1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 #include <sys/dsl_pool.h> 30 #include <sys/dsl_dataset.h> 31 #include <sys/dsl_prop.h> 32 #include <sys/dsl_dir.h> 33 #include <sys/dsl_synctask.h> 34 #include <sys/dsl_scan.h> 35 #include <sys/dnode.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/arc.h> 39 #include <sys/zap.h> 40 #include <sys/zio.h> 41 #include <sys/zfs_context.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/zfs_znode.h> 44 #include <sys/spa_impl.h> 45 #include <sys/vdev_impl.h> 46 #include <sys/metaslab_impl.h> 47 #include <sys/bptree.h> 48 #include <sys/zfeature.h> 49 #include <sys/zil_impl.h> 50 #include <sys/dsl_userhold.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/mmp.h> 53 54 /* 55 * ZFS Write Throttle 56 * ------------------ 57 * 58 * ZFS must limit the rate of incoming writes to the rate at which it is able 59 * to sync data modifications to the backend storage. Throttling by too much 60 * creates an artificial limit; throttling by too little can only be sustained 61 * for short periods and would lead to highly lumpy performance. On a per-pool 62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 64 * of dirty data decreases. When the amount of dirty data exceeds a 65 * predetermined threshold further modifications are blocked until the amount 66 * of dirty data decreases (as data is synced out). 67 * 68 * The limit on dirty data is tunable, and should be adjusted according to 69 * both the IO capacity and available memory of the system. The larger the 70 * window, the more ZFS is able to aggregate and amortize metadata (and data) 71 * changes. However, memory is a limited resource, and allowing for more dirty 72 * data comes at the cost of keeping other useful data in memory (for example 73 * ZFS data cached by the ARC). 74 * 75 * Implementation 76 * 77 * As buffers are modified dsl_pool_willuse_space() increments both the per- 78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 79 * dirty space used; dsl_pool_dirty_space() decrements those values as data 80 * is synced out from dsl_pool_sync(). While only the poolwide value is 81 * relevant, the per-txg value is useful for debugging. The tunable 82 * zfs_dirty_data_max determines the dirty space limit. Once that value is 83 * exceeded, new writes are halted until space frees up. 84 * 85 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we 86 * ensure that there is a txg syncing (see the comment in txg.c for a full 87 * description of transaction group stages). 88 * 89 * The IO scheduler uses both the dirty space limit and current amount of 90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 91 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 92 * 93 * The delay is also calculated based on the amount of dirty data. See the 94 * comment above dmu_tx_delay() for details. 95 */ 96 97 /* 98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 99 * capped at zfs_dirty_data_max_max. It can also be overridden with a module 100 * parameter. 101 */ 102 uint64_t zfs_dirty_data_max = 0; 103 uint64_t zfs_dirty_data_max_max = 0; 104 uint_t zfs_dirty_data_max_percent = 10; 105 uint_t zfs_dirty_data_max_max_percent = 25; 106 107 /* 108 * The upper limit of TX_WRITE log data. Write operations are throttled 109 * when approaching the limit until log data is cleared out after txg sync. 110 * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY. 111 */ 112 uint64_t zfs_wrlog_data_max = 0; 113 114 /* 115 * If there's at least this much dirty data (as a percentage of 116 * zfs_dirty_data_max), push out a txg. This should be less than 117 * zfs_vdev_async_write_active_min_dirty_percent. 118 */ 119 static uint_t zfs_dirty_data_sync_percent = 20; 120 121 /* 122 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 123 * and delay each transaction. 124 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 125 */ 126 uint_t zfs_delay_min_dirty_percent = 60; 127 128 /* 129 * This controls how quickly the delay approaches infinity. 130 * Larger values cause it to delay more for a given amount of dirty data. 131 * Therefore larger values will cause there to be less dirty data for a 132 * given throughput. 133 * 134 * For the smoothest delay, this value should be about 1 billion divided 135 * by the maximum number of operations per second. This will smoothly 136 * handle between 10x and 1/10th this number. 137 * 138 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 139 * multiply in dmu_tx_delay(). 140 */ 141 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 142 143 /* 144 * This determines the number of threads used by the dp_sync_taskq. 145 */ 146 static int zfs_sync_taskq_batch_pct = 75; 147 148 /* 149 * These tunables determine the behavior of how zil_itxg_clean() is 150 * called via zil_clean() in the context of spa_sync(). When an itxg 151 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching. 152 * If the dispatch fails, the call to zil_itxg_clean() will occur 153 * synchronously in the context of spa_sync(), which can negatively 154 * impact the performance of spa_sync() (e.g. in the case of the itxg 155 * list having a large number of itxs that needs to be cleaned). 156 * 157 * Thus, these tunables can be used to manipulate the behavior of the 158 * taskq used by zil_clean(); they determine the number of taskq entries 159 * that are pre-populated when the taskq is first created (via the 160 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of 161 * taskq entries that are cached after an on-demand allocation (via the 162 * "zfs_zil_clean_taskq_maxalloc"). 163 * 164 * The idea being, we want to try reasonably hard to ensure there will 165 * already be a taskq entry pre-allocated by the time that it is needed 166 * by zil_clean(). This way, we can avoid the possibility of an 167 * on-demand allocation of a new taskq entry from failing, which would 168 * result in zil_itxg_clean() being called synchronously from zil_clean() 169 * (which can adversely affect performance of spa_sync()). 170 * 171 * Additionally, the number of threads used by the taskq can be 172 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable. 173 */ 174 static int zfs_zil_clean_taskq_nthr_pct = 100; 175 static int zfs_zil_clean_taskq_minalloc = 1024; 176 static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024; 177 178 int 179 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 180 { 181 uint64_t obj; 182 int err; 183 184 err = zap_lookup(dp->dp_meta_objset, 185 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 186 name, sizeof (obj), 1, &obj); 187 if (err) 188 return (err); 189 190 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 191 } 192 193 static dsl_pool_t * 194 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 195 { 196 dsl_pool_t *dp; 197 blkptr_t *bp = spa_get_rootblkptr(spa); 198 199 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 200 dp->dp_spa = spa; 201 dp->dp_meta_rootbp = *bp; 202 rrw_init(&dp->dp_config_rwlock, B_TRUE); 203 txg_init(dp, txg); 204 mmp_init(spa); 205 206 txg_list_create(&dp->dp_dirty_datasets, spa, 207 offsetof(dsl_dataset_t, ds_dirty_link)); 208 txg_list_create(&dp->dp_dirty_zilogs, spa, 209 offsetof(zilog_t, zl_dirty_link)); 210 txg_list_create(&dp->dp_dirty_dirs, spa, 211 offsetof(dsl_dir_t, dd_dirty_link)); 212 txg_list_create(&dp->dp_sync_tasks, spa, 213 offsetof(dsl_sync_task_t, dst_node)); 214 txg_list_create(&dp->dp_early_sync_tasks, spa, 215 offsetof(dsl_sync_task_t, dst_node)); 216 217 dp->dp_sync_taskq = taskq_create("dp_sync_taskq", 218 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX, 219 TASKQ_THREADS_CPU_PCT); 220 221 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq", 222 zfs_zil_clean_taskq_nthr_pct, minclsyspri, 223 zfs_zil_clean_taskq_minalloc, 224 zfs_zil_clean_taskq_maxalloc, 225 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 226 227 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 228 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 229 230 aggsum_init(&dp->dp_wrlog_total, 0); 231 for (int i = 0; i < TXG_SIZE; i++) { 232 aggsum_init(&dp->dp_wrlog_pertxg[i], 0); 233 } 234 235 dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri, 236 boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 237 TASKQ_THREADS_CPU_PCT); 238 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain", 239 100, defclsyspri, boot_ncpus, INT_MAX, 240 TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 241 242 return (dp); 243 } 244 245 int 246 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 247 { 248 int err; 249 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 250 251 /* 252 * Initialize the caller's dsl_pool_t structure before we actually open 253 * the meta objset. This is done because a self-healing write zio may 254 * be issued as part of dmu_objset_open_impl() and the spa needs its 255 * dsl_pool_t initialized in order to handle the write. 256 */ 257 *dpp = dp; 258 259 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 260 &dp->dp_meta_objset); 261 if (err != 0) { 262 dsl_pool_close(dp); 263 *dpp = NULL; 264 } 265 266 return (err); 267 } 268 269 int 270 dsl_pool_open(dsl_pool_t *dp) 271 { 272 int err; 273 dsl_dir_t *dd; 274 dsl_dataset_t *ds; 275 uint64_t obj; 276 277 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 278 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 279 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 280 &dp->dp_root_dir_obj); 281 if (err) 282 goto out; 283 284 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 285 NULL, dp, &dp->dp_root_dir); 286 if (err) 287 goto out; 288 289 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 290 if (err) 291 goto out; 292 293 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 294 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 295 if (err) 296 goto out; 297 err = dsl_dataset_hold_obj(dp, 298 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 299 if (err == 0) { 300 err = dsl_dataset_hold_obj(dp, 301 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 302 &dp->dp_origin_snap); 303 dsl_dataset_rele(ds, FTAG); 304 } 305 dsl_dir_rele(dd, dp); 306 if (err) 307 goto out; 308 } 309 310 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 311 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 312 &dp->dp_free_dir); 313 if (err) 314 goto out; 315 316 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 317 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 318 if (err) 319 goto out; 320 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 321 dp->dp_meta_objset, obj)); 322 } 323 324 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 325 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 326 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj); 327 if (err == 0) { 328 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, 329 dp->dp_meta_objset, obj)); 330 } else if (err == ENOENT) { 331 /* 332 * We might not have created the remap bpobj yet. 333 */ 334 } else { 335 goto out; 336 } 337 } 338 339 /* 340 * Note: errors ignored, because the these special dirs, used for 341 * space accounting, are only created on demand. 342 */ 343 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 344 &dp->dp_leak_dir); 345 346 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 347 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 348 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 349 &dp->dp_bptree_obj); 350 if (err != 0) 351 goto out; 352 } 353 354 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 355 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 356 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 357 &dp->dp_empty_bpobj); 358 if (err != 0) 359 goto out; 360 } 361 362 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 363 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 364 &dp->dp_tmp_userrefs_obj); 365 if (err == ENOENT) 366 err = 0; 367 if (err) 368 goto out; 369 370 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 371 372 out: 373 rrw_exit(&dp->dp_config_rwlock, FTAG); 374 return (err); 375 } 376 377 void 378 dsl_pool_close(dsl_pool_t *dp) 379 { 380 /* 381 * Drop our references from dsl_pool_open(). 382 * 383 * Since we held the origin_snap from "syncing" context (which 384 * includes pool-opening context), it actually only got a "ref" 385 * and not a hold, so just drop that here. 386 */ 387 if (dp->dp_origin_snap != NULL) 388 dsl_dataset_rele(dp->dp_origin_snap, dp); 389 if (dp->dp_mos_dir != NULL) 390 dsl_dir_rele(dp->dp_mos_dir, dp); 391 if (dp->dp_free_dir != NULL) 392 dsl_dir_rele(dp->dp_free_dir, dp); 393 if (dp->dp_leak_dir != NULL) 394 dsl_dir_rele(dp->dp_leak_dir, dp); 395 if (dp->dp_root_dir != NULL) 396 dsl_dir_rele(dp->dp_root_dir, dp); 397 398 bpobj_close(&dp->dp_free_bpobj); 399 bpobj_close(&dp->dp_obsolete_bpobj); 400 401 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 402 if (dp->dp_meta_objset != NULL) 403 dmu_objset_evict(dp->dp_meta_objset); 404 405 txg_list_destroy(&dp->dp_dirty_datasets); 406 txg_list_destroy(&dp->dp_dirty_zilogs); 407 txg_list_destroy(&dp->dp_sync_tasks); 408 txg_list_destroy(&dp->dp_early_sync_tasks); 409 txg_list_destroy(&dp->dp_dirty_dirs); 410 411 taskq_destroy(dp->dp_zil_clean_taskq); 412 taskq_destroy(dp->dp_sync_taskq); 413 414 /* 415 * We can't set retry to TRUE since we're explicitly specifying 416 * a spa to flush. This is good enough; any missed buffers for 417 * this spa won't cause trouble, and they'll eventually fall 418 * out of the ARC just like any other unused buffer. 419 */ 420 arc_flush(dp->dp_spa, FALSE); 421 422 mmp_fini(dp->dp_spa); 423 txg_fini(dp); 424 dsl_scan_fini(dp); 425 dmu_buf_user_evict_wait(); 426 427 rrw_destroy(&dp->dp_config_rwlock); 428 mutex_destroy(&dp->dp_lock); 429 cv_destroy(&dp->dp_spaceavail_cv); 430 431 ASSERT0(aggsum_value(&dp->dp_wrlog_total)); 432 aggsum_fini(&dp->dp_wrlog_total); 433 for (int i = 0; i < TXG_SIZE; i++) { 434 ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i])); 435 aggsum_fini(&dp->dp_wrlog_pertxg[i]); 436 } 437 438 taskq_destroy(dp->dp_unlinked_drain_taskq); 439 taskq_destroy(dp->dp_zrele_taskq); 440 if (dp->dp_blkstats != NULL) 441 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 442 kmem_free(dp, sizeof (dsl_pool_t)); 443 } 444 445 void 446 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 447 { 448 uint64_t obj; 449 /* 450 * Currently, we only create the obsolete_bpobj where there are 451 * indirect vdevs with referenced mappings. 452 */ 453 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL)); 454 /* create and open the obsolete_bpobj */ 455 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 456 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj)); 457 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 458 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 459 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 460 } 461 462 void 463 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 464 { 465 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 466 VERIFY0(zap_remove(dp->dp_meta_objset, 467 DMU_POOL_DIRECTORY_OBJECT, 468 DMU_POOL_OBSOLETE_BPOBJ, tx)); 469 bpobj_free(dp->dp_meta_objset, 470 dp->dp_obsolete_bpobj.bpo_object, tx); 471 bpobj_close(&dp->dp_obsolete_bpobj); 472 } 473 474 dsl_pool_t * 475 dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)), 476 dsl_crypto_params_t *dcp, uint64_t txg) 477 { 478 int err; 479 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 480 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 481 #ifdef _KERNEL 482 objset_t *os; 483 #else 484 objset_t *os __attribute__((unused)); 485 #endif 486 dsl_dataset_t *ds; 487 uint64_t obj; 488 489 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 490 491 /* create and open the MOS (meta-objset) */ 492 dp->dp_meta_objset = dmu_objset_create_impl(spa, 493 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 494 spa->spa_meta_objset = dp->dp_meta_objset; 495 496 /* create the pool directory */ 497 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 498 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 499 ASSERT0(err); 500 501 /* Initialize scan structures */ 502 VERIFY0(dsl_scan_init(dp, txg)); 503 504 /* create and open the root dir */ 505 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 506 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 507 NULL, dp, &dp->dp_root_dir)); 508 509 /* create and open the meta-objset dir */ 510 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 511 VERIFY0(dsl_pool_open_special_dir(dp, 512 MOS_DIR_NAME, &dp->dp_mos_dir)); 513 514 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 515 /* create and open the free dir */ 516 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 517 FREE_DIR_NAME, tx); 518 VERIFY0(dsl_pool_open_special_dir(dp, 519 FREE_DIR_NAME, &dp->dp_free_dir)); 520 521 /* create and open the free_bplist */ 522 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 523 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 524 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 525 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 526 dp->dp_meta_objset, obj)); 527 } 528 529 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 530 dsl_pool_create_origin(dp, tx); 531 532 /* 533 * Some features may be needed when creating the root dataset, so we 534 * create the feature objects here. 535 */ 536 if (spa_version(spa) >= SPA_VERSION_FEATURES) 537 spa_feature_create_zap_objects(spa, tx); 538 539 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF && 540 dcp->cp_crypt != ZIO_CRYPT_INHERIT) 541 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx); 542 543 /* create the root dataset */ 544 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx); 545 546 /* create the root objset */ 547 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj, 548 DS_HOLD_FLAG_DECRYPT, FTAG, &ds)); 549 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 550 os = dmu_objset_create_impl(dp->dp_spa, ds, 551 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 552 rrw_exit(&ds->ds_bp_rwlock, FTAG); 553 #ifdef _KERNEL 554 zfs_create_fs(os, kcred, zplprops, tx); 555 #endif 556 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 557 558 dmu_tx_commit(tx); 559 560 rrw_exit(&dp->dp_config_rwlock, FTAG); 561 562 return (dp); 563 } 564 565 /* 566 * Account for the meta-objset space in its placeholder dsl_dir. 567 */ 568 void 569 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 570 int64_t used, int64_t comp, int64_t uncomp) 571 { 572 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 573 mutex_enter(&dp->dp_lock); 574 dp->dp_mos_used_delta += used; 575 dp->dp_mos_compressed_delta += comp; 576 dp->dp_mos_uncompressed_delta += uncomp; 577 mutex_exit(&dp->dp_lock); 578 } 579 580 static void 581 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 582 { 583 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 584 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 585 VERIFY0(zio_wait(zio)); 586 dmu_objset_sync_done(dp->dp_meta_objset, tx); 587 taskq_wait(dp->dp_sync_taskq); 588 multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes); 589 590 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 591 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 592 } 593 594 static void 595 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 596 { 597 ASSERT(MUTEX_HELD(&dp->dp_lock)); 598 599 if (delta < 0) 600 ASSERT3U(-delta, <=, dp->dp_dirty_total); 601 602 dp->dp_dirty_total += delta; 603 604 /* 605 * Note: we signal even when increasing dp_dirty_total. 606 * This ensures forward progress -- each thread wakes the next waiter. 607 */ 608 if (dp->dp_dirty_total < zfs_dirty_data_max) 609 cv_signal(&dp->dp_spaceavail_cv); 610 } 611 612 void 613 dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg) 614 { 615 ASSERT3S(size, >=, 0); 616 617 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size); 618 aggsum_add(&dp->dp_wrlog_total, size); 619 620 /* Choose a value slightly bigger than min dirty sync bytes */ 621 uint64_t sync_min = 622 zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200; 623 if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0) 624 txg_kick(dp, txg); 625 } 626 627 boolean_t 628 dsl_pool_need_wrlog_delay(dsl_pool_t *dp) 629 { 630 uint64_t delay_min_bytes = 631 zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100; 632 633 return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0); 634 } 635 636 static void 637 dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg) 638 { 639 int64_t delta; 640 delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]); 641 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta); 642 aggsum_add(&dp->dp_wrlog_total, delta); 643 /* Compact per-CPU sums after the big change. */ 644 (void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]); 645 (void) aggsum_value(&dp->dp_wrlog_total); 646 } 647 648 #ifdef ZFS_DEBUG 649 static boolean_t 650 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg) 651 { 652 spa_t *spa = dp->dp_spa; 653 vdev_t *rvd = spa->spa_root_vdev; 654 655 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 656 vdev_t *vd = rvd->vdev_child[c]; 657 txg_list_t *tl = &vd->vdev_ms_list; 658 metaslab_t *ms; 659 660 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms; 661 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) { 662 VERIFY(range_tree_is_empty(ms->ms_freeing)); 663 VERIFY(range_tree_is_empty(ms->ms_checkpointing)); 664 } 665 } 666 667 return (B_TRUE); 668 } 669 #else 670 #define dsl_early_sync_task_verify(dp, txg) \ 671 ((void) sizeof (dp), (void) sizeof (txg), B_TRUE) 672 #endif 673 674 void 675 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 676 { 677 zio_t *zio; 678 dmu_tx_t *tx; 679 dsl_dir_t *dd; 680 dsl_dataset_t *ds; 681 objset_t *mos = dp->dp_meta_objset; 682 list_t synced_datasets; 683 684 list_create(&synced_datasets, sizeof (dsl_dataset_t), 685 offsetof(dsl_dataset_t, ds_synced_link)); 686 687 tx = dmu_tx_create_assigned(dp, txg); 688 689 /* 690 * Run all early sync tasks before writing out any dirty blocks. 691 * For more info on early sync tasks see block comment in 692 * dsl_early_sync_task(). 693 */ 694 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) { 695 dsl_sync_task_t *dst; 696 697 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 698 while ((dst = 699 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) { 700 ASSERT(dsl_early_sync_task_verify(dp, txg)); 701 dsl_sync_task_sync(dst, tx); 702 } 703 ASSERT(dsl_early_sync_task_verify(dp, txg)); 704 } 705 706 /* 707 * Write out all dirty blocks of dirty datasets. 708 */ 709 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 710 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 711 /* 712 * We must not sync any non-MOS datasets twice, because 713 * we may have taken a snapshot of them. However, we 714 * may sync newly-created datasets on pass 2. 715 */ 716 ASSERT(!list_link_active(&ds->ds_synced_link)); 717 list_insert_tail(&synced_datasets, ds); 718 dsl_dataset_sync(ds, zio, tx); 719 } 720 VERIFY0(zio_wait(zio)); 721 722 /* 723 * Update the long range free counter after 724 * we're done syncing user data 725 */ 726 mutex_enter(&dp->dp_lock); 727 ASSERT(spa_sync_pass(dp->dp_spa) == 1 || 728 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0); 729 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0; 730 mutex_exit(&dp->dp_lock); 731 732 /* 733 * After the data blocks have been written (ensured by the zio_wait() 734 * above), update the user/group/project space accounting. This happens 735 * in tasks dispatched to dp_sync_taskq, so wait for them before 736 * continuing. 737 */ 738 for (ds = list_head(&synced_datasets); ds != NULL; 739 ds = list_next(&synced_datasets, ds)) { 740 dmu_objset_sync_done(ds->ds_objset, tx); 741 } 742 taskq_wait(dp->dp_sync_taskq); 743 744 /* 745 * Sync the datasets again to push out the changes due to 746 * userspace updates. This must be done before we process the 747 * sync tasks, so that any snapshots will have the correct 748 * user accounting information (and we won't get confused 749 * about which blocks are part of the snapshot). 750 */ 751 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 752 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 753 objset_t *os = ds->ds_objset; 754 755 ASSERT(list_link_active(&ds->ds_synced_link)); 756 dmu_buf_rele(ds->ds_dbuf, ds); 757 dsl_dataset_sync(ds, zio, tx); 758 759 /* 760 * Release any key mappings created by calls to 761 * dsl_dataset_dirty() from the userquota accounting 762 * code paths. 763 */ 764 if (os->os_encrypted && !os->os_raw_receive && 765 !os->os_next_write_raw[txg & TXG_MASK]) { 766 ASSERT3P(ds->ds_key_mapping, !=, NULL); 767 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds); 768 } 769 } 770 VERIFY0(zio_wait(zio)); 771 772 /* 773 * Now that the datasets have been completely synced, we can 774 * clean up our in-memory structures accumulated while syncing: 775 * 776 * - move dead blocks from the pending deadlist and livelists 777 * to the on-disk versions 778 * - release hold from dsl_dataset_dirty() 779 * - release key mapping hold from dsl_dataset_dirty() 780 */ 781 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 782 objset_t *os = ds->ds_objset; 783 784 if (os->os_encrypted && !os->os_raw_receive && 785 !os->os_next_write_raw[txg & TXG_MASK]) { 786 ASSERT3P(ds->ds_key_mapping, !=, NULL); 787 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds); 788 } 789 790 dsl_dataset_sync_done(ds, tx); 791 } 792 793 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 794 dsl_dir_sync(dd, tx); 795 } 796 797 /* 798 * The MOS's space is accounted for in the pool/$MOS 799 * (dp_mos_dir). We can't modify the mos while we're syncing 800 * it, so we remember the deltas and apply them here. 801 */ 802 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 803 dp->dp_mos_uncompressed_delta != 0) { 804 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 805 dp->dp_mos_used_delta, 806 dp->dp_mos_compressed_delta, 807 dp->dp_mos_uncompressed_delta, tx); 808 dp->dp_mos_used_delta = 0; 809 dp->dp_mos_compressed_delta = 0; 810 dp->dp_mos_uncompressed_delta = 0; 811 } 812 813 if (dmu_objset_is_dirty(mos, txg)) { 814 dsl_pool_sync_mos(dp, tx); 815 } 816 817 /* 818 * We have written all of the accounted dirty data, so our 819 * dp_space_towrite should now be zero. However, some seldom-used 820 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up 821 * the accounting of any dirtied space now. 822 * 823 * Note that, besides any dirty data from datasets, the amount of 824 * dirty data in the MOS is also accounted by the pool. Therefore, 825 * we want to do this cleanup after dsl_pool_sync_mos() so we don't 826 * attempt to update the accounting for the same dirty data twice. 827 * (i.e. at this point we only update the accounting for the space 828 * that we know that we "leaked"). 829 */ 830 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 831 832 /* 833 * If we modify a dataset in the same txg that we want to destroy it, 834 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 835 * dsl_dir_destroy_check() will fail if there are unexpected holds. 836 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 837 * and clearing the hold on it) before we process the sync_tasks. 838 * The MOS data dirtied by the sync_tasks will be synced on the next 839 * pass. 840 */ 841 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 842 dsl_sync_task_t *dst; 843 /* 844 * No more sync tasks should have been added while we 845 * were syncing. 846 */ 847 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 848 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 849 dsl_sync_task_sync(dst, tx); 850 } 851 852 dmu_tx_commit(tx); 853 854 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 855 } 856 857 void 858 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 859 { 860 zilog_t *zilog; 861 862 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) { 863 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 864 /* 865 * We don't remove the zilog from the dp_dirty_zilogs 866 * list until after we've cleaned it. This ensures that 867 * callers of zilog_is_dirty() receive an accurate 868 * answer when they are racing with the spa sync thread. 869 */ 870 zil_clean(zilog, txg); 871 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg); 872 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 873 dmu_buf_rele(ds->ds_dbuf, zilog); 874 } 875 876 dsl_pool_wrlog_clear(dp, txg); 877 878 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 879 } 880 881 /* 882 * TRUE if the current thread is the tx_sync_thread or if we 883 * are being called from SPA context during pool initialization. 884 */ 885 int 886 dsl_pool_sync_context(dsl_pool_t *dp) 887 { 888 return (curthread == dp->dp_tx.tx_sync_thread || 889 spa_is_initializing(dp->dp_spa) || 890 taskq_member(dp->dp_sync_taskq, curthread)); 891 } 892 893 /* 894 * This function returns the amount of allocatable space in the pool 895 * minus whatever space is currently reserved by ZFS for specific 896 * purposes. Specifically: 897 * 898 * 1] Any reserved SLOP space 899 * 2] Any space used by the checkpoint 900 * 3] Any space used for deferred frees 901 * 902 * The latter 2 are especially important because they are needed to 903 * rectify the SPA's and DMU's different understanding of how much space 904 * is used. Now the DMU is aware of that extra space tracked by the SPA 905 * without having to maintain a separate special dir (e.g similar to 906 * $MOS, $FREEING, and $LEAKED). 907 * 908 * Note: By deferred frees here, we mean the frees that were deferred 909 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the 910 * segments placed in ms_defer trees during metaslab_sync_done(). 911 */ 912 uint64_t 913 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy) 914 { 915 spa_t *spa = dp->dp_spa; 916 uint64_t space, resv, adjustedsize; 917 uint64_t spa_deferred_frees = 918 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes; 919 920 space = spa_get_dspace(spa) 921 - spa_get_checkpoint_space(spa) - spa_deferred_frees; 922 resv = spa_get_slop_space(spa); 923 924 switch (slop_policy) { 925 case ZFS_SPACE_CHECK_NORMAL: 926 break; 927 case ZFS_SPACE_CHECK_RESERVED: 928 resv >>= 1; 929 break; 930 case ZFS_SPACE_CHECK_EXTRA_RESERVED: 931 resv >>= 2; 932 break; 933 case ZFS_SPACE_CHECK_NONE: 934 resv = 0; 935 break; 936 default: 937 panic("invalid slop policy value: %d", slop_policy); 938 break; 939 } 940 adjustedsize = (space >= resv) ? (space - resv) : 0; 941 942 return (adjustedsize); 943 } 944 945 uint64_t 946 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy) 947 { 948 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy); 949 uint64_t deferred = 950 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)); 951 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0; 952 return (quota); 953 } 954 955 uint64_t 956 dsl_pool_deferred_space(dsl_pool_t *dp) 957 { 958 return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa))); 959 } 960 961 boolean_t 962 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 963 { 964 uint64_t delay_min_bytes = 965 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 966 967 mutex_enter(&dp->dp_lock); 968 uint64_t dirty = dp->dp_dirty_total; 969 mutex_exit(&dp->dp_lock); 970 971 return (dirty > delay_min_bytes); 972 } 973 974 static boolean_t 975 dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg) 976 { 977 ASSERT(MUTEX_HELD(&dp->dp_lock)); 978 979 uint64_t dirty_min_bytes = 980 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100; 981 uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK]; 982 983 return (dirty > dirty_min_bytes); 984 } 985 986 void 987 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 988 { 989 if (space > 0) { 990 mutex_enter(&dp->dp_lock); 991 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 992 dsl_pool_dirty_delta(dp, space); 993 boolean_t needsync = !dmu_tx_is_syncing(tx) && 994 dsl_pool_need_dirty_sync(dp, tx->tx_txg); 995 mutex_exit(&dp->dp_lock); 996 997 if (needsync) 998 txg_kick(dp, tx->tx_txg); 999 } 1000 } 1001 1002 void 1003 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 1004 { 1005 ASSERT3S(space, >=, 0); 1006 if (space == 0) 1007 return; 1008 1009 mutex_enter(&dp->dp_lock); 1010 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 1011 /* XXX writing something we didn't dirty? */ 1012 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 1013 } 1014 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 1015 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 1016 ASSERT3U(dp->dp_dirty_total, >=, space); 1017 dsl_pool_dirty_delta(dp, -space); 1018 mutex_exit(&dp->dp_lock); 1019 } 1020 1021 static int 1022 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 1023 { 1024 dmu_tx_t *tx = arg; 1025 dsl_dataset_t *ds, *prev = NULL; 1026 int err; 1027 1028 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 1029 if (err) 1030 return (err); 1031 1032 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 1033 err = dsl_dataset_hold_obj(dp, 1034 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 1035 if (err) { 1036 dsl_dataset_rele(ds, FTAG); 1037 return (err); 1038 } 1039 1040 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 1041 break; 1042 dsl_dataset_rele(ds, FTAG); 1043 ds = prev; 1044 prev = NULL; 1045 } 1046 1047 if (prev == NULL) { 1048 prev = dp->dp_origin_snap; 1049 1050 /* 1051 * The $ORIGIN can't have any data, or the accounting 1052 * will be wrong. 1053 */ 1054 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1055 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth); 1056 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1057 1058 /* The origin doesn't get attached to itself */ 1059 if (ds->ds_object == prev->ds_object) { 1060 dsl_dataset_rele(ds, FTAG); 1061 return (0); 1062 } 1063 1064 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1065 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 1066 dsl_dataset_phys(ds)->ds_prev_snap_txg = 1067 dsl_dataset_phys(prev)->ds_creation_txg; 1068 1069 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1070 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 1071 1072 dmu_buf_will_dirty(prev->ds_dbuf, tx); 1073 dsl_dataset_phys(prev)->ds_num_children++; 1074 1075 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 1076 ASSERT(ds->ds_prev == NULL); 1077 VERIFY0(dsl_dataset_hold_obj(dp, 1078 dsl_dataset_phys(ds)->ds_prev_snap_obj, 1079 ds, &ds->ds_prev)); 1080 } 1081 } 1082 1083 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 1084 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 1085 1086 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 1087 dmu_buf_will_dirty(prev->ds_dbuf, tx); 1088 dsl_dataset_phys(prev)->ds_next_clones_obj = 1089 zap_create(dp->dp_meta_objset, 1090 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 1091 } 1092 VERIFY0(zap_add_int(dp->dp_meta_objset, 1093 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 1094 1095 dsl_dataset_rele(ds, FTAG); 1096 if (prev != dp->dp_origin_snap) 1097 dsl_dataset_rele(prev, FTAG); 1098 return (0); 1099 } 1100 1101 void 1102 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 1103 { 1104 ASSERT(dmu_tx_is_syncing(tx)); 1105 ASSERT(dp->dp_origin_snap != NULL); 1106 1107 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 1108 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1109 } 1110 1111 static int 1112 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1113 { 1114 dmu_tx_t *tx = arg; 1115 objset_t *mos = dp->dp_meta_objset; 1116 1117 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 1118 dsl_dataset_t *origin; 1119 1120 VERIFY0(dsl_dataset_hold_obj(dp, 1121 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 1122 1123 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 1124 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 1125 dsl_dir_phys(origin->ds_dir)->dd_clones = 1126 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 1127 0, tx); 1128 } 1129 1130 VERIFY0(zap_add_int(dp->dp_meta_objset, 1131 dsl_dir_phys(origin->ds_dir)->dd_clones, 1132 ds->ds_object, tx)); 1133 1134 dsl_dataset_rele(origin, FTAG); 1135 } 1136 return (0); 1137 } 1138 1139 void 1140 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 1141 { 1142 uint64_t obj; 1143 1144 ASSERT(dmu_tx_is_syncing(tx)); 1145 1146 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 1147 VERIFY0(dsl_pool_open_special_dir(dp, 1148 FREE_DIR_NAME, &dp->dp_free_dir)); 1149 1150 /* 1151 * We can't use bpobj_alloc(), because spa_version() still 1152 * returns the old version, and we need a new-version bpobj with 1153 * subobj support. So call dmu_object_alloc() directly. 1154 */ 1155 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 1156 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 1157 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1158 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 1159 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 1160 1161 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1162 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1163 } 1164 1165 void 1166 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 1167 { 1168 uint64_t dsobj; 1169 dsl_dataset_t *ds; 1170 1171 ASSERT(dmu_tx_is_syncing(tx)); 1172 ASSERT(dp->dp_origin_snap == NULL); 1173 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 1174 1175 /* create the origin dir, ds, & snap-ds */ 1176 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 1177 NULL, 0, kcred, NULL, tx); 1178 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 1179 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 1180 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 1181 dp, &dp->dp_origin_snap)); 1182 dsl_dataset_rele(ds, FTAG); 1183 } 1184 1185 taskq_t * 1186 dsl_pool_zrele_taskq(dsl_pool_t *dp) 1187 { 1188 return (dp->dp_zrele_taskq); 1189 } 1190 1191 taskq_t * 1192 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp) 1193 { 1194 return (dp->dp_unlinked_drain_taskq); 1195 } 1196 1197 /* 1198 * Walk through the pool-wide zap object of temporary snapshot user holds 1199 * and release them. 1200 */ 1201 void 1202 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 1203 { 1204 zap_attribute_t za; 1205 zap_cursor_t zc; 1206 objset_t *mos = dp->dp_meta_objset; 1207 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1208 nvlist_t *holds; 1209 1210 if (zapobj == 0) 1211 return; 1212 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1213 1214 holds = fnvlist_alloc(); 1215 1216 for (zap_cursor_init(&zc, mos, zapobj); 1217 zap_cursor_retrieve(&zc, &za) == 0; 1218 zap_cursor_advance(&zc)) { 1219 char *htag; 1220 nvlist_t *tags; 1221 1222 htag = strchr(za.za_name, '-'); 1223 *htag = '\0'; 1224 ++htag; 1225 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 1226 tags = fnvlist_alloc(); 1227 fnvlist_add_boolean(tags, htag); 1228 fnvlist_add_nvlist(holds, za.za_name, tags); 1229 fnvlist_free(tags); 1230 } else { 1231 fnvlist_add_boolean(tags, htag); 1232 } 1233 } 1234 dsl_dataset_user_release_tmp(dp, holds); 1235 fnvlist_free(holds); 1236 zap_cursor_fini(&zc); 1237 } 1238 1239 /* 1240 * Create the pool-wide zap object for storing temporary snapshot holds. 1241 */ 1242 static void 1243 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 1244 { 1245 objset_t *mos = dp->dp_meta_objset; 1246 1247 ASSERT(dp->dp_tmp_userrefs_obj == 0); 1248 ASSERT(dmu_tx_is_syncing(tx)); 1249 1250 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 1251 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 1252 } 1253 1254 static int 1255 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 1256 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 1257 { 1258 objset_t *mos = dp->dp_meta_objset; 1259 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1260 char *name; 1261 int error; 1262 1263 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1264 ASSERT(dmu_tx_is_syncing(tx)); 1265 1266 /* 1267 * If the pool was created prior to SPA_VERSION_USERREFS, the 1268 * zap object for temporary holds might not exist yet. 1269 */ 1270 if (zapobj == 0) { 1271 if (holding) { 1272 dsl_pool_user_hold_create_obj(dp, tx); 1273 zapobj = dp->dp_tmp_userrefs_obj; 1274 } else { 1275 return (SET_ERROR(ENOENT)); 1276 } 1277 } 1278 1279 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 1280 if (holding) 1281 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 1282 else 1283 error = zap_remove(mos, zapobj, name, tx); 1284 kmem_strfree(name); 1285 1286 return (error); 1287 } 1288 1289 /* 1290 * Add a temporary hold for the given dataset object and tag. 1291 */ 1292 int 1293 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1294 uint64_t now, dmu_tx_t *tx) 1295 { 1296 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 1297 } 1298 1299 /* 1300 * Release a temporary hold for the given dataset object and tag. 1301 */ 1302 int 1303 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1304 dmu_tx_t *tx) 1305 { 1306 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0, 1307 tx, B_FALSE)); 1308 } 1309 1310 /* 1311 * DSL Pool Configuration Lock 1312 * 1313 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 1314 * creation / destruction / rename / property setting). It must be held for 1315 * read to hold a dataset or dsl_dir. I.e. you must call 1316 * dsl_pool_config_enter() or dsl_pool_hold() before calling 1317 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 1318 * must be held continuously until all datasets and dsl_dirs are released. 1319 * 1320 * The only exception to this rule is that if a "long hold" is placed on 1321 * a dataset, then the dp_config_rwlock may be dropped while the dataset 1322 * is still held. The long hold will prevent the dataset from being 1323 * destroyed -- the destroy will fail with EBUSY. A long hold can be 1324 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 1325 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 1326 * 1327 * Legitimate long-holders (including owners) should be long-running, cancelable 1328 * tasks that should cause "zfs destroy" to fail. This includes DMU 1329 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 1330 * "zfs send", and "zfs diff". There are several other long-holders whose 1331 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 1332 * 1333 * The usual formula for long-holding would be: 1334 * dsl_pool_hold() 1335 * dsl_dataset_hold() 1336 * ... perform checks ... 1337 * dsl_dataset_long_hold() 1338 * dsl_pool_rele() 1339 * ... perform long-running task ... 1340 * dsl_dataset_long_rele() 1341 * dsl_dataset_rele() 1342 * 1343 * Note that when the long hold is released, the dataset is still held but 1344 * the pool is not held. The dataset may change arbitrarily during this time 1345 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 1346 * dataset except release it. 1347 * 1348 * Operations generally fall somewhere into the following taxonomy: 1349 * 1350 * Read-Only Modifying 1351 * 1352 * Dataset Layer / MOS zfs get zfs destroy 1353 * 1354 * Individual Dataset read() write() 1355 * 1356 * 1357 * Dataset Layer Operations 1358 * 1359 * Modifying operations should generally use dsl_sync_task(). The synctask 1360 * infrastructure enforces proper locking strategy with respect to the 1361 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1362 * 1363 * Read-only operations will manually hold the pool, then the dataset, obtain 1364 * information from the dataset, then release the pool and dataset. 1365 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1366 * hold/rele. 1367 * 1368 * 1369 * Operations On Individual Datasets 1370 * 1371 * Objects _within_ an objset should only be modified by the current 'owner' 1372 * of the objset to prevent incorrect concurrent modification. Thus, use 1373 * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner, 1374 * and fail with EBUSY if there is already an owner. The owner can then 1375 * implement its own locking strategy, independent of the dataset layer's 1376 * locking infrastructure. 1377 * (E.g., the ZPL has its own set of locks to control concurrency. A regular 1378 * vnop will not reach into the dataset layer). 1379 * 1380 * Ideally, objects would also only be read by the objset’s owner, so that we 1381 * don’t observe state mid-modification. 1382 * (E.g. the ZPL is creating a new object and linking it into a directory; if 1383 * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an 1384 * intermediate state. The ioctl level violates this but in pretty benign 1385 * ways, e.g. reading the zpl props object.) 1386 */ 1387 1388 int 1389 dsl_pool_hold(const char *name, const void *tag, dsl_pool_t **dp) 1390 { 1391 spa_t *spa; 1392 int error; 1393 1394 error = spa_open(name, &spa, tag); 1395 if (error == 0) { 1396 *dp = spa_get_dsl(spa); 1397 dsl_pool_config_enter(*dp, tag); 1398 } 1399 return (error); 1400 } 1401 1402 void 1403 dsl_pool_rele(dsl_pool_t *dp, const void *tag) 1404 { 1405 dsl_pool_config_exit(dp, tag); 1406 spa_close(dp->dp_spa, tag); 1407 } 1408 1409 void 1410 dsl_pool_config_enter(dsl_pool_t *dp, const void *tag) 1411 { 1412 /* 1413 * We use a "reentrant" reader-writer lock, but not reentrantly. 1414 * 1415 * The rrwlock can (with the track_all flag) track all reading threads, 1416 * which is very useful for debugging which code path failed to release 1417 * the lock, and for verifying that the *current* thread does hold 1418 * the lock. 1419 * 1420 * (Unlike a rwlock, which knows that N threads hold it for 1421 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1422 * if any thread holds it for read, even if this thread doesn't). 1423 */ 1424 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1425 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1426 } 1427 1428 void 1429 dsl_pool_config_enter_prio(dsl_pool_t *dp, const void *tag) 1430 { 1431 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1432 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1433 } 1434 1435 void 1436 dsl_pool_config_exit(dsl_pool_t *dp, const void *tag) 1437 { 1438 rrw_exit(&dp->dp_config_rwlock, tag); 1439 } 1440 1441 boolean_t 1442 dsl_pool_config_held(dsl_pool_t *dp) 1443 { 1444 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1445 } 1446 1447 boolean_t 1448 dsl_pool_config_held_writer(dsl_pool_t *dp) 1449 { 1450 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1451 } 1452 1453 EXPORT_SYMBOL(dsl_pool_config_enter); 1454 EXPORT_SYMBOL(dsl_pool_config_exit); 1455 1456 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */ 1457 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, UINT, ZMOD_RD, 1458 "Max percent of RAM allowed to be dirty"); 1459 1460 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */ 1461 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, UINT, ZMOD_RD, 1462 "zfs_dirty_data_max upper bound as % of RAM"); 1463 1464 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, UINT, ZMOD_RW, 1465 "Transaction delay threshold"); 1466 1467 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, U64, ZMOD_RW, 1468 "Determines the dirty space limit"); 1469 1470 ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, U64, ZMOD_RW, 1471 "The size limit of write-transaction zil log data"); 1472 1473 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */ 1474 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, U64, ZMOD_RD, 1475 "zfs_dirty_data_max upper bound in bytes"); 1476 1477 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, UINT, ZMOD_RW, 1478 "Dirty data txg sync threshold as a percentage of zfs_dirty_data_max"); 1479 1480 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, U64, ZMOD_RW, 1481 "How quickly delay approaches infinity"); 1482 1483 ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW, 1484 "Max percent of CPUs that are used to sync dirty data"); 1485 1486 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW, 1487 "Max percent of CPUs that are used per dp_sync_taskq"); 1488 1489 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW, 1490 "Number of taskq entries that are pre-populated"); 1491 1492 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW, 1493 "Max number of taskq entries that are cached"); 1494