherwise, we should keep doing whatever we are currently doing. 1307 */ 1308 if (mused >= mlim_hard) 1309 return (B_TRUE); 1310 else if (mused < mlim_soft) 1311 return (B_FALSE); 1312 else 1313 return (scn->scn_clearing); 1314 } 1315 1316 static boolean_t 1317 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1318 { 1319 /* we never skip user/group accounting objects */ 1320 if (zb && (int64_t)zb->zb_object < 0) 1321 return (B_FALSE); 1322 1323 if (scn->scn_suspending) 1324 return (B_TRUE); /* we're already suspending */ 1325 1326 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1327 return (B_FALSE); /* we're resuming */ 1328 1329 /* We only know how to resume from level-0 and objset blocks. */ 1330 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1331 return (B_FALSE); 1332 1333 /* 1334 * We suspend if: 1335 * - we have scanned for at least the minimum time (default 1 sec 1336 * for scrub, 3 sec for resilver), and either we have sufficient 1337 * dirty data that we are starting to write more quickly 1338 * (default 30%), someone is explicitly waiting for this txg 1339 * to complete, or we have used up all of the time in the txg 1340 * timeout (default 5 sec). 1341 * or 1342 * - the spa is shutting down because this pool is being exported 1343 * or the machine is rebooting. 1344 * or 1345 * - the scan queue has reached its memory use limit 1346 */ 1347 uint64_t curr_time_ns = gethrtime(); 1348 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1349 uint64_t sync_time_ns = curr_time_ns - 1350 scn->scn_dp->dp_spa->spa_sync_starttime; 1351 uint64_t dirty_min_bytes = zfs_dirty_data_max * 1352 zfs_vdev_async_write_active_min_dirty_percent / 100; 1353 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1354 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1355 1356 if ((NSEC2MSEC(scan_time_ns) > mintime && 1357 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 1358 txg_sync_waiting(scn->scn_dp) || 1359 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1360 spa_shutting_down(scn->scn_dp->dp_spa) || 1361 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1362 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1363 dprintf("suspending at first available bookmark " 1364 "%llx/%llx/%llx/%llx\n", 1365 (longlong_t)zb->zb_objset, 1366 (longlong_t)zb->zb_object, 1367 (longlong_t)zb->zb_level, 1368 (longlong_t)zb->zb_blkid); 1369 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1370 zb->zb_objset, 0, 0, 0); 1371 } else if (zb != NULL) { 1372 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1373 (longlong_t)zb->zb_objset, 1374 (longlong_t)zb->zb_object, 1375 (longlong_t)zb->zb_level, 1376 (longlong_t)zb->zb_blkid); 1377 scn->scn_phys.scn_bookmark = *zb; 1378 } else { 1379 #ifdef ZFS_DEBUG 1380 dsl_scan_phys_t *scnp = &scn->scn_phys; 1381 dprintf("suspending at at DDT bookmark " 1382 "%llx/%llx/%llx/%llx\n", 1383 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1384 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1385 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1386 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1387 #endif 1388 } 1389 scn->scn_suspending = B_TRUE; 1390 return (B_TRUE); 1391 } 1392 return (B_FALSE); 1393 } 1394 1395 typedef struct zil_scan_arg { 1396 dsl_pool_t *zsa_dp; 1397 zil_header_t *zsa_zh; 1398 } zil_scan_arg_t; 1399 1400 static int 1401 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, 1402 uint64_t claim_txg) 1403 { 1404 (void) zilog; 1405 zil_scan_arg_t *zsa = arg; 1406 dsl_pool_t *dp = zsa->zsa_dp; 1407 dsl_scan_t *scn = dp->dp_scan; 1408 zil_header_t *zh = zsa->zsa_zh; 1409 zbookmark_phys_t zb; 1410 1411 ASSERT(!BP_IS_REDACTED(bp)); 1412 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1413 return (0); 1414 1415 /* 1416 * One block ("stubby") can be allocated a long time ago; we 1417 * want to visit that one because it has been allocated 1418 * (on-disk) even if it hasn't been claimed (even though for 1419 * scrub there's nothing to do to it). 1420 */ 1421 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1422 return (0); 1423 1424 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1425 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1426 1427 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1428 return (0); 1429 } 1430 1431 static int 1432 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, 1433 uint64_t claim_txg) 1434 { 1435 (void) zilog; 1436 if (lrc->lrc_txtype == TX_WRITE) { 1437 zil_scan_arg_t *zsa = arg; 1438 dsl_pool_t *dp = zsa->zsa_dp; 1439 dsl_scan_t *scn = dp->dp_scan; 1440 zil_header_t *zh = zsa->zsa_zh; 1441 const lr_write_t *lr = (const lr_write_t *)lrc; 1442 const blkptr_t *bp = &lr->lr_blkptr; 1443 zbookmark_phys_t zb; 1444 1445 ASSERT(!BP_IS_REDACTED(bp)); 1446 if (BP_IS_HOLE(bp) || 1447 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1448 return (0); 1449 1450 /* 1451 * birth can be < claim_txg if this record's txg is 1452 * already txg sync'ed (but this log block contains 1453 * other records that are not synced) 1454 */ 1455 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1456 return (0); 1457 1458 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1459 lr->lr_foid, ZB_ZIL_LEVEL, 1460 lr->lr_offset / BP_GET_LSIZE(bp)); 1461 1462 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1463 } 1464 return (0); 1465 } 1466 1467 static void 1468 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1469 { 1470 uint64_t claim_txg = zh->zh_claim_txg; 1471 zil_scan_arg_t zsa = { dp, zh }; 1472 zilog_t *zilog; 1473 1474 ASSERT(spa_writeable(dp->dp_spa)); 1475 1476 /* 1477 * We only want to visit blocks that have been claimed but not yet 1478 * replayed (or, in read-only mode, blocks that *would* be claimed). 1479 */ 1480 if (claim_txg == 0) 1481 return; 1482 1483 zilog = zil_alloc(dp->dp_meta_objset, zh); 1484 1485 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1486 claim_txg, B_FALSE); 1487 1488 zil_free(zilog); 1489 } 1490 1491 /* 1492 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1493 * here is to sort the AVL tree by the order each block will be needed. 1494 */ 1495 static int 1496 scan_prefetch_queue_compare(const void *a, const void *b) 1497 { 1498 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1499 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1500 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1501 1502 return (zbookmark_compare(spc_a->spc_datablkszsec, 1503 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1504 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1505 } 1506 1507 static void 1508 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag) 1509 { 1510 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1511 zfs_refcount_destroy(&spc->spc_refcnt); 1512 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1513 } 1514 } 1515 1516 static scan_prefetch_ctx_t * 1517 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag) 1518 { 1519 scan_prefetch_ctx_t *spc; 1520 1521 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1522 zfs_refcount_create(&spc->spc_refcnt); 1523 zfs_refcount_add(&spc->spc_refcnt, tag); 1524 spc->spc_scn = scn; 1525 if (dnp != NULL) { 1526 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1527 spc->spc_indblkshift = dnp->dn_indblkshift; 1528 spc->spc_root = B_FALSE; 1529 } else { 1530 spc->spc_datablkszsec = 0; 1531 spc->spc_indblkshift = 0; 1532 spc->spc_root = B_TRUE; 1533 } 1534 1535 return (spc); 1536 } 1537 1538 static void 1539 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag) 1540 { 1541 zfs_refcount_add(&spc->spc_refcnt, tag); 1542 } 1543 1544 static void 1545 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1546 { 1547 spa_t *spa = scn->scn_dp->dp_spa; 1548 void *cookie = NULL; 1549 scan_prefetch_issue_ctx_t *spic = NULL; 1550 1551 mutex_enter(&spa->spa_scrub_lock); 1552 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1553 &cookie)) != NULL) { 1554 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1555 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1556 } 1557 mutex_exit(&spa->spa_scrub_lock); 1558 } 1559 1560 static boolean_t 1561 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1562 const zbookmark_phys_t *zb) 1563 { 1564 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1565 dnode_phys_t tmp_dnp; 1566 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1567 1568 if (zb->zb_objset != last_zb->zb_objset) 1569 return (B_TRUE); 1570 if ((int64_t)zb->zb_object < 0) 1571 return (B_FALSE); 1572 1573 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1574 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1575 1576 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1577 return (B_TRUE); 1578 1579 return (B_FALSE); 1580 } 1581 1582 static void 1583 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1584 { 1585 avl_index_t idx; 1586 dsl_scan_t *scn = spc->spc_scn; 1587 spa_t *spa = scn->scn_dp->dp_spa; 1588 scan_prefetch_issue_ctx_t *spic; 1589 1590 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1591 return; 1592 1593 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1594 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1595 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1596 return; 1597 1598 if (dsl_scan_check_prefetch_resume(spc, zb)) 1599 return; 1600 1601 scan_prefetch_ctx_add_ref(spc, scn); 1602 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1603 spic->spic_spc = spc; 1604 spic->spic_bp = *bp; 1605 spic->spic_zb = *zb; 1606 1607 /* 1608 * Add the IO to the queue of blocks to prefetch. This allows us to 1609 * prioritize blocks that we will need first for the main traversal 1610 * thread. 1611 */ 1612 mutex_enter(&spa->spa_scrub_lock); 1613 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1614 /* this block is already queued for prefetch */ 1615 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1616 scan_prefetch_ctx_rele(spc, scn); 1617 mutex_exit(&spa->spa_scrub_lock); 1618 return; 1619 } 1620 1621 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1622 cv_broadcast(&spa->spa_scrub_io_cv); 1623 mutex_exit(&spa->spa_scrub_lock); 1624 } 1625 1626 static void 1627 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1628 uint64_t objset, uint64_t object) 1629 { 1630 int i; 1631 zbookmark_phys_t zb; 1632 scan_prefetch_ctx_t *spc; 1633 1634 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1635 return; 1636 1637 SET_BOOKMARK(&zb, objset, object, 0, 0); 1638 1639 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1640 1641 for (i = 0; i < dnp->dn_nblkptr; i++) { 1642 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1643 zb.zb_blkid = i; 1644 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1645 } 1646 1647 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1648 zb.zb_level = 0; 1649 zb.zb_blkid = DMU_SPILL_BLKID; 1650 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 1651 } 1652 1653 scan_prefetch_ctx_rele(spc, FTAG); 1654 } 1655 1656 static void 1657 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1658 arc_buf_t *buf, void *private) 1659 { 1660 (void) zio; 1661 scan_prefetch_ctx_t *spc = private; 1662 dsl_scan_t *scn = spc->spc_scn; 1663 spa_t *spa = scn->scn_dp->dp_spa; 1664 1665 /* broadcast that the IO has completed for rate limiting purposes */ 1666 mutex_enter(&spa->spa_scrub_lock); 1667 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1668 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1669 cv_broadcast(&spa->spa_scrub_io_cv); 1670 mutex_exit(&spa->spa_scrub_lock); 1671 1672 /* if there was an error or we are done prefetching, just cleanup */ 1673 if (buf == NULL || scn->scn_prefetch_stop) 1674 goto out; 1675 1676 if (BP_GET_LEVEL(bp) > 0) { 1677 int i; 1678 blkptr_t *cbp; 1679 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1680 zbookmark_phys_t czb; 1681 1682 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1683 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1684 zb->zb_level - 1, zb->zb_blkid * epb + i); 1685 dsl_scan_prefetch(spc, cbp, &czb); 1686 } 1687 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1688 dnode_phys_t *cdnp; 1689 int i; 1690 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1691 1692 for (i = 0, cdnp = buf->b_data; i < epb; 1693 i += cdnp->dn_extra_slots + 1, 1694 cdnp += cdnp->dn_extra_slots + 1) { 1695 dsl_scan_prefetch_dnode(scn, cdnp, 1696 zb->zb_objset, zb->zb_blkid * epb + i); 1697 } 1698 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1699 objset_phys_t *osp = buf->b_data; 1700 1701 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1702 zb->zb_objset, DMU_META_DNODE_OBJECT); 1703 1704 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1705 dsl_scan_prefetch_dnode(scn, 1706 &osp->os_groupused_dnode, zb->zb_objset, 1707 DMU_GROUPUSED_OBJECT); 1708 dsl_scan_prefetch_dnode(scn, 1709 &osp->os_userused_dnode, zb->zb_objset, 1710 DMU_USERUSED_OBJECT); 1711 } 1712 } 1713 1714 out: 1715 if (buf != NULL) 1716 arc_buf_destroy(buf, private); 1717 scan_prefetch_ctx_rele(spc, scn); 1718 } 1719 1720 static void 1721 dsl_scan_prefetch_thread(void *arg) 1722 { 1723 dsl_scan_t *scn = arg; 1724 spa_t *spa = scn->scn_dp->dp_spa; 1725 scan_prefetch_issue_ctx_t *spic; 1726 1727 /* loop until we are told to stop */ 1728 while (!scn->scn_prefetch_stop) { 1729 arc_flags_t flags = ARC_FLAG_NOWAIT | 1730 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1731 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1732 1733 mutex_enter(&spa->spa_scrub_lock); 1734 1735 /* 1736 * Wait until we have an IO to issue and are not above our 1737 * maximum in flight limit. 1738 */ 1739 while (!scn->scn_prefetch_stop && 1740 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1741 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1742 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1743 } 1744 1745 /* recheck if we should stop since we waited for the cv */ 1746 if (scn->scn_prefetch_stop) { 1747 mutex_exit(&spa->spa_scrub_lock); 1748 break; 1749 } 1750 1751 /* remove the prefetch IO from the tree */ 1752 spic = avl_first(&scn->scn_prefetch_queue); 1753 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1754 avl_remove(&scn->scn_prefetch_queue, spic); 1755 1756 mutex_exit(&spa->spa_scrub_lock); 1757 1758 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1759 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1760 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1761 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1762 zio_flags |= ZIO_FLAG_RAW; 1763 } 1764 1765 /* issue the prefetch asynchronously */ 1766 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1767 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1768 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1769 1770 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1771 } 1772 1773 ASSERT(scn->scn_prefetch_stop); 1774 1775 /* free any prefetches we didn't get to complete */ 1776 mutex_enter(&spa->spa_scrub_lock); 1777 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1778 avl_remove(&scn->scn_prefetch_queue, spic); 1779 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1780 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1781 } 1782 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1783 mutex_exit(&spa->spa_scrub_lock); 1784 } 1785 1786 static boolean_t 1787 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1788 const zbookmark_phys_t *zb) 1789 { 1790 /* 1791 * We never skip over user/group accounting objects (obj<0) 1792 */ 1793 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1794 (int64_t)zb->zb_object >= 0) { 1795 /* 1796 * If we already visited this bp & everything below (in 1797 * a prior txg sync), don't bother doing it again. 1798 */ 1799 if (zbookmark_subtree_completed(dnp, zb, 1800 &scn->scn_phys.scn_bookmark)) 1801 return (B_TRUE); 1802 1803 /* 1804 * If we found the block we're trying to resume from, or 1805 * we went past it to a different object, zero it out to 1806 * indicate that it's OK to start checking for suspending 1807 * again. 1808 */ 1809 if (memcmp(zb, &scn->scn_phys.scn_bookmark, 1810 sizeof (*zb)) == 0 || 1811 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1812 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1813 (longlong_t)zb->zb_objset, 1814 (longlong_t)zb->zb_object, 1815 (longlong_t)zb->zb_level, 1816 (longlong_t)zb->zb_blkid); 1817 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb)); 1818 } 1819 } 1820 return (B_FALSE); 1821 } 1822 1823 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1824 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1825 dmu_objset_type_t ostype, dmu_tx_t *tx); 1826 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 1827 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1828 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1829 1830 /* 1831 * Return nonzero on i/o error. 1832 * Return new buf to write out in *bufp. 1833 */ 1834 inline __attribute__((always_inline)) static int 1835 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1836 dnode_phys_t *dnp, const blkptr_t *bp, 1837 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1838 { 1839 dsl_pool_t *dp = scn->scn_dp; 1840 spa_t *spa = dp->dp_spa; 1841 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1842 int err; 1843 1844 ASSERT(!BP_IS_REDACTED(bp)); 1845 1846 /* 1847 * There is an unlikely case of encountering dnodes with contradicting 1848 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created 1849 * or modified before commit 4254acb was merged. As it is not possible 1850 * to know which of the two is correct, report an error. 1851 */ 1852 if (dnp != NULL && 1853 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) { 1854 scn->scn_phys.scn_errors++; 1855 spa_log_error(spa, zb); 1856 return (SET_ERROR(EINVAL)); 1857 } 1858 1859 if (BP_GET_LEVEL(bp) > 0) { 1860 arc_flags_t flags = ARC_FLAG_WAIT; 1861 int i; 1862 blkptr_t *cbp; 1863 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1864 arc_buf_t *buf; 1865 1866 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 1867 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1868 if (err) { 1869 scn->scn_phys.scn_errors++; 1870 return (err); 1871 } 1872 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1873 zbookmark_phys_t czb; 1874 1875 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1876 zb->zb_level - 1, 1877 zb->zb_blkid * epb + i); 1878 dsl_scan_visitbp(cbp, &czb, dnp, 1879 ds, scn, ostype, tx); 1880 } 1881 arc_buf_destroy(buf, &buf); 1882 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1883 arc_flags_t flags = ARC_FLAG_WAIT; 1884 dnode_phys_t *cdnp; 1885 int i; 1886 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1887 arc_buf_t *buf; 1888 1889 if (BP_IS_PROTECTED(bp)) { 1890 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1891 zio_flags |= ZIO_FLAG_RAW; 1892 } 1893 1894 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 1895 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1896 if (err) { 1897 scn->scn_phys.scn_errors++; 1898 return (err); 1899 } 1900 for (i = 0, cdnp = buf->b_data; i < epb; 1901 i += cdnp->dn_extra_slots + 1, 1902 cdnp += cdnp->dn_extra_slots + 1) { 1903 dsl_scan_visitdnode(scn, ds, ostype, 1904 cdnp, zb->zb_blkid * epb + i, tx); 1905 } 1906 1907 arc_buf_destroy(buf, &buf); 1908 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1909 arc_flags_t flags = ARC_FLAG_WAIT; 1910 objset_phys_t *osp; 1911 arc_buf_t *buf; 1912 1913 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 1914 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1915 if (err) { 1916 scn->scn_phys.scn_errors++; 1917 return (err); 1918 } 1919 1920 osp = buf->b_data; 1921 1922 dsl_scan_visitdnode(scn, ds, osp->os_type, 1923 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1924 1925 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1926 /* 1927 * We also always visit user/group/project accounting 1928 * objects, and never skip them, even if we are 1929 * suspending. This is necessary so that the 1930 * space deltas from this txg get integrated. 1931 */ 1932 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1933 dsl_scan_visitdnode(scn, ds, osp->os_type, 1934 &osp->os_projectused_dnode, 1935 DMU_PROJECTUSED_OBJECT, tx); 1936 dsl_scan_visitdnode(scn, ds, osp->os_type, 1937 &osp->os_groupused_dnode, 1938 DMU_GROUPUSED_OBJECT, tx); 1939 dsl_scan_visitdnode(scn, ds, osp->os_type, 1940 &osp->os_userused_dnode, 1941 DMU_USERUSED_OBJECT, tx); 1942 } 1943 arc_buf_destroy(buf, &buf); 1944 } else if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) { 1945 /* 1946 * Sanity check the block pointer contents, this is handled 1947 * by arc_read() for the cases above. 1948 */ 1949 scn->scn_phys.scn_errors++; 1950 spa_log_error(spa, zb); 1951 return (SET_ERROR(EINVAL)); 1952 } 1953 1954 return (0); 1955 } 1956 1957 inline __attribute__((always_inline)) static void 1958 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1959 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1960 uint64_t object, dmu_tx_t *tx) 1961 { 1962 int j; 1963 1964 for (j = 0; j < dnp->dn_nblkptr; j++) { 1965 zbookmark_phys_t czb; 1966 1967 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1968 dnp->dn_nlevels - 1, j); 1969 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1970 &czb, dnp, ds, scn, ostype, tx); 1971 } 1972 1973 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1974 zbookmark_phys_t czb; 1975 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1976 0, DMU_SPILL_BLKID); 1977 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1978 &czb, dnp, ds, scn, ostype, tx); 1979 } 1980 } 1981 1982 /* 1983 * The arguments are in this order because mdb can only print the 1984 * first 5; we want them to be useful. 1985 */ 1986 static void 1987 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1988 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1989 dmu_objset_type_t ostype, dmu_tx_t *tx) 1990 { 1991 dsl_pool_t *dp = scn->scn_dp; 1992 blkptr_t *bp_toread = NULL; 1993 1994 if (dsl_scan_check_suspend(scn, zb)) 1995 return; 1996 1997 if (dsl_scan_check_resume(scn, dnp, zb)) 1998 return; 1999 2000 scn->scn_visited_this_txg++; 2001 2002 if (BP_IS_HOLE(bp)) { 2003 scn->scn_holes_this_txg++; 2004 return; 2005 } 2006 2007 if (BP_IS_REDACTED(bp)) { 2008 ASSERT(dsl_dataset_feature_is_active(ds, 2009 SPA_FEATURE_REDACTED_DATASETS)); 2010 return; 2011 } 2012 2013 /* 2014 * Check if this block contradicts any filesystem flags. 2015 */ 2016 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS; 2017 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE) 2018 ASSERT3B(dsl_dataset_feature_is_active(ds, f), ==, B_TRUE); 2019 2020 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp)); 2021 if (f != SPA_FEATURE_NONE) 2022 ASSERT3B(dsl_dataset_feature_is_active(ds, f), ==, B_TRUE); 2023 2024 f = zio_compress_to_feature(BP_GET_COMPRESS(bp)); 2025 if (f != SPA_FEATURE_NONE) 2026 ASSERT3B(dsl_dataset_feature_is_active(ds, f), ==, B_TRUE); 2027 2028 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 2029 scn->scn_lt_min_this_txg++; 2030 return; 2031 } 2032 2033 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 2034 *bp_toread = *bp; 2035 2036 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 2037 goto out; 2038 2039 /* 2040 * If dsl_scan_ddt() has already visited this block, it will have 2041 * already done any translations or scrubbing, so don't call the 2042 * callback again. 2043 */ 2044 if (ddt_class_contains(dp->dp_spa, 2045 scn->scn_phys.scn_ddt_class_max, bp)) { 2046 scn->scn_ddt_contained_this_txg++; 2047 goto out; 2048 } 2049 2050 /* 2051 * If this block is from the future (after cur_max_txg), then we 2052 * are doing this on behalf of a deleted snapshot, and we will 2053 * revisit the future block on the next pass of this dataset. 2054 * Don't scan it now unless we need to because something 2055 * under it was modified. 2056 */ 2057 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2058 scn->scn_gt_max_this_txg++; 2059 goto out; 2060 } 2061 2062 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2063 2064 out: 2065 kmem_free(bp_toread, sizeof (blkptr_t)); 2066 } 2067 2068 static void 2069 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2070 dmu_tx_t *tx) 2071 { 2072 zbookmark_phys_t zb; 2073 scan_prefetch_ctx_t *spc; 2074 2075 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2076 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2077 2078 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2079 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2080 zb.zb_objset, 0, 0, 0); 2081 } else { 2082 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2083 } 2084 2085 scn->scn_objsets_visited_this_txg++; 2086 2087 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2088 dsl_scan_prefetch(spc, bp, &zb); 2089 scan_prefetch_ctx_rele(spc, FTAG); 2090 2091 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2092 2093 dprintf_ds(ds, "finished scan%s", ""); 2094 } 2095 2096 static void 2097 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2098 { 2099 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2100 if (ds->ds_is_snapshot) { 2101 /* 2102 * Note: 2103 * - scn_cur_{min,max}_txg stays the same. 2104 * - Setting the flag is not really necessary if 2105 * scn_cur_max_txg == scn_max_txg, because there 2106 * is nothing after this snapshot that we care 2107 * about. However, we set it anyway and then 2108 * ignore it when we retraverse it in 2109 * dsl_scan_visitds(). 2110 */ 2111 scn_phys->scn_bookmark.zb_objset = 2112 dsl_dataset_phys(ds)->ds_next_snap_obj; 2113 zfs_dbgmsg("destroying ds %llu on %s; currently " 2114 "traversing; reset zb_objset to %llu", 2115 (u_longlong_t)ds->ds_object, 2116 ds->ds_dir->dd_pool->dp_spa->spa_name, 2117 (u_longlong_t)dsl_dataset_phys(ds)-> 2118 ds_next_snap_obj); 2119 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2120 } else { 2121 SET_BOOKMARK(&scn_phys->scn_bookmark, 2122 ZB_DESTROYED_OBJSET, 0, 0, 0); 2123 zfs_dbgmsg("destroying ds %llu on %s; currently " 2124 "traversing; reset bookmark to -1,0,0,0", 2125 (u_longlong_t)ds->ds_object, 2126 ds->ds_dir->dd_pool->dp_spa->spa_name); 2127 } 2128 } 2129 } 2130 2131 /* 2132 * Invoked when a dataset is destroyed. We need to make sure that: 2133 * 2134 * 1) If it is the dataset that was currently being scanned, we write 2135 * a new dsl_scan_phys_t and marking the objset reference in it 2136 * as destroyed. 2137 * 2) Remove it from the work queue, if it was present. 2138 * 2139 * If the dataset was actually a snapshot, instead of marking the dataset 2140 * as destroyed, we instead substitute the next snapshot in line. 2141 */ 2142 void 2143 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2144 { 2145 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2146 dsl_scan_t *scn = dp->dp_scan; 2147 uint64_t mintxg; 2148 2149 if (!dsl_scan_is_running(scn)) 2150 return; 2151 2152 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2153 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2154 2155 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2156 scan_ds_queue_remove(scn, ds->ds_object); 2157 if (ds->ds_is_snapshot) 2158 scan_ds_queue_insert(scn, 2159 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2160 } 2161 2162 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2163 ds->ds_object, &mintxg) == 0) { 2164 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2165 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2166 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2167 if (ds->ds_is_snapshot) { 2168 /* 2169 * We keep the same mintxg; it could be > 2170 * ds_creation_txg if the previous snapshot was 2171 * deleted too. 2172 */ 2173 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2174 scn->scn_phys.scn_queue_obj, 2175 dsl_dataset_phys(ds)->ds_next_snap_obj, 2176 mintxg, tx) == 0); 2177 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2178 "replacing with %llu", 2179 (u_longlong_t)ds->ds_object, 2180 dp->dp_spa->spa_name, 2181 (u_longlong_t)dsl_dataset_phys(ds)-> 2182 ds_next_snap_obj); 2183 } else { 2184 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2185 "removing", 2186 (u_longlong_t)ds->ds_object, 2187 dp->dp_spa->spa_name); 2188 } 2189 } 2190 2191 /* 2192 * dsl_scan_sync() should be called after this, and should sync 2193 * out our changed state, but just to be safe, do it here. 2194 */ 2195 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2196 } 2197 2198 static void 2199 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2200 { 2201 if (scn_bookmark->zb_objset == ds->ds_object) { 2202 scn_bookmark->zb_objset = 2203 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2204 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; " 2205 "reset zb_objset to %llu", 2206 (u_longlong_t)ds->ds_object, 2207 ds->ds_dir->dd_pool->dp_spa->spa_name, 2208 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2209 } 2210 } 2211 2212 /* 2213 * Called when a dataset is snapshotted. If we were currently traversing 2214 * this snapshot, we reset our bookmark to point at the newly created 2215 * snapshot. We also modify our work queue to remove the old snapshot and 2216 * replace with the new one. 2217 */ 2218 void 2219 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2220 { 2221 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2222 dsl_scan_t *scn = dp->dp_scan; 2223 uint64_t mintxg; 2224 2225 if (!dsl_scan_is_running(scn)) 2226 return; 2227 2228 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2229 2230 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2231 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2232 2233 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2234 scan_ds_queue_remove(scn, ds->ds_object); 2235 scan_ds_queue_insert(scn, 2236 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2237 } 2238 2239 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2240 ds->ds_object, &mintxg) == 0) { 2241 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2242 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2243 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2244 scn->scn_phys.scn_queue_obj, 2245 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2246 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; " 2247 "replacing with %llu", 2248 (u_longlong_t)ds->ds_object, 2249 dp->dp_spa->spa_name, 2250 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2251 } 2252 2253 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2254 } 2255 2256 static void 2257 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2258 zbookmark_phys_t *scn_bookmark) 2259 { 2260 if (scn_bookmark->zb_objset == ds1->ds_object) { 2261 scn_bookmark->zb_objset = ds2->ds_object; 2262 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2263 "reset zb_objset to %llu", 2264 (u_longlong_t)ds1->ds_object, 2265 ds1->ds_dir->dd_pool->dp_spa->spa_name, 2266 (u_longlong_t)ds2->ds_object); 2267 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2268 scn_bookmark->zb_objset = ds1->ds_object; 2269 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2270 "reset zb_objset to %llu", 2271 (u_longlong_t)ds2->ds_object, 2272 ds2->ds_dir->dd_pool->dp_spa->spa_name, 2273 (u_longlong_t)ds1->ds_object); 2274 } 2275 } 2276 2277 /* 2278 * Called when an origin dataset and its clone are swapped. If we were 2279 * currently traversing the dataset, we need to switch to traversing the 2280 * newly promoted clone. 2281 */ 2282 void 2283 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2284 { 2285 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2286 dsl_scan_t *scn = dp->dp_scan; 2287 uint64_t mintxg1, mintxg2; 2288 boolean_t ds1_queued, ds2_queued; 2289 2290 if (!dsl_scan_is_running(scn)) 2291 return; 2292 2293 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2294 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2295 2296 /* 2297 * Handle the in-memory scan queue. 2298 */ 2299 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2300 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2301 2302 /* Sanity checking. */ 2303 if (ds1_queued) { 2304 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2305 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2306 } 2307 if (ds2_queued) { 2308 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2309 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2310 } 2311 2312 if (ds1_queued && ds2_queued) { 2313 /* 2314 * If both are queued, we don't need to do anything. 2315 * The swapping code below would not handle this case correctly, 2316 * since we can't insert ds2 if it is already there. That's 2317 * because scan_ds_queue_insert() prohibits a duplicate insert 2318 * and panics. 2319 */ 2320 } else if (ds1_queued) { 2321 scan_ds_queue_remove(scn, ds1->ds_object); 2322 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2323 } else if (ds2_queued) { 2324 scan_ds_queue_remove(scn, ds2->ds_object); 2325 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2326 } 2327 2328 /* 2329 * Handle the on-disk scan queue. 2330 * The on-disk state is an out-of-date version of the in-memory state, 2331 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2332 * be different. Therefore we need to apply the swap logic to the 2333 * on-disk state independently of the in-memory state. 2334 */ 2335 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2336 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2337 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2338 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2339 2340 /* Sanity checking. */ 2341 if (ds1_queued) { 2342 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2343 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2344 } 2345 if (ds2_queued) { 2346 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2347 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2348 } 2349 2350 if (ds1_queued && ds2_queued) { 2351 /* 2352 * If both are queued, we don't need to do anything. 2353 * Alternatively, we could check for EEXIST from 2354 * zap_add_int_key() and back out to the original state, but 2355 * that would be more work than checking for this case upfront. 2356 */ 2357 } else if (ds1_queued) { 2358 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2359 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2360 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2361 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2362 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2363 "replacing with %llu", 2364 (u_longlong_t)ds1->ds_object, 2365 dp->dp_spa->spa_name, 2366 (u_longlong_t)ds2->ds_object); 2367 } else if (ds2_queued) { 2368 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2369 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2370 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2371 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2372 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2373 "replacing with %llu", 2374 (u_longlong_t)ds2->ds_object, 2375 dp->dp_spa->spa_name, 2376 (u_longlong_t)ds1->ds_object); 2377 } 2378 2379 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2380 } 2381 2382 static int 2383 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2384 { 2385 uint64_t originobj = *(uint64_t *)arg; 2386 dsl_dataset_t *ds; 2387 int err; 2388 dsl_scan_t *scn = dp->dp_scan; 2389 2390 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2391 return (0); 2392 2393 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2394 if (err) 2395 return (err); 2396 2397 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2398 dsl_dataset_t *prev; 2399 err = dsl_dataset_hold_obj(dp, 2400 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2401 2402 dsl_dataset_rele(ds, FTAG); 2403 if (err) 2404 return (err); 2405 ds = prev; 2406 } 2407 scan_ds_queue_insert(scn, ds->ds_object, 2408 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2409 dsl_dataset_rele(ds, FTAG); 2410 return (0); 2411 } 2412 2413 static void 2414 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2415 { 2416 dsl_pool_t *dp = scn->scn_dp; 2417 dsl_dataset_t *ds; 2418 2419 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2420 2421 if (scn->scn_phys.scn_cur_min_txg >= 2422 scn->scn_phys.scn_max_txg) { 2423 /* 2424 * This can happen if this snapshot was created after the 2425 * scan started, and we already completed a previous snapshot 2426 * that was created after the scan started. This snapshot 2427 * only references blocks with: 2428 * 2429 * birth < our ds_creation_txg 2430 * cur_min_txg is no less than ds_creation_txg. 2431 * We have already visited these blocks. 2432 * or 2433 * birth > scn_max_txg 2434 * The scan requested not to visit these blocks. 2435 * 2436 * Subsequent snapshots (and clones) can reference our 2437 * blocks, or blocks with even higher birth times. 2438 * Therefore we do not need to visit them either, 2439 * so we do not add them to the work queue. 2440 * 2441 * Note that checking for cur_min_txg >= cur_max_txg 2442 * is not sufficient, because in that case we may need to 2443 * visit subsequent snapshots. This happens when min_txg > 0, 2444 * which raises cur_min_txg. In this case we will visit 2445 * this dataset but skip all of its blocks, because the 2446 * rootbp's birth time is < cur_min_txg. Then we will 2447 * add the next snapshots/clones to the work queue. 2448 */ 2449 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2450 dsl_dataset_name(ds, dsname); 2451 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2452 "cur_min_txg (%llu) >= max_txg (%llu)", 2453 (longlong_t)dsobj, dsname, 2454 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2455 (longlong_t)scn->scn_phys.scn_max_txg); 2456 kmem_free(dsname, MAXNAMELEN); 2457 2458 goto out; 2459 } 2460 2461 /* 2462 * Only the ZIL in the head (non-snapshot) is valid. Even though 2463 * snapshots can have ZIL block pointers (which may be the same 2464 * BP as in the head), they must be ignored. In addition, $ORIGIN 2465 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2466 * need to look for a ZIL in it either. So we traverse the ZIL here, 2467 * rather than in scan_recurse(), because the regular snapshot 2468 * block-sharing rules don't apply to it. 2469 */ 2470 if (!dsl_dataset_is_snapshot(ds) && 2471 (dp->dp_origin_snap == NULL || 2472 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2473 objset_t *os; 2474 if (dmu_objset_from_ds(ds, &os) != 0) { 2475 goto out; 2476 } 2477 dsl_scan_zil(dp, &os->os_zil_header); 2478 } 2479 2480 /* 2481 * Iterate over the bps in this ds. 2482 */ 2483 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2484 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2485 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2486 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2487 2488 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2489 dsl_dataset_name(ds, dsname); 2490 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2491 "suspending=%u", 2492 (longlong_t)dsobj, dsname, 2493 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2494 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2495 (int)scn->scn_suspending); 2496 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2497 2498 if (scn->scn_suspending) 2499 goto out; 2500 2501 /* 2502 * We've finished this pass over this dataset. 2503 */ 2504 2505 /* 2506 * If we did not completely visit this dataset, do another pass. 2507 */ 2508 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2509 zfs_dbgmsg("incomplete pass on %s; visiting again", 2510 dp->dp_spa->spa_name); 2511 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2512 scan_ds_queue_insert(scn, ds->ds_object, 2513 scn->scn_phys.scn_cur_max_txg); 2514 goto out; 2515 } 2516 2517 /* 2518 * Add descendant datasets to work queue. 2519 */ 2520 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2521 scan_ds_queue_insert(scn, 2522 dsl_dataset_phys(ds)->ds_next_snap_obj, 2523 dsl_dataset_phys(ds)->ds_creation_txg); 2524 } 2525 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2526 boolean_t usenext = B_FALSE; 2527 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2528 uint64_t count; 2529 /* 2530 * A bug in a previous version of the code could 2531 * cause upgrade_clones_cb() to not set 2532 * ds_next_snap_obj when it should, leading to a 2533 * missing entry. Therefore we can only use the 2534 * next_clones_obj when its count is correct. 2535 */ 2536 int err = zap_count(dp->dp_meta_objset, 2537 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2538 if (err == 0 && 2539 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2540 usenext = B_TRUE; 2541 } 2542 2543 if (usenext) { 2544 zap_cursor_t zc; 2545 zap_attribute_t za; 2546 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2547 dsl_dataset_phys(ds)->ds_next_clones_obj); 2548 zap_cursor_retrieve(&zc, &za) == 0; 2549 (void) zap_cursor_advance(&zc)) { 2550 scan_ds_queue_insert(scn, 2551 zfs_strtonum(za.za_name, NULL), 2552 dsl_dataset_phys(ds)->ds_creation_txg); 2553 } 2554 zap_cursor_fini(&zc); 2555 } else { 2556 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2557 enqueue_clones_cb, &ds->ds_object, 2558 DS_FIND_CHILDREN)); 2559 } 2560 } 2561 2562 out: 2563 dsl_dataset_rele(ds, FTAG); 2564 } 2565 2566 static int 2567 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2568 { 2569 (void) arg; 2570 dsl_dataset_t *ds; 2571 int err; 2572 dsl_scan_t *scn = dp->dp_scan; 2573 2574 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2575 if (err) 2576 return (err); 2577 2578 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2579 dsl_dataset_t *prev; 2580 err = dsl_dataset_hold_obj(dp, 2581 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2582 if (err) { 2583 dsl_dataset_rele(ds, FTAG); 2584 return (err); 2585 } 2586 2587 /* 2588 * If this is a clone, we don't need to worry about it for now. 2589 */ 2590 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2591 dsl_dataset_rele(ds, FTAG); 2592 dsl_dataset_rele(prev, FTAG); 2593 return (0); 2594 } 2595 dsl_dataset_rele(ds, FTAG); 2596 ds = prev; 2597 } 2598 2599 scan_ds_queue_insert(scn, ds->ds_object, 2600 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2601 dsl_dataset_rele(ds, FTAG); 2602 return (0); 2603 } 2604 2605 void 2606 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2607 ddt_entry_t *dde, dmu_tx_t *tx) 2608 { 2609 (void) tx; 2610 const ddt_key_t *ddk = &dde->dde_key; 2611 ddt_phys_t *ddp = dde->dde_phys; 2612 blkptr_t bp; 2613 zbookmark_phys_t zb = { 0 }; 2614 2615 if (!dsl_scan_is_running(scn)) 2616 return; 2617 2618 /* 2619 * This function is special because it is the only thing 2620 * that can add scan_io_t's to the vdev scan queues from 2621 * outside dsl_scan_sync(). For the most part this is ok 2622 * as long as it is called from within syncing context. 2623 * However, dsl_scan_sync() expects that no new sio's will 2624 * be added between when all the work for a scan is done 2625 * and the next txg when the scan is actually marked as 2626 * completed. This check ensures we do not issue new sio's 2627 * during this period. 2628 */ 2629 if (scn->scn_done_txg != 0) 2630 return; 2631 2632 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2633 if (ddp->ddp_phys_birth == 0 || 2634 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2635 continue; 2636 ddt_bp_create(checksum, ddk, ddp, &bp); 2637 2638 scn->scn_visited_this_txg++; 2639 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2640 } 2641 } 2642 2643 /* 2644 * Scrub/dedup interaction. 2645 * 2646 * If there are N references to a deduped block, we don't want to scrub it 2647 * N times -- ideally, we should scrub it exactly once. 2648 * 2649 * We leverage the fact that the dde's replication class (enum ddt_class) 2650 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2651 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2652 * 2653 * To prevent excess scrubbing, the scrub begins by walking the DDT 2654 * to find all blocks with refcnt > 1, and scrubs each of these once. 2655 * Since there are two replication classes which contain blocks with 2656 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2657 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2658 * 2659 * There would be nothing more to say if a block's refcnt couldn't change 2660 * during a scrub, but of course it can so we must account for changes 2661 * in a block's replication class. 2662 * 2663 * Here's an example of what can occur: 2664 * 2665 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2666 * when visited during the top-down scrub phase, it will be scrubbed twice. 2667 * This negates our scrub optimization, but is otherwise harmless. 2668 * 2669 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2670 * on each visit during the top-down scrub phase, it will never be scrubbed. 2671 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2672 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2673 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2674 * while a scrub is in progress, it scrubs the block right then. 2675 */ 2676 static void 2677 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2678 { 2679 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2680 ddt_entry_t dde = {{{{0}}}}; 2681 int error; 2682 uint64_t n = 0; 2683 2684 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2685 ddt_t *ddt; 2686 2687 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2688 break; 2689 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2690 (longlong_t)ddb->ddb_class, 2691 (longlong_t)ddb->ddb_type, 2692 (longlong_t)ddb->ddb_checksum, 2693 (longlong_t)ddb->ddb_cursor); 2694 2695 /* There should be no pending changes to the dedup table */ 2696 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2697 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2698 2699 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2700 n++; 2701 2702 if (dsl_scan_check_suspend(scn, NULL)) 2703 break; 2704 } 2705 2706 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; " 2707 "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name, 2708 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2709 2710 ASSERT(error == 0 || error == ENOENT); 2711 ASSERT(error != ENOENT || 2712 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2713 } 2714 2715 static uint64_t 2716 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2717 { 2718 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2719 if (ds->ds_is_snapshot) 2720 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2721 return (smt); 2722 } 2723 2724 static void 2725 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2726 { 2727 scan_ds_t *sds; 2728 dsl_pool_t *dp = scn->scn_dp; 2729 2730 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2731 scn->scn_phys.scn_ddt_class_max) { 2732 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2733 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2734 dsl_scan_ddt(scn, tx); 2735 if (scn->scn_suspending) 2736 return; 2737 } 2738 2739 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2740 /* First do the MOS & ORIGIN */ 2741 2742 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2743 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2744 dsl_scan_visit_rootbp(scn, NULL, 2745 &dp->dp_meta_rootbp, tx); 2746 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2747 if (scn->scn_suspending) 2748 return; 2749 2750 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2751 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2752 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2753 } else { 2754 dsl_scan_visitds(scn, 2755 dp->dp_origin_snap->ds_object, tx); 2756 } 2757 ASSERT(!scn->scn_suspending); 2758 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2759 ZB_DESTROYED_OBJSET) { 2760 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2761 /* 2762 * If we were suspended, continue from here. Note if the 2763 * ds we were suspended on was deleted, the zb_objset may 2764 * be -1, so we will skip this and find a new objset 2765 * below. 2766 */ 2767 dsl_scan_visitds(scn, dsobj, tx); 2768 if (scn->scn_suspending) 2769 return; 2770 } 2771 2772 /* 2773 * In case we suspended right at the end of the ds, zero the 2774 * bookmark so we don't think that we're still trying to resume. 2775 */ 2776 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t)); 2777 2778 /* 2779 * Keep pulling things out of the dataset avl queue. Updates to the 2780 * persistent zap-object-as-queue happen only at checkpoints. 2781 */ 2782 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2783 dsl_dataset_t *ds; 2784 uint64_t dsobj = sds->sds_dsobj; 2785 uint64_t txg = sds->sds_txg; 2786 2787 /* dequeue and free the ds from the queue */ 2788 scan_ds_queue_remove(scn, dsobj); 2789 sds = NULL; 2790 2791 /* set up min / max txg */ 2792 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2793 if (txg != 0) { 2794 scn->scn_phys.scn_cur_min_txg = 2795 MAX(scn->scn_phys.scn_min_txg, txg); 2796 } else { 2797 scn->scn_phys.scn_cur_min_txg = 2798 MAX(scn->scn_phys.scn_min_txg, 2799 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2800 } 2801 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2802 dsl_dataset_rele(ds, FTAG); 2803 2804 dsl_scan_visitds(scn, dsobj, tx); 2805 if (scn->scn_suspending) 2806 return; 2807 } 2808 2809 /* No more objsets to fetch, we're done */ 2810 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2811 ASSERT0(scn->scn_suspending); 2812 } 2813 2814 static uint64_t 2815 dsl_scan_count_data_disks(vdev_t *rvd) 2816 { 2817 uint64_t i, leaves = 0; 2818 2819 for (i = 0; i < rvd->vdev_children; i++) { 2820 vdev_t *vd = rvd->vdev_child[i]; 2821 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache) 2822 continue; 2823 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd); 2824 } 2825 return (leaves); 2826 } 2827 2828 static void 2829 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2830 { 2831 int i; 2832 uint64_t cur_size = 0; 2833 2834 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2835 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2836 } 2837 2838 q->q_total_zio_size_this_txg += cur_size; 2839 q->q_zios_this_txg++; 2840 } 2841 2842 static void 2843 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2844 uint64_t end) 2845 { 2846 q->q_total_seg_size_this_txg += end - start; 2847 q->q_segs_this_txg++; 2848 } 2849 2850 static boolean_t 2851 scan_io_queue_check_suspend(dsl_scan_t *scn) 2852 { 2853 /* See comment in dsl_scan_check_suspend() */ 2854 uint64_t curr_time_ns = gethrtime(); 2855 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2856 uint64_t sync_time_ns = curr_time_ns - 2857 scn->scn_dp->dp_spa->spa_sync_starttime; 2858 uint64_t dirty_min_bytes = zfs_dirty_data_max * 2859 zfs_vdev_async_write_active_min_dirty_percent / 100; 2860 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2861 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2862 2863 return ((NSEC2MSEC(scan_time_ns) > mintime && 2864 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 2865 txg_sync_waiting(scn->scn_dp) || 2866 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2867 spa_shutting_down(scn->scn_dp->dp_spa)); 2868 } 2869 2870 /* 2871 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 2872 * disk. This consumes the io_list and frees the scan_io_t's. This is 2873 * called when emptying queues, either when we're up against the memory 2874 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2875 * processing the list before we finished. Any sios that were not issued 2876 * will remain in the io_list. 2877 */ 2878 static boolean_t 2879 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2880 { 2881 dsl_scan_t *scn = queue->q_scn; 2882 scan_io_t *sio; 2883 boolean_t suspended = B_FALSE; 2884 2885 while ((sio = list_head(io_list)) != NULL) { 2886 blkptr_t bp; 2887 2888 if (scan_io_queue_check_suspend(scn)) { 2889 suspended = B_TRUE; 2890 break; 2891 } 2892 2893 sio2bp(sio, &bp); 2894 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2895 &sio->sio_zb, queue); 2896 (void) list_remove_head(io_list); 2897 scan_io_queues_update_zio_stats(queue, &bp); 2898 sio_free(sio); 2899 } 2900 return (suspended); 2901 } 2902 2903 /* 2904 * This function removes sios from an IO queue which reside within a given 2905 * range_seg_t and inserts them (in offset order) into a list. Note that 2906 * we only ever return a maximum of 32 sios at once. If there are more sios 2907 * to process within this segment that did not make it onto the list we 2908 * return B_TRUE and otherwise B_FALSE. 2909 */ 2910 static boolean_t 2911 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2912 { 2913 scan_io_t *srch_sio, *sio, *next_sio; 2914 avl_index_t idx; 2915 uint_t num_sios = 0; 2916 int64_t bytes_issued = 0; 2917 2918 ASSERT(rs != NULL); 2919 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2920 2921 srch_sio = sio_alloc(1); 2922 srch_sio->sio_nr_dvas = 1; 2923 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2924 2925 /* 2926 * The exact start of the extent might not contain any matching zios, 2927 * so if that's the case, examine the next one in the tree. 2928 */ 2929 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2930 sio_free(srch_sio); 2931 2932 if (sio == NULL) 2933 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2934 2935 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2936 queue->q_exts_by_addr) && num_sios <= 32) { 2937 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2938 queue->q_exts_by_addr)); 2939 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2940 queue->q_exts_by_addr)); 2941 2942 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2943 avl_remove(&queue->q_sios_by_addr, sio); 2944 if (avl_is_empty(&queue->q_sios_by_addr)) 2945 atomic_add_64(&queue->q_scn->scn_queues_pending, -1); 2946 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2947 2948 bytes_issued += SIO_GET_ASIZE(sio); 2949 num_sios++; 2950 list_insert_tail(list, sio); 2951 sio = next_sio; 2952 } 2953 2954 /* 2955 * We limit the number of sios we process at once to 32 to avoid 2956 * biting off more than we can chew. If we didn't take everything 2957 * in the segment we update it to reflect the work we were able to 2958 * complete. Otherwise, we remove it from the range tree entirely. 2959 */ 2960 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2961 queue->q_exts_by_addr)) { 2962 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2963 -bytes_issued); 2964 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2965 SIO_GET_OFFSET(sio), rs_get_end(rs, 2966 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2967 queue->q_last_ext_addr = SIO_GET_OFFSET(sio); 2968 return (B_TRUE); 2969 } else { 2970 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2971 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2972 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2973 queue->q_last_ext_addr = -1; 2974 return (B_FALSE); 2975 } 2976 } 2977 2978 /* 2979 * This is called from the queue emptying thread and selects the next 2980 * extent from which we are to issue I/Os. The behavior of this function 2981 * depends on the state of the scan, the current memory consumption and 2982 * whether or not we are performing a scan shutdown. 2983 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2984 * needs to perform a checkpoint 2985 * 2) We select the largest available extent if we are up against the 2986 * memory limit. 2987 * 3) Otherwise we don't select any extents. 2988 */ 2989 static range_seg_t * 2990 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2991 { 2992 dsl_scan_t *scn = queue->q_scn; 2993 range_tree_t *rt = queue->q_exts_by_addr; 2994 2995 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2996 ASSERT(scn->scn_is_sorted); 2997 2998 if (!scn->scn_checkpointing && !scn->scn_clearing) 2999 return (NULL); 3000 3001 /* 3002 * During normal clearing, we want to issue our largest segments 3003 * first, keeping IO as sequential as possible, and leaving the 3004 * smaller extents for later with the hope that they might eventually 3005 * grow to larger sequential segments. However, when the scan is 3006 * checkpointing, no new extents will be added to the sorting queue, 3007 * so the way we are sorted now is as good as it will ever get. 3008 * In this case, we instead switch to issuing extents in LBA order. 3009 */ 3010 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) || 3011 zfs_scan_issue_strategy == 1) 3012 return (range_tree_first(rt)); 3013 3014 /* 3015 * Try to continue previous extent if it is not completed yet. After 3016 * shrink in scan_io_queue_gather() it may no longer be the best, but 3017 * otherwise we leave shorter remnant every txg. 3018 */ 3019 uint64_t start; 3020 uint64_t size = 1 << rt->rt_shift; 3021 range_seg_t *addr_rs; 3022 if (queue->q_last_ext_addr != -1) { 3023 start = queue->q_last_ext_addr; 3024 addr_rs = range_tree_find(rt, start, size); 3025 if (addr_rs != NULL) 3026 return (addr_rs); 3027 } 3028 3029 /* 3030 * Nothing to continue, so find new best extent. 3031 */ 3032 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL); 3033 if (v == NULL) 3034 return (NULL); 3035 queue->q_last_ext_addr = start = *v << rt->rt_shift; 3036 3037 /* 3038 * We need to get the original entry in the by_addr tree so we can 3039 * modify it. 3040 */ 3041 addr_rs = range_tree_find(rt, start, size); 3042 ASSERT3P(addr_rs, !=, NULL); 3043 ASSERT3U(rs_get_start(addr_rs, rt), ==, start); 3044 ASSERT3U(rs_get_end(addr_rs, rt), >, start); 3045 return (addr_rs); 3046 } 3047 3048 static void 3049 scan_io_queues_run_one(void *arg) 3050 { 3051 dsl_scan_io_queue_t *queue = arg; 3052 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3053 boolean_t suspended = B_FALSE; 3054 range_seg_t *rs; 3055 scan_io_t *sio; 3056 zio_t *zio; 3057 list_t sio_list; 3058 3059 ASSERT(queue->q_scn->scn_is_sorted); 3060 3061 list_create(&sio_list, sizeof (scan_io_t), 3062 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3063 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa, 3064 NULL, NULL, NULL, ZIO_FLAG_CANFAIL); 3065 mutex_enter(q_lock); 3066 queue->q_zio = zio; 3067 3068 /* Calculate maximum in-flight bytes for this vdev. */ 3069 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit * 3070 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd))); 3071 3072 /* reset per-queue scan statistics for this txg */ 3073 queue->q_total_seg_size_this_txg = 0; 3074 queue->q_segs_this_txg = 0; 3075 queue->q_total_zio_size_this_txg = 0; 3076 queue->q_zios_this_txg = 0; 3077 3078 /* loop until we run out of time or sios */ 3079 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3080 uint64_t seg_start = 0, seg_end = 0; 3081 boolean_t more_left; 3082 3083 ASSERT(list_is_empty(&sio_list)); 3084 3085 /* loop while we still have sios left to process in this rs */ 3086 do { 3087 scan_io_t *first_sio, *last_sio; 3088 3089 /* 3090 * We have selected which extent needs to be 3091 * processed next. Gather up the corresponding sios. 3092 */ 3093 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3094 ASSERT(!list_is_empty(&sio_list)); 3095 first_sio = list_head(&sio_list); 3096 last_sio = list_tail(&sio_list); 3097 3098 seg_end = SIO_GET_END_OFFSET(last_sio); 3099 if (seg_start == 0) 3100 seg_start = SIO_GET_OFFSET(first_sio); 3101 3102 /* 3103 * Issuing sios can take a long time so drop the 3104 * queue lock. The sio queue won't be updated by 3105 * other threads since we're in syncing context so 3106 * we can be sure that our trees will remain exactly 3107 * as we left them. 3108 */ 3109 mutex_exit(q_lock); 3110 suspended = scan_io_queue_issue(queue, &sio_list); 3111 mutex_enter(q_lock); 3112 3113 if (suspended) 3114 break; 3115 } while (more_left); 3116 3117 /* update statistics for debugging purposes */ 3118 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3119 3120 if (suspended) 3121 break; 3122 } 3123 3124 /* 3125 * If we were suspended in the middle of processing, 3126 * requeue any unfinished sios and exit. 3127 */ 3128 while ((sio = list_head(&sio_list)) != NULL) { 3129 list_remove(&sio_list, sio); 3130 scan_io_queue_insert_impl(queue, sio); 3131 } 3132 3133 queue->q_zio = NULL; 3134 mutex_exit(q_lock); 3135 zio_nowait(zio); 3136 list_destroy(&sio_list); 3137 } 3138 3139 /* 3140 * Performs an emptying run on all scan queues in the pool. This just 3141 * punches out one thread per top-level vdev, each of which processes 3142 * only that vdev's scan queue. We can parallelize the I/O here because 3143 * we know that each queue's I/Os only affect its own top-level vdev. 3144 * 3145 * This function waits for the queue runs to complete, and must be 3146 * called from dsl_scan_sync (or in general, syncing context). 3147 */ 3148 static void 3149 scan_io_queues_run(dsl_scan_t *scn) 3150 { 3151 spa_t *spa = scn->scn_dp->dp_spa; 3152 3153 ASSERT(scn->scn_is_sorted); 3154 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3155 3156 if (scn->scn_queues_pending == 0) 3157 return; 3158 3159 if (scn->scn_taskq == NULL) { 3160 int nthreads = spa->spa_root_vdev->vdev_children; 3161 3162 /* 3163 * We need to make this taskq *always* execute as many 3164 * threads in parallel as we have top-level vdevs and no 3165 * less, otherwise strange serialization of the calls to 3166 * scan_io_queues_run_one can occur during spa_sync runs 3167 * and that significantly impacts performance. 3168 */ 3169 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3170 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3171 } 3172 3173 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3174 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3175 3176 mutex_enter(&vd->vdev_scan_io_queue_lock); 3177 if (vd->vdev_scan_io_queue != NULL) { 3178 VERIFY(taskq_dispatch(scn->scn_taskq, 3179 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3180 TQ_SLEEP) != TASKQID_INVALID); 3181 } 3182 mutex_exit(&vd->vdev_scan_io_queue_lock); 3183 } 3184 3185 /* 3186 * Wait for the queues to finish issuing their IOs for this run 3187 * before we return. There may still be IOs in flight at this 3188 * point. 3189 */ 3190 taskq_wait(scn->scn_taskq); 3191 } 3192 3193 static boolean_t 3194 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3195 { 3196 uint64_t elapsed_nanosecs; 3197 3198 if (zfs_recover) 3199 return (B_FALSE); 3200 3201 if (zfs_async_block_max_blocks != 0 && 3202 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3203 return (B_TRUE); 3204 } 3205 3206 if (zfs_max_async_dedup_frees != 0 && 3207 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3208 return (B_TRUE); 3209 } 3210 3211 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3212 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3213 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3214 txg_sync_waiting(scn->scn_dp)) || 3215 spa_shutting_down(scn->scn_dp->dp_spa)); 3216 } 3217 3218 static int 3219 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3220 { 3221 dsl_scan_t *scn = arg; 3222 3223 if (!scn->scn_is_bptree || 3224 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3225 if (dsl_scan_async_block_should_pause(scn)) 3226 return (SET_ERROR(ERESTART)); 3227 } 3228 3229 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3230 dmu_tx_get_txg(tx), bp, 0)); 3231 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3232 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3233 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3234 scn->scn_visited_this_txg++; 3235 if (BP_GET_DEDUP(bp)) 3236 scn->scn_dedup_frees_this_txg++; 3237 return (0); 3238 } 3239 3240 static void 3241 dsl_scan_update_stats(dsl_scan_t *scn) 3242 { 3243 spa_t *spa = scn->scn_dp->dp_spa; 3244 uint64_t i; 3245 uint64_t seg_size_total = 0, zio_size_total = 0; 3246 uint64_t seg_count_total = 0, zio_count_total = 0; 3247 3248 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3249 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3250 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3251 3252 if (queue == NULL) 3253 continue; 3254 3255 seg_size_total += queue->q_total_seg_size_this_txg; 3256 zio_size_total += queue->q_total_zio_size_this_txg; 3257 seg_count_total += queue->q_segs_this_txg; 3258 zio_count_total += queue->q_zios_this_txg; 3259 } 3260 3261 if (seg_count_total == 0 || zio_count_total == 0) { 3262 scn->scn_avg_seg_size_this_txg = 0; 3263 scn->scn_avg_zio_size_this_txg = 0; 3264 scn->scn_segs_this_txg = 0; 3265 scn->scn_zios_this_txg = 0; 3266 return; 3267 } 3268 3269 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3270 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3271 scn->scn_segs_this_txg = seg_count_total; 3272 scn->scn_zios_this_txg = zio_count_total; 3273 } 3274 3275 static int 3276 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3277 dmu_tx_t *tx) 3278 { 3279 ASSERT(!bp_freed); 3280 return (dsl_scan_free_block_cb(arg, bp, tx)); 3281 } 3282 3283 static int 3284 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3285 dmu_tx_t *tx) 3286 { 3287 ASSERT(!bp_freed); 3288 dsl_scan_t *scn = arg; 3289 const dva_t *dva = &bp->blk_dva[0]; 3290 3291 if (dsl_scan_async_block_should_pause(scn)) 3292 return (SET_ERROR(ERESTART)); 3293 3294 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3295 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3296 DVA_GET_ASIZE(dva), tx); 3297 scn->scn_visited_this_txg++; 3298 return (0); 3299 } 3300 3301 boolean_t 3302 dsl_scan_active(dsl_scan_t *scn) 3303 { 3304 spa_t *spa = scn->scn_dp->dp_spa; 3305 uint64_t used = 0, comp, uncomp; 3306 boolean_t clones_left; 3307 3308 if (spa->spa_load_state != SPA_LOAD_NONE) 3309 return (B_FALSE); 3310 if (spa_shutting_down(spa)) 3311 return (B_FALSE); 3312 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3313 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3314 return (B_TRUE); 3315 3316 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3317 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3318 &used, &comp, &uncomp); 3319 } 3320 clones_left = spa_livelist_delete_check(spa); 3321 return ((used != 0) || (clones_left)); 3322 } 3323 3324 static boolean_t 3325 dsl_scan_check_deferred(vdev_t *vd) 3326 { 3327 boolean_t need_resilver = B_FALSE; 3328 3329 for (int c = 0; c < vd->vdev_children; c++) { 3330 need_resilver |= 3331 dsl_scan_check_deferred(vd->vdev_child[c]); 3332 } 3333 3334 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3335 !vd->vdev_ops->vdev_op_leaf) 3336 return (need_resilver); 3337 3338 if (!vd->vdev_resilver_deferred) 3339 need_resilver = B_TRUE; 3340 3341 return (need_resilver); 3342 } 3343 3344 static boolean_t 3345 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3346 uint64_t phys_birth) 3347 { 3348 vdev_t *vd; 3349 3350 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3351 3352 if (vd->vdev_ops == &vdev_indirect_ops) { 3353 /* 3354 * The indirect vdev can point to multiple 3355 * vdevs. For simplicity, always create 3356 * the resilver zio_t. zio_vdev_io_start() 3357 * will bypass the child resilver i/o's if 3358 * they are on vdevs that don't have DTL's. 3359 */ 3360 return (B_TRUE); 3361 } 3362 3363 if (DVA_GET_GANG(dva)) { 3364 /* 3365 * Gang members may be spread across multiple 3366 * vdevs, so the best estimate we have is the 3367 * scrub range, which has already been checked. 3368 * XXX -- it would be better to change our 3369 * allocation policy to ensure that all 3370 * gang members reside on the same vdev. 3371 */ 3372 return (B_TRUE); 3373 } 3374 3375 /* 3376 * Check if the top-level vdev must resilver this offset. 3377 * When the offset does not intersect with a dirty leaf DTL 3378 * then it may be possible to skip the resilver IO. The psize 3379 * is provided instead of asize to simplify the check for RAIDZ. 3380 */ 3381 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) 3382 return (B_FALSE); 3383 3384 /* 3385 * Check that this top-level vdev has a device under it which 3386 * is resilvering and is not deferred. 3387 */ 3388 if (!dsl_scan_check_deferred(vd)) 3389 return (B_FALSE); 3390 3391 return (B_TRUE); 3392 } 3393 3394 static int 3395 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3396 { 3397 dsl_scan_t *scn = dp->dp_scan; 3398 spa_t *spa = dp->dp_spa; 3399 int err = 0; 3400 3401 if (spa_suspend_async_destroy(spa)) 3402 return (0); 3403 3404 if (zfs_free_bpobj_enabled && 3405 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3406 scn->scn_is_bptree = B_FALSE; 3407 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3408 scn->scn_zio_root = zio_root(spa, NULL, 3409 NULL, ZIO_FLAG_MUSTSUCCEED); 3410 err = bpobj_iterate(&dp->dp_free_bpobj, 3411 bpobj_dsl_scan_free_block_cb, scn, tx); 3412 VERIFY0(zio_wait(scn->scn_zio_root)); 3413 scn->scn_zio_root = NULL; 3414 3415 if (err != 0 && err != ERESTART) 3416 zfs_panic_recover("error %u from bpobj_iterate()", err); 3417 } 3418 3419 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3420 ASSERT(scn->scn_async_destroying); 3421 scn->scn_is_bptree = B_TRUE; 3422 scn->scn_zio_root = zio_root(spa, NULL, 3423 NULL, ZIO_FLAG_MUSTSUCCEED); 3424 err = bptree_iterate(dp->dp_meta_objset, 3425 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3426 VERIFY0(zio_wait(scn->scn_zio_root)); 3427 scn->scn_zio_root = NULL; 3428 3429 if (err == EIO || err == ECKSUM) { 3430 err = 0; 3431 } else if (err != 0 && err != ERESTART) { 3432 zfs_panic_recover("error %u from " 3433 "traverse_dataset_destroyed()", err); 3434 } 3435 3436 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3437 /* finished; deactivate async destroy feature */ 3438 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3439 ASSERT(!spa_feature_is_active(spa, 3440 SPA_FEATURE_ASYNC_DESTROY)); 3441 VERIFY0(zap_remove(dp->dp_meta_objset, 3442 DMU_POOL_DIRECTORY_OBJECT, 3443 DMU_POOL_BPTREE_OBJ, tx)); 3444 VERIFY0(bptree_free(dp->dp_meta_objset, 3445 dp->dp_bptree_obj, tx)); 3446 dp->dp_bptree_obj = 0; 3447 scn->scn_async_destroying = B_FALSE; 3448 scn->scn_async_stalled = B_FALSE; 3449 } else { 3450 /* 3451 * If we didn't make progress, mark the async 3452 * destroy as stalled, so that we will not initiate 3453 * a spa_sync() on its behalf. Note that we only 3454 * check this if we are not finished, because if the 3455 * bptree had no blocks for us to visit, we can 3456 * finish without "making progress". 3457 */ 3458 scn->scn_async_stalled = 3459 (scn->scn_visited_this_txg == 0); 3460 } 3461 } 3462 if (scn->scn_visited_this_txg) { 3463 zfs_dbgmsg("freed %llu blocks in %llums from " 3464 "free_bpobj/bptree on %s in txg %llu; err=%u", 3465 (longlong_t)scn->scn_visited_this_txg, 3466 (longlong_t) 3467 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3468 spa->spa_name, (longlong_t)tx->tx_txg, err); 3469 scn->scn_visited_this_txg = 0; 3470 scn->scn_dedup_frees_this_txg = 0; 3471 3472 /* 3473 * Write out changes to the DDT that may be required as a 3474 * result of the blocks freed. This ensures that the DDT 3475 * is clean when a scrub/resilver runs. 3476 */ 3477 ddt_sync(spa, tx->tx_txg); 3478 } 3479 if (err != 0) 3480 return (err); 3481 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3482 zfs_free_leak_on_eio && 3483 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3484 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3485 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3486 /* 3487 * We have finished background destroying, but there is still 3488 * some space left in the dp_free_dir. Transfer this leaked 3489 * space to the dp_leak_dir. 3490 */ 3491 if (dp->dp_leak_dir == NULL) { 3492 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3493 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3494 LEAK_DIR_NAME, tx); 3495 VERIFY0(dsl_pool_open_special_dir(dp, 3496 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3497 rrw_exit(&dp->dp_config_rwlock, FTAG); 3498 } 3499 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3500 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3501 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3502 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3503 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3504 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3505 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3506 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3507 } 3508 3509 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3510 !spa_livelist_delete_check(spa)) { 3511 /* finished; verify that space accounting went to zero */ 3512 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3513 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3514 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3515 } 3516 3517 spa_notify_waiters(spa); 3518 3519 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3520 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3521 DMU_POOL_OBSOLETE_BPOBJ)); 3522 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3523 ASSERT(spa_feature_is_active(dp->dp_spa, 3524 SPA_FEATURE_OBSOLETE_COUNTS)); 3525 3526 scn->scn_is_bptree = B_FALSE; 3527 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3528 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3529 dsl_scan_obsolete_block_cb, scn, tx); 3530 if (err != 0 && err != ERESTART) 3531 zfs_panic_recover("error %u from bpobj_iterate()", err); 3532 3533 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3534 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3535 } 3536 return (0); 3537 } 3538 3539 /* 3540 * This is the primary entry point for scans that is called from syncing 3541 * context. Scans must happen entirely during syncing context so that we 3542 * can guarantee that blocks we are currently scanning will not change out 3543 * from under us. While a scan is active, this function controls how quickly 3544 * transaction groups proceed, instead of the normal handling provided by 3545 * txg_sync_thread(). 3546 */ 3547 void 3548 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3549 { 3550 int err = 0; 3551 dsl_scan_t *scn = dp->dp_scan; 3552 spa_t *spa = dp->dp_spa; 3553 state_sync_type_t sync_type = SYNC_OPTIONAL; 3554 3555 if (spa->spa_resilver_deferred && 3556 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3557 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3558 3559 /* 3560 * Check for scn_restart_txg before checking spa_load_state, so 3561 * that we can restart an old-style scan while the pool is being 3562 * imported (see dsl_scan_init). We also restart scans if there 3563 * is a deferred resilver and the user has manually disabled 3564 * deferred resilvers via the tunable. 3565 */ 3566 if (dsl_scan_restarting(scn, tx) || 3567 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3568 pool_scan_func_t func = POOL_SCAN_SCRUB; 3569 dsl_scan_done(scn, B_FALSE, tx); 3570 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3571 func = POOL_SCAN_RESILVER; 3572 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu", 3573 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg); 3574 dsl_scan_setup_sync(&func, tx); 3575 } 3576 3577 /* 3578 * Only process scans in sync pass 1. 3579 */ 3580 if (spa_sync_pass(spa) > 1) 3581 return; 3582 3583 /* 3584 * If the spa is shutting down, then stop scanning. This will 3585 * ensure that the scan does not dirty any new data during the 3586 * shutdown phase. 3587 */ 3588 if (spa_shutting_down(spa)) 3589 return; 3590 3591 /* 3592 * If the scan is inactive due to a stalled async destroy, try again. 3593 */ 3594 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3595 return; 3596 3597 /* reset scan statistics */ 3598 scn->scn_visited_this_txg = 0; 3599 scn->scn_dedup_frees_this_txg = 0; 3600 scn->scn_holes_this_txg = 0; 3601 scn->scn_lt_min_this_txg = 0; 3602 scn->scn_gt_max_this_txg = 0; 3603 scn->scn_ddt_contained_this_txg = 0; 3604 scn->scn_objsets_visited_this_txg = 0; 3605 scn->scn_avg_seg_size_this_txg = 0; 3606 scn->scn_segs_this_txg = 0; 3607 scn->scn_avg_zio_size_this_txg = 0; 3608 scn->scn_zios_this_txg = 0; 3609 scn->scn_suspending = B_FALSE; 3610 scn->scn_sync_start_time = gethrtime(); 3611 spa->spa_scrub_active = B_TRUE; 3612 3613 /* 3614 * First process the async destroys. If we suspend, don't do 3615 * any scrubbing or resilvering. This ensures that there are no 3616 * async destroys while we are scanning, so the scan code doesn't 3617 * have to worry about traversing it. It is also faster to free the 3618 * blocks than to scrub them. 3619 */ 3620 err = dsl_process_async_destroys(dp, tx); 3621 if (err != 0) 3622 return; 3623 3624 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3625 return; 3626 3627 /* 3628 * Wait a few txgs after importing to begin scanning so that 3629 * we can get the pool imported quickly. 3630 */ 3631 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3632 return; 3633 3634 /* 3635 * zfs_scan_suspend_progress can be set to disable scan progress. 3636 * We don't want to spin the txg_sync thread, so we add a delay 3637 * here to simulate the time spent doing a scan. This is mostly 3638 * useful for testing and debugging. 3639 */ 3640 if (zfs_scan_suspend_progress) { 3641 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3642 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3643 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3644 3645 while (zfs_scan_suspend_progress && 3646 !txg_sync_waiting(scn->scn_dp) && 3647 !spa_shutting_down(scn->scn_dp->dp_spa) && 3648 NSEC2MSEC(scan_time_ns) < mintime) { 3649 delay(hz); 3650 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3651 } 3652 return; 3653 } 3654 3655 /* 3656 * It is possible to switch from unsorted to sorted at any time, 3657 * but afterwards the scan will remain sorted unless reloaded from 3658 * a checkpoint after a reboot. 3659 */ 3660 if (!zfs_scan_legacy) { 3661 scn->scn_is_sorted = B_TRUE; 3662 if (scn->scn_last_checkpoint == 0) 3663 scn->scn_last_checkpoint = ddi_get_lbolt(); 3664 } 3665 3666 /* 3667 * For sorted scans, determine what kind of work we will be doing 3668 * this txg based on our memory limitations and whether or not we 3669 * need to perform a checkpoint. 3670 */ 3671 if (scn->scn_is_sorted) { 3672 /* 3673 * If we are over our checkpoint interval, set scn_clearing 3674 * so that we can begin checkpointing immediately. The 3675 * checkpoint allows us to save a consistent bookmark 3676 * representing how much data we have scrubbed so far. 3677 * Otherwise, use the memory limit to determine if we should 3678 * scan for metadata or start issue scrub IOs. We accumulate 3679 * metadata until we hit our hard memory limit at which point 3680 * we issue scrub IOs until we are at our soft memory limit. 3681 */ 3682 if (scn->scn_checkpointing || 3683 ddi_get_lbolt() - scn->scn_last_checkpoint > 3684 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3685 if (!scn->scn_checkpointing) 3686 zfs_dbgmsg("begin scan checkpoint for %s", 3687 spa->spa_name); 3688 3689 scn->scn_checkpointing = B_TRUE; 3690 scn->scn_clearing = B_TRUE; 3691 } else { 3692 boolean_t should_clear = dsl_scan_should_clear(scn); 3693 if (should_clear && !scn->scn_clearing) { 3694 zfs_dbgmsg("begin scan clearing for %s", 3695 spa->spa_name); 3696 scn->scn_clearing = B_TRUE; 3697 } else if (!should_clear && scn->scn_clearing) { 3698 zfs_dbgmsg("finish scan clearing for %s", 3699 spa->spa_name); 3700 scn->scn_clearing = B_FALSE; 3701 } 3702 } 3703 } else { 3704 ASSERT0(scn->scn_checkpointing); 3705 ASSERT0(scn->scn_clearing); 3706 } 3707 3708 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3709 /* Need to scan metadata for more blocks to scrub */ 3710 dsl_scan_phys_t *scnp = &scn->scn_phys; 3711 taskqid_t prefetch_tqid; 3712 3713 /* 3714 * Recalculate the max number of in-flight bytes for pool-wide 3715 * scanning operations (minimum 1MB). Limits for the issuing 3716 * phase are done per top-level vdev and are handled separately. 3717 */ 3718 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 3719 dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20); 3720 3721 if (scnp->scn_ddt_bookmark.ddb_class <= 3722 scnp->scn_ddt_class_max) { 3723 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3724 zfs_dbgmsg("doing scan sync for %s txg %llu; " 3725 "ddt bm=%llu/%llu/%llu/%llx", 3726 spa->spa_name, 3727 (longlong_t)tx->tx_txg, 3728 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3729 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3730 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3731 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3732 } else { 3733 zfs_dbgmsg("doing scan sync for %s txg %llu; " 3734 "bm=%llu/%llu/%llu/%llu", 3735 spa->spa_name, 3736 (longlong_t)tx->tx_txg, 3737 (longlong_t)scnp->scn_bookmark.zb_objset, 3738 (longlong_t)scnp->scn_bookmark.zb_object, 3739 (longlong_t)scnp->scn_bookmark.zb_level, 3740 (longlong_t)scnp->scn_bookmark.zb_blkid); 3741 } 3742 3743 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3744 NULL, ZIO_FLAG_CANFAIL); 3745 3746 scn->scn_prefetch_stop = B_FALSE; 3747 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3748 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3749 ASSERT(prefetch_tqid != TASKQID_INVALID); 3750 3751 dsl_pool_config_enter(dp, FTAG); 3752 dsl_scan_visit(scn, tx); 3753 dsl_pool_config_exit(dp, FTAG); 3754 3755 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3756 scn->scn_prefetch_stop = B_TRUE; 3757 cv_broadcast(&spa->spa_scrub_io_cv); 3758 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3759 3760 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3761 (void) zio_wait(scn->scn_zio_root); 3762 scn->scn_zio_root = NULL; 3763 3764 zfs_dbgmsg("scan visited %llu blocks of %s in %llums " 3765 "(%llu os's, %llu holes, %llu < mintxg, " 3766 "%llu in ddt, %llu > maxtxg)", 3767 (longlong_t)scn->scn_visited_this_txg, 3768 spa->spa_name, 3769 (longlong_t)NSEC2MSEC(gethrtime() - 3770 scn->scn_sync_start_time), 3771 (longlong_t)scn->scn_objsets_visited_this_txg, 3772 (longlong_t)scn->scn_holes_this_txg, 3773 (longlong_t)scn->scn_lt_min_this_txg, 3774 (longlong_t)scn->scn_ddt_contained_this_txg, 3775 (longlong_t)scn->scn_gt_max_this_txg); 3776 3777 if (!scn->scn_suspending) { 3778 ASSERT0(avl_numnodes(&scn->scn_queue)); 3779 scn->scn_done_txg = tx->tx_txg + 1; 3780 if (scn->scn_is_sorted) { 3781 scn->scn_checkpointing = B_TRUE; 3782 scn->scn_clearing = B_TRUE; 3783 } 3784 zfs_dbgmsg("scan complete for %s txg %llu", 3785 spa->spa_name, 3786 (longlong_t)tx->tx_txg); 3787 } 3788 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) { 3789 ASSERT(scn->scn_clearing); 3790 3791 /* need to issue scrubbing IOs from per-vdev queues */ 3792 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3793 NULL, ZIO_FLAG_CANFAIL); 3794 scan_io_queues_run(scn); 3795 (void) zio_wait(scn->scn_zio_root); 3796 scn->scn_zio_root = NULL; 3797 3798 /* calculate and dprintf the current memory usage */ 3799 (void) dsl_scan_should_clear(scn); 3800 dsl_scan_update_stats(scn); 3801 3802 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) " 3803 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)", 3804 (longlong_t)scn->scn_zios_this_txg, 3805 spa->spa_name, 3806 (longlong_t)scn->scn_segs_this_txg, 3807 (longlong_t)NSEC2MSEC(gethrtime() - 3808 scn->scn_sync_start_time), 3809 (longlong_t)scn->scn_avg_zio_size_this_txg, 3810 (longlong_t)scn->scn_avg_seg_size_this_txg); 3811 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3812 /* Finished with everything. Mark the scrub as complete */ 3813 zfs_dbgmsg("scan issuing complete txg %llu for %s", 3814 (longlong_t)tx->tx_txg, 3815 spa->spa_name); 3816 ASSERT3U(scn->scn_done_txg, !=, 0); 3817 ASSERT0(spa->spa_scrub_inflight); 3818 ASSERT0(scn->scn_queues_pending); 3819 dsl_scan_done(scn, B_TRUE, tx); 3820 sync_type = SYNC_MANDATORY; 3821 } 3822 3823 dsl_scan_sync_state(scn, tx, sync_type); 3824 } 3825 3826 static void 3827 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all) 3828 { 3829 /* 3830 * Don't count embedded bp's, since we already did the work of 3831 * scanning these when we scanned the containing block. 3832 */ 3833 if (BP_IS_EMBEDDED(bp)) 3834 return; 3835 3836 /* 3837 * Update the spa's stats on how many bytes we have issued. 3838 * Sequential scrubs create a zio for each DVA of the bp. Each 3839 * of these will include all DVAs for repair purposes, but the 3840 * zio code will only try the first one unless there is an issue. 3841 * Therefore, we should only count the first DVA for these IOs. 3842 */ 3843 atomic_add_64(&spa->spa_scan_pass_issued, 3844 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 3845 } 3846 3847 static void 3848 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp) 3849 { 3850 /* 3851 * If we resume after a reboot, zab will be NULL; don't record 3852 * incomplete stats in that case. 3853 */ 3854 if (zab == NULL) 3855 return; 3856 3857 for (int i = 0; i < 4; i++) { 3858 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3859 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3860 3861 if (t & DMU_OT_NEWTYPE) 3862 t = DMU_OT_OTHER; 3863 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3864 int equal; 3865 3866 zb->zb_count++; 3867 zb->zb_asize += BP_GET_ASIZE(bp); 3868 zb->zb_lsize += BP_GET_LSIZE(bp); 3869 zb->zb_psize += BP_GET_PSIZE(bp); 3870 zb->zb_gangs += BP_COUNT_GANG(bp); 3871 3872 switch (BP_GET_NDVAS(bp)) { 3873 case 2: 3874 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3875 DVA_GET_VDEV(&bp->blk_dva[1])) 3876 zb->zb_ditto_2_of_2_samevdev++; 3877 break; 3878 case 3: 3879 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3880 DVA_GET_VDEV(&bp->blk_dva[1])) + 3881 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3882 DVA_GET_VDEV(&bp->blk_dva[2])) + 3883 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3884 DVA_GET_VDEV(&bp->blk_dva[2])); 3885 if (equal == 1) 3886 zb->zb_ditto_2_of_3_samevdev++; 3887 else if (equal == 3) 3888 zb->zb_ditto_3_of_3_samevdev++; 3889 break; 3890 } 3891 } 3892 } 3893 3894 static void 3895 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3896 { 3897 avl_index_t idx; 3898 dsl_scan_t *scn = queue->q_scn; 3899 3900 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3901 3902 if (unlikely(avl_is_empty(&queue->q_sios_by_addr))) 3903 atomic_add_64(&scn->scn_queues_pending, 1); 3904 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3905 /* block is already scheduled for reading */ 3906 sio_free(sio); 3907 return; 3908 } 3909 avl_insert(&queue->q_sios_by_addr, sio, idx); 3910 queue->q_sio_memused += SIO_GET_MUSED(sio); 3911 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), 3912 SIO_GET_ASIZE(sio)); 3913 } 3914 3915 /* 3916 * Given all the info we got from our metadata scanning process, we 3917 * construct a scan_io_t and insert it into the scan sorting queue. The 3918 * I/O must already be suitable for us to process. This is controlled 3919 * by dsl_scan_enqueue(). 3920 */ 3921 static void 3922 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3923 int zio_flags, const zbookmark_phys_t *zb) 3924 { 3925 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3926 3927 ASSERT0(BP_IS_GANG(bp)); 3928 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3929 3930 bp2sio(bp, sio, dva_i); 3931 sio->sio_flags = zio_flags; 3932 sio->sio_zb = *zb; 3933 3934 queue->q_last_ext_addr = -1; 3935 scan_io_queue_insert_impl(queue, sio); 3936 } 3937 3938 /* 3939 * Given a set of I/O parameters as discovered by the metadata traversal 3940 * process, attempts to place the I/O into the sorted queues (if allowed), 3941 * or immediately executes the I/O. 3942 */ 3943 static void 3944 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3945 const zbookmark_phys_t *zb) 3946 { 3947 spa_t *spa = dp->dp_spa; 3948 3949 ASSERT(!BP_IS_EMBEDDED(bp)); 3950 3951 /* 3952 * Gang blocks are hard to issue sequentially, so we just issue them 3953 * here immediately instead of queuing them. 3954 */ 3955 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3956 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3957 return; 3958 } 3959 3960 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3961 dva_t dva; 3962 vdev_t *vdev; 3963 3964 dva = bp->blk_dva[i]; 3965 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3966 ASSERT(vdev != NULL); 3967 3968 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3969 if (vdev->vdev_scan_io_queue == NULL) 3970 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3971 ASSERT(dp->dp_scan != NULL); 3972 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3973 i, zio_flags, zb); 3974 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3975 } 3976 } 3977 3978 static int 3979 dsl_scan_scrub_cb(dsl_pool_t *dp, 3980 const blkptr_t *bp, const zbookmark_phys_t *zb) 3981 { 3982 dsl_scan_t *scn = dp->dp_scan; 3983 spa_t *spa = dp->dp_spa; 3984 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3985 size_t psize = BP_GET_PSIZE(bp); 3986 boolean_t needs_io = B_FALSE; 3987 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3988 3989 count_block(dp->dp_blkstats, bp); 3990 if (phys_birth <= scn->scn_phys.scn_min_txg || 3991 phys_birth >= scn->scn_phys.scn_max_txg) { 3992 count_block_issued(spa, bp, B_TRUE); 3993 return (0); 3994 } 3995 3996 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3997 ASSERT(!BP_IS_EMBEDDED(bp)); 3998 3999 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 4000 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 4001 zio_flags |= ZIO_FLAG_SCRUB; 4002 needs_io = B_TRUE; 4003 } else { 4004 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 4005 zio_flags |= ZIO_FLAG_RESILVER; 4006 needs_io = B_FALSE; 4007 } 4008 4009 /* If it's an intent log block, failure is expected. */ 4010 if (zb->zb_level == ZB_ZIL_LEVEL) 4011 zio_flags |= ZIO_FLAG_SPECULATIVE; 4012 4013 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 4014 const dva_t *dva = &bp->blk_dva[d]; 4015 4016 /* 4017 * Keep track of how much data we've examined so that 4018 * zpool(8) status can make useful progress reports. 4019 */ 4020 uint64_t asize = DVA_GET_ASIZE(dva); 4021 scn->scn_phys.scn_examined += asize; 4022 spa->spa_scan_pass_exam += asize; 4023 4024 /* if it's a resilver, this may not be in the target range */ 4025 if (!needs_io) 4026 needs_io = dsl_scan_need_resilver(spa, dva, psize, 4027 phys_birth); 4028 } 4029 4030 if (needs_io && !zfs_no_scrub_io) { 4031 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4032 } else { 4033 count_block_issued(spa, bp, B_TRUE); 4034 } 4035 4036 /* do not relocate this block */ 4037 return (0); 4038 } 4039 4040 static void 4041 dsl_scan_scrub_done(zio_t *zio) 4042 { 4043 spa_t *spa = zio->io_spa; 4044 blkptr_t *bp = zio->io_bp; 4045 dsl_scan_io_queue_t *queue = zio->io_private; 4046 4047 abd_free(zio->io_abd); 4048 4049 if (queue == NULL) { 4050 mutex_enter(&spa->spa_scrub_lock); 4051 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4052 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4053 cv_broadcast(&spa->spa_scrub_io_cv); 4054 mutex_exit(&spa->spa_scrub_lock); 4055 } else { 4056 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4057 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4058 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4059 cv_broadcast(&queue->q_zio_cv); 4060 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4061 } 4062 4063 if (zio->io_error && (zio->io_error != ECKSUM || 4064 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4065 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 4066 } 4067 } 4068 4069 /* 4070 * Given a scanning zio's information, executes the zio. The zio need 4071 * not necessarily be only sortable, this function simply executes the 4072 * zio, no matter what it is. The optional queue argument allows the 4073 * caller to specify that they want per top level vdev IO rate limiting 4074 * instead of the legacy global limiting. 4075 */ 4076 static void 4077 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4078 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4079 { 4080 spa_t *spa = dp->dp_spa; 4081 dsl_scan_t *scn = dp->dp_scan; 4082 size_t size = BP_GET_PSIZE(bp); 4083 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4084 zio_t *pio; 4085 4086 if (queue == NULL) { 4087 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4088 mutex_enter(&spa->spa_scrub_lock); 4089 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4090 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4091 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4092 mutex_exit(&spa->spa_scrub_lock); 4093 pio = scn->scn_zio_root; 4094 } else { 4095 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4096 4097 ASSERT3U(queue->q_maxinflight_bytes, >, 0); 4098 mutex_enter(q_lock); 4099 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4100 cv_wait(&queue->q_zio_cv, q_lock); 4101 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4102 pio = queue->q_zio; 4103 mutex_exit(q_lock); 4104 } 4105 4106 ASSERT(pio != NULL); 4107 count_block_issued(spa, bp, queue == NULL); 4108 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done, 4109 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4110 } 4111 4112 /* 4113 * This is the primary extent sorting algorithm. We balance two parameters: 4114 * 1) how many bytes of I/O are in an extent 4115 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4116 * Since we allow extents to have gaps between their constituent I/Os, it's 4117 * possible to have a fairly large extent that contains the same amount of 4118 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4119 * The algorithm sorts based on a score calculated from the extent's size, 4120 * the relative fill volume (in %) and a "fill weight" parameter that controls 4121 * the split between whether we prefer larger extents or more well populated 4122 * extents: 4123 * 4124 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4125 * 4126 * Example: 4127 * 1) assume extsz = 64 MiB 4128 * 2) assume fill = 32 MiB (extent is half full) 4129 * 3) assume fill_weight = 3 4130 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4131 * SCORE = 32M + (50 * 3 * 32M) / 100 4132 * SCORE = 32M + (4800M / 100) 4133 * SCORE = 32M + 48M 4134 * ^ ^ 4135 * | +--- final total relative fill-based score 4136 * +--------- final total fill-based score 4137 * SCORE = 80M 4138 * 4139 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4140 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4141 * Note that as an optimization, we replace multiplication and division by 4142 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4143 * 4144 * Since we do not care if one extent is only few percent better than another, 4145 * compress the score into 6 bits via binary logarithm AKA highbit64() and 4146 * put into otherwise unused due to ashift high bits of offset. This allows 4147 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them 4148 * with single operation. Plus it makes scrubs more sequential and reduces 4149 * chances that minor extent change move it within the B-tree. 4150 */ 4151 static int 4152 ext_size_compare(const void *x, const void *y) 4153 { 4154 const uint64_t *a = x, *b = y; 4155 4156 return (TREE_CMP(*a, *b)); 4157 } 4158 4159 static void 4160 ext_size_create(range_tree_t *rt, void *arg) 4161 { 4162 (void) rt; 4163 zfs_btree_t *size_tree = arg; 4164 4165 zfs_btree_create(size_tree, ext_size_compare, sizeof (uint64_t)); 4166 } 4167 4168 static void 4169 ext_size_destroy(range_tree_t *rt, void *arg) 4170 { 4171 (void) rt; 4172 zfs_btree_t *size_tree = arg; 4173 ASSERT0(zfs_btree_numnodes(size_tree)); 4174 4175 zfs_btree_destroy(size_tree); 4176 } 4177 4178 static uint64_t 4179 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg) 4180 { 4181 (void) rt; 4182 uint64_t size = rsg->rs_end - rsg->rs_start; 4183 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) * 4184 fill_weight * rsg->rs_fill) >> 7); 4185 ASSERT3U(rt->rt_shift, >=, 8); 4186 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start); 4187 } 4188 4189 static void 4190 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg) 4191 { 4192 zfs_btree_t *size_tree = arg; 4193 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); 4194 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); 4195 zfs_btree_add(size_tree, &v); 4196 } 4197 4198 static void 4199 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 4200 { 4201 zfs_btree_t *size_tree = arg; 4202 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); 4203 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); 4204 zfs_btree_remove(size_tree, &v); 4205 } 4206 4207 static void 4208 ext_size_vacate(range_tree_t *rt, void *arg) 4209 { 4210 zfs_btree_t *size_tree = arg; 4211 zfs_btree_clear(size_tree); 4212 zfs_btree_destroy(size_tree); 4213 4214 ext_size_create(rt, arg); 4215 } 4216 4217 static const range_tree_ops_t ext_size_ops = { 4218 .rtop_create = ext_size_create, 4219 .rtop_destroy = ext_size_destroy, 4220 .rtop_add = ext_size_add, 4221 .rtop_remove = ext_size_remove, 4222 .rtop_vacate = ext_size_vacate 4223 }; 4224 4225 /* 4226 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4227 * based on LBA-order (from lowest to highest). 4228 */ 4229 static int 4230 sio_addr_compare(const void *x, const void *y) 4231 { 4232 const scan_io_t *a = x, *b = y; 4233 4234 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4235 } 4236 4237 /* IO queues are created on demand when they are needed. */ 4238 static dsl_scan_io_queue_t * 4239 scan_io_queue_create(vdev_t *vd) 4240 { 4241 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4242 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4243 4244 q->q_scn = scn; 4245 q->q_vd = vd; 4246 q->q_sio_memused = 0; 4247 q->q_last_ext_addr = -1; 4248 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4249 q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP, 4250 &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap); 4251 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4252 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4253 4254 return (q); 4255 } 4256 4257 /* 4258 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4259 * No further execution of I/O occurs, anything pending in the queue is 4260 * simply freed without being executed. 4261 */ 4262 void 4263 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4264 { 4265 dsl_scan_t *scn = queue->q_scn; 4266 scan_io_t *sio; 4267 void *cookie = NULL; 4268 4269 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4270 4271 if (!avl_is_empty(&queue->q_sios_by_addr)) 4272 atomic_add_64(&scn->scn_queues_pending, -1); 4273 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4274 NULL) { 4275 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4276 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4277 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4278 sio_free(sio); 4279 } 4280 4281 ASSERT0(queue->q_sio_memused); 4282 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4283 range_tree_destroy(queue->q_exts_by_addr); 4284 avl_destroy(&queue->q_sios_by_addr); 4285 cv_destroy(&queue->q_zio_cv); 4286 4287 kmem_free(queue, sizeof (*queue)); 4288 } 4289 4290 /* 4291 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4292 * called on behalf of vdev_top_transfer when creating or destroying 4293 * a mirror vdev due to zpool attach/detach. 4294 */ 4295 void 4296 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4297 { 4298 mutex_enter(&svd->vdev_scan_io_queue_lock); 4299 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4300 4301 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4302 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4303 svd->vdev_scan_io_queue = NULL; 4304 if (tvd->vdev_scan_io_queue != NULL) 4305 tvd->vdev_scan_io_queue->q_vd = tvd; 4306 4307 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4308 mutex_exit(&svd->vdev_scan_io_queue_lock); 4309 } 4310 4311 static void 4312 scan_io_queues_destroy(dsl_scan_t *scn) 4313 { 4314 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4315 4316 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4317 vdev_t *tvd = rvd->vdev_child[i]; 4318 4319 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4320 if (tvd->vdev_scan_io_queue != NULL) 4321 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4322 tvd->vdev_scan_io_queue = NULL; 4323 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4324 } 4325 } 4326 4327 static void 4328 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4329 { 4330 dsl_pool_t *dp = spa->spa_dsl_pool; 4331 dsl_scan_t *scn = dp->dp_scan; 4332 vdev_t *vdev; 4333 kmutex_t *q_lock; 4334 dsl_scan_io_queue_t *queue; 4335 scan_io_t *srch_sio, *sio; 4336 avl_index_t idx; 4337 uint64_t start, size; 4338 4339 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4340 ASSERT(vdev != NULL); 4341 q_lock = &vdev->vdev_scan_io_queue_lock; 4342 queue = vdev->vdev_scan_io_queue; 4343 4344 mutex_enter(q_lock); 4345 if (queue == NULL) { 4346 mutex_exit(q_lock); 4347 return; 4348 } 4349 4350 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4351 bp2sio(bp, srch_sio, dva_i); 4352 start = SIO_GET_OFFSET(srch_sio); 4353 size = SIO_GET_ASIZE(srch_sio); 4354 4355 /* 4356 * We can find the zio in two states: 4357 * 1) Cold, just sitting in the queue of zio's to be issued at 4358 * some point in the future. In this case, all we do is 4359 * remove the zio from the q_sios_by_addr tree, decrement 4360 * its data volume from the containing range_seg_t and 4361 * resort the q_exts_by_size tree to reflect that the 4362 * range_seg_t has lost some of its 'fill'. We don't shorten 4363 * the range_seg_t - this is usually rare enough not to be 4364 * worth the extra hassle of trying keep track of precise 4365 * extent boundaries. 4366 * 2) Hot, where the zio is currently in-flight in 4367 * dsl_scan_issue_ios. In this case, we can't simply 4368 * reach in and stop the in-flight zio's, so we instead 4369 * block the caller. Eventually, dsl_scan_issue_ios will 4370 * be done with issuing the zio's it gathered and will 4371 * signal us. 4372 */ 4373 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4374 sio_free(srch_sio); 4375 4376 if (sio != NULL) { 4377 blkptr_t tmpbp; 4378 4379 /* Got it while it was cold in the queue */ 4380 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4381 ASSERT3U(size, ==, SIO_GET_ASIZE(sio)); 4382 avl_remove(&queue->q_sios_by_addr, sio); 4383 if (avl_is_empty(&queue->q_sios_by_addr)) 4384 atomic_add_64(&scn->scn_queues_pending, -1); 4385 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4386 4387 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4388 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4389 4390 /* count the block as though we issued it */ 4391 sio2bp(sio, &tmpbp); 4392 count_block_issued(spa, &tmpbp, B_FALSE); 4393 4394 sio_free(sio); 4395 } 4396 mutex_exit(q_lock); 4397 } 4398 4399 /* 4400 * Callback invoked when a zio_free() zio is executing. This needs to be 4401 * intercepted to prevent the zio from deallocating a particular portion 4402 * of disk space and it then getting reallocated and written to, while we 4403 * still have it queued up for processing. 4404 */ 4405 void 4406 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4407 { 4408 dsl_pool_t *dp = spa->spa_dsl_pool; 4409 dsl_scan_t *scn = dp->dp_scan; 4410 4411 ASSERT(!BP_IS_EMBEDDED(bp)); 4412 ASSERT(scn != NULL); 4413 if (!dsl_scan_is_running(scn)) 4414 return; 4415 4416 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4417 dsl_scan_freed_dva(spa, bp, i); 4418 } 4419 4420 /* 4421 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4422 * not started, start it. Otherwise, only restart if max txg in DTL range is 4423 * greater than the max txg in the current scan. If the DTL max is less than 4424 * the scan max, then the vdev has not missed any new data since the resilver 4425 * started, so a restart is not needed. 4426 */ 4427 void 4428 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4429 { 4430 uint64_t min, max; 4431 4432 if (!vdev_resilver_needed(vd, &min, &max)) 4433 return; 4434 4435 if (!dsl_scan_resilvering(dp)) { 4436 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4437 return; 4438 } 4439 4440 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4441 return; 4442 4443 /* restart is needed, check if it can be deferred */ 4444 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4445 vdev_defer_resilver(vd); 4446 else 4447 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4448 } 4449 4450 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW, 4451 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 4452 4453 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW, 4454 "Min millisecs to scrub per txg"); 4455 4456 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW, 4457 "Min millisecs to obsolete per txg"); 4458 4459 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW, 4460 "Min millisecs to free per txg"); 4461 4462 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW, 4463 "Min millisecs to resilver per txg"); 4464 4465 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 4466 "Set to prevent scans from progressing"); 4467 4468 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 4469 "Set to disable scrub I/O"); 4470 4471 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 4472 "Set to disable scrub prefetching"); 4473 4474 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW, 4475 "Max number of blocks freed in one txg"); 4476 4477 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW, 4478 "Max number of dedup blocks freed in one txg"); 4479 4480 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 4481 "Enable processing of the free_bpobj"); 4482 4483 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW, 4484 "Enable block statistics calculation during scrub"); 4485 4486 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW, 4487 "Fraction of RAM for scan hard limit"); 4488 4489 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW, 4490 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size"); 4491 4492 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 4493 "Scrub using legacy non-sequential method"); 4494 4495 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW, 4496 "Scan progress on-disk checkpointing interval"); 4497 4498 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW, 4499 "Max gap in bytes between sequential scrub / resilver I/Os"); 4500 4501 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW, 4502 "Fraction of hard limit used as soft limit"); 4503 4504 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 4505 "Tunable to attempt to reduce lock contention"); 4506 4507 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW, 4508 "Tunable to adjust bias towards more filled segments during scans"); 4509 4510 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 4511 "Process all resilvers immediately"); 4512