1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 #include <sys/dsl_pool.h> 30 #include <sys/dsl_dataset.h> 31 #include <sys/dsl_prop.h> 32 #include <sys/dsl_dir.h> 33 #include <sys/dsl_synctask.h> 34 #include <sys/dsl_scan.h> 35 #include <sys/dnode.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/arc.h> 39 #include <sys/zap.h> 40 #include <sys/zio.h> 41 #include <sys/zfs_context.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/zfs_znode.h> 44 #include <sys/spa_impl.h> 45 #include <sys/vdev_impl.h> 46 #include <sys/metaslab_impl.h> 47 #include <sys/bptree.h> 48 #include <sys/zfeature.h> 49 #include <sys/zil_impl.h> 50 #include <sys/dsl_userhold.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/mmp.h> 53 54 /* 55 * ZFS Write Throttle 56 * ------------------ 57 * 58 * ZFS must limit the rate of incoming writes to the rate at which it is able 59 * to sync data modifications to the backend storage. Throttling by too much 60 * creates an artificial limit; throttling by too little can only be sustained 61 * for short periods and would lead to highly lumpy performance. On a per-pool 62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 64 * of dirty data decreases. When the amount of dirty data exceeds a 65 * predetermined threshold further modifications are blocked until the amount 66 * of dirty data decreases (as data is synced out). 67 * 68 * The limit on dirty data is tunable, and should be adjusted according to 69 * both the IO capacity and available memory of the system. The larger the 70 * window, the more ZFS is able to aggregate and amortize metadata (and data) 71 * changes. However, memory is a limited resource, and allowing for more dirty 72 * data comes at the cost of keeping other useful data in memory (for example 73 * ZFS data cached by the ARC). 74 * 75 * Implementation 76 * 77 * As buffers are modified dsl_pool_willuse_space() increments both the per- 78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 79 * dirty space used; dsl_pool_dirty_space() decrements those values as data 80 * is synced out from dsl_pool_sync(). While only the poolwide value is 81 * relevant, the per-txg value is useful for debugging. The tunable 82 * zfs_dirty_data_max determines the dirty space limit. Once that value is 83 * exceeded, new writes are halted until space frees up. 84 * 85 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we 86 * ensure that there is a txg syncing (see the comment in txg.c for a full 87 * description of transaction group stages). 88 * 89 * The IO scheduler uses both the dirty space limit and current amount of 90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 91 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 92 * 93 * The delay is also calculated based on the amount of dirty data. See the 94 * comment above dmu_tx_delay() for details. 95 */ 96 97 /* 98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 99 * capped at zfs_dirty_data_max_max. It can also be overridden with a module 100 * parameter. 101 */ 102 uint64_t zfs_dirty_data_max = 0; 103 uint64_t zfs_dirty_data_max_max = 0; 104 uint_t zfs_dirty_data_max_percent = 10; 105 uint_t zfs_dirty_data_max_max_percent = 25; 106 107 /* 108 * The upper limit of TX_WRITE log data. Write operations are throttled 109 * when approaching the limit until log data is cleared out after txg sync. 110 * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY. 111 */ 112 uint64_t zfs_wrlog_data_max = 0; 113 114 /* 115 * If there's at least this much dirty data (as a percentage of 116 * zfs_dirty_data_max), push out a txg. This should be less than 117 * zfs_vdev_async_write_active_min_dirty_percent. 118 */ 119 static uint_t zfs_dirty_data_sync_percent = 20; 120 121 /* 122 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 123 * and delay each transaction. 124 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 125 */ 126 uint_t zfs_delay_min_dirty_percent = 60; 127 128 /* 129 * This controls how quickly the delay approaches infinity. 130 * Larger values cause it to delay more for a given amount of dirty data. 131 * Therefore larger values will cause there to be less dirty data for a 132 * given throughput. 133 * 134 * For the smoothest delay, this value should be about 1 billion divided 135 * by the maximum number of operations per second. This will smoothly 136 * handle between 10x and 1/10th this number. 137 * 138 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 139 * multiply in dmu_tx_delay(). 140 */ 141 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 142 143 /* 144 * These tunables determine the behavior of how zil_itxg_clean() is 145 * called via zil_clean() in the context of spa_sync(). When an itxg 146 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching. 147 * If the dispatch fails, the call to zil_itxg_clean() will occur 148 * synchronously in the context of spa_sync(), which can negatively 149 * impact the performance of spa_sync() (e.g. in the case of the itxg 150 * list having a large number of itxs that needs to be cleaned). 151 * 152 * Thus, these tunables can be used to manipulate the behavior of the 153 * taskq used by zil_clean(); they determine the number of taskq entries 154 * that are pre-populated when the taskq is first created (via the 155 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of 156 * taskq entries that are cached after an on-demand allocation (via the 157 * "zfs_zil_clean_taskq_maxalloc"). 158 * 159 * The idea being, we want to try reasonably hard to ensure there will 160 * already be a taskq entry pre-allocated by the time that it is needed 161 * by zil_clean(). This way, we can avoid the possibility of an 162 * on-demand allocation of a new taskq entry from failing, which would 163 * result in zil_itxg_clean() being called synchronously from zil_clean() 164 * (which can adversely affect performance of spa_sync()). 165 * 166 * Additionally, the number of threads used by the taskq can be 167 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable. 168 */ 169 static int zfs_zil_clean_taskq_nthr_pct = 100; 170 static int zfs_zil_clean_taskq_minalloc = 1024; 171 static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024; 172 173 int 174 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 175 { 176 uint64_t obj; 177 int err; 178 179 err = zap_lookup(dp->dp_meta_objset, 180 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 181 name, sizeof (obj), 1, &obj); 182 if (err) 183 return (err); 184 185 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 186 } 187 188 static dsl_pool_t * 189 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 190 { 191 dsl_pool_t *dp; 192 blkptr_t *bp = spa_get_rootblkptr(spa); 193 194 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 195 dp->dp_spa = spa; 196 dp->dp_meta_rootbp = *bp; 197 rrw_init(&dp->dp_config_rwlock, B_TRUE); 198 txg_init(dp, txg); 199 mmp_init(spa); 200 201 txg_list_create(&dp->dp_dirty_datasets, spa, 202 offsetof(dsl_dataset_t, ds_dirty_link)); 203 txg_list_create(&dp->dp_dirty_zilogs, spa, 204 offsetof(zilog_t, zl_dirty_link)); 205 txg_list_create(&dp->dp_dirty_dirs, spa, 206 offsetof(dsl_dir_t, dd_dirty_link)); 207 txg_list_create(&dp->dp_sync_tasks, spa, 208 offsetof(dsl_sync_task_t, dst_node)); 209 txg_list_create(&dp->dp_early_sync_tasks, spa, 210 offsetof(dsl_sync_task_t, dst_node)); 211 212 dp->dp_sync_taskq = spa_sync_tq_create(spa, "dp_sync_taskq"); 213 214 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq", 215 zfs_zil_clean_taskq_nthr_pct, minclsyspri, 216 zfs_zil_clean_taskq_minalloc, 217 zfs_zil_clean_taskq_maxalloc, 218 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 219 220 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 221 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 222 223 aggsum_init(&dp->dp_wrlog_total, 0); 224 for (int i = 0; i < TXG_SIZE; i++) { 225 aggsum_init(&dp->dp_wrlog_pertxg[i], 0); 226 } 227 228 dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri, 229 boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 230 TASKQ_THREADS_CPU_PCT); 231 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain", 232 100, defclsyspri, boot_ncpus, INT_MAX, 233 TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 234 235 return (dp); 236 } 237 238 int 239 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 240 { 241 int err; 242 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 243 244 /* 245 * Initialize the caller's dsl_pool_t structure before we actually open 246 * the meta objset. This is done because a self-healing write zio may 247 * be issued as part of dmu_objset_open_impl() and the spa needs its 248 * dsl_pool_t initialized in order to handle the write. 249 */ 250 *dpp = dp; 251 252 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 253 &dp->dp_meta_objset); 254 if (err != 0) { 255 dsl_pool_close(dp); 256 *dpp = NULL; 257 } 258 259 return (err); 260 } 261 262 int 263 dsl_pool_open(dsl_pool_t *dp) 264 { 265 int err; 266 dsl_dir_t *dd; 267 dsl_dataset_t *ds; 268 uint64_t obj; 269 270 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 271 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 272 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 273 &dp->dp_root_dir_obj); 274 if (err) 275 goto out; 276 277 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 278 NULL, dp, &dp->dp_root_dir); 279 if (err) 280 goto out; 281 282 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 283 if (err) 284 goto out; 285 286 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 287 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 288 if (err) 289 goto out; 290 err = dsl_dataset_hold_obj(dp, 291 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 292 if (err == 0) { 293 err = dsl_dataset_hold_obj(dp, 294 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 295 &dp->dp_origin_snap); 296 dsl_dataset_rele(ds, FTAG); 297 } 298 dsl_dir_rele(dd, dp); 299 if (err) 300 goto out; 301 } 302 303 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 304 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 305 &dp->dp_free_dir); 306 if (err) 307 goto out; 308 309 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 310 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 311 if (err) 312 goto out; 313 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 314 dp->dp_meta_objset, obj)); 315 } 316 317 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 318 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 319 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj); 320 if (err == 0) { 321 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, 322 dp->dp_meta_objset, obj)); 323 } else if (err == ENOENT) { 324 /* 325 * We might not have created the remap bpobj yet. 326 */ 327 } else { 328 goto out; 329 } 330 } 331 332 /* 333 * Note: errors ignored, because the these special dirs, used for 334 * space accounting, are only created on demand. 335 */ 336 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 337 &dp->dp_leak_dir); 338 339 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 340 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 341 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 342 &dp->dp_bptree_obj); 343 if (err != 0) 344 goto out; 345 } 346 347 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 348 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 349 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 350 &dp->dp_empty_bpobj); 351 if (err != 0) 352 goto out; 353 } 354 355 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 356 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 357 &dp->dp_tmp_userrefs_obj); 358 if (err == ENOENT) 359 err = 0; 360 if (err) 361 goto out; 362 363 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 364 365 out: 366 rrw_exit(&dp->dp_config_rwlock, FTAG); 367 return (err); 368 } 369 370 void 371 dsl_pool_close(dsl_pool_t *dp) 372 { 373 /* 374 * Drop our references from dsl_pool_open(). 375 * 376 * Since we held the origin_snap from "syncing" context (which 377 * includes pool-opening context), it actually only got a "ref" 378 * and not a hold, so just drop that here. 379 */ 380 if (dp->dp_origin_snap != NULL) 381 dsl_dataset_rele(dp->dp_origin_snap, dp); 382 if (dp->dp_mos_dir != NULL) 383 dsl_dir_rele(dp->dp_mos_dir, dp); 384 if (dp->dp_free_dir != NULL) 385 dsl_dir_rele(dp->dp_free_dir, dp); 386 if (dp->dp_leak_dir != NULL) 387 dsl_dir_rele(dp->dp_leak_dir, dp); 388 if (dp->dp_root_dir != NULL) 389 dsl_dir_rele(dp->dp_root_dir, dp); 390 391 bpobj_close(&dp->dp_free_bpobj); 392 bpobj_close(&dp->dp_obsolete_bpobj); 393 394 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 395 if (dp->dp_meta_objset != NULL) 396 dmu_objset_evict(dp->dp_meta_objset); 397 398 txg_list_destroy(&dp->dp_dirty_datasets); 399 txg_list_destroy(&dp->dp_dirty_zilogs); 400 txg_list_destroy(&dp->dp_sync_tasks); 401 txg_list_destroy(&dp->dp_early_sync_tasks); 402 txg_list_destroy(&dp->dp_dirty_dirs); 403 404 taskq_destroy(dp->dp_zil_clean_taskq); 405 spa_sync_tq_destroy(dp->dp_spa); 406 407 if (dp->dp_spa->spa_state == POOL_STATE_EXPORTED || 408 dp->dp_spa->spa_state == POOL_STATE_DESTROYED) { 409 /* 410 * On export/destroy perform the ARC flush asynchronously. 411 */ 412 arc_flush_async(dp->dp_spa); 413 } else { 414 /* 415 * We can't set retry to TRUE since we're explicitly specifying 416 * a spa to flush. This is good enough; any missed buffers for 417 * this spa won't cause trouble, and they'll eventually fall 418 * out of the ARC just like any other unused buffer. 419 */ 420 arc_flush(dp->dp_spa, FALSE); 421 } 422 423 mmp_fini(dp->dp_spa); 424 txg_fini(dp); 425 dsl_scan_fini(dp); 426 dmu_buf_user_evict_wait(); 427 428 rrw_destroy(&dp->dp_config_rwlock); 429 mutex_destroy(&dp->dp_lock); 430 cv_destroy(&dp->dp_spaceavail_cv); 431 432 ASSERT0(aggsum_value(&dp->dp_wrlog_total)); 433 aggsum_fini(&dp->dp_wrlog_total); 434 for (int i = 0; i < TXG_SIZE; i++) { 435 ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i])); 436 aggsum_fini(&dp->dp_wrlog_pertxg[i]); 437 } 438 439 taskq_destroy(dp->dp_unlinked_drain_taskq); 440 taskq_destroy(dp->dp_zrele_taskq); 441 if (dp->dp_blkstats != NULL) 442 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 443 kmem_free(dp, sizeof (dsl_pool_t)); 444 } 445 446 void 447 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 448 { 449 uint64_t obj; 450 /* 451 * Currently, we only create the obsolete_bpobj where there are 452 * indirect vdevs with referenced mappings. 453 */ 454 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL)); 455 /* create and open the obsolete_bpobj */ 456 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 457 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj)); 458 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 459 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 460 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 461 } 462 463 void 464 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 465 { 466 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 467 VERIFY0(zap_remove(dp->dp_meta_objset, 468 DMU_POOL_DIRECTORY_OBJECT, 469 DMU_POOL_OBSOLETE_BPOBJ, tx)); 470 bpobj_free(dp->dp_meta_objset, 471 dp->dp_obsolete_bpobj.bpo_object, tx); 472 bpobj_close(&dp->dp_obsolete_bpobj); 473 } 474 475 dsl_pool_t * 476 dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)), 477 dsl_crypto_params_t *dcp, uint64_t txg) 478 { 479 int err; 480 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 481 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 482 #ifdef _KERNEL 483 objset_t *os; 484 #else 485 objset_t *os __attribute__((unused)); 486 #endif 487 dsl_dataset_t *ds; 488 uint64_t obj; 489 490 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 491 492 /* create and open the MOS (meta-objset) */ 493 dp->dp_meta_objset = dmu_objset_create_impl(spa, 494 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 495 spa->spa_meta_objset = dp->dp_meta_objset; 496 497 /* create the pool directory */ 498 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 499 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 500 ASSERT0(err); 501 502 /* Initialize scan structures */ 503 VERIFY0(dsl_scan_init(dp, txg)); 504 505 /* create and open the root dir */ 506 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 507 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 508 NULL, dp, &dp->dp_root_dir)); 509 510 /* create and open the meta-objset dir */ 511 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 512 VERIFY0(dsl_pool_open_special_dir(dp, 513 MOS_DIR_NAME, &dp->dp_mos_dir)); 514 515 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 516 /* create and open the free dir */ 517 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 518 FREE_DIR_NAME, tx); 519 VERIFY0(dsl_pool_open_special_dir(dp, 520 FREE_DIR_NAME, &dp->dp_free_dir)); 521 522 /* create and open the free_bplist */ 523 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 524 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 525 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 526 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 527 dp->dp_meta_objset, obj)); 528 } 529 530 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 531 dsl_pool_create_origin(dp, tx); 532 533 /* 534 * Some features may be needed when creating the root dataset, so we 535 * create the feature objects here. 536 */ 537 if (spa_version(spa) >= SPA_VERSION_FEATURES) 538 spa_feature_create_zap_objects(spa, tx); 539 540 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF && 541 dcp->cp_crypt != ZIO_CRYPT_INHERIT) 542 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx); 543 544 /* create the root dataset */ 545 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx); 546 547 /* create the root objset */ 548 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj, 549 DS_HOLD_FLAG_DECRYPT, FTAG, &ds)); 550 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 551 os = dmu_objset_create_impl(dp->dp_spa, ds, 552 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 553 rrw_exit(&ds->ds_bp_rwlock, FTAG); 554 #ifdef _KERNEL 555 zfs_create_fs(os, kcred, zplprops, tx); 556 #endif 557 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 558 559 dmu_tx_commit(tx); 560 561 rrw_exit(&dp->dp_config_rwlock, FTAG); 562 563 return (dp); 564 } 565 566 /* 567 * Account for the meta-objset space in its placeholder dsl_dir. 568 */ 569 void 570 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 571 int64_t used, int64_t comp, int64_t uncomp) 572 { 573 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 574 mutex_enter(&dp->dp_lock); 575 dp->dp_mos_used_delta += used; 576 dp->dp_mos_compressed_delta += comp; 577 dp->dp_mos_uncompressed_delta += uncomp; 578 mutex_exit(&dp->dp_lock); 579 } 580 581 static void 582 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 583 { 584 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 585 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 586 VERIFY0(zio_wait(zio)); 587 dmu_objset_sync_done(dp->dp_meta_objset, tx); 588 taskq_wait(dp->dp_sync_taskq); 589 multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes); 590 591 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 592 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 593 } 594 595 static void 596 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 597 { 598 ASSERT(MUTEX_HELD(&dp->dp_lock)); 599 600 if (delta < 0) 601 ASSERT3U(-delta, <=, dp->dp_dirty_total); 602 603 dp->dp_dirty_total += delta; 604 605 /* 606 * Note: we signal even when increasing dp_dirty_total. 607 * This ensures forward progress -- each thread wakes the next waiter. 608 */ 609 if (dp->dp_dirty_total < zfs_dirty_data_max) 610 cv_signal(&dp->dp_spaceavail_cv); 611 } 612 613 void 614 dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg) 615 { 616 ASSERT3S(size, >=, 0); 617 618 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size); 619 aggsum_add(&dp->dp_wrlog_total, size); 620 621 /* Choose a value slightly bigger than min dirty sync bytes */ 622 uint64_t sync_min = 623 zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200; 624 if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0) 625 txg_kick(dp, txg); 626 } 627 628 boolean_t 629 dsl_pool_need_wrlog_delay(dsl_pool_t *dp) 630 { 631 uint64_t delay_min_bytes = 632 zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100; 633 634 return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0); 635 } 636 637 static void 638 dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg) 639 { 640 int64_t delta; 641 delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]); 642 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta); 643 aggsum_add(&dp->dp_wrlog_total, delta); 644 /* Compact per-CPU sums after the big change. */ 645 (void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]); 646 (void) aggsum_value(&dp->dp_wrlog_total); 647 } 648 649 #ifdef ZFS_DEBUG 650 static boolean_t 651 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg) 652 { 653 spa_t *spa = dp->dp_spa; 654 vdev_t *rvd = spa->spa_root_vdev; 655 656 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 657 vdev_t *vd = rvd->vdev_child[c]; 658 txg_list_t *tl = &vd->vdev_ms_list; 659 metaslab_t *ms; 660 661 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms; 662 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) { 663 VERIFY(range_tree_is_empty(ms->ms_freeing)); 664 VERIFY(range_tree_is_empty(ms->ms_checkpointing)); 665 } 666 } 667 668 return (B_TRUE); 669 } 670 #else 671 #define dsl_early_sync_task_verify(dp, txg) \ 672 ((void) sizeof (dp), (void) sizeof (txg), B_TRUE) 673 #endif 674 675 void 676 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 677 { 678 zio_t *rio; /* root zio for all dirty dataset syncs */ 679 dmu_tx_t *tx; 680 dsl_dir_t *dd; 681 dsl_dataset_t *ds; 682 objset_t *mos = dp->dp_meta_objset; 683 list_t synced_datasets; 684 685 list_create(&synced_datasets, sizeof (dsl_dataset_t), 686 offsetof(dsl_dataset_t, ds_synced_link)); 687 688 tx = dmu_tx_create_assigned(dp, txg); 689 690 /* 691 * Run all early sync tasks before writing out any dirty blocks. 692 * For more info on early sync tasks see block comment in 693 * dsl_early_sync_task(). 694 */ 695 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) { 696 dsl_sync_task_t *dst; 697 698 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 699 while ((dst = 700 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) { 701 ASSERT(dsl_early_sync_task_verify(dp, txg)); 702 dsl_sync_task_sync(dst, tx); 703 } 704 ASSERT(dsl_early_sync_task_verify(dp, txg)); 705 } 706 707 /* 708 * Write out all dirty blocks of dirty datasets. Note, this could 709 * create a very large (+10k) zio tree. 710 */ 711 rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 712 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 713 /* 714 * We must not sync any non-MOS datasets twice, because 715 * we may have taken a snapshot of them. However, we 716 * may sync newly-created datasets on pass 2. 717 */ 718 ASSERT(!list_link_active(&ds->ds_synced_link)); 719 list_insert_tail(&synced_datasets, ds); 720 dsl_dataset_sync(ds, rio, tx); 721 } 722 VERIFY0(zio_wait(rio)); 723 724 /* 725 * Update the long range free counter after 726 * we're done syncing user data 727 */ 728 mutex_enter(&dp->dp_lock); 729 ASSERT(spa_sync_pass(dp->dp_spa) == 1 || 730 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0); 731 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0; 732 mutex_exit(&dp->dp_lock); 733 734 /* 735 * After the data blocks have been written (ensured by the zio_wait() 736 * above), update the user/group/project space accounting. This happens 737 * in tasks dispatched to dp_sync_taskq, so wait for them before 738 * continuing. 739 */ 740 for (ds = list_head(&synced_datasets); ds != NULL; 741 ds = list_next(&synced_datasets, ds)) { 742 dmu_objset_sync_done(ds->ds_objset, tx); 743 } 744 taskq_wait(dp->dp_sync_taskq); 745 746 /* 747 * Sync the datasets again to push out the changes due to 748 * userspace updates. This must be done before we process the 749 * sync tasks, so that any snapshots will have the correct 750 * user accounting information (and we won't get confused 751 * about which blocks are part of the snapshot). 752 */ 753 rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 754 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 755 objset_t *os = ds->ds_objset; 756 757 ASSERT(list_link_active(&ds->ds_synced_link)); 758 dmu_buf_rele(ds->ds_dbuf, ds); 759 dsl_dataset_sync(ds, rio, tx); 760 761 /* 762 * Release any key mappings created by calls to 763 * dsl_dataset_dirty() from the userquota accounting 764 * code paths. 765 */ 766 if (os->os_encrypted && !os->os_raw_receive && 767 !os->os_next_write_raw[txg & TXG_MASK]) { 768 ASSERT3P(ds->ds_key_mapping, !=, NULL); 769 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds); 770 } 771 } 772 VERIFY0(zio_wait(rio)); 773 774 /* 775 * Now that the datasets have been completely synced, we can 776 * clean up our in-memory structures accumulated while syncing: 777 * 778 * - move dead blocks from the pending deadlist and livelists 779 * to the on-disk versions 780 * - release hold from dsl_dataset_dirty() 781 * - release key mapping hold from dsl_dataset_dirty() 782 */ 783 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 784 objset_t *os = ds->ds_objset; 785 786 if (os->os_encrypted && !os->os_raw_receive && 787 !os->os_next_write_raw[txg & TXG_MASK]) { 788 ASSERT3P(ds->ds_key_mapping, !=, NULL); 789 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds); 790 } 791 792 dsl_dataset_sync_done(ds, tx); 793 dmu_buf_rele(ds->ds_dbuf, ds); 794 } 795 796 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 797 dsl_dir_sync(dd, tx); 798 } 799 800 /* 801 * The MOS's space is accounted for in the pool/$MOS 802 * (dp_mos_dir). We can't modify the mos while we're syncing 803 * it, so we remember the deltas and apply them here. 804 */ 805 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 806 dp->dp_mos_uncompressed_delta != 0) { 807 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 808 dp->dp_mos_used_delta, 809 dp->dp_mos_compressed_delta, 810 dp->dp_mos_uncompressed_delta, tx); 811 dp->dp_mos_used_delta = 0; 812 dp->dp_mos_compressed_delta = 0; 813 dp->dp_mos_uncompressed_delta = 0; 814 } 815 816 if (dmu_objset_is_dirty(mos, txg)) { 817 dsl_pool_sync_mos(dp, tx); 818 } 819 820 /* 821 * We have written all of the accounted dirty data, so our 822 * dp_space_towrite should now be zero. However, some seldom-used 823 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up 824 * the accounting of any dirtied space now. 825 * 826 * Note that, besides any dirty data from datasets, the amount of 827 * dirty data in the MOS is also accounted by the pool. Therefore, 828 * we want to do this cleanup after dsl_pool_sync_mos() so we don't 829 * attempt to update the accounting for the same dirty data twice. 830 * (i.e. at this point we only update the accounting for the space 831 * that we know that we "leaked"). 832 */ 833 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 834 835 /* 836 * If we modify a dataset in the same txg that we want to destroy it, 837 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 838 * dsl_dir_destroy_check() will fail if there are unexpected holds. 839 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 840 * and clearing the hold on it) before we process the sync_tasks. 841 * The MOS data dirtied by the sync_tasks will be synced on the next 842 * pass. 843 */ 844 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 845 dsl_sync_task_t *dst; 846 /* 847 * No more sync tasks should have been added while we 848 * were syncing. 849 */ 850 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 851 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 852 dsl_sync_task_sync(dst, tx); 853 } 854 855 dmu_tx_commit(tx); 856 857 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 858 } 859 860 void 861 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 862 { 863 zilog_t *zilog; 864 865 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) { 866 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 867 /* 868 * We don't remove the zilog from the dp_dirty_zilogs 869 * list until after we've cleaned it. This ensures that 870 * callers of zilog_is_dirty() receive an accurate 871 * answer when they are racing with the spa sync thread. 872 */ 873 zil_clean(zilog, txg); 874 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg); 875 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 876 dmu_buf_rele(ds->ds_dbuf, zilog); 877 } 878 879 dsl_pool_wrlog_clear(dp, txg); 880 881 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 882 } 883 884 /* 885 * TRUE if the current thread is the tx_sync_thread or if we 886 * are being called from SPA context during pool initialization. 887 */ 888 int 889 dsl_pool_sync_context(dsl_pool_t *dp) 890 { 891 return (curthread == dp->dp_tx.tx_sync_thread || 892 spa_is_initializing(dp->dp_spa) || 893 taskq_member(dp->dp_sync_taskq, curthread)); 894 } 895 896 /* 897 * This function returns the amount of allocatable space in the pool 898 * minus whatever space is currently reserved by ZFS for specific 899 * purposes. Specifically: 900 * 901 * 1] Any reserved SLOP space 902 * 2] Any space used by the checkpoint 903 * 3] Any space used for deferred frees 904 * 905 * The latter 2 are especially important because they are needed to 906 * rectify the SPA's and DMU's different understanding of how much space 907 * is used. Now the DMU is aware of that extra space tracked by the SPA 908 * without having to maintain a separate special dir (e.g similar to 909 * $MOS, $FREEING, and $LEAKED). 910 * 911 * Note: By deferred frees here, we mean the frees that were deferred 912 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the 913 * segments placed in ms_defer trees during metaslab_sync_done(). 914 */ 915 uint64_t 916 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy) 917 { 918 spa_t *spa = dp->dp_spa; 919 uint64_t space, resv, adjustedsize; 920 uint64_t spa_deferred_frees = 921 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes; 922 923 space = spa_get_dspace(spa) 924 - spa_get_checkpoint_space(spa) - spa_deferred_frees; 925 resv = spa_get_slop_space(spa); 926 927 switch (slop_policy) { 928 case ZFS_SPACE_CHECK_NORMAL: 929 break; 930 case ZFS_SPACE_CHECK_RESERVED: 931 resv >>= 1; 932 break; 933 case ZFS_SPACE_CHECK_EXTRA_RESERVED: 934 resv >>= 2; 935 break; 936 case ZFS_SPACE_CHECK_NONE: 937 resv = 0; 938 break; 939 default: 940 panic("invalid slop policy value: %d", slop_policy); 941 break; 942 } 943 adjustedsize = (space >= resv) ? (space - resv) : 0; 944 945 return (adjustedsize); 946 } 947 948 uint64_t 949 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy) 950 { 951 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy); 952 uint64_t deferred = 953 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)); 954 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0; 955 return (quota); 956 } 957 958 uint64_t 959 dsl_pool_deferred_space(dsl_pool_t *dp) 960 { 961 return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa))); 962 } 963 964 boolean_t 965 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 966 { 967 uint64_t delay_min_bytes = 968 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 969 970 /* 971 * We are not taking the dp_lock here and few other places, since torn 972 * reads are unlikely: on 64-bit systems due to register size and on 973 * 32-bit due to memory constraints. Pool-wide locks in hot path may 974 * be too expensive, while we do not need a precise result here. 975 */ 976 return (dp->dp_dirty_total > delay_min_bytes); 977 } 978 979 static boolean_t 980 dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg) 981 { 982 uint64_t dirty_min_bytes = 983 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100; 984 uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK]; 985 986 return (dirty > dirty_min_bytes); 987 } 988 989 void 990 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 991 { 992 if (space > 0) { 993 mutex_enter(&dp->dp_lock); 994 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 995 dsl_pool_dirty_delta(dp, space); 996 boolean_t needsync = !dmu_tx_is_syncing(tx) && 997 dsl_pool_need_dirty_sync(dp, tx->tx_txg); 998 mutex_exit(&dp->dp_lock); 999 1000 if (needsync) 1001 txg_kick(dp, tx->tx_txg); 1002 } 1003 } 1004 1005 void 1006 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 1007 { 1008 ASSERT3S(space, >=, 0); 1009 if (space == 0) 1010 return; 1011 1012 mutex_enter(&dp->dp_lock); 1013 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 1014 /* XXX writing something we didn't dirty? */ 1015 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 1016 } 1017 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 1018 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 1019 ASSERT3U(dp->dp_dirty_total, >=, space); 1020 dsl_pool_dirty_delta(dp, -space); 1021 mutex_exit(&dp->dp_lock); 1022 } 1023 1024 static int 1025 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 1026 { 1027 dmu_tx_t *tx = arg; 1028 dsl_dataset_t *ds, *prev = NULL; 1029 int err; 1030 1031 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 1032 if (err) 1033 return (err); 1034 1035 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 1036 err = dsl_dataset_hold_obj(dp, 1037 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 1038 if (err) { 1039 dsl_dataset_rele(ds, FTAG); 1040 return (err); 1041 } 1042 1043 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 1044 break; 1045 dsl_dataset_rele(ds, FTAG); 1046 ds = prev; 1047 prev = NULL; 1048 } 1049 1050 if (prev == NULL) { 1051 prev = dp->dp_origin_snap; 1052 1053 /* 1054 * The $ORIGIN can't have any data, or the accounting 1055 * will be wrong. 1056 */ 1057 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1058 ASSERT0(BP_GET_LOGICAL_BIRTH(&dsl_dataset_phys(prev)->ds_bp)); 1059 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1060 1061 /* The origin doesn't get attached to itself */ 1062 if (ds->ds_object == prev->ds_object) { 1063 dsl_dataset_rele(ds, FTAG); 1064 return (0); 1065 } 1066 1067 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1068 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 1069 dsl_dataset_phys(ds)->ds_prev_snap_txg = 1070 dsl_dataset_phys(prev)->ds_creation_txg; 1071 1072 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1073 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 1074 1075 dmu_buf_will_dirty(prev->ds_dbuf, tx); 1076 dsl_dataset_phys(prev)->ds_num_children++; 1077 1078 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 1079 ASSERT(ds->ds_prev == NULL); 1080 VERIFY0(dsl_dataset_hold_obj(dp, 1081 dsl_dataset_phys(ds)->ds_prev_snap_obj, 1082 ds, &ds->ds_prev)); 1083 } 1084 } 1085 1086 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 1087 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 1088 1089 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 1090 dmu_buf_will_dirty(prev->ds_dbuf, tx); 1091 dsl_dataset_phys(prev)->ds_next_clones_obj = 1092 zap_create(dp->dp_meta_objset, 1093 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 1094 } 1095 VERIFY0(zap_add_int(dp->dp_meta_objset, 1096 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 1097 1098 dsl_dataset_rele(ds, FTAG); 1099 if (prev != dp->dp_origin_snap) 1100 dsl_dataset_rele(prev, FTAG); 1101 return (0); 1102 } 1103 1104 void 1105 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 1106 { 1107 ASSERT(dmu_tx_is_syncing(tx)); 1108 ASSERT(dp->dp_origin_snap != NULL); 1109 1110 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 1111 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1112 } 1113 1114 static int 1115 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1116 { 1117 dmu_tx_t *tx = arg; 1118 objset_t *mos = dp->dp_meta_objset; 1119 1120 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 1121 dsl_dataset_t *origin; 1122 1123 VERIFY0(dsl_dataset_hold_obj(dp, 1124 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 1125 1126 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 1127 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 1128 dsl_dir_phys(origin->ds_dir)->dd_clones = 1129 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 1130 0, tx); 1131 } 1132 1133 VERIFY0(zap_add_int(dp->dp_meta_objset, 1134 dsl_dir_phys(origin->ds_dir)->dd_clones, 1135 ds->ds_object, tx)); 1136 1137 dsl_dataset_rele(origin, FTAG); 1138 } 1139 return (0); 1140 } 1141 1142 void 1143 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 1144 { 1145 uint64_t obj; 1146 1147 ASSERT(dmu_tx_is_syncing(tx)); 1148 1149 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 1150 VERIFY0(dsl_pool_open_special_dir(dp, 1151 FREE_DIR_NAME, &dp->dp_free_dir)); 1152 1153 /* 1154 * We can't use bpobj_alloc(), because spa_version() still 1155 * returns the old version, and we need a new-version bpobj with 1156 * subobj support. So call dmu_object_alloc() directly. 1157 */ 1158 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 1159 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 1160 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1161 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 1162 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 1163 1164 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1165 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1166 } 1167 1168 void 1169 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 1170 { 1171 uint64_t dsobj; 1172 dsl_dataset_t *ds; 1173 1174 ASSERT(dmu_tx_is_syncing(tx)); 1175 ASSERT(dp->dp_origin_snap == NULL); 1176 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 1177 1178 /* create the origin dir, ds, & snap-ds */ 1179 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 1180 NULL, 0, kcred, NULL, tx); 1181 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 1182 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 1183 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 1184 dp, &dp->dp_origin_snap)); 1185 dsl_dataset_rele(ds, FTAG); 1186 } 1187 1188 taskq_t * 1189 dsl_pool_zrele_taskq(dsl_pool_t *dp) 1190 { 1191 return (dp->dp_zrele_taskq); 1192 } 1193 1194 taskq_t * 1195 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp) 1196 { 1197 return (dp->dp_unlinked_drain_taskq); 1198 } 1199 1200 /* 1201 * Walk through the pool-wide zap object of temporary snapshot user holds 1202 * and release them. 1203 */ 1204 void 1205 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 1206 { 1207 zap_attribute_t *za; 1208 zap_cursor_t zc; 1209 objset_t *mos = dp->dp_meta_objset; 1210 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1211 nvlist_t *holds; 1212 1213 if (zapobj == 0) 1214 return; 1215 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1216 1217 holds = fnvlist_alloc(); 1218 1219 za = zap_attribute_alloc(); 1220 for (zap_cursor_init(&zc, mos, zapobj); 1221 zap_cursor_retrieve(&zc, za) == 0; 1222 zap_cursor_advance(&zc)) { 1223 char *htag; 1224 nvlist_t *tags; 1225 1226 htag = strchr(za->za_name, '-'); 1227 *htag = '\0'; 1228 ++htag; 1229 if (nvlist_lookup_nvlist(holds, za->za_name, &tags) != 0) { 1230 tags = fnvlist_alloc(); 1231 fnvlist_add_boolean(tags, htag); 1232 fnvlist_add_nvlist(holds, za->za_name, tags); 1233 fnvlist_free(tags); 1234 } else { 1235 fnvlist_add_boolean(tags, htag); 1236 } 1237 } 1238 dsl_dataset_user_release_tmp(dp, holds); 1239 fnvlist_free(holds); 1240 zap_cursor_fini(&zc); 1241 zap_attribute_free(za); 1242 } 1243 1244 /* 1245 * Create the pool-wide zap object for storing temporary snapshot holds. 1246 */ 1247 static void 1248 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 1249 { 1250 objset_t *mos = dp->dp_meta_objset; 1251 1252 ASSERT(dp->dp_tmp_userrefs_obj == 0); 1253 ASSERT(dmu_tx_is_syncing(tx)); 1254 1255 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 1256 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 1257 } 1258 1259 static int 1260 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 1261 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 1262 { 1263 objset_t *mos = dp->dp_meta_objset; 1264 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1265 char *name; 1266 int error; 1267 1268 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1269 ASSERT(dmu_tx_is_syncing(tx)); 1270 1271 /* 1272 * If the pool was created prior to SPA_VERSION_USERREFS, the 1273 * zap object for temporary holds might not exist yet. 1274 */ 1275 if (zapobj == 0) { 1276 if (holding) { 1277 dsl_pool_user_hold_create_obj(dp, tx); 1278 zapobj = dp->dp_tmp_userrefs_obj; 1279 } else { 1280 return (SET_ERROR(ENOENT)); 1281 } 1282 } 1283 1284 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 1285 if (holding) 1286 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 1287 else 1288 error = zap_remove(mos, zapobj, name, tx); 1289 kmem_strfree(name); 1290 1291 return (error); 1292 } 1293 1294 /* 1295 * Add a temporary hold for the given dataset object and tag. 1296 */ 1297 int 1298 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1299 uint64_t now, dmu_tx_t *tx) 1300 { 1301 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 1302 } 1303 1304 /* 1305 * Release a temporary hold for the given dataset object and tag. 1306 */ 1307 int 1308 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1309 dmu_tx_t *tx) 1310 { 1311 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0, 1312 tx, B_FALSE)); 1313 } 1314 1315 /* 1316 * DSL Pool Configuration Lock 1317 * 1318 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 1319 * creation / destruction / rename / property setting). It must be held for 1320 * read to hold a dataset or dsl_dir. I.e. you must call 1321 * dsl_pool_config_enter() or dsl_pool_hold() before calling 1322 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 1323 * must be held continuously until all datasets and dsl_dirs are released. 1324 * 1325 * The only exception to this rule is that if a "long hold" is placed on 1326 * a dataset, then the dp_config_rwlock may be dropped while the dataset 1327 * is still held. The long hold will prevent the dataset from being 1328 * destroyed -- the destroy will fail with EBUSY. A long hold can be 1329 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 1330 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 1331 * 1332 * Legitimate long-holders (including owners) should be long-running, cancelable 1333 * tasks that should cause "zfs destroy" to fail. This includes DMU 1334 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 1335 * "zfs send", and "zfs diff". There are several other long-holders whose 1336 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 1337 * 1338 * The usual formula for long-holding would be: 1339 * dsl_pool_hold() 1340 * dsl_dataset_hold() 1341 * ... perform checks ... 1342 * dsl_dataset_long_hold() 1343 * dsl_pool_rele() 1344 * ... perform long-running task ... 1345 * dsl_dataset_long_rele() 1346 * dsl_dataset_rele() 1347 * 1348 * Note that when the long hold is released, the dataset is still held but 1349 * the pool is not held. The dataset may change arbitrarily during this time 1350 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 1351 * dataset except release it. 1352 * 1353 * Operations generally fall somewhere into the following taxonomy: 1354 * 1355 * Read-Only Modifying 1356 * 1357 * Dataset Layer / MOS zfs get zfs destroy 1358 * 1359 * Individual Dataset read() write() 1360 * 1361 * 1362 * Dataset Layer Operations 1363 * 1364 * Modifying operations should generally use dsl_sync_task(). The synctask 1365 * infrastructure enforces proper locking strategy with respect to the 1366 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1367 * 1368 * Read-only operations will manually hold the pool, then the dataset, obtain 1369 * information from the dataset, then release the pool and dataset. 1370 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1371 * hold/rele. 1372 * 1373 * 1374 * Operations On Individual Datasets 1375 * 1376 * Objects _within_ an objset should only be modified by the current 'owner' 1377 * of the objset to prevent incorrect concurrent modification. Thus, use 1378 * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner, 1379 * and fail with EBUSY if there is already an owner. The owner can then 1380 * implement its own locking strategy, independent of the dataset layer's 1381 * locking infrastructure. 1382 * (E.g., the ZPL has its own set of locks to control concurrency. A regular 1383 * vnop will not reach into the dataset layer). 1384 * 1385 * Ideally, objects would also only be read by the objset’s owner, so that we 1386 * don’t observe state mid-modification. 1387 * (E.g. the ZPL is creating a new object and linking it into a directory; if 1388 * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an 1389 * intermediate state. The ioctl level violates this but in pretty benign 1390 * ways, e.g. reading the zpl props object.) 1391 */ 1392 1393 int 1394 dsl_pool_hold(const char *name, const void *tag, dsl_pool_t **dp) 1395 { 1396 spa_t *spa; 1397 int error; 1398 1399 error = spa_open(name, &spa, tag); 1400 if (error == 0) { 1401 *dp = spa_get_dsl(spa); 1402 dsl_pool_config_enter(*dp, tag); 1403 } 1404 return (error); 1405 } 1406 1407 void 1408 dsl_pool_rele(dsl_pool_t *dp, const void *tag) 1409 { 1410 dsl_pool_config_exit(dp, tag); 1411 spa_close(dp->dp_spa, tag); 1412 } 1413 1414 void 1415 dsl_pool_config_enter(dsl_pool_t *dp, const void *tag) 1416 { 1417 /* 1418 * We use a "reentrant" reader-writer lock, but not reentrantly. 1419 * 1420 * The rrwlock can (with the track_all flag) track all reading threads, 1421 * which is very useful for debugging which code path failed to release 1422 * the lock, and for verifying that the *current* thread does hold 1423 * the lock. 1424 * 1425 * (Unlike a rwlock, which knows that N threads hold it for 1426 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1427 * if any thread holds it for read, even if this thread doesn't). 1428 */ 1429 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1430 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1431 } 1432 1433 void 1434 dsl_pool_config_enter_prio(dsl_pool_t *dp, const void *tag) 1435 { 1436 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1437 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1438 } 1439 1440 void 1441 dsl_pool_config_exit(dsl_pool_t *dp, const void *tag) 1442 { 1443 rrw_exit(&dp->dp_config_rwlock, tag); 1444 } 1445 1446 boolean_t 1447 dsl_pool_config_held(dsl_pool_t *dp) 1448 { 1449 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1450 } 1451 1452 boolean_t 1453 dsl_pool_config_held_writer(dsl_pool_t *dp) 1454 { 1455 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1456 } 1457 1458 EXPORT_SYMBOL(dsl_pool_config_enter); 1459 EXPORT_SYMBOL(dsl_pool_config_exit); 1460 1461 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */ 1462 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, UINT, ZMOD_RD, 1463 "Max percent of RAM allowed to be dirty"); 1464 1465 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */ 1466 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, UINT, ZMOD_RD, 1467 "zfs_dirty_data_max upper bound as % of RAM"); 1468 1469 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, UINT, ZMOD_RW, 1470 "Transaction delay threshold"); 1471 1472 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, U64, ZMOD_RW, 1473 "Determines the dirty space limit"); 1474 1475 ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, U64, ZMOD_RW, 1476 "The size limit of write-transaction zil log data"); 1477 1478 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */ 1479 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, U64, ZMOD_RD, 1480 "zfs_dirty_data_max upper bound in bytes"); 1481 1482 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, UINT, ZMOD_RW, 1483 "Dirty data txg sync threshold as a percentage of zfs_dirty_data_max"); 1484 1485 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, U64, ZMOD_RW, 1486 "How quickly delay approaches infinity"); 1487 1488 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW, 1489 "Max percent of CPUs that are used per dp_sync_taskq"); 1490 1491 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW, 1492 "Number of taskq entries that are pre-populated"); 1493 1494 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW, 1495 "Max number of taskq entries that are cached"); 1496