xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_pool.c (revision 96190b4fef3b4a0cc3ca0606b0c4e3e69a5e6717)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/mmp.h>
53 
54 /*
55  * ZFS Write Throttle
56  * ------------------
57  *
58  * ZFS must limit the rate of incoming writes to the rate at which it is able
59  * to sync data modifications to the backend storage. Throttling by too much
60  * creates an artificial limit; throttling by too little can only be sustained
61  * for short periods and would lead to highly lumpy performance. On a per-pool
62  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64  * of dirty data decreases. When the amount of dirty data exceeds a
65  * predetermined threshold further modifications are blocked until the amount
66  * of dirty data decreases (as data is synced out).
67  *
68  * The limit on dirty data is tunable, and should be adjusted according to
69  * both the IO capacity and available memory of the system. The larger the
70  * window, the more ZFS is able to aggregate and amortize metadata (and data)
71  * changes. However, memory is a limited resource, and allowing for more dirty
72  * data comes at the cost of keeping other useful data in memory (for example
73  * ZFS data cached by the ARC).
74  *
75  * Implementation
76  *
77  * As buffers are modified dsl_pool_willuse_space() increments both the per-
78  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79  * dirty space used; dsl_pool_dirty_space() decrements those values as data
80  * is synced out from dsl_pool_sync(). While only the poolwide value is
81  * relevant, the per-txg value is useful for debugging. The tunable
82  * zfs_dirty_data_max determines the dirty space limit. Once that value is
83  * exceeded, new writes are halted until space frees up.
84  *
85  * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
86  * ensure that there is a txg syncing (see the comment in txg.c for a full
87  * description of transaction group stages).
88  *
89  * The IO scheduler uses both the dirty space limit and current amount of
90  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
92  *
93  * The delay is also calculated based on the amount of dirty data.  See the
94  * comment above dmu_tx_delay() for details.
95  */
96 
97 /*
98  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99  * capped at zfs_dirty_data_max_max.  It can also be overridden with a module
100  * parameter.
101  */
102 uint64_t zfs_dirty_data_max = 0;
103 uint64_t zfs_dirty_data_max_max = 0;
104 uint_t zfs_dirty_data_max_percent = 10;
105 uint_t zfs_dirty_data_max_max_percent = 25;
106 
107 /*
108  * The upper limit of TX_WRITE log data.  Write operations are throttled
109  * when approaching the limit until log data is cleared out after txg sync.
110  * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
111  */
112 uint64_t zfs_wrlog_data_max = 0;
113 
114 /*
115  * If there's at least this much dirty data (as a percentage of
116  * zfs_dirty_data_max), push out a txg.  This should be less than
117  * zfs_vdev_async_write_active_min_dirty_percent.
118  */
119 static uint_t zfs_dirty_data_sync_percent = 20;
120 
121 /*
122  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
123  * and delay each transaction.
124  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
125  */
126 uint_t zfs_delay_min_dirty_percent = 60;
127 
128 /*
129  * This controls how quickly the delay approaches infinity.
130  * Larger values cause it to delay more for a given amount of dirty data.
131  * Therefore larger values will cause there to be less dirty data for a
132  * given throughput.
133  *
134  * For the smoothest delay, this value should be about 1 billion divided
135  * by the maximum number of operations per second.  This will smoothly
136  * handle between 10x and 1/10th this number.
137  *
138  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
139  * multiply in dmu_tx_delay().
140  */
141 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
142 
143 /*
144  * These tunables determine the behavior of how zil_itxg_clean() is
145  * called via zil_clean() in the context of spa_sync(). When an itxg
146  * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
147  * If the dispatch fails, the call to zil_itxg_clean() will occur
148  * synchronously in the context of spa_sync(), which can negatively
149  * impact the performance of spa_sync() (e.g. in the case of the itxg
150  * list having a large number of itxs that needs to be cleaned).
151  *
152  * Thus, these tunables can be used to manipulate the behavior of the
153  * taskq used by zil_clean(); they determine the number of taskq entries
154  * that are pre-populated when the taskq is first created (via the
155  * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
156  * taskq entries that are cached after an on-demand allocation (via the
157  * "zfs_zil_clean_taskq_maxalloc").
158  *
159  * The idea being, we want to try reasonably hard to ensure there will
160  * already be a taskq entry pre-allocated by the time that it is needed
161  * by zil_clean(). This way, we can avoid the possibility of an
162  * on-demand allocation of a new taskq entry from failing, which would
163  * result in zil_itxg_clean() being called synchronously from zil_clean()
164  * (which can adversely affect performance of spa_sync()).
165  *
166  * Additionally, the number of threads used by the taskq can be
167  * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
168  */
169 static int zfs_zil_clean_taskq_nthr_pct = 100;
170 static int zfs_zil_clean_taskq_minalloc = 1024;
171 static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
172 
173 int
174 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
175 {
176 	uint64_t obj;
177 	int err;
178 
179 	err = zap_lookup(dp->dp_meta_objset,
180 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
181 	    name, sizeof (obj), 1, &obj);
182 	if (err)
183 		return (err);
184 
185 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
186 }
187 
188 static dsl_pool_t *
189 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
190 {
191 	dsl_pool_t *dp;
192 	blkptr_t *bp = spa_get_rootblkptr(spa);
193 
194 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
195 	dp->dp_spa = spa;
196 	dp->dp_meta_rootbp = *bp;
197 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
198 	txg_init(dp, txg);
199 	mmp_init(spa);
200 
201 	txg_list_create(&dp->dp_dirty_datasets, spa,
202 	    offsetof(dsl_dataset_t, ds_dirty_link));
203 	txg_list_create(&dp->dp_dirty_zilogs, spa,
204 	    offsetof(zilog_t, zl_dirty_link));
205 	txg_list_create(&dp->dp_dirty_dirs, spa,
206 	    offsetof(dsl_dir_t, dd_dirty_link));
207 	txg_list_create(&dp->dp_sync_tasks, spa,
208 	    offsetof(dsl_sync_task_t, dst_node));
209 	txg_list_create(&dp->dp_early_sync_tasks, spa,
210 	    offsetof(dsl_sync_task_t, dst_node));
211 
212 	dp->dp_sync_taskq = spa_sync_tq_create(spa, "dp_sync_taskq");
213 
214 	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
215 	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
216 	    zfs_zil_clean_taskq_minalloc,
217 	    zfs_zil_clean_taskq_maxalloc,
218 	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
219 
220 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
221 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
222 
223 	aggsum_init(&dp->dp_wrlog_total, 0);
224 	for (int i = 0; i < TXG_SIZE; i++) {
225 		aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
226 	}
227 
228 	dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
229 	    boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
230 	    TASKQ_THREADS_CPU_PCT);
231 	dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
232 	    100, defclsyspri, boot_ncpus, INT_MAX,
233 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
234 
235 	return (dp);
236 }
237 
238 int
239 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
240 {
241 	int err;
242 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
243 
244 	/*
245 	 * Initialize the caller's dsl_pool_t structure before we actually open
246 	 * the meta objset.  This is done because a self-healing write zio may
247 	 * be issued as part of dmu_objset_open_impl() and the spa needs its
248 	 * dsl_pool_t initialized in order to handle the write.
249 	 */
250 	*dpp = dp;
251 
252 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
253 	    &dp->dp_meta_objset);
254 	if (err != 0) {
255 		dsl_pool_close(dp);
256 		*dpp = NULL;
257 	}
258 
259 	return (err);
260 }
261 
262 int
263 dsl_pool_open(dsl_pool_t *dp)
264 {
265 	int err;
266 	dsl_dir_t *dd;
267 	dsl_dataset_t *ds;
268 	uint64_t obj;
269 
270 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
271 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
272 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
273 	    &dp->dp_root_dir_obj);
274 	if (err)
275 		goto out;
276 
277 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
278 	    NULL, dp, &dp->dp_root_dir);
279 	if (err)
280 		goto out;
281 
282 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
283 	if (err)
284 		goto out;
285 
286 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
287 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
288 		if (err)
289 			goto out;
290 		err = dsl_dataset_hold_obj(dp,
291 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
292 		if (err == 0) {
293 			err = dsl_dataset_hold_obj(dp,
294 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
295 			    &dp->dp_origin_snap);
296 			dsl_dataset_rele(ds, FTAG);
297 		}
298 		dsl_dir_rele(dd, dp);
299 		if (err)
300 			goto out;
301 	}
302 
303 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
304 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
305 		    &dp->dp_free_dir);
306 		if (err)
307 			goto out;
308 
309 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
310 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
311 		if (err)
312 			goto out;
313 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
314 		    dp->dp_meta_objset, obj));
315 	}
316 
317 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
318 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
319 		    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
320 		if (err == 0) {
321 			VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
322 			    dp->dp_meta_objset, obj));
323 		} else if (err == ENOENT) {
324 			/*
325 			 * We might not have created the remap bpobj yet.
326 			 */
327 		} else {
328 			goto out;
329 		}
330 	}
331 
332 	/*
333 	 * Note: errors ignored, because the these special dirs, used for
334 	 * space accounting, are only created on demand.
335 	 */
336 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
337 	    &dp->dp_leak_dir);
338 
339 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
340 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
341 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
342 		    &dp->dp_bptree_obj);
343 		if (err != 0)
344 			goto out;
345 	}
346 
347 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
348 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
349 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
350 		    &dp->dp_empty_bpobj);
351 		if (err != 0)
352 			goto out;
353 	}
354 
355 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
356 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
357 	    &dp->dp_tmp_userrefs_obj);
358 	if (err == ENOENT)
359 		err = 0;
360 	if (err)
361 		goto out;
362 
363 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
364 
365 out:
366 	rrw_exit(&dp->dp_config_rwlock, FTAG);
367 	return (err);
368 }
369 
370 void
371 dsl_pool_close(dsl_pool_t *dp)
372 {
373 	/*
374 	 * Drop our references from dsl_pool_open().
375 	 *
376 	 * Since we held the origin_snap from "syncing" context (which
377 	 * includes pool-opening context), it actually only got a "ref"
378 	 * and not a hold, so just drop that here.
379 	 */
380 	if (dp->dp_origin_snap != NULL)
381 		dsl_dataset_rele(dp->dp_origin_snap, dp);
382 	if (dp->dp_mos_dir != NULL)
383 		dsl_dir_rele(dp->dp_mos_dir, dp);
384 	if (dp->dp_free_dir != NULL)
385 		dsl_dir_rele(dp->dp_free_dir, dp);
386 	if (dp->dp_leak_dir != NULL)
387 		dsl_dir_rele(dp->dp_leak_dir, dp);
388 	if (dp->dp_root_dir != NULL)
389 		dsl_dir_rele(dp->dp_root_dir, dp);
390 
391 	bpobj_close(&dp->dp_free_bpobj);
392 	bpobj_close(&dp->dp_obsolete_bpobj);
393 
394 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
395 	if (dp->dp_meta_objset != NULL)
396 		dmu_objset_evict(dp->dp_meta_objset);
397 
398 	txg_list_destroy(&dp->dp_dirty_datasets);
399 	txg_list_destroy(&dp->dp_dirty_zilogs);
400 	txg_list_destroy(&dp->dp_sync_tasks);
401 	txg_list_destroy(&dp->dp_early_sync_tasks);
402 	txg_list_destroy(&dp->dp_dirty_dirs);
403 
404 	taskq_destroy(dp->dp_zil_clean_taskq);
405 	spa_sync_tq_destroy(dp->dp_spa);
406 
407 	/*
408 	 * We can't set retry to TRUE since we're explicitly specifying
409 	 * a spa to flush. This is good enough; any missed buffers for
410 	 * this spa won't cause trouble, and they'll eventually fall
411 	 * out of the ARC just like any other unused buffer.
412 	 */
413 	arc_flush(dp->dp_spa, FALSE);
414 
415 	mmp_fini(dp->dp_spa);
416 	txg_fini(dp);
417 	dsl_scan_fini(dp);
418 	dmu_buf_user_evict_wait();
419 
420 	rrw_destroy(&dp->dp_config_rwlock);
421 	mutex_destroy(&dp->dp_lock);
422 	cv_destroy(&dp->dp_spaceavail_cv);
423 
424 	ASSERT0(aggsum_value(&dp->dp_wrlog_total));
425 	aggsum_fini(&dp->dp_wrlog_total);
426 	for (int i = 0; i < TXG_SIZE; i++) {
427 		ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
428 		aggsum_fini(&dp->dp_wrlog_pertxg[i]);
429 	}
430 
431 	taskq_destroy(dp->dp_unlinked_drain_taskq);
432 	taskq_destroy(dp->dp_zrele_taskq);
433 	if (dp->dp_blkstats != NULL)
434 		vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
435 	kmem_free(dp, sizeof (dsl_pool_t));
436 }
437 
438 void
439 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
440 {
441 	uint64_t obj;
442 	/*
443 	 * Currently, we only create the obsolete_bpobj where there are
444 	 * indirect vdevs with referenced mappings.
445 	 */
446 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
447 	/* create and open the obsolete_bpobj */
448 	obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
449 	VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
450 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
451 	    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
452 	spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
453 }
454 
455 void
456 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
457 {
458 	spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
459 	VERIFY0(zap_remove(dp->dp_meta_objset,
460 	    DMU_POOL_DIRECTORY_OBJECT,
461 	    DMU_POOL_OBSOLETE_BPOBJ, tx));
462 	bpobj_free(dp->dp_meta_objset,
463 	    dp->dp_obsolete_bpobj.bpo_object, tx);
464 	bpobj_close(&dp->dp_obsolete_bpobj);
465 }
466 
467 dsl_pool_t *
468 dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
469     dsl_crypto_params_t *dcp, uint64_t txg)
470 {
471 	int err;
472 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
473 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
474 #ifdef _KERNEL
475 	objset_t *os;
476 #else
477 	objset_t *os __attribute__((unused));
478 #endif
479 	dsl_dataset_t *ds;
480 	uint64_t obj;
481 
482 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
483 
484 	/* create and open the MOS (meta-objset) */
485 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
486 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
487 	spa->spa_meta_objset = dp->dp_meta_objset;
488 
489 	/* create the pool directory */
490 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
491 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
492 	ASSERT0(err);
493 
494 	/* Initialize scan structures */
495 	VERIFY0(dsl_scan_init(dp, txg));
496 
497 	/* create and open the root dir */
498 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
499 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
500 	    NULL, dp, &dp->dp_root_dir));
501 
502 	/* create and open the meta-objset dir */
503 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
504 	VERIFY0(dsl_pool_open_special_dir(dp,
505 	    MOS_DIR_NAME, &dp->dp_mos_dir));
506 
507 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
508 		/* create and open the free dir */
509 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
510 		    FREE_DIR_NAME, tx);
511 		VERIFY0(dsl_pool_open_special_dir(dp,
512 		    FREE_DIR_NAME, &dp->dp_free_dir));
513 
514 		/* create and open the free_bplist */
515 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
516 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
517 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
518 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
519 		    dp->dp_meta_objset, obj));
520 	}
521 
522 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
523 		dsl_pool_create_origin(dp, tx);
524 
525 	/*
526 	 * Some features may be needed when creating the root dataset, so we
527 	 * create the feature objects here.
528 	 */
529 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
530 		spa_feature_create_zap_objects(spa, tx);
531 
532 	if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
533 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT)
534 		spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
535 
536 	/* create the root dataset */
537 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
538 
539 	/* create the root objset */
540 	VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
541 	    DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
542 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
543 	os = dmu_objset_create_impl(dp->dp_spa, ds,
544 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
545 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
546 #ifdef _KERNEL
547 	zfs_create_fs(os, kcred, zplprops, tx);
548 #endif
549 	dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
550 
551 	dmu_tx_commit(tx);
552 
553 	rrw_exit(&dp->dp_config_rwlock, FTAG);
554 
555 	return (dp);
556 }
557 
558 /*
559  * Account for the meta-objset space in its placeholder dsl_dir.
560  */
561 void
562 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
563     int64_t used, int64_t comp, int64_t uncomp)
564 {
565 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
566 	mutex_enter(&dp->dp_lock);
567 	dp->dp_mos_used_delta += used;
568 	dp->dp_mos_compressed_delta += comp;
569 	dp->dp_mos_uncompressed_delta += uncomp;
570 	mutex_exit(&dp->dp_lock);
571 }
572 
573 static void
574 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
575 {
576 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
577 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
578 	VERIFY0(zio_wait(zio));
579 	dmu_objset_sync_done(dp->dp_meta_objset, tx);
580 	taskq_wait(dp->dp_sync_taskq);
581 	multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
582 
583 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
584 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
585 }
586 
587 static void
588 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
589 {
590 	ASSERT(MUTEX_HELD(&dp->dp_lock));
591 
592 	if (delta < 0)
593 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
594 
595 	dp->dp_dirty_total += delta;
596 
597 	/*
598 	 * Note: we signal even when increasing dp_dirty_total.
599 	 * This ensures forward progress -- each thread wakes the next waiter.
600 	 */
601 	if (dp->dp_dirty_total < zfs_dirty_data_max)
602 		cv_signal(&dp->dp_spaceavail_cv);
603 }
604 
605 void
606 dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
607 {
608 	ASSERT3S(size, >=, 0);
609 
610 	aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
611 	aggsum_add(&dp->dp_wrlog_total, size);
612 
613 	/* Choose a value slightly bigger than min dirty sync bytes */
614 	uint64_t sync_min =
615 	    zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200;
616 	if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
617 		txg_kick(dp, txg);
618 }
619 
620 boolean_t
621 dsl_pool_need_wrlog_delay(dsl_pool_t *dp)
622 {
623 	uint64_t delay_min_bytes =
624 	    zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
625 
626 	return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0);
627 }
628 
629 static void
630 dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
631 {
632 	int64_t delta;
633 	delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
634 	aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
635 	aggsum_add(&dp->dp_wrlog_total, delta);
636 	/* Compact per-CPU sums after the big change. */
637 	(void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
638 	(void) aggsum_value(&dp->dp_wrlog_total);
639 }
640 
641 #ifdef ZFS_DEBUG
642 static boolean_t
643 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
644 {
645 	spa_t *spa = dp->dp_spa;
646 	vdev_t *rvd = spa->spa_root_vdev;
647 
648 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
649 		vdev_t *vd = rvd->vdev_child[c];
650 		txg_list_t *tl = &vd->vdev_ms_list;
651 		metaslab_t *ms;
652 
653 		for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
654 		    ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
655 			VERIFY(range_tree_is_empty(ms->ms_freeing));
656 			VERIFY(range_tree_is_empty(ms->ms_checkpointing));
657 		}
658 	}
659 
660 	return (B_TRUE);
661 }
662 #else
663 #define	dsl_early_sync_task_verify(dp, txg) \
664 	((void) sizeof (dp), (void) sizeof (txg), B_TRUE)
665 #endif
666 
667 void
668 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
669 {
670 	zio_t *rio;	/* root zio for all dirty dataset syncs */
671 	dmu_tx_t *tx;
672 	dsl_dir_t *dd;
673 	dsl_dataset_t *ds;
674 	objset_t *mos = dp->dp_meta_objset;
675 	list_t synced_datasets;
676 
677 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
678 	    offsetof(dsl_dataset_t, ds_synced_link));
679 
680 	tx = dmu_tx_create_assigned(dp, txg);
681 
682 	/*
683 	 * Run all early sync tasks before writing out any dirty blocks.
684 	 * For more info on early sync tasks see block comment in
685 	 * dsl_early_sync_task().
686 	 */
687 	if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
688 		dsl_sync_task_t *dst;
689 
690 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
691 		while ((dst =
692 		    txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
693 			ASSERT(dsl_early_sync_task_verify(dp, txg));
694 			dsl_sync_task_sync(dst, tx);
695 		}
696 		ASSERT(dsl_early_sync_task_verify(dp, txg));
697 	}
698 
699 	/*
700 	 * Write out all dirty blocks of dirty datasets. Note, this could
701 	 * create a very large (+10k) zio tree.
702 	 */
703 	rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
704 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
705 		/*
706 		 * We must not sync any non-MOS datasets twice, because
707 		 * we may have taken a snapshot of them.  However, we
708 		 * may sync newly-created datasets on pass 2.
709 		 */
710 		ASSERT(!list_link_active(&ds->ds_synced_link));
711 		list_insert_tail(&synced_datasets, ds);
712 		dsl_dataset_sync(ds, rio, tx);
713 	}
714 	VERIFY0(zio_wait(rio));
715 
716 	/*
717 	 * Update the long range free counter after
718 	 * we're done syncing user data
719 	 */
720 	mutex_enter(&dp->dp_lock);
721 	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
722 	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
723 	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
724 	mutex_exit(&dp->dp_lock);
725 
726 	/*
727 	 * After the data blocks have been written (ensured by the zio_wait()
728 	 * above), update the user/group/project space accounting.  This happens
729 	 * in tasks dispatched to dp_sync_taskq, so wait for them before
730 	 * continuing.
731 	 */
732 	for (ds = list_head(&synced_datasets); ds != NULL;
733 	    ds = list_next(&synced_datasets, ds)) {
734 		dmu_objset_sync_done(ds->ds_objset, tx);
735 	}
736 	taskq_wait(dp->dp_sync_taskq);
737 
738 	/*
739 	 * Sync the datasets again to push out the changes due to
740 	 * userspace updates.  This must be done before we process the
741 	 * sync tasks, so that any snapshots will have the correct
742 	 * user accounting information (and we won't get confused
743 	 * about which blocks are part of the snapshot).
744 	 */
745 	rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
746 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
747 		objset_t *os = ds->ds_objset;
748 
749 		ASSERT(list_link_active(&ds->ds_synced_link));
750 		dmu_buf_rele(ds->ds_dbuf, ds);
751 		dsl_dataset_sync(ds, rio, tx);
752 
753 		/*
754 		 * Release any key mappings created by calls to
755 		 * dsl_dataset_dirty() from the userquota accounting
756 		 * code paths.
757 		 */
758 		if (os->os_encrypted && !os->os_raw_receive &&
759 		    !os->os_next_write_raw[txg & TXG_MASK]) {
760 			ASSERT3P(ds->ds_key_mapping, !=, NULL);
761 			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
762 		}
763 	}
764 	VERIFY0(zio_wait(rio));
765 
766 	/*
767 	 * Now that the datasets have been completely synced, we can
768 	 * clean up our in-memory structures accumulated while syncing:
769 	 *
770 	 *  - move dead blocks from the pending deadlist and livelists
771 	 *    to the on-disk versions
772 	 *  - release hold from dsl_dataset_dirty()
773 	 *  - release key mapping hold from dsl_dataset_dirty()
774 	 */
775 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
776 		objset_t *os = ds->ds_objset;
777 
778 		if (os->os_encrypted && !os->os_raw_receive &&
779 		    !os->os_next_write_raw[txg & TXG_MASK]) {
780 			ASSERT3P(ds->ds_key_mapping, !=, NULL);
781 			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
782 		}
783 
784 		dsl_dataset_sync_done(ds, tx);
785 		dmu_buf_rele(ds->ds_dbuf, ds);
786 	}
787 
788 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
789 		dsl_dir_sync(dd, tx);
790 	}
791 
792 	/*
793 	 * The MOS's space is accounted for in the pool/$MOS
794 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
795 	 * it, so we remember the deltas and apply them here.
796 	 */
797 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
798 	    dp->dp_mos_uncompressed_delta != 0) {
799 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
800 		    dp->dp_mos_used_delta,
801 		    dp->dp_mos_compressed_delta,
802 		    dp->dp_mos_uncompressed_delta, tx);
803 		dp->dp_mos_used_delta = 0;
804 		dp->dp_mos_compressed_delta = 0;
805 		dp->dp_mos_uncompressed_delta = 0;
806 	}
807 
808 	if (dmu_objset_is_dirty(mos, txg)) {
809 		dsl_pool_sync_mos(dp, tx);
810 	}
811 
812 	/*
813 	 * We have written all of the accounted dirty data, so our
814 	 * dp_space_towrite should now be zero. However, some seldom-used
815 	 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
816 	 * the accounting of any dirtied space now.
817 	 *
818 	 * Note that, besides any dirty data from datasets, the amount of
819 	 * dirty data in the MOS is also accounted by the pool. Therefore,
820 	 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
821 	 * attempt to update the accounting for the same dirty data twice.
822 	 * (i.e. at this point we only update the accounting for the space
823 	 * that we know that we "leaked").
824 	 */
825 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
826 
827 	/*
828 	 * If we modify a dataset in the same txg that we want to destroy it,
829 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
830 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
831 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
832 	 * and clearing the hold on it) before we process the sync_tasks.
833 	 * The MOS data dirtied by the sync_tasks will be synced on the next
834 	 * pass.
835 	 */
836 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
837 		dsl_sync_task_t *dst;
838 		/*
839 		 * No more sync tasks should have been added while we
840 		 * were syncing.
841 		 */
842 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
843 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
844 			dsl_sync_task_sync(dst, tx);
845 	}
846 
847 	dmu_tx_commit(tx);
848 
849 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
850 }
851 
852 void
853 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
854 {
855 	zilog_t *zilog;
856 
857 	while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
858 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
859 		/*
860 		 * We don't remove the zilog from the dp_dirty_zilogs
861 		 * list until after we've cleaned it. This ensures that
862 		 * callers of zilog_is_dirty() receive an accurate
863 		 * answer when they are racing with the spa sync thread.
864 		 */
865 		zil_clean(zilog, txg);
866 		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
867 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
868 		dmu_buf_rele(ds->ds_dbuf, zilog);
869 	}
870 
871 	dsl_pool_wrlog_clear(dp, txg);
872 
873 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
874 }
875 
876 /*
877  * TRUE if the current thread is the tx_sync_thread or if we
878  * are being called from SPA context during pool initialization.
879  */
880 int
881 dsl_pool_sync_context(dsl_pool_t *dp)
882 {
883 	return (curthread == dp->dp_tx.tx_sync_thread ||
884 	    spa_is_initializing(dp->dp_spa) ||
885 	    taskq_member(dp->dp_sync_taskq, curthread));
886 }
887 
888 /*
889  * This function returns the amount of allocatable space in the pool
890  * minus whatever space is currently reserved by ZFS for specific
891  * purposes. Specifically:
892  *
893  * 1] Any reserved SLOP space
894  * 2] Any space used by the checkpoint
895  * 3] Any space used for deferred frees
896  *
897  * The latter 2 are especially important because they are needed to
898  * rectify the SPA's and DMU's different understanding of how much space
899  * is used. Now the DMU is aware of that extra space tracked by the SPA
900  * without having to maintain a separate special dir (e.g similar to
901  * $MOS, $FREEING, and $LEAKED).
902  *
903  * Note: By deferred frees here, we mean the frees that were deferred
904  * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
905  * segments placed in ms_defer trees during metaslab_sync_done().
906  */
907 uint64_t
908 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
909 {
910 	spa_t *spa = dp->dp_spa;
911 	uint64_t space, resv, adjustedsize;
912 	uint64_t spa_deferred_frees =
913 	    spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
914 
915 	space = spa_get_dspace(spa)
916 	    - spa_get_checkpoint_space(spa) - spa_deferred_frees;
917 	resv = spa_get_slop_space(spa);
918 
919 	switch (slop_policy) {
920 	case ZFS_SPACE_CHECK_NORMAL:
921 		break;
922 	case ZFS_SPACE_CHECK_RESERVED:
923 		resv >>= 1;
924 		break;
925 	case ZFS_SPACE_CHECK_EXTRA_RESERVED:
926 		resv >>= 2;
927 		break;
928 	case ZFS_SPACE_CHECK_NONE:
929 		resv = 0;
930 		break;
931 	default:
932 		panic("invalid slop policy value: %d", slop_policy);
933 		break;
934 	}
935 	adjustedsize = (space >= resv) ? (space - resv) : 0;
936 
937 	return (adjustedsize);
938 }
939 
940 uint64_t
941 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
942 {
943 	uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
944 	uint64_t deferred =
945 	    metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
946 	uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
947 	return (quota);
948 }
949 
950 uint64_t
951 dsl_pool_deferred_space(dsl_pool_t *dp)
952 {
953 	return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)));
954 }
955 
956 boolean_t
957 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
958 {
959 	uint64_t delay_min_bytes =
960 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
961 
962 	/*
963 	 * We are not taking the dp_lock here and few other places, since torn
964 	 * reads are unlikely: on 64-bit systems due to register size and on
965 	 * 32-bit due to memory constraints.  Pool-wide locks in hot path may
966 	 * be too expensive, while we do not need a precise result here.
967 	 */
968 	return (dp->dp_dirty_total > delay_min_bytes);
969 }
970 
971 static boolean_t
972 dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
973 {
974 	uint64_t dirty_min_bytes =
975 	    zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
976 	uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
977 
978 	return (dirty > dirty_min_bytes);
979 }
980 
981 void
982 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
983 {
984 	if (space > 0) {
985 		mutex_enter(&dp->dp_lock);
986 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
987 		dsl_pool_dirty_delta(dp, space);
988 		boolean_t needsync = !dmu_tx_is_syncing(tx) &&
989 		    dsl_pool_need_dirty_sync(dp, tx->tx_txg);
990 		mutex_exit(&dp->dp_lock);
991 
992 		if (needsync)
993 			txg_kick(dp, tx->tx_txg);
994 	}
995 }
996 
997 void
998 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
999 {
1000 	ASSERT3S(space, >=, 0);
1001 	if (space == 0)
1002 		return;
1003 
1004 	mutex_enter(&dp->dp_lock);
1005 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
1006 		/* XXX writing something we didn't dirty? */
1007 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
1008 	}
1009 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
1010 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
1011 	ASSERT3U(dp->dp_dirty_total, >=, space);
1012 	dsl_pool_dirty_delta(dp, -space);
1013 	mutex_exit(&dp->dp_lock);
1014 }
1015 
1016 static int
1017 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
1018 {
1019 	dmu_tx_t *tx = arg;
1020 	dsl_dataset_t *ds, *prev = NULL;
1021 	int err;
1022 
1023 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
1024 	if (err)
1025 		return (err);
1026 
1027 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
1028 		err = dsl_dataset_hold_obj(dp,
1029 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
1030 		if (err) {
1031 			dsl_dataset_rele(ds, FTAG);
1032 			return (err);
1033 		}
1034 
1035 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
1036 			break;
1037 		dsl_dataset_rele(ds, FTAG);
1038 		ds = prev;
1039 		prev = NULL;
1040 	}
1041 
1042 	if (prev == NULL) {
1043 		prev = dp->dp_origin_snap;
1044 
1045 		/*
1046 		 * The $ORIGIN can't have any data, or the accounting
1047 		 * will be wrong.
1048 		 */
1049 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1050 		ASSERT0(BP_GET_LOGICAL_BIRTH(&dsl_dataset_phys(prev)->ds_bp));
1051 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
1052 
1053 		/* The origin doesn't get attached to itself */
1054 		if (ds->ds_object == prev->ds_object) {
1055 			dsl_dataset_rele(ds, FTAG);
1056 			return (0);
1057 		}
1058 
1059 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
1060 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
1061 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
1062 		    dsl_dataset_phys(prev)->ds_creation_txg;
1063 
1064 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1065 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
1066 
1067 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
1068 		dsl_dataset_phys(prev)->ds_num_children++;
1069 
1070 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
1071 			ASSERT(ds->ds_prev == NULL);
1072 			VERIFY0(dsl_dataset_hold_obj(dp,
1073 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
1074 			    ds, &ds->ds_prev));
1075 		}
1076 	}
1077 
1078 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1079 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
1080 
1081 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
1082 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
1083 		dsl_dataset_phys(prev)->ds_next_clones_obj =
1084 		    zap_create(dp->dp_meta_objset,
1085 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1086 	}
1087 	VERIFY0(zap_add_int(dp->dp_meta_objset,
1088 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
1089 
1090 	dsl_dataset_rele(ds, FTAG);
1091 	if (prev != dp->dp_origin_snap)
1092 		dsl_dataset_rele(prev, FTAG);
1093 	return (0);
1094 }
1095 
1096 void
1097 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1098 {
1099 	ASSERT(dmu_tx_is_syncing(tx));
1100 	ASSERT(dp->dp_origin_snap != NULL);
1101 
1102 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1103 	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1104 }
1105 
1106 static int
1107 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1108 {
1109 	dmu_tx_t *tx = arg;
1110 	objset_t *mos = dp->dp_meta_objset;
1111 
1112 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1113 		dsl_dataset_t *origin;
1114 
1115 		VERIFY0(dsl_dataset_hold_obj(dp,
1116 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1117 
1118 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1119 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1120 			dsl_dir_phys(origin->ds_dir)->dd_clones =
1121 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1122 			    0, tx);
1123 		}
1124 
1125 		VERIFY0(zap_add_int(dp->dp_meta_objset,
1126 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
1127 		    ds->ds_object, tx));
1128 
1129 		dsl_dataset_rele(origin, FTAG);
1130 	}
1131 	return (0);
1132 }
1133 
1134 void
1135 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1136 {
1137 	uint64_t obj;
1138 
1139 	ASSERT(dmu_tx_is_syncing(tx));
1140 
1141 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1142 	VERIFY0(dsl_pool_open_special_dir(dp,
1143 	    FREE_DIR_NAME, &dp->dp_free_dir));
1144 
1145 	/*
1146 	 * We can't use bpobj_alloc(), because spa_version() still
1147 	 * returns the old version, and we need a new-version bpobj with
1148 	 * subobj support.  So call dmu_object_alloc() directly.
1149 	 */
1150 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1151 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1152 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1153 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1154 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1155 
1156 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1157 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1158 }
1159 
1160 void
1161 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1162 {
1163 	uint64_t dsobj;
1164 	dsl_dataset_t *ds;
1165 
1166 	ASSERT(dmu_tx_is_syncing(tx));
1167 	ASSERT(dp->dp_origin_snap == NULL);
1168 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1169 
1170 	/* create the origin dir, ds, & snap-ds */
1171 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1172 	    NULL, 0, kcred, NULL, tx);
1173 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1174 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1175 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1176 	    dp, &dp->dp_origin_snap));
1177 	dsl_dataset_rele(ds, FTAG);
1178 }
1179 
1180 taskq_t *
1181 dsl_pool_zrele_taskq(dsl_pool_t *dp)
1182 {
1183 	return (dp->dp_zrele_taskq);
1184 }
1185 
1186 taskq_t *
1187 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1188 {
1189 	return (dp->dp_unlinked_drain_taskq);
1190 }
1191 
1192 /*
1193  * Walk through the pool-wide zap object of temporary snapshot user holds
1194  * and release them.
1195  */
1196 void
1197 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1198 {
1199 	zap_attribute_t *za;
1200 	zap_cursor_t zc;
1201 	objset_t *mos = dp->dp_meta_objset;
1202 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1203 	nvlist_t *holds;
1204 
1205 	if (zapobj == 0)
1206 		return;
1207 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1208 
1209 	holds = fnvlist_alloc();
1210 
1211 	za = zap_attribute_alloc();
1212 	for (zap_cursor_init(&zc, mos, zapobj);
1213 	    zap_cursor_retrieve(&zc, za) == 0;
1214 	    zap_cursor_advance(&zc)) {
1215 		char *htag;
1216 		nvlist_t *tags;
1217 
1218 		htag = strchr(za->za_name, '-');
1219 		*htag = '\0';
1220 		++htag;
1221 		if (nvlist_lookup_nvlist(holds, za->za_name, &tags) != 0) {
1222 			tags = fnvlist_alloc();
1223 			fnvlist_add_boolean(tags, htag);
1224 			fnvlist_add_nvlist(holds, za->za_name, tags);
1225 			fnvlist_free(tags);
1226 		} else {
1227 			fnvlist_add_boolean(tags, htag);
1228 		}
1229 	}
1230 	dsl_dataset_user_release_tmp(dp, holds);
1231 	fnvlist_free(holds);
1232 	zap_cursor_fini(&zc);
1233 	zap_attribute_free(za);
1234 }
1235 
1236 /*
1237  * Create the pool-wide zap object for storing temporary snapshot holds.
1238  */
1239 static void
1240 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1241 {
1242 	objset_t *mos = dp->dp_meta_objset;
1243 
1244 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
1245 	ASSERT(dmu_tx_is_syncing(tx));
1246 
1247 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1248 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1249 }
1250 
1251 static int
1252 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1253     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1254 {
1255 	objset_t *mos = dp->dp_meta_objset;
1256 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1257 	char *name;
1258 	int error;
1259 
1260 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1261 	ASSERT(dmu_tx_is_syncing(tx));
1262 
1263 	/*
1264 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1265 	 * zap object for temporary holds might not exist yet.
1266 	 */
1267 	if (zapobj == 0) {
1268 		if (holding) {
1269 			dsl_pool_user_hold_create_obj(dp, tx);
1270 			zapobj = dp->dp_tmp_userrefs_obj;
1271 		} else {
1272 			return (SET_ERROR(ENOENT));
1273 		}
1274 	}
1275 
1276 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1277 	if (holding)
1278 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1279 	else
1280 		error = zap_remove(mos, zapobj, name, tx);
1281 	kmem_strfree(name);
1282 
1283 	return (error);
1284 }
1285 
1286 /*
1287  * Add a temporary hold for the given dataset object and tag.
1288  */
1289 int
1290 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1291     uint64_t now, dmu_tx_t *tx)
1292 {
1293 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1294 }
1295 
1296 /*
1297  * Release a temporary hold for the given dataset object and tag.
1298  */
1299 int
1300 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1301     dmu_tx_t *tx)
1302 {
1303 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1304 	    tx, B_FALSE));
1305 }
1306 
1307 /*
1308  * DSL Pool Configuration Lock
1309  *
1310  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1311  * creation / destruction / rename / property setting).  It must be held for
1312  * read to hold a dataset or dsl_dir.  I.e. you must call
1313  * dsl_pool_config_enter() or dsl_pool_hold() before calling
1314  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1315  * must be held continuously until all datasets and dsl_dirs are released.
1316  *
1317  * The only exception to this rule is that if a "long hold" is placed on
1318  * a dataset, then the dp_config_rwlock may be dropped while the dataset
1319  * is still held.  The long hold will prevent the dataset from being
1320  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1321  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1322  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1323  *
1324  * Legitimate long-holders (including owners) should be long-running, cancelable
1325  * tasks that should cause "zfs destroy" to fail.  This includes DMU
1326  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1327  * "zfs send", and "zfs diff".  There are several other long-holders whose
1328  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1329  *
1330  * The usual formula for long-holding would be:
1331  * dsl_pool_hold()
1332  * dsl_dataset_hold()
1333  * ... perform checks ...
1334  * dsl_dataset_long_hold()
1335  * dsl_pool_rele()
1336  * ... perform long-running task ...
1337  * dsl_dataset_long_rele()
1338  * dsl_dataset_rele()
1339  *
1340  * Note that when the long hold is released, the dataset is still held but
1341  * the pool is not held.  The dataset may change arbitrarily during this time
1342  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1343  * dataset except release it.
1344  *
1345  * Operations generally fall somewhere into the following taxonomy:
1346  *
1347  *                              Read-Only             Modifying
1348  *
1349  *    Dataset Layer / MOS        zfs get             zfs destroy
1350  *
1351  *     Individual Dataset         read()                write()
1352  *
1353  *
1354  * Dataset Layer Operations
1355  *
1356  * Modifying operations should generally use dsl_sync_task().  The synctask
1357  * infrastructure enforces proper locking strategy with respect to the
1358  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1359  *
1360  * Read-only operations will manually hold the pool, then the dataset, obtain
1361  * information from the dataset, then release the pool and dataset.
1362  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1363  * hold/rele.
1364  *
1365  *
1366  * Operations On Individual Datasets
1367  *
1368  * Objects _within_ an objset should only be modified by the current 'owner'
1369  * of the objset to prevent incorrect concurrent modification. Thus, use
1370  * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1371  * and fail with EBUSY if there is already an owner. The owner can then
1372  * implement its own locking strategy, independent of the dataset layer's
1373  * locking infrastructure.
1374  * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1375  *  vnop will not reach into the dataset layer).
1376  *
1377  * Ideally, objects would also only be read by the objset’s owner, so that we
1378  * don’t observe state mid-modification.
1379  * (E.g. the ZPL is creating a new object and linking it into a directory; if
1380  * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
1381  * intermediate state.  The ioctl level violates this but in pretty benign
1382  * ways, e.g. reading the zpl props object.)
1383  */
1384 
1385 int
1386 dsl_pool_hold(const char *name, const void *tag, dsl_pool_t **dp)
1387 {
1388 	spa_t *spa;
1389 	int error;
1390 
1391 	error = spa_open(name, &spa, tag);
1392 	if (error == 0) {
1393 		*dp = spa_get_dsl(spa);
1394 		dsl_pool_config_enter(*dp, tag);
1395 	}
1396 	return (error);
1397 }
1398 
1399 void
1400 dsl_pool_rele(dsl_pool_t *dp, const void *tag)
1401 {
1402 	dsl_pool_config_exit(dp, tag);
1403 	spa_close(dp->dp_spa, tag);
1404 }
1405 
1406 void
1407 dsl_pool_config_enter(dsl_pool_t *dp, const void *tag)
1408 {
1409 	/*
1410 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1411 	 *
1412 	 * The rrwlock can (with the track_all flag) track all reading threads,
1413 	 * which is very useful for debugging which code path failed to release
1414 	 * the lock, and for verifying that the *current* thread does hold
1415 	 * the lock.
1416 	 *
1417 	 * (Unlike a rwlock, which knows that N threads hold it for
1418 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1419 	 * if any thread holds it for read, even if this thread doesn't).
1420 	 */
1421 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1422 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1423 }
1424 
1425 void
1426 dsl_pool_config_enter_prio(dsl_pool_t *dp, const void *tag)
1427 {
1428 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1429 	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1430 }
1431 
1432 void
1433 dsl_pool_config_exit(dsl_pool_t *dp, const void *tag)
1434 {
1435 	rrw_exit(&dp->dp_config_rwlock, tag);
1436 }
1437 
1438 boolean_t
1439 dsl_pool_config_held(dsl_pool_t *dp)
1440 {
1441 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1442 }
1443 
1444 boolean_t
1445 dsl_pool_config_held_writer(dsl_pool_t *dp)
1446 {
1447 	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1448 }
1449 
1450 EXPORT_SYMBOL(dsl_pool_config_enter);
1451 EXPORT_SYMBOL(dsl_pool_config_exit);
1452 
1453 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1454 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, UINT, ZMOD_RD,
1455 	"Max percent of RAM allowed to be dirty");
1456 
1457 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1458 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, UINT, ZMOD_RD,
1459 	"zfs_dirty_data_max upper bound as % of RAM");
1460 
1461 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, UINT, ZMOD_RW,
1462 	"Transaction delay threshold");
1463 
1464 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, U64, ZMOD_RW,
1465 	"Determines the dirty space limit");
1466 
1467 ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, U64, ZMOD_RW,
1468 	"The size limit of write-transaction zil log data");
1469 
1470 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1471 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, U64, ZMOD_RD,
1472 	"zfs_dirty_data_max upper bound in bytes");
1473 
1474 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, UINT, ZMOD_RW,
1475 	"Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
1476 
1477 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, U64, ZMOD_RW,
1478 	"How quickly delay approaches infinity");
1479 
1480 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1481 	"Max percent of CPUs that are used per dp_sync_taskq");
1482 
1483 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1484 	"Number of taskq entries that are pre-populated");
1485 
1486 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1487 	"Max number of taskq entries that are cached");
1488