1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 28 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_prop.h> 37 #include <sys/dsl_synctask.h> 38 #include <sys/dsl_deleg.h> 39 #include <sys/dmu_impl.h> 40 #include <sys/spa.h> 41 #include <sys/spa_impl.h> 42 #include <sys/metaslab.h> 43 #include <sys/zap.h> 44 #include <sys/zio.h> 45 #include <sys/arc.h> 46 #include <sys/sunddi.h> 47 #include <sys/zfeature.h> 48 #include <sys/policy.h> 49 #include <sys/zfs_vfsops.h> 50 #include <sys/zfs_znode.h> 51 #include <sys/zvol.h> 52 #include <sys/zthr.h> 53 #include "zfs_namecheck.h" 54 #include "zfs_prop.h" 55 56 /* 57 * Filesystem and Snapshot Limits 58 * ------------------------------ 59 * 60 * These limits are used to restrict the number of filesystems and/or snapshots 61 * that can be created at a given level in the tree or below. A typical 62 * use-case is with a delegated dataset where the administrator wants to ensure 63 * that a user within the zone is not creating too many additional filesystems 64 * or snapshots, even though they're not exceeding their space quota. 65 * 66 * The filesystem and snapshot counts are stored as extensible properties. This 67 * capability is controlled by a feature flag and must be enabled to be used. 68 * Once enabled, the feature is not active until the first limit is set. At 69 * that point, future operations to create/destroy filesystems or snapshots 70 * will validate and update the counts. 71 * 72 * Because the count properties will not exist before the feature is active, 73 * the counts are updated when a limit is first set on an uninitialized 74 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 75 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 76 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 77 * snapshot count properties on a node indicate uninitialized counts on that 78 * node.) When first setting a limit on an uninitialized node, the code starts 79 * at the filesystem with the new limit and descends into all sub-filesystems 80 * to add the count properties. 81 * 82 * In practice this is lightweight since a limit is typically set when the 83 * filesystem is created and thus has no children. Once valid, changing the 84 * limit value won't require a re-traversal since the counts are already valid. 85 * When recursively fixing the counts, if a node with a limit is encountered 86 * during the descent, the counts are known to be valid and there is no need to 87 * descend into that filesystem's children. The counts on filesystems above the 88 * one with the new limit will still be uninitialized, unless a limit is 89 * eventually set on one of those filesystems. The counts are always recursively 90 * updated when a limit is set on a dataset, unless there is already a limit. 91 * When a new limit value is set on a filesystem with an existing limit, it is 92 * possible for the new limit to be less than the current count at that level 93 * since a user who can change the limit is also allowed to exceed the limit. 94 * 95 * Once the feature is active, then whenever a filesystem or snapshot is 96 * created, the code recurses up the tree, validating the new count against the 97 * limit at each initialized level. In practice, most levels will not have a 98 * limit set. If there is a limit at any initialized level up the tree, the 99 * check must pass or the creation will fail. Likewise, when a filesystem or 100 * snapshot is destroyed, the counts are recursively adjusted all the way up 101 * the initialized nodes in the tree. Renaming a filesystem into different point 102 * in the tree will first validate, then update the counts on each branch up to 103 * the common ancestor. A receive will also validate the counts and then update 104 * them. 105 * 106 * An exception to the above behavior is that the limit is not enforced if the 107 * user has permission to modify the limit. This is primarily so that 108 * recursive snapshots in the global zone always work. We want to prevent a 109 * denial-of-service in which a lower level delegated dataset could max out its 110 * limit and thus block recursive snapshots from being taken in the global zone. 111 * Because of this, it is possible for the snapshot count to be over the limit 112 * and snapshots taken in the global zone could cause a lower level dataset to 113 * hit or exceed its limit. The administrator taking the global zone recursive 114 * snapshot should be aware of this side-effect and behave accordingly. 115 * For consistency, the filesystem limit is also not enforced if the user can 116 * modify the limit. 117 * 118 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 119 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 120 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 121 * dsl_dir_init_fs_ss_count(). 122 */ 123 124 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 125 126 typedef struct ddulrt_arg { 127 dsl_dir_t *ddulrta_dd; 128 uint64_t ddlrta_txg; 129 } ddulrt_arg_t; 130 131 static void 132 dsl_dir_evict_async(void *dbu) 133 { 134 dsl_dir_t *dd = dbu; 135 int t; 136 dsl_pool_t *dp __maybe_unused = dd->dd_pool; 137 138 dd->dd_dbuf = NULL; 139 140 for (t = 0; t < TXG_SIZE; t++) { 141 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 142 ASSERT(dd->dd_tempreserved[t] == 0); 143 ASSERT(dd->dd_space_towrite[t] == 0); 144 } 145 146 if (dd->dd_parent) 147 dsl_dir_async_rele(dd->dd_parent, dd); 148 149 spa_async_close(dd->dd_pool->dp_spa, dd); 150 151 if (dsl_deadlist_is_open(&dd->dd_livelist)) 152 dsl_dir_livelist_close(dd); 153 154 dsl_prop_fini(dd); 155 cv_destroy(&dd->dd_activity_cv); 156 mutex_destroy(&dd->dd_activity_lock); 157 mutex_destroy(&dd->dd_lock); 158 kmem_free(dd, sizeof (dsl_dir_t)); 159 } 160 161 int 162 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 163 const char *tail, const void *tag, dsl_dir_t **ddp) 164 { 165 dmu_buf_t *dbuf; 166 dsl_dir_t *dd; 167 dmu_object_info_t doi; 168 int err; 169 170 ASSERT(dsl_pool_config_held(dp)); 171 172 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 173 if (err != 0) 174 return (err); 175 dd = dmu_buf_get_user(dbuf); 176 177 dmu_object_info_from_db(dbuf, &doi); 178 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 179 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 180 181 if (dd == NULL) { 182 dsl_dir_t *winner; 183 184 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 185 dd->dd_object = ddobj; 186 dd->dd_dbuf = dbuf; 187 dd->dd_pool = dp; 188 189 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 190 mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL); 191 cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL); 192 dsl_prop_init(dd); 193 194 if (dsl_dir_is_zapified(dd)) { 195 err = zap_lookup(dp->dp_meta_objset, 196 ddobj, DD_FIELD_CRYPTO_KEY_OBJ, 197 sizeof (uint64_t), 1, &dd->dd_crypto_obj); 198 if (err == 0) { 199 /* check for on-disk format errata */ 200 if (dsl_dir_incompatible_encryption_version( 201 dd)) { 202 dp->dp_spa->spa_errata = 203 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION; 204 } 205 } else if (err != ENOENT) { 206 goto errout; 207 } 208 } 209 210 dsl_dir_snap_cmtime_update(dd); 211 212 if (dsl_dir_phys(dd)->dd_parent_obj) { 213 err = dsl_dir_hold_obj(dp, 214 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 215 &dd->dd_parent); 216 if (err != 0) 217 goto errout; 218 if (tail) { 219 #ifdef ZFS_DEBUG 220 uint64_t foundobj; 221 222 err = zap_lookup(dp->dp_meta_objset, 223 dsl_dir_phys(dd->dd_parent)-> 224 dd_child_dir_zapobj, tail, 225 sizeof (foundobj), 1, &foundobj); 226 ASSERT(err || foundobj == ddobj); 227 #endif 228 (void) strlcpy(dd->dd_myname, tail, 229 sizeof (dd->dd_myname)); 230 } else { 231 err = zap_value_search(dp->dp_meta_objset, 232 dsl_dir_phys(dd->dd_parent)-> 233 dd_child_dir_zapobj, 234 ddobj, 0, dd->dd_myname); 235 } 236 if (err != 0) 237 goto errout; 238 } else { 239 (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa), 240 sizeof (dd->dd_myname)); 241 } 242 243 if (dsl_dir_is_clone(dd)) { 244 dmu_buf_t *origin_bonus; 245 dsl_dataset_phys_t *origin_phys; 246 247 /* 248 * We can't open the origin dataset, because 249 * that would require opening this dsl_dir. 250 * Just look at its phys directly instead. 251 */ 252 err = dmu_bonus_hold(dp->dp_meta_objset, 253 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 254 &origin_bonus); 255 if (err != 0) 256 goto errout; 257 origin_phys = origin_bonus->db_data; 258 dd->dd_origin_txg = 259 origin_phys->ds_creation_txg; 260 dmu_buf_rele(origin_bonus, FTAG); 261 if (dsl_dir_is_zapified(dd)) { 262 uint64_t obj; 263 err = zap_lookup(dp->dp_meta_objset, 264 dd->dd_object, DD_FIELD_LIVELIST, 265 sizeof (uint64_t), 1, &obj); 266 if (err == 0) 267 dsl_dir_livelist_open(dd, obj); 268 else if (err != ENOENT) 269 goto errout; 270 } 271 } 272 273 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 274 &dd->dd_dbuf); 275 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 276 if (winner != NULL) { 277 if (dd->dd_parent) 278 dsl_dir_rele(dd->dd_parent, dd); 279 if (dsl_deadlist_is_open(&dd->dd_livelist)) 280 dsl_dir_livelist_close(dd); 281 dsl_prop_fini(dd); 282 cv_destroy(&dd->dd_activity_cv); 283 mutex_destroy(&dd->dd_activity_lock); 284 mutex_destroy(&dd->dd_lock); 285 kmem_free(dd, sizeof (dsl_dir_t)); 286 dd = winner; 287 } else { 288 spa_open_ref(dp->dp_spa, dd); 289 } 290 } 291 292 /* 293 * The dsl_dir_t has both open-to-close and instantiate-to-evict 294 * holds on the spa. We need the open-to-close holds because 295 * otherwise the spa_refcnt wouldn't change when we open a 296 * dir which the spa also has open, so we could incorrectly 297 * think it was OK to unload/export/destroy the pool. We need 298 * the instantiate-to-evict hold because the dsl_dir_t has a 299 * pointer to the dd_pool, which has a pointer to the spa_t. 300 */ 301 spa_open_ref(dp->dp_spa, tag); 302 ASSERT3P(dd->dd_pool, ==, dp); 303 ASSERT3U(dd->dd_object, ==, ddobj); 304 ASSERT3P(dd->dd_dbuf, ==, dbuf); 305 *ddp = dd; 306 return (0); 307 308 errout: 309 if (dd->dd_parent) 310 dsl_dir_rele(dd->dd_parent, dd); 311 if (dsl_deadlist_is_open(&dd->dd_livelist)) 312 dsl_dir_livelist_close(dd); 313 dsl_prop_fini(dd); 314 cv_destroy(&dd->dd_activity_cv); 315 mutex_destroy(&dd->dd_activity_lock); 316 mutex_destroy(&dd->dd_lock); 317 kmem_free(dd, sizeof (dsl_dir_t)); 318 dmu_buf_rele(dbuf, tag); 319 return (err); 320 } 321 322 void 323 dsl_dir_rele(dsl_dir_t *dd, const void *tag) 324 { 325 dprintf_dd(dd, "%s\n", ""); 326 spa_close(dd->dd_pool->dp_spa, tag); 327 dmu_buf_rele(dd->dd_dbuf, tag); 328 } 329 330 /* 331 * Remove a reference to the given dsl dir that is being asynchronously 332 * released. Async releases occur from a taskq performing eviction of 333 * dsl datasets and dirs. This process is identical to a normal release 334 * with the exception of using the async API for releasing the reference on 335 * the spa. 336 */ 337 void 338 dsl_dir_async_rele(dsl_dir_t *dd, const void *tag) 339 { 340 dprintf_dd(dd, "%s\n", ""); 341 spa_async_close(dd->dd_pool->dp_spa, tag); 342 dmu_buf_rele(dd->dd_dbuf, tag); 343 } 344 345 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 346 void 347 dsl_dir_name(dsl_dir_t *dd, char *buf) 348 { 349 if (dd->dd_parent) { 350 dsl_dir_name(dd->dd_parent, buf); 351 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 352 ZFS_MAX_DATASET_NAME_LEN); 353 } else { 354 buf[0] = '\0'; 355 } 356 if (!MUTEX_HELD(&dd->dd_lock)) { 357 /* 358 * recursive mutex so that we can use 359 * dprintf_dd() with dd_lock held 360 */ 361 mutex_enter(&dd->dd_lock); 362 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 363 <, ZFS_MAX_DATASET_NAME_LEN); 364 mutex_exit(&dd->dd_lock); 365 } else { 366 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 367 <, ZFS_MAX_DATASET_NAME_LEN); 368 } 369 } 370 371 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 372 int 373 dsl_dir_namelen(dsl_dir_t *dd) 374 { 375 int result = 0; 376 377 if (dd->dd_parent) { 378 /* parent's name + 1 for the "/" */ 379 result = dsl_dir_namelen(dd->dd_parent) + 1; 380 } 381 382 if (!MUTEX_HELD(&dd->dd_lock)) { 383 /* see dsl_dir_name */ 384 mutex_enter(&dd->dd_lock); 385 result += strlen(dd->dd_myname); 386 mutex_exit(&dd->dd_lock); 387 } else { 388 result += strlen(dd->dd_myname); 389 } 390 391 return (result); 392 } 393 394 static int 395 getcomponent(const char *path, char *component, const char **nextp) 396 { 397 char *p; 398 399 if ((path == NULL) || (path[0] == '\0')) 400 return (SET_ERROR(ENOENT)); 401 /* This would be a good place to reserve some namespace... */ 402 p = strpbrk(path, "/@"); 403 if (p && (p[1] == '/' || p[1] == '@')) { 404 /* two separators in a row */ 405 return (SET_ERROR(EINVAL)); 406 } 407 if (p == NULL || p == path) { 408 /* 409 * if the first thing is an @ or /, it had better be an 410 * @ and it had better not have any more ats or slashes, 411 * and it had better have something after the @. 412 */ 413 if (p != NULL && 414 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 415 return (SET_ERROR(EINVAL)); 416 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 417 return (SET_ERROR(ENAMETOOLONG)); 418 (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN); 419 p = NULL; 420 } else if (p[0] == '/') { 421 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 422 return (SET_ERROR(ENAMETOOLONG)); 423 (void) strncpy(component, path, p - path); 424 component[p - path] = '\0'; 425 p++; 426 } else if (p[0] == '@') { 427 /* 428 * if the next separator is an @, there better not be 429 * any more slashes. 430 */ 431 if (strchr(path, '/')) 432 return (SET_ERROR(EINVAL)); 433 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 434 return (SET_ERROR(ENAMETOOLONG)); 435 (void) strncpy(component, path, p - path); 436 component[p - path] = '\0'; 437 } else { 438 panic("invalid p=%p", (void *)p); 439 } 440 *nextp = p; 441 return (0); 442 } 443 444 /* 445 * Return the dsl_dir_t, and possibly the last component which couldn't 446 * be found in *tail. The name must be in the specified dsl_pool_t. This 447 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 448 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 449 * (*tail)[0] == '@' means that the last component is a snapshot. 450 */ 451 int 452 dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag, 453 dsl_dir_t **ddp, const char **tailp) 454 { 455 char *buf; 456 const char *spaname, *next, *nextnext = NULL; 457 int err; 458 dsl_dir_t *dd; 459 uint64_t ddobj; 460 461 buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 462 err = getcomponent(name, buf, &next); 463 if (err != 0) 464 goto error; 465 466 /* Make sure the name is in the specified pool. */ 467 spaname = spa_name(dp->dp_spa); 468 if (strcmp(buf, spaname) != 0) { 469 err = SET_ERROR(EXDEV); 470 goto error; 471 } 472 473 ASSERT(dsl_pool_config_held(dp)); 474 475 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 476 if (err != 0) { 477 goto error; 478 } 479 480 while (next != NULL) { 481 dsl_dir_t *child_dd; 482 err = getcomponent(next, buf, &nextnext); 483 if (err != 0) 484 break; 485 ASSERT(next[0] != '\0'); 486 if (next[0] == '@') 487 break; 488 dprintf("looking up %s in obj%lld\n", 489 buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj); 490 491 err = zap_lookup(dp->dp_meta_objset, 492 dsl_dir_phys(dd)->dd_child_dir_zapobj, 493 buf, sizeof (ddobj), 1, &ddobj); 494 if (err != 0) { 495 if (err == ENOENT) 496 err = 0; 497 break; 498 } 499 500 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 501 if (err != 0) 502 break; 503 dsl_dir_rele(dd, tag); 504 dd = child_dd; 505 next = nextnext; 506 } 507 508 if (err != 0) { 509 dsl_dir_rele(dd, tag); 510 goto error; 511 } 512 513 /* 514 * It's an error if there's more than one component left, or 515 * tailp==NULL and there's any component left. 516 */ 517 if (next != NULL && 518 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 519 /* bad path name */ 520 dsl_dir_rele(dd, tag); 521 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 522 err = SET_ERROR(ENOENT); 523 } 524 if (tailp != NULL) 525 *tailp = next; 526 if (err == 0) 527 *ddp = dd; 528 error: 529 kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN); 530 return (err); 531 } 532 533 /* 534 * If the counts are already initialized for this filesystem and its 535 * descendants then do nothing, otherwise initialize the counts. 536 * 537 * The counts on this filesystem, and those below, may be uninitialized due to 538 * either the use of a pre-existing pool which did not support the 539 * filesystem/snapshot limit feature, or one in which the feature had not yet 540 * been enabled. 541 * 542 * Recursively descend the filesystem tree and update the filesystem/snapshot 543 * counts on each filesystem below, then update the cumulative count on the 544 * current filesystem. If the filesystem already has a count set on it, 545 * then we know that its counts, and the counts on the filesystems below it, 546 * are already correct, so we don't have to update this filesystem. 547 */ 548 static void 549 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 550 { 551 uint64_t my_fs_cnt = 0; 552 uint64_t my_ss_cnt = 0; 553 dsl_pool_t *dp = dd->dd_pool; 554 objset_t *os = dp->dp_meta_objset; 555 zap_cursor_t *zc; 556 zap_attribute_t *za; 557 dsl_dataset_t *ds; 558 559 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 560 ASSERT(dsl_pool_config_held(dp)); 561 ASSERT(dmu_tx_is_syncing(tx)); 562 563 dsl_dir_zapify(dd, tx); 564 565 /* 566 * If the filesystem count has already been initialized then we 567 * don't need to recurse down any further. 568 */ 569 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 570 return; 571 572 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 573 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 574 575 /* Iterate my child dirs */ 576 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 577 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 578 dsl_dir_t *chld_dd; 579 uint64_t count; 580 581 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 582 &chld_dd)); 583 584 /* 585 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets. 586 */ 587 if (chld_dd->dd_myname[0] == '$') { 588 dsl_dir_rele(chld_dd, FTAG); 589 continue; 590 } 591 592 my_fs_cnt++; /* count this child */ 593 594 dsl_dir_init_fs_ss_count(chld_dd, tx); 595 596 VERIFY0(zap_lookup(os, chld_dd->dd_object, 597 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 598 my_fs_cnt += count; 599 VERIFY0(zap_lookup(os, chld_dd->dd_object, 600 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 601 my_ss_cnt += count; 602 603 dsl_dir_rele(chld_dd, FTAG); 604 } 605 zap_cursor_fini(zc); 606 /* Count my snapshots (we counted children's snapshots above) */ 607 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 608 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 609 610 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 611 zap_cursor_retrieve(zc, za) == 0; 612 zap_cursor_advance(zc)) { 613 /* Don't count temporary snapshots */ 614 if (za->za_name[0] != '%') 615 my_ss_cnt++; 616 } 617 zap_cursor_fini(zc); 618 619 dsl_dataset_rele(ds, FTAG); 620 621 kmem_free(zc, sizeof (zap_cursor_t)); 622 kmem_free(za, sizeof (zap_attribute_t)); 623 624 /* we're in a sync task, update counts */ 625 dmu_buf_will_dirty(dd->dd_dbuf, tx); 626 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 627 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 628 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 629 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 630 } 631 632 static int 633 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 634 { 635 char *ddname = (char *)arg; 636 dsl_pool_t *dp = dmu_tx_pool(tx); 637 dsl_dataset_t *ds; 638 dsl_dir_t *dd; 639 int error; 640 641 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 642 if (error != 0) 643 return (error); 644 645 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 646 dsl_dataset_rele(ds, FTAG); 647 return (SET_ERROR(ENOTSUP)); 648 } 649 650 dd = ds->ds_dir; 651 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 652 dsl_dir_is_zapified(dd) && 653 zap_contains(dp->dp_meta_objset, dd->dd_object, 654 DD_FIELD_FILESYSTEM_COUNT) == 0) { 655 dsl_dataset_rele(ds, FTAG); 656 return (SET_ERROR(EALREADY)); 657 } 658 659 dsl_dataset_rele(ds, FTAG); 660 return (0); 661 } 662 663 static void 664 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 665 { 666 char *ddname = (char *)arg; 667 dsl_pool_t *dp = dmu_tx_pool(tx); 668 dsl_dataset_t *ds; 669 spa_t *spa; 670 671 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 672 673 spa = dsl_dataset_get_spa(ds); 674 675 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 676 /* 677 * Since the feature was not active and we're now setting a 678 * limit, increment the feature-active counter so that the 679 * feature becomes active for the first time. 680 * 681 * We are already in a sync task so we can update the MOS. 682 */ 683 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 684 } 685 686 /* 687 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 688 * we need to ensure the counts are correct. Descend down the tree from 689 * this point and update all of the counts to be accurate. 690 */ 691 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 692 693 dsl_dataset_rele(ds, FTAG); 694 } 695 696 /* 697 * Make sure the feature is enabled and activate it if necessary. 698 * Since we're setting a limit, ensure the on-disk counts are valid. 699 * This is only called by the ioctl path when setting a limit value. 700 * 701 * We do not need to validate the new limit, since users who can change the 702 * limit are also allowed to exceed the limit. 703 */ 704 int 705 dsl_dir_activate_fs_ss_limit(const char *ddname) 706 { 707 int error; 708 709 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 710 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 711 ZFS_SPACE_CHECK_RESERVED); 712 713 if (error == EALREADY) 714 error = 0; 715 716 return (error); 717 } 718 719 /* 720 * Used to determine if the filesystem_limit or snapshot_limit should be 721 * enforced. We allow the limit to be exceeded if the user has permission to 722 * write the property value. We pass in the creds that we got in the open 723 * context since we will always be the GZ root in syncing context. We also have 724 * to handle the case where we are allowed to change the limit on the current 725 * dataset, but there may be another limit in the tree above. 726 * 727 * We can never modify these two properties within a non-global zone. In 728 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 729 * can't use that function since we are already holding the dp_config_rwlock. 730 * In addition, we already have the dd and dealing with snapshots is simplified 731 * in this code. 732 */ 733 734 typedef enum { 735 ENFORCE_ALWAYS, 736 ENFORCE_NEVER, 737 ENFORCE_ABOVE 738 } enforce_res_t; 739 740 static enforce_res_t 741 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, 742 cred_t *cr, proc_t *proc) 743 { 744 enforce_res_t enforce = ENFORCE_ALWAYS; 745 uint64_t obj; 746 dsl_dataset_t *ds; 747 uint64_t zoned; 748 const char *zonedstr; 749 750 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 751 prop == ZFS_PROP_SNAPSHOT_LIMIT); 752 753 #ifdef _KERNEL 754 if (crgetzoneid(cr) != GLOBAL_ZONEID) 755 return (ENFORCE_ALWAYS); 756 757 /* 758 * We are checking the saved credentials of the user process, which is 759 * not the current process. Note that we can't use secpolicy_zfs(), 760 * because it only works if the cred is that of the current process (on 761 * Linux). 762 */ 763 if (secpolicy_zfs_proc(cr, proc) == 0) 764 return (ENFORCE_NEVER); 765 #else 766 (void) proc; 767 #endif 768 769 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 770 return (ENFORCE_ALWAYS); 771 772 ASSERT(dsl_pool_config_held(dd->dd_pool)); 773 774 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 775 return (ENFORCE_ALWAYS); 776 777 zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED); 778 if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) { 779 /* Only root can access zoned fs's from the GZ */ 780 enforce = ENFORCE_ALWAYS; 781 } else { 782 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 783 enforce = ENFORCE_ABOVE; 784 } 785 786 dsl_dataset_rele(ds, FTAG); 787 return (enforce); 788 } 789 790 /* 791 * Check if adding additional child filesystem(s) would exceed any filesystem 792 * limits or adding additional snapshot(s) would exceed any snapshot limits. 793 * The prop argument indicates which limit to check. 794 * 795 * Note that all filesystem limits up to the root (or the highest 796 * initialized) filesystem or the given ancestor must be satisfied. 797 */ 798 int 799 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 800 dsl_dir_t *ancestor, cred_t *cr, proc_t *proc) 801 { 802 objset_t *os = dd->dd_pool->dp_meta_objset; 803 uint64_t limit, count; 804 const char *count_prop; 805 enforce_res_t enforce; 806 int err = 0; 807 808 ASSERT(dsl_pool_config_held(dd->dd_pool)); 809 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 810 prop == ZFS_PROP_SNAPSHOT_LIMIT); 811 812 /* 813 * If we're allowed to change the limit, don't enforce the limit 814 * e.g. this can happen if a snapshot is taken by an administrative 815 * user in the global zone (i.e. a recursive snapshot by root). 816 * However, we must handle the case of delegated permissions where we 817 * are allowed to change the limit on the current dataset, but there 818 * is another limit in the tree above. 819 */ 820 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc); 821 if (enforce == ENFORCE_NEVER) 822 return (0); 823 824 /* 825 * e.g. if renaming a dataset with no snapshots, count adjustment 826 * is 0. 827 */ 828 if (delta == 0) 829 return (0); 830 831 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 832 /* 833 * We don't enforce the limit for temporary snapshots. This is 834 * indicated by a NULL cred_t argument. 835 */ 836 if (cr == NULL) 837 return (0); 838 839 count_prop = DD_FIELD_SNAPSHOT_COUNT; 840 } else { 841 count_prop = DD_FIELD_FILESYSTEM_COUNT; 842 } 843 844 /* 845 * If an ancestor has been provided, stop checking the limit once we 846 * hit that dir. We need this during rename so that we don't overcount 847 * the check once we recurse up to the common ancestor. 848 */ 849 if (ancestor == dd) 850 return (0); 851 852 /* 853 * If we hit an uninitialized node while recursing up the tree, we can 854 * stop since we know there is no limit here (or above). The counts are 855 * not valid on this node and we know we won't touch this node's counts. 856 */ 857 if (!dsl_dir_is_zapified(dd)) 858 return (0); 859 err = zap_lookup(os, dd->dd_object, 860 count_prop, sizeof (count), 1, &count); 861 if (err == ENOENT) 862 return (0); 863 if (err != 0) 864 return (err); 865 866 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 867 B_FALSE); 868 if (err != 0) 869 return (err); 870 871 /* Is there a limit which we've hit? */ 872 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 873 return (SET_ERROR(EDQUOT)); 874 875 if (dd->dd_parent != NULL) 876 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 877 ancestor, cr, proc); 878 879 return (err); 880 } 881 882 /* 883 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 884 * parents. When a new filesystem/snapshot is created, increment the count on 885 * all parents, and when a filesystem/snapshot is destroyed, decrement the 886 * count. 887 */ 888 void 889 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 890 dmu_tx_t *tx) 891 { 892 int err; 893 objset_t *os = dd->dd_pool->dp_meta_objset; 894 uint64_t count; 895 896 ASSERT(dsl_pool_config_held(dd->dd_pool)); 897 ASSERT(dmu_tx_is_syncing(tx)); 898 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 899 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 900 901 /* 902 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets. 903 */ 904 if (dd->dd_myname[0] == '$' && strcmp(prop, 905 DD_FIELD_FILESYSTEM_COUNT) == 0) { 906 return; 907 } 908 909 /* 910 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 911 */ 912 if (delta == 0) 913 return; 914 915 /* 916 * If we hit an uninitialized node while recursing up the tree, we can 917 * stop since we know the counts are not valid on this node and we 918 * know we shouldn't touch this node's counts. An uninitialized count 919 * on the node indicates that either the feature has not yet been 920 * activated or there are no limits on this part of the tree. 921 */ 922 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 923 prop, sizeof (count), 1, &count)) == ENOENT) 924 return; 925 VERIFY0(err); 926 927 count += delta; 928 /* Use a signed verify to make sure we're not neg. */ 929 VERIFY3S(count, >=, 0); 930 931 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 932 tx)); 933 934 /* Roll up this additional count into our ancestors */ 935 if (dd->dd_parent != NULL) 936 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 937 } 938 939 uint64_t 940 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 941 dmu_tx_t *tx) 942 { 943 objset_t *mos = dp->dp_meta_objset; 944 uint64_t ddobj; 945 dsl_dir_phys_t *ddphys; 946 dmu_buf_t *dbuf; 947 948 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 949 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 950 if (pds) { 951 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 952 name, sizeof (uint64_t), 1, &ddobj, tx)); 953 } else { 954 /* it's the root dir */ 955 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 956 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 957 } 958 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 959 dmu_buf_will_dirty(dbuf, tx); 960 ddphys = dbuf->db_data; 961 962 ddphys->dd_creation_time = gethrestime_sec(); 963 if (pds) { 964 ddphys->dd_parent_obj = pds->dd_object; 965 966 /* update the filesystem counts */ 967 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 968 } 969 ddphys->dd_props_zapobj = zap_create(mos, 970 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 971 ddphys->dd_child_dir_zapobj = zap_create(mos, 972 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 973 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 974 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 975 976 dmu_buf_rele(dbuf, FTAG); 977 978 return (ddobj); 979 } 980 981 boolean_t 982 dsl_dir_is_clone(dsl_dir_t *dd) 983 { 984 return (dsl_dir_phys(dd)->dd_origin_obj && 985 (dd->dd_pool->dp_origin_snap == NULL || 986 dsl_dir_phys(dd)->dd_origin_obj != 987 dd->dd_pool->dp_origin_snap->ds_object)); 988 } 989 990 uint64_t 991 dsl_dir_get_used(dsl_dir_t *dd) 992 { 993 return (dsl_dir_phys(dd)->dd_used_bytes); 994 } 995 996 uint64_t 997 dsl_dir_get_compressed(dsl_dir_t *dd) 998 { 999 return (dsl_dir_phys(dd)->dd_compressed_bytes); 1000 } 1001 1002 uint64_t 1003 dsl_dir_get_quota(dsl_dir_t *dd) 1004 { 1005 return (dsl_dir_phys(dd)->dd_quota); 1006 } 1007 1008 uint64_t 1009 dsl_dir_get_reservation(dsl_dir_t *dd) 1010 { 1011 return (dsl_dir_phys(dd)->dd_reserved); 1012 } 1013 1014 uint64_t 1015 dsl_dir_get_compressratio(dsl_dir_t *dd) 1016 { 1017 /* a fixed point number, 100x the ratio */ 1018 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 1019 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 1020 dsl_dir_phys(dd)->dd_compressed_bytes)); 1021 } 1022 1023 uint64_t 1024 dsl_dir_get_logicalused(dsl_dir_t *dd) 1025 { 1026 return (dsl_dir_phys(dd)->dd_uncompressed_bytes); 1027 } 1028 1029 uint64_t 1030 dsl_dir_get_usedsnap(dsl_dir_t *dd) 1031 { 1032 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 1033 } 1034 1035 uint64_t 1036 dsl_dir_get_usedds(dsl_dir_t *dd) 1037 { 1038 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 1039 } 1040 1041 uint64_t 1042 dsl_dir_get_usedrefreserv(dsl_dir_t *dd) 1043 { 1044 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 1045 } 1046 1047 uint64_t 1048 dsl_dir_get_usedchild(dsl_dir_t *dd) 1049 { 1050 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 1051 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 1052 } 1053 1054 void 1055 dsl_dir_get_origin(dsl_dir_t *dd, char *buf) 1056 { 1057 dsl_dataset_t *ds; 1058 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 1059 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 1060 1061 dsl_dataset_name(ds, buf); 1062 1063 dsl_dataset_rele(ds, FTAG); 1064 } 1065 1066 int 1067 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count) 1068 { 1069 if (dsl_dir_is_zapified(dd)) { 1070 objset_t *os = dd->dd_pool->dp_meta_objset; 1071 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 1072 sizeof (*count), 1, count)); 1073 } else { 1074 return (SET_ERROR(ENOENT)); 1075 } 1076 } 1077 1078 int 1079 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count) 1080 { 1081 if (dsl_dir_is_zapified(dd)) { 1082 objset_t *os = dd->dd_pool->dp_meta_objset; 1083 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 1084 sizeof (*count), 1, count)); 1085 } else { 1086 return (SET_ERROR(ENOENT)); 1087 } 1088 } 1089 1090 void 1091 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 1092 { 1093 mutex_enter(&dd->dd_lock); 1094 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 1095 dsl_dir_get_quota(dd)); 1096 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 1097 dsl_dir_get_reservation(dd)); 1098 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 1099 dsl_dir_get_logicalused(dd)); 1100 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1101 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 1102 dsl_dir_get_usedsnap(dd)); 1103 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 1104 dsl_dir_get_usedds(dd)); 1105 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 1106 dsl_dir_get_usedrefreserv(dd)); 1107 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 1108 dsl_dir_get_usedchild(dd)); 1109 } 1110 mutex_exit(&dd->dd_lock); 1111 1112 uint64_t count; 1113 if (dsl_dir_get_filesystem_count(dd, &count) == 0) { 1114 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT, 1115 count); 1116 } 1117 if (dsl_dir_get_snapshot_count(dd, &count) == 0) { 1118 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT, 1119 count); 1120 } 1121 1122 if (dsl_dir_is_clone(dd)) { 1123 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1124 dsl_dir_get_origin(dd, buf); 1125 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 1126 } 1127 1128 } 1129 1130 void 1131 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 1132 { 1133 dsl_pool_t *dp = dd->dd_pool; 1134 1135 ASSERT(dsl_dir_phys(dd)); 1136 1137 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 1138 /* up the hold count until we can be written out */ 1139 dmu_buf_add_ref(dd->dd_dbuf, dd); 1140 } 1141 } 1142 1143 static int64_t 1144 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1145 { 1146 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1147 uint64_t new_accounted = 1148 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1149 return (new_accounted - old_accounted); 1150 } 1151 1152 void 1153 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1154 { 1155 ASSERT(dmu_tx_is_syncing(tx)); 1156 1157 mutex_enter(&dd->dd_lock); 1158 ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]); 1159 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg, 1160 (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024); 1161 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0; 1162 mutex_exit(&dd->dd_lock); 1163 1164 /* release the hold from dsl_dir_dirty */ 1165 dmu_buf_rele(dd->dd_dbuf, dd); 1166 } 1167 1168 static uint64_t 1169 dsl_dir_space_towrite(dsl_dir_t *dd) 1170 { 1171 uint64_t space = 0; 1172 1173 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1174 1175 for (int i = 0; i < TXG_SIZE; i++) { 1176 space += dd->dd_space_towrite[i & TXG_MASK]; 1177 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0); 1178 } 1179 return (space); 1180 } 1181 1182 /* 1183 * How much space would dd have available if ancestor had delta applied 1184 * to it? If ondiskonly is set, we're only interested in what's 1185 * on-disk, not estimated pending changes. 1186 */ 1187 uint64_t 1188 dsl_dir_space_available(dsl_dir_t *dd, 1189 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1190 { 1191 uint64_t parentspace, myspace, quota, used; 1192 1193 /* 1194 * If there are no restrictions otherwise, assume we have 1195 * unlimited space available. 1196 */ 1197 quota = UINT64_MAX; 1198 parentspace = UINT64_MAX; 1199 1200 if (dd->dd_parent != NULL) { 1201 parentspace = dsl_dir_space_available(dd->dd_parent, 1202 ancestor, delta, ondiskonly); 1203 } 1204 1205 mutex_enter(&dd->dd_lock); 1206 if (dsl_dir_phys(dd)->dd_quota != 0) 1207 quota = dsl_dir_phys(dd)->dd_quota; 1208 used = dsl_dir_phys(dd)->dd_used_bytes; 1209 if (!ondiskonly) 1210 used += dsl_dir_space_towrite(dd); 1211 1212 if (dd->dd_parent == NULL) { 1213 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, 1214 ZFS_SPACE_CHECK_NORMAL); 1215 quota = MIN(quota, poolsize); 1216 } 1217 1218 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1219 /* 1220 * We have some space reserved, in addition to what our 1221 * parent gave us. 1222 */ 1223 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1224 } 1225 1226 if (dd == ancestor) { 1227 ASSERT(delta <= 0); 1228 ASSERT(used >= -delta); 1229 used += delta; 1230 if (parentspace != UINT64_MAX) 1231 parentspace -= delta; 1232 } 1233 1234 if (used > quota) { 1235 /* over quota */ 1236 myspace = 0; 1237 } else { 1238 /* 1239 * the lesser of the space provided by our parent and 1240 * the space left in our quota 1241 */ 1242 myspace = MIN(parentspace, quota - used); 1243 } 1244 1245 mutex_exit(&dd->dd_lock); 1246 1247 return (myspace); 1248 } 1249 1250 struct tempreserve { 1251 list_node_t tr_node; 1252 dsl_dir_t *tr_ds; 1253 uint64_t tr_size; 1254 }; 1255 1256 static int 1257 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1258 boolean_t ignorequota, list_t *tr_list, 1259 dmu_tx_t *tx, boolean_t first) 1260 { 1261 uint64_t txg; 1262 uint64_t quota; 1263 struct tempreserve *tr; 1264 int retval; 1265 uint64_t ref_rsrv; 1266 1267 top_of_function: 1268 txg = tx->tx_txg; 1269 retval = EDQUOT; 1270 ref_rsrv = 0; 1271 1272 ASSERT3U(txg, !=, 0); 1273 ASSERT3S(asize, >, 0); 1274 1275 mutex_enter(&dd->dd_lock); 1276 1277 /* 1278 * Check against the dsl_dir's quota. We don't add in the delta 1279 * when checking for over-quota because they get one free hit. 1280 */ 1281 uint64_t est_inflight = dsl_dir_space_towrite(dd); 1282 for (int i = 0; i < TXG_SIZE; i++) 1283 est_inflight += dd->dd_tempreserved[i]; 1284 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1285 1286 /* 1287 * On the first iteration, fetch the dataset's used-on-disk and 1288 * refreservation values. Also, if checkrefquota is set, test if 1289 * allocating this space would exceed the dataset's refquota. 1290 */ 1291 if (first && tx->tx_objset) { 1292 int error; 1293 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1294 1295 error = dsl_dataset_check_quota(ds, !netfree, 1296 asize, est_inflight, &used_on_disk, &ref_rsrv); 1297 if (error != 0) { 1298 mutex_exit(&dd->dd_lock); 1299 DMU_TX_STAT_BUMP(dmu_tx_quota); 1300 return (error); 1301 } 1302 } 1303 1304 /* 1305 * If this transaction will result in a net free of space, 1306 * we want to let it through. 1307 */ 1308 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1309 quota = UINT64_MAX; 1310 else 1311 quota = dsl_dir_phys(dd)->dd_quota; 1312 1313 /* 1314 * Adjust the quota against the actual pool size at the root 1315 * minus any outstanding deferred frees. 1316 * To ensure that it's possible to remove files from a full 1317 * pool without inducing transient overcommits, we throttle 1318 * netfree transactions against a quota that is slightly larger, 1319 * but still within the pool's allocation slop. In cases where 1320 * we're very close to full, this will allow a steady trickle of 1321 * removes to get through. 1322 */ 1323 if (dd->dd_parent == NULL) { 1324 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool, 1325 (netfree) ? 1326 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL); 1327 1328 if (avail < quota) { 1329 quota = avail; 1330 retval = SET_ERROR(ENOSPC); 1331 } 1332 } 1333 1334 /* 1335 * If they are requesting more space, and our current estimate 1336 * is over quota, they get to try again unless the actual 1337 * on-disk is over quota and there are no pending changes 1338 * or deferred frees (which may free up space for us). 1339 */ 1340 if (used_on_disk + est_inflight >= quota) { 1341 if (est_inflight > 0 || used_on_disk < quota) { 1342 retval = SET_ERROR(ERESTART); 1343 } else { 1344 ASSERT3U(used_on_disk, >=, quota); 1345 1346 if (retval == ENOSPC && (used_on_disk - quota) < 1347 dsl_pool_deferred_space(dd->dd_pool)) { 1348 retval = SET_ERROR(ERESTART); 1349 } 1350 } 1351 1352 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1353 "quota=%lluK tr=%lluK err=%d\n", 1354 (u_longlong_t)used_on_disk>>10, 1355 (u_longlong_t)est_inflight>>10, 1356 (u_longlong_t)quota>>10, (u_longlong_t)asize>>10, retval); 1357 mutex_exit(&dd->dd_lock); 1358 DMU_TX_STAT_BUMP(dmu_tx_quota); 1359 return (retval); 1360 } 1361 1362 /* We need to up our estimated delta before dropping dd_lock */ 1363 dd->dd_tempreserved[txg & TXG_MASK] += asize; 1364 1365 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1366 asize - ref_rsrv); 1367 mutex_exit(&dd->dd_lock); 1368 1369 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1370 tr->tr_ds = dd; 1371 tr->tr_size = asize; 1372 list_insert_tail(tr_list, tr); 1373 1374 /* see if it's OK with our parent */ 1375 if (dd->dd_parent != NULL && parent_rsrv != 0) { 1376 /* 1377 * Recurse on our parent without recursion. This has been 1378 * observed to be potentially large stack usage even within 1379 * the test suite. Largest seen stack was 7632 bytes on linux. 1380 */ 1381 1382 dd = dd->dd_parent; 1383 asize = parent_rsrv; 1384 ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1385 first = B_FALSE; 1386 goto top_of_function; 1387 1388 } else { 1389 return (0); 1390 } 1391 } 1392 1393 /* 1394 * Reserve space in this dsl_dir, to be used in this tx's txg. 1395 * After the space has been dirtied (and dsl_dir_willuse_space() 1396 * has been called), the reservation should be canceled, using 1397 * dsl_dir_tempreserve_clear(). 1398 */ 1399 int 1400 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1401 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx) 1402 { 1403 int err; 1404 list_t *tr_list; 1405 1406 if (asize == 0) { 1407 *tr_cookiep = NULL; 1408 return (0); 1409 } 1410 1411 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1412 list_create(tr_list, sizeof (struct tempreserve), 1413 offsetof(struct tempreserve, tr_node)); 1414 ASSERT3S(asize, >, 0); 1415 1416 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg); 1417 if (err == 0) { 1418 struct tempreserve *tr; 1419 1420 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1421 tr->tr_size = lsize; 1422 list_insert_tail(tr_list, tr); 1423 } else { 1424 if (err == EAGAIN) { 1425 /* 1426 * If arc_memory_throttle() detected that pageout 1427 * is running and we are low on memory, we delay new 1428 * non-pageout transactions to give pageout an 1429 * advantage. 1430 * 1431 * It is unfortunate to be delaying while the caller's 1432 * locks are held. 1433 */ 1434 txg_delay(dd->dd_pool, tx->tx_txg, 1435 MSEC2NSEC(10), MSEC2NSEC(10)); 1436 err = SET_ERROR(ERESTART); 1437 } 1438 } 1439 1440 if (err == 0) { 1441 err = dsl_dir_tempreserve_impl(dd, asize, netfree, 1442 B_FALSE, tr_list, tx, B_TRUE); 1443 } 1444 1445 if (err != 0) 1446 dsl_dir_tempreserve_clear(tr_list, tx); 1447 else 1448 *tr_cookiep = tr_list; 1449 1450 return (err); 1451 } 1452 1453 /* 1454 * Clear a temporary reservation that we previously made with 1455 * dsl_dir_tempreserve_space(). 1456 */ 1457 void 1458 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1459 { 1460 int txgidx = tx->tx_txg & TXG_MASK; 1461 list_t *tr_list = tr_cookie; 1462 struct tempreserve *tr; 1463 1464 ASSERT3U(tx->tx_txg, !=, 0); 1465 1466 if (tr_cookie == NULL) 1467 return; 1468 1469 while ((tr = list_head(tr_list)) != NULL) { 1470 if (tr->tr_ds) { 1471 mutex_enter(&tr->tr_ds->dd_lock); 1472 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1473 tr->tr_size); 1474 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1475 mutex_exit(&tr->tr_ds->dd_lock); 1476 } else { 1477 arc_tempreserve_clear(tr->tr_size); 1478 } 1479 list_remove(tr_list, tr); 1480 kmem_free(tr, sizeof (struct tempreserve)); 1481 } 1482 1483 kmem_free(tr_list, sizeof (list_t)); 1484 } 1485 1486 /* 1487 * This should be called from open context when we think we're going to write 1488 * or free space, for example when dirtying data. Be conservative; it's okay 1489 * to write less space or free more, but we don't want to write more or free 1490 * less than the amount specified. 1491 * 1492 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD 1493 * version however it has been adjusted to use an iterative rather than 1494 * recursive algorithm to minimize stack usage. 1495 */ 1496 void 1497 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1498 { 1499 int64_t parent_space; 1500 uint64_t est_used; 1501 1502 do { 1503 mutex_enter(&dd->dd_lock); 1504 if (space > 0) 1505 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1506 1507 est_used = dsl_dir_space_towrite(dd) + 1508 dsl_dir_phys(dd)->dd_used_bytes; 1509 parent_space = parent_delta(dd, est_used, space); 1510 mutex_exit(&dd->dd_lock); 1511 1512 /* Make sure that we clean up dd_space_to* */ 1513 dsl_dir_dirty(dd, tx); 1514 1515 dd = dd->dd_parent; 1516 space = parent_space; 1517 } while (space && dd); 1518 } 1519 1520 /* call from syncing context when we actually write/free space for this dd */ 1521 void 1522 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1523 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1524 { 1525 int64_t accounted_delta; 1526 1527 ASSERT(dmu_tx_is_syncing(tx)); 1528 ASSERT(type < DD_USED_NUM); 1529 1530 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1531 1532 /* 1533 * dsl_dataset_set_refreservation_sync_impl() calls this with 1534 * dd_lock held, so that it can atomically update 1535 * ds->ds_reserved and the dsl_dir accounting, so that 1536 * dsl_dataset_check_quota() can see dataset and dir accounting 1537 * consistently. 1538 */ 1539 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1540 if (needlock) 1541 mutex_enter(&dd->dd_lock); 1542 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1543 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used); 1544 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used); 1545 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed); 1546 ASSERT(uncompressed >= 0 || 1547 ddp->dd_uncompressed_bytes >= -uncompressed); 1548 ddp->dd_used_bytes += used; 1549 ddp->dd_uncompressed_bytes += uncompressed; 1550 ddp->dd_compressed_bytes += compressed; 1551 1552 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1553 ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used); 1554 ddp->dd_used_breakdown[type] += used; 1555 #ifdef ZFS_DEBUG 1556 { 1557 dd_used_t t; 1558 uint64_t u = 0; 1559 for (t = 0; t < DD_USED_NUM; t++) 1560 u += ddp->dd_used_breakdown[t]; 1561 ASSERT3U(u, ==, ddp->dd_used_bytes); 1562 } 1563 #endif 1564 } 1565 if (needlock) 1566 mutex_exit(&dd->dd_lock); 1567 1568 if (dd->dd_parent != NULL) { 1569 dsl_dir_diduse_transfer_space(dd->dd_parent, 1570 accounted_delta, compressed, uncompressed, 1571 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1572 } 1573 } 1574 1575 void 1576 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1577 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1578 { 1579 ASSERT(dmu_tx_is_syncing(tx)); 1580 ASSERT(oldtype < DD_USED_NUM); 1581 ASSERT(newtype < DD_USED_NUM); 1582 1583 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1584 if (delta == 0 || 1585 !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1586 return; 1587 1588 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1589 mutex_enter(&dd->dd_lock); 1590 ASSERT(delta > 0 ? 1591 ddp->dd_used_breakdown[oldtype] >= delta : 1592 ddp->dd_used_breakdown[newtype] >= -delta); 1593 ASSERT(ddp->dd_used_bytes >= ABS(delta)); 1594 ddp->dd_used_breakdown[oldtype] -= delta; 1595 ddp->dd_used_breakdown[newtype] += delta; 1596 mutex_exit(&dd->dd_lock); 1597 } 1598 1599 void 1600 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used, 1601 int64_t compressed, int64_t uncompressed, int64_t tonew, 1602 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1603 { 1604 int64_t accounted_delta; 1605 1606 ASSERT(dmu_tx_is_syncing(tx)); 1607 ASSERT(oldtype < DD_USED_NUM); 1608 ASSERT(newtype < DD_USED_NUM); 1609 1610 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1611 1612 mutex_enter(&dd->dd_lock); 1613 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1614 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used); 1615 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used); 1616 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed); 1617 ASSERT(uncompressed >= 0 || 1618 ddp->dd_uncompressed_bytes >= -uncompressed); 1619 ddp->dd_used_bytes += used; 1620 ddp->dd_uncompressed_bytes += uncompressed; 1621 ddp->dd_compressed_bytes += compressed; 1622 1623 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1624 ASSERT(tonew - used <= 0 || 1625 ddp->dd_used_breakdown[oldtype] >= tonew - used); 1626 ASSERT(tonew >= 0 || 1627 ddp->dd_used_breakdown[newtype] >= -tonew); 1628 ddp->dd_used_breakdown[oldtype] -= tonew - used; 1629 ddp->dd_used_breakdown[newtype] += tonew; 1630 #ifdef ZFS_DEBUG 1631 { 1632 dd_used_t t; 1633 uint64_t u = 0; 1634 for (t = 0; t < DD_USED_NUM; t++) 1635 u += ddp->dd_used_breakdown[t]; 1636 ASSERT3U(u, ==, ddp->dd_used_bytes); 1637 } 1638 #endif 1639 } 1640 mutex_exit(&dd->dd_lock); 1641 1642 if (dd->dd_parent != NULL) { 1643 dsl_dir_diduse_transfer_space(dd->dd_parent, 1644 accounted_delta, compressed, uncompressed, 1645 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1646 } 1647 } 1648 1649 typedef struct dsl_dir_set_qr_arg { 1650 const char *ddsqra_name; 1651 zprop_source_t ddsqra_source; 1652 uint64_t ddsqra_value; 1653 } dsl_dir_set_qr_arg_t; 1654 1655 static int 1656 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1657 { 1658 dsl_dir_set_qr_arg_t *ddsqra = arg; 1659 dsl_pool_t *dp = dmu_tx_pool(tx); 1660 dsl_dataset_t *ds; 1661 int error; 1662 uint64_t towrite, newval; 1663 1664 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1665 if (error != 0) 1666 return (error); 1667 1668 error = dsl_prop_predict(ds->ds_dir, "quota", 1669 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1670 if (error != 0) { 1671 dsl_dataset_rele(ds, FTAG); 1672 return (error); 1673 } 1674 1675 if (newval == 0) { 1676 dsl_dataset_rele(ds, FTAG); 1677 return (0); 1678 } 1679 1680 mutex_enter(&ds->ds_dir->dd_lock); 1681 /* 1682 * If we are doing the preliminary check in open context, and 1683 * there are pending changes, then don't fail it, since the 1684 * pending changes could under-estimate the amount of space to be 1685 * freed up. 1686 */ 1687 towrite = dsl_dir_space_towrite(ds->ds_dir); 1688 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1689 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1690 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1691 error = SET_ERROR(ENOSPC); 1692 } 1693 mutex_exit(&ds->ds_dir->dd_lock); 1694 dsl_dataset_rele(ds, FTAG); 1695 return (error); 1696 } 1697 1698 static void 1699 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1700 { 1701 dsl_dir_set_qr_arg_t *ddsqra = arg; 1702 dsl_pool_t *dp = dmu_tx_pool(tx); 1703 dsl_dataset_t *ds; 1704 uint64_t newval; 1705 1706 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1707 1708 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1709 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1710 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1711 &ddsqra->ddsqra_value, tx); 1712 1713 VERIFY0(dsl_prop_get_int_ds(ds, 1714 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1715 } else { 1716 newval = ddsqra->ddsqra_value; 1717 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1718 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1719 } 1720 1721 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1722 mutex_enter(&ds->ds_dir->dd_lock); 1723 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1724 mutex_exit(&ds->ds_dir->dd_lock); 1725 dsl_dataset_rele(ds, FTAG); 1726 } 1727 1728 int 1729 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1730 { 1731 dsl_dir_set_qr_arg_t ddsqra; 1732 1733 ddsqra.ddsqra_name = ddname; 1734 ddsqra.ddsqra_source = source; 1735 ddsqra.ddsqra_value = quota; 1736 1737 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1738 dsl_dir_set_quota_sync, &ddsqra, 0, 1739 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1740 } 1741 1742 static int 1743 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1744 { 1745 dsl_dir_set_qr_arg_t *ddsqra = arg; 1746 dsl_pool_t *dp = dmu_tx_pool(tx); 1747 dsl_dataset_t *ds; 1748 dsl_dir_t *dd; 1749 uint64_t newval, used, avail; 1750 int error; 1751 1752 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1753 if (error != 0) 1754 return (error); 1755 dd = ds->ds_dir; 1756 1757 /* 1758 * If we are doing the preliminary check in open context, the 1759 * space estimates may be inaccurate. 1760 */ 1761 if (!dmu_tx_is_syncing(tx)) { 1762 dsl_dataset_rele(ds, FTAG); 1763 return (0); 1764 } 1765 1766 error = dsl_prop_predict(ds->ds_dir, 1767 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1768 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1769 if (error != 0) { 1770 dsl_dataset_rele(ds, FTAG); 1771 return (error); 1772 } 1773 1774 mutex_enter(&dd->dd_lock); 1775 used = dsl_dir_phys(dd)->dd_used_bytes; 1776 mutex_exit(&dd->dd_lock); 1777 1778 if (dd->dd_parent) { 1779 avail = dsl_dir_space_available(dd->dd_parent, 1780 NULL, 0, FALSE); 1781 } else { 1782 avail = dsl_pool_adjustedsize(dd->dd_pool, 1783 ZFS_SPACE_CHECK_NORMAL) - used; 1784 } 1785 1786 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1787 uint64_t delta = MAX(used, newval) - 1788 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1789 1790 if (delta > avail || 1791 (dsl_dir_phys(dd)->dd_quota > 0 && 1792 newval > dsl_dir_phys(dd)->dd_quota)) 1793 error = SET_ERROR(ENOSPC); 1794 } 1795 1796 dsl_dataset_rele(ds, FTAG); 1797 return (error); 1798 } 1799 1800 void 1801 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1802 { 1803 uint64_t used; 1804 int64_t delta; 1805 1806 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1807 1808 mutex_enter(&dd->dd_lock); 1809 used = dsl_dir_phys(dd)->dd_used_bytes; 1810 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1811 dsl_dir_phys(dd)->dd_reserved = value; 1812 1813 if (dd->dd_parent != NULL) { 1814 /* Roll up this additional usage into our ancestors */ 1815 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1816 delta, 0, 0, tx); 1817 } 1818 mutex_exit(&dd->dd_lock); 1819 } 1820 1821 static void 1822 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1823 { 1824 dsl_dir_set_qr_arg_t *ddsqra = arg; 1825 dsl_pool_t *dp = dmu_tx_pool(tx); 1826 dsl_dataset_t *ds; 1827 uint64_t newval; 1828 1829 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1830 1831 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1832 dsl_prop_set_sync_impl(ds, 1833 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1834 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1835 &ddsqra->ddsqra_value, tx); 1836 1837 VERIFY0(dsl_prop_get_int_ds(ds, 1838 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1839 } else { 1840 newval = ddsqra->ddsqra_value; 1841 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1842 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1843 (longlong_t)newval); 1844 } 1845 1846 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1847 dsl_dataset_rele(ds, FTAG); 1848 } 1849 1850 int 1851 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1852 uint64_t reservation) 1853 { 1854 dsl_dir_set_qr_arg_t ddsqra; 1855 1856 ddsqra.ddsqra_name = ddname; 1857 ddsqra.ddsqra_source = source; 1858 ddsqra.ddsqra_value = reservation; 1859 1860 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1861 dsl_dir_set_reservation_sync, &ddsqra, 0, 1862 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1863 } 1864 1865 static dsl_dir_t * 1866 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1867 { 1868 for (; ds1; ds1 = ds1->dd_parent) { 1869 dsl_dir_t *dd; 1870 for (dd = ds2; dd; dd = dd->dd_parent) { 1871 if (ds1 == dd) 1872 return (dd); 1873 } 1874 } 1875 return (NULL); 1876 } 1877 1878 /* 1879 * If delta is applied to dd, how much of that delta would be applied to 1880 * ancestor? Syncing context only. 1881 */ 1882 static int64_t 1883 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1884 { 1885 if (dd == ancestor) 1886 return (delta); 1887 1888 mutex_enter(&dd->dd_lock); 1889 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1890 mutex_exit(&dd->dd_lock); 1891 return (would_change(dd->dd_parent, delta, ancestor)); 1892 } 1893 1894 typedef struct dsl_dir_rename_arg { 1895 const char *ddra_oldname; 1896 const char *ddra_newname; 1897 cred_t *ddra_cred; 1898 proc_t *ddra_proc; 1899 } dsl_dir_rename_arg_t; 1900 1901 typedef struct dsl_valid_rename_arg { 1902 int char_delta; 1903 int nest_delta; 1904 } dsl_valid_rename_arg_t; 1905 1906 static int 1907 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1908 { 1909 (void) dp; 1910 dsl_valid_rename_arg_t *dvra = arg; 1911 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1912 1913 dsl_dataset_name(ds, namebuf); 1914 1915 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN), 1916 <, ZFS_MAX_DATASET_NAME_LEN); 1917 int namelen = strlen(namebuf) + dvra->char_delta; 1918 int depth = get_dataset_depth(namebuf) + dvra->nest_delta; 1919 1920 if (namelen >= ZFS_MAX_DATASET_NAME_LEN) 1921 return (SET_ERROR(ENAMETOOLONG)); 1922 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting) 1923 return (SET_ERROR(ENAMETOOLONG)); 1924 return (0); 1925 } 1926 1927 static int 1928 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1929 { 1930 dsl_dir_rename_arg_t *ddra = arg; 1931 dsl_pool_t *dp = dmu_tx_pool(tx); 1932 dsl_dir_t *dd, *newparent; 1933 dsl_valid_rename_arg_t dvra; 1934 dsl_dataset_t *parentds; 1935 objset_t *parentos; 1936 const char *mynewname; 1937 int error; 1938 1939 /* target dir should exist */ 1940 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1941 if (error != 0) 1942 return (error); 1943 1944 /* new parent should exist */ 1945 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1946 &newparent, &mynewname); 1947 if (error != 0) { 1948 dsl_dir_rele(dd, FTAG); 1949 return (error); 1950 } 1951 1952 /* can't rename to different pool */ 1953 if (dd->dd_pool != newparent->dd_pool) { 1954 dsl_dir_rele(newparent, FTAG); 1955 dsl_dir_rele(dd, FTAG); 1956 return (SET_ERROR(EXDEV)); 1957 } 1958 1959 /* new name should not already exist */ 1960 if (mynewname == NULL) { 1961 dsl_dir_rele(newparent, FTAG); 1962 dsl_dir_rele(dd, FTAG); 1963 return (SET_ERROR(EEXIST)); 1964 } 1965 1966 /* can't rename below anything but filesystems (eg. no ZVOLs) */ 1967 error = dsl_dataset_hold_obj(newparent->dd_pool, 1968 dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds); 1969 if (error != 0) { 1970 dsl_dir_rele(newparent, FTAG); 1971 dsl_dir_rele(dd, FTAG); 1972 return (error); 1973 } 1974 error = dmu_objset_from_ds(parentds, &parentos); 1975 if (error != 0) { 1976 dsl_dataset_rele(parentds, FTAG); 1977 dsl_dir_rele(newparent, FTAG); 1978 dsl_dir_rele(dd, FTAG); 1979 return (error); 1980 } 1981 if (dmu_objset_type(parentos) != DMU_OST_ZFS) { 1982 dsl_dataset_rele(parentds, FTAG); 1983 dsl_dir_rele(newparent, FTAG); 1984 dsl_dir_rele(dd, FTAG); 1985 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 1986 } 1987 dsl_dataset_rele(parentds, FTAG); 1988 1989 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN), 1990 <, ZFS_MAX_DATASET_NAME_LEN); 1991 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN), 1992 <, ZFS_MAX_DATASET_NAME_LEN); 1993 dvra.char_delta = strlen(ddra->ddra_newname) 1994 - strlen(ddra->ddra_oldname); 1995 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname) 1996 - get_dataset_depth(ddra->ddra_oldname); 1997 1998 /* if the name length is growing, validate child name lengths */ 1999 if (dvra.char_delta > 0 || dvra.nest_delta > 0) { 2000 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 2001 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 2002 if (error != 0) { 2003 dsl_dir_rele(newparent, FTAG); 2004 dsl_dir_rele(dd, FTAG); 2005 return (error); 2006 } 2007 } 2008 2009 if (dmu_tx_is_syncing(tx)) { 2010 if (spa_feature_is_active(dp->dp_spa, 2011 SPA_FEATURE_FS_SS_LIMIT)) { 2012 /* 2013 * Although this is the check function and we don't 2014 * normally make on-disk changes in check functions, 2015 * we need to do that here. 2016 * 2017 * Ensure this portion of the tree's counts have been 2018 * initialized in case the new parent has limits set. 2019 */ 2020 dsl_dir_init_fs_ss_count(dd, tx); 2021 } 2022 } 2023 2024 if (newparent != dd->dd_parent) { 2025 /* is there enough space? */ 2026 uint64_t myspace = 2027 MAX(dsl_dir_phys(dd)->dd_used_bytes, 2028 dsl_dir_phys(dd)->dd_reserved); 2029 objset_t *os = dd->dd_pool->dp_meta_objset; 2030 uint64_t fs_cnt = 0; 2031 uint64_t ss_cnt = 0; 2032 2033 if (dsl_dir_is_zapified(dd)) { 2034 int err; 2035 2036 err = zap_lookup(os, dd->dd_object, 2037 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2038 &fs_cnt); 2039 if (err != ENOENT && err != 0) { 2040 dsl_dir_rele(newparent, FTAG); 2041 dsl_dir_rele(dd, FTAG); 2042 return (err); 2043 } 2044 2045 /* 2046 * have to add 1 for the filesystem itself that we're 2047 * moving 2048 */ 2049 fs_cnt++; 2050 2051 err = zap_lookup(os, dd->dd_object, 2052 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2053 &ss_cnt); 2054 if (err != ENOENT && err != 0) { 2055 dsl_dir_rele(newparent, FTAG); 2056 dsl_dir_rele(dd, FTAG); 2057 return (err); 2058 } 2059 } 2060 2061 /* check for encryption errors */ 2062 error = dsl_dir_rename_crypt_check(dd, newparent); 2063 if (error != 0) { 2064 dsl_dir_rele(newparent, FTAG); 2065 dsl_dir_rele(dd, FTAG); 2066 return (SET_ERROR(EACCES)); 2067 } 2068 2069 /* no rename into our descendant */ 2070 if (closest_common_ancestor(dd, newparent) == dd) { 2071 dsl_dir_rele(newparent, FTAG); 2072 dsl_dir_rele(dd, FTAG); 2073 return (SET_ERROR(EINVAL)); 2074 } 2075 2076 error = dsl_dir_transfer_possible(dd->dd_parent, 2077 newparent, fs_cnt, ss_cnt, myspace, 2078 ddra->ddra_cred, ddra->ddra_proc); 2079 if (error != 0) { 2080 dsl_dir_rele(newparent, FTAG); 2081 dsl_dir_rele(dd, FTAG); 2082 return (error); 2083 } 2084 } 2085 2086 dsl_dir_rele(newparent, FTAG); 2087 dsl_dir_rele(dd, FTAG); 2088 return (0); 2089 } 2090 2091 static void 2092 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 2093 { 2094 dsl_dir_rename_arg_t *ddra = arg; 2095 dsl_pool_t *dp = dmu_tx_pool(tx); 2096 dsl_dir_t *dd, *newparent; 2097 const char *mynewname; 2098 objset_t *mos = dp->dp_meta_objset; 2099 2100 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 2101 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 2102 &mynewname)); 2103 2104 /* Log this before we change the name. */ 2105 spa_history_log_internal_dd(dd, "rename", tx, 2106 "-> %s", ddra->ddra_newname); 2107 2108 if (newparent != dd->dd_parent) { 2109 objset_t *os = dd->dd_pool->dp_meta_objset; 2110 uint64_t fs_cnt = 0; 2111 uint64_t ss_cnt = 0; 2112 2113 /* 2114 * We already made sure the dd counts were initialized in the 2115 * check function. 2116 */ 2117 if (spa_feature_is_active(dp->dp_spa, 2118 SPA_FEATURE_FS_SS_LIMIT)) { 2119 VERIFY0(zap_lookup(os, dd->dd_object, 2120 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2121 &fs_cnt)); 2122 /* add 1 for the filesystem itself that we're moving */ 2123 fs_cnt++; 2124 2125 VERIFY0(zap_lookup(os, dd->dd_object, 2126 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2127 &ss_cnt)); 2128 } 2129 2130 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 2131 DD_FIELD_FILESYSTEM_COUNT, tx); 2132 dsl_fs_ss_count_adjust(newparent, fs_cnt, 2133 DD_FIELD_FILESYSTEM_COUNT, tx); 2134 2135 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 2136 DD_FIELD_SNAPSHOT_COUNT, tx); 2137 dsl_fs_ss_count_adjust(newparent, ss_cnt, 2138 DD_FIELD_SNAPSHOT_COUNT, tx); 2139 2140 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 2141 -dsl_dir_phys(dd)->dd_used_bytes, 2142 -dsl_dir_phys(dd)->dd_compressed_bytes, 2143 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2144 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 2145 dsl_dir_phys(dd)->dd_used_bytes, 2146 dsl_dir_phys(dd)->dd_compressed_bytes, 2147 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2148 2149 if (dsl_dir_phys(dd)->dd_reserved > 2150 dsl_dir_phys(dd)->dd_used_bytes) { 2151 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 2152 dsl_dir_phys(dd)->dd_used_bytes; 2153 2154 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 2155 -unused_rsrv, 0, 0, tx); 2156 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 2157 unused_rsrv, 0, 0, tx); 2158 } 2159 } 2160 2161 dmu_buf_will_dirty(dd->dd_dbuf, tx); 2162 2163 /* remove from old parent zapobj */ 2164 VERIFY0(zap_remove(mos, 2165 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 2166 dd->dd_myname, tx)); 2167 2168 (void) strlcpy(dd->dd_myname, mynewname, 2169 sizeof (dd->dd_myname)); 2170 dsl_dir_rele(dd->dd_parent, dd); 2171 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 2172 VERIFY0(dsl_dir_hold_obj(dp, 2173 newparent->dd_object, NULL, dd, &dd->dd_parent)); 2174 2175 /* add to new parent zapobj */ 2176 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 2177 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 2178 2179 /* TODO: A rename callback to avoid these layering violations. */ 2180 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname); 2181 zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname, 2182 ddra->ddra_newname, B_TRUE); 2183 2184 dsl_prop_notify_all(dd); 2185 2186 dsl_dir_rele(newparent, FTAG); 2187 dsl_dir_rele(dd, FTAG); 2188 } 2189 2190 int 2191 dsl_dir_rename(const char *oldname, const char *newname) 2192 { 2193 dsl_dir_rename_arg_t ddra; 2194 2195 ddra.ddra_oldname = oldname; 2196 ddra.ddra_newname = newname; 2197 ddra.ddra_cred = CRED(); 2198 ddra.ddra_proc = curproc; 2199 2200 return (dsl_sync_task(oldname, 2201 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 2202 3, ZFS_SPACE_CHECK_RESERVED)); 2203 } 2204 2205 int 2206 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 2207 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, 2208 cred_t *cr, proc_t *proc) 2209 { 2210 dsl_dir_t *ancestor; 2211 int64_t adelta; 2212 uint64_t avail; 2213 int err; 2214 2215 ancestor = closest_common_ancestor(sdd, tdd); 2216 adelta = would_change(sdd, -space, ancestor); 2217 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 2218 if (avail < space) 2219 return (SET_ERROR(ENOSPC)); 2220 2221 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 2222 ancestor, cr, proc); 2223 if (err != 0) 2224 return (err); 2225 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 2226 ancestor, cr, proc); 2227 if (err != 0) 2228 return (err); 2229 2230 return (0); 2231 } 2232 2233 inode_timespec_t 2234 dsl_dir_snap_cmtime(dsl_dir_t *dd) 2235 { 2236 inode_timespec_t t; 2237 2238 mutex_enter(&dd->dd_lock); 2239 t = dd->dd_snap_cmtime; 2240 mutex_exit(&dd->dd_lock); 2241 2242 return (t); 2243 } 2244 2245 void 2246 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 2247 { 2248 inode_timespec_t t; 2249 2250 gethrestime(&t); 2251 mutex_enter(&dd->dd_lock); 2252 dd->dd_snap_cmtime = t; 2253 mutex_exit(&dd->dd_lock); 2254 } 2255 2256 void 2257 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 2258 { 2259 objset_t *mos = dd->dd_pool->dp_meta_objset; 2260 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 2261 } 2262 2263 boolean_t 2264 dsl_dir_is_zapified(dsl_dir_t *dd) 2265 { 2266 dmu_object_info_t doi; 2267 2268 dmu_object_info_from_db(dd->dd_dbuf, &doi); 2269 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 2270 } 2271 2272 void 2273 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj) 2274 { 2275 objset_t *mos = dd->dd_pool->dp_meta_objset; 2276 ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa, 2277 SPA_FEATURE_LIVELIST)); 2278 dsl_deadlist_open(&dd->dd_livelist, mos, obj); 2279 bplist_create(&dd->dd_pending_allocs); 2280 bplist_create(&dd->dd_pending_frees); 2281 } 2282 2283 void 2284 dsl_dir_livelist_close(dsl_dir_t *dd) 2285 { 2286 dsl_deadlist_close(&dd->dd_livelist); 2287 bplist_destroy(&dd->dd_pending_allocs); 2288 bplist_destroy(&dd->dd_pending_frees); 2289 } 2290 2291 void 2292 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total) 2293 { 2294 uint64_t obj; 2295 dsl_pool_t *dp = dmu_tx_pool(tx); 2296 spa_t *spa = dp->dp_spa; 2297 livelist_condense_entry_t to_condense = spa->spa_to_condense; 2298 2299 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2300 return; 2301 2302 /* 2303 * If the livelist being removed is set to be condensed, stop the 2304 * condense zthr and indicate the cancellation in the spa_to_condense 2305 * struct in case the condense no-wait synctask has already started 2306 */ 2307 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 2308 if (ll_condense_thread != NULL && 2309 (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) { 2310 /* 2311 * We use zthr_wait_cycle_done instead of zthr_cancel 2312 * because we don't want to destroy the zthr, just have 2313 * it skip its current task. 2314 */ 2315 spa->spa_to_condense.cancelled = B_TRUE; 2316 zthr_wait_cycle_done(ll_condense_thread); 2317 /* 2318 * If we've returned from zthr_wait_cycle_done without 2319 * clearing the to_condense data structure it's either 2320 * because the no-wait synctask has started (which is 2321 * indicated by 'syncing' field of to_condense) and we 2322 * can expect it to clear to_condense on its own. 2323 * Otherwise, we returned before the zthr ran. The 2324 * checkfunc will now fail as cancelled == B_TRUE so we 2325 * can safely NULL out ds, allowing a different dir's 2326 * livelist to be condensed. 2327 * 2328 * We can be sure that the to_condense struct will not 2329 * be repopulated at this stage because both this 2330 * function and dsl_livelist_try_condense execute in 2331 * syncing context. 2332 */ 2333 if ((spa->spa_to_condense.ds != NULL) && 2334 !spa->spa_to_condense.syncing) { 2335 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, 2336 spa); 2337 spa->spa_to_condense.ds = NULL; 2338 } 2339 } 2340 2341 dsl_dir_livelist_close(dd); 2342 VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object, 2343 DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj)); 2344 VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object, 2345 DD_FIELD_LIVELIST, tx)); 2346 if (total) { 2347 dsl_deadlist_free(dp->dp_meta_objset, obj, tx); 2348 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2349 } 2350 } 2351 2352 static int 2353 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds, 2354 zfs_wait_activity_t activity, boolean_t *in_progress) 2355 { 2356 int error = 0; 2357 2358 ASSERT(MUTEX_HELD(&dd->dd_activity_lock)); 2359 2360 switch (activity) { 2361 case ZFS_WAIT_DELETEQ: { 2362 #ifdef _KERNEL 2363 objset_t *os; 2364 error = dmu_objset_from_ds(ds, &os); 2365 if (error != 0) 2366 break; 2367 2368 mutex_enter(&os->os_user_ptr_lock); 2369 void *user = dmu_objset_get_user(os); 2370 mutex_exit(&os->os_user_ptr_lock); 2371 if (dmu_objset_type(os) != DMU_OST_ZFS || 2372 user == NULL || zfs_get_vfs_flag_unmounted(os)) { 2373 *in_progress = B_FALSE; 2374 return (0); 2375 } 2376 2377 uint64_t readonly = B_FALSE; 2378 error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly, 2379 NULL); 2380 2381 if (error != 0) 2382 break; 2383 2384 if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) { 2385 *in_progress = B_FALSE; 2386 return (0); 2387 } 2388 2389 uint64_t count, unlinked_obj; 2390 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 2391 &unlinked_obj); 2392 if (error != 0) { 2393 dsl_dataset_rele(ds, FTAG); 2394 break; 2395 } 2396 error = zap_count(os, unlinked_obj, &count); 2397 2398 if (error == 0) 2399 *in_progress = (count != 0); 2400 break; 2401 #else 2402 /* 2403 * The delete queue is ZPL specific, and libzpool doesn't have 2404 * it. It doesn't make sense to wait for it. 2405 */ 2406 (void) ds; 2407 *in_progress = B_FALSE; 2408 break; 2409 #endif 2410 } 2411 default: 2412 panic("unrecognized value for activity %d", activity); 2413 } 2414 2415 return (error); 2416 } 2417 2418 int 2419 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity, 2420 boolean_t *waited) 2421 { 2422 int error = 0; 2423 boolean_t in_progress; 2424 dsl_pool_t *dp = dd->dd_pool; 2425 for (;;) { 2426 dsl_pool_config_enter(dp, FTAG); 2427 error = dsl_dir_activity_in_progress(dd, ds, activity, 2428 &in_progress); 2429 dsl_pool_config_exit(dp, FTAG); 2430 if (error != 0 || !in_progress) 2431 break; 2432 2433 *waited = B_TRUE; 2434 2435 if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) == 2436 0 || dd->dd_activity_cancelled) { 2437 error = SET_ERROR(EINTR); 2438 break; 2439 } 2440 } 2441 return (error); 2442 } 2443 2444 void 2445 dsl_dir_cancel_waiters(dsl_dir_t *dd) 2446 { 2447 mutex_enter(&dd->dd_activity_lock); 2448 dd->dd_activity_cancelled = B_TRUE; 2449 cv_broadcast(&dd->dd_activity_cv); 2450 while (dd->dd_activity_waiters > 0) 2451 cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock); 2452 mutex_exit(&dd->dd_activity_lock); 2453 } 2454 2455 #if defined(_KERNEL) 2456 EXPORT_SYMBOL(dsl_dir_set_quota); 2457 EXPORT_SYMBOL(dsl_dir_set_reservation); 2458 #endif 2459