1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 #include <sys/dsl_pool.h> 30 #include <sys/dsl_dataset.h> 31 #include <sys/dsl_prop.h> 32 #include <sys/dsl_dir.h> 33 #include <sys/dsl_synctask.h> 34 #include <sys/dsl_scan.h> 35 #include <sys/dnode.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/arc.h> 39 #include <sys/zap.h> 40 #include <sys/zio.h> 41 #include <sys/zfs_context.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/zfs_znode.h> 44 #include <sys/spa_impl.h> 45 #include <sys/vdev_impl.h> 46 #include <sys/metaslab_impl.h> 47 #include <sys/bptree.h> 48 #include <sys/zfeature.h> 49 #include <sys/zil_impl.h> 50 #include <sys/dsl_userhold.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/mmp.h> 53 54 /* 55 * ZFS Write Throttle 56 * ------------------ 57 * 58 * ZFS must limit the rate of incoming writes to the rate at which it is able 59 * to sync data modifications to the backend storage. Throttling by too much 60 * creates an artificial limit; throttling by too little can only be sustained 61 * for short periods and would lead to highly lumpy performance. On a per-pool 62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 64 * of dirty data decreases. When the amount of dirty data exceeds a 65 * predetermined threshold further modifications are blocked until the amount 66 * of dirty data decreases (as data is synced out). 67 * 68 * The limit on dirty data is tunable, and should be adjusted according to 69 * both the IO capacity and available memory of the system. The larger the 70 * window, the more ZFS is able to aggregate and amortize metadata (and data) 71 * changes. However, memory is a limited resource, and allowing for more dirty 72 * data comes at the cost of keeping other useful data in memory (for example 73 * ZFS data cached by the ARC). 74 * 75 * Implementation 76 * 77 * As buffers are modified dsl_pool_willuse_space() increments both the per- 78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 79 * dirty space used; dsl_pool_dirty_space() decrements those values as data 80 * is synced out from dsl_pool_sync(). While only the poolwide value is 81 * relevant, the per-txg value is useful for debugging. The tunable 82 * zfs_dirty_data_max determines the dirty space limit. Once that value is 83 * exceeded, new writes are halted until space frees up. 84 * 85 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we 86 * ensure that there is a txg syncing (see the comment in txg.c for a full 87 * description of transaction group stages). 88 * 89 * The IO scheduler uses both the dirty space limit and current amount of 90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 91 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 92 * 93 * The delay is also calculated based on the amount of dirty data. See the 94 * comment above dmu_tx_delay() for details. 95 */ 96 97 /* 98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 99 * capped at zfs_dirty_data_max_max. It can also be overridden with a module 100 * parameter. 101 */ 102 unsigned long zfs_dirty_data_max = 0; 103 unsigned long zfs_dirty_data_max_max = 0; 104 int zfs_dirty_data_max_percent = 10; 105 int zfs_dirty_data_max_max_percent = 25; 106 107 /* 108 * If there's at least this much dirty data (as a percentage of 109 * zfs_dirty_data_max), push out a txg. This should be less than 110 * zfs_vdev_async_write_active_min_dirty_percent. 111 */ 112 int zfs_dirty_data_sync_percent = 20; 113 114 /* 115 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 116 * and delay each transaction. 117 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 118 */ 119 int zfs_delay_min_dirty_percent = 60; 120 121 /* 122 * This controls how quickly the delay approaches infinity. 123 * Larger values cause it to delay more for a given amount of dirty data. 124 * Therefore larger values will cause there to be less dirty data for a 125 * given throughput. 126 * 127 * For the smoothest delay, this value should be about 1 billion divided 128 * by the maximum number of operations per second. This will smoothly 129 * handle between 10x and 1/10th this number. 130 * 131 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 132 * multiply in dmu_tx_delay(). 133 */ 134 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 135 136 /* 137 * This determines the number of threads used by the dp_sync_taskq. 138 */ 139 int zfs_sync_taskq_batch_pct = 75; 140 141 /* 142 * These tunables determine the behavior of how zil_itxg_clean() is 143 * called via zil_clean() in the context of spa_sync(). When an itxg 144 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching. 145 * If the dispatch fails, the call to zil_itxg_clean() will occur 146 * synchronously in the context of spa_sync(), which can negatively 147 * impact the performance of spa_sync() (e.g. in the case of the itxg 148 * list having a large number of itxs that needs to be cleaned). 149 * 150 * Thus, these tunables can be used to manipulate the behavior of the 151 * taskq used by zil_clean(); they determine the number of taskq entries 152 * that are pre-populated when the taskq is first created (via the 153 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of 154 * taskq entries that are cached after an on-demand allocation (via the 155 * "zfs_zil_clean_taskq_maxalloc"). 156 * 157 * The idea being, we want to try reasonably hard to ensure there will 158 * already be a taskq entry pre-allocated by the time that it is needed 159 * by zil_clean(). This way, we can avoid the possibility of an 160 * on-demand allocation of a new taskq entry from failing, which would 161 * result in zil_itxg_clean() being called synchronously from zil_clean() 162 * (which can adversely affect performance of spa_sync()). 163 * 164 * Additionally, the number of threads used by the taskq can be 165 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable. 166 */ 167 int zfs_zil_clean_taskq_nthr_pct = 100; 168 int zfs_zil_clean_taskq_minalloc = 1024; 169 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024; 170 171 int 172 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 173 { 174 uint64_t obj; 175 int err; 176 177 err = zap_lookup(dp->dp_meta_objset, 178 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 179 name, sizeof (obj), 1, &obj); 180 if (err) 181 return (err); 182 183 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 184 } 185 186 static dsl_pool_t * 187 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 188 { 189 dsl_pool_t *dp; 190 blkptr_t *bp = spa_get_rootblkptr(spa); 191 192 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 193 dp->dp_spa = spa; 194 dp->dp_meta_rootbp = *bp; 195 rrw_init(&dp->dp_config_rwlock, B_TRUE); 196 txg_init(dp, txg); 197 mmp_init(spa); 198 199 txg_list_create(&dp->dp_dirty_datasets, spa, 200 offsetof(dsl_dataset_t, ds_dirty_link)); 201 txg_list_create(&dp->dp_dirty_zilogs, spa, 202 offsetof(zilog_t, zl_dirty_link)); 203 txg_list_create(&dp->dp_dirty_dirs, spa, 204 offsetof(dsl_dir_t, dd_dirty_link)); 205 txg_list_create(&dp->dp_sync_tasks, spa, 206 offsetof(dsl_sync_task_t, dst_node)); 207 txg_list_create(&dp->dp_early_sync_tasks, spa, 208 offsetof(dsl_sync_task_t, dst_node)); 209 210 dp->dp_sync_taskq = taskq_create("dp_sync_taskq", 211 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX, 212 TASKQ_THREADS_CPU_PCT); 213 214 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq", 215 zfs_zil_clean_taskq_nthr_pct, minclsyspri, 216 zfs_zil_clean_taskq_minalloc, 217 zfs_zil_clean_taskq_maxalloc, 218 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 219 220 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 221 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 222 223 dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri, 224 boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 225 TASKQ_THREADS_CPU_PCT); 226 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain", 227 100, defclsyspri, boot_ncpus, INT_MAX, 228 TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 229 230 return (dp); 231 } 232 233 int 234 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 235 { 236 int err; 237 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 238 239 /* 240 * Initialize the caller's dsl_pool_t structure before we actually open 241 * the meta objset. This is done because a self-healing write zio may 242 * be issued as part of dmu_objset_open_impl() and the spa needs its 243 * dsl_pool_t initialized in order to handle the write. 244 */ 245 *dpp = dp; 246 247 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 248 &dp->dp_meta_objset); 249 if (err != 0) { 250 dsl_pool_close(dp); 251 *dpp = NULL; 252 } 253 254 return (err); 255 } 256 257 int 258 dsl_pool_open(dsl_pool_t *dp) 259 { 260 int err; 261 dsl_dir_t *dd; 262 dsl_dataset_t *ds; 263 uint64_t obj; 264 265 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 266 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 267 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 268 &dp->dp_root_dir_obj); 269 if (err) 270 goto out; 271 272 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 273 NULL, dp, &dp->dp_root_dir); 274 if (err) 275 goto out; 276 277 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 278 if (err) 279 goto out; 280 281 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 282 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 283 if (err) 284 goto out; 285 err = dsl_dataset_hold_obj(dp, 286 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 287 if (err == 0) { 288 err = dsl_dataset_hold_obj(dp, 289 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 290 &dp->dp_origin_snap); 291 dsl_dataset_rele(ds, FTAG); 292 } 293 dsl_dir_rele(dd, dp); 294 if (err) 295 goto out; 296 } 297 298 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 299 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 300 &dp->dp_free_dir); 301 if (err) 302 goto out; 303 304 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 305 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 306 if (err) 307 goto out; 308 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 309 dp->dp_meta_objset, obj)); 310 } 311 312 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 313 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 314 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj); 315 if (err == 0) { 316 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, 317 dp->dp_meta_objset, obj)); 318 } else if (err == ENOENT) { 319 /* 320 * We might not have created the remap bpobj yet. 321 */ 322 err = 0; 323 } else { 324 goto out; 325 } 326 } 327 328 /* 329 * Note: errors ignored, because the these special dirs, used for 330 * space accounting, are only created on demand. 331 */ 332 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 333 &dp->dp_leak_dir); 334 335 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 336 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 337 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 338 &dp->dp_bptree_obj); 339 if (err != 0) 340 goto out; 341 } 342 343 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 344 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 345 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 346 &dp->dp_empty_bpobj); 347 if (err != 0) 348 goto out; 349 } 350 351 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 352 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 353 &dp->dp_tmp_userrefs_obj); 354 if (err == ENOENT) 355 err = 0; 356 if (err) 357 goto out; 358 359 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 360 361 out: 362 rrw_exit(&dp->dp_config_rwlock, FTAG); 363 return (err); 364 } 365 366 void 367 dsl_pool_close(dsl_pool_t *dp) 368 { 369 /* 370 * Drop our references from dsl_pool_open(). 371 * 372 * Since we held the origin_snap from "syncing" context (which 373 * includes pool-opening context), it actually only got a "ref" 374 * and not a hold, so just drop that here. 375 */ 376 if (dp->dp_origin_snap != NULL) 377 dsl_dataset_rele(dp->dp_origin_snap, dp); 378 if (dp->dp_mos_dir != NULL) 379 dsl_dir_rele(dp->dp_mos_dir, dp); 380 if (dp->dp_free_dir != NULL) 381 dsl_dir_rele(dp->dp_free_dir, dp); 382 if (dp->dp_leak_dir != NULL) 383 dsl_dir_rele(dp->dp_leak_dir, dp); 384 if (dp->dp_root_dir != NULL) 385 dsl_dir_rele(dp->dp_root_dir, dp); 386 387 bpobj_close(&dp->dp_free_bpobj); 388 bpobj_close(&dp->dp_obsolete_bpobj); 389 390 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 391 if (dp->dp_meta_objset != NULL) 392 dmu_objset_evict(dp->dp_meta_objset); 393 394 txg_list_destroy(&dp->dp_dirty_datasets); 395 txg_list_destroy(&dp->dp_dirty_zilogs); 396 txg_list_destroy(&dp->dp_sync_tasks); 397 txg_list_destroy(&dp->dp_early_sync_tasks); 398 txg_list_destroy(&dp->dp_dirty_dirs); 399 400 taskq_destroy(dp->dp_zil_clean_taskq); 401 taskq_destroy(dp->dp_sync_taskq); 402 403 /* 404 * We can't set retry to TRUE since we're explicitly specifying 405 * a spa to flush. This is good enough; any missed buffers for 406 * this spa won't cause trouble, and they'll eventually fall 407 * out of the ARC just like any other unused buffer. 408 */ 409 arc_flush(dp->dp_spa, FALSE); 410 411 mmp_fini(dp->dp_spa); 412 txg_fini(dp); 413 dsl_scan_fini(dp); 414 dmu_buf_user_evict_wait(); 415 416 rrw_destroy(&dp->dp_config_rwlock); 417 mutex_destroy(&dp->dp_lock); 418 cv_destroy(&dp->dp_spaceavail_cv); 419 taskq_destroy(dp->dp_unlinked_drain_taskq); 420 taskq_destroy(dp->dp_zrele_taskq); 421 if (dp->dp_blkstats != NULL) { 422 mutex_destroy(&dp->dp_blkstats->zab_lock); 423 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 424 } 425 kmem_free(dp, sizeof (dsl_pool_t)); 426 } 427 428 void 429 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 430 { 431 uint64_t obj; 432 /* 433 * Currently, we only create the obsolete_bpobj where there are 434 * indirect vdevs with referenced mappings. 435 */ 436 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL)); 437 /* create and open the obsolete_bpobj */ 438 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 439 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj)); 440 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 441 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 442 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 443 } 444 445 void 446 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 447 { 448 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 449 VERIFY0(zap_remove(dp->dp_meta_objset, 450 DMU_POOL_DIRECTORY_OBJECT, 451 DMU_POOL_OBSOLETE_BPOBJ, tx)); 452 bpobj_free(dp->dp_meta_objset, 453 dp->dp_obsolete_bpobj.bpo_object, tx); 454 bpobj_close(&dp->dp_obsolete_bpobj); 455 } 456 457 dsl_pool_t * 458 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp, 459 uint64_t txg) 460 { 461 int err; 462 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 463 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 464 #ifdef _KERNEL 465 objset_t *os; 466 #else 467 objset_t *os __attribute__((unused)); 468 #endif 469 dsl_dataset_t *ds; 470 uint64_t obj; 471 472 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 473 474 /* create and open the MOS (meta-objset) */ 475 dp->dp_meta_objset = dmu_objset_create_impl(spa, 476 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 477 spa->spa_meta_objset = dp->dp_meta_objset; 478 479 /* create the pool directory */ 480 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 481 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 482 ASSERT0(err); 483 484 /* Initialize scan structures */ 485 VERIFY0(dsl_scan_init(dp, txg)); 486 487 /* create and open the root dir */ 488 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 489 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 490 NULL, dp, &dp->dp_root_dir)); 491 492 /* create and open the meta-objset dir */ 493 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 494 VERIFY0(dsl_pool_open_special_dir(dp, 495 MOS_DIR_NAME, &dp->dp_mos_dir)); 496 497 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 498 /* create and open the free dir */ 499 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 500 FREE_DIR_NAME, tx); 501 VERIFY0(dsl_pool_open_special_dir(dp, 502 FREE_DIR_NAME, &dp->dp_free_dir)); 503 504 /* create and open the free_bplist */ 505 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 506 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 507 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 508 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 509 dp->dp_meta_objset, obj)); 510 } 511 512 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 513 dsl_pool_create_origin(dp, tx); 514 515 /* 516 * Some features may be needed when creating the root dataset, so we 517 * create the feature objects here. 518 */ 519 if (spa_version(spa) >= SPA_VERSION_FEATURES) 520 spa_feature_create_zap_objects(spa, tx); 521 522 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF && 523 dcp->cp_crypt != ZIO_CRYPT_INHERIT) 524 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx); 525 526 /* create the root dataset */ 527 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx); 528 529 /* create the root objset */ 530 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj, 531 DS_HOLD_FLAG_DECRYPT, FTAG, &ds)); 532 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 533 os = dmu_objset_create_impl(dp->dp_spa, ds, 534 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 535 rrw_exit(&ds->ds_bp_rwlock, FTAG); 536 #ifdef _KERNEL 537 zfs_create_fs(os, kcred, zplprops, tx); 538 #endif 539 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 540 541 dmu_tx_commit(tx); 542 543 rrw_exit(&dp->dp_config_rwlock, FTAG); 544 545 return (dp); 546 } 547 548 /* 549 * Account for the meta-objset space in its placeholder dsl_dir. 550 */ 551 void 552 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 553 int64_t used, int64_t comp, int64_t uncomp) 554 { 555 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 556 mutex_enter(&dp->dp_lock); 557 dp->dp_mos_used_delta += used; 558 dp->dp_mos_compressed_delta += comp; 559 dp->dp_mos_uncompressed_delta += uncomp; 560 mutex_exit(&dp->dp_lock); 561 } 562 563 static void 564 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 565 { 566 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 567 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 568 VERIFY0(zio_wait(zio)); 569 dmu_objset_sync_done(dp->dp_meta_objset, tx); 570 taskq_wait(dp->dp_sync_taskq); 571 multilist_destroy(dp->dp_meta_objset->os_synced_dnodes); 572 dp->dp_meta_objset->os_synced_dnodes = NULL; 573 574 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 575 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 576 } 577 578 static void 579 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 580 { 581 ASSERT(MUTEX_HELD(&dp->dp_lock)); 582 583 if (delta < 0) 584 ASSERT3U(-delta, <=, dp->dp_dirty_total); 585 586 dp->dp_dirty_total += delta; 587 588 /* 589 * Note: we signal even when increasing dp_dirty_total. 590 * This ensures forward progress -- each thread wakes the next waiter. 591 */ 592 if (dp->dp_dirty_total < zfs_dirty_data_max) 593 cv_signal(&dp->dp_spaceavail_cv); 594 } 595 596 #ifdef ZFS_DEBUG 597 static boolean_t 598 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg) 599 { 600 spa_t *spa = dp->dp_spa; 601 vdev_t *rvd = spa->spa_root_vdev; 602 603 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 604 vdev_t *vd = rvd->vdev_child[c]; 605 txg_list_t *tl = &vd->vdev_ms_list; 606 metaslab_t *ms; 607 608 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms; 609 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) { 610 VERIFY(range_tree_is_empty(ms->ms_freeing)); 611 VERIFY(range_tree_is_empty(ms->ms_checkpointing)); 612 } 613 } 614 615 return (B_TRUE); 616 } 617 #endif 618 619 void 620 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 621 { 622 zio_t *zio; 623 dmu_tx_t *tx; 624 dsl_dir_t *dd; 625 dsl_dataset_t *ds; 626 objset_t *mos = dp->dp_meta_objset; 627 list_t synced_datasets; 628 629 list_create(&synced_datasets, sizeof (dsl_dataset_t), 630 offsetof(dsl_dataset_t, ds_synced_link)); 631 632 tx = dmu_tx_create_assigned(dp, txg); 633 634 /* 635 * Run all early sync tasks before writing out any dirty blocks. 636 * For more info on early sync tasks see block comment in 637 * dsl_early_sync_task(). 638 */ 639 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) { 640 dsl_sync_task_t *dst; 641 642 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 643 while ((dst = 644 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) { 645 ASSERT(dsl_early_sync_task_verify(dp, txg)); 646 dsl_sync_task_sync(dst, tx); 647 } 648 ASSERT(dsl_early_sync_task_verify(dp, txg)); 649 } 650 651 /* 652 * Write out all dirty blocks of dirty datasets. 653 */ 654 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 655 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 656 /* 657 * We must not sync any non-MOS datasets twice, because 658 * we may have taken a snapshot of them. However, we 659 * may sync newly-created datasets on pass 2. 660 */ 661 ASSERT(!list_link_active(&ds->ds_synced_link)); 662 list_insert_tail(&synced_datasets, ds); 663 dsl_dataset_sync(ds, zio, tx); 664 } 665 VERIFY0(zio_wait(zio)); 666 667 /* 668 * Update the long range free counter after 669 * we're done syncing user data 670 */ 671 mutex_enter(&dp->dp_lock); 672 ASSERT(spa_sync_pass(dp->dp_spa) == 1 || 673 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0); 674 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0; 675 mutex_exit(&dp->dp_lock); 676 677 /* 678 * After the data blocks have been written (ensured by the zio_wait() 679 * above), update the user/group/project space accounting. This happens 680 * in tasks dispatched to dp_sync_taskq, so wait for them before 681 * continuing. 682 */ 683 for (ds = list_head(&synced_datasets); ds != NULL; 684 ds = list_next(&synced_datasets, ds)) { 685 dmu_objset_sync_done(ds->ds_objset, tx); 686 } 687 taskq_wait(dp->dp_sync_taskq); 688 689 /* 690 * Sync the datasets again to push out the changes due to 691 * userspace updates. This must be done before we process the 692 * sync tasks, so that any snapshots will have the correct 693 * user accounting information (and we won't get confused 694 * about which blocks are part of the snapshot). 695 */ 696 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 697 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 698 objset_t *os = ds->ds_objset; 699 700 ASSERT(list_link_active(&ds->ds_synced_link)); 701 dmu_buf_rele(ds->ds_dbuf, ds); 702 dsl_dataset_sync(ds, zio, tx); 703 704 /* 705 * Release any key mappings created by calls to 706 * dsl_dataset_dirty() from the userquota accounting 707 * code paths. 708 */ 709 if (os->os_encrypted && !os->os_raw_receive && 710 !os->os_next_write_raw[txg & TXG_MASK]) { 711 ASSERT3P(ds->ds_key_mapping, !=, NULL); 712 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds); 713 } 714 } 715 VERIFY0(zio_wait(zio)); 716 717 /* 718 * Now that the datasets have been completely synced, we can 719 * clean up our in-memory structures accumulated while syncing: 720 * 721 * - move dead blocks from the pending deadlist and livelists 722 * to the on-disk versions 723 * - release hold from dsl_dataset_dirty() 724 * - release key mapping hold from dsl_dataset_dirty() 725 */ 726 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 727 objset_t *os = ds->ds_objset; 728 729 if (os->os_encrypted && !os->os_raw_receive && 730 !os->os_next_write_raw[txg & TXG_MASK]) { 731 ASSERT3P(ds->ds_key_mapping, !=, NULL); 732 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds); 733 } 734 735 dsl_dataset_sync_done(ds, tx); 736 } 737 738 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 739 dsl_dir_sync(dd, tx); 740 } 741 742 /* 743 * The MOS's space is accounted for in the pool/$MOS 744 * (dp_mos_dir). We can't modify the mos while we're syncing 745 * it, so we remember the deltas and apply them here. 746 */ 747 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 748 dp->dp_mos_uncompressed_delta != 0) { 749 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 750 dp->dp_mos_used_delta, 751 dp->dp_mos_compressed_delta, 752 dp->dp_mos_uncompressed_delta, tx); 753 dp->dp_mos_used_delta = 0; 754 dp->dp_mos_compressed_delta = 0; 755 dp->dp_mos_uncompressed_delta = 0; 756 } 757 758 if (dmu_objset_is_dirty(mos, txg)) { 759 dsl_pool_sync_mos(dp, tx); 760 } 761 762 /* 763 * We have written all of the accounted dirty data, so our 764 * dp_space_towrite should now be zero. However, some seldom-used 765 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up 766 * the accounting of any dirtied space now. 767 * 768 * Note that, besides any dirty data from datasets, the amount of 769 * dirty data in the MOS is also accounted by the pool. Therefore, 770 * we want to do this cleanup after dsl_pool_sync_mos() so we don't 771 * attempt to update the accounting for the same dirty data twice. 772 * (i.e. at this point we only update the accounting for the space 773 * that we know that we "leaked"). 774 */ 775 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 776 777 /* 778 * If we modify a dataset in the same txg that we want to destroy it, 779 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 780 * dsl_dir_destroy_check() will fail if there are unexpected holds. 781 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 782 * and clearing the hold on it) before we process the sync_tasks. 783 * The MOS data dirtied by the sync_tasks will be synced on the next 784 * pass. 785 */ 786 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 787 dsl_sync_task_t *dst; 788 /* 789 * No more sync tasks should have been added while we 790 * were syncing. 791 */ 792 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 793 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 794 dsl_sync_task_sync(dst, tx); 795 } 796 797 dmu_tx_commit(tx); 798 799 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 800 } 801 802 void 803 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 804 { 805 zilog_t *zilog; 806 807 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) { 808 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 809 /* 810 * We don't remove the zilog from the dp_dirty_zilogs 811 * list until after we've cleaned it. This ensures that 812 * callers of zilog_is_dirty() receive an accurate 813 * answer when they are racing with the spa sync thread. 814 */ 815 zil_clean(zilog, txg); 816 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg); 817 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 818 dmu_buf_rele(ds->ds_dbuf, zilog); 819 } 820 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 821 } 822 823 /* 824 * TRUE if the current thread is the tx_sync_thread or if we 825 * are being called from SPA context during pool initialization. 826 */ 827 int 828 dsl_pool_sync_context(dsl_pool_t *dp) 829 { 830 return (curthread == dp->dp_tx.tx_sync_thread || 831 spa_is_initializing(dp->dp_spa) || 832 taskq_member(dp->dp_sync_taskq, curthread)); 833 } 834 835 /* 836 * This function returns the amount of allocatable space in the pool 837 * minus whatever space is currently reserved by ZFS for specific 838 * purposes. Specifically: 839 * 840 * 1] Any reserved SLOP space 841 * 2] Any space used by the checkpoint 842 * 3] Any space used for deferred frees 843 * 844 * The latter 2 are especially important because they are needed to 845 * rectify the SPA's and DMU's different understanding of how much space 846 * is used. Now the DMU is aware of that extra space tracked by the SPA 847 * without having to maintain a separate special dir (e.g similar to 848 * $MOS, $FREEING, and $LEAKED). 849 * 850 * Note: By deferred frees here, we mean the frees that were deferred 851 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the 852 * segments placed in ms_defer trees during metaslab_sync_done(). 853 */ 854 uint64_t 855 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy) 856 { 857 spa_t *spa = dp->dp_spa; 858 uint64_t space, resv, adjustedsize; 859 uint64_t spa_deferred_frees = 860 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes; 861 862 space = spa_get_dspace(spa) 863 - spa_get_checkpoint_space(spa) - spa_deferred_frees; 864 resv = spa_get_slop_space(spa); 865 866 switch (slop_policy) { 867 case ZFS_SPACE_CHECK_NORMAL: 868 break; 869 case ZFS_SPACE_CHECK_RESERVED: 870 resv >>= 1; 871 break; 872 case ZFS_SPACE_CHECK_EXTRA_RESERVED: 873 resv >>= 2; 874 break; 875 case ZFS_SPACE_CHECK_NONE: 876 resv = 0; 877 break; 878 default: 879 panic("invalid slop policy value: %d", slop_policy); 880 break; 881 } 882 adjustedsize = (space >= resv) ? (space - resv) : 0; 883 884 return (adjustedsize); 885 } 886 887 uint64_t 888 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy) 889 { 890 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy); 891 uint64_t deferred = 892 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)); 893 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0; 894 return (quota); 895 } 896 897 boolean_t 898 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 899 { 900 uint64_t delay_min_bytes = 901 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 902 uint64_t dirty_min_bytes = 903 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100; 904 uint64_t dirty; 905 906 mutex_enter(&dp->dp_lock); 907 dirty = dp->dp_dirty_total; 908 mutex_exit(&dp->dp_lock); 909 if (dirty > dirty_min_bytes) 910 txg_kick(dp); 911 return (dirty > delay_min_bytes); 912 } 913 914 void 915 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 916 { 917 if (space > 0) { 918 mutex_enter(&dp->dp_lock); 919 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 920 dsl_pool_dirty_delta(dp, space); 921 mutex_exit(&dp->dp_lock); 922 } 923 } 924 925 void 926 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 927 { 928 ASSERT3S(space, >=, 0); 929 if (space == 0) 930 return; 931 932 mutex_enter(&dp->dp_lock); 933 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 934 /* XXX writing something we didn't dirty? */ 935 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 936 } 937 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 938 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 939 ASSERT3U(dp->dp_dirty_total, >=, space); 940 dsl_pool_dirty_delta(dp, -space); 941 mutex_exit(&dp->dp_lock); 942 } 943 944 /* ARGSUSED */ 945 static int 946 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 947 { 948 dmu_tx_t *tx = arg; 949 dsl_dataset_t *ds, *prev = NULL; 950 int err; 951 952 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 953 if (err) 954 return (err); 955 956 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 957 err = dsl_dataset_hold_obj(dp, 958 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 959 if (err) { 960 dsl_dataset_rele(ds, FTAG); 961 return (err); 962 } 963 964 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 965 break; 966 dsl_dataset_rele(ds, FTAG); 967 ds = prev; 968 prev = NULL; 969 } 970 971 if (prev == NULL) { 972 prev = dp->dp_origin_snap; 973 974 /* 975 * The $ORIGIN can't have any data, or the accounting 976 * will be wrong. 977 */ 978 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 979 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth); 980 rrw_exit(&ds->ds_bp_rwlock, FTAG); 981 982 /* The origin doesn't get attached to itself */ 983 if (ds->ds_object == prev->ds_object) { 984 dsl_dataset_rele(ds, FTAG); 985 return (0); 986 } 987 988 dmu_buf_will_dirty(ds->ds_dbuf, tx); 989 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 990 dsl_dataset_phys(ds)->ds_prev_snap_txg = 991 dsl_dataset_phys(prev)->ds_creation_txg; 992 993 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 994 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 995 996 dmu_buf_will_dirty(prev->ds_dbuf, tx); 997 dsl_dataset_phys(prev)->ds_num_children++; 998 999 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 1000 ASSERT(ds->ds_prev == NULL); 1001 VERIFY0(dsl_dataset_hold_obj(dp, 1002 dsl_dataset_phys(ds)->ds_prev_snap_obj, 1003 ds, &ds->ds_prev)); 1004 } 1005 } 1006 1007 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 1008 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 1009 1010 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 1011 dmu_buf_will_dirty(prev->ds_dbuf, tx); 1012 dsl_dataset_phys(prev)->ds_next_clones_obj = 1013 zap_create(dp->dp_meta_objset, 1014 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 1015 } 1016 VERIFY0(zap_add_int(dp->dp_meta_objset, 1017 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 1018 1019 dsl_dataset_rele(ds, FTAG); 1020 if (prev != dp->dp_origin_snap) 1021 dsl_dataset_rele(prev, FTAG); 1022 return (0); 1023 } 1024 1025 void 1026 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 1027 { 1028 ASSERT(dmu_tx_is_syncing(tx)); 1029 ASSERT(dp->dp_origin_snap != NULL); 1030 1031 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 1032 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1033 } 1034 1035 /* ARGSUSED */ 1036 static int 1037 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1038 { 1039 dmu_tx_t *tx = arg; 1040 objset_t *mos = dp->dp_meta_objset; 1041 1042 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 1043 dsl_dataset_t *origin; 1044 1045 VERIFY0(dsl_dataset_hold_obj(dp, 1046 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 1047 1048 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 1049 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 1050 dsl_dir_phys(origin->ds_dir)->dd_clones = 1051 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 1052 0, tx); 1053 } 1054 1055 VERIFY0(zap_add_int(dp->dp_meta_objset, 1056 dsl_dir_phys(origin->ds_dir)->dd_clones, 1057 ds->ds_object, tx)); 1058 1059 dsl_dataset_rele(origin, FTAG); 1060 } 1061 return (0); 1062 } 1063 1064 void 1065 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 1066 { 1067 uint64_t obj; 1068 1069 ASSERT(dmu_tx_is_syncing(tx)); 1070 1071 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 1072 VERIFY0(dsl_pool_open_special_dir(dp, 1073 FREE_DIR_NAME, &dp->dp_free_dir)); 1074 1075 /* 1076 * We can't use bpobj_alloc(), because spa_version() still 1077 * returns the old version, and we need a new-version bpobj with 1078 * subobj support. So call dmu_object_alloc() directly. 1079 */ 1080 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 1081 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 1082 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1083 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 1084 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 1085 1086 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1087 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1088 } 1089 1090 void 1091 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 1092 { 1093 uint64_t dsobj; 1094 dsl_dataset_t *ds; 1095 1096 ASSERT(dmu_tx_is_syncing(tx)); 1097 ASSERT(dp->dp_origin_snap == NULL); 1098 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 1099 1100 /* create the origin dir, ds, & snap-ds */ 1101 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 1102 NULL, 0, kcred, NULL, tx); 1103 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 1104 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 1105 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 1106 dp, &dp->dp_origin_snap)); 1107 dsl_dataset_rele(ds, FTAG); 1108 } 1109 1110 taskq_t * 1111 dsl_pool_zrele_taskq(dsl_pool_t *dp) 1112 { 1113 return (dp->dp_zrele_taskq); 1114 } 1115 1116 taskq_t * 1117 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp) 1118 { 1119 return (dp->dp_unlinked_drain_taskq); 1120 } 1121 1122 /* 1123 * Walk through the pool-wide zap object of temporary snapshot user holds 1124 * and release them. 1125 */ 1126 void 1127 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 1128 { 1129 zap_attribute_t za; 1130 zap_cursor_t zc; 1131 objset_t *mos = dp->dp_meta_objset; 1132 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1133 nvlist_t *holds; 1134 1135 if (zapobj == 0) 1136 return; 1137 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1138 1139 holds = fnvlist_alloc(); 1140 1141 for (zap_cursor_init(&zc, mos, zapobj); 1142 zap_cursor_retrieve(&zc, &za) == 0; 1143 zap_cursor_advance(&zc)) { 1144 char *htag; 1145 nvlist_t *tags; 1146 1147 htag = strchr(za.za_name, '-'); 1148 *htag = '\0'; 1149 ++htag; 1150 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 1151 tags = fnvlist_alloc(); 1152 fnvlist_add_boolean(tags, htag); 1153 fnvlist_add_nvlist(holds, za.za_name, tags); 1154 fnvlist_free(tags); 1155 } else { 1156 fnvlist_add_boolean(tags, htag); 1157 } 1158 } 1159 dsl_dataset_user_release_tmp(dp, holds); 1160 fnvlist_free(holds); 1161 zap_cursor_fini(&zc); 1162 } 1163 1164 /* 1165 * Create the pool-wide zap object for storing temporary snapshot holds. 1166 */ 1167 static void 1168 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 1169 { 1170 objset_t *mos = dp->dp_meta_objset; 1171 1172 ASSERT(dp->dp_tmp_userrefs_obj == 0); 1173 ASSERT(dmu_tx_is_syncing(tx)); 1174 1175 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 1176 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 1177 } 1178 1179 static int 1180 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 1181 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 1182 { 1183 objset_t *mos = dp->dp_meta_objset; 1184 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1185 char *name; 1186 int error; 1187 1188 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1189 ASSERT(dmu_tx_is_syncing(tx)); 1190 1191 /* 1192 * If the pool was created prior to SPA_VERSION_USERREFS, the 1193 * zap object for temporary holds might not exist yet. 1194 */ 1195 if (zapobj == 0) { 1196 if (holding) { 1197 dsl_pool_user_hold_create_obj(dp, tx); 1198 zapobj = dp->dp_tmp_userrefs_obj; 1199 } else { 1200 return (SET_ERROR(ENOENT)); 1201 } 1202 } 1203 1204 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 1205 if (holding) 1206 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 1207 else 1208 error = zap_remove(mos, zapobj, name, tx); 1209 kmem_strfree(name); 1210 1211 return (error); 1212 } 1213 1214 /* 1215 * Add a temporary hold for the given dataset object and tag. 1216 */ 1217 int 1218 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1219 uint64_t now, dmu_tx_t *tx) 1220 { 1221 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 1222 } 1223 1224 /* 1225 * Release a temporary hold for the given dataset object and tag. 1226 */ 1227 int 1228 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1229 dmu_tx_t *tx) 1230 { 1231 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0, 1232 tx, B_FALSE)); 1233 } 1234 1235 /* 1236 * DSL Pool Configuration Lock 1237 * 1238 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 1239 * creation / destruction / rename / property setting). It must be held for 1240 * read to hold a dataset or dsl_dir. I.e. you must call 1241 * dsl_pool_config_enter() or dsl_pool_hold() before calling 1242 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 1243 * must be held continuously until all datasets and dsl_dirs are released. 1244 * 1245 * The only exception to this rule is that if a "long hold" is placed on 1246 * a dataset, then the dp_config_rwlock may be dropped while the dataset 1247 * is still held. The long hold will prevent the dataset from being 1248 * destroyed -- the destroy will fail with EBUSY. A long hold can be 1249 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 1250 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 1251 * 1252 * Legitimate long-holders (including owners) should be long-running, cancelable 1253 * tasks that should cause "zfs destroy" to fail. This includes DMU 1254 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 1255 * "zfs send", and "zfs diff". There are several other long-holders whose 1256 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 1257 * 1258 * The usual formula for long-holding would be: 1259 * dsl_pool_hold() 1260 * dsl_dataset_hold() 1261 * ... perform checks ... 1262 * dsl_dataset_long_hold() 1263 * dsl_pool_rele() 1264 * ... perform long-running task ... 1265 * dsl_dataset_long_rele() 1266 * dsl_dataset_rele() 1267 * 1268 * Note that when the long hold is released, the dataset is still held but 1269 * the pool is not held. The dataset may change arbitrarily during this time 1270 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 1271 * dataset except release it. 1272 * 1273 * Operations generally fall somewhere into the following taxonomy: 1274 * 1275 * Read-Only Modifying 1276 * 1277 * Dataset Layer / MOS zfs get zfs destroy 1278 * 1279 * Individual Dataset read() write() 1280 * 1281 * 1282 * Dataset Layer Operations 1283 * 1284 * Modifying operations should generally use dsl_sync_task(). The synctask 1285 * infrastructure enforces proper locking strategy with respect to the 1286 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1287 * 1288 * Read-only operations will manually hold the pool, then the dataset, obtain 1289 * information from the dataset, then release the pool and dataset. 1290 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1291 * hold/rele. 1292 * 1293 * 1294 * Operations On Individual Datasets 1295 * 1296 * Objects _within_ an objset should only be modified by the current 'owner' 1297 * of the objset to prevent incorrect concurrent modification. Thus, use 1298 * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner, 1299 * and fail with EBUSY if there is already an owner. The owner can then 1300 * implement its own locking strategy, independent of the dataset layer's 1301 * locking infrastructure. 1302 * (E.g., the ZPL has its own set of locks to control concurrency. A regular 1303 * vnop will not reach into the dataset layer). 1304 * 1305 * Ideally, objects would also only be read by the objset’s owner, so that we 1306 * don’t observe state mid-modification. 1307 * (E.g. the ZPL is creating a new object and linking it into a directory; if 1308 * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an 1309 * intermediate state. The ioctl level violates this but in pretty benign 1310 * ways, e.g. reading the zpl props object.) 1311 */ 1312 1313 int 1314 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1315 { 1316 spa_t *spa; 1317 int error; 1318 1319 error = spa_open(name, &spa, tag); 1320 if (error == 0) { 1321 *dp = spa_get_dsl(spa); 1322 dsl_pool_config_enter(*dp, tag); 1323 } 1324 return (error); 1325 } 1326 1327 void 1328 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1329 { 1330 dsl_pool_config_exit(dp, tag); 1331 spa_close(dp->dp_spa, tag); 1332 } 1333 1334 void 1335 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1336 { 1337 /* 1338 * We use a "reentrant" reader-writer lock, but not reentrantly. 1339 * 1340 * The rrwlock can (with the track_all flag) track all reading threads, 1341 * which is very useful for debugging which code path failed to release 1342 * the lock, and for verifying that the *current* thread does hold 1343 * the lock. 1344 * 1345 * (Unlike a rwlock, which knows that N threads hold it for 1346 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1347 * if any thread holds it for read, even if this thread doesn't). 1348 */ 1349 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1350 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1351 } 1352 1353 void 1354 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag) 1355 { 1356 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1357 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1358 } 1359 1360 void 1361 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1362 { 1363 rrw_exit(&dp->dp_config_rwlock, tag); 1364 } 1365 1366 boolean_t 1367 dsl_pool_config_held(dsl_pool_t *dp) 1368 { 1369 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1370 } 1371 1372 boolean_t 1373 dsl_pool_config_held_writer(dsl_pool_t *dp) 1374 { 1375 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1376 } 1377 1378 EXPORT_SYMBOL(dsl_pool_config_enter); 1379 EXPORT_SYMBOL(dsl_pool_config_exit); 1380 1381 /* BEGIN CSTYLED */ 1382 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */ 1383 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, INT, ZMOD_RD, 1384 "Max percent of RAM allowed to be dirty"); 1385 1386 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */ 1387 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, INT, ZMOD_RD, 1388 "zfs_dirty_data_max upper bound as % of RAM"); 1389 1390 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, INT, ZMOD_RW, 1391 "Transaction delay threshold"); 1392 1393 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, ULONG, ZMOD_RW, 1394 "Determines the dirty space limit"); 1395 1396 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */ 1397 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, ULONG, ZMOD_RD, 1398 "zfs_dirty_data_max upper bound in bytes"); 1399 1400 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, INT, ZMOD_RW, 1401 "Dirty data txg sync threshold as a percentage of zfs_dirty_data_max"); 1402 1403 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, ULONG, ZMOD_RW, 1404 "How quickly delay approaches infinity"); 1405 1406 ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW, 1407 "Max percent of CPUs that are used to sync dirty data"); 1408 1409 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW, 1410 "Max percent of CPUs that are used per dp_sync_taskq"); 1411 1412 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW, 1413 "Number of taskq entries that are pre-populated"); 1414 1415 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW, 1416 "Max number of taskq entries that are cached"); 1417 /* END CSTYLED */ 1418