xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_pool.c (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/mmp.h>
53 
54 /*
55  * ZFS Write Throttle
56  * ------------------
57  *
58  * ZFS must limit the rate of incoming writes to the rate at which it is able
59  * to sync data modifications to the backend storage. Throttling by too much
60  * creates an artificial limit; throttling by too little can only be sustained
61  * for short periods and would lead to highly lumpy performance. On a per-pool
62  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64  * of dirty data decreases. When the amount of dirty data exceeds a
65  * predetermined threshold further modifications are blocked until the amount
66  * of dirty data decreases (as data is synced out).
67  *
68  * The limit on dirty data is tunable, and should be adjusted according to
69  * both the IO capacity and available memory of the system. The larger the
70  * window, the more ZFS is able to aggregate and amortize metadata (and data)
71  * changes. However, memory is a limited resource, and allowing for more dirty
72  * data comes at the cost of keeping other useful data in memory (for example
73  * ZFS data cached by the ARC).
74  *
75  * Implementation
76  *
77  * As buffers are modified dsl_pool_willuse_space() increments both the per-
78  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79  * dirty space used; dsl_pool_dirty_space() decrements those values as data
80  * is synced out from dsl_pool_sync(). While only the poolwide value is
81  * relevant, the per-txg value is useful for debugging. The tunable
82  * zfs_dirty_data_max determines the dirty space limit. Once that value is
83  * exceeded, new writes are halted until space frees up.
84  *
85  * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
86  * ensure that there is a txg syncing (see the comment in txg.c for a full
87  * description of transaction group stages).
88  *
89  * The IO scheduler uses both the dirty space limit and current amount of
90  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
92  *
93  * The delay is also calculated based on the amount of dirty data.  See the
94  * comment above dmu_tx_delay() for details.
95  */
96 
97 /*
98  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99  * capped at zfs_dirty_data_max_max.  It can also be overridden with a module
100  * parameter.
101  */
102 unsigned long zfs_dirty_data_max = 0;
103 unsigned long zfs_dirty_data_max_max = 0;
104 int zfs_dirty_data_max_percent = 10;
105 int zfs_dirty_data_max_max_percent = 25;
106 
107 /*
108  * If there's at least this much dirty data (as a percentage of
109  * zfs_dirty_data_max), push out a txg.  This should be less than
110  * zfs_vdev_async_write_active_min_dirty_percent.
111  */
112 int zfs_dirty_data_sync_percent = 20;
113 
114 /*
115  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
116  * and delay each transaction.
117  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
118  */
119 int zfs_delay_min_dirty_percent = 60;
120 
121 /*
122  * This controls how quickly the delay approaches infinity.
123  * Larger values cause it to delay more for a given amount of dirty data.
124  * Therefore larger values will cause there to be less dirty data for a
125  * given throughput.
126  *
127  * For the smoothest delay, this value should be about 1 billion divided
128  * by the maximum number of operations per second.  This will smoothly
129  * handle between 10x and 1/10th this number.
130  *
131  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
132  * multiply in dmu_tx_delay().
133  */
134 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
135 
136 /*
137  * This determines the number of threads used by the dp_sync_taskq.
138  */
139 int zfs_sync_taskq_batch_pct = 75;
140 
141 /*
142  * These tunables determine the behavior of how zil_itxg_clean() is
143  * called via zil_clean() in the context of spa_sync(). When an itxg
144  * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
145  * If the dispatch fails, the call to zil_itxg_clean() will occur
146  * synchronously in the context of spa_sync(), which can negatively
147  * impact the performance of spa_sync() (e.g. in the case of the itxg
148  * list having a large number of itxs that needs to be cleaned).
149  *
150  * Thus, these tunables can be used to manipulate the behavior of the
151  * taskq used by zil_clean(); they determine the number of taskq entries
152  * that are pre-populated when the taskq is first created (via the
153  * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
154  * taskq entries that are cached after an on-demand allocation (via the
155  * "zfs_zil_clean_taskq_maxalloc").
156  *
157  * The idea being, we want to try reasonably hard to ensure there will
158  * already be a taskq entry pre-allocated by the time that it is needed
159  * by zil_clean(). This way, we can avoid the possibility of an
160  * on-demand allocation of a new taskq entry from failing, which would
161  * result in zil_itxg_clean() being called synchronously from zil_clean()
162  * (which can adversely affect performance of spa_sync()).
163  *
164  * Additionally, the number of threads used by the taskq can be
165  * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
166  */
167 int zfs_zil_clean_taskq_nthr_pct = 100;
168 int zfs_zil_clean_taskq_minalloc = 1024;
169 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
170 
171 int
172 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
173 {
174 	uint64_t obj;
175 	int err;
176 
177 	err = zap_lookup(dp->dp_meta_objset,
178 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
179 	    name, sizeof (obj), 1, &obj);
180 	if (err)
181 		return (err);
182 
183 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
184 }
185 
186 static dsl_pool_t *
187 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
188 {
189 	dsl_pool_t *dp;
190 	blkptr_t *bp = spa_get_rootblkptr(spa);
191 
192 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
193 	dp->dp_spa = spa;
194 	dp->dp_meta_rootbp = *bp;
195 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
196 	txg_init(dp, txg);
197 	mmp_init(spa);
198 
199 	txg_list_create(&dp->dp_dirty_datasets, spa,
200 	    offsetof(dsl_dataset_t, ds_dirty_link));
201 	txg_list_create(&dp->dp_dirty_zilogs, spa,
202 	    offsetof(zilog_t, zl_dirty_link));
203 	txg_list_create(&dp->dp_dirty_dirs, spa,
204 	    offsetof(dsl_dir_t, dd_dirty_link));
205 	txg_list_create(&dp->dp_sync_tasks, spa,
206 	    offsetof(dsl_sync_task_t, dst_node));
207 	txg_list_create(&dp->dp_early_sync_tasks, spa,
208 	    offsetof(dsl_sync_task_t, dst_node));
209 
210 	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
211 	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
212 	    TASKQ_THREADS_CPU_PCT);
213 
214 	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
215 	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
216 	    zfs_zil_clean_taskq_minalloc,
217 	    zfs_zil_clean_taskq_maxalloc,
218 	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
219 
220 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
221 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
222 
223 	dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
224 	    boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
225 	    TASKQ_THREADS_CPU_PCT);
226 	dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
227 	    100, defclsyspri, boot_ncpus, INT_MAX,
228 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
229 
230 	return (dp);
231 }
232 
233 int
234 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
235 {
236 	int err;
237 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
238 
239 	/*
240 	 * Initialize the caller's dsl_pool_t structure before we actually open
241 	 * the meta objset.  This is done because a self-healing write zio may
242 	 * be issued as part of dmu_objset_open_impl() and the spa needs its
243 	 * dsl_pool_t initialized in order to handle the write.
244 	 */
245 	*dpp = dp;
246 
247 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
248 	    &dp->dp_meta_objset);
249 	if (err != 0) {
250 		dsl_pool_close(dp);
251 		*dpp = NULL;
252 	}
253 
254 	return (err);
255 }
256 
257 int
258 dsl_pool_open(dsl_pool_t *dp)
259 {
260 	int err;
261 	dsl_dir_t *dd;
262 	dsl_dataset_t *ds;
263 	uint64_t obj;
264 
265 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
266 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
267 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
268 	    &dp->dp_root_dir_obj);
269 	if (err)
270 		goto out;
271 
272 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
273 	    NULL, dp, &dp->dp_root_dir);
274 	if (err)
275 		goto out;
276 
277 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
278 	if (err)
279 		goto out;
280 
281 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
282 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
283 		if (err)
284 			goto out;
285 		err = dsl_dataset_hold_obj(dp,
286 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
287 		if (err == 0) {
288 			err = dsl_dataset_hold_obj(dp,
289 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
290 			    &dp->dp_origin_snap);
291 			dsl_dataset_rele(ds, FTAG);
292 		}
293 		dsl_dir_rele(dd, dp);
294 		if (err)
295 			goto out;
296 	}
297 
298 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
299 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
300 		    &dp->dp_free_dir);
301 		if (err)
302 			goto out;
303 
304 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
305 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
306 		if (err)
307 			goto out;
308 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
309 		    dp->dp_meta_objset, obj));
310 	}
311 
312 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
313 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
314 		    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
315 		if (err == 0) {
316 			VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
317 			    dp->dp_meta_objset, obj));
318 		} else if (err == ENOENT) {
319 			/*
320 			 * We might not have created the remap bpobj yet.
321 			 */
322 			err = 0;
323 		} else {
324 			goto out;
325 		}
326 	}
327 
328 	/*
329 	 * Note: errors ignored, because the these special dirs, used for
330 	 * space accounting, are only created on demand.
331 	 */
332 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
333 	    &dp->dp_leak_dir);
334 
335 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
336 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
337 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
338 		    &dp->dp_bptree_obj);
339 		if (err != 0)
340 			goto out;
341 	}
342 
343 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
344 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
345 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
346 		    &dp->dp_empty_bpobj);
347 		if (err != 0)
348 			goto out;
349 	}
350 
351 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
352 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
353 	    &dp->dp_tmp_userrefs_obj);
354 	if (err == ENOENT)
355 		err = 0;
356 	if (err)
357 		goto out;
358 
359 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
360 
361 out:
362 	rrw_exit(&dp->dp_config_rwlock, FTAG);
363 	return (err);
364 }
365 
366 void
367 dsl_pool_close(dsl_pool_t *dp)
368 {
369 	/*
370 	 * Drop our references from dsl_pool_open().
371 	 *
372 	 * Since we held the origin_snap from "syncing" context (which
373 	 * includes pool-opening context), it actually only got a "ref"
374 	 * and not a hold, so just drop that here.
375 	 */
376 	if (dp->dp_origin_snap != NULL)
377 		dsl_dataset_rele(dp->dp_origin_snap, dp);
378 	if (dp->dp_mos_dir != NULL)
379 		dsl_dir_rele(dp->dp_mos_dir, dp);
380 	if (dp->dp_free_dir != NULL)
381 		dsl_dir_rele(dp->dp_free_dir, dp);
382 	if (dp->dp_leak_dir != NULL)
383 		dsl_dir_rele(dp->dp_leak_dir, dp);
384 	if (dp->dp_root_dir != NULL)
385 		dsl_dir_rele(dp->dp_root_dir, dp);
386 
387 	bpobj_close(&dp->dp_free_bpobj);
388 	bpobj_close(&dp->dp_obsolete_bpobj);
389 
390 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
391 	if (dp->dp_meta_objset != NULL)
392 		dmu_objset_evict(dp->dp_meta_objset);
393 
394 	txg_list_destroy(&dp->dp_dirty_datasets);
395 	txg_list_destroy(&dp->dp_dirty_zilogs);
396 	txg_list_destroy(&dp->dp_sync_tasks);
397 	txg_list_destroy(&dp->dp_early_sync_tasks);
398 	txg_list_destroy(&dp->dp_dirty_dirs);
399 
400 	taskq_destroy(dp->dp_zil_clean_taskq);
401 	taskq_destroy(dp->dp_sync_taskq);
402 
403 	/*
404 	 * We can't set retry to TRUE since we're explicitly specifying
405 	 * a spa to flush. This is good enough; any missed buffers for
406 	 * this spa won't cause trouble, and they'll eventually fall
407 	 * out of the ARC just like any other unused buffer.
408 	 */
409 	arc_flush(dp->dp_spa, FALSE);
410 
411 	mmp_fini(dp->dp_spa);
412 	txg_fini(dp);
413 	dsl_scan_fini(dp);
414 	dmu_buf_user_evict_wait();
415 
416 	rrw_destroy(&dp->dp_config_rwlock);
417 	mutex_destroy(&dp->dp_lock);
418 	cv_destroy(&dp->dp_spaceavail_cv);
419 	taskq_destroy(dp->dp_unlinked_drain_taskq);
420 	taskq_destroy(dp->dp_zrele_taskq);
421 	if (dp->dp_blkstats != NULL) {
422 		mutex_destroy(&dp->dp_blkstats->zab_lock);
423 		vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
424 	}
425 	kmem_free(dp, sizeof (dsl_pool_t));
426 }
427 
428 void
429 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
430 {
431 	uint64_t obj;
432 	/*
433 	 * Currently, we only create the obsolete_bpobj where there are
434 	 * indirect vdevs with referenced mappings.
435 	 */
436 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
437 	/* create and open the obsolete_bpobj */
438 	obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
439 	VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
440 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
441 	    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
442 	spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
443 }
444 
445 void
446 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
447 {
448 	spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
449 	VERIFY0(zap_remove(dp->dp_meta_objset,
450 	    DMU_POOL_DIRECTORY_OBJECT,
451 	    DMU_POOL_OBSOLETE_BPOBJ, tx));
452 	bpobj_free(dp->dp_meta_objset,
453 	    dp->dp_obsolete_bpobj.bpo_object, tx);
454 	bpobj_close(&dp->dp_obsolete_bpobj);
455 }
456 
457 dsl_pool_t *
458 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp,
459     uint64_t txg)
460 {
461 	int err;
462 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
463 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
464 #ifdef _KERNEL
465 	objset_t *os;
466 #else
467 	objset_t *os __attribute__((unused));
468 #endif
469 	dsl_dataset_t *ds;
470 	uint64_t obj;
471 
472 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
473 
474 	/* create and open the MOS (meta-objset) */
475 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
476 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
477 	spa->spa_meta_objset = dp->dp_meta_objset;
478 
479 	/* create the pool directory */
480 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
481 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
482 	ASSERT0(err);
483 
484 	/* Initialize scan structures */
485 	VERIFY0(dsl_scan_init(dp, txg));
486 
487 	/* create and open the root dir */
488 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
489 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
490 	    NULL, dp, &dp->dp_root_dir));
491 
492 	/* create and open the meta-objset dir */
493 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
494 	VERIFY0(dsl_pool_open_special_dir(dp,
495 	    MOS_DIR_NAME, &dp->dp_mos_dir));
496 
497 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
498 		/* create and open the free dir */
499 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
500 		    FREE_DIR_NAME, tx);
501 		VERIFY0(dsl_pool_open_special_dir(dp,
502 		    FREE_DIR_NAME, &dp->dp_free_dir));
503 
504 		/* create and open the free_bplist */
505 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
506 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
507 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
508 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
509 		    dp->dp_meta_objset, obj));
510 	}
511 
512 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
513 		dsl_pool_create_origin(dp, tx);
514 
515 	/*
516 	 * Some features may be needed when creating the root dataset, so we
517 	 * create the feature objects here.
518 	 */
519 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
520 		spa_feature_create_zap_objects(spa, tx);
521 
522 	if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
523 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT)
524 		spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
525 
526 	/* create the root dataset */
527 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
528 
529 	/* create the root objset */
530 	VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
531 	    DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
532 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
533 	os = dmu_objset_create_impl(dp->dp_spa, ds,
534 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
535 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
536 #ifdef _KERNEL
537 	zfs_create_fs(os, kcred, zplprops, tx);
538 #endif
539 	dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
540 
541 	dmu_tx_commit(tx);
542 
543 	rrw_exit(&dp->dp_config_rwlock, FTAG);
544 
545 	return (dp);
546 }
547 
548 /*
549  * Account for the meta-objset space in its placeholder dsl_dir.
550  */
551 void
552 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
553     int64_t used, int64_t comp, int64_t uncomp)
554 {
555 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
556 	mutex_enter(&dp->dp_lock);
557 	dp->dp_mos_used_delta += used;
558 	dp->dp_mos_compressed_delta += comp;
559 	dp->dp_mos_uncompressed_delta += uncomp;
560 	mutex_exit(&dp->dp_lock);
561 }
562 
563 static void
564 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
565 {
566 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
567 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
568 	VERIFY0(zio_wait(zio));
569 	dmu_objset_sync_done(dp->dp_meta_objset, tx);
570 	taskq_wait(dp->dp_sync_taskq);
571 	multilist_destroy(dp->dp_meta_objset->os_synced_dnodes);
572 	dp->dp_meta_objset->os_synced_dnodes = NULL;
573 
574 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
575 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
576 }
577 
578 static void
579 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
580 {
581 	ASSERT(MUTEX_HELD(&dp->dp_lock));
582 
583 	if (delta < 0)
584 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
585 
586 	dp->dp_dirty_total += delta;
587 
588 	/*
589 	 * Note: we signal even when increasing dp_dirty_total.
590 	 * This ensures forward progress -- each thread wakes the next waiter.
591 	 */
592 	if (dp->dp_dirty_total < zfs_dirty_data_max)
593 		cv_signal(&dp->dp_spaceavail_cv);
594 }
595 
596 #ifdef ZFS_DEBUG
597 static boolean_t
598 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
599 {
600 	spa_t *spa = dp->dp_spa;
601 	vdev_t *rvd = spa->spa_root_vdev;
602 
603 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
604 		vdev_t *vd = rvd->vdev_child[c];
605 		txg_list_t *tl = &vd->vdev_ms_list;
606 		metaslab_t *ms;
607 
608 		for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
609 		    ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
610 			VERIFY(range_tree_is_empty(ms->ms_freeing));
611 			VERIFY(range_tree_is_empty(ms->ms_checkpointing));
612 		}
613 	}
614 
615 	return (B_TRUE);
616 }
617 #endif
618 
619 void
620 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
621 {
622 	zio_t *zio;
623 	dmu_tx_t *tx;
624 	dsl_dir_t *dd;
625 	dsl_dataset_t *ds;
626 	objset_t *mos = dp->dp_meta_objset;
627 	list_t synced_datasets;
628 
629 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
630 	    offsetof(dsl_dataset_t, ds_synced_link));
631 
632 	tx = dmu_tx_create_assigned(dp, txg);
633 
634 	/*
635 	 * Run all early sync tasks before writing out any dirty blocks.
636 	 * For more info on early sync tasks see block comment in
637 	 * dsl_early_sync_task().
638 	 */
639 	if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
640 		dsl_sync_task_t *dst;
641 
642 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
643 		while ((dst =
644 		    txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
645 			ASSERT(dsl_early_sync_task_verify(dp, txg));
646 			dsl_sync_task_sync(dst, tx);
647 		}
648 		ASSERT(dsl_early_sync_task_verify(dp, txg));
649 	}
650 
651 	/*
652 	 * Write out all dirty blocks of dirty datasets.
653 	 */
654 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
655 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
656 		/*
657 		 * We must not sync any non-MOS datasets twice, because
658 		 * we may have taken a snapshot of them.  However, we
659 		 * may sync newly-created datasets on pass 2.
660 		 */
661 		ASSERT(!list_link_active(&ds->ds_synced_link));
662 		list_insert_tail(&synced_datasets, ds);
663 		dsl_dataset_sync(ds, zio, tx);
664 	}
665 	VERIFY0(zio_wait(zio));
666 
667 	/*
668 	 * Update the long range free counter after
669 	 * we're done syncing user data
670 	 */
671 	mutex_enter(&dp->dp_lock);
672 	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
673 	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
674 	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
675 	mutex_exit(&dp->dp_lock);
676 
677 	/*
678 	 * After the data blocks have been written (ensured by the zio_wait()
679 	 * above), update the user/group/project space accounting.  This happens
680 	 * in tasks dispatched to dp_sync_taskq, so wait for them before
681 	 * continuing.
682 	 */
683 	for (ds = list_head(&synced_datasets); ds != NULL;
684 	    ds = list_next(&synced_datasets, ds)) {
685 		dmu_objset_sync_done(ds->ds_objset, tx);
686 	}
687 	taskq_wait(dp->dp_sync_taskq);
688 
689 	/*
690 	 * Sync the datasets again to push out the changes due to
691 	 * userspace updates.  This must be done before we process the
692 	 * sync tasks, so that any snapshots will have the correct
693 	 * user accounting information (and we won't get confused
694 	 * about which blocks are part of the snapshot).
695 	 */
696 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
697 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
698 		objset_t *os = ds->ds_objset;
699 
700 		ASSERT(list_link_active(&ds->ds_synced_link));
701 		dmu_buf_rele(ds->ds_dbuf, ds);
702 		dsl_dataset_sync(ds, zio, tx);
703 
704 		/*
705 		 * Release any key mappings created by calls to
706 		 * dsl_dataset_dirty() from the userquota accounting
707 		 * code paths.
708 		 */
709 		if (os->os_encrypted && !os->os_raw_receive &&
710 		    !os->os_next_write_raw[txg & TXG_MASK]) {
711 			ASSERT3P(ds->ds_key_mapping, !=, NULL);
712 			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
713 		}
714 	}
715 	VERIFY0(zio_wait(zio));
716 
717 	/*
718 	 * Now that the datasets have been completely synced, we can
719 	 * clean up our in-memory structures accumulated while syncing:
720 	 *
721 	 *  - move dead blocks from the pending deadlist and livelists
722 	 *    to the on-disk versions
723 	 *  - release hold from dsl_dataset_dirty()
724 	 *  - release key mapping hold from dsl_dataset_dirty()
725 	 */
726 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
727 		objset_t *os = ds->ds_objset;
728 
729 		if (os->os_encrypted && !os->os_raw_receive &&
730 		    !os->os_next_write_raw[txg & TXG_MASK]) {
731 			ASSERT3P(ds->ds_key_mapping, !=, NULL);
732 			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
733 		}
734 
735 		dsl_dataset_sync_done(ds, tx);
736 	}
737 
738 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
739 		dsl_dir_sync(dd, tx);
740 	}
741 
742 	/*
743 	 * The MOS's space is accounted for in the pool/$MOS
744 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
745 	 * it, so we remember the deltas and apply them here.
746 	 */
747 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
748 	    dp->dp_mos_uncompressed_delta != 0) {
749 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
750 		    dp->dp_mos_used_delta,
751 		    dp->dp_mos_compressed_delta,
752 		    dp->dp_mos_uncompressed_delta, tx);
753 		dp->dp_mos_used_delta = 0;
754 		dp->dp_mos_compressed_delta = 0;
755 		dp->dp_mos_uncompressed_delta = 0;
756 	}
757 
758 	if (dmu_objset_is_dirty(mos, txg)) {
759 		dsl_pool_sync_mos(dp, tx);
760 	}
761 
762 	/*
763 	 * We have written all of the accounted dirty data, so our
764 	 * dp_space_towrite should now be zero. However, some seldom-used
765 	 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
766 	 * the accounting of any dirtied space now.
767 	 *
768 	 * Note that, besides any dirty data from datasets, the amount of
769 	 * dirty data in the MOS is also accounted by the pool. Therefore,
770 	 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
771 	 * attempt to update the accounting for the same dirty data twice.
772 	 * (i.e. at this point we only update the accounting for the space
773 	 * that we know that we "leaked").
774 	 */
775 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
776 
777 	/*
778 	 * If we modify a dataset in the same txg that we want to destroy it,
779 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
780 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
781 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
782 	 * and clearing the hold on it) before we process the sync_tasks.
783 	 * The MOS data dirtied by the sync_tasks will be synced on the next
784 	 * pass.
785 	 */
786 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
787 		dsl_sync_task_t *dst;
788 		/*
789 		 * No more sync tasks should have been added while we
790 		 * were syncing.
791 		 */
792 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
793 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
794 			dsl_sync_task_sync(dst, tx);
795 	}
796 
797 	dmu_tx_commit(tx);
798 
799 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
800 }
801 
802 void
803 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
804 {
805 	zilog_t *zilog;
806 
807 	while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
808 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
809 		/*
810 		 * We don't remove the zilog from the dp_dirty_zilogs
811 		 * list until after we've cleaned it. This ensures that
812 		 * callers of zilog_is_dirty() receive an accurate
813 		 * answer when they are racing with the spa sync thread.
814 		 */
815 		zil_clean(zilog, txg);
816 		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
817 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
818 		dmu_buf_rele(ds->ds_dbuf, zilog);
819 	}
820 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
821 }
822 
823 /*
824  * TRUE if the current thread is the tx_sync_thread or if we
825  * are being called from SPA context during pool initialization.
826  */
827 int
828 dsl_pool_sync_context(dsl_pool_t *dp)
829 {
830 	return (curthread == dp->dp_tx.tx_sync_thread ||
831 	    spa_is_initializing(dp->dp_spa) ||
832 	    taskq_member(dp->dp_sync_taskq, curthread));
833 }
834 
835 /*
836  * This function returns the amount of allocatable space in the pool
837  * minus whatever space is currently reserved by ZFS for specific
838  * purposes. Specifically:
839  *
840  * 1] Any reserved SLOP space
841  * 2] Any space used by the checkpoint
842  * 3] Any space used for deferred frees
843  *
844  * The latter 2 are especially important because they are needed to
845  * rectify the SPA's and DMU's different understanding of how much space
846  * is used. Now the DMU is aware of that extra space tracked by the SPA
847  * without having to maintain a separate special dir (e.g similar to
848  * $MOS, $FREEING, and $LEAKED).
849  *
850  * Note: By deferred frees here, we mean the frees that were deferred
851  * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
852  * segments placed in ms_defer trees during metaslab_sync_done().
853  */
854 uint64_t
855 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
856 {
857 	spa_t *spa = dp->dp_spa;
858 	uint64_t space, resv, adjustedsize;
859 	uint64_t spa_deferred_frees =
860 	    spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
861 
862 	space = spa_get_dspace(spa)
863 	    - spa_get_checkpoint_space(spa) - spa_deferred_frees;
864 	resv = spa_get_slop_space(spa);
865 
866 	switch (slop_policy) {
867 	case ZFS_SPACE_CHECK_NORMAL:
868 		break;
869 	case ZFS_SPACE_CHECK_RESERVED:
870 		resv >>= 1;
871 		break;
872 	case ZFS_SPACE_CHECK_EXTRA_RESERVED:
873 		resv >>= 2;
874 		break;
875 	case ZFS_SPACE_CHECK_NONE:
876 		resv = 0;
877 		break;
878 	default:
879 		panic("invalid slop policy value: %d", slop_policy);
880 		break;
881 	}
882 	adjustedsize = (space >= resv) ? (space - resv) : 0;
883 
884 	return (adjustedsize);
885 }
886 
887 uint64_t
888 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
889 {
890 	uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
891 	uint64_t deferred =
892 	    metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
893 	uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
894 	return (quota);
895 }
896 
897 boolean_t
898 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
899 {
900 	uint64_t delay_min_bytes =
901 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
902 	uint64_t dirty_min_bytes =
903 	    zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
904 	uint64_t dirty;
905 
906 	mutex_enter(&dp->dp_lock);
907 	dirty = dp->dp_dirty_total;
908 	mutex_exit(&dp->dp_lock);
909 	if (dirty > dirty_min_bytes)
910 		txg_kick(dp);
911 	return (dirty > delay_min_bytes);
912 }
913 
914 void
915 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
916 {
917 	if (space > 0) {
918 		mutex_enter(&dp->dp_lock);
919 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
920 		dsl_pool_dirty_delta(dp, space);
921 		mutex_exit(&dp->dp_lock);
922 	}
923 }
924 
925 void
926 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
927 {
928 	ASSERT3S(space, >=, 0);
929 	if (space == 0)
930 		return;
931 
932 	mutex_enter(&dp->dp_lock);
933 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
934 		/* XXX writing something we didn't dirty? */
935 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
936 	}
937 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
938 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
939 	ASSERT3U(dp->dp_dirty_total, >=, space);
940 	dsl_pool_dirty_delta(dp, -space);
941 	mutex_exit(&dp->dp_lock);
942 }
943 
944 /* ARGSUSED */
945 static int
946 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
947 {
948 	dmu_tx_t *tx = arg;
949 	dsl_dataset_t *ds, *prev = NULL;
950 	int err;
951 
952 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
953 	if (err)
954 		return (err);
955 
956 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
957 		err = dsl_dataset_hold_obj(dp,
958 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
959 		if (err) {
960 			dsl_dataset_rele(ds, FTAG);
961 			return (err);
962 		}
963 
964 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
965 			break;
966 		dsl_dataset_rele(ds, FTAG);
967 		ds = prev;
968 		prev = NULL;
969 	}
970 
971 	if (prev == NULL) {
972 		prev = dp->dp_origin_snap;
973 
974 		/*
975 		 * The $ORIGIN can't have any data, or the accounting
976 		 * will be wrong.
977 		 */
978 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
979 		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
980 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
981 
982 		/* The origin doesn't get attached to itself */
983 		if (ds->ds_object == prev->ds_object) {
984 			dsl_dataset_rele(ds, FTAG);
985 			return (0);
986 		}
987 
988 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
989 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
990 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
991 		    dsl_dataset_phys(prev)->ds_creation_txg;
992 
993 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
994 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
995 
996 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
997 		dsl_dataset_phys(prev)->ds_num_children++;
998 
999 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
1000 			ASSERT(ds->ds_prev == NULL);
1001 			VERIFY0(dsl_dataset_hold_obj(dp,
1002 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
1003 			    ds, &ds->ds_prev));
1004 		}
1005 	}
1006 
1007 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1008 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
1009 
1010 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
1011 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
1012 		dsl_dataset_phys(prev)->ds_next_clones_obj =
1013 		    zap_create(dp->dp_meta_objset,
1014 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1015 	}
1016 	VERIFY0(zap_add_int(dp->dp_meta_objset,
1017 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
1018 
1019 	dsl_dataset_rele(ds, FTAG);
1020 	if (prev != dp->dp_origin_snap)
1021 		dsl_dataset_rele(prev, FTAG);
1022 	return (0);
1023 }
1024 
1025 void
1026 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1027 {
1028 	ASSERT(dmu_tx_is_syncing(tx));
1029 	ASSERT(dp->dp_origin_snap != NULL);
1030 
1031 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1032 	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1033 }
1034 
1035 /* ARGSUSED */
1036 static int
1037 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1038 {
1039 	dmu_tx_t *tx = arg;
1040 	objset_t *mos = dp->dp_meta_objset;
1041 
1042 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1043 		dsl_dataset_t *origin;
1044 
1045 		VERIFY0(dsl_dataset_hold_obj(dp,
1046 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1047 
1048 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1049 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1050 			dsl_dir_phys(origin->ds_dir)->dd_clones =
1051 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1052 			    0, tx);
1053 		}
1054 
1055 		VERIFY0(zap_add_int(dp->dp_meta_objset,
1056 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
1057 		    ds->ds_object, tx));
1058 
1059 		dsl_dataset_rele(origin, FTAG);
1060 	}
1061 	return (0);
1062 }
1063 
1064 void
1065 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1066 {
1067 	uint64_t obj;
1068 
1069 	ASSERT(dmu_tx_is_syncing(tx));
1070 
1071 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1072 	VERIFY0(dsl_pool_open_special_dir(dp,
1073 	    FREE_DIR_NAME, &dp->dp_free_dir));
1074 
1075 	/*
1076 	 * We can't use bpobj_alloc(), because spa_version() still
1077 	 * returns the old version, and we need a new-version bpobj with
1078 	 * subobj support.  So call dmu_object_alloc() directly.
1079 	 */
1080 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1081 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1082 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1083 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1084 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1085 
1086 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1087 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1088 }
1089 
1090 void
1091 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1092 {
1093 	uint64_t dsobj;
1094 	dsl_dataset_t *ds;
1095 
1096 	ASSERT(dmu_tx_is_syncing(tx));
1097 	ASSERT(dp->dp_origin_snap == NULL);
1098 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1099 
1100 	/* create the origin dir, ds, & snap-ds */
1101 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1102 	    NULL, 0, kcred, NULL, tx);
1103 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1104 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1105 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1106 	    dp, &dp->dp_origin_snap));
1107 	dsl_dataset_rele(ds, FTAG);
1108 }
1109 
1110 taskq_t *
1111 dsl_pool_zrele_taskq(dsl_pool_t *dp)
1112 {
1113 	return (dp->dp_zrele_taskq);
1114 }
1115 
1116 taskq_t *
1117 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1118 {
1119 	return (dp->dp_unlinked_drain_taskq);
1120 }
1121 
1122 /*
1123  * Walk through the pool-wide zap object of temporary snapshot user holds
1124  * and release them.
1125  */
1126 void
1127 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1128 {
1129 	zap_attribute_t za;
1130 	zap_cursor_t zc;
1131 	objset_t *mos = dp->dp_meta_objset;
1132 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1133 	nvlist_t *holds;
1134 
1135 	if (zapobj == 0)
1136 		return;
1137 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1138 
1139 	holds = fnvlist_alloc();
1140 
1141 	for (zap_cursor_init(&zc, mos, zapobj);
1142 	    zap_cursor_retrieve(&zc, &za) == 0;
1143 	    zap_cursor_advance(&zc)) {
1144 		char *htag;
1145 		nvlist_t *tags;
1146 
1147 		htag = strchr(za.za_name, '-');
1148 		*htag = '\0';
1149 		++htag;
1150 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1151 			tags = fnvlist_alloc();
1152 			fnvlist_add_boolean(tags, htag);
1153 			fnvlist_add_nvlist(holds, za.za_name, tags);
1154 			fnvlist_free(tags);
1155 		} else {
1156 			fnvlist_add_boolean(tags, htag);
1157 		}
1158 	}
1159 	dsl_dataset_user_release_tmp(dp, holds);
1160 	fnvlist_free(holds);
1161 	zap_cursor_fini(&zc);
1162 }
1163 
1164 /*
1165  * Create the pool-wide zap object for storing temporary snapshot holds.
1166  */
1167 static void
1168 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1169 {
1170 	objset_t *mos = dp->dp_meta_objset;
1171 
1172 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
1173 	ASSERT(dmu_tx_is_syncing(tx));
1174 
1175 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1176 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1177 }
1178 
1179 static int
1180 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1181     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1182 {
1183 	objset_t *mos = dp->dp_meta_objset;
1184 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1185 	char *name;
1186 	int error;
1187 
1188 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1189 	ASSERT(dmu_tx_is_syncing(tx));
1190 
1191 	/*
1192 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1193 	 * zap object for temporary holds might not exist yet.
1194 	 */
1195 	if (zapobj == 0) {
1196 		if (holding) {
1197 			dsl_pool_user_hold_create_obj(dp, tx);
1198 			zapobj = dp->dp_tmp_userrefs_obj;
1199 		} else {
1200 			return (SET_ERROR(ENOENT));
1201 		}
1202 	}
1203 
1204 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1205 	if (holding)
1206 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1207 	else
1208 		error = zap_remove(mos, zapobj, name, tx);
1209 	kmem_strfree(name);
1210 
1211 	return (error);
1212 }
1213 
1214 /*
1215  * Add a temporary hold for the given dataset object and tag.
1216  */
1217 int
1218 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1219     uint64_t now, dmu_tx_t *tx)
1220 {
1221 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1222 }
1223 
1224 /*
1225  * Release a temporary hold for the given dataset object and tag.
1226  */
1227 int
1228 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1229     dmu_tx_t *tx)
1230 {
1231 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1232 	    tx, B_FALSE));
1233 }
1234 
1235 /*
1236  * DSL Pool Configuration Lock
1237  *
1238  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1239  * creation / destruction / rename / property setting).  It must be held for
1240  * read to hold a dataset or dsl_dir.  I.e. you must call
1241  * dsl_pool_config_enter() or dsl_pool_hold() before calling
1242  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1243  * must be held continuously until all datasets and dsl_dirs are released.
1244  *
1245  * The only exception to this rule is that if a "long hold" is placed on
1246  * a dataset, then the dp_config_rwlock may be dropped while the dataset
1247  * is still held.  The long hold will prevent the dataset from being
1248  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1249  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1250  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1251  *
1252  * Legitimate long-holders (including owners) should be long-running, cancelable
1253  * tasks that should cause "zfs destroy" to fail.  This includes DMU
1254  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1255  * "zfs send", and "zfs diff".  There are several other long-holders whose
1256  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1257  *
1258  * The usual formula for long-holding would be:
1259  * dsl_pool_hold()
1260  * dsl_dataset_hold()
1261  * ... perform checks ...
1262  * dsl_dataset_long_hold()
1263  * dsl_pool_rele()
1264  * ... perform long-running task ...
1265  * dsl_dataset_long_rele()
1266  * dsl_dataset_rele()
1267  *
1268  * Note that when the long hold is released, the dataset is still held but
1269  * the pool is not held.  The dataset may change arbitrarily during this time
1270  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1271  * dataset except release it.
1272  *
1273  * Operations generally fall somewhere into the following taxonomy:
1274  *
1275  *                              Read-Only             Modifying
1276  *
1277  *    Dataset Layer / MOS        zfs get             zfs destroy
1278  *
1279  *     Individual Dataset         read()                write()
1280  *
1281  *
1282  * Dataset Layer Operations
1283  *
1284  * Modifying operations should generally use dsl_sync_task().  The synctask
1285  * infrastructure enforces proper locking strategy with respect to the
1286  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1287  *
1288  * Read-only operations will manually hold the pool, then the dataset, obtain
1289  * information from the dataset, then release the pool and dataset.
1290  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1291  * hold/rele.
1292  *
1293  *
1294  * Operations On Individual Datasets
1295  *
1296  * Objects _within_ an objset should only be modified by the current 'owner'
1297  * of the objset to prevent incorrect concurrent modification. Thus, use
1298  * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1299  * and fail with EBUSY if there is already an owner. The owner can then
1300  * implement its own locking strategy, independent of the dataset layer's
1301  * locking infrastructure.
1302  * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1303  *  vnop will not reach into the dataset layer).
1304  *
1305  * Ideally, objects would also only be read by the objset’s owner, so that we
1306  * don’t observe state mid-modification.
1307  * (E.g. the ZPL is creating a new object and linking it into a directory; if
1308  * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
1309  * intermediate state.  The ioctl level violates this but in pretty benign
1310  * ways, e.g. reading the zpl props object.)
1311  */
1312 
1313 int
1314 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1315 {
1316 	spa_t *spa;
1317 	int error;
1318 
1319 	error = spa_open(name, &spa, tag);
1320 	if (error == 0) {
1321 		*dp = spa_get_dsl(spa);
1322 		dsl_pool_config_enter(*dp, tag);
1323 	}
1324 	return (error);
1325 }
1326 
1327 void
1328 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1329 {
1330 	dsl_pool_config_exit(dp, tag);
1331 	spa_close(dp->dp_spa, tag);
1332 }
1333 
1334 void
1335 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1336 {
1337 	/*
1338 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1339 	 *
1340 	 * The rrwlock can (with the track_all flag) track all reading threads,
1341 	 * which is very useful for debugging which code path failed to release
1342 	 * the lock, and for verifying that the *current* thread does hold
1343 	 * the lock.
1344 	 *
1345 	 * (Unlike a rwlock, which knows that N threads hold it for
1346 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1347 	 * if any thread holds it for read, even if this thread doesn't).
1348 	 */
1349 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1350 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1351 }
1352 
1353 void
1354 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1355 {
1356 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1357 	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1358 }
1359 
1360 void
1361 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1362 {
1363 	rrw_exit(&dp->dp_config_rwlock, tag);
1364 }
1365 
1366 boolean_t
1367 dsl_pool_config_held(dsl_pool_t *dp)
1368 {
1369 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1370 }
1371 
1372 boolean_t
1373 dsl_pool_config_held_writer(dsl_pool_t *dp)
1374 {
1375 	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1376 }
1377 
1378 EXPORT_SYMBOL(dsl_pool_config_enter);
1379 EXPORT_SYMBOL(dsl_pool_config_exit);
1380 
1381 /* BEGIN CSTYLED */
1382 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1383 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, INT, ZMOD_RD,
1384 	"Max percent of RAM allowed to be dirty");
1385 
1386 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1387 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, INT, ZMOD_RD,
1388 	"zfs_dirty_data_max upper bound as % of RAM");
1389 
1390 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, INT, ZMOD_RW,
1391 	"Transaction delay threshold");
1392 
1393 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, ULONG, ZMOD_RW,
1394 	"Determines the dirty space limit");
1395 
1396 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1397 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, ULONG, ZMOD_RD,
1398 	"zfs_dirty_data_max upper bound in bytes");
1399 
1400 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, INT, ZMOD_RW,
1401 	"Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
1402 
1403 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, ULONG, ZMOD_RW,
1404 	"How quickly delay approaches infinity");
1405 
1406 ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW,
1407 	"Max percent of CPUs that are used to sync dirty data");
1408 
1409 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1410 	"Max percent of CPUs that are used per dp_sync_taskq");
1411 
1412 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1413 	"Number of taskq entries that are pre-populated");
1414 
1415 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1416 	"Max number of taskq entries that are cached");
1417 /* END CSTYLED */
1418