1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dsl_pool.h> 31 #include <sys/dsl_dataset.h> 32 #include <sys/dsl_prop.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dsl_synctask.h> 35 #include <sys/dsl_scan.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab_impl.h> 48 #include <sys/bptree.h> 49 #include <sys/zfeature.h> 50 #include <sys/zil_impl.h> 51 #include <sys/dsl_userhold.h> 52 #include <sys/trace_zfs.h> 53 #include <sys/mmp.h> 54 55 /* 56 * ZFS Write Throttle 57 * ------------------ 58 * 59 * ZFS must limit the rate of incoming writes to the rate at which it is able 60 * to sync data modifications to the backend storage. Throttling by too much 61 * creates an artificial limit; throttling by too little can only be sustained 62 * for short periods and would lead to highly lumpy performance. On a per-pool 63 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 64 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 65 * of dirty data decreases. When the amount of dirty data exceeds a 66 * predetermined threshold further modifications are blocked until the amount 67 * of dirty data decreases (as data is synced out). 68 * 69 * The limit on dirty data is tunable, and should be adjusted according to 70 * both the IO capacity and available memory of the system. The larger the 71 * window, the more ZFS is able to aggregate and amortize metadata (and data) 72 * changes. However, memory is a limited resource, and allowing for more dirty 73 * data comes at the cost of keeping other useful data in memory (for example 74 * ZFS data cached by the ARC). 75 * 76 * Implementation 77 * 78 * As buffers are modified dsl_pool_willuse_space() increments both the per- 79 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 80 * dirty space used; dsl_pool_dirty_space() decrements those values as data 81 * is synced out from dsl_pool_sync(). While only the poolwide value is 82 * relevant, the per-txg value is useful for debugging. The tunable 83 * zfs_dirty_data_max determines the dirty space limit. Once that value is 84 * exceeded, new writes are halted until space frees up. 85 * 86 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we 87 * ensure that there is a txg syncing (see the comment in txg.c for a full 88 * description of transaction group stages). 89 * 90 * The IO scheduler uses both the dirty space limit and current amount of 91 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 92 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 93 * 94 * The delay is also calculated based on the amount of dirty data. See the 95 * comment above dmu_tx_delay() for details. 96 */ 97 98 /* 99 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 100 * capped at zfs_dirty_data_max_max. It can also be overridden with a module 101 * parameter. 102 */ 103 uint64_t zfs_dirty_data_max = 0; 104 uint64_t zfs_dirty_data_max_max = 0; 105 uint_t zfs_dirty_data_max_percent = 10; 106 uint_t zfs_dirty_data_max_max_percent = 25; 107 108 /* 109 * The upper limit of TX_WRITE log data. Write operations are throttled 110 * when approaching the limit until log data is cleared out after txg sync. 111 * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY. 112 */ 113 uint64_t zfs_wrlog_data_max = 0; 114 115 /* 116 * If there's at least this much dirty data (as a percentage of 117 * zfs_dirty_data_max), push out a txg. This should be less than 118 * zfs_vdev_async_write_active_min_dirty_percent. 119 */ 120 static uint_t zfs_dirty_data_sync_percent = 20; 121 122 /* 123 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 124 * and delay each transaction. 125 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 126 */ 127 uint_t zfs_delay_min_dirty_percent = 60; 128 129 /* 130 * This controls how quickly the delay approaches infinity. 131 * Larger values cause it to delay more for a given amount of dirty data. 132 * Therefore larger values will cause there to be less dirty data for a 133 * given throughput. 134 * 135 * For the smoothest delay, this value should be about 1 billion divided 136 * by the maximum number of operations per second. This will smoothly 137 * handle between 10x and 1/10th this number. 138 * 139 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 140 * multiply in dmu_tx_delay(). 141 */ 142 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 143 144 /* 145 * These tunables determine the behavior of how zil_itxg_clean() is 146 * called via zil_clean() in the context of spa_sync(). When an itxg 147 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching. 148 * If the dispatch fails, the call to zil_itxg_clean() will occur 149 * synchronously in the context of spa_sync(), which can negatively 150 * impact the performance of spa_sync() (e.g. in the case of the itxg 151 * list having a large number of itxs that needs to be cleaned). 152 * 153 * Thus, these tunables can be used to manipulate the behavior of the 154 * taskq used by zil_clean(); they determine the number of taskq entries 155 * that are pre-populated when the taskq is first created (via the 156 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of 157 * taskq entries that are cached after an on-demand allocation (via the 158 * "zfs_zil_clean_taskq_maxalloc"). 159 * 160 * The idea being, we want to try reasonably hard to ensure there will 161 * already be a taskq entry pre-allocated by the time that it is needed 162 * by zil_clean(). This way, we can avoid the possibility of an 163 * on-demand allocation of a new taskq entry from failing, which would 164 * result in zil_itxg_clean() being called synchronously from zil_clean() 165 * (which can adversely affect performance of spa_sync()). 166 * 167 * Additionally, the number of threads used by the taskq can be 168 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable. 169 */ 170 static int zfs_zil_clean_taskq_nthr_pct = 100; 171 static int zfs_zil_clean_taskq_minalloc = 1024; 172 static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024; 173 174 int 175 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 176 { 177 uint64_t obj; 178 int err; 179 180 err = zap_lookup(dp->dp_meta_objset, 181 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 182 name, sizeof (obj), 1, &obj); 183 if (err) 184 return (err); 185 186 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 187 } 188 189 static dsl_pool_t * 190 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 191 { 192 dsl_pool_t *dp; 193 blkptr_t *bp = spa_get_rootblkptr(spa); 194 195 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 196 dp->dp_spa = spa; 197 dp->dp_meta_rootbp = *bp; 198 rrw_init(&dp->dp_config_rwlock, B_TRUE); 199 txg_init(dp, txg); 200 mmp_init(spa); 201 202 txg_list_create(&dp->dp_dirty_datasets, spa, 203 offsetof(dsl_dataset_t, ds_dirty_link)); 204 txg_list_create(&dp->dp_dirty_zilogs, spa, 205 offsetof(zilog_t, zl_dirty_link)); 206 txg_list_create(&dp->dp_dirty_dirs, spa, 207 offsetof(dsl_dir_t, dd_dirty_link)); 208 txg_list_create(&dp->dp_sync_tasks, spa, 209 offsetof(dsl_sync_task_t, dst_node)); 210 txg_list_create(&dp->dp_early_sync_tasks, spa, 211 offsetof(dsl_sync_task_t, dst_node)); 212 213 dp->dp_sync_taskq = spa_sync_tq_create(spa, "dp_sync_taskq"); 214 215 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq", 216 zfs_zil_clean_taskq_nthr_pct, minclsyspri, 217 zfs_zil_clean_taskq_minalloc, 218 zfs_zil_clean_taskq_maxalloc, 219 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 220 221 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 222 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 223 224 aggsum_init(&dp->dp_wrlog_total, 0); 225 for (int i = 0; i < TXG_SIZE; i++) { 226 aggsum_init(&dp->dp_wrlog_pertxg[i], 0); 227 } 228 229 dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri, 230 boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 231 TASKQ_THREADS_CPU_PCT); 232 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain", 233 100, defclsyspri, boot_ncpus, INT_MAX, 234 TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 235 236 return (dp); 237 } 238 239 int 240 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 241 { 242 int err; 243 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 244 245 /* 246 * Initialize the caller's dsl_pool_t structure before we actually open 247 * the meta objset. This is done because a self-healing write zio may 248 * be issued as part of dmu_objset_open_impl() and the spa needs its 249 * dsl_pool_t initialized in order to handle the write. 250 */ 251 *dpp = dp; 252 253 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 254 &dp->dp_meta_objset); 255 if (err != 0) { 256 dsl_pool_close(dp); 257 *dpp = NULL; 258 } 259 260 return (err); 261 } 262 263 int 264 dsl_pool_open(dsl_pool_t *dp) 265 { 266 int err; 267 dsl_dir_t *dd; 268 dsl_dataset_t *ds; 269 uint64_t obj; 270 271 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 272 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 273 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 274 &dp->dp_root_dir_obj); 275 if (err) 276 goto out; 277 278 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 279 NULL, dp, &dp->dp_root_dir); 280 if (err) 281 goto out; 282 283 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 284 if (err) 285 goto out; 286 287 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 288 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 289 if (err) 290 goto out; 291 err = dsl_dataset_hold_obj(dp, 292 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 293 if (err == 0) { 294 err = dsl_dataset_hold_obj(dp, 295 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 296 &dp->dp_origin_snap); 297 dsl_dataset_rele(ds, FTAG); 298 } 299 dsl_dir_rele(dd, dp); 300 if (err) 301 goto out; 302 } 303 304 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 305 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 306 &dp->dp_free_dir); 307 if (err) 308 goto out; 309 310 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 311 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 312 if (err) 313 goto out; 314 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 315 dp->dp_meta_objset, obj)); 316 } 317 318 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 319 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 320 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj); 321 if (err == 0) { 322 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, 323 dp->dp_meta_objset, obj)); 324 } else if (err == ENOENT) { 325 /* 326 * We might not have created the remap bpobj yet. 327 */ 328 } else { 329 goto out; 330 } 331 } 332 333 /* 334 * Note: errors ignored, because the these special dirs, used for 335 * space accounting, are only created on demand. 336 */ 337 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 338 &dp->dp_leak_dir); 339 340 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 341 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 342 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 343 &dp->dp_bptree_obj); 344 if (err != 0) 345 goto out; 346 } 347 348 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 349 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 350 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 351 &dp->dp_empty_bpobj); 352 if (err != 0) 353 goto out; 354 } 355 356 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 357 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 358 &dp->dp_tmp_userrefs_obj); 359 if (err == ENOENT) 360 err = 0; 361 if (err) 362 goto out; 363 364 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 365 366 out: 367 rrw_exit(&dp->dp_config_rwlock, FTAG); 368 return (err); 369 } 370 371 void 372 dsl_pool_close(dsl_pool_t *dp) 373 { 374 /* 375 * Drop our references from dsl_pool_open(). 376 * 377 * Since we held the origin_snap from "syncing" context (which 378 * includes pool-opening context), it actually only got a "ref" 379 * and not a hold, so just drop that here. 380 */ 381 if (dp->dp_origin_snap != NULL) 382 dsl_dataset_rele(dp->dp_origin_snap, dp); 383 if (dp->dp_mos_dir != NULL) 384 dsl_dir_rele(dp->dp_mos_dir, dp); 385 if (dp->dp_free_dir != NULL) 386 dsl_dir_rele(dp->dp_free_dir, dp); 387 if (dp->dp_leak_dir != NULL) 388 dsl_dir_rele(dp->dp_leak_dir, dp); 389 if (dp->dp_root_dir != NULL) 390 dsl_dir_rele(dp->dp_root_dir, dp); 391 392 bpobj_close(&dp->dp_free_bpobj); 393 bpobj_close(&dp->dp_obsolete_bpobj); 394 395 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 396 if (dp->dp_meta_objset != NULL) 397 dmu_objset_evict(dp->dp_meta_objset); 398 399 txg_list_destroy(&dp->dp_dirty_datasets); 400 txg_list_destroy(&dp->dp_dirty_zilogs); 401 txg_list_destroy(&dp->dp_sync_tasks); 402 txg_list_destroy(&dp->dp_early_sync_tasks); 403 txg_list_destroy(&dp->dp_dirty_dirs); 404 405 taskq_destroy(dp->dp_zil_clean_taskq); 406 spa_sync_tq_destroy(dp->dp_spa); 407 408 if (dp->dp_spa->spa_state == POOL_STATE_EXPORTED || 409 dp->dp_spa->spa_state == POOL_STATE_DESTROYED) { 410 /* 411 * On export/destroy perform the ARC flush asynchronously. 412 */ 413 arc_flush_async(dp->dp_spa); 414 } else { 415 /* 416 * We can't set retry to TRUE since we're explicitly specifying 417 * a spa to flush. This is good enough; any missed buffers for 418 * this spa won't cause trouble, and they'll eventually fall 419 * out of the ARC just like any other unused buffer. 420 */ 421 arc_flush(dp->dp_spa, FALSE); 422 } 423 424 mmp_fini(dp->dp_spa); 425 txg_fini(dp); 426 dsl_scan_fini(dp); 427 dmu_buf_user_evict_wait(); 428 429 rrw_destroy(&dp->dp_config_rwlock); 430 mutex_destroy(&dp->dp_lock); 431 cv_destroy(&dp->dp_spaceavail_cv); 432 433 ASSERT0(aggsum_value(&dp->dp_wrlog_total)); 434 aggsum_fini(&dp->dp_wrlog_total); 435 for (int i = 0; i < TXG_SIZE; i++) { 436 ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i])); 437 aggsum_fini(&dp->dp_wrlog_pertxg[i]); 438 } 439 440 taskq_destroy(dp->dp_unlinked_drain_taskq); 441 taskq_destroy(dp->dp_zrele_taskq); 442 if (dp->dp_blkstats != NULL) 443 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 444 kmem_free(dp, sizeof (dsl_pool_t)); 445 } 446 447 void 448 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 449 { 450 uint64_t obj; 451 /* 452 * Currently, we only create the obsolete_bpobj where there are 453 * indirect vdevs with referenced mappings. 454 */ 455 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL)); 456 /* create and open the obsolete_bpobj */ 457 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 458 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj)); 459 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 460 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 461 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 462 } 463 464 void 465 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 466 { 467 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 468 VERIFY0(zap_remove(dp->dp_meta_objset, 469 DMU_POOL_DIRECTORY_OBJECT, 470 DMU_POOL_OBSOLETE_BPOBJ, tx)); 471 bpobj_free(dp->dp_meta_objset, 472 dp->dp_obsolete_bpobj.bpo_object, tx); 473 bpobj_close(&dp->dp_obsolete_bpobj); 474 } 475 476 dsl_pool_t * 477 dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)), 478 dsl_crypto_params_t *dcp, uint64_t txg) 479 { 480 int err; 481 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 482 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 483 #ifdef _KERNEL 484 objset_t *os; 485 #else 486 objset_t *os __attribute__((unused)); 487 #endif 488 dsl_dataset_t *ds; 489 uint64_t obj; 490 491 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 492 493 /* create and open the MOS (meta-objset) */ 494 dp->dp_meta_objset = dmu_objset_create_impl(spa, 495 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 496 spa->spa_meta_objset = dp->dp_meta_objset; 497 498 /* create the pool directory */ 499 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 500 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 501 ASSERT0(err); 502 503 /* Initialize scan structures */ 504 VERIFY0(dsl_scan_init(dp, txg)); 505 506 /* create and open the root dir */ 507 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 508 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 509 NULL, dp, &dp->dp_root_dir)); 510 511 /* create and open the meta-objset dir */ 512 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 513 VERIFY0(dsl_pool_open_special_dir(dp, 514 MOS_DIR_NAME, &dp->dp_mos_dir)); 515 516 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 517 /* create and open the free dir */ 518 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 519 FREE_DIR_NAME, tx); 520 VERIFY0(dsl_pool_open_special_dir(dp, 521 FREE_DIR_NAME, &dp->dp_free_dir)); 522 523 /* create and open the free_bplist */ 524 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 525 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 526 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 527 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 528 dp->dp_meta_objset, obj)); 529 } 530 531 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 532 dsl_pool_create_origin(dp, tx); 533 534 /* 535 * Some features may be needed when creating the root dataset, so we 536 * create the feature objects here. 537 */ 538 if (spa_version(spa) >= SPA_VERSION_FEATURES) 539 spa_feature_create_zap_objects(spa, tx); 540 541 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF && 542 dcp->cp_crypt != ZIO_CRYPT_INHERIT) 543 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx); 544 545 /* create the root dataset */ 546 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx); 547 548 /* create the root objset */ 549 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj, 550 DS_HOLD_FLAG_DECRYPT, FTAG, &ds)); 551 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 552 os = dmu_objset_create_impl(dp->dp_spa, ds, 553 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 554 rrw_exit(&ds->ds_bp_rwlock, FTAG); 555 #ifdef _KERNEL 556 zfs_create_fs(os, kcred, zplprops, tx); 557 #endif 558 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 559 560 dmu_tx_commit(tx); 561 562 rrw_exit(&dp->dp_config_rwlock, FTAG); 563 564 return (dp); 565 } 566 567 /* 568 * Account for the meta-objset space in its placeholder dsl_dir. 569 */ 570 void 571 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 572 int64_t used, int64_t comp, int64_t uncomp) 573 { 574 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 575 mutex_enter(&dp->dp_lock); 576 dp->dp_mos_used_delta += used; 577 dp->dp_mos_compressed_delta += comp; 578 dp->dp_mos_uncompressed_delta += uncomp; 579 mutex_exit(&dp->dp_lock); 580 } 581 582 static void 583 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 584 { 585 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 586 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 587 VERIFY0(zio_wait(zio)); 588 dmu_objset_sync_done(dp->dp_meta_objset, tx); 589 taskq_wait(dp->dp_sync_taskq); 590 multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes); 591 592 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 593 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 594 } 595 596 static void 597 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 598 { 599 ASSERT(MUTEX_HELD(&dp->dp_lock)); 600 601 if (delta < 0) 602 ASSERT3U(-delta, <=, dp->dp_dirty_total); 603 604 dp->dp_dirty_total += delta; 605 606 /* 607 * Note: we signal even when increasing dp_dirty_total. 608 * This ensures forward progress -- each thread wakes the next waiter. 609 */ 610 if (dp->dp_dirty_total < zfs_dirty_data_max) 611 cv_signal(&dp->dp_spaceavail_cv); 612 } 613 614 void 615 dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg) 616 { 617 ASSERT3S(size, >=, 0); 618 619 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size); 620 aggsum_add(&dp->dp_wrlog_total, size); 621 622 /* Choose a value slightly bigger than min dirty sync bytes */ 623 uint64_t sync_min = 624 zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200; 625 if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0) 626 txg_kick(dp, txg); 627 } 628 629 boolean_t 630 dsl_pool_need_wrlog_delay(dsl_pool_t *dp) 631 { 632 uint64_t delay_min_bytes = 633 zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100; 634 635 return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0); 636 } 637 638 static void 639 dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg) 640 { 641 int64_t delta; 642 delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]); 643 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta); 644 aggsum_add(&dp->dp_wrlog_total, delta); 645 /* Compact per-CPU sums after the big change. */ 646 (void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]); 647 (void) aggsum_value(&dp->dp_wrlog_total); 648 } 649 650 #ifdef ZFS_DEBUG 651 static boolean_t 652 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg) 653 { 654 spa_t *spa = dp->dp_spa; 655 vdev_t *rvd = spa->spa_root_vdev; 656 657 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 658 vdev_t *vd = rvd->vdev_child[c]; 659 txg_list_t *tl = &vd->vdev_ms_list; 660 metaslab_t *ms; 661 662 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms; 663 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) { 664 VERIFY(zfs_range_tree_is_empty(ms->ms_freeing)); 665 VERIFY(zfs_range_tree_is_empty(ms->ms_checkpointing)); 666 } 667 } 668 669 return (B_TRUE); 670 } 671 #else 672 #define dsl_early_sync_task_verify(dp, txg) \ 673 ((void) sizeof (dp), (void) sizeof (txg), B_TRUE) 674 #endif 675 676 void 677 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 678 { 679 zio_t *rio; /* root zio for all dirty dataset syncs */ 680 dmu_tx_t *tx; 681 dsl_dir_t *dd; 682 dsl_dataset_t *ds; 683 objset_t *mos = dp->dp_meta_objset; 684 list_t synced_datasets; 685 686 list_create(&synced_datasets, sizeof (dsl_dataset_t), 687 offsetof(dsl_dataset_t, ds_synced_link)); 688 689 tx = dmu_tx_create_assigned(dp, txg); 690 691 /* 692 * Run all early sync tasks before writing out any dirty blocks. 693 * For more info on early sync tasks see block comment in 694 * dsl_early_sync_task(). 695 */ 696 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) { 697 dsl_sync_task_t *dst; 698 699 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 700 while ((dst = 701 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) { 702 ASSERT(dsl_early_sync_task_verify(dp, txg)); 703 dsl_sync_task_sync(dst, tx); 704 } 705 ASSERT(dsl_early_sync_task_verify(dp, txg)); 706 } 707 708 /* 709 * Write out all dirty blocks of dirty datasets. Note, this could 710 * create a very large (+10k) zio tree. 711 */ 712 rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 713 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 714 /* 715 * We must not sync any non-MOS datasets twice, because 716 * we may have taken a snapshot of them. However, we 717 * may sync newly-created datasets on pass 2. 718 */ 719 ASSERT(!list_link_active(&ds->ds_synced_link)); 720 list_insert_tail(&synced_datasets, ds); 721 dsl_dataset_sync(ds, rio, tx); 722 } 723 VERIFY0(zio_wait(rio)); 724 725 /* 726 * Update the long range free counter after 727 * we're done syncing user data 728 */ 729 mutex_enter(&dp->dp_lock); 730 ASSERT(spa_sync_pass(dp->dp_spa) == 1 || 731 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0); 732 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0; 733 mutex_exit(&dp->dp_lock); 734 735 /* 736 * After the data blocks have been written (ensured by the zio_wait() 737 * above), update the user/group/project space accounting. This happens 738 * in tasks dispatched to dp_sync_taskq, so wait for them before 739 * continuing. 740 */ 741 for (ds = list_head(&synced_datasets); ds != NULL; 742 ds = list_next(&synced_datasets, ds)) { 743 dmu_objset_sync_done(ds->ds_objset, tx); 744 } 745 taskq_wait(dp->dp_sync_taskq); 746 747 /* 748 * Sync the datasets again to push out the changes due to 749 * userspace updates. This must be done before we process the 750 * sync tasks, so that any snapshots will have the correct 751 * user accounting information (and we won't get confused 752 * about which blocks are part of the snapshot). 753 */ 754 rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 755 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 756 objset_t *os = ds->ds_objset; 757 758 ASSERT(list_link_active(&ds->ds_synced_link)); 759 dmu_buf_rele(ds->ds_dbuf, ds); 760 dsl_dataset_sync(ds, rio, tx); 761 762 /* 763 * Release any key mappings created by calls to 764 * dsl_dataset_dirty() from the userquota accounting 765 * code paths. 766 */ 767 if (os->os_encrypted && !os->os_raw_receive && 768 !os->os_next_write_raw[txg & TXG_MASK]) { 769 ASSERT3P(ds->ds_key_mapping, !=, NULL); 770 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds); 771 } 772 } 773 VERIFY0(zio_wait(rio)); 774 775 /* 776 * Now that the datasets have been completely synced, we can 777 * clean up our in-memory structures accumulated while syncing: 778 * 779 * - move dead blocks from the pending deadlist and livelists 780 * to the on-disk versions 781 * - release hold from dsl_dataset_dirty() 782 * - release key mapping hold from dsl_dataset_dirty() 783 */ 784 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 785 objset_t *os = ds->ds_objset; 786 787 if (os->os_encrypted && !os->os_raw_receive && 788 !os->os_next_write_raw[txg & TXG_MASK]) { 789 ASSERT3P(ds->ds_key_mapping, !=, NULL); 790 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds); 791 } 792 793 dsl_dataset_sync_done(ds, tx); 794 dmu_buf_rele(ds->ds_dbuf, ds); 795 } 796 797 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 798 dsl_dir_sync(dd, tx); 799 } 800 801 /* 802 * The MOS's space is accounted for in the pool/$MOS 803 * (dp_mos_dir). We can't modify the mos while we're syncing 804 * it, so we remember the deltas and apply them here. 805 */ 806 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 807 dp->dp_mos_uncompressed_delta != 0) { 808 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 809 dp->dp_mos_used_delta, 810 dp->dp_mos_compressed_delta, 811 dp->dp_mos_uncompressed_delta, tx); 812 dp->dp_mos_used_delta = 0; 813 dp->dp_mos_compressed_delta = 0; 814 dp->dp_mos_uncompressed_delta = 0; 815 } 816 817 if (dmu_objset_is_dirty(mos, txg)) { 818 dsl_pool_sync_mos(dp, tx); 819 } 820 821 /* 822 * We have written all of the accounted dirty data, so our 823 * dp_space_towrite should now be zero. However, some seldom-used 824 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up 825 * the accounting of any dirtied space now. 826 * 827 * Note that, besides any dirty data from datasets, the amount of 828 * dirty data in the MOS is also accounted by the pool. Therefore, 829 * we want to do this cleanup after dsl_pool_sync_mos() so we don't 830 * attempt to update the accounting for the same dirty data twice. 831 * (i.e. at this point we only update the accounting for the space 832 * that we know that we "leaked"). 833 */ 834 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 835 836 /* 837 * If we modify a dataset in the same txg that we want to destroy it, 838 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 839 * dsl_dir_destroy_check() will fail if there are unexpected holds. 840 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 841 * and clearing the hold on it) before we process the sync_tasks. 842 * The MOS data dirtied by the sync_tasks will be synced on the next 843 * pass. 844 */ 845 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 846 dsl_sync_task_t *dst; 847 /* 848 * No more sync tasks should have been added while we 849 * were syncing. 850 */ 851 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 852 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 853 dsl_sync_task_sync(dst, tx); 854 } 855 856 dmu_tx_commit(tx); 857 858 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 859 } 860 861 void 862 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 863 { 864 zilog_t *zilog; 865 866 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) { 867 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 868 /* 869 * We don't remove the zilog from the dp_dirty_zilogs 870 * list until after we've cleaned it. This ensures that 871 * callers of zilog_is_dirty() receive an accurate 872 * answer when they are racing with the spa sync thread. 873 */ 874 zil_clean(zilog, txg); 875 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg); 876 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 877 dmu_buf_rele(ds->ds_dbuf, zilog); 878 } 879 880 dsl_pool_wrlog_clear(dp, txg); 881 882 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 883 } 884 885 /* 886 * TRUE if the current thread is the tx_sync_thread or if we 887 * are being called from SPA context during pool initialization. 888 */ 889 int 890 dsl_pool_sync_context(dsl_pool_t *dp) 891 { 892 return (curthread == dp->dp_tx.tx_sync_thread || 893 spa_is_initializing(dp->dp_spa) || 894 taskq_member(dp->dp_sync_taskq, curthread)); 895 } 896 897 /* 898 * This function returns the amount of allocatable space in the pool 899 * minus whatever space is currently reserved by ZFS for specific 900 * purposes. Specifically: 901 * 902 * 1] Any reserved SLOP space 903 * 2] Any space used by the checkpoint 904 * 3] Any space used for deferred frees 905 * 906 * The latter 2 are especially important because they are needed to 907 * rectify the SPA's and DMU's different understanding of how much space 908 * is used. Now the DMU is aware of that extra space tracked by the SPA 909 * without having to maintain a separate special dir (e.g similar to 910 * $MOS, $FREEING, and $LEAKED). 911 * 912 * Note: By deferred frees here, we mean the frees that were deferred 913 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the 914 * segments placed in ms_defer trees during metaslab_sync_done(). 915 */ 916 uint64_t 917 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy) 918 { 919 spa_t *spa = dp->dp_spa; 920 uint64_t space, resv, adjustedsize; 921 uint64_t spa_deferred_frees = 922 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes; 923 924 space = spa_get_dspace(spa) 925 - spa_get_checkpoint_space(spa) - spa_deferred_frees; 926 resv = spa_get_slop_space(spa); 927 928 switch (slop_policy) { 929 case ZFS_SPACE_CHECK_NORMAL: 930 break; 931 case ZFS_SPACE_CHECK_RESERVED: 932 resv >>= 1; 933 break; 934 case ZFS_SPACE_CHECK_EXTRA_RESERVED: 935 resv >>= 2; 936 break; 937 case ZFS_SPACE_CHECK_NONE: 938 resv = 0; 939 break; 940 default: 941 panic("invalid slop policy value: %d", slop_policy); 942 break; 943 } 944 adjustedsize = (space >= resv) ? (space - resv) : 0; 945 946 return (adjustedsize); 947 } 948 949 uint64_t 950 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy) 951 { 952 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy); 953 uint64_t deferred = 954 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)); 955 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0; 956 return (quota); 957 } 958 959 uint64_t 960 dsl_pool_deferred_space(dsl_pool_t *dp) 961 { 962 return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa))); 963 } 964 965 boolean_t 966 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 967 { 968 uint64_t delay_min_bytes = 969 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 970 971 /* 972 * We are not taking the dp_lock here and few other places, since torn 973 * reads are unlikely: on 64-bit systems due to register size and on 974 * 32-bit due to memory constraints. Pool-wide locks in hot path may 975 * be too expensive, while we do not need a precise result here. 976 */ 977 return (dp->dp_dirty_total > delay_min_bytes); 978 } 979 980 static boolean_t 981 dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg) 982 { 983 uint64_t dirty_min_bytes = 984 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100; 985 uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK]; 986 987 return (dirty > dirty_min_bytes); 988 } 989 990 void 991 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 992 { 993 if (space > 0) { 994 mutex_enter(&dp->dp_lock); 995 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 996 dsl_pool_dirty_delta(dp, space); 997 boolean_t needsync = !dmu_tx_is_syncing(tx) && 998 dsl_pool_need_dirty_sync(dp, tx->tx_txg); 999 mutex_exit(&dp->dp_lock); 1000 1001 if (needsync) 1002 txg_kick(dp, tx->tx_txg); 1003 } 1004 } 1005 1006 void 1007 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 1008 { 1009 ASSERT3S(space, >=, 0); 1010 if (space == 0) 1011 return; 1012 1013 mutex_enter(&dp->dp_lock); 1014 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 1015 /* XXX writing something we didn't dirty? */ 1016 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 1017 } 1018 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 1019 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 1020 ASSERT3U(dp->dp_dirty_total, >=, space); 1021 dsl_pool_dirty_delta(dp, -space); 1022 mutex_exit(&dp->dp_lock); 1023 } 1024 1025 static int 1026 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 1027 { 1028 dmu_tx_t *tx = arg; 1029 dsl_dataset_t *ds, *prev = NULL; 1030 int err; 1031 1032 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 1033 if (err) 1034 return (err); 1035 1036 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 1037 err = dsl_dataset_hold_obj(dp, 1038 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 1039 if (err) { 1040 dsl_dataset_rele(ds, FTAG); 1041 return (err); 1042 } 1043 1044 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 1045 break; 1046 dsl_dataset_rele(ds, FTAG); 1047 ds = prev; 1048 prev = NULL; 1049 } 1050 1051 if (prev == NULL) { 1052 prev = dp->dp_origin_snap; 1053 1054 /* 1055 * The $ORIGIN can't have any data, or the accounting 1056 * will be wrong. 1057 */ 1058 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1059 ASSERT0(BP_GET_LOGICAL_BIRTH(&dsl_dataset_phys(prev)->ds_bp)); 1060 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1061 1062 /* The origin doesn't get attached to itself */ 1063 if (ds->ds_object == prev->ds_object) { 1064 dsl_dataset_rele(ds, FTAG); 1065 return (0); 1066 } 1067 1068 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1069 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 1070 dsl_dataset_phys(ds)->ds_prev_snap_txg = 1071 dsl_dataset_phys(prev)->ds_creation_txg; 1072 1073 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1074 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 1075 1076 dmu_buf_will_dirty(prev->ds_dbuf, tx); 1077 dsl_dataset_phys(prev)->ds_num_children++; 1078 1079 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 1080 ASSERT(ds->ds_prev == NULL); 1081 VERIFY0(dsl_dataset_hold_obj(dp, 1082 dsl_dataset_phys(ds)->ds_prev_snap_obj, 1083 ds, &ds->ds_prev)); 1084 } 1085 } 1086 1087 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 1088 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 1089 1090 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 1091 dmu_buf_will_dirty(prev->ds_dbuf, tx); 1092 dsl_dataset_phys(prev)->ds_next_clones_obj = 1093 zap_create(dp->dp_meta_objset, 1094 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 1095 } 1096 VERIFY0(zap_add_int(dp->dp_meta_objset, 1097 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 1098 1099 dsl_dataset_rele(ds, FTAG); 1100 if (prev != dp->dp_origin_snap) 1101 dsl_dataset_rele(prev, FTAG); 1102 return (0); 1103 } 1104 1105 void 1106 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 1107 { 1108 ASSERT(dmu_tx_is_syncing(tx)); 1109 ASSERT(dp->dp_origin_snap != NULL); 1110 1111 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 1112 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1113 } 1114 1115 static int 1116 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1117 { 1118 dmu_tx_t *tx = arg; 1119 objset_t *mos = dp->dp_meta_objset; 1120 1121 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 1122 dsl_dataset_t *origin; 1123 1124 VERIFY0(dsl_dataset_hold_obj(dp, 1125 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 1126 1127 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 1128 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 1129 dsl_dir_phys(origin->ds_dir)->dd_clones = 1130 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 1131 0, tx); 1132 } 1133 1134 VERIFY0(zap_add_int(dp->dp_meta_objset, 1135 dsl_dir_phys(origin->ds_dir)->dd_clones, 1136 ds->ds_object, tx)); 1137 1138 dsl_dataset_rele(origin, FTAG); 1139 } 1140 return (0); 1141 } 1142 1143 void 1144 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 1145 { 1146 uint64_t obj; 1147 1148 ASSERT(dmu_tx_is_syncing(tx)); 1149 1150 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 1151 VERIFY0(dsl_pool_open_special_dir(dp, 1152 FREE_DIR_NAME, &dp->dp_free_dir)); 1153 1154 /* 1155 * We can't use bpobj_alloc(), because spa_version() still 1156 * returns the old version, and we need a new-version bpobj with 1157 * subobj support. So call dmu_object_alloc() directly. 1158 */ 1159 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 1160 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 1161 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1162 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 1163 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 1164 1165 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1166 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1167 } 1168 1169 void 1170 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 1171 { 1172 uint64_t dsobj; 1173 dsl_dataset_t *ds; 1174 1175 ASSERT(dmu_tx_is_syncing(tx)); 1176 ASSERT(dp->dp_origin_snap == NULL); 1177 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 1178 1179 /* create the origin dir, ds, & snap-ds */ 1180 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 1181 NULL, 0, kcred, NULL, tx); 1182 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 1183 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 1184 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 1185 dp, &dp->dp_origin_snap)); 1186 dsl_dataset_rele(ds, FTAG); 1187 } 1188 1189 taskq_t * 1190 dsl_pool_zrele_taskq(dsl_pool_t *dp) 1191 { 1192 return (dp->dp_zrele_taskq); 1193 } 1194 1195 taskq_t * 1196 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp) 1197 { 1198 return (dp->dp_unlinked_drain_taskq); 1199 } 1200 1201 /* 1202 * Walk through the pool-wide zap object of temporary snapshot user holds 1203 * and release them. 1204 */ 1205 void 1206 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 1207 { 1208 zap_attribute_t *za; 1209 zap_cursor_t zc; 1210 objset_t *mos = dp->dp_meta_objset; 1211 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1212 nvlist_t *holds; 1213 1214 if (zapobj == 0) 1215 return; 1216 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1217 1218 holds = fnvlist_alloc(); 1219 1220 za = zap_attribute_alloc(); 1221 for (zap_cursor_init(&zc, mos, zapobj); 1222 zap_cursor_retrieve(&zc, za) == 0; 1223 zap_cursor_advance(&zc)) { 1224 char *htag; 1225 nvlist_t *tags; 1226 1227 htag = strchr(za->za_name, '-'); 1228 *htag = '\0'; 1229 ++htag; 1230 if (nvlist_lookup_nvlist(holds, za->za_name, &tags) != 0) { 1231 tags = fnvlist_alloc(); 1232 fnvlist_add_boolean(tags, htag); 1233 fnvlist_add_nvlist(holds, za->za_name, tags); 1234 fnvlist_free(tags); 1235 } else { 1236 fnvlist_add_boolean(tags, htag); 1237 } 1238 } 1239 dsl_dataset_user_release_tmp(dp, holds); 1240 fnvlist_free(holds); 1241 zap_cursor_fini(&zc); 1242 zap_attribute_free(za); 1243 } 1244 1245 /* 1246 * Create the pool-wide zap object for storing temporary snapshot holds. 1247 */ 1248 static void 1249 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 1250 { 1251 objset_t *mos = dp->dp_meta_objset; 1252 1253 ASSERT(dp->dp_tmp_userrefs_obj == 0); 1254 ASSERT(dmu_tx_is_syncing(tx)); 1255 1256 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 1257 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 1258 } 1259 1260 static int 1261 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 1262 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 1263 { 1264 objset_t *mos = dp->dp_meta_objset; 1265 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1266 char *name; 1267 int error; 1268 1269 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1270 ASSERT(dmu_tx_is_syncing(tx)); 1271 1272 /* 1273 * If the pool was created prior to SPA_VERSION_USERREFS, the 1274 * zap object for temporary holds might not exist yet. 1275 */ 1276 if (zapobj == 0) { 1277 if (holding) { 1278 dsl_pool_user_hold_create_obj(dp, tx); 1279 zapobj = dp->dp_tmp_userrefs_obj; 1280 } else { 1281 return (SET_ERROR(ENOENT)); 1282 } 1283 } 1284 1285 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 1286 if (holding) 1287 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 1288 else 1289 error = zap_remove(mos, zapobj, name, tx); 1290 kmem_strfree(name); 1291 1292 return (error); 1293 } 1294 1295 /* 1296 * Add a temporary hold for the given dataset object and tag. 1297 */ 1298 int 1299 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1300 uint64_t now, dmu_tx_t *tx) 1301 { 1302 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 1303 } 1304 1305 /* 1306 * Release a temporary hold for the given dataset object and tag. 1307 */ 1308 int 1309 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1310 dmu_tx_t *tx) 1311 { 1312 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0, 1313 tx, B_FALSE)); 1314 } 1315 1316 /* 1317 * DSL Pool Configuration Lock 1318 * 1319 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 1320 * creation / destruction / rename / property setting). It must be held for 1321 * read to hold a dataset or dsl_dir. I.e. you must call 1322 * dsl_pool_config_enter() or dsl_pool_hold() before calling 1323 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 1324 * must be held continuously until all datasets and dsl_dirs are released. 1325 * 1326 * The only exception to this rule is that if a "long hold" is placed on 1327 * a dataset, then the dp_config_rwlock may be dropped while the dataset 1328 * is still held. The long hold will prevent the dataset from being 1329 * destroyed -- the destroy will fail with EBUSY. A long hold can be 1330 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 1331 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 1332 * 1333 * Legitimate long-holders (including owners) should be long-running, cancelable 1334 * tasks that should cause "zfs destroy" to fail. This includes DMU 1335 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 1336 * "zfs send", and "zfs diff". There are several other long-holders whose 1337 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 1338 * 1339 * The usual formula for long-holding would be: 1340 * dsl_pool_hold() 1341 * dsl_dataset_hold() 1342 * ... perform checks ... 1343 * dsl_dataset_long_hold() 1344 * dsl_pool_rele() 1345 * ... perform long-running task ... 1346 * dsl_dataset_long_rele() 1347 * dsl_dataset_rele() 1348 * 1349 * Note that when the long hold is released, the dataset is still held but 1350 * the pool is not held. The dataset may change arbitrarily during this time 1351 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 1352 * dataset except release it. 1353 * 1354 * Operations generally fall somewhere into the following taxonomy: 1355 * 1356 * Read-Only Modifying 1357 * 1358 * Dataset Layer / MOS zfs get zfs destroy 1359 * 1360 * Individual Dataset read() write() 1361 * 1362 * 1363 * Dataset Layer Operations 1364 * 1365 * Modifying operations should generally use dsl_sync_task(). The synctask 1366 * infrastructure enforces proper locking strategy with respect to the 1367 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1368 * 1369 * Read-only operations will manually hold the pool, then the dataset, obtain 1370 * information from the dataset, then release the pool and dataset. 1371 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1372 * hold/rele. 1373 * 1374 * 1375 * Operations On Individual Datasets 1376 * 1377 * Objects _within_ an objset should only be modified by the current 'owner' 1378 * of the objset to prevent incorrect concurrent modification. Thus, use 1379 * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner, 1380 * and fail with EBUSY if there is already an owner. The owner can then 1381 * implement its own locking strategy, independent of the dataset layer's 1382 * locking infrastructure. 1383 * (E.g., the ZPL has its own set of locks to control concurrency. A regular 1384 * vnop will not reach into the dataset layer). 1385 * 1386 * Ideally, objects would also only be read by the objset’s owner, so that we 1387 * don’t observe state mid-modification. 1388 * (E.g. the ZPL is creating a new object and linking it into a directory; if 1389 * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an 1390 * intermediate state. The ioctl level violates this but in pretty benign 1391 * ways, e.g. reading the zpl props object.) 1392 */ 1393 1394 int 1395 dsl_pool_hold(const char *name, const void *tag, dsl_pool_t **dp) 1396 { 1397 spa_t *spa; 1398 int error; 1399 1400 error = spa_open(name, &spa, tag); 1401 if (error == 0) { 1402 *dp = spa_get_dsl(spa); 1403 dsl_pool_config_enter(*dp, tag); 1404 } 1405 return (error); 1406 } 1407 1408 void 1409 dsl_pool_rele(dsl_pool_t *dp, const void *tag) 1410 { 1411 dsl_pool_config_exit(dp, tag); 1412 spa_close(dp->dp_spa, tag); 1413 } 1414 1415 void 1416 dsl_pool_config_enter(dsl_pool_t *dp, const void *tag) 1417 { 1418 /* 1419 * We use a "reentrant" reader-writer lock, but not reentrantly. 1420 * 1421 * The rrwlock can (with the track_all flag) track all reading threads, 1422 * which is very useful for debugging which code path failed to release 1423 * the lock, and for verifying that the *current* thread does hold 1424 * the lock. 1425 * 1426 * (Unlike a rwlock, which knows that N threads hold it for 1427 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1428 * if any thread holds it for read, even if this thread doesn't). 1429 */ 1430 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1431 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1432 } 1433 1434 void 1435 dsl_pool_config_enter_prio(dsl_pool_t *dp, const void *tag) 1436 { 1437 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1438 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1439 } 1440 1441 void 1442 dsl_pool_config_exit(dsl_pool_t *dp, const void *tag) 1443 { 1444 rrw_exit(&dp->dp_config_rwlock, tag); 1445 } 1446 1447 boolean_t 1448 dsl_pool_config_held(dsl_pool_t *dp) 1449 { 1450 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1451 } 1452 1453 boolean_t 1454 dsl_pool_config_held_writer(dsl_pool_t *dp) 1455 { 1456 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1457 } 1458 1459 EXPORT_SYMBOL(dsl_pool_config_enter); 1460 EXPORT_SYMBOL(dsl_pool_config_exit); 1461 1462 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */ 1463 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, UINT, ZMOD_RD, 1464 "Max percent of RAM allowed to be dirty"); 1465 1466 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */ 1467 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, UINT, ZMOD_RD, 1468 "zfs_dirty_data_max upper bound as % of RAM"); 1469 1470 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, UINT, ZMOD_RW, 1471 "Transaction delay threshold"); 1472 1473 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, U64, ZMOD_RW, 1474 "Determines the dirty space limit"); 1475 1476 ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, U64, ZMOD_RW, 1477 "The size limit of write-transaction zil log data"); 1478 1479 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */ 1480 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, U64, ZMOD_RD, 1481 "zfs_dirty_data_max upper bound in bytes"); 1482 1483 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, UINT, ZMOD_RW, 1484 "Dirty data txg sync threshold as a percentage of zfs_dirty_data_max"); 1485 1486 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, U64, ZMOD_RW, 1487 "How quickly delay approaches infinity"); 1488 1489 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW, 1490 "Max percent of CPUs that are used per dp_sync_taskq"); 1491 1492 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW, 1493 "Number of taskq entries that are pre-populated"); 1494 1495 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW, 1496 "Max number of taskq entries that are cached"); 1497