1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 #include <sys/dsl_pool.h> 30 #include <sys/dsl_dataset.h> 31 #include <sys/dsl_prop.h> 32 #include <sys/dsl_dir.h> 33 #include <sys/dsl_synctask.h> 34 #include <sys/dsl_scan.h> 35 #include <sys/dnode.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/arc.h> 39 #include <sys/zap.h> 40 #include <sys/zio.h> 41 #include <sys/zfs_context.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/zfs_znode.h> 44 #include <sys/spa_impl.h> 45 #include <sys/vdev_impl.h> 46 #include <sys/metaslab_impl.h> 47 #include <sys/bptree.h> 48 #include <sys/zfeature.h> 49 #include <sys/zil_impl.h> 50 #include <sys/dsl_userhold.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/mmp.h> 53 54 /* 55 * ZFS Write Throttle 56 * ------------------ 57 * 58 * ZFS must limit the rate of incoming writes to the rate at which it is able 59 * to sync data modifications to the backend storage. Throttling by too much 60 * creates an artificial limit; throttling by too little can only be sustained 61 * for short periods and would lead to highly lumpy performance. On a per-pool 62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 64 * of dirty data decreases. When the amount of dirty data exceeds a 65 * predetermined threshold further modifications are blocked until the amount 66 * of dirty data decreases (as data is synced out). 67 * 68 * The limit on dirty data is tunable, and should be adjusted according to 69 * both the IO capacity and available memory of the system. The larger the 70 * window, the more ZFS is able to aggregate and amortize metadata (and data) 71 * changes. However, memory is a limited resource, and allowing for more dirty 72 * data comes at the cost of keeping other useful data in memory (for example 73 * ZFS data cached by the ARC). 74 * 75 * Implementation 76 * 77 * As buffers are modified dsl_pool_willuse_space() increments both the per- 78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 79 * dirty space used; dsl_pool_dirty_space() decrements those values as data 80 * is synced out from dsl_pool_sync(). While only the poolwide value is 81 * relevant, the per-txg value is useful for debugging. The tunable 82 * zfs_dirty_data_max determines the dirty space limit. Once that value is 83 * exceeded, new writes are halted until space frees up. 84 * 85 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we 86 * ensure that there is a txg syncing (see the comment in txg.c for a full 87 * description of transaction group stages). 88 * 89 * The IO scheduler uses both the dirty space limit and current amount of 90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 91 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 92 * 93 * The delay is also calculated based on the amount of dirty data. See the 94 * comment above dmu_tx_delay() for details. 95 */ 96 97 /* 98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 99 * capped at zfs_dirty_data_max_max. It can also be overridden with a module 100 * parameter. 101 */ 102 unsigned long zfs_dirty_data_max = 0; 103 unsigned long zfs_dirty_data_max_max = 0; 104 int zfs_dirty_data_max_percent = 10; 105 int zfs_dirty_data_max_max_percent = 25; 106 107 /* 108 * If there's at least this much dirty data (as a percentage of 109 * zfs_dirty_data_max), push out a txg. This should be less than 110 * zfs_vdev_async_write_active_min_dirty_percent. 111 */ 112 int zfs_dirty_data_sync_percent = 20; 113 114 /* 115 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 116 * and delay each transaction. 117 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 118 */ 119 int zfs_delay_min_dirty_percent = 60; 120 121 /* 122 * This controls how quickly the delay approaches infinity. 123 * Larger values cause it to delay more for a given amount of dirty data. 124 * Therefore larger values will cause there to be less dirty data for a 125 * given throughput. 126 * 127 * For the smoothest delay, this value should be about 1 billion divided 128 * by the maximum number of operations per second. This will smoothly 129 * handle between 10x and 1/10th this number. 130 * 131 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 132 * multiply in dmu_tx_delay(). 133 */ 134 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 135 136 /* 137 * This determines the number of threads used by the dp_sync_taskq. 138 */ 139 int zfs_sync_taskq_batch_pct = 75; 140 141 /* 142 * These tunables determine the behavior of how zil_itxg_clean() is 143 * called via zil_clean() in the context of spa_sync(). When an itxg 144 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching. 145 * If the dispatch fails, the call to zil_itxg_clean() will occur 146 * synchronously in the context of spa_sync(), which can negatively 147 * impact the performance of spa_sync() (e.g. in the case of the itxg 148 * list having a large number of itxs that needs to be cleaned). 149 * 150 * Thus, these tunables can be used to manipulate the behavior of the 151 * taskq used by zil_clean(); they determine the number of taskq entries 152 * that are pre-populated when the taskq is first created (via the 153 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of 154 * taskq entries that are cached after an on-demand allocation (via the 155 * "zfs_zil_clean_taskq_maxalloc"). 156 * 157 * The idea being, we want to try reasonably hard to ensure there will 158 * already be a taskq entry pre-allocated by the time that it is needed 159 * by zil_clean(). This way, we can avoid the possibility of an 160 * on-demand allocation of a new taskq entry from failing, which would 161 * result in zil_itxg_clean() being called synchronously from zil_clean() 162 * (which can adversely affect performance of spa_sync()). 163 * 164 * Additionally, the number of threads used by the taskq can be 165 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable. 166 */ 167 int zfs_zil_clean_taskq_nthr_pct = 100; 168 int zfs_zil_clean_taskq_minalloc = 1024; 169 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024; 170 171 int 172 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 173 { 174 uint64_t obj; 175 int err; 176 177 err = zap_lookup(dp->dp_meta_objset, 178 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 179 name, sizeof (obj), 1, &obj); 180 if (err) 181 return (err); 182 183 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 184 } 185 186 static dsl_pool_t * 187 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 188 { 189 dsl_pool_t *dp; 190 blkptr_t *bp = spa_get_rootblkptr(spa); 191 192 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 193 dp->dp_spa = spa; 194 dp->dp_meta_rootbp = *bp; 195 rrw_init(&dp->dp_config_rwlock, B_TRUE); 196 txg_init(dp, txg); 197 mmp_init(spa); 198 199 txg_list_create(&dp->dp_dirty_datasets, spa, 200 offsetof(dsl_dataset_t, ds_dirty_link)); 201 txg_list_create(&dp->dp_dirty_zilogs, spa, 202 offsetof(zilog_t, zl_dirty_link)); 203 txg_list_create(&dp->dp_dirty_dirs, spa, 204 offsetof(dsl_dir_t, dd_dirty_link)); 205 txg_list_create(&dp->dp_sync_tasks, spa, 206 offsetof(dsl_sync_task_t, dst_node)); 207 txg_list_create(&dp->dp_early_sync_tasks, spa, 208 offsetof(dsl_sync_task_t, dst_node)); 209 210 dp->dp_sync_taskq = taskq_create("dp_sync_taskq", 211 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX, 212 TASKQ_THREADS_CPU_PCT); 213 214 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq", 215 zfs_zil_clean_taskq_nthr_pct, minclsyspri, 216 zfs_zil_clean_taskq_minalloc, 217 zfs_zil_clean_taskq_maxalloc, 218 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 219 220 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 221 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 222 223 dp->dp_zrele_taskq = taskq_create("z_zrele", boot_ncpus, defclsyspri, 224 boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 225 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain", 226 boot_ncpus, defclsyspri, boot_ncpus, INT_MAX, 227 TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 228 229 return (dp); 230 } 231 232 int 233 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 234 { 235 int err; 236 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 237 238 /* 239 * Initialize the caller's dsl_pool_t structure before we actually open 240 * the meta objset. This is done because a self-healing write zio may 241 * be issued as part of dmu_objset_open_impl() and the spa needs its 242 * dsl_pool_t initialized in order to handle the write. 243 */ 244 *dpp = dp; 245 246 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 247 &dp->dp_meta_objset); 248 if (err != 0) { 249 dsl_pool_close(dp); 250 *dpp = NULL; 251 } 252 253 return (err); 254 } 255 256 int 257 dsl_pool_open(dsl_pool_t *dp) 258 { 259 int err; 260 dsl_dir_t *dd; 261 dsl_dataset_t *ds; 262 uint64_t obj; 263 264 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 265 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 266 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 267 &dp->dp_root_dir_obj); 268 if (err) 269 goto out; 270 271 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 272 NULL, dp, &dp->dp_root_dir); 273 if (err) 274 goto out; 275 276 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 277 if (err) 278 goto out; 279 280 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 281 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 282 if (err) 283 goto out; 284 err = dsl_dataset_hold_obj(dp, 285 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 286 if (err == 0) { 287 err = dsl_dataset_hold_obj(dp, 288 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 289 &dp->dp_origin_snap); 290 dsl_dataset_rele(ds, FTAG); 291 } 292 dsl_dir_rele(dd, dp); 293 if (err) 294 goto out; 295 } 296 297 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 298 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 299 &dp->dp_free_dir); 300 if (err) 301 goto out; 302 303 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 304 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 305 if (err) 306 goto out; 307 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 308 dp->dp_meta_objset, obj)); 309 } 310 311 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 312 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 313 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj); 314 if (err == 0) { 315 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, 316 dp->dp_meta_objset, obj)); 317 } else if (err == ENOENT) { 318 /* 319 * We might not have created the remap bpobj yet. 320 */ 321 err = 0; 322 } else { 323 goto out; 324 } 325 } 326 327 /* 328 * Note: errors ignored, because the these special dirs, used for 329 * space accounting, are only created on demand. 330 */ 331 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 332 &dp->dp_leak_dir); 333 334 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 335 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 336 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 337 &dp->dp_bptree_obj); 338 if (err != 0) 339 goto out; 340 } 341 342 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 343 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 344 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 345 &dp->dp_empty_bpobj); 346 if (err != 0) 347 goto out; 348 } 349 350 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 351 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 352 &dp->dp_tmp_userrefs_obj); 353 if (err == ENOENT) 354 err = 0; 355 if (err) 356 goto out; 357 358 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 359 360 out: 361 rrw_exit(&dp->dp_config_rwlock, FTAG); 362 return (err); 363 } 364 365 void 366 dsl_pool_close(dsl_pool_t *dp) 367 { 368 /* 369 * Drop our references from dsl_pool_open(). 370 * 371 * Since we held the origin_snap from "syncing" context (which 372 * includes pool-opening context), it actually only got a "ref" 373 * and not a hold, so just drop that here. 374 */ 375 if (dp->dp_origin_snap != NULL) 376 dsl_dataset_rele(dp->dp_origin_snap, dp); 377 if (dp->dp_mos_dir != NULL) 378 dsl_dir_rele(dp->dp_mos_dir, dp); 379 if (dp->dp_free_dir != NULL) 380 dsl_dir_rele(dp->dp_free_dir, dp); 381 if (dp->dp_leak_dir != NULL) 382 dsl_dir_rele(dp->dp_leak_dir, dp); 383 if (dp->dp_root_dir != NULL) 384 dsl_dir_rele(dp->dp_root_dir, dp); 385 386 bpobj_close(&dp->dp_free_bpobj); 387 bpobj_close(&dp->dp_obsolete_bpobj); 388 389 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 390 if (dp->dp_meta_objset != NULL) 391 dmu_objset_evict(dp->dp_meta_objset); 392 393 txg_list_destroy(&dp->dp_dirty_datasets); 394 txg_list_destroy(&dp->dp_dirty_zilogs); 395 txg_list_destroy(&dp->dp_sync_tasks); 396 txg_list_destroy(&dp->dp_early_sync_tasks); 397 txg_list_destroy(&dp->dp_dirty_dirs); 398 399 taskq_destroy(dp->dp_zil_clean_taskq); 400 taskq_destroy(dp->dp_sync_taskq); 401 402 /* 403 * We can't set retry to TRUE since we're explicitly specifying 404 * a spa to flush. This is good enough; any missed buffers for 405 * this spa won't cause trouble, and they'll eventually fall 406 * out of the ARC just like any other unused buffer. 407 */ 408 arc_flush(dp->dp_spa, FALSE); 409 410 mmp_fini(dp->dp_spa); 411 txg_fini(dp); 412 dsl_scan_fini(dp); 413 dmu_buf_user_evict_wait(); 414 415 rrw_destroy(&dp->dp_config_rwlock); 416 mutex_destroy(&dp->dp_lock); 417 cv_destroy(&dp->dp_spaceavail_cv); 418 taskq_destroy(dp->dp_unlinked_drain_taskq); 419 taskq_destroy(dp->dp_zrele_taskq); 420 if (dp->dp_blkstats != NULL) { 421 mutex_destroy(&dp->dp_blkstats->zab_lock); 422 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 423 } 424 kmem_free(dp, sizeof (dsl_pool_t)); 425 } 426 427 void 428 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 429 { 430 uint64_t obj; 431 /* 432 * Currently, we only create the obsolete_bpobj where there are 433 * indirect vdevs with referenced mappings. 434 */ 435 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL)); 436 /* create and open the obsolete_bpobj */ 437 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 438 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj)); 439 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 440 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 441 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 442 } 443 444 void 445 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 446 { 447 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 448 VERIFY0(zap_remove(dp->dp_meta_objset, 449 DMU_POOL_DIRECTORY_OBJECT, 450 DMU_POOL_OBSOLETE_BPOBJ, tx)); 451 bpobj_free(dp->dp_meta_objset, 452 dp->dp_obsolete_bpobj.bpo_object, tx); 453 bpobj_close(&dp->dp_obsolete_bpobj); 454 } 455 456 dsl_pool_t * 457 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp, 458 uint64_t txg) 459 { 460 int err; 461 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 462 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 463 #ifdef _KERNEL 464 objset_t *os; 465 #else 466 objset_t *os __attribute__((unused)); 467 #endif 468 dsl_dataset_t *ds; 469 uint64_t obj; 470 471 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 472 473 /* create and open the MOS (meta-objset) */ 474 dp->dp_meta_objset = dmu_objset_create_impl(spa, 475 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 476 spa->spa_meta_objset = dp->dp_meta_objset; 477 478 /* create the pool directory */ 479 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 480 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 481 ASSERT0(err); 482 483 /* Initialize scan structures */ 484 VERIFY0(dsl_scan_init(dp, txg)); 485 486 /* create and open the root dir */ 487 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 488 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 489 NULL, dp, &dp->dp_root_dir)); 490 491 /* create and open the meta-objset dir */ 492 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 493 VERIFY0(dsl_pool_open_special_dir(dp, 494 MOS_DIR_NAME, &dp->dp_mos_dir)); 495 496 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 497 /* create and open the free dir */ 498 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 499 FREE_DIR_NAME, tx); 500 VERIFY0(dsl_pool_open_special_dir(dp, 501 FREE_DIR_NAME, &dp->dp_free_dir)); 502 503 /* create and open the free_bplist */ 504 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 505 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 506 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 507 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 508 dp->dp_meta_objset, obj)); 509 } 510 511 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 512 dsl_pool_create_origin(dp, tx); 513 514 /* 515 * Some features may be needed when creating the root dataset, so we 516 * create the feature objects here. 517 */ 518 if (spa_version(spa) >= SPA_VERSION_FEATURES) 519 spa_feature_create_zap_objects(spa, tx); 520 521 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF && 522 dcp->cp_crypt != ZIO_CRYPT_INHERIT) 523 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx); 524 525 /* create the root dataset */ 526 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx); 527 528 /* create the root objset */ 529 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj, 530 DS_HOLD_FLAG_DECRYPT, FTAG, &ds)); 531 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 532 os = dmu_objset_create_impl(dp->dp_spa, ds, 533 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 534 rrw_exit(&ds->ds_bp_rwlock, FTAG); 535 #ifdef _KERNEL 536 zfs_create_fs(os, kcred, zplprops, tx); 537 #endif 538 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 539 540 dmu_tx_commit(tx); 541 542 rrw_exit(&dp->dp_config_rwlock, FTAG); 543 544 return (dp); 545 } 546 547 /* 548 * Account for the meta-objset space in its placeholder dsl_dir. 549 */ 550 void 551 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 552 int64_t used, int64_t comp, int64_t uncomp) 553 { 554 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 555 mutex_enter(&dp->dp_lock); 556 dp->dp_mos_used_delta += used; 557 dp->dp_mos_compressed_delta += comp; 558 dp->dp_mos_uncompressed_delta += uncomp; 559 mutex_exit(&dp->dp_lock); 560 } 561 562 static void 563 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 564 { 565 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 566 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 567 VERIFY0(zio_wait(zio)); 568 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 569 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 570 } 571 572 static void 573 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 574 { 575 ASSERT(MUTEX_HELD(&dp->dp_lock)); 576 577 if (delta < 0) 578 ASSERT3U(-delta, <=, dp->dp_dirty_total); 579 580 dp->dp_dirty_total += delta; 581 582 /* 583 * Note: we signal even when increasing dp_dirty_total. 584 * This ensures forward progress -- each thread wakes the next waiter. 585 */ 586 if (dp->dp_dirty_total < zfs_dirty_data_max) 587 cv_signal(&dp->dp_spaceavail_cv); 588 } 589 590 #ifdef ZFS_DEBUG 591 static boolean_t 592 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg) 593 { 594 spa_t *spa = dp->dp_spa; 595 vdev_t *rvd = spa->spa_root_vdev; 596 597 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 598 vdev_t *vd = rvd->vdev_child[c]; 599 txg_list_t *tl = &vd->vdev_ms_list; 600 metaslab_t *ms; 601 602 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms; 603 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) { 604 VERIFY(range_tree_is_empty(ms->ms_freeing)); 605 VERIFY(range_tree_is_empty(ms->ms_checkpointing)); 606 } 607 } 608 609 return (B_TRUE); 610 } 611 #endif 612 613 void 614 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 615 { 616 zio_t *zio; 617 dmu_tx_t *tx; 618 dsl_dir_t *dd; 619 dsl_dataset_t *ds; 620 objset_t *mos = dp->dp_meta_objset; 621 list_t synced_datasets; 622 623 list_create(&synced_datasets, sizeof (dsl_dataset_t), 624 offsetof(dsl_dataset_t, ds_synced_link)); 625 626 tx = dmu_tx_create_assigned(dp, txg); 627 628 /* 629 * Run all early sync tasks before writing out any dirty blocks. 630 * For more info on early sync tasks see block comment in 631 * dsl_early_sync_task(). 632 */ 633 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) { 634 dsl_sync_task_t *dst; 635 636 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 637 while ((dst = 638 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) { 639 ASSERT(dsl_early_sync_task_verify(dp, txg)); 640 dsl_sync_task_sync(dst, tx); 641 } 642 ASSERT(dsl_early_sync_task_verify(dp, txg)); 643 } 644 645 /* 646 * Write out all dirty blocks of dirty datasets. 647 */ 648 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 649 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 650 /* 651 * We must not sync any non-MOS datasets twice, because 652 * we may have taken a snapshot of them. However, we 653 * may sync newly-created datasets on pass 2. 654 */ 655 ASSERT(!list_link_active(&ds->ds_synced_link)); 656 list_insert_tail(&synced_datasets, ds); 657 dsl_dataset_sync(ds, zio, tx); 658 } 659 VERIFY0(zio_wait(zio)); 660 661 /* 662 * Update the long range free counter after 663 * we're done syncing user data 664 */ 665 mutex_enter(&dp->dp_lock); 666 ASSERT(spa_sync_pass(dp->dp_spa) == 1 || 667 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0); 668 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0; 669 mutex_exit(&dp->dp_lock); 670 671 /* 672 * After the data blocks have been written (ensured by the zio_wait() 673 * above), update the user/group/project space accounting. This happens 674 * in tasks dispatched to dp_sync_taskq, so wait for them before 675 * continuing. 676 */ 677 for (ds = list_head(&synced_datasets); ds != NULL; 678 ds = list_next(&synced_datasets, ds)) { 679 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 680 } 681 taskq_wait(dp->dp_sync_taskq); 682 683 /* 684 * Sync the datasets again to push out the changes due to 685 * userspace updates. This must be done before we process the 686 * sync tasks, so that any snapshots will have the correct 687 * user accounting information (and we won't get confused 688 * about which blocks are part of the snapshot). 689 */ 690 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 691 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 692 objset_t *os = ds->ds_objset; 693 694 ASSERT(list_link_active(&ds->ds_synced_link)); 695 dmu_buf_rele(ds->ds_dbuf, ds); 696 dsl_dataset_sync(ds, zio, tx); 697 698 /* 699 * Release any key mappings created by calls to 700 * dsl_dataset_dirty() from the userquota accounting 701 * code paths. 702 */ 703 if (os->os_encrypted && !os->os_raw_receive && 704 !os->os_next_write_raw[txg & TXG_MASK]) { 705 ASSERT3P(ds->ds_key_mapping, !=, NULL); 706 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds); 707 } 708 } 709 VERIFY0(zio_wait(zio)); 710 711 /* 712 * Now that the datasets have been completely synced, we can 713 * clean up our in-memory structures accumulated while syncing: 714 * 715 * - move dead blocks from the pending deadlist and livelists 716 * to the on-disk versions 717 * - release hold from dsl_dataset_dirty() 718 * - release key mapping hold from dsl_dataset_dirty() 719 */ 720 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 721 objset_t *os = ds->ds_objset; 722 723 if (os->os_encrypted && !os->os_raw_receive && 724 !os->os_next_write_raw[txg & TXG_MASK]) { 725 ASSERT3P(ds->ds_key_mapping, !=, NULL); 726 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds); 727 } 728 729 dsl_dataset_sync_done(ds, tx); 730 } 731 732 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 733 dsl_dir_sync(dd, tx); 734 } 735 736 /* 737 * The MOS's space is accounted for in the pool/$MOS 738 * (dp_mos_dir). We can't modify the mos while we're syncing 739 * it, so we remember the deltas and apply them here. 740 */ 741 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 742 dp->dp_mos_uncompressed_delta != 0) { 743 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 744 dp->dp_mos_used_delta, 745 dp->dp_mos_compressed_delta, 746 dp->dp_mos_uncompressed_delta, tx); 747 dp->dp_mos_used_delta = 0; 748 dp->dp_mos_compressed_delta = 0; 749 dp->dp_mos_uncompressed_delta = 0; 750 } 751 752 if (dmu_objset_is_dirty(mos, txg)) { 753 dsl_pool_sync_mos(dp, tx); 754 } 755 756 /* 757 * We have written all of the accounted dirty data, so our 758 * dp_space_towrite should now be zero. However, some seldom-used 759 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up 760 * the accounting of any dirtied space now. 761 * 762 * Note that, besides any dirty data from datasets, the amount of 763 * dirty data in the MOS is also accounted by the pool. Therefore, 764 * we want to do this cleanup after dsl_pool_sync_mos() so we don't 765 * attempt to update the accounting for the same dirty data twice. 766 * (i.e. at this point we only update the accounting for the space 767 * that we know that we "leaked"). 768 */ 769 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 770 771 /* 772 * If we modify a dataset in the same txg that we want to destroy it, 773 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 774 * dsl_dir_destroy_check() will fail if there are unexpected holds. 775 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 776 * and clearing the hold on it) before we process the sync_tasks. 777 * The MOS data dirtied by the sync_tasks will be synced on the next 778 * pass. 779 */ 780 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 781 dsl_sync_task_t *dst; 782 /* 783 * No more sync tasks should have been added while we 784 * were syncing. 785 */ 786 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 787 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 788 dsl_sync_task_sync(dst, tx); 789 } 790 791 dmu_tx_commit(tx); 792 793 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 794 } 795 796 void 797 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 798 { 799 zilog_t *zilog; 800 801 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) { 802 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 803 /* 804 * We don't remove the zilog from the dp_dirty_zilogs 805 * list until after we've cleaned it. This ensures that 806 * callers of zilog_is_dirty() receive an accurate 807 * answer when they are racing with the spa sync thread. 808 */ 809 zil_clean(zilog, txg); 810 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg); 811 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 812 dmu_buf_rele(ds->ds_dbuf, zilog); 813 } 814 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 815 } 816 817 /* 818 * TRUE if the current thread is the tx_sync_thread or if we 819 * are being called from SPA context during pool initialization. 820 */ 821 int 822 dsl_pool_sync_context(dsl_pool_t *dp) 823 { 824 return (curthread == dp->dp_tx.tx_sync_thread || 825 spa_is_initializing(dp->dp_spa) || 826 taskq_member(dp->dp_sync_taskq, curthread)); 827 } 828 829 /* 830 * This function returns the amount of allocatable space in the pool 831 * minus whatever space is currently reserved by ZFS for specific 832 * purposes. Specifically: 833 * 834 * 1] Any reserved SLOP space 835 * 2] Any space used by the checkpoint 836 * 3] Any space used for deferred frees 837 * 838 * The latter 2 are especially important because they are needed to 839 * rectify the SPA's and DMU's different understanding of how much space 840 * is used. Now the DMU is aware of that extra space tracked by the SPA 841 * without having to maintain a separate special dir (e.g similar to 842 * $MOS, $FREEING, and $LEAKED). 843 * 844 * Note: By deferred frees here, we mean the frees that were deferred 845 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the 846 * segments placed in ms_defer trees during metaslab_sync_done(). 847 */ 848 uint64_t 849 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy) 850 { 851 spa_t *spa = dp->dp_spa; 852 uint64_t space, resv, adjustedsize; 853 uint64_t spa_deferred_frees = 854 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes; 855 856 space = spa_get_dspace(spa) 857 - spa_get_checkpoint_space(spa) - spa_deferred_frees; 858 resv = spa_get_slop_space(spa); 859 860 switch (slop_policy) { 861 case ZFS_SPACE_CHECK_NORMAL: 862 break; 863 case ZFS_SPACE_CHECK_RESERVED: 864 resv >>= 1; 865 break; 866 case ZFS_SPACE_CHECK_EXTRA_RESERVED: 867 resv >>= 2; 868 break; 869 case ZFS_SPACE_CHECK_NONE: 870 resv = 0; 871 break; 872 default: 873 panic("invalid slop policy value: %d", slop_policy); 874 break; 875 } 876 adjustedsize = (space >= resv) ? (space - resv) : 0; 877 878 return (adjustedsize); 879 } 880 881 uint64_t 882 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy) 883 { 884 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy); 885 uint64_t deferred = 886 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)); 887 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0; 888 return (quota); 889 } 890 891 boolean_t 892 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 893 { 894 uint64_t delay_min_bytes = 895 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 896 uint64_t dirty_min_bytes = 897 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100; 898 uint64_t dirty; 899 900 mutex_enter(&dp->dp_lock); 901 dirty = dp->dp_dirty_total; 902 mutex_exit(&dp->dp_lock); 903 if (dirty > dirty_min_bytes) 904 txg_kick(dp); 905 return (dirty > delay_min_bytes); 906 } 907 908 void 909 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 910 { 911 if (space > 0) { 912 mutex_enter(&dp->dp_lock); 913 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 914 dsl_pool_dirty_delta(dp, space); 915 mutex_exit(&dp->dp_lock); 916 } 917 } 918 919 void 920 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 921 { 922 ASSERT3S(space, >=, 0); 923 if (space == 0) 924 return; 925 926 mutex_enter(&dp->dp_lock); 927 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 928 /* XXX writing something we didn't dirty? */ 929 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 930 } 931 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 932 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 933 ASSERT3U(dp->dp_dirty_total, >=, space); 934 dsl_pool_dirty_delta(dp, -space); 935 mutex_exit(&dp->dp_lock); 936 } 937 938 /* ARGSUSED */ 939 static int 940 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 941 { 942 dmu_tx_t *tx = arg; 943 dsl_dataset_t *ds, *prev = NULL; 944 int err; 945 946 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 947 if (err) 948 return (err); 949 950 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 951 err = dsl_dataset_hold_obj(dp, 952 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 953 if (err) { 954 dsl_dataset_rele(ds, FTAG); 955 return (err); 956 } 957 958 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 959 break; 960 dsl_dataset_rele(ds, FTAG); 961 ds = prev; 962 prev = NULL; 963 } 964 965 if (prev == NULL) { 966 prev = dp->dp_origin_snap; 967 968 /* 969 * The $ORIGIN can't have any data, or the accounting 970 * will be wrong. 971 */ 972 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 973 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth); 974 rrw_exit(&ds->ds_bp_rwlock, FTAG); 975 976 /* The origin doesn't get attached to itself */ 977 if (ds->ds_object == prev->ds_object) { 978 dsl_dataset_rele(ds, FTAG); 979 return (0); 980 } 981 982 dmu_buf_will_dirty(ds->ds_dbuf, tx); 983 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 984 dsl_dataset_phys(ds)->ds_prev_snap_txg = 985 dsl_dataset_phys(prev)->ds_creation_txg; 986 987 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 988 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 989 990 dmu_buf_will_dirty(prev->ds_dbuf, tx); 991 dsl_dataset_phys(prev)->ds_num_children++; 992 993 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 994 ASSERT(ds->ds_prev == NULL); 995 VERIFY0(dsl_dataset_hold_obj(dp, 996 dsl_dataset_phys(ds)->ds_prev_snap_obj, 997 ds, &ds->ds_prev)); 998 } 999 } 1000 1001 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 1002 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 1003 1004 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 1005 dmu_buf_will_dirty(prev->ds_dbuf, tx); 1006 dsl_dataset_phys(prev)->ds_next_clones_obj = 1007 zap_create(dp->dp_meta_objset, 1008 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 1009 } 1010 VERIFY0(zap_add_int(dp->dp_meta_objset, 1011 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 1012 1013 dsl_dataset_rele(ds, FTAG); 1014 if (prev != dp->dp_origin_snap) 1015 dsl_dataset_rele(prev, FTAG); 1016 return (0); 1017 } 1018 1019 void 1020 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 1021 { 1022 ASSERT(dmu_tx_is_syncing(tx)); 1023 ASSERT(dp->dp_origin_snap != NULL); 1024 1025 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 1026 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1027 } 1028 1029 /* ARGSUSED */ 1030 static int 1031 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1032 { 1033 dmu_tx_t *tx = arg; 1034 objset_t *mos = dp->dp_meta_objset; 1035 1036 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 1037 dsl_dataset_t *origin; 1038 1039 VERIFY0(dsl_dataset_hold_obj(dp, 1040 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 1041 1042 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 1043 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 1044 dsl_dir_phys(origin->ds_dir)->dd_clones = 1045 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 1046 0, tx); 1047 } 1048 1049 VERIFY0(zap_add_int(dp->dp_meta_objset, 1050 dsl_dir_phys(origin->ds_dir)->dd_clones, 1051 ds->ds_object, tx)); 1052 1053 dsl_dataset_rele(origin, FTAG); 1054 } 1055 return (0); 1056 } 1057 1058 void 1059 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 1060 { 1061 uint64_t obj; 1062 1063 ASSERT(dmu_tx_is_syncing(tx)); 1064 1065 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 1066 VERIFY0(dsl_pool_open_special_dir(dp, 1067 FREE_DIR_NAME, &dp->dp_free_dir)); 1068 1069 /* 1070 * We can't use bpobj_alloc(), because spa_version() still 1071 * returns the old version, and we need a new-version bpobj with 1072 * subobj support. So call dmu_object_alloc() directly. 1073 */ 1074 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 1075 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 1076 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1077 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 1078 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 1079 1080 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1081 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1082 } 1083 1084 void 1085 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 1086 { 1087 uint64_t dsobj; 1088 dsl_dataset_t *ds; 1089 1090 ASSERT(dmu_tx_is_syncing(tx)); 1091 ASSERT(dp->dp_origin_snap == NULL); 1092 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 1093 1094 /* create the origin dir, ds, & snap-ds */ 1095 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 1096 NULL, 0, kcred, NULL, tx); 1097 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 1098 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 1099 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 1100 dp, &dp->dp_origin_snap)); 1101 dsl_dataset_rele(ds, FTAG); 1102 } 1103 1104 taskq_t * 1105 dsl_pool_zrele_taskq(dsl_pool_t *dp) 1106 { 1107 return (dp->dp_zrele_taskq); 1108 } 1109 1110 taskq_t * 1111 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp) 1112 { 1113 return (dp->dp_unlinked_drain_taskq); 1114 } 1115 1116 /* 1117 * Walk through the pool-wide zap object of temporary snapshot user holds 1118 * and release them. 1119 */ 1120 void 1121 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 1122 { 1123 zap_attribute_t za; 1124 zap_cursor_t zc; 1125 objset_t *mos = dp->dp_meta_objset; 1126 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1127 nvlist_t *holds; 1128 1129 if (zapobj == 0) 1130 return; 1131 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1132 1133 holds = fnvlist_alloc(); 1134 1135 for (zap_cursor_init(&zc, mos, zapobj); 1136 zap_cursor_retrieve(&zc, &za) == 0; 1137 zap_cursor_advance(&zc)) { 1138 char *htag; 1139 nvlist_t *tags; 1140 1141 htag = strchr(za.za_name, '-'); 1142 *htag = '\0'; 1143 ++htag; 1144 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 1145 tags = fnvlist_alloc(); 1146 fnvlist_add_boolean(tags, htag); 1147 fnvlist_add_nvlist(holds, za.za_name, tags); 1148 fnvlist_free(tags); 1149 } else { 1150 fnvlist_add_boolean(tags, htag); 1151 } 1152 } 1153 dsl_dataset_user_release_tmp(dp, holds); 1154 fnvlist_free(holds); 1155 zap_cursor_fini(&zc); 1156 } 1157 1158 /* 1159 * Create the pool-wide zap object for storing temporary snapshot holds. 1160 */ 1161 static void 1162 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 1163 { 1164 objset_t *mos = dp->dp_meta_objset; 1165 1166 ASSERT(dp->dp_tmp_userrefs_obj == 0); 1167 ASSERT(dmu_tx_is_syncing(tx)); 1168 1169 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 1170 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 1171 } 1172 1173 static int 1174 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 1175 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 1176 { 1177 objset_t *mos = dp->dp_meta_objset; 1178 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1179 char *name; 1180 int error; 1181 1182 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1183 ASSERT(dmu_tx_is_syncing(tx)); 1184 1185 /* 1186 * If the pool was created prior to SPA_VERSION_USERREFS, the 1187 * zap object for temporary holds might not exist yet. 1188 */ 1189 if (zapobj == 0) { 1190 if (holding) { 1191 dsl_pool_user_hold_create_obj(dp, tx); 1192 zapobj = dp->dp_tmp_userrefs_obj; 1193 } else { 1194 return (SET_ERROR(ENOENT)); 1195 } 1196 } 1197 1198 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 1199 if (holding) 1200 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 1201 else 1202 error = zap_remove(mos, zapobj, name, tx); 1203 kmem_strfree(name); 1204 1205 return (error); 1206 } 1207 1208 /* 1209 * Add a temporary hold for the given dataset object and tag. 1210 */ 1211 int 1212 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1213 uint64_t now, dmu_tx_t *tx) 1214 { 1215 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 1216 } 1217 1218 /* 1219 * Release a temporary hold for the given dataset object and tag. 1220 */ 1221 int 1222 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1223 dmu_tx_t *tx) 1224 { 1225 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0, 1226 tx, B_FALSE)); 1227 } 1228 1229 /* 1230 * DSL Pool Configuration Lock 1231 * 1232 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 1233 * creation / destruction / rename / property setting). It must be held for 1234 * read to hold a dataset or dsl_dir. I.e. you must call 1235 * dsl_pool_config_enter() or dsl_pool_hold() before calling 1236 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 1237 * must be held continuously until all datasets and dsl_dirs are released. 1238 * 1239 * The only exception to this rule is that if a "long hold" is placed on 1240 * a dataset, then the dp_config_rwlock may be dropped while the dataset 1241 * is still held. The long hold will prevent the dataset from being 1242 * destroyed -- the destroy will fail with EBUSY. A long hold can be 1243 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 1244 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 1245 * 1246 * Legitimate long-holders (including owners) should be long-running, cancelable 1247 * tasks that should cause "zfs destroy" to fail. This includes DMU 1248 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 1249 * "zfs send", and "zfs diff". There are several other long-holders whose 1250 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 1251 * 1252 * The usual formula for long-holding would be: 1253 * dsl_pool_hold() 1254 * dsl_dataset_hold() 1255 * ... perform checks ... 1256 * dsl_dataset_long_hold() 1257 * dsl_pool_rele() 1258 * ... perform long-running task ... 1259 * dsl_dataset_long_rele() 1260 * dsl_dataset_rele() 1261 * 1262 * Note that when the long hold is released, the dataset is still held but 1263 * the pool is not held. The dataset may change arbitrarily during this time 1264 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 1265 * dataset except release it. 1266 * 1267 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 1268 * or modifying operations. 1269 * 1270 * Modifying operations should generally use dsl_sync_task(). The synctask 1271 * infrastructure enforces proper locking strategy with respect to the 1272 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1273 * 1274 * Read-only operations will manually hold the pool, then the dataset, obtain 1275 * information from the dataset, then release the pool and dataset. 1276 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1277 * hold/rele. 1278 */ 1279 1280 int 1281 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1282 { 1283 spa_t *spa; 1284 int error; 1285 1286 error = spa_open(name, &spa, tag); 1287 if (error == 0) { 1288 *dp = spa_get_dsl(spa); 1289 dsl_pool_config_enter(*dp, tag); 1290 } 1291 return (error); 1292 } 1293 1294 void 1295 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1296 { 1297 dsl_pool_config_exit(dp, tag); 1298 spa_close(dp->dp_spa, tag); 1299 } 1300 1301 void 1302 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1303 { 1304 /* 1305 * We use a "reentrant" reader-writer lock, but not reentrantly. 1306 * 1307 * The rrwlock can (with the track_all flag) track all reading threads, 1308 * which is very useful for debugging which code path failed to release 1309 * the lock, and for verifying that the *current* thread does hold 1310 * the lock. 1311 * 1312 * (Unlike a rwlock, which knows that N threads hold it for 1313 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1314 * if any thread holds it for read, even if this thread doesn't). 1315 */ 1316 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1317 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1318 } 1319 1320 void 1321 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag) 1322 { 1323 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1324 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1325 } 1326 1327 void 1328 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1329 { 1330 rrw_exit(&dp->dp_config_rwlock, tag); 1331 } 1332 1333 boolean_t 1334 dsl_pool_config_held(dsl_pool_t *dp) 1335 { 1336 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1337 } 1338 1339 boolean_t 1340 dsl_pool_config_held_writer(dsl_pool_t *dp) 1341 { 1342 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1343 } 1344 1345 EXPORT_SYMBOL(dsl_pool_config_enter); 1346 EXPORT_SYMBOL(dsl_pool_config_exit); 1347 1348 /* BEGIN CSTYLED */ 1349 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */ 1350 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, INT, ZMOD_RD, 1351 "Max percent of RAM allowed to be dirty"); 1352 1353 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */ 1354 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, INT, ZMOD_RD, 1355 "zfs_dirty_data_max upper bound as % of RAM"); 1356 1357 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, INT, ZMOD_RW, 1358 "Transaction delay threshold"); 1359 1360 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, ULONG, ZMOD_RW, 1361 "Determines the dirty space limit"); 1362 1363 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */ 1364 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, ULONG, ZMOD_RD, 1365 "zfs_dirty_data_max upper bound in bytes"); 1366 1367 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, INT, ZMOD_RW, 1368 "Dirty data txg sync threshold as a percentage of zfs_dirty_data_max"); 1369 1370 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, ULONG, ZMOD_RW, 1371 "How quickly delay approaches infinity"); 1372 1373 ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW, 1374 "Max percent of CPUs that are used to sync dirty data"); 1375 1376 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW, 1377 "Max percent of CPUs that are used per dp_sync_taskq"); 1378 1379 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW, 1380 "Number of taskq entries that are pre-populated"); 1381 1382 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW, 1383 "Max number of taskq entries that are cached"); 1384 /* END CSTYLED */ 1385