xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_pool.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/mmp.h>
53 
54 /*
55  * ZFS Write Throttle
56  * ------------------
57  *
58  * ZFS must limit the rate of incoming writes to the rate at which it is able
59  * to sync data modifications to the backend storage. Throttling by too much
60  * creates an artificial limit; throttling by too little can only be sustained
61  * for short periods and would lead to highly lumpy performance. On a per-pool
62  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64  * of dirty data decreases. When the amount of dirty data exceeds a
65  * predetermined threshold further modifications are blocked until the amount
66  * of dirty data decreases (as data is synced out).
67  *
68  * The limit on dirty data is tunable, and should be adjusted according to
69  * both the IO capacity and available memory of the system. The larger the
70  * window, the more ZFS is able to aggregate and amortize metadata (and data)
71  * changes. However, memory is a limited resource, and allowing for more dirty
72  * data comes at the cost of keeping other useful data in memory (for example
73  * ZFS data cached by the ARC).
74  *
75  * Implementation
76  *
77  * As buffers are modified dsl_pool_willuse_space() increments both the per-
78  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79  * dirty space used; dsl_pool_dirty_space() decrements those values as data
80  * is synced out from dsl_pool_sync(). While only the poolwide value is
81  * relevant, the per-txg value is useful for debugging. The tunable
82  * zfs_dirty_data_max determines the dirty space limit. Once that value is
83  * exceeded, new writes are halted until space frees up.
84  *
85  * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
86  * ensure that there is a txg syncing (see the comment in txg.c for a full
87  * description of transaction group stages).
88  *
89  * The IO scheduler uses both the dirty space limit and current amount of
90  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
92  *
93  * The delay is also calculated based on the amount of dirty data.  See the
94  * comment above dmu_tx_delay() for details.
95  */
96 
97 /*
98  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99  * capped at zfs_dirty_data_max_max.  It can also be overridden with a module
100  * parameter.
101  */
102 unsigned long zfs_dirty_data_max = 0;
103 unsigned long zfs_dirty_data_max_max = 0;
104 int zfs_dirty_data_max_percent = 10;
105 int zfs_dirty_data_max_max_percent = 25;
106 
107 /*
108  * zfs_wrlog_data_max, the upper limit of TX_WRITE log data.
109  * Once it is reached, write operation is blocked,
110  * until log data is cleared out after txg sync.
111  * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
112  */
113 unsigned long zfs_wrlog_data_max = 0;
114 
115 /*
116  * If there's at least this much dirty data (as a percentage of
117  * zfs_dirty_data_max), push out a txg.  This should be less than
118  * zfs_vdev_async_write_active_min_dirty_percent.
119  */
120 static int zfs_dirty_data_sync_percent = 20;
121 
122 /*
123  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
124  * and delay each transaction.
125  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
126  */
127 int zfs_delay_min_dirty_percent = 60;
128 
129 /*
130  * This controls how quickly the delay approaches infinity.
131  * Larger values cause it to delay more for a given amount of dirty data.
132  * Therefore larger values will cause there to be less dirty data for a
133  * given throughput.
134  *
135  * For the smoothest delay, this value should be about 1 billion divided
136  * by the maximum number of operations per second.  This will smoothly
137  * handle between 10x and 1/10th this number.
138  *
139  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
140  * multiply in dmu_tx_delay().
141  */
142 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
143 
144 /*
145  * This determines the number of threads used by the dp_sync_taskq.
146  */
147 static int zfs_sync_taskq_batch_pct = 75;
148 
149 /*
150  * These tunables determine the behavior of how zil_itxg_clean() is
151  * called via zil_clean() in the context of spa_sync(). When an itxg
152  * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
153  * If the dispatch fails, the call to zil_itxg_clean() will occur
154  * synchronously in the context of spa_sync(), which can negatively
155  * impact the performance of spa_sync() (e.g. in the case of the itxg
156  * list having a large number of itxs that needs to be cleaned).
157  *
158  * Thus, these tunables can be used to manipulate the behavior of the
159  * taskq used by zil_clean(); they determine the number of taskq entries
160  * that are pre-populated when the taskq is first created (via the
161  * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
162  * taskq entries that are cached after an on-demand allocation (via the
163  * "zfs_zil_clean_taskq_maxalloc").
164  *
165  * The idea being, we want to try reasonably hard to ensure there will
166  * already be a taskq entry pre-allocated by the time that it is needed
167  * by zil_clean(). This way, we can avoid the possibility of an
168  * on-demand allocation of a new taskq entry from failing, which would
169  * result in zil_itxg_clean() being called synchronously from zil_clean()
170  * (which can adversely affect performance of spa_sync()).
171  *
172  * Additionally, the number of threads used by the taskq can be
173  * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
174  */
175 static int zfs_zil_clean_taskq_nthr_pct = 100;
176 static int zfs_zil_clean_taskq_minalloc = 1024;
177 static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
178 
179 int
180 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
181 {
182 	uint64_t obj;
183 	int err;
184 
185 	err = zap_lookup(dp->dp_meta_objset,
186 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
187 	    name, sizeof (obj), 1, &obj);
188 	if (err)
189 		return (err);
190 
191 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
192 }
193 
194 static dsl_pool_t *
195 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
196 {
197 	dsl_pool_t *dp;
198 	blkptr_t *bp = spa_get_rootblkptr(spa);
199 
200 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
201 	dp->dp_spa = spa;
202 	dp->dp_meta_rootbp = *bp;
203 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
204 	txg_init(dp, txg);
205 	mmp_init(spa);
206 
207 	txg_list_create(&dp->dp_dirty_datasets, spa,
208 	    offsetof(dsl_dataset_t, ds_dirty_link));
209 	txg_list_create(&dp->dp_dirty_zilogs, spa,
210 	    offsetof(zilog_t, zl_dirty_link));
211 	txg_list_create(&dp->dp_dirty_dirs, spa,
212 	    offsetof(dsl_dir_t, dd_dirty_link));
213 	txg_list_create(&dp->dp_sync_tasks, spa,
214 	    offsetof(dsl_sync_task_t, dst_node));
215 	txg_list_create(&dp->dp_early_sync_tasks, spa,
216 	    offsetof(dsl_sync_task_t, dst_node));
217 
218 	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
219 	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
220 	    TASKQ_THREADS_CPU_PCT);
221 
222 	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
223 	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
224 	    zfs_zil_clean_taskq_minalloc,
225 	    zfs_zil_clean_taskq_maxalloc,
226 	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
227 
228 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
229 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
230 
231 	aggsum_init(&dp->dp_wrlog_total, 0);
232 	for (int i = 0; i < TXG_SIZE; i++) {
233 		aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
234 	}
235 
236 	dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
237 	    boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
238 	    TASKQ_THREADS_CPU_PCT);
239 	dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
240 	    100, defclsyspri, boot_ncpus, INT_MAX,
241 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
242 
243 	return (dp);
244 }
245 
246 int
247 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
248 {
249 	int err;
250 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
251 
252 	/*
253 	 * Initialize the caller's dsl_pool_t structure before we actually open
254 	 * the meta objset.  This is done because a self-healing write zio may
255 	 * be issued as part of dmu_objset_open_impl() and the spa needs its
256 	 * dsl_pool_t initialized in order to handle the write.
257 	 */
258 	*dpp = dp;
259 
260 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
261 	    &dp->dp_meta_objset);
262 	if (err != 0) {
263 		dsl_pool_close(dp);
264 		*dpp = NULL;
265 	}
266 
267 	return (err);
268 }
269 
270 int
271 dsl_pool_open(dsl_pool_t *dp)
272 {
273 	int err;
274 	dsl_dir_t *dd;
275 	dsl_dataset_t *ds;
276 	uint64_t obj;
277 
278 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
279 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
280 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
281 	    &dp->dp_root_dir_obj);
282 	if (err)
283 		goto out;
284 
285 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
286 	    NULL, dp, &dp->dp_root_dir);
287 	if (err)
288 		goto out;
289 
290 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
291 	if (err)
292 		goto out;
293 
294 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
295 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
296 		if (err)
297 			goto out;
298 		err = dsl_dataset_hold_obj(dp,
299 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
300 		if (err == 0) {
301 			err = dsl_dataset_hold_obj(dp,
302 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
303 			    &dp->dp_origin_snap);
304 			dsl_dataset_rele(ds, FTAG);
305 		}
306 		dsl_dir_rele(dd, dp);
307 		if (err)
308 			goto out;
309 	}
310 
311 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
312 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
313 		    &dp->dp_free_dir);
314 		if (err)
315 			goto out;
316 
317 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
318 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
319 		if (err)
320 			goto out;
321 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
322 		    dp->dp_meta_objset, obj));
323 	}
324 
325 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
326 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
327 		    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
328 		if (err == 0) {
329 			VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
330 			    dp->dp_meta_objset, obj));
331 		} else if (err == ENOENT) {
332 			/*
333 			 * We might not have created the remap bpobj yet.
334 			 */
335 			err = 0;
336 		} else {
337 			goto out;
338 		}
339 	}
340 
341 	/*
342 	 * Note: errors ignored, because the these special dirs, used for
343 	 * space accounting, are only created on demand.
344 	 */
345 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
346 	    &dp->dp_leak_dir);
347 
348 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
349 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
350 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
351 		    &dp->dp_bptree_obj);
352 		if (err != 0)
353 			goto out;
354 	}
355 
356 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
357 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
358 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
359 		    &dp->dp_empty_bpobj);
360 		if (err != 0)
361 			goto out;
362 	}
363 
364 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
365 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
366 	    &dp->dp_tmp_userrefs_obj);
367 	if (err == ENOENT)
368 		err = 0;
369 	if (err)
370 		goto out;
371 
372 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
373 
374 out:
375 	rrw_exit(&dp->dp_config_rwlock, FTAG);
376 	return (err);
377 }
378 
379 void
380 dsl_pool_close(dsl_pool_t *dp)
381 {
382 	/*
383 	 * Drop our references from dsl_pool_open().
384 	 *
385 	 * Since we held the origin_snap from "syncing" context (which
386 	 * includes pool-opening context), it actually only got a "ref"
387 	 * and not a hold, so just drop that here.
388 	 */
389 	if (dp->dp_origin_snap != NULL)
390 		dsl_dataset_rele(dp->dp_origin_snap, dp);
391 	if (dp->dp_mos_dir != NULL)
392 		dsl_dir_rele(dp->dp_mos_dir, dp);
393 	if (dp->dp_free_dir != NULL)
394 		dsl_dir_rele(dp->dp_free_dir, dp);
395 	if (dp->dp_leak_dir != NULL)
396 		dsl_dir_rele(dp->dp_leak_dir, dp);
397 	if (dp->dp_root_dir != NULL)
398 		dsl_dir_rele(dp->dp_root_dir, dp);
399 
400 	bpobj_close(&dp->dp_free_bpobj);
401 	bpobj_close(&dp->dp_obsolete_bpobj);
402 
403 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
404 	if (dp->dp_meta_objset != NULL)
405 		dmu_objset_evict(dp->dp_meta_objset);
406 
407 	txg_list_destroy(&dp->dp_dirty_datasets);
408 	txg_list_destroy(&dp->dp_dirty_zilogs);
409 	txg_list_destroy(&dp->dp_sync_tasks);
410 	txg_list_destroy(&dp->dp_early_sync_tasks);
411 	txg_list_destroy(&dp->dp_dirty_dirs);
412 
413 	taskq_destroy(dp->dp_zil_clean_taskq);
414 	taskq_destroy(dp->dp_sync_taskq);
415 
416 	/*
417 	 * We can't set retry to TRUE since we're explicitly specifying
418 	 * a spa to flush. This is good enough; any missed buffers for
419 	 * this spa won't cause trouble, and they'll eventually fall
420 	 * out of the ARC just like any other unused buffer.
421 	 */
422 	arc_flush(dp->dp_spa, FALSE);
423 
424 	mmp_fini(dp->dp_spa);
425 	txg_fini(dp);
426 	dsl_scan_fini(dp);
427 	dmu_buf_user_evict_wait();
428 
429 	rrw_destroy(&dp->dp_config_rwlock);
430 	mutex_destroy(&dp->dp_lock);
431 	cv_destroy(&dp->dp_spaceavail_cv);
432 
433 	ASSERT0(aggsum_value(&dp->dp_wrlog_total));
434 	aggsum_fini(&dp->dp_wrlog_total);
435 	for (int i = 0; i < TXG_SIZE; i++) {
436 		ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
437 		aggsum_fini(&dp->dp_wrlog_pertxg[i]);
438 	}
439 
440 	taskq_destroy(dp->dp_unlinked_drain_taskq);
441 	taskq_destroy(dp->dp_zrele_taskq);
442 	if (dp->dp_blkstats != NULL) {
443 		mutex_destroy(&dp->dp_blkstats->zab_lock);
444 		vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
445 	}
446 	kmem_free(dp, sizeof (dsl_pool_t));
447 }
448 
449 void
450 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
451 {
452 	uint64_t obj;
453 	/*
454 	 * Currently, we only create the obsolete_bpobj where there are
455 	 * indirect vdevs with referenced mappings.
456 	 */
457 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
458 	/* create and open the obsolete_bpobj */
459 	obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
460 	VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
461 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
462 	    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
463 	spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
464 }
465 
466 void
467 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
468 {
469 	spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
470 	VERIFY0(zap_remove(dp->dp_meta_objset,
471 	    DMU_POOL_DIRECTORY_OBJECT,
472 	    DMU_POOL_OBSOLETE_BPOBJ, tx));
473 	bpobj_free(dp->dp_meta_objset,
474 	    dp->dp_obsolete_bpobj.bpo_object, tx);
475 	bpobj_close(&dp->dp_obsolete_bpobj);
476 }
477 
478 dsl_pool_t *
479 dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
480     dsl_crypto_params_t *dcp, uint64_t txg)
481 {
482 	int err;
483 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
484 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
485 #ifdef _KERNEL
486 	objset_t *os;
487 #else
488 	objset_t *os __attribute__((unused));
489 #endif
490 	dsl_dataset_t *ds;
491 	uint64_t obj;
492 
493 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
494 
495 	/* create and open the MOS (meta-objset) */
496 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
497 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
498 	spa->spa_meta_objset = dp->dp_meta_objset;
499 
500 	/* create the pool directory */
501 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
502 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
503 	ASSERT0(err);
504 
505 	/* Initialize scan structures */
506 	VERIFY0(dsl_scan_init(dp, txg));
507 
508 	/* create and open the root dir */
509 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
510 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
511 	    NULL, dp, &dp->dp_root_dir));
512 
513 	/* create and open the meta-objset dir */
514 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
515 	VERIFY0(dsl_pool_open_special_dir(dp,
516 	    MOS_DIR_NAME, &dp->dp_mos_dir));
517 
518 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
519 		/* create and open the free dir */
520 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
521 		    FREE_DIR_NAME, tx);
522 		VERIFY0(dsl_pool_open_special_dir(dp,
523 		    FREE_DIR_NAME, &dp->dp_free_dir));
524 
525 		/* create and open the free_bplist */
526 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
527 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
528 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
529 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
530 		    dp->dp_meta_objset, obj));
531 	}
532 
533 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
534 		dsl_pool_create_origin(dp, tx);
535 
536 	/*
537 	 * Some features may be needed when creating the root dataset, so we
538 	 * create the feature objects here.
539 	 */
540 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
541 		spa_feature_create_zap_objects(spa, tx);
542 
543 	if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
544 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT)
545 		spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
546 
547 	/* create the root dataset */
548 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
549 
550 	/* create the root objset */
551 	VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
552 	    DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
553 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
554 	os = dmu_objset_create_impl(dp->dp_spa, ds,
555 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
556 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
557 #ifdef _KERNEL
558 	zfs_create_fs(os, kcred, zplprops, tx);
559 #endif
560 	dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
561 
562 	dmu_tx_commit(tx);
563 
564 	rrw_exit(&dp->dp_config_rwlock, FTAG);
565 
566 	return (dp);
567 }
568 
569 /*
570  * Account for the meta-objset space in its placeholder dsl_dir.
571  */
572 void
573 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
574     int64_t used, int64_t comp, int64_t uncomp)
575 {
576 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
577 	mutex_enter(&dp->dp_lock);
578 	dp->dp_mos_used_delta += used;
579 	dp->dp_mos_compressed_delta += comp;
580 	dp->dp_mos_uncompressed_delta += uncomp;
581 	mutex_exit(&dp->dp_lock);
582 }
583 
584 static void
585 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
586 {
587 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
588 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
589 	VERIFY0(zio_wait(zio));
590 	dmu_objset_sync_done(dp->dp_meta_objset, tx);
591 	taskq_wait(dp->dp_sync_taskq);
592 	multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
593 
594 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
595 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
596 }
597 
598 static void
599 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
600 {
601 	ASSERT(MUTEX_HELD(&dp->dp_lock));
602 
603 	if (delta < 0)
604 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
605 
606 	dp->dp_dirty_total += delta;
607 
608 	/*
609 	 * Note: we signal even when increasing dp_dirty_total.
610 	 * This ensures forward progress -- each thread wakes the next waiter.
611 	 */
612 	if (dp->dp_dirty_total < zfs_dirty_data_max)
613 		cv_signal(&dp->dp_spaceavail_cv);
614 }
615 
616 void
617 dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
618 {
619 	ASSERT3S(size, >=, 0);
620 
621 	aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
622 	aggsum_add(&dp->dp_wrlog_total, size);
623 
624 	/* Choose a value slightly bigger than min dirty sync bytes */
625 	uint64_t sync_min =
626 	    zfs_dirty_data_max * (zfs_dirty_data_sync_percent + 10) / 100;
627 	if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
628 		txg_kick(dp, txg);
629 }
630 
631 boolean_t
632 dsl_pool_wrlog_over_max(dsl_pool_t *dp)
633 {
634 	return (aggsum_compare(&dp->dp_wrlog_total, zfs_wrlog_data_max) > 0);
635 }
636 
637 static void
638 dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
639 {
640 	int64_t delta;
641 	delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
642 	aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
643 	aggsum_add(&dp->dp_wrlog_total, delta);
644 }
645 
646 #ifdef ZFS_DEBUG
647 static boolean_t
648 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
649 {
650 	spa_t *spa = dp->dp_spa;
651 	vdev_t *rvd = spa->spa_root_vdev;
652 
653 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
654 		vdev_t *vd = rvd->vdev_child[c];
655 		txg_list_t *tl = &vd->vdev_ms_list;
656 		metaslab_t *ms;
657 
658 		for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
659 		    ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
660 			VERIFY(range_tree_is_empty(ms->ms_freeing));
661 			VERIFY(range_tree_is_empty(ms->ms_checkpointing));
662 		}
663 	}
664 
665 	return (B_TRUE);
666 }
667 #else
668 #define	dsl_early_sync_task_verify(dp, txg) \
669 	((void) sizeof (dp), (void) sizeof (txg), B_TRUE)
670 #endif
671 
672 void
673 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
674 {
675 	zio_t *zio;
676 	dmu_tx_t *tx;
677 	dsl_dir_t *dd;
678 	dsl_dataset_t *ds;
679 	objset_t *mos = dp->dp_meta_objset;
680 	list_t synced_datasets;
681 
682 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
683 	    offsetof(dsl_dataset_t, ds_synced_link));
684 
685 	tx = dmu_tx_create_assigned(dp, txg);
686 
687 	/*
688 	 * Run all early sync tasks before writing out any dirty blocks.
689 	 * For more info on early sync tasks see block comment in
690 	 * dsl_early_sync_task().
691 	 */
692 	if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
693 		dsl_sync_task_t *dst;
694 
695 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
696 		while ((dst =
697 		    txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
698 			ASSERT(dsl_early_sync_task_verify(dp, txg));
699 			dsl_sync_task_sync(dst, tx);
700 		}
701 		ASSERT(dsl_early_sync_task_verify(dp, txg));
702 	}
703 
704 	/*
705 	 * Write out all dirty blocks of dirty datasets.
706 	 */
707 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
708 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
709 		/*
710 		 * We must not sync any non-MOS datasets twice, because
711 		 * we may have taken a snapshot of them.  However, we
712 		 * may sync newly-created datasets on pass 2.
713 		 */
714 		ASSERT(!list_link_active(&ds->ds_synced_link));
715 		list_insert_tail(&synced_datasets, ds);
716 		dsl_dataset_sync(ds, zio, tx);
717 	}
718 	VERIFY0(zio_wait(zio));
719 
720 	/*
721 	 * Update the long range free counter after
722 	 * we're done syncing user data
723 	 */
724 	mutex_enter(&dp->dp_lock);
725 	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
726 	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
727 	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
728 	mutex_exit(&dp->dp_lock);
729 
730 	/*
731 	 * After the data blocks have been written (ensured by the zio_wait()
732 	 * above), update the user/group/project space accounting.  This happens
733 	 * in tasks dispatched to dp_sync_taskq, so wait for them before
734 	 * continuing.
735 	 */
736 	for (ds = list_head(&synced_datasets); ds != NULL;
737 	    ds = list_next(&synced_datasets, ds)) {
738 		dmu_objset_sync_done(ds->ds_objset, tx);
739 	}
740 	taskq_wait(dp->dp_sync_taskq);
741 
742 	/*
743 	 * Sync the datasets again to push out the changes due to
744 	 * userspace updates.  This must be done before we process the
745 	 * sync tasks, so that any snapshots will have the correct
746 	 * user accounting information (and we won't get confused
747 	 * about which blocks are part of the snapshot).
748 	 */
749 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
750 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
751 		objset_t *os = ds->ds_objset;
752 
753 		ASSERT(list_link_active(&ds->ds_synced_link));
754 		dmu_buf_rele(ds->ds_dbuf, ds);
755 		dsl_dataset_sync(ds, zio, tx);
756 
757 		/*
758 		 * Release any key mappings created by calls to
759 		 * dsl_dataset_dirty() from the userquota accounting
760 		 * code paths.
761 		 */
762 		if (os->os_encrypted && !os->os_raw_receive &&
763 		    !os->os_next_write_raw[txg & TXG_MASK]) {
764 			ASSERT3P(ds->ds_key_mapping, !=, NULL);
765 			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
766 		}
767 	}
768 	VERIFY0(zio_wait(zio));
769 
770 	/*
771 	 * Now that the datasets have been completely synced, we can
772 	 * clean up our in-memory structures accumulated while syncing:
773 	 *
774 	 *  - move dead blocks from the pending deadlist and livelists
775 	 *    to the on-disk versions
776 	 *  - release hold from dsl_dataset_dirty()
777 	 *  - release key mapping hold from dsl_dataset_dirty()
778 	 */
779 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
780 		objset_t *os = ds->ds_objset;
781 
782 		if (os->os_encrypted && !os->os_raw_receive &&
783 		    !os->os_next_write_raw[txg & TXG_MASK]) {
784 			ASSERT3P(ds->ds_key_mapping, !=, NULL);
785 			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
786 		}
787 
788 		dsl_dataset_sync_done(ds, tx);
789 	}
790 
791 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
792 		dsl_dir_sync(dd, tx);
793 	}
794 
795 	/*
796 	 * The MOS's space is accounted for in the pool/$MOS
797 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
798 	 * it, so we remember the deltas and apply them here.
799 	 */
800 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
801 	    dp->dp_mos_uncompressed_delta != 0) {
802 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
803 		    dp->dp_mos_used_delta,
804 		    dp->dp_mos_compressed_delta,
805 		    dp->dp_mos_uncompressed_delta, tx);
806 		dp->dp_mos_used_delta = 0;
807 		dp->dp_mos_compressed_delta = 0;
808 		dp->dp_mos_uncompressed_delta = 0;
809 	}
810 
811 	if (dmu_objset_is_dirty(mos, txg)) {
812 		dsl_pool_sync_mos(dp, tx);
813 	}
814 
815 	/*
816 	 * We have written all of the accounted dirty data, so our
817 	 * dp_space_towrite should now be zero. However, some seldom-used
818 	 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
819 	 * the accounting of any dirtied space now.
820 	 *
821 	 * Note that, besides any dirty data from datasets, the amount of
822 	 * dirty data in the MOS is also accounted by the pool. Therefore,
823 	 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
824 	 * attempt to update the accounting for the same dirty data twice.
825 	 * (i.e. at this point we only update the accounting for the space
826 	 * that we know that we "leaked").
827 	 */
828 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
829 
830 	/*
831 	 * If we modify a dataset in the same txg that we want to destroy it,
832 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
833 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
834 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
835 	 * and clearing the hold on it) before we process the sync_tasks.
836 	 * The MOS data dirtied by the sync_tasks will be synced on the next
837 	 * pass.
838 	 */
839 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
840 		dsl_sync_task_t *dst;
841 		/*
842 		 * No more sync tasks should have been added while we
843 		 * were syncing.
844 		 */
845 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
846 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
847 			dsl_sync_task_sync(dst, tx);
848 	}
849 
850 	dmu_tx_commit(tx);
851 
852 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
853 }
854 
855 void
856 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
857 {
858 	zilog_t *zilog;
859 
860 	while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
861 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
862 		/*
863 		 * We don't remove the zilog from the dp_dirty_zilogs
864 		 * list until after we've cleaned it. This ensures that
865 		 * callers of zilog_is_dirty() receive an accurate
866 		 * answer when they are racing with the spa sync thread.
867 		 */
868 		zil_clean(zilog, txg);
869 		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
870 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
871 		dmu_buf_rele(ds->ds_dbuf, zilog);
872 	}
873 
874 	dsl_pool_wrlog_clear(dp, txg);
875 
876 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
877 }
878 
879 /*
880  * TRUE if the current thread is the tx_sync_thread or if we
881  * are being called from SPA context during pool initialization.
882  */
883 int
884 dsl_pool_sync_context(dsl_pool_t *dp)
885 {
886 	return (curthread == dp->dp_tx.tx_sync_thread ||
887 	    spa_is_initializing(dp->dp_spa) ||
888 	    taskq_member(dp->dp_sync_taskq, curthread));
889 }
890 
891 /*
892  * This function returns the amount of allocatable space in the pool
893  * minus whatever space is currently reserved by ZFS for specific
894  * purposes. Specifically:
895  *
896  * 1] Any reserved SLOP space
897  * 2] Any space used by the checkpoint
898  * 3] Any space used for deferred frees
899  *
900  * The latter 2 are especially important because they are needed to
901  * rectify the SPA's and DMU's different understanding of how much space
902  * is used. Now the DMU is aware of that extra space tracked by the SPA
903  * without having to maintain a separate special dir (e.g similar to
904  * $MOS, $FREEING, and $LEAKED).
905  *
906  * Note: By deferred frees here, we mean the frees that were deferred
907  * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
908  * segments placed in ms_defer trees during metaslab_sync_done().
909  */
910 uint64_t
911 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
912 {
913 	spa_t *spa = dp->dp_spa;
914 	uint64_t space, resv, adjustedsize;
915 	uint64_t spa_deferred_frees =
916 	    spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
917 
918 	space = spa_get_dspace(spa)
919 	    - spa_get_checkpoint_space(spa) - spa_deferred_frees;
920 	resv = spa_get_slop_space(spa);
921 
922 	switch (slop_policy) {
923 	case ZFS_SPACE_CHECK_NORMAL:
924 		break;
925 	case ZFS_SPACE_CHECK_RESERVED:
926 		resv >>= 1;
927 		break;
928 	case ZFS_SPACE_CHECK_EXTRA_RESERVED:
929 		resv >>= 2;
930 		break;
931 	case ZFS_SPACE_CHECK_NONE:
932 		resv = 0;
933 		break;
934 	default:
935 		panic("invalid slop policy value: %d", slop_policy);
936 		break;
937 	}
938 	adjustedsize = (space >= resv) ? (space - resv) : 0;
939 
940 	return (adjustedsize);
941 }
942 
943 uint64_t
944 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
945 {
946 	uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
947 	uint64_t deferred =
948 	    metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
949 	uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
950 	return (quota);
951 }
952 
953 boolean_t
954 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
955 {
956 	uint64_t delay_min_bytes =
957 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
958 
959 	mutex_enter(&dp->dp_lock);
960 	uint64_t dirty = dp->dp_dirty_total;
961 	mutex_exit(&dp->dp_lock);
962 
963 	return (dirty > delay_min_bytes);
964 }
965 
966 static boolean_t
967 dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
968 {
969 	ASSERT(MUTEX_HELD(&dp->dp_lock));
970 
971 	uint64_t dirty_min_bytes =
972 	    zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
973 	uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
974 
975 	return (dirty > dirty_min_bytes);
976 }
977 
978 void
979 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
980 {
981 	if (space > 0) {
982 		mutex_enter(&dp->dp_lock);
983 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
984 		dsl_pool_dirty_delta(dp, space);
985 		boolean_t needsync = !dmu_tx_is_syncing(tx) &&
986 		    dsl_pool_need_dirty_sync(dp, tx->tx_txg);
987 		mutex_exit(&dp->dp_lock);
988 
989 		if (needsync)
990 			txg_kick(dp, tx->tx_txg);
991 	}
992 }
993 
994 void
995 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
996 {
997 	ASSERT3S(space, >=, 0);
998 	if (space == 0)
999 		return;
1000 
1001 	mutex_enter(&dp->dp_lock);
1002 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
1003 		/* XXX writing something we didn't dirty? */
1004 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
1005 	}
1006 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
1007 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
1008 	ASSERT3U(dp->dp_dirty_total, >=, space);
1009 	dsl_pool_dirty_delta(dp, -space);
1010 	mutex_exit(&dp->dp_lock);
1011 }
1012 
1013 /* ARGSUSED */
1014 static int
1015 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
1016 {
1017 	dmu_tx_t *tx = arg;
1018 	dsl_dataset_t *ds, *prev = NULL;
1019 	int err;
1020 
1021 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
1022 	if (err)
1023 		return (err);
1024 
1025 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
1026 		err = dsl_dataset_hold_obj(dp,
1027 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
1028 		if (err) {
1029 			dsl_dataset_rele(ds, FTAG);
1030 			return (err);
1031 		}
1032 
1033 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
1034 			break;
1035 		dsl_dataset_rele(ds, FTAG);
1036 		ds = prev;
1037 		prev = NULL;
1038 	}
1039 
1040 	if (prev == NULL) {
1041 		prev = dp->dp_origin_snap;
1042 
1043 		/*
1044 		 * The $ORIGIN can't have any data, or the accounting
1045 		 * will be wrong.
1046 		 */
1047 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1048 		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
1049 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
1050 
1051 		/* The origin doesn't get attached to itself */
1052 		if (ds->ds_object == prev->ds_object) {
1053 			dsl_dataset_rele(ds, FTAG);
1054 			return (0);
1055 		}
1056 
1057 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
1058 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
1059 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
1060 		    dsl_dataset_phys(prev)->ds_creation_txg;
1061 
1062 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1063 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
1064 
1065 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
1066 		dsl_dataset_phys(prev)->ds_num_children++;
1067 
1068 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
1069 			ASSERT(ds->ds_prev == NULL);
1070 			VERIFY0(dsl_dataset_hold_obj(dp,
1071 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
1072 			    ds, &ds->ds_prev));
1073 		}
1074 	}
1075 
1076 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1077 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
1078 
1079 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
1080 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
1081 		dsl_dataset_phys(prev)->ds_next_clones_obj =
1082 		    zap_create(dp->dp_meta_objset,
1083 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1084 	}
1085 	VERIFY0(zap_add_int(dp->dp_meta_objset,
1086 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
1087 
1088 	dsl_dataset_rele(ds, FTAG);
1089 	if (prev != dp->dp_origin_snap)
1090 		dsl_dataset_rele(prev, FTAG);
1091 	return (0);
1092 }
1093 
1094 void
1095 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1096 {
1097 	ASSERT(dmu_tx_is_syncing(tx));
1098 	ASSERT(dp->dp_origin_snap != NULL);
1099 
1100 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1101 	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1102 }
1103 
1104 /* ARGSUSED */
1105 static int
1106 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1107 {
1108 	dmu_tx_t *tx = arg;
1109 	objset_t *mos = dp->dp_meta_objset;
1110 
1111 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1112 		dsl_dataset_t *origin;
1113 
1114 		VERIFY0(dsl_dataset_hold_obj(dp,
1115 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1116 
1117 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1118 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1119 			dsl_dir_phys(origin->ds_dir)->dd_clones =
1120 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1121 			    0, tx);
1122 		}
1123 
1124 		VERIFY0(zap_add_int(dp->dp_meta_objset,
1125 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
1126 		    ds->ds_object, tx));
1127 
1128 		dsl_dataset_rele(origin, FTAG);
1129 	}
1130 	return (0);
1131 }
1132 
1133 void
1134 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1135 {
1136 	uint64_t obj;
1137 
1138 	ASSERT(dmu_tx_is_syncing(tx));
1139 
1140 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1141 	VERIFY0(dsl_pool_open_special_dir(dp,
1142 	    FREE_DIR_NAME, &dp->dp_free_dir));
1143 
1144 	/*
1145 	 * We can't use bpobj_alloc(), because spa_version() still
1146 	 * returns the old version, and we need a new-version bpobj with
1147 	 * subobj support.  So call dmu_object_alloc() directly.
1148 	 */
1149 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1150 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1151 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1152 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1153 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1154 
1155 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1156 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1157 }
1158 
1159 void
1160 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1161 {
1162 	uint64_t dsobj;
1163 	dsl_dataset_t *ds;
1164 
1165 	ASSERT(dmu_tx_is_syncing(tx));
1166 	ASSERT(dp->dp_origin_snap == NULL);
1167 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1168 
1169 	/* create the origin dir, ds, & snap-ds */
1170 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1171 	    NULL, 0, kcred, NULL, tx);
1172 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1173 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1174 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1175 	    dp, &dp->dp_origin_snap));
1176 	dsl_dataset_rele(ds, FTAG);
1177 }
1178 
1179 taskq_t *
1180 dsl_pool_zrele_taskq(dsl_pool_t *dp)
1181 {
1182 	return (dp->dp_zrele_taskq);
1183 }
1184 
1185 taskq_t *
1186 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1187 {
1188 	return (dp->dp_unlinked_drain_taskq);
1189 }
1190 
1191 /*
1192  * Walk through the pool-wide zap object of temporary snapshot user holds
1193  * and release them.
1194  */
1195 void
1196 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1197 {
1198 	zap_attribute_t za;
1199 	zap_cursor_t zc;
1200 	objset_t *mos = dp->dp_meta_objset;
1201 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1202 	nvlist_t *holds;
1203 
1204 	if (zapobj == 0)
1205 		return;
1206 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1207 
1208 	holds = fnvlist_alloc();
1209 
1210 	for (zap_cursor_init(&zc, mos, zapobj);
1211 	    zap_cursor_retrieve(&zc, &za) == 0;
1212 	    zap_cursor_advance(&zc)) {
1213 		char *htag;
1214 		nvlist_t *tags;
1215 
1216 		htag = strchr(za.za_name, '-');
1217 		*htag = '\0';
1218 		++htag;
1219 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1220 			tags = fnvlist_alloc();
1221 			fnvlist_add_boolean(tags, htag);
1222 			fnvlist_add_nvlist(holds, za.za_name, tags);
1223 			fnvlist_free(tags);
1224 		} else {
1225 			fnvlist_add_boolean(tags, htag);
1226 		}
1227 	}
1228 	dsl_dataset_user_release_tmp(dp, holds);
1229 	fnvlist_free(holds);
1230 	zap_cursor_fini(&zc);
1231 }
1232 
1233 /*
1234  * Create the pool-wide zap object for storing temporary snapshot holds.
1235  */
1236 static void
1237 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1238 {
1239 	objset_t *mos = dp->dp_meta_objset;
1240 
1241 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
1242 	ASSERT(dmu_tx_is_syncing(tx));
1243 
1244 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1245 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1246 }
1247 
1248 static int
1249 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1250     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1251 {
1252 	objset_t *mos = dp->dp_meta_objset;
1253 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1254 	char *name;
1255 	int error;
1256 
1257 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1258 	ASSERT(dmu_tx_is_syncing(tx));
1259 
1260 	/*
1261 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1262 	 * zap object for temporary holds might not exist yet.
1263 	 */
1264 	if (zapobj == 0) {
1265 		if (holding) {
1266 			dsl_pool_user_hold_create_obj(dp, tx);
1267 			zapobj = dp->dp_tmp_userrefs_obj;
1268 		} else {
1269 			return (SET_ERROR(ENOENT));
1270 		}
1271 	}
1272 
1273 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1274 	if (holding)
1275 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1276 	else
1277 		error = zap_remove(mos, zapobj, name, tx);
1278 	kmem_strfree(name);
1279 
1280 	return (error);
1281 }
1282 
1283 /*
1284  * Add a temporary hold for the given dataset object and tag.
1285  */
1286 int
1287 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1288     uint64_t now, dmu_tx_t *tx)
1289 {
1290 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1291 }
1292 
1293 /*
1294  * Release a temporary hold for the given dataset object and tag.
1295  */
1296 int
1297 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1298     dmu_tx_t *tx)
1299 {
1300 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1301 	    tx, B_FALSE));
1302 }
1303 
1304 /*
1305  * DSL Pool Configuration Lock
1306  *
1307  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1308  * creation / destruction / rename / property setting).  It must be held for
1309  * read to hold a dataset or dsl_dir.  I.e. you must call
1310  * dsl_pool_config_enter() or dsl_pool_hold() before calling
1311  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1312  * must be held continuously until all datasets and dsl_dirs are released.
1313  *
1314  * The only exception to this rule is that if a "long hold" is placed on
1315  * a dataset, then the dp_config_rwlock may be dropped while the dataset
1316  * is still held.  The long hold will prevent the dataset from being
1317  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1318  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1319  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1320  *
1321  * Legitimate long-holders (including owners) should be long-running, cancelable
1322  * tasks that should cause "zfs destroy" to fail.  This includes DMU
1323  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1324  * "zfs send", and "zfs diff".  There are several other long-holders whose
1325  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1326  *
1327  * The usual formula for long-holding would be:
1328  * dsl_pool_hold()
1329  * dsl_dataset_hold()
1330  * ... perform checks ...
1331  * dsl_dataset_long_hold()
1332  * dsl_pool_rele()
1333  * ... perform long-running task ...
1334  * dsl_dataset_long_rele()
1335  * dsl_dataset_rele()
1336  *
1337  * Note that when the long hold is released, the dataset is still held but
1338  * the pool is not held.  The dataset may change arbitrarily during this time
1339  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1340  * dataset except release it.
1341  *
1342  * Operations generally fall somewhere into the following taxonomy:
1343  *
1344  *                              Read-Only             Modifying
1345  *
1346  *    Dataset Layer / MOS        zfs get             zfs destroy
1347  *
1348  *     Individual Dataset         read()                write()
1349  *
1350  *
1351  * Dataset Layer Operations
1352  *
1353  * Modifying operations should generally use dsl_sync_task().  The synctask
1354  * infrastructure enforces proper locking strategy with respect to the
1355  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1356  *
1357  * Read-only operations will manually hold the pool, then the dataset, obtain
1358  * information from the dataset, then release the pool and dataset.
1359  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1360  * hold/rele.
1361  *
1362  *
1363  * Operations On Individual Datasets
1364  *
1365  * Objects _within_ an objset should only be modified by the current 'owner'
1366  * of the objset to prevent incorrect concurrent modification. Thus, use
1367  * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1368  * and fail with EBUSY if there is already an owner. The owner can then
1369  * implement its own locking strategy, independent of the dataset layer's
1370  * locking infrastructure.
1371  * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1372  *  vnop will not reach into the dataset layer).
1373  *
1374  * Ideally, objects would also only be read by the objset’s owner, so that we
1375  * don’t observe state mid-modification.
1376  * (E.g. the ZPL is creating a new object and linking it into a directory; if
1377  * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
1378  * intermediate state.  The ioctl level violates this but in pretty benign
1379  * ways, e.g. reading the zpl props object.)
1380  */
1381 
1382 int
1383 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1384 {
1385 	spa_t *spa;
1386 	int error;
1387 
1388 	error = spa_open(name, &spa, tag);
1389 	if (error == 0) {
1390 		*dp = spa_get_dsl(spa);
1391 		dsl_pool_config_enter(*dp, tag);
1392 	}
1393 	return (error);
1394 }
1395 
1396 void
1397 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1398 {
1399 	dsl_pool_config_exit(dp, tag);
1400 	spa_close(dp->dp_spa, tag);
1401 }
1402 
1403 void
1404 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1405 {
1406 	/*
1407 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1408 	 *
1409 	 * The rrwlock can (with the track_all flag) track all reading threads,
1410 	 * which is very useful for debugging which code path failed to release
1411 	 * the lock, and for verifying that the *current* thread does hold
1412 	 * the lock.
1413 	 *
1414 	 * (Unlike a rwlock, which knows that N threads hold it for
1415 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1416 	 * if any thread holds it for read, even if this thread doesn't).
1417 	 */
1418 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1419 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1420 }
1421 
1422 void
1423 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1424 {
1425 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1426 	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1427 }
1428 
1429 void
1430 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1431 {
1432 	rrw_exit(&dp->dp_config_rwlock, tag);
1433 }
1434 
1435 boolean_t
1436 dsl_pool_config_held(dsl_pool_t *dp)
1437 {
1438 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1439 }
1440 
1441 boolean_t
1442 dsl_pool_config_held_writer(dsl_pool_t *dp)
1443 {
1444 	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1445 }
1446 
1447 EXPORT_SYMBOL(dsl_pool_config_enter);
1448 EXPORT_SYMBOL(dsl_pool_config_exit);
1449 
1450 /* BEGIN CSTYLED */
1451 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1452 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, INT, ZMOD_RD,
1453 	"Max percent of RAM allowed to be dirty");
1454 
1455 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1456 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, INT, ZMOD_RD,
1457 	"zfs_dirty_data_max upper bound as % of RAM");
1458 
1459 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, INT, ZMOD_RW,
1460 	"Transaction delay threshold");
1461 
1462 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, ULONG, ZMOD_RW,
1463 	"Determines the dirty space limit");
1464 
1465 ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, ULONG, ZMOD_RW,
1466 	"The size limit of write-transaction zil log data");
1467 
1468 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1469 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, ULONG, ZMOD_RD,
1470 	"zfs_dirty_data_max upper bound in bytes");
1471 
1472 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, INT, ZMOD_RW,
1473 	"Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
1474 
1475 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, ULONG, ZMOD_RW,
1476 	"How quickly delay approaches infinity");
1477 
1478 ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW,
1479 	"Max percent of CPUs that are used to sync dirty data");
1480 
1481 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1482 	"Max percent of CPUs that are used per dp_sync_taskq");
1483 
1484 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1485 	"Number of taskq entries that are pre-populated");
1486 
1487 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1488 	"Max number of taskq entries that are cached");
1489 /* END CSTYLED */
1490