xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_dir.c (revision faf25f48d601ae39f5752602f3020e2e92605625)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Martin Matuska. All rights reserved.
25  * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29  */
30 
31 #include <sys/dmu.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_prop.h>
37 #include <sys/dsl_synctask.h>
38 #include <sys/dsl_deleg.h>
39 #include <sys/dmu_impl.h>
40 #include <sys/spa.h>
41 #include <sys/spa_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/zap.h>
44 #include <sys/zio.h>
45 #include <sys/arc.h>
46 #include <sys/sunddi.h>
47 #include <sys/zfeature.h>
48 #include <sys/policy.h>
49 #include <sys/zfs_vfsops.h>
50 #include <sys/zfs_znode.h>
51 #include <sys/zvol.h>
52 #include <sys/zthr.h>
53 #include "zfs_namecheck.h"
54 #include "zfs_prop.h"
55 
56 /*
57  * Filesystem and Snapshot Limits
58  * ------------------------------
59  *
60  * These limits are used to restrict the number of filesystems and/or snapshots
61  * that can be created at a given level in the tree or below. A typical
62  * use-case is with a delegated dataset where the administrator wants to ensure
63  * that a user within the zone is not creating too many additional filesystems
64  * or snapshots, even though they're not exceeding their space quota.
65  *
66  * The filesystem and snapshot counts are stored as extensible properties. This
67  * capability is controlled by a feature flag and must be enabled to be used.
68  * Once enabled, the feature is not active until the first limit is set. At
69  * that point, future operations to create/destroy filesystems or snapshots
70  * will validate and update the counts.
71  *
72  * Because the count properties will not exist before the feature is active,
73  * the counts are updated when a limit is first set on an uninitialized
74  * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
75  * all of the nested filesystems/snapshots. Thus, a new leaf node has a
76  * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
77  * snapshot count properties on a node indicate uninitialized counts on that
78  * node.) When first setting a limit on an uninitialized node, the code starts
79  * at the filesystem with the new limit and descends into all sub-filesystems
80  * to add the count properties.
81  *
82  * In practice this is lightweight since a limit is typically set when the
83  * filesystem is created and thus has no children. Once valid, changing the
84  * limit value won't require a re-traversal since the counts are already valid.
85  * When recursively fixing the counts, if a node with a limit is encountered
86  * during the descent, the counts are known to be valid and there is no need to
87  * descend into that filesystem's children. The counts on filesystems above the
88  * one with the new limit will still be uninitialized, unless a limit is
89  * eventually set on one of those filesystems. The counts are always recursively
90  * updated when a limit is set on a dataset, unless there is already a limit.
91  * When a new limit value is set on a filesystem with an existing limit, it is
92  * possible for the new limit to be less than the current count at that level
93  * since a user who can change the limit is also allowed to exceed the limit.
94  *
95  * Once the feature is active, then whenever a filesystem or snapshot is
96  * created, the code recurses up the tree, validating the new count against the
97  * limit at each initialized level. In practice, most levels will not have a
98  * limit set. If there is a limit at any initialized level up the tree, the
99  * check must pass or the creation will fail. Likewise, when a filesystem or
100  * snapshot is destroyed, the counts are recursively adjusted all the way up
101  * the initialized nodes in the tree. Renaming a filesystem into different point
102  * in the tree will first validate, then update the counts on each branch up to
103  * the common ancestor. A receive will also validate the counts and then update
104  * them.
105  *
106  * An exception to the above behavior is that the limit is not enforced if the
107  * user has permission to modify the limit. This is primarily so that
108  * recursive snapshots in the global zone always work. We want to prevent a
109  * denial-of-service in which a lower level delegated dataset could max out its
110  * limit and thus block recursive snapshots from being taken in the global zone.
111  * Because of this, it is possible for the snapshot count to be over the limit
112  * and snapshots taken in the global zone could cause a lower level dataset to
113  * hit or exceed its limit. The administrator taking the global zone recursive
114  * snapshot should be aware of this side-effect and behave accordingly.
115  * For consistency, the filesystem limit is also not enforced if the user can
116  * modify the limit.
117  *
118  * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
119  * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
120  * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
121  * dsl_dir_init_fs_ss_count().
122  */
123 
124 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
125 
126 typedef struct ddulrt_arg {
127 	dsl_dir_t	*ddulrta_dd;
128 	uint64_t	ddlrta_txg;
129 } ddulrt_arg_t;
130 
131 static void
132 dsl_dir_evict_async(void *dbu)
133 {
134 	dsl_dir_t *dd = dbu;
135 	int t;
136 	dsl_pool_t *dp __maybe_unused = dd->dd_pool;
137 
138 	dd->dd_dbuf = NULL;
139 
140 	for (t = 0; t < TXG_SIZE; t++) {
141 		ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
142 		ASSERT(dd->dd_tempreserved[t] == 0);
143 		ASSERT(dd->dd_space_towrite[t] == 0);
144 	}
145 
146 	if (dd->dd_parent)
147 		dsl_dir_async_rele(dd->dd_parent, dd);
148 
149 	spa_async_close(dd->dd_pool->dp_spa, dd);
150 
151 	if (dsl_deadlist_is_open(&dd->dd_livelist))
152 		dsl_dir_livelist_close(dd);
153 
154 	dsl_prop_fini(dd);
155 	cv_destroy(&dd->dd_activity_cv);
156 	mutex_destroy(&dd->dd_activity_lock);
157 	mutex_destroy(&dd->dd_lock);
158 	kmem_free(dd, sizeof (dsl_dir_t));
159 }
160 
161 int
162 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
163     const char *tail, const void *tag, dsl_dir_t **ddp)
164 {
165 	dmu_buf_t *dbuf;
166 	dsl_dir_t *dd;
167 	dmu_object_info_t doi;
168 	int err;
169 
170 	ASSERT(dsl_pool_config_held(dp));
171 
172 	err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
173 	if (err != 0)
174 		return (err);
175 	dd = dmu_buf_get_user(dbuf);
176 
177 	dmu_object_info_from_db(dbuf, &doi);
178 	ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
179 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
180 
181 	if (dd == NULL) {
182 		dsl_dir_t *winner;
183 
184 		dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
185 		dd->dd_object = ddobj;
186 		dd->dd_dbuf = dbuf;
187 		dd->dd_pool = dp;
188 
189 		mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
190 		mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
191 		cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
192 		dsl_prop_init(dd);
193 
194 		if (dsl_dir_is_zapified(dd)) {
195 			err = zap_lookup(dp->dp_meta_objset,
196 			    ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
197 			    sizeof (uint64_t), 1, &dd->dd_crypto_obj);
198 			if (err == 0) {
199 				/* check for on-disk format errata */
200 				if (dsl_dir_incompatible_encryption_version(
201 				    dd)) {
202 					dp->dp_spa->spa_errata =
203 					    ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
204 				}
205 			} else if (err != ENOENT) {
206 				goto errout;
207 			}
208 		}
209 
210 		dsl_dir_snap_cmtime_update(dd);
211 
212 		if (dsl_dir_phys(dd)->dd_parent_obj) {
213 			err = dsl_dir_hold_obj(dp,
214 			    dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
215 			    &dd->dd_parent);
216 			if (err != 0)
217 				goto errout;
218 			if (tail) {
219 #ifdef ZFS_DEBUG
220 				uint64_t foundobj;
221 
222 				err = zap_lookup(dp->dp_meta_objset,
223 				    dsl_dir_phys(dd->dd_parent)->
224 				    dd_child_dir_zapobj, tail,
225 				    sizeof (foundobj), 1, &foundobj);
226 				ASSERT(err || foundobj == ddobj);
227 #endif
228 				(void) strlcpy(dd->dd_myname, tail,
229 				    sizeof (dd->dd_myname));
230 			} else {
231 				err = zap_value_search(dp->dp_meta_objset,
232 				    dsl_dir_phys(dd->dd_parent)->
233 				    dd_child_dir_zapobj,
234 				    ddobj, 0, dd->dd_myname);
235 			}
236 			if (err != 0)
237 				goto errout;
238 		} else {
239 			(void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
240 			    sizeof (dd->dd_myname));
241 		}
242 
243 		if (dsl_dir_is_clone(dd)) {
244 			dmu_buf_t *origin_bonus;
245 			dsl_dataset_phys_t *origin_phys;
246 
247 			/*
248 			 * We can't open the origin dataset, because
249 			 * that would require opening this dsl_dir.
250 			 * Just look at its phys directly instead.
251 			 */
252 			err = dmu_bonus_hold(dp->dp_meta_objset,
253 			    dsl_dir_phys(dd)->dd_origin_obj, FTAG,
254 			    &origin_bonus);
255 			if (err != 0)
256 				goto errout;
257 			origin_phys = origin_bonus->db_data;
258 			dd->dd_origin_txg =
259 			    origin_phys->ds_creation_txg;
260 			dmu_buf_rele(origin_bonus, FTAG);
261 			if (dsl_dir_is_zapified(dd)) {
262 				uint64_t obj;
263 				err = zap_lookup(dp->dp_meta_objset,
264 				    dd->dd_object, DD_FIELD_LIVELIST,
265 				    sizeof (uint64_t), 1, &obj);
266 				if (err == 0)
267 					dsl_dir_livelist_open(dd, obj);
268 				else if (err != ENOENT)
269 					goto errout;
270 			}
271 		}
272 
273 		dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
274 		    &dd->dd_dbuf);
275 		winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
276 		if (winner != NULL) {
277 			if (dd->dd_parent)
278 				dsl_dir_rele(dd->dd_parent, dd);
279 			if (dsl_deadlist_is_open(&dd->dd_livelist))
280 				dsl_dir_livelist_close(dd);
281 			dsl_prop_fini(dd);
282 			cv_destroy(&dd->dd_activity_cv);
283 			mutex_destroy(&dd->dd_activity_lock);
284 			mutex_destroy(&dd->dd_lock);
285 			kmem_free(dd, sizeof (dsl_dir_t));
286 			dd = winner;
287 		} else {
288 			spa_open_ref(dp->dp_spa, dd);
289 		}
290 	}
291 
292 	/*
293 	 * The dsl_dir_t has both open-to-close and instantiate-to-evict
294 	 * holds on the spa.  We need the open-to-close holds because
295 	 * otherwise the spa_refcnt wouldn't change when we open a
296 	 * dir which the spa also has open, so we could incorrectly
297 	 * think it was OK to unload/export/destroy the pool.  We need
298 	 * the instantiate-to-evict hold because the dsl_dir_t has a
299 	 * pointer to the dd_pool, which has a pointer to the spa_t.
300 	 */
301 	spa_open_ref(dp->dp_spa, tag);
302 	ASSERT3P(dd->dd_pool, ==, dp);
303 	ASSERT3U(dd->dd_object, ==, ddobj);
304 	ASSERT3P(dd->dd_dbuf, ==, dbuf);
305 	*ddp = dd;
306 	return (0);
307 
308 errout:
309 	if (dd->dd_parent)
310 		dsl_dir_rele(dd->dd_parent, dd);
311 	if (dsl_deadlist_is_open(&dd->dd_livelist))
312 		dsl_dir_livelist_close(dd);
313 	dsl_prop_fini(dd);
314 	cv_destroy(&dd->dd_activity_cv);
315 	mutex_destroy(&dd->dd_activity_lock);
316 	mutex_destroy(&dd->dd_lock);
317 	kmem_free(dd, sizeof (dsl_dir_t));
318 	dmu_buf_rele(dbuf, tag);
319 	return (err);
320 }
321 
322 void
323 dsl_dir_rele(dsl_dir_t *dd, const void *tag)
324 {
325 	dprintf_dd(dd, "%s\n", "");
326 	spa_close(dd->dd_pool->dp_spa, tag);
327 	dmu_buf_rele(dd->dd_dbuf, tag);
328 }
329 
330 /*
331  * Remove a reference to the given dsl dir that is being asynchronously
332  * released.  Async releases occur from a taskq performing eviction of
333  * dsl datasets and dirs.  This process is identical to a normal release
334  * with the exception of using the async API for releasing the reference on
335  * the spa.
336  */
337 void
338 dsl_dir_async_rele(dsl_dir_t *dd, const void *tag)
339 {
340 	dprintf_dd(dd, "%s\n", "");
341 	spa_async_close(dd->dd_pool->dp_spa, tag);
342 	dmu_buf_rele(dd->dd_dbuf, tag);
343 }
344 
345 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
346 void
347 dsl_dir_name(dsl_dir_t *dd, char *buf)
348 {
349 	if (dd->dd_parent) {
350 		dsl_dir_name(dd->dd_parent, buf);
351 		VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
352 		    ZFS_MAX_DATASET_NAME_LEN);
353 	} else {
354 		buf[0] = '\0';
355 	}
356 	if (!MUTEX_HELD(&dd->dd_lock)) {
357 		/*
358 		 * recursive mutex so that we can use
359 		 * dprintf_dd() with dd_lock held
360 		 */
361 		mutex_enter(&dd->dd_lock);
362 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
363 		    <, ZFS_MAX_DATASET_NAME_LEN);
364 		mutex_exit(&dd->dd_lock);
365 	} else {
366 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
367 		    <, ZFS_MAX_DATASET_NAME_LEN);
368 	}
369 }
370 
371 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
372 int
373 dsl_dir_namelen(dsl_dir_t *dd)
374 {
375 	int result = 0;
376 
377 	if (dd->dd_parent) {
378 		/* parent's name + 1 for the "/" */
379 		result = dsl_dir_namelen(dd->dd_parent) + 1;
380 	}
381 
382 	if (!MUTEX_HELD(&dd->dd_lock)) {
383 		/* see dsl_dir_name */
384 		mutex_enter(&dd->dd_lock);
385 		result += strlen(dd->dd_myname);
386 		mutex_exit(&dd->dd_lock);
387 	} else {
388 		result += strlen(dd->dd_myname);
389 	}
390 
391 	return (result);
392 }
393 
394 static int
395 getcomponent(const char *path, char *component, const char **nextp)
396 {
397 	char *p;
398 
399 	if ((path == NULL) || (path[0] == '\0'))
400 		return (SET_ERROR(ENOENT));
401 	/* This would be a good place to reserve some namespace... */
402 	p = strpbrk(path, "/@");
403 	if (p && (p[1] == '/' || p[1] == '@')) {
404 		/* two separators in a row */
405 		return (SET_ERROR(EINVAL));
406 	}
407 	if (p == NULL || p == path) {
408 		/*
409 		 * if the first thing is an @ or /, it had better be an
410 		 * @ and it had better not have any more ats or slashes,
411 		 * and it had better have something after the @.
412 		 */
413 		if (p != NULL &&
414 		    (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
415 			return (SET_ERROR(EINVAL));
416 		if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
417 			return (SET_ERROR(ENAMETOOLONG));
418 		(void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
419 		p = NULL;
420 	} else if (p[0] == '/') {
421 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
422 			return (SET_ERROR(ENAMETOOLONG));
423 		(void) strncpy(component, path, p - path);
424 		component[p - path] = '\0';
425 		p++;
426 	} else if (p[0] == '@') {
427 		/*
428 		 * if the next separator is an @, there better not be
429 		 * any more slashes.
430 		 */
431 		if (strchr(path, '/'))
432 			return (SET_ERROR(EINVAL));
433 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
434 			return (SET_ERROR(ENAMETOOLONG));
435 		(void) strncpy(component, path, p - path);
436 		component[p - path] = '\0';
437 	} else {
438 		panic("invalid p=%p", (void *)p);
439 	}
440 	*nextp = p;
441 	return (0);
442 }
443 
444 /*
445  * Return the dsl_dir_t, and possibly the last component which couldn't
446  * be found in *tail.  The name must be in the specified dsl_pool_t.  This
447  * thread must hold the dp_config_rwlock for the pool.  Returns NULL if the
448  * path is bogus, or if tail==NULL and we couldn't parse the whole name.
449  * (*tail)[0] == '@' means that the last component is a snapshot.
450  */
451 int
452 dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag,
453     dsl_dir_t **ddp, const char **tailp)
454 {
455 	char *buf;
456 	const char *spaname, *next, *nextnext = NULL;
457 	int err;
458 	dsl_dir_t *dd;
459 	uint64_t ddobj;
460 
461 	buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
462 	err = getcomponent(name, buf, &next);
463 	if (err != 0)
464 		goto error;
465 
466 	/* Make sure the name is in the specified pool. */
467 	spaname = spa_name(dp->dp_spa);
468 	if (strcmp(buf, spaname) != 0) {
469 		err = SET_ERROR(EXDEV);
470 		goto error;
471 	}
472 
473 	ASSERT(dsl_pool_config_held(dp));
474 
475 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
476 	if (err != 0) {
477 		goto error;
478 	}
479 
480 	while (next != NULL) {
481 		dsl_dir_t *child_dd;
482 		err = getcomponent(next, buf, &nextnext);
483 		if (err != 0)
484 			break;
485 		ASSERT(next[0] != '\0');
486 		if (next[0] == '@')
487 			break;
488 		dprintf("looking up %s in obj%lld\n",
489 		    buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj);
490 
491 		err = zap_lookup(dp->dp_meta_objset,
492 		    dsl_dir_phys(dd)->dd_child_dir_zapobj,
493 		    buf, sizeof (ddobj), 1, &ddobj);
494 		if (err != 0) {
495 			if (err == ENOENT)
496 				err = 0;
497 			break;
498 		}
499 
500 		err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
501 		if (err != 0)
502 			break;
503 		dsl_dir_rele(dd, tag);
504 		dd = child_dd;
505 		next = nextnext;
506 	}
507 
508 	if (err != 0) {
509 		dsl_dir_rele(dd, tag);
510 		goto error;
511 	}
512 
513 	/*
514 	 * It's an error if there's more than one component left, or
515 	 * tailp==NULL and there's any component left.
516 	 */
517 	if (next != NULL &&
518 	    (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
519 		/* bad path name */
520 		dsl_dir_rele(dd, tag);
521 		dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
522 		err = SET_ERROR(ENOENT);
523 	}
524 	if (tailp != NULL)
525 		*tailp = next;
526 	if (err == 0)
527 		*ddp = dd;
528 error:
529 	kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
530 	return (err);
531 }
532 
533 /*
534  * If the counts are already initialized for this filesystem and its
535  * descendants then do nothing, otherwise initialize the counts.
536  *
537  * The counts on this filesystem, and those below, may be uninitialized due to
538  * either the use of a pre-existing pool which did not support the
539  * filesystem/snapshot limit feature, or one in which the feature had not yet
540  * been enabled.
541  *
542  * Recursively descend the filesystem tree and update the filesystem/snapshot
543  * counts on each filesystem below, then update the cumulative count on the
544  * current filesystem. If the filesystem already has a count set on it,
545  * then we know that its counts, and the counts on the filesystems below it,
546  * are already correct, so we don't have to update this filesystem.
547  */
548 static void
549 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
550 {
551 	uint64_t my_fs_cnt = 0;
552 	uint64_t my_ss_cnt = 0;
553 	dsl_pool_t *dp = dd->dd_pool;
554 	objset_t *os = dp->dp_meta_objset;
555 	zap_cursor_t *zc;
556 	zap_attribute_t *za;
557 	dsl_dataset_t *ds;
558 
559 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
560 	ASSERT(dsl_pool_config_held(dp));
561 	ASSERT(dmu_tx_is_syncing(tx));
562 
563 	dsl_dir_zapify(dd, tx);
564 
565 	/*
566 	 * If the filesystem count has already been initialized then we
567 	 * don't need to recurse down any further.
568 	 */
569 	if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
570 		return;
571 
572 	zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
573 	za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
574 
575 	/* Iterate my child dirs */
576 	for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
577 	    zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
578 		dsl_dir_t *chld_dd;
579 		uint64_t count;
580 
581 		VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
582 		    &chld_dd));
583 
584 		/*
585 		 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
586 		 */
587 		if (chld_dd->dd_myname[0] == '$') {
588 			dsl_dir_rele(chld_dd, FTAG);
589 			continue;
590 		}
591 
592 		my_fs_cnt++;	/* count this child */
593 
594 		dsl_dir_init_fs_ss_count(chld_dd, tx);
595 
596 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
597 		    DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
598 		my_fs_cnt += count;
599 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
600 		    DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
601 		my_ss_cnt += count;
602 
603 		dsl_dir_rele(chld_dd, FTAG);
604 	}
605 	zap_cursor_fini(zc);
606 	/* Count my snapshots (we counted children's snapshots above) */
607 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
608 	    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
609 
610 	for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
611 	    zap_cursor_retrieve(zc, za) == 0;
612 	    zap_cursor_advance(zc)) {
613 		/* Don't count temporary snapshots */
614 		if (za->za_name[0] != '%')
615 			my_ss_cnt++;
616 	}
617 	zap_cursor_fini(zc);
618 
619 	dsl_dataset_rele(ds, FTAG);
620 
621 	kmem_free(zc, sizeof (zap_cursor_t));
622 	kmem_free(za, sizeof (zap_attribute_t));
623 
624 	/* we're in a sync task, update counts */
625 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
626 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
627 	    sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
628 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
629 	    sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
630 }
631 
632 static int
633 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
634 {
635 	char *ddname = (char *)arg;
636 	dsl_pool_t *dp = dmu_tx_pool(tx);
637 	dsl_dataset_t *ds;
638 	dsl_dir_t *dd;
639 	int error;
640 
641 	error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
642 	if (error != 0)
643 		return (error);
644 
645 	if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
646 		dsl_dataset_rele(ds, FTAG);
647 		return (SET_ERROR(ENOTSUP));
648 	}
649 
650 	dd = ds->ds_dir;
651 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
652 	    dsl_dir_is_zapified(dd) &&
653 	    zap_contains(dp->dp_meta_objset, dd->dd_object,
654 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
655 		dsl_dataset_rele(ds, FTAG);
656 		return (SET_ERROR(EALREADY));
657 	}
658 
659 	dsl_dataset_rele(ds, FTAG);
660 	return (0);
661 }
662 
663 static void
664 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
665 {
666 	char *ddname = (char *)arg;
667 	dsl_pool_t *dp = dmu_tx_pool(tx);
668 	dsl_dataset_t *ds;
669 	spa_t *spa;
670 
671 	VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
672 
673 	spa = dsl_dataset_get_spa(ds);
674 
675 	if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
676 		/*
677 		 * Since the feature was not active and we're now setting a
678 		 * limit, increment the feature-active counter so that the
679 		 * feature becomes active for the first time.
680 		 *
681 		 * We are already in a sync task so we can update the MOS.
682 		 */
683 		spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
684 	}
685 
686 	/*
687 	 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
688 	 * we need to ensure the counts are correct. Descend down the tree from
689 	 * this point and update all of the counts to be accurate.
690 	 */
691 	dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
692 
693 	dsl_dataset_rele(ds, FTAG);
694 }
695 
696 /*
697  * Make sure the feature is enabled and activate it if necessary.
698  * Since we're setting a limit, ensure the on-disk counts are valid.
699  * This is only called by the ioctl path when setting a limit value.
700  *
701  * We do not need to validate the new limit, since users who can change the
702  * limit are also allowed to exceed the limit.
703  */
704 int
705 dsl_dir_activate_fs_ss_limit(const char *ddname)
706 {
707 	int error;
708 
709 	error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
710 	    dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
711 	    ZFS_SPACE_CHECK_RESERVED);
712 
713 	if (error == EALREADY)
714 		error = 0;
715 
716 	return (error);
717 }
718 
719 /*
720  * Used to determine if the filesystem_limit or snapshot_limit should be
721  * enforced. We allow the limit to be exceeded if the user has permission to
722  * write the property value. We pass in the creds that we got in the open
723  * context since we will always be the GZ root in syncing context. We also have
724  * to handle the case where we are allowed to change the limit on the current
725  * dataset, but there may be another limit in the tree above.
726  *
727  * We can never modify these two properties within a non-global zone. In
728  * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
729  * can't use that function since we are already holding the dp_config_rwlock.
730  * In addition, we already have the dd and dealing with snapshots is simplified
731  * in this code.
732  */
733 
734 typedef enum {
735 	ENFORCE_ALWAYS,
736 	ENFORCE_NEVER,
737 	ENFORCE_ABOVE
738 } enforce_res_t;
739 
740 static enforce_res_t
741 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
742     cred_t *cr, proc_t *proc)
743 {
744 	enforce_res_t enforce = ENFORCE_ALWAYS;
745 	uint64_t obj;
746 	dsl_dataset_t *ds;
747 	uint64_t zoned;
748 	const char *zonedstr;
749 
750 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
751 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
752 
753 #ifdef _KERNEL
754 	if (crgetzoneid(cr) != GLOBAL_ZONEID)
755 		return (ENFORCE_ALWAYS);
756 
757 	/*
758 	 * We are checking the saved credentials of the user process, which is
759 	 * not the current process.  Note that we can't use secpolicy_zfs(),
760 	 * because it only works if the cred is that of the current process (on
761 	 * Linux).
762 	 */
763 	if (secpolicy_zfs_proc(cr, proc) == 0)
764 		return (ENFORCE_NEVER);
765 #else
766 	(void) proc;
767 #endif
768 
769 	if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
770 		return (ENFORCE_ALWAYS);
771 
772 	ASSERT(dsl_pool_config_held(dd->dd_pool));
773 
774 	if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
775 		return (ENFORCE_ALWAYS);
776 
777 	zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
778 	if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
779 		/* Only root can access zoned fs's from the GZ */
780 		enforce = ENFORCE_ALWAYS;
781 	} else {
782 		if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
783 			enforce = ENFORCE_ABOVE;
784 	}
785 
786 	dsl_dataset_rele(ds, FTAG);
787 	return (enforce);
788 }
789 
790 /*
791  * Check if adding additional child filesystem(s) would exceed any filesystem
792  * limits or adding additional snapshot(s) would exceed any snapshot limits.
793  * The prop argument indicates which limit to check.
794  *
795  * Note that all filesystem limits up to the root (or the highest
796  * initialized) filesystem or the given ancestor must be satisfied.
797  */
798 int
799 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
800     dsl_dir_t *ancestor, cred_t *cr, proc_t *proc)
801 {
802 	objset_t *os = dd->dd_pool->dp_meta_objset;
803 	uint64_t limit, count;
804 	const char *count_prop;
805 	enforce_res_t enforce;
806 	int err = 0;
807 
808 	ASSERT(dsl_pool_config_held(dd->dd_pool));
809 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
810 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
811 
812 	/*
813 	 * If we're allowed to change the limit, don't enforce the limit
814 	 * e.g. this can happen if a snapshot is taken by an administrative
815 	 * user in the global zone (i.e. a recursive snapshot by root).
816 	 * However, we must handle the case of delegated permissions where we
817 	 * are allowed to change the limit on the current dataset, but there
818 	 * is another limit in the tree above.
819 	 */
820 	enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc);
821 	if (enforce == ENFORCE_NEVER)
822 		return (0);
823 
824 	/*
825 	 * e.g. if renaming a dataset with no snapshots, count adjustment
826 	 * is 0.
827 	 */
828 	if (delta == 0)
829 		return (0);
830 
831 	if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
832 		/*
833 		 * We don't enforce the limit for temporary snapshots. This is
834 		 * indicated by a NULL cred_t argument.
835 		 */
836 		if (cr == NULL)
837 			return (0);
838 
839 		count_prop = DD_FIELD_SNAPSHOT_COUNT;
840 	} else {
841 		count_prop = DD_FIELD_FILESYSTEM_COUNT;
842 	}
843 
844 	/*
845 	 * If an ancestor has been provided, stop checking the limit once we
846 	 * hit that dir. We need this during rename so that we don't overcount
847 	 * the check once we recurse up to the common ancestor.
848 	 */
849 	if (ancestor == dd)
850 		return (0);
851 
852 	/*
853 	 * If we hit an uninitialized node while recursing up the tree, we can
854 	 * stop since we know there is no limit here (or above). The counts are
855 	 * not valid on this node and we know we won't touch this node's counts.
856 	 */
857 	if (!dsl_dir_is_zapified(dd))
858 		return (0);
859 	err = zap_lookup(os, dd->dd_object,
860 	    count_prop, sizeof (count), 1, &count);
861 	if (err == ENOENT)
862 		return (0);
863 	if (err != 0)
864 		return (err);
865 
866 	err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
867 	    B_FALSE);
868 	if (err != 0)
869 		return (err);
870 
871 	/* Is there a limit which we've hit? */
872 	if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
873 		return (SET_ERROR(EDQUOT));
874 
875 	if (dd->dd_parent != NULL)
876 		err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
877 		    ancestor, cr, proc);
878 
879 	return (err);
880 }
881 
882 /*
883  * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
884  * parents. When a new filesystem/snapshot is created, increment the count on
885  * all parents, and when a filesystem/snapshot is destroyed, decrement the
886  * count.
887  */
888 void
889 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
890     dmu_tx_t *tx)
891 {
892 	int err;
893 	objset_t *os = dd->dd_pool->dp_meta_objset;
894 	uint64_t count;
895 
896 	ASSERT(dsl_pool_config_held(dd->dd_pool));
897 	ASSERT(dmu_tx_is_syncing(tx));
898 	ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
899 	    strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
900 
901 	/*
902 	 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
903 	 */
904 	if (dd->dd_myname[0] == '$' && strcmp(prop,
905 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
906 		return;
907 	}
908 
909 	/*
910 	 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
911 	 */
912 	if (delta == 0)
913 		return;
914 
915 	/*
916 	 * If we hit an uninitialized node while recursing up the tree, we can
917 	 * stop since we know the counts are not valid on this node and we
918 	 * know we shouldn't touch this node's counts. An uninitialized count
919 	 * on the node indicates that either the feature has not yet been
920 	 * activated or there are no limits on this part of the tree.
921 	 */
922 	if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
923 	    prop, sizeof (count), 1, &count)) == ENOENT)
924 		return;
925 	VERIFY0(err);
926 
927 	count += delta;
928 	/* Use a signed verify to make sure we're not neg. */
929 	VERIFY3S(count, >=, 0);
930 
931 	VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
932 	    tx));
933 
934 	/* Roll up this additional count into our ancestors */
935 	if (dd->dd_parent != NULL)
936 		dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
937 }
938 
939 uint64_t
940 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
941     dmu_tx_t *tx)
942 {
943 	objset_t *mos = dp->dp_meta_objset;
944 	uint64_t ddobj;
945 	dsl_dir_phys_t *ddphys;
946 	dmu_buf_t *dbuf;
947 
948 	ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
949 	    DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
950 	if (pds) {
951 		VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
952 		    name, sizeof (uint64_t), 1, &ddobj, tx));
953 	} else {
954 		/* it's the root dir */
955 		VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
956 		    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
957 	}
958 	VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
959 	dmu_buf_will_dirty(dbuf, tx);
960 	ddphys = dbuf->db_data;
961 
962 	ddphys->dd_creation_time = gethrestime_sec();
963 	if (pds) {
964 		ddphys->dd_parent_obj = pds->dd_object;
965 
966 		/* update the filesystem counts */
967 		dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
968 	}
969 	ddphys->dd_props_zapobj = zap_create(mos,
970 	    DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
971 	ddphys->dd_child_dir_zapobj = zap_create(mos,
972 	    DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
973 	if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
974 		ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
975 
976 	dmu_buf_rele(dbuf, FTAG);
977 
978 	return (ddobj);
979 }
980 
981 boolean_t
982 dsl_dir_is_clone(dsl_dir_t *dd)
983 {
984 	return (dsl_dir_phys(dd)->dd_origin_obj &&
985 	    (dd->dd_pool->dp_origin_snap == NULL ||
986 	    dsl_dir_phys(dd)->dd_origin_obj !=
987 	    dd->dd_pool->dp_origin_snap->ds_object));
988 }
989 
990 uint64_t
991 dsl_dir_get_used(dsl_dir_t *dd)
992 {
993 	return (dsl_dir_phys(dd)->dd_used_bytes);
994 }
995 
996 uint64_t
997 dsl_dir_get_compressed(dsl_dir_t *dd)
998 {
999 	return (dsl_dir_phys(dd)->dd_compressed_bytes);
1000 }
1001 
1002 uint64_t
1003 dsl_dir_get_quota(dsl_dir_t *dd)
1004 {
1005 	return (dsl_dir_phys(dd)->dd_quota);
1006 }
1007 
1008 uint64_t
1009 dsl_dir_get_reservation(dsl_dir_t *dd)
1010 {
1011 	return (dsl_dir_phys(dd)->dd_reserved);
1012 }
1013 
1014 uint64_t
1015 dsl_dir_get_compressratio(dsl_dir_t *dd)
1016 {
1017 	/* a fixed point number, 100x the ratio */
1018 	return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1019 	    (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1020 	    dsl_dir_phys(dd)->dd_compressed_bytes));
1021 }
1022 
1023 uint64_t
1024 dsl_dir_get_logicalused(dsl_dir_t *dd)
1025 {
1026 	return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1027 }
1028 
1029 uint64_t
1030 dsl_dir_get_usedsnap(dsl_dir_t *dd)
1031 {
1032 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1033 }
1034 
1035 uint64_t
1036 dsl_dir_get_usedds(dsl_dir_t *dd)
1037 {
1038 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1039 }
1040 
1041 uint64_t
1042 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1043 {
1044 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1045 }
1046 
1047 uint64_t
1048 dsl_dir_get_usedchild(dsl_dir_t *dd)
1049 {
1050 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1051 	    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1052 }
1053 
1054 void
1055 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1056 {
1057 	dsl_dataset_t *ds;
1058 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1059 	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1060 
1061 	dsl_dataset_name(ds, buf);
1062 
1063 	dsl_dataset_rele(ds, FTAG);
1064 }
1065 
1066 int
1067 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1068 {
1069 	if (dsl_dir_is_zapified(dd)) {
1070 		objset_t *os = dd->dd_pool->dp_meta_objset;
1071 		return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1072 		    sizeof (*count), 1, count));
1073 	} else {
1074 		return (SET_ERROR(ENOENT));
1075 	}
1076 }
1077 
1078 int
1079 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1080 {
1081 	if (dsl_dir_is_zapified(dd)) {
1082 		objset_t *os = dd->dd_pool->dp_meta_objset;
1083 		return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1084 		    sizeof (*count), 1, count));
1085 	} else {
1086 		return (SET_ERROR(ENOENT));
1087 	}
1088 }
1089 
1090 void
1091 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1092 {
1093 	mutex_enter(&dd->dd_lock);
1094 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1095 	    dsl_dir_get_quota(dd));
1096 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1097 	    dsl_dir_get_reservation(dd));
1098 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1099 	    dsl_dir_get_logicalused(dd));
1100 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1101 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1102 		    dsl_dir_get_usedsnap(dd));
1103 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1104 		    dsl_dir_get_usedds(dd));
1105 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1106 		    dsl_dir_get_usedrefreserv(dd));
1107 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1108 		    dsl_dir_get_usedchild(dd));
1109 	}
1110 	mutex_exit(&dd->dd_lock);
1111 
1112 	uint64_t count;
1113 	if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1114 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1115 		    count);
1116 	}
1117 	if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1118 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1119 		    count);
1120 	}
1121 
1122 	if (dsl_dir_is_clone(dd)) {
1123 		char buf[ZFS_MAX_DATASET_NAME_LEN];
1124 		dsl_dir_get_origin(dd, buf);
1125 		dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1126 	}
1127 
1128 }
1129 
1130 void
1131 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1132 {
1133 	dsl_pool_t *dp = dd->dd_pool;
1134 
1135 	ASSERT(dsl_dir_phys(dd));
1136 
1137 	if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1138 		/* up the hold count until we can be written out */
1139 		dmu_buf_add_ref(dd->dd_dbuf, dd);
1140 	}
1141 }
1142 
1143 static int64_t
1144 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1145 {
1146 	uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1147 	uint64_t new_accounted =
1148 	    MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1149 	return (new_accounted - old_accounted);
1150 }
1151 
1152 void
1153 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1154 {
1155 	ASSERT(dmu_tx_is_syncing(tx));
1156 
1157 	mutex_enter(&dd->dd_lock);
1158 	ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
1159 	dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg,
1160 	    (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
1161 	dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
1162 	mutex_exit(&dd->dd_lock);
1163 
1164 	/* release the hold from dsl_dir_dirty */
1165 	dmu_buf_rele(dd->dd_dbuf, dd);
1166 }
1167 
1168 static uint64_t
1169 dsl_dir_space_towrite(dsl_dir_t *dd)
1170 {
1171 	uint64_t space = 0;
1172 
1173 	ASSERT(MUTEX_HELD(&dd->dd_lock));
1174 
1175 	for (int i = 0; i < TXG_SIZE; i++) {
1176 		space += dd->dd_space_towrite[i & TXG_MASK];
1177 		ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
1178 	}
1179 	return (space);
1180 }
1181 
1182 /*
1183  * How much space would dd have available if ancestor had delta applied
1184  * to it?  If ondiskonly is set, we're only interested in what's
1185  * on-disk, not estimated pending changes.
1186  */
1187 uint64_t
1188 dsl_dir_space_available(dsl_dir_t *dd,
1189     dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1190 {
1191 	uint64_t parentspace, myspace, quota, used;
1192 
1193 	/*
1194 	 * If there are no restrictions otherwise, assume we have
1195 	 * unlimited space available.
1196 	 */
1197 	quota = UINT64_MAX;
1198 	parentspace = UINT64_MAX;
1199 
1200 	if (dd->dd_parent != NULL) {
1201 		parentspace = dsl_dir_space_available(dd->dd_parent,
1202 		    ancestor, delta, ondiskonly);
1203 	}
1204 
1205 	mutex_enter(&dd->dd_lock);
1206 	if (dsl_dir_phys(dd)->dd_quota != 0)
1207 		quota = dsl_dir_phys(dd)->dd_quota;
1208 	used = dsl_dir_phys(dd)->dd_used_bytes;
1209 	if (!ondiskonly)
1210 		used += dsl_dir_space_towrite(dd);
1211 
1212 	if (dd->dd_parent == NULL) {
1213 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1214 		    ZFS_SPACE_CHECK_NORMAL);
1215 		quota = MIN(quota, poolsize);
1216 	}
1217 
1218 	if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1219 		/*
1220 		 * We have some space reserved, in addition to what our
1221 		 * parent gave us.
1222 		 */
1223 		parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1224 	}
1225 
1226 	if (dd == ancestor) {
1227 		ASSERT(delta <= 0);
1228 		ASSERT(used >= -delta);
1229 		used += delta;
1230 		if (parentspace != UINT64_MAX)
1231 			parentspace -= delta;
1232 	}
1233 
1234 	if (used > quota) {
1235 		/* over quota */
1236 		myspace = 0;
1237 	} else {
1238 		/*
1239 		 * the lesser of the space provided by our parent and
1240 		 * the space left in our quota
1241 		 */
1242 		myspace = MIN(parentspace, quota - used);
1243 	}
1244 
1245 	mutex_exit(&dd->dd_lock);
1246 
1247 	return (myspace);
1248 }
1249 
1250 struct tempreserve {
1251 	list_node_t tr_node;
1252 	dsl_dir_t *tr_ds;
1253 	uint64_t tr_size;
1254 };
1255 
1256 static int
1257 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1258     boolean_t ignorequota, list_t *tr_list,
1259     dmu_tx_t *tx, boolean_t first)
1260 {
1261 	uint64_t txg;
1262 	uint64_t quota;
1263 	struct tempreserve *tr;
1264 	int retval;
1265 	uint64_t ref_rsrv;
1266 
1267 top_of_function:
1268 	txg = tx->tx_txg;
1269 	retval = EDQUOT;
1270 	ref_rsrv = 0;
1271 
1272 	ASSERT3U(txg, !=, 0);
1273 	ASSERT3S(asize, >, 0);
1274 
1275 	mutex_enter(&dd->dd_lock);
1276 
1277 	/*
1278 	 * Check against the dsl_dir's quota.  We don't add in the delta
1279 	 * when checking for over-quota because they get one free hit.
1280 	 */
1281 	uint64_t est_inflight = dsl_dir_space_towrite(dd);
1282 	for (int i = 0; i < TXG_SIZE; i++)
1283 		est_inflight += dd->dd_tempreserved[i];
1284 	uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1285 
1286 	/*
1287 	 * On the first iteration, fetch the dataset's used-on-disk and
1288 	 * refreservation values. Also, if checkrefquota is set, test if
1289 	 * allocating this space would exceed the dataset's refquota.
1290 	 */
1291 	if (first && tx->tx_objset) {
1292 		int error;
1293 		dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1294 
1295 		error = dsl_dataset_check_quota(ds, !netfree,
1296 		    asize, est_inflight, &used_on_disk, &ref_rsrv);
1297 		if (error != 0) {
1298 			mutex_exit(&dd->dd_lock);
1299 			DMU_TX_STAT_BUMP(dmu_tx_quota);
1300 			return (error);
1301 		}
1302 	}
1303 
1304 	/*
1305 	 * If this transaction will result in a net free of space,
1306 	 * we want to let it through.
1307 	 */
1308 	if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1309 		quota = UINT64_MAX;
1310 	else
1311 		quota = dsl_dir_phys(dd)->dd_quota;
1312 
1313 	/*
1314 	 * Adjust the quota against the actual pool size at the root
1315 	 * minus any outstanding deferred frees.
1316 	 * To ensure that it's possible to remove files from a full
1317 	 * pool without inducing transient overcommits, we throttle
1318 	 * netfree transactions against a quota that is slightly larger,
1319 	 * but still within the pool's allocation slop.  In cases where
1320 	 * we're very close to full, this will allow a steady trickle of
1321 	 * removes to get through.
1322 	 */
1323 	if (dd->dd_parent == NULL) {
1324 		uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1325 		    (netfree) ?
1326 		    ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1327 
1328 		if (avail < quota) {
1329 			quota = avail;
1330 			retval = SET_ERROR(ENOSPC);
1331 		}
1332 	}
1333 
1334 	/*
1335 	 * If they are requesting more space, and our current estimate
1336 	 * is over quota, they get to try again unless the actual
1337 	 * on-disk is over quota and there are no pending changes
1338 	 * or deferred frees (which may free up space for us).
1339 	 */
1340 	if (used_on_disk + est_inflight >= quota) {
1341 		if (est_inflight > 0 || used_on_disk < quota) {
1342 			retval = SET_ERROR(ERESTART);
1343 		} else {
1344 			ASSERT3U(used_on_disk, >=, quota);
1345 
1346 			if (retval == ENOSPC && (used_on_disk - quota) <
1347 			    dsl_pool_deferred_space(dd->dd_pool)) {
1348 				retval = SET_ERROR(ERESTART);
1349 			}
1350 		}
1351 
1352 		dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1353 		    "quota=%lluK tr=%lluK err=%d\n",
1354 		    (u_longlong_t)used_on_disk>>10,
1355 		    (u_longlong_t)est_inflight>>10,
1356 		    (u_longlong_t)quota>>10, (u_longlong_t)asize>>10, retval);
1357 		mutex_exit(&dd->dd_lock);
1358 		DMU_TX_STAT_BUMP(dmu_tx_quota);
1359 		return (retval);
1360 	}
1361 
1362 	/* We need to up our estimated delta before dropping dd_lock */
1363 	dd->dd_tempreserved[txg & TXG_MASK] += asize;
1364 
1365 	uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1366 	    asize - ref_rsrv);
1367 	mutex_exit(&dd->dd_lock);
1368 
1369 	tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1370 	tr->tr_ds = dd;
1371 	tr->tr_size = asize;
1372 	list_insert_tail(tr_list, tr);
1373 
1374 	/* see if it's OK with our parent */
1375 	if (dd->dd_parent != NULL && parent_rsrv != 0) {
1376 		/*
1377 		 * Recurse on our parent without recursion. This has been
1378 		 * observed to be potentially large stack usage even within
1379 		 * the test suite. Largest seen stack was 7632 bytes on linux.
1380 		 */
1381 
1382 		dd = dd->dd_parent;
1383 		asize = parent_rsrv;
1384 		ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1385 		first = B_FALSE;
1386 		goto top_of_function;
1387 
1388 	} else {
1389 		return (0);
1390 	}
1391 }
1392 
1393 /*
1394  * Reserve space in this dsl_dir, to be used in this tx's txg.
1395  * After the space has been dirtied (and dsl_dir_willuse_space()
1396  * has been called), the reservation should be canceled, using
1397  * dsl_dir_tempreserve_clear().
1398  */
1399 int
1400 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1401     boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1402 {
1403 	int err;
1404 	list_t *tr_list;
1405 
1406 	if (asize == 0) {
1407 		*tr_cookiep = NULL;
1408 		return (0);
1409 	}
1410 
1411 	tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1412 	list_create(tr_list, sizeof (struct tempreserve),
1413 	    offsetof(struct tempreserve, tr_node));
1414 	ASSERT3S(asize, >, 0);
1415 
1416 	err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1417 	if (err == 0) {
1418 		struct tempreserve *tr;
1419 
1420 		tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1421 		tr->tr_size = lsize;
1422 		list_insert_tail(tr_list, tr);
1423 	} else {
1424 		if (err == EAGAIN) {
1425 			/*
1426 			 * If arc_memory_throttle() detected that pageout
1427 			 * is running and we are low on memory, we delay new
1428 			 * non-pageout transactions to give pageout an
1429 			 * advantage.
1430 			 *
1431 			 * It is unfortunate to be delaying while the caller's
1432 			 * locks are held.
1433 			 */
1434 			txg_delay(dd->dd_pool, tx->tx_txg,
1435 			    MSEC2NSEC(10), MSEC2NSEC(10));
1436 			err = SET_ERROR(ERESTART);
1437 		}
1438 	}
1439 
1440 	if (err == 0) {
1441 		err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1442 		    B_FALSE, tr_list, tx, B_TRUE);
1443 	}
1444 
1445 	if (err != 0)
1446 		dsl_dir_tempreserve_clear(tr_list, tx);
1447 	else
1448 		*tr_cookiep = tr_list;
1449 
1450 	return (err);
1451 }
1452 
1453 /*
1454  * Clear a temporary reservation that we previously made with
1455  * dsl_dir_tempreserve_space().
1456  */
1457 void
1458 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1459 {
1460 	int txgidx = tx->tx_txg & TXG_MASK;
1461 	list_t *tr_list = tr_cookie;
1462 	struct tempreserve *tr;
1463 
1464 	ASSERT3U(tx->tx_txg, !=, 0);
1465 
1466 	if (tr_cookie == NULL)
1467 		return;
1468 
1469 	while ((tr = list_head(tr_list)) != NULL) {
1470 		if (tr->tr_ds) {
1471 			mutex_enter(&tr->tr_ds->dd_lock);
1472 			ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1473 			    tr->tr_size);
1474 			tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1475 			mutex_exit(&tr->tr_ds->dd_lock);
1476 		} else {
1477 			arc_tempreserve_clear(tr->tr_size);
1478 		}
1479 		list_remove(tr_list, tr);
1480 		kmem_free(tr, sizeof (struct tempreserve));
1481 	}
1482 
1483 	kmem_free(tr_list, sizeof (list_t));
1484 }
1485 
1486 /*
1487  * This should be called from open context when we think we're going to write
1488  * or free space, for example when dirtying data. Be conservative; it's okay
1489  * to write less space or free more, but we don't want to write more or free
1490  * less than the amount specified.
1491  *
1492  * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1493  * version however it has been adjusted to use an iterative rather than
1494  * recursive algorithm to minimize stack usage.
1495  */
1496 void
1497 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1498 {
1499 	int64_t parent_space;
1500 	uint64_t est_used;
1501 
1502 	do {
1503 		mutex_enter(&dd->dd_lock);
1504 		if (space > 0)
1505 			dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1506 
1507 		est_used = dsl_dir_space_towrite(dd) +
1508 		    dsl_dir_phys(dd)->dd_used_bytes;
1509 		parent_space = parent_delta(dd, est_used, space);
1510 		mutex_exit(&dd->dd_lock);
1511 
1512 		/* Make sure that we clean up dd_space_to* */
1513 		dsl_dir_dirty(dd, tx);
1514 
1515 		dd = dd->dd_parent;
1516 		space = parent_space;
1517 	} while (space && dd);
1518 }
1519 
1520 /* call from syncing context when we actually write/free space for this dd */
1521 void
1522 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1523     int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1524 {
1525 	int64_t accounted_delta;
1526 
1527 	ASSERT(dmu_tx_is_syncing(tx));
1528 	ASSERT(type < DD_USED_NUM);
1529 
1530 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1531 
1532 	/*
1533 	 * dsl_dataset_set_refreservation_sync_impl() calls this with
1534 	 * dd_lock held, so that it can atomically update
1535 	 * ds->ds_reserved and the dsl_dir accounting, so that
1536 	 * dsl_dataset_check_quota() can see dataset and dir accounting
1537 	 * consistently.
1538 	 */
1539 	boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1540 	if (needlock)
1541 		mutex_enter(&dd->dd_lock);
1542 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1543 	accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1544 	ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1545 	ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1546 	ASSERT(uncompressed >= 0 ||
1547 	    ddp->dd_uncompressed_bytes >= -uncompressed);
1548 	ddp->dd_used_bytes += used;
1549 	ddp->dd_uncompressed_bytes += uncompressed;
1550 	ddp->dd_compressed_bytes += compressed;
1551 
1552 	if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1553 		ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used);
1554 		ddp->dd_used_breakdown[type] += used;
1555 #ifdef ZFS_DEBUG
1556 		{
1557 			dd_used_t t;
1558 			uint64_t u = 0;
1559 			for (t = 0; t < DD_USED_NUM; t++)
1560 				u += ddp->dd_used_breakdown[t];
1561 			ASSERT3U(u, ==, ddp->dd_used_bytes);
1562 		}
1563 #endif
1564 	}
1565 	if (needlock)
1566 		mutex_exit(&dd->dd_lock);
1567 
1568 	if (dd->dd_parent != NULL) {
1569 		dsl_dir_diduse_transfer_space(dd->dd_parent,
1570 		    accounted_delta, compressed, uncompressed,
1571 		    used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1572 	}
1573 }
1574 
1575 void
1576 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1577     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1578 {
1579 	ASSERT(dmu_tx_is_syncing(tx));
1580 	ASSERT(oldtype < DD_USED_NUM);
1581 	ASSERT(newtype < DD_USED_NUM);
1582 
1583 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1584 	if (delta == 0 ||
1585 	    !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN))
1586 		return;
1587 
1588 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1589 	mutex_enter(&dd->dd_lock);
1590 	ASSERT(delta > 0 ?
1591 	    ddp->dd_used_breakdown[oldtype] >= delta :
1592 	    ddp->dd_used_breakdown[newtype] >= -delta);
1593 	ASSERT(ddp->dd_used_bytes >= ABS(delta));
1594 	ddp->dd_used_breakdown[oldtype] -= delta;
1595 	ddp->dd_used_breakdown[newtype] += delta;
1596 	mutex_exit(&dd->dd_lock);
1597 }
1598 
1599 void
1600 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used,
1601     int64_t compressed, int64_t uncompressed, int64_t tonew,
1602     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1603 {
1604 	int64_t accounted_delta;
1605 
1606 	ASSERT(dmu_tx_is_syncing(tx));
1607 	ASSERT(oldtype < DD_USED_NUM);
1608 	ASSERT(newtype < DD_USED_NUM);
1609 
1610 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1611 
1612 	mutex_enter(&dd->dd_lock);
1613 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1614 	accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1615 	ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1616 	ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1617 	ASSERT(uncompressed >= 0 ||
1618 	    ddp->dd_uncompressed_bytes >= -uncompressed);
1619 	ddp->dd_used_bytes += used;
1620 	ddp->dd_uncompressed_bytes += uncompressed;
1621 	ddp->dd_compressed_bytes += compressed;
1622 
1623 	if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1624 		ASSERT(tonew - used <= 0 ||
1625 		    ddp->dd_used_breakdown[oldtype] >= tonew - used);
1626 		ASSERT(tonew >= 0 ||
1627 		    ddp->dd_used_breakdown[newtype] >= -tonew);
1628 		ddp->dd_used_breakdown[oldtype] -= tonew - used;
1629 		ddp->dd_used_breakdown[newtype] += tonew;
1630 #ifdef ZFS_DEBUG
1631 		{
1632 			dd_used_t t;
1633 			uint64_t u = 0;
1634 			for (t = 0; t < DD_USED_NUM; t++)
1635 				u += ddp->dd_used_breakdown[t];
1636 			ASSERT3U(u, ==, ddp->dd_used_bytes);
1637 		}
1638 #endif
1639 	}
1640 	mutex_exit(&dd->dd_lock);
1641 
1642 	if (dd->dd_parent != NULL) {
1643 		dsl_dir_diduse_transfer_space(dd->dd_parent,
1644 		    accounted_delta, compressed, uncompressed,
1645 		    used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1646 	}
1647 }
1648 
1649 typedef struct dsl_dir_set_qr_arg {
1650 	const char *ddsqra_name;
1651 	zprop_source_t ddsqra_source;
1652 	uint64_t ddsqra_value;
1653 } dsl_dir_set_qr_arg_t;
1654 
1655 static int
1656 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1657 {
1658 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1659 	dsl_pool_t *dp = dmu_tx_pool(tx);
1660 	dsl_dataset_t *ds;
1661 	int error;
1662 	uint64_t towrite, newval;
1663 
1664 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1665 	if (error != 0)
1666 		return (error);
1667 
1668 	error = dsl_prop_predict(ds->ds_dir, "quota",
1669 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1670 	if (error != 0) {
1671 		dsl_dataset_rele(ds, FTAG);
1672 		return (error);
1673 	}
1674 
1675 	if (newval == 0) {
1676 		dsl_dataset_rele(ds, FTAG);
1677 		return (0);
1678 	}
1679 
1680 	mutex_enter(&ds->ds_dir->dd_lock);
1681 	/*
1682 	 * If we are doing the preliminary check in open context, and
1683 	 * there are pending changes, then don't fail it, since the
1684 	 * pending changes could under-estimate the amount of space to be
1685 	 * freed up.
1686 	 */
1687 	towrite = dsl_dir_space_towrite(ds->ds_dir);
1688 	if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1689 	    (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1690 	    newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1691 		error = SET_ERROR(ENOSPC);
1692 	}
1693 	mutex_exit(&ds->ds_dir->dd_lock);
1694 	dsl_dataset_rele(ds, FTAG);
1695 	return (error);
1696 }
1697 
1698 static void
1699 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1700 {
1701 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1702 	dsl_pool_t *dp = dmu_tx_pool(tx);
1703 	dsl_dataset_t *ds;
1704 	uint64_t newval;
1705 
1706 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1707 
1708 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1709 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1710 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1711 		    &ddsqra->ddsqra_value, tx);
1712 
1713 		VERIFY0(dsl_prop_get_int_ds(ds,
1714 		    zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1715 	} else {
1716 		newval = ddsqra->ddsqra_value;
1717 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1718 		    zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1719 	}
1720 
1721 	dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1722 	mutex_enter(&ds->ds_dir->dd_lock);
1723 	dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1724 	mutex_exit(&ds->ds_dir->dd_lock);
1725 	dsl_dataset_rele(ds, FTAG);
1726 }
1727 
1728 int
1729 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1730 {
1731 	dsl_dir_set_qr_arg_t ddsqra;
1732 
1733 	ddsqra.ddsqra_name = ddname;
1734 	ddsqra.ddsqra_source = source;
1735 	ddsqra.ddsqra_value = quota;
1736 
1737 	return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1738 	    dsl_dir_set_quota_sync, &ddsqra, 0,
1739 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
1740 }
1741 
1742 static int
1743 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1744 {
1745 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1746 	dsl_pool_t *dp = dmu_tx_pool(tx);
1747 	dsl_dataset_t *ds;
1748 	dsl_dir_t *dd;
1749 	uint64_t newval, used, avail;
1750 	int error;
1751 
1752 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1753 	if (error != 0)
1754 		return (error);
1755 	dd = ds->ds_dir;
1756 
1757 	/*
1758 	 * If we are doing the preliminary check in open context, the
1759 	 * space estimates may be inaccurate.
1760 	 */
1761 	if (!dmu_tx_is_syncing(tx)) {
1762 		dsl_dataset_rele(ds, FTAG);
1763 		return (0);
1764 	}
1765 
1766 	error = dsl_prop_predict(ds->ds_dir,
1767 	    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1768 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1769 	if (error != 0) {
1770 		dsl_dataset_rele(ds, FTAG);
1771 		return (error);
1772 	}
1773 
1774 	mutex_enter(&dd->dd_lock);
1775 	used = dsl_dir_phys(dd)->dd_used_bytes;
1776 	mutex_exit(&dd->dd_lock);
1777 
1778 	if (dd->dd_parent) {
1779 		avail = dsl_dir_space_available(dd->dd_parent,
1780 		    NULL, 0, FALSE);
1781 	} else {
1782 		avail = dsl_pool_adjustedsize(dd->dd_pool,
1783 		    ZFS_SPACE_CHECK_NORMAL) - used;
1784 	}
1785 
1786 	if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1787 		uint64_t delta = MAX(used, newval) -
1788 		    MAX(used, dsl_dir_phys(dd)->dd_reserved);
1789 
1790 		if (delta > avail ||
1791 		    (dsl_dir_phys(dd)->dd_quota > 0 &&
1792 		    newval > dsl_dir_phys(dd)->dd_quota))
1793 			error = SET_ERROR(ENOSPC);
1794 	}
1795 
1796 	dsl_dataset_rele(ds, FTAG);
1797 	return (error);
1798 }
1799 
1800 void
1801 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1802 {
1803 	uint64_t used;
1804 	int64_t delta;
1805 
1806 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1807 
1808 	mutex_enter(&dd->dd_lock);
1809 	used = dsl_dir_phys(dd)->dd_used_bytes;
1810 	delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1811 	dsl_dir_phys(dd)->dd_reserved = value;
1812 
1813 	if (dd->dd_parent != NULL) {
1814 		/* Roll up this additional usage into our ancestors */
1815 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1816 		    delta, 0, 0, tx);
1817 	}
1818 	mutex_exit(&dd->dd_lock);
1819 }
1820 
1821 static void
1822 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1823 {
1824 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1825 	dsl_pool_t *dp = dmu_tx_pool(tx);
1826 	dsl_dataset_t *ds;
1827 	uint64_t newval;
1828 
1829 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1830 
1831 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1832 		dsl_prop_set_sync_impl(ds,
1833 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1834 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1835 		    &ddsqra->ddsqra_value, tx);
1836 
1837 		VERIFY0(dsl_prop_get_int_ds(ds,
1838 		    zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1839 	} else {
1840 		newval = ddsqra->ddsqra_value;
1841 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1842 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1843 		    (longlong_t)newval);
1844 	}
1845 
1846 	dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1847 	dsl_dataset_rele(ds, FTAG);
1848 }
1849 
1850 int
1851 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1852     uint64_t reservation)
1853 {
1854 	dsl_dir_set_qr_arg_t ddsqra;
1855 
1856 	ddsqra.ddsqra_name = ddname;
1857 	ddsqra.ddsqra_source = source;
1858 	ddsqra.ddsqra_value = reservation;
1859 
1860 	return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1861 	    dsl_dir_set_reservation_sync, &ddsqra, 0,
1862 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
1863 }
1864 
1865 static dsl_dir_t *
1866 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1867 {
1868 	for (; ds1; ds1 = ds1->dd_parent) {
1869 		dsl_dir_t *dd;
1870 		for (dd = ds2; dd; dd = dd->dd_parent) {
1871 			if (ds1 == dd)
1872 				return (dd);
1873 		}
1874 	}
1875 	return (NULL);
1876 }
1877 
1878 /*
1879  * If delta is applied to dd, how much of that delta would be applied to
1880  * ancestor?  Syncing context only.
1881  */
1882 static int64_t
1883 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1884 {
1885 	if (dd == ancestor)
1886 		return (delta);
1887 
1888 	mutex_enter(&dd->dd_lock);
1889 	delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1890 	mutex_exit(&dd->dd_lock);
1891 	return (would_change(dd->dd_parent, delta, ancestor));
1892 }
1893 
1894 typedef struct dsl_dir_rename_arg {
1895 	const char *ddra_oldname;
1896 	const char *ddra_newname;
1897 	cred_t *ddra_cred;
1898 	proc_t *ddra_proc;
1899 } dsl_dir_rename_arg_t;
1900 
1901 typedef struct dsl_valid_rename_arg {
1902 	int char_delta;
1903 	int nest_delta;
1904 } dsl_valid_rename_arg_t;
1905 
1906 static int
1907 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1908 {
1909 	(void) dp;
1910 	dsl_valid_rename_arg_t *dvra = arg;
1911 	char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1912 
1913 	dsl_dataset_name(ds, namebuf);
1914 
1915 	ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1916 	    <, ZFS_MAX_DATASET_NAME_LEN);
1917 	int namelen = strlen(namebuf) + dvra->char_delta;
1918 	int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1919 
1920 	if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1921 		return (SET_ERROR(ENAMETOOLONG));
1922 	if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1923 		return (SET_ERROR(ENAMETOOLONG));
1924 	return (0);
1925 }
1926 
1927 static int
1928 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1929 {
1930 	dsl_dir_rename_arg_t *ddra = arg;
1931 	dsl_pool_t *dp = dmu_tx_pool(tx);
1932 	dsl_dir_t *dd, *newparent;
1933 	dsl_valid_rename_arg_t dvra;
1934 	dsl_dataset_t *parentds;
1935 	objset_t *parentos;
1936 	const char *mynewname;
1937 	int error;
1938 
1939 	/* target dir should exist */
1940 	error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1941 	if (error != 0)
1942 		return (error);
1943 
1944 	/* new parent should exist */
1945 	error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1946 	    &newparent, &mynewname);
1947 	if (error != 0) {
1948 		dsl_dir_rele(dd, FTAG);
1949 		return (error);
1950 	}
1951 
1952 	/* can't rename to different pool */
1953 	if (dd->dd_pool != newparent->dd_pool) {
1954 		dsl_dir_rele(newparent, FTAG);
1955 		dsl_dir_rele(dd, FTAG);
1956 		return (SET_ERROR(EXDEV));
1957 	}
1958 
1959 	/* new name should not already exist */
1960 	if (mynewname == NULL) {
1961 		dsl_dir_rele(newparent, FTAG);
1962 		dsl_dir_rele(dd, FTAG);
1963 		return (SET_ERROR(EEXIST));
1964 	}
1965 
1966 	/* can't rename below anything but filesystems (eg. no ZVOLs) */
1967 	error = dsl_dataset_hold_obj(newparent->dd_pool,
1968 	    dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
1969 	if (error != 0) {
1970 		dsl_dir_rele(newparent, FTAG);
1971 		dsl_dir_rele(dd, FTAG);
1972 		return (error);
1973 	}
1974 	error = dmu_objset_from_ds(parentds, &parentos);
1975 	if (error != 0) {
1976 		dsl_dataset_rele(parentds, FTAG);
1977 		dsl_dir_rele(newparent, FTAG);
1978 		dsl_dir_rele(dd, FTAG);
1979 		return (error);
1980 	}
1981 	if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
1982 		dsl_dataset_rele(parentds, FTAG);
1983 		dsl_dir_rele(newparent, FTAG);
1984 		dsl_dir_rele(dd, FTAG);
1985 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
1986 	}
1987 	dsl_dataset_rele(parentds, FTAG);
1988 
1989 	ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
1990 	    <, ZFS_MAX_DATASET_NAME_LEN);
1991 	ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
1992 	    <, ZFS_MAX_DATASET_NAME_LEN);
1993 	dvra.char_delta = strlen(ddra->ddra_newname)
1994 	    - strlen(ddra->ddra_oldname);
1995 	dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
1996 	    - get_dataset_depth(ddra->ddra_oldname);
1997 
1998 	/* if the name length is growing, validate child name lengths */
1999 	if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
2000 		error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
2001 		    &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
2002 		if (error != 0) {
2003 			dsl_dir_rele(newparent, FTAG);
2004 			dsl_dir_rele(dd, FTAG);
2005 			return (error);
2006 		}
2007 	}
2008 
2009 	if (dmu_tx_is_syncing(tx)) {
2010 		if (spa_feature_is_active(dp->dp_spa,
2011 		    SPA_FEATURE_FS_SS_LIMIT)) {
2012 			/*
2013 			 * Although this is the check function and we don't
2014 			 * normally make on-disk changes in check functions,
2015 			 * we need to do that here.
2016 			 *
2017 			 * Ensure this portion of the tree's counts have been
2018 			 * initialized in case the new parent has limits set.
2019 			 */
2020 			dsl_dir_init_fs_ss_count(dd, tx);
2021 		}
2022 	}
2023 
2024 	if (newparent != dd->dd_parent) {
2025 		/* is there enough space? */
2026 		uint64_t myspace =
2027 		    MAX(dsl_dir_phys(dd)->dd_used_bytes,
2028 		    dsl_dir_phys(dd)->dd_reserved);
2029 		objset_t *os = dd->dd_pool->dp_meta_objset;
2030 		uint64_t fs_cnt = 0;
2031 		uint64_t ss_cnt = 0;
2032 
2033 		if (dsl_dir_is_zapified(dd)) {
2034 			int err;
2035 
2036 			err = zap_lookup(os, dd->dd_object,
2037 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2038 			    &fs_cnt);
2039 			if (err != ENOENT && err != 0) {
2040 				dsl_dir_rele(newparent, FTAG);
2041 				dsl_dir_rele(dd, FTAG);
2042 				return (err);
2043 			}
2044 
2045 			/*
2046 			 * have to add 1 for the filesystem itself that we're
2047 			 * moving
2048 			 */
2049 			fs_cnt++;
2050 
2051 			err = zap_lookup(os, dd->dd_object,
2052 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2053 			    &ss_cnt);
2054 			if (err != ENOENT && err != 0) {
2055 				dsl_dir_rele(newparent, FTAG);
2056 				dsl_dir_rele(dd, FTAG);
2057 				return (err);
2058 			}
2059 		}
2060 
2061 		/* check for encryption errors */
2062 		error = dsl_dir_rename_crypt_check(dd, newparent);
2063 		if (error != 0) {
2064 			dsl_dir_rele(newparent, FTAG);
2065 			dsl_dir_rele(dd, FTAG);
2066 			return (SET_ERROR(EACCES));
2067 		}
2068 
2069 		/* no rename into our descendant */
2070 		if (closest_common_ancestor(dd, newparent) == dd) {
2071 			dsl_dir_rele(newparent, FTAG);
2072 			dsl_dir_rele(dd, FTAG);
2073 			return (SET_ERROR(EINVAL));
2074 		}
2075 
2076 		error = dsl_dir_transfer_possible(dd->dd_parent,
2077 		    newparent, fs_cnt, ss_cnt, myspace,
2078 		    ddra->ddra_cred, ddra->ddra_proc);
2079 		if (error != 0) {
2080 			dsl_dir_rele(newparent, FTAG);
2081 			dsl_dir_rele(dd, FTAG);
2082 			return (error);
2083 		}
2084 	}
2085 
2086 	dsl_dir_rele(newparent, FTAG);
2087 	dsl_dir_rele(dd, FTAG);
2088 	return (0);
2089 }
2090 
2091 static void
2092 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
2093 {
2094 	dsl_dir_rename_arg_t *ddra = arg;
2095 	dsl_pool_t *dp = dmu_tx_pool(tx);
2096 	dsl_dir_t *dd, *newparent;
2097 	const char *mynewname;
2098 	objset_t *mos = dp->dp_meta_objset;
2099 
2100 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2101 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2102 	    &mynewname));
2103 
2104 	/* Log this before we change the name. */
2105 	spa_history_log_internal_dd(dd, "rename", tx,
2106 	    "-> %s", ddra->ddra_newname);
2107 
2108 	if (newparent != dd->dd_parent) {
2109 		objset_t *os = dd->dd_pool->dp_meta_objset;
2110 		uint64_t fs_cnt = 0;
2111 		uint64_t ss_cnt = 0;
2112 
2113 		/*
2114 		 * We already made sure the dd counts were initialized in the
2115 		 * check function.
2116 		 */
2117 		if (spa_feature_is_active(dp->dp_spa,
2118 		    SPA_FEATURE_FS_SS_LIMIT)) {
2119 			VERIFY0(zap_lookup(os, dd->dd_object,
2120 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2121 			    &fs_cnt));
2122 			/* add 1 for the filesystem itself that we're moving */
2123 			fs_cnt++;
2124 
2125 			VERIFY0(zap_lookup(os, dd->dd_object,
2126 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2127 			    &ss_cnt));
2128 		}
2129 
2130 		dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2131 		    DD_FIELD_FILESYSTEM_COUNT, tx);
2132 		dsl_fs_ss_count_adjust(newparent, fs_cnt,
2133 		    DD_FIELD_FILESYSTEM_COUNT, tx);
2134 
2135 		dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2136 		    DD_FIELD_SNAPSHOT_COUNT, tx);
2137 		dsl_fs_ss_count_adjust(newparent, ss_cnt,
2138 		    DD_FIELD_SNAPSHOT_COUNT, tx);
2139 
2140 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2141 		    -dsl_dir_phys(dd)->dd_used_bytes,
2142 		    -dsl_dir_phys(dd)->dd_compressed_bytes,
2143 		    -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2144 		dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2145 		    dsl_dir_phys(dd)->dd_used_bytes,
2146 		    dsl_dir_phys(dd)->dd_compressed_bytes,
2147 		    dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2148 
2149 		if (dsl_dir_phys(dd)->dd_reserved >
2150 		    dsl_dir_phys(dd)->dd_used_bytes) {
2151 			uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2152 			    dsl_dir_phys(dd)->dd_used_bytes;
2153 
2154 			dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2155 			    -unused_rsrv, 0, 0, tx);
2156 			dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2157 			    unused_rsrv, 0, 0, tx);
2158 		}
2159 	}
2160 
2161 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
2162 
2163 	/* remove from old parent zapobj */
2164 	VERIFY0(zap_remove(mos,
2165 	    dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2166 	    dd->dd_myname, tx));
2167 
2168 	(void) strlcpy(dd->dd_myname, mynewname,
2169 	    sizeof (dd->dd_myname));
2170 	dsl_dir_rele(dd->dd_parent, dd);
2171 	dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2172 	VERIFY0(dsl_dir_hold_obj(dp,
2173 	    newparent->dd_object, NULL, dd, &dd->dd_parent));
2174 
2175 	/* add to new parent zapobj */
2176 	VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2177 	    dd->dd_myname, 8, 1, &dd->dd_object, tx));
2178 
2179 	/* TODO: A rename callback to avoid these layering violations. */
2180 	zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
2181 	zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
2182 	    ddra->ddra_newname, B_TRUE);
2183 
2184 	dsl_prop_notify_all(dd);
2185 
2186 	dsl_dir_rele(newparent, FTAG);
2187 	dsl_dir_rele(dd, FTAG);
2188 }
2189 
2190 int
2191 dsl_dir_rename(const char *oldname, const char *newname)
2192 {
2193 	dsl_dir_rename_arg_t ddra;
2194 
2195 	ddra.ddra_oldname = oldname;
2196 	ddra.ddra_newname = newname;
2197 	ddra.ddra_cred = CRED();
2198 	ddra.ddra_proc = curproc;
2199 
2200 	return (dsl_sync_task(oldname,
2201 	    dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2202 	    3, ZFS_SPACE_CHECK_RESERVED));
2203 }
2204 
2205 int
2206 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2207     uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
2208     cred_t *cr, proc_t *proc)
2209 {
2210 	dsl_dir_t *ancestor;
2211 	int64_t adelta;
2212 	uint64_t avail;
2213 	int err;
2214 
2215 	ancestor = closest_common_ancestor(sdd, tdd);
2216 	adelta = would_change(sdd, -space, ancestor);
2217 	avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2218 	if (avail < space)
2219 		return (SET_ERROR(ENOSPC));
2220 
2221 	err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2222 	    ancestor, cr, proc);
2223 	if (err != 0)
2224 		return (err);
2225 	err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2226 	    ancestor, cr, proc);
2227 	if (err != 0)
2228 		return (err);
2229 
2230 	return (0);
2231 }
2232 
2233 inode_timespec_t
2234 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2235 {
2236 	inode_timespec_t t;
2237 
2238 	mutex_enter(&dd->dd_lock);
2239 	t = dd->dd_snap_cmtime;
2240 	mutex_exit(&dd->dd_lock);
2241 
2242 	return (t);
2243 }
2244 
2245 void
2246 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
2247 {
2248 	inode_timespec_t t;
2249 
2250 	gethrestime(&t);
2251 	mutex_enter(&dd->dd_lock);
2252 	dd->dd_snap_cmtime = t;
2253 	mutex_exit(&dd->dd_lock);
2254 }
2255 
2256 void
2257 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2258 {
2259 	objset_t *mos = dd->dd_pool->dp_meta_objset;
2260 	dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2261 }
2262 
2263 boolean_t
2264 dsl_dir_is_zapified(dsl_dir_t *dd)
2265 {
2266 	dmu_object_info_t doi;
2267 
2268 	dmu_object_info_from_db(dd->dd_dbuf, &doi);
2269 	return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2270 }
2271 
2272 void
2273 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
2274 {
2275 	objset_t *mos = dd->dd_pool->dp_meta_objset;
2276 	ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
2277 	    SPA_FEATURE_LIVELIST));
2278 	dsl_deadlist_open(&dd->dd_livelist, mos, obj);
2279 	bplist_create(&dd->dd_pending_allocs);
2280 	bplist_create(&dd->dd_pending_frees);
2281 }
2282 
2283 void
2284 dsl_dir_livelist_close(dsl_dir_t *dd)
2285 {
2286 	dsl_deadlist_close(&dd->dd_livelist);
2287 	bplist_destroy(&dd->dd_pending_allocs);
2288 	bplist_destroy(&dd->dd_pending_frees);
2289 }
2290 
2291 void
2292 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
2293 {
2294 	uint64_t obj;
2295 	dsl_pool_t *dp = dmu_tx_pool(tx);
2296 	spa_t *spa = dp->dp_spa;
2297 	livelist_condense_entry_t to_condense = spa->spa_to_condense;
2298 
2299 	if (!dsl_deadlist_is_open(&dd->dd_livelist))
2300 		return;
2301 
2302 	/*
2303 	 * If the livelist being removed is set to be condensed, stop the
2304 	 * condense zthr and indicate the cancellation in the spa_to_condense
2305 	 * struct in case the condense no-wait synctask has already started
2306 	 */
2307 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
2308 	if (ll_condense_thread != NULL &&
2309 	    (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
2310 		/*
2311 		 * We use zthr_wait_cycle_done instead of zthr_cancel
2312 		 * because we don't want to destroy the zthr, just have
2313 		 * it skip its current task.
2314 		 */
2315 		spa->spa_to_condense.cancelled = B_TRUE;
2316 		zthr_wait_cycle_done(ll_condense_thread);
2317 		/*
2318 		 * If we've returned from zthr_wait_cycle_done without
2319 		 * clearing the to_condense data structure it's either
2320 		 * because the no-wait synctask has started (which is
2321 		 * indicated by 'syncing' field of to_condense) and we
2322 		 * can expect it to clear to_condense on its own.
2323 		 * Otherwise, we returned before the zthr ran. The
2324 		 * checkfunc will now fail as cancelled == B_TRUE so we
2325 		 * can safely NULL out ds, allowing a different dir's
2326 		 * livelist to be condensed.
2327 		 *
2328 		 * We can be sure that the to_condense struct will not
2329 		 * be repopulated at this stage because both this
2330 		 * function and dsl_livelist_try_condense execute in
2331 		 * syncing context.
2332 		 */
2333 		if ((spa->spa_to_condense.ds != NULL) &&
2334 		    !spa->spa_to_condense.syncing) {
2335 			dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
2336 			    spa);
2337 			spa->spa_to_condense.ds = NULL;
2338 		}
2339 	}
2340 
2341 	dsl_dir_livelist_close(dd);
2342 	VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
2343 	    DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
2344 	VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
2345 	    DD_FIELD_LIVELIST, tx));
2346 	if (total) {
2347 		dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
2348 		spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2349 	}
2350 }
2351 
2352 static int
2353 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
2354     zfs_wait_activity_t activity, boolean_t *in_progress)
2355 {
2356 	int error = 0;
2357 
2358 	ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
2359 
2360 	switch (activity) {
2361 	case ZFS_WAIT_DELETEQ: {
2362 #ifdef _KERNEL
2363 		objset_t *os;
2364 		error = dmu_objset_from_ds(ds, &os);
2365 		if (error != 0)
2366 			break;
2367 
2368 		mutex_enter(&os->os_user_ptr_lock);
2369 		void *user = dmu_objset_get_user(os);
2370 		mutex_exit(&os->os_user_ptr_lock);
2371 		if (dmu_objset_type(os) != DMU_OST_ZFS ||
2372 		    user == NULL || zfs_get_vfs_flag_unmounted(os)) {
2373 			*in_progress = B_FALSE;
2374 			return (0);
2375 		}
2376 
2377 		uint64_t readonly = B_FALSE;
2378 		error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
2379 		    NULL);
2380 
2381 		if (error != 0)
2382 			break;
2383 
2384 		if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
2385 			*in_progress = B_FALSE;
2386 			return (0);
2387 		}
2388 
2389 		uint64_t count, unlinked_obj;
2390 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
2391 		    &unlinked_obj);
2392 		if (error != 0) {
2393 			dsl_dataset_rele(ds, FTAG);
2394 			break;
2395 		}
2396 		error = zap_count(os, unlinked_obj, &count);
2397 
2398 		if (error == 0)
2399 			*in_progress = (count != 0);
2400 		break;
2401 #else
2402 		/*
2403 		 * The delete queue is ZPL specific, and libzpool doesn't have
2404 		 * it. It doesn't make sense to wait for it.
2405 		 */
2406 		(void) ds;
2407 		*in_progress = B_FALSE;
2408 		break;
2409 #endif
2410 	}
2411 	default:
2412 		panic("unrecognized value for activity %d", activity);
2413 	}
2414 
2415 	return (error);
2416 }
2417 
2418 int
2419 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
2420     boolean_t *waited)
2421 {
2422 	int error = 0;
2423 	boolean_t in_progress;
2424 	dsl_pool_t *dp = dd->dd_pool;
2425 	for (;;) {
2426 		dsl_pool_config_enter(dp, FTAG);
2427 		error = dsl_dir_activity_in_progress(dd, ds, activity,
2428 		    &in_progress);
2429 		dsl_pool_config_exit(dp, FTAG);
2430 		if (error != 0 || !in_progress)
2431 			break;
2432 
2433 		*waited = B_TRUE;
2434 
2435 		if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
2436 		    0 || dd->dd_activity_cancelled) {
2437 			error = SET_ERROR(EINTR);
2438 			break;
2439 		}
2440 	}
2441 	return (error);
2442 }
2443 
2444 void
2445 dsl_dir_cancel_waiters(dsl_dir_t *dd)
2446 {
2447 	mutex_enter(&dd->dd_activity_lock);
2448 	dd->dd_activity_cancelled = B_TRUE;
2449 	cv_broadcast(&dd->dd_activity_cv);
2450 	while (dd->dd_activity_waiters > 0)
2451 		cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
2452 	mutex_exit(&dd->dd_activity_lock);
2453 }
2454 
2455 #if defined(_KERNEL)
2456 EXPORT_SYMBOL(dsl_dir_set_quota);
2457 EXPORT_SYMBOL(dsl_dir_set_reservation);
2458 #endif
2459