1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 28 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_prop.h> 37 #include <sys/dsl_synctask.h> 38 #include <sys/dsl_deleg.h> 39 #include <sys/dmu_impl.h> 40 #include <sys/spa.h> 41 #include <sys/spa_impl.h> 42 #include <sys/metaslab.h> 43 #include <sys/zap.h> 44 #include <sys/zio.h> 45 #include <sys/arc.h> 46 #include <sys/sunddi.h> 47 #include <sys/zfeature.h> 48 #include <sys/policy.h> 49 #include <sys/zfs_vfsops.h> 50 #include <sys/zfs_znode.h> 51 #include <sys/zvol.h> 52 #include <sys/zthr.h> 53 #include "zfs_namecheck.h" 54 #include "zfs_prop.h" 55 56 /* 57 * Filesystem and Snapshot Limits 58 * ------------------------------ 59 * 60 * These limits are used to restrict the number of filesystems and/or snapshots 61 * that can be created at a given level in the tree or below. A typical 62 * use-case is with a delegated dataset where the administrator wants to ensure 63 * that a user within the zone is not creating too many additional filesystems 64 * or snapshots, even though they're not exceeding their space quota. 65 * 66 * The filesystem and snapshot counts are stored as extensible properties. This 67 * capability is controlled by a feature flag and must be enabled to be used. 68 * Once enabled, the feature is not active until the first limit is set. At 69 * that point, future operations to create/destroy filesystems or snapshots 70 * will validate and update the counts. 71 * 72 * Because the count properties will not exist before the feature is active, 73 * the counts are updated when a limit is first set on an uninitialized 74 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 75 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 76 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 77 * snapshot count properties on a node indicate uninitialized counts on that 78 * node.) When first setting a limit on an uninitialized node, the code starts 79 * at the filesystem with the new limit and descends into all sub-filesystems 80 * to add the count properties. 81 * 82 * In practice this is lightweight since a limit is typically set when the 83 * filesystem is created and thus has no children. Once valid, changing the 84 * limit value won't require a re-traversal since the counts are already valid. 85 * When recursively fixing the counts, if a node with a limit is encountered 86 * during the descent, the counts are known to be valid and there is no need to 87 * descend into that filesystem's children. The counts on filesystems above the 88 * one with the new limit will still be uninitialized, unless a limit is 89 * eventually set on one of those filesystems. The counts are always recursively 90 * updated when a limit is set on a dataset, unless there is already a limit. 91 * When a new limit value is set on a filesystem with an existing limit, it is 92 * possible for the new limit to be less than the current count at that level 93 * since a user who can change the limit is also allowed to exceed the limit. 94 * 95 * Once the feature is active, then whenever a filesystem or snapshot is 96 * created, the code recurses up the tree, validating the new count against the 97 * limit at each initialized level. In practice, most levels will not have a 98 * limit set. If there is a limit at any initialized level up the tree, the 99 * check must pass or the creation will fail. Likewise, when a filesystem or 100 * snapshot is destroyed, the counts are recursively adjusted all the way up 101 * the initialized nodes in the tree. Renaming a filesystem into different point 102 * in the tree will first validate, then update the counts on each branch up to 103 * the common ancestor. A receive will also validate the counts and then update 104 * them. 105 * 106 * An exception to the above behavior is that the limit is not enforced if the 107 * user has permission to modify the limit. This is primarily so that 108 * recursive snapshots in the global zone always work. We want to prevent a 109 * denial-of-service in which a lower level delegated dataset could max out its 110 * limit and thus block recursive snapshots from being taken in the global zone. 111 * Because of this, it is possible for the snapshot count to be over the limit 112 * and snapshots taken in the global zone could cause a lower level dataset to 113 * hit or exceed its limit. The administrator taking the global zone recursive 114 * snapshot should be aware of this side-effect and behave accordingly. 115 * For consistency, the filesystem limit is also not enforced if the user can 116 * modify the limit. 117 * 118 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 119 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 120 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 121 * dsl_dir_init_fs_ss_count(). 122 */ 123 124 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd); 125 126 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 127 128 typedef struct ddulrt_arg { 129 dsl_dir_t *ddulrta_dd; 130 uint64_t ddlrta_txg; 131 } ddulrt_arg_t; 132 133 static void 134 dsl_dir_evict_async(void *dbu) 135 { 136 dsl_dir_t *dd = dbu; 137 int t; 138 dsl_pool_t *dp __maybe_unused = dd->dd_pool; 139 140 dd->dd_dbuf = NULL; 141 142 for (t = 0; t < TXG_SIZE; t++) { 143 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 144 ASSERT(dd->dd_tempreserved[t] == 0); 145 ASSERT(dd->dd_space_towrite[t] == 0); 146 } 147 148 if (dd->dd_parent) 149 dsl_dir_async_rele(dd->dd_parent, dd); 150 151 spa_async_close(dd->dd_pool->dp_spa, dd); 152 153 if (dsl_deadlist_is_open(&dd->dd_livelist)) 154 dsl_dir_livelist_close(dd); 155 156 dsl_prop_fini(dd); 157 cv_destroy(&dd->dd_activity_cv); 158 mutex_destroy(&dd->dd_activity_lock); 159 mutex_destroy(&dd->dd_lock); 160 kmem_free(dd, sizeof (dsl_dir_t)); 161 } 162 163 int 164 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 165 const char *tail, void *tag, dsl_dir_t **ddp) 166 { 167 dmu_buf_t *dbuf; 168 dsl_dir_t *dd; 169 dmu_object_info_t doi; 170 int err; 171 172 ASSERT(dsl_pool_config_held(dp)); 173 174 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 175 if (err != 0) 176 return (err); 177 dd = dmu_buf_get_user(dbuf); 178 179 dmu_object_info_from_db(dbuf, &doi); 180 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 181 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 182 183 if (dd == NULL) { 184 dsl_dir_t *winner; 185 186 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 187 dd->dd_object = ddobj; 188 dd->dd_dbuf = dbuf; 189 dd->dd_pool = dp; 190 191 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 192 mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL); 193 cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL); 194 dsl_prop_init(dd); 195 196 if (dsl_dir_is_zapified(dd)) { 197 err = zap_lookup(dp->dp_meta_objset, 198 ddobj, DD_FIELD_CRYPTO_KEY_OBJ, 199 sizeof (uint64_t), 1, &dd->dd_crypto_obj); 200 if (err == 0) { 201 /* check for on-disk format errata */ 202 if (dsl_dir_incompatible_encryption_version( 203 dd)) { 204 dp->dp_spa->spa_errata = 205 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION; 206 } 207 } else if (err != ENOENT) { 208 goto errout; 209 } 210 } 211 212 dsl_dir_snap_cmtime_update(dd); 213 214 if (dsl_dir_phys(dd)->dd_parent_obj) { 215 err = dsl_dir_hold_obj(dp, 216 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 217 &dd->dd_parent); 218 if (err != 0) 219 goto errout; 220 if (tail) { 221 #ifdef ZFS_DEBUG 222 uint64_t foundobj; 223 224 err = zap_lookup(dp->dp_meta_objset, 225 dsl_dir_phys(dd->dd_parent)-> 226 dd_child_dir_zapobj, tail, 227 sizeof (foundobj), 1, &foundobj); 228 ASSERT(err || foundobj == ddobj); 229 #endif 230 (void) strlcpy(dd->dd_myname, tail, 231 sizeof (dd->dd_myname)); 232 } else { 233 err = zap_value_search(dp->dp_meta_objset, 234 dsl_dir_phys(dd->dd_parent)-> 235 dd_child_dir_zapobj, 236 ddobj, 0, dd->dd_myname); 237 } 238 if (err != 0) 239 goto errout; 240 } else { 241 (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa), 242 sizeof (dd->dd_myname)); 243 } 244 245 if (dsl_dir_is_clone(dd)) { 246 dmu_buf_t *origin_bonus; 247 dsl_dataset_phys_t *origin_phys; 248 249 /* 250 * We can't open the origin dataset, because 251 * that would require opening this dsl_dir. 252 * Just look at its phys directly instead. 253 */ 254 err = dmu_bonus_hold(dp->dp_meta_objset, 255 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 256 &origin_bonus); 257 if (err != 0) 258 goto errout; 259 origin_phys = origin_bonus->db_data; 260 dd->dd_origin_txg = 261 origin_phys->ds_creation_txg; 262 dmu_buf_rele(origin_bonus, FTAG); 263 if (dsl_dir_is_zapified(dd)) { 264 uint64_t obj; 265 err = zap_lookup(dp->dp_meta_objset, 266 dd->dd_object, DD_FIELD_LIVELIST, 267 sizeof (uint64_t), 1, &obj); 268 if (err == 0) 269 dsl_dir_livelist_open(dd, obj); 270 else if (err != ENOENT) 271 goto errout; 272 } 273 } 274 275 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 276 &dd->dd_dbuf); 277 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 278 if (winner != NULL) { 279 if (dd->dd_parent) 280 dsl_dir_rele(dd->dd_parent, dd); 281 if (dsl_deadlist_is_open(&dd->dd_livelist)) 282 dsl_dir_livelist_close(dd); 283 dsl_prop_fini(dd); 284 cv_destroy(&dd->dd_activity_cv); 285 mutex_destroy(&dd->dd_activity_lock); 286 mutex_destroy(&dd->dd_lock); 287 kmem_free(dd, sizeof (dsl_dir_t)); 288 dd = winner; 289 } else { 290 spa_open_ref(dp->dp_spa, dd); 291 } 292 } 293 294 /* 295 * The dsl_dir_t has both open-to-close and instantiate-to-evict 296 * holds on the spa. We need the open-to-close holds because 297 * otherwise the spa_refcnt wouldn't change when we open a 298 * dir which the spa also has open, so we could incorrectly 299 * think it was OK to unload/export/destroy the pool. We need 300 * the instantiate-to-evict hold because the dsl_dir_t has a 301 * pointer to the dd_pool, which has a pointer to the spa_t. 302 */ 303 spa_open_ref(dp->dp_spa, tag); 304 ASSERT3P(dd->dd_pool, ==, dp); 305 ASSERT3U(dd->dd_object, ==, ddobj); 306 ASSERT3P(dd->dd_dbuf, ==, dbuf); 307 *ddp = dd; 308 return (0); 309 310 errout: 311 if (dd->dd_parent) 312 dsl_dir_rele(dd->dd_parent, dd); 313 if (dsl_deadlist_is_open(&dd->dd_livelist)) 314 dsl_dir_livelist_close(dd); 315 dsl_prop_fini(dd); 316 cv_destroy(&dd->dd_activity_cv); 317 mutex_destroy(&dd->dd_activity_lock); 318 mutex_destroy(&dd->dd_lock); 319 kmem_free(dd, sizeof (dsl_dir_t)); 320 dmu_buf_rele(dbuf, tag); 321 return (err); 322 } 323 324 void 325 dsl_dir_rele(dsl_dir_t *dd, void *tag) 326 { 327 dprintf_dd(dd, "%s\n", ""); 328 spa_close(dd->dd_pool->dp_spa, tag); 329 dmu_buf_rele(dd->dd_dbuf, tag); 330 } 331 332 /* 333 * Remove a reference to the given dsl dir that is being asynchronously 334 * released. Async releases occur from a taskq performing eviction of 335 * dsl datasets and dirs. This process is identical to a normal release 336 * with the exception of using the async API for releasing the reference on 337 * the spa. 338 */ 339 void 340 dsl_dir_async_rele(dsl_dir_t *dd, void *tag) 341 { 342 dprintf_dd(dd, "%s\n", ""); 343 spa_async_close(dd->dd_pool->dp_spa, tag); 344 dmu_buf_rele(dd->dd_dbuf, tag); 345 } 346 347 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 348 void 349 dsl_dir_name(dsl_dir_t *dd, char *buf) 350 { 351 if (dd->dd_parent) { 352 dsl_dir_name(dd->dd_parent, buf); 353 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 354 ZFS_MAX_DATASET_NAME_LEN); 355 } else { 356 buf[0] = '\0'; 357 } 358 if (!MUTEX_HELD(&dd->dd_lock)) { 359 /* 360 * recursive mutex so that we can use 361 * dprintf_dd() with dd_lock held 362 */ 363 mutex_enter(&dd->dd_lock); 364 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 365 <, ZFS_MAX_DATASET_NAME_LEN); 366 mutex_exit(&dd->dd_lock); 367 } else { 368 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 369 <, ZFS_MAX_DATASET_NAME_LEN); 370 } 371 } 372 373 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 374 int 375 dsl_dir_namelen(dsl_dir_t *dd) 376 { 377 int result = 0; 378 379 if (dd->dd_parent) { 380 /* parent's name + 1 for the "/" */ 381 result = dsl_dir_namelen(dd->dd_parent) + 1; 382 } 383 384 if (!MUTEX_HELD(&dd->dd_lock)) { 385 /* see dsl_dir_name */ 386 mutex_enter(&dd->dd_lock); 387 result += strlen(dd->dd_myname); 388 mutex_exit(&dd->dd_lock); 389 } else { 390 result += strlen(dd->dd_myname); 391 } 392 393 return (result); 394 } 395 396 static int 397 getcomponent(const char *path, char *component, const char **nextp) 398 { 399 char *p; 400 401 if ((path == NULL) || (path[0] == '\0')) 402 return (SET_ERROR(ENOENT)); 403 /* This would be a good place to reserve some namespace... */ 404 p = strpbrk(path, "/@"); 405 if (p && (p[1] == '/' || p[1] == '@')) { 406 /* two separators in a row */ 407 return (SET_ERROR(EINVAL)); 408 } 409 if (p == NULL || p == path) { 410 /* 411 * if the first thing is an @ or /, it had better be an 412 * @ and it had better not have any more ats or slashes, 413 * and it had better have something after the @. 414 */ 415 if (p != NULL && 416 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 417 return (SET_ERROR(EINVAL)); 418 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 419 return (SET_ERROR(ENAMETOOLONG)); 420 (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN); 421 p = NULL; 422 } else if (p[0] == '/') { 423 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 424 return (SET_ERROR(ENAMETOOLONG)); 425 (void) strncpy(component, path, p - path); 426 component[p - path] = '\0'; 427 p++; 428 } else if (p[0] == '@') { 429 /* 430 * if the next separator is an @, there better not be 431 * any more slashes. 432 */ 433 if (strchr(path, '/')) 434 return (SET_ERROR(EINVAL)); 435 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 436 return (SET_ERROR(ENAMETOOLONG)); 437 (void) strncpy(component, path, p - path); 438 component[p - path] = '\0'; 439 } else { 440 panic("invalid p=%p", (void *)p); 441 } 442 *nextp = p; 443 return (0); 444 } 445 446 /* 447 * Return the dsl_dir_t, and possibly the last component which couldn't 448 * be found in *tail. The name must be in the specified dsl_pool_t. This 449 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 450 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 451 * (*tail)[0] == '@' means that the last component is a snapshot. 452 */ 453 int 454 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag, 455 dsl_dir_t **ddp, const char **tailp) 456 { 457 char *buf; 458 const char *spaname, *next, *nextnext = NULL; 459 int err; 460 dsl_dir_t *dd; 461 uint64_t ddobj; 462 463 buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 464 err = getcomponent(name, buf, &next); 465 if (err != 0) 466 goto error; 467 468 /* Make sure the name is in the specified pool. */ 469 spaname = spa_name(dp->dp_spa); 470 if (strcmp(buf, spaname) != 0) { 471 err = SET_ERROR(EXDEV); 472 goto error; 473 } 474 475 ASSERT(dsl_pool_config_held(dp)); 476 477 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 478 if (err != 0) { 479 goto error; 480 } 481 482 while (next != NULL) { 483 dsl_dir_t *child_dd; 484 err = getcomponent(next, buf, &nextnext); 485 if (err != 0) 486 break; 487 ASSERT(next[0] != '\0'); 488 if (next[0] == '@') 489 break; 490 dprintf("looking up %s in obj%lld\n", 491 buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj); 492 493 err = zap_lookup(dp->dp_meta_objset, 494 dsl_dir_phys(dd)->dd_child_dir_zapobj, 495 buf, sizeof (ddobj), 1, &ddobj); 496 if (err != 0) { 497 if (err == ENOENT) 498 err = 0; 499 break; 500 } 501 502 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 503 if (err != 0) 504 break; 505 dsl_dir_rele(dd, tag); 506 dd = child_dd; 507 next = nextnext; 508 } 509 510 if (err != 0) { 511 dsl_dir_rele(dd, tag); 512 goto error; 513 } 514 515 /* 516 * It's an error if there's more than one component left, or 517 * tailp==NULL and there's any component left. 518 */ 519 if (next != NULL && 520 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 521 /* bad path name */ 522 dsl_dir_rele(dd, tag); 523 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 524 err = SET_ERROR(ENOENT); 525 } 526 if (tailp != NULL) 527 *tailp = next; 528 if (err == 0) 529 *ddp = dd; 530 error: 531 kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN); 532 return (err); 533 } 534 535 /* 536 * If the counts are already initialized for this filesystem and its 537 * descendants then do nothing, otherwise initialize the counts. 538 * 539 * The counts on this filesystem, and those below, may be uninitialized due to 540 * either the use of a pre-existing pool which did not support the 541 * filesystem/snapshot limit feature, or one in which the feature had not yet 542 * been enabled. 543 * 544 * Recursively descend the filesystem tree and update the filesystem/snapshot 545 * counts on each filesystem below, then update the cumulative count on the 546 * current filesystem. If the filesystem already has a count set on it, 547 * then we know that its counts, and the counts on the filesystems below it, 548 * are already correct, so we don't have to update this filesystem. 549 */ 550 static void 551 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 552 { 553 uint64_t my_fs_cnt = 0; 554 uint64_t my_ss_cnt = 0; 555 dsl_pool_t *dp = dd->dd_pool; 556 objset_t *os = dp->dp_meta_objset; 557 zap_cursor_t *zc; 558 zap_attribute_t *za; 559 dsl_dataset_t *ds; 560 561 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 562 ASSERT(dsl_pool_config_held(dp)); 563 ASSERT(dmu_tx_is_syncing(tx)); 564 565 dsl_dir_zapify(dd, tx); 566 567 /* 568 * If the filesystem count has already been initialized then we 569 * don't need to recurse down any further. 570 */ 571 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 572 return; 573 574 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 575 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 576 577 /* Iterate my child dirs */ 578 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 579 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 580 dsl_dir_t *chld_dd; 581 uint64_t count; 582 583 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 584 &chld_dd)); 585 586 /* 587 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets. 588 */ 589 if (chld_dd->dd_myname[0] == '$') { 590 dsl_dir_rele(chld_dd, FTAG); 591 continue; 592 } 593 594 my_fs_cnt++; /* count this child */ 595 596 dsl_dir_init_fs_ss_count(chld_dd, tx); 597 598 VERIFY0(zap_lookup(os, chld_dd->dd_object, 599 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 600 my_fs_cnt += count; 601 VERIFY0(zap_lookup(os, chld_dd->dd_object, 602 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 603 my_ss_cnt += count; 604 605 dsl_dir_rele(chld_dd, FTAG); 606 } 607 zap_cursor_fini(zc); 608 /* Count my snapshots (we counted children's snapshots above) */ 609 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 610 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 611 612 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 613 zap_cursor_retrieve(zc, za) == 0; 614 zap_cursor_advance(zc)) { 615 /* Don't count temporary snapshots */ 616 if (za->za_name[0] != '%') 617 my_ss_cnt++; 618 } 619 zap_cursor_fini(zc); 620 621 dsl_dataset_rele(ds, FTAG); 622 623 kmem_free(zc, sizeof (zap_cursor_t)); 624 kmem_free(za, sizeof (zap_attribute_t)); 625 626 /* we're in a sync task, update counts */ 627 dmu_buf_will_dirty(dd->dd_dbuf, tx); 628 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 629 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 630 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 631 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 632 } 633 634 static int 635 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 636 { 637 char *ddname = (char *)arg; 638 dsl_pool_t *dp = dmu_tx_pool(tx); 639 dsl_dataset_t *ds; 640 dsl_dir_t *dd; 641 int error; 642 643 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 644 if (error != 0) 645 return (error); 646 647 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 648 dsl_dataset_rele(ds, FTAG); 649 return (SET_ERROR(ENOTSUP)); 650 } 651 652 dd = ds->ds_dir; 653 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 654 dsl_dir_is_zapified(dd) && 655 zap_contains(dp->dp_meta_objset, dd->dd_object, 656 DD_FIELD_FILESYSTEM_COUNT) == 0) { 657 dsl_dataset_rele(ds, FTAG); 658 return (SET_ERROR(EALREADY)); 659 } 660 661 dsl_dataset_rele(ds, FTAG); 662 return (0); 663 } 664 665 static void 666 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 667 { 668 char *ddname = (char *)arg; 669 dsl_pool_t *dp = dmu_tx_pool(tx); 670 dsl_dataset_t *ds; 671 spa_t *spa; 672 673 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 674 675 spa = dsl_dataset_get_spa(ds); 676 677 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 678 /* 679 * Since the feature was not active and we're now setting a 680 * limit, increment the feature-active counter so that the 681 * feature becomes active for the first time. 682 * 683 * We are already in a sync task so we can update the MOS. 684 */ 685 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 686 } 687 688 /* 689 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 690 * we need to ensure the counts are correct. Descend down the tree from 691 * this point and update all of the counts to be accurate. 692 */ 693 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 694 695 dsl_dataset_rele(ds, FTAG); 696 } 697 698 /* 699 * Make sure the feature is enabled and activate it if necessary. 700 * Since we're setting a limit, ensure the on-disk counts are valid. 701 * This is only called by the ioctl path when setting a limit value. 702 * 703 * We do not need to validate the new limit, since users who can change the 704 * limit are also allowed to exceed the limit. 705 */ 706 int 707 dsl_dir_activate_fs_ss_limit(const char *ddname) 708 { 709 int error; 710 711 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 712 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 713 ZFS_SPACE_CHECK_RESERVED); 714 715 if (error == EALREADY) 716 error = 0; 717 718 return (error); 719 } 720 721 /* 722 * Used to determine if the filesystem_limit or snapshot_limit should be 723 * enforced. We allow the limit to be exceeded if the user has permission to 724 * write the property value. We pass in the creds that we got in the open 725 * context since we will always be the GZ root in syncing context. We also have 726 * to handle the case where we are allowed to change the limit on the current 727 * dataset, but there may be another limit in the tree above. 728 * 729 * We can never modify these two properties within a non-global zone. In 730 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 731 * can't use that function since we are already holding the dp_config_rwlock. 732 * In addition, we already have the dd and dealing with snapshots is simplified 733 * in this code. 734 */ 735 736 typedef enum { 737 ENFORCE_ALWAYS, 738 ENFORCE_NEVER, 739 ENFORCE_ABOVE 740 } enforce_res_t; 741 742 static enforce_res_t 743 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, 744 cred_t *cr, proc_t *proc) 745 { 746 enforce_res_t enforce = ENFORCE_ALWAYS; 747 uint64_t obj; 748 dsl_dataset_t *ds; 749 uint64_t zoned; 750 const char *zonedstr; 751 752 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 753 prop == ZFS_PROP_SNAPSHOT_LIMIT); 754 755 #ifdef _KERNEL 756 if (crgetzoneid(cr) != GLOBAL_ZONEID) 757 return (ENFORCE_ALWAYS); 758 759 /* 760 * We are checking the saved credentials of the user process, which is 761 * not the current process. Note that we can't use secpolicy_zfs(), 762 * because it only works if the cred is that of the current process (on 763 * Linux). 764 */ 765 if (secpolicy_zfs_proc(cr, proc) == 0) 766 return (ENFORCE_NEVER); 767 #else 768 (void) proc; 769 #endif 770 771 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 772 return (ENFORCE_ALWAYS); 773 774 ASSERT(dsl_pool_config_held(dd->dd_pool)); 775 776 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 777 return (ENFORCE_ALWAYS); 778 779 zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED); 780 if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) { 781 /* Only root can access zoned fs's from the GZ */ 782 enforce = ENFORCE_ALWAYS; 783 } else { 784 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 785 enforce = ENFORCE_ABOVE; 786 } 787 788 dsl_dataset_rele(ds, FTAG); 789 return (enforce); 790 } 791 792 /* 793 * Check if adding additional child filesystem(s) would exceed any filesystem 794 * limits or adding additional snapshot(s) would exceed any snapshot limits. 795 * The prop argument indicates which limit to check. 796 * 797 * Note that all filesystem limits up to the root (or the highest 798 * initialized) filesystem or the given ancestor must be satisfied. 799 */ 800 int 801 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 802 dsl_dir_t *ancestor, cred_t *cr, proc_t *proc) 803 { 804 objset_t *os = dd->dd_pool->dp_meta_objset; 805 uint64_t limit, count; 806 char *count_prop; 807 enforce_res_t enforce; 808 int err = 0; 809 810 ASSERT(dsl_pool_config_held(dd->dd_pool)); 811 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 812 prop == ZFS_PROP_SNAPSHOT_LIMIT); 813 814 /* 815 * If we're allowed to change the limit, don't enforce the limit 816 * e.g. this can happen if a snapshot is taken by an administrative 817 * user in the global zone (i.e. a recursive snapshot by root). 818 * However, we must handle the case of delegated permissions where we 819 * are allowed to change the limit on the current dataset, but there 820 * is another limit in the tree above. 821 */ 822 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc); 823 if (enforce == ENFORCE_NEVER) 824 return (0); 825 826 /* 827 * e.g. if renaming a dataset with no snapshots, count adjustment 828 * is 0. 829 */ 830 if (delta == 0) 831 return (0); 832 833 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 834 /* 835 * We don't enforce the limit for temporary snapshots. This is 836 * indicated by a NULL cred_t argument. 837 */ 838 if (cr == NULL) 839 return (0); 840 841 count_prop = DD_FIELD_SNAPSHOT_COUNT; 842 } else { 843 count_prop = DD_FIELD_FILESYSTEM_COUNT; 844 } 845 846 /* 847 * If an ancestor has been provided, stop checking the limit once we 848 * hit that dir. We need this during rename so that we don't overcount 849 * the check once we recurse up to the common ancestor. 850 */ 851 if (ancestor == dd) 852 return (0); 853 854 /* 855 * If we hit an uninitialized node while recursing up the tree, we can 856 * stop since we know there is no limit here (or above). The counts are 857 * not valid on this node and we know we won't touch this node's counts. 858 */ 859 if (!dsl_dir_is_zapified(dd)) 860 return (0); 861 err = zap_lookup(os, dd->dd_object, 862 count_prop, sizeof (count), 1, &count); 863 if (err == ENOENT) 864 return (0); 865 if (err != 0) 866 return (err); 867 868 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 869 B_FALSE); 870 if (err != 0) 871 return (err); 872 873 /* Is there a limit which we've hit? */ 874 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 875 return (SET_ERROR(EDQUOT)); 876 877 if (dd->dd_parent != NULL) 878 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 879 ancestor, cr, proc); 880 881 return (err); 882 } 883 884 /* 885 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 886 * parents. When a new filesystem/snapshot is created, increment the count on 887 * all parents, and when a filesystem/snapshot is destroyed, decrement the 888 * count. 889 */ 890 void 891 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 892 dmu_tx_t *tx) 893 { 894 int err; 895 objset_t *os = dd->dd_pool->dp_meta_objset; 896 uint64_t count; 897 898 ASSERT(dsl_pool_config_held(dd->dd_pool)); 899 ASSERT(dmu_tx_is_syncing(tx)); 900 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 901 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 902 903 /* 904 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets. 905 */ 906 if (dd->dd_myname[0] == '$' && strcmp(prop, 907 DD_FIELD_FILESYSTEM_COUNT) == 0) { 908 return; 909 } 910 911 /* 912 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 913 */ 914 if (delta == 0) 915 return; 916 917 /* 918 * If we hit an uninitialized node while recursing up the tree, we can 919 * stop since we know the counts are not valid on this node and we 920 * know we shouldn't touch this node's counts. An uninitialized count 921 * on the node indicates that either the feature has not yet been 922 * activated or there are no limits on this part of the tree. 923 */ 924 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 925 prop, sizeof (count), 1, &count)) == ENOENT) 926 return; 927 VERIFY0(err); 928 929 count += delta; 930 /* Use a signed verify to make sure we're not neg. */ 931 VERIFY3S(count, >=, 0); 932 933 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 934 tx)); 935 936 /* Roll up this additional count into our ancestors */ 937 if (dd->dd_parent != NULL) 938 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 939 } 940 941 uint64_t 942 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 943 dmu_tx_t *tx) 944 { 945 objset_t *mos = dp->dp_meta_objset; 946 uint64_t ddobj; 947 dsl_dir_phys_t *ddphys; 948 dmu_buf_t *dbuf; 949 950 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 951 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 952 if (pds) { 953 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 954 name, sizeof (uint64_t), 1, &ddobj, tx)); 955 } else { 956 /* it's the root dir */ 957 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 958 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 959 } 960 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 961 dmu_buf_will_dirty(dbuf, tx); 962 ddphys = dbuf->db_data; 963 964 ddphys->dd_creation_time = gethrestime_sec(); 965 if (pds) { 966 ddphys->dd_parent_obj = pds->dd_object; 967 968 /* update the filesystem counts */ 969 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 970 } 971 ddphys->dd_props_zapobj = zap_create(mos, 972 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 973 ddphys->dd_child_dir_zapobj = zap_create(mos, 974 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 975 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 976 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 977 978 dmu_buf_rele(dbuf, FTAG); 979 980 return (ddobj); 981 } 982 983 boolean_t 984 dsl_dir_is_clone(dsl_dir_t *dd) 985 { 986 return (dsl_dir_phys(dd)->dd_origin_obj && 987 (dd->dd_pool->dp_origin_snap == NULL || 988 dsl_dir_phys(dd)->dd_origin_obj != 989 dd->dd_pool->dp_origin_snap->ds_object)); 990 } 991 992 uint64_t 993 dsl_dir_get_used(dsl_dir_t *dd) 994 { 995 return (dsl_dir_phys(dd)->dd_used_bytes); 996 } 997 998 uint64_t 999 dsl_dir_get_compressed(dsl_dir_t *dd) 1000 { 1001 return (dsl_dir_phys(dd)->dd_compressed_bytes); 1002 } 1003 1004 uint64_t 1005 dsl_dir_get_quota(dsl_dir_t *dd) 1006 { 1007 return (dsl_dir_phys(dd)->dd_quota); 1008 } 1009 1010 uint64_t 1011 dsl_dir_get_reservation(dsl_dir_t *dd) 1012 { 1013 return (dsl_dir_phys(dd)->dd_reserved); 1014 } 1015 1016 uint64_t 1017 dsl_dir_get_compressratio(dsl_dir_t *dd) 1018 { 1019 /* a fixed point number, 100x the ratio */ 1020 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 1021 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 1022 dsl_dir_phys(dd)->dd_compressed_bytes)); 1023 } 1024 1025 uint64_t 1026 dsl_dir_get_logicalused(dsl_dir_t *dd) 1027 { 1028 return (dsl_dir_phys(dd)->dd_uncompressed_bytes); 1029 } 1030 1031 uint64_t 1032 dsl_dir_get_usedsnap(dsl_dir_t *dd) 1033 { 1034 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 1035 } 1036 1037 uint64_t 1038 dsl_dir_get_usedds(dsl_dir_t *dd) 1039 { 1040 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 1041 } 1042 1043 uint64_t 1044 dsl_dir_get_usedrefreserv(dsl_dir_t *dd) 1045 { 1046 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 1047 } 1048 1049 uint64_t 1050 dsl_dir_get_usedchild(dsl_dir_t *dd) 1051 { 1052 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 1053 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 1054 } 1055 1056 void 1057 dsl_dir_get_origin(dsl_dir_t *dd, char *buf) 1058 { 1059 dsl_dataset_t *ds; 1060 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 1061 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 1062 1063 dsl_dataset_name(ds, buf); 1064 1065 dsl_dataset_rele(ds, FTAG); 1066 } 1067 1068 int 1069 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count) 1070 { 1071 if (dsl_dir_is_zapified(dd)) { 1072 objset_t *os = dd->dd_pool->dp_meta_objset; 1073 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 1074 sizeof (*count), 1, count)); 1075 } else { 1076 return (SET_ERROR(ENOENT)); 1077 } 1078 } 1079 1080 int 1081 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count) 1082 { 1083 if (dsl_dir_is_zapified(dd)) { 1084 objset_t *os = dd->dd_pool->dp_meta_objset; 1085 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 1086 sizeof (*count), 1, count)); 1087 } else { 1088 return (SET_ERROR(ENOENT)); 1089 } 1090 } 1091 1092 void 1093 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 1094 { 1095 mutex_enter(&dd->dd_lock); 1096 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 1097 dsl_dir_get_quota(dd)); 1098 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 1099 dsl_dir_get_reservation(dd)); 1100 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 1101 dsl_dir_get_logicalused(dd)); 1102 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1103 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 1104 dsl_dir_get_usedsnap(dd)); 1105 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 1106 dsl_dir_get_usedds(dd)); 1107 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 1108 dsl_dir_get_usedrefreserv(dd)); 1109 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 1110 dsl_dir_get_usedchild(dd)); 1111 } 1112 mutex_exit(&dd->dd_lock); 1113 1114 uint64_t count; 1115 if (dsl_dir_get_filesystem_count(dd, &count) == 0) { 1116 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT, 1117 count); 1118 } 1119 if (dsl_dir_get_snapshot_count(dd, &count) == 0) { 1120 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT, 1121 count); 1122 } 1123 1124 if (dsl_dir_is_clone(dd)) { 1125 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1126 dsl_dir_get_origin(dd, buf); 1127 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 1128 } 1129 1130 } 1131 1132 void 1133 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 1134 { 1135 dsl_pool_t *dp = dd->dd_pool; 1136 1137 ASSERT(dsl_dir_phys(dd)); 1138 1139 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 1140 /* up the hold count until we can be written out */ 1141 dmu_buf_add_ref(dd->dd_dbuf, dd); 1142 } 1143 } 1144 1145 static int64_t 1146 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1147 { 1148 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1149 uint64_t new_accounted = 1150 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1151 return (new_accounted - old_accounted); 1152 } 1153 1154 void 1155 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1156 { 1157 ASSERT(dmu_tx_is_syncing(tx)); 1158 1159 mutex_enter(&dd->dd_lock); 1160 ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]); 1161 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg, 1162 (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024); 1163 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0; 1164 mutex_exit(&dd->dd_lock); 1165 1166 /* release the hold from dsl_dir_dirty */ 1167 dmu_buf_rele(dd->dd_dbuf, dd); 1168 } 1169 1170 static uint64_t 1171 dsl_dir_space_towrite(dsl_dir_t *dd) 1172 { 1173 uint64_t space = 0; 1174 1175 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1176 1177 for (int i = 0; i < TXG_SIZE; i++) { 1178 space += dd->dd_space_towrite[i & TXG_MASK]; 1179 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0); 1180 } 1181 return (space); 1182 } 1183 1184 /* 1185 * How much space would dd have available if ancestor had delta applied 1186 * to it? If ondiskonly is set, we're only interested in what's 1187 * on-disk, not estimated pending changes. 1188 */ 1189 uint64_t 1190 dsl_dir_space_available(dsl_dir_t *dd, 1191 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1192 { 1193 uint64_t parentspace, myspace, quota, used; 1194 1195 /* 1196 * If there are no restrictions otherwise, assume we have 1197 * unlimited space available. 1198 */ 1199 quota = UINT64_MAX; 1200 parentspace = UINT64_MAX; 1201 1202 if (dd->dd_parent != NULL) { 1203 parentspace = dsl_dir_space_available(dd->dd_parent, 1204 ancestor, delta, ondiskonly); 1205 } 1206 1207 mutex_enter(&dd->dd_lock); 1208 if (dsl_dir_phys(dd)->dd_quota != 0) 1209 quota = dsl_dir_phys(dd)->dd_quota; 1210 used = dsl_dir_phys(dd)->dd_used_bytes; 1211 if (!ondiskonly) 1212 used += dsl_dir_space_towrite(dd); 1213 1214 if (dd->dd_parent == NULL) { 1215 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, 1216 ZFS_SPACE_CHECK_NORMAL); 1217 quota = MIN(quota, poolsize); 1218 } 1219 1220 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1221 /* 1222 * We have some space reserved, in addition to what our 1223 * parent gave us. 1224 */ 1225 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1226 } 1227 1228 if (dd == ancestor) { 1229 ASSERT(delta <= 0); 1230 ASSERT(used >= -delta); 1231 used += delta; 1232 if (parentspace != UINT64_MAX) 1233 parentspace -= delta; 1234 } 1235 1236 if (used > quota) { 1237 /* over quota */ 1238 myspace = 0; 1239 } else { 1240 /* 1241 * the lesser of the space provided by our parent and 1242 * the space left in our quota 1243 */ 1244 myspace = MIN(parentspace, quota - used); 1245 } 1246 1247 mutex_exit(&dd->dd_lock); 1248 1249 return (myspace); 1250 } 1251 1252 struct tempreserve { 1253 list_node_t tr_node; 1254 dsl_dir_t *tr_ds; 1255 uint64_t tr_size; 1256 }; 1257 1258 static int 1259 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1260 boolean_t ignorequota, list_t *tr_list, 1261 dmu_tx_t *tx, boolean_t first) 1262 { 1263 uint64_t txg; 1264 uint64_t quota; 1265 struct tempreserve *tr; 1266 int retval; 1267 uint64_t ref_rsrv; 1268 1269 top_of_function: 1270 txg = tx->tx_txg; 1271 retval = EDQUOT; 1272 ref_rsrv = 0; 1273 1274 ASSERT3U(txg, !=, 0); 1275 ASSERT3S(asize, >, 0); 1276 1277 mutex_enter(&dd->dd_lock); 1278 1279 /* 1280 * Check against the dsl_dir's quota. We don't add in the delta 1281 * when checking for over-quota because they get one free hit. 1282 */ 1283 uint64_t est_inflight = dsl_dir_space_towrite(dd); 1284 for (int i = 0; i < TXG_SIZE; i++) 1285 est_inflight += dd->dd_tempreserved[i]; 1286 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1287 1288 /* 1289 * On the first iteration, fetch the dataset's used-on-disk and 1290 * refreservation values. Also, if checkrefquota is set, test if 1291 * allocating this space would exceed the dataset's refquota. 1292 */ 1293 if (first && tx->tx_objset) { 1294 int error; 1295 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1296 1297 error = dsl_dataset_check_quota(ds, !netfree, 1298 asize, est_inflight, &used_on_disk, &ref_rsrv); 1299 if (error != 0) { 1300 mutex_exit(&dd->dd_lock); 1301 DMU_TX_STAT_BUMP(dmu_tx_quota); 1302 return (error); 1303 } 1304 } 1305 1306 /* 1307 * If this transaction will result in a net free of space, 1308 * we want to let it through. 1309 */ 1310 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1311 quota = UINT64_MAX; 1312 else 1313 quota = dsl_dir_phys(dd)->dd_quota; 1314 1315 /* 1316 * Adjust the quota against the actual pool size at the root 1317 * minus any outstanding deferred frees. 1318 * To ensure that it's possible to remove files from a full 1319 * pool without inducing transient overcommits, we throttle 1320 * netfree transactions against a quota that is slightly larger, 1321 * but still within the pool's allocation slop. In cases where 1322 * we're very close to full, this will allow a steady trickle of 1323 * removes to get through. 1324 */ 1325 uint64_t deferred = 0; 1326 if (dd->dd_parent == NULL) { 1327 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool, 1328 (netfree) ? 1329 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL); 1330 1331 if (avail < quota) { 1332 quota = avail; 1333 retval = SET_ERROR(ENOSPC); 1334 } 1335 } 1336 1337 /* 1338 * If they are requesting more space, and our current estimate 1339 * is over quota, they get to try again unless the actual 1340 * on-disk is over quota and there are no pending changes (which 1341 * may free up space for us). 1342 */ 1343 if (used_on_disk + est_inflight >= quota) { 1344 if (est_inflight > 0 || used_on_disk < quota || 1345 (retval == ENOSPC && used_on_disk < quota + deferred)) 1346 retval = ERESTART; 1347 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1348 "quota=%lluK tr=%lluK err=%d\n", 1349 (u_longlong_t)used_on_disk>>10, 1350 (u_longlong_t)est_inflight>>10, 1351 (u_longlong_t)quota>>10, (u_longlong_t)asize>>10, retval); 1352 mutex_exit(&dd->dd_lock); 1353 DMU_TX_STAT_BUMP(dmu_tx_quota); 1354 return (SET_ERROR(retval)); 1355 } 1356 1357 /* We need to up our estimated delta before dropping dd_lock */ 1358 dd->dd_tempreserved[txg & TXG_MASK] += asize; 1359 1360 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1361 asize - ref_rsrv); 1362 mutex_exit(&dd->dd_lock); 1363 1364 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1365 tr->tr_ds = dd; 1366 tr->tr_size = asize; 1367 list_insert_tail(tr_list, tr); 1368 1369 /* see if it's OK with our parent */ 1370 if (dd->dd_parent != NULL && parent_rsrv != 0) { 1371 /* 1372 * Recurse on our parent without recursion. This has been 1373 * observed to be potentially large stack usage even within 1374 * the test suite. Largest seen stack was 7632 bytes on linux. 1375 */ 1376 1377 dd = dd->dd_parent; 1378 asize = parent_rsrv; 1379 ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1380 first = B_FALSE; 1381 goto top_of_function; 1382 1383 } else { 1384 return (0); 1385 } 1386 } 1387 1388 /* 1389 * Reserve space in this dsl_dir, to be used in this tx's txg. 1390 * After the space has been dirtied (and dsl_dir_willuse_space() 1391 * has been called), the reservation should be canceled, using 1392 * dsl_dir_tempreserve_clear(). 1393 */ 1394 int 1395 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1396 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx) 1397 { 1398 int err; 1399 list_t *tr_list; 1400 1401 if (asize == 0) { 1402 *tr_cookiep = NULL; 1403 return (0); 1404 } 1405 1406 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1407 list_create(tr_list, sizeof (struct tempreserve), 1408 offsetof(struct tempreserve, tr_node)); 1409 ASSERT3S(asize, >, 0); 1410 1411 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg); 1412 if (err == 0) { 1413 struct tempreserve *tr; 1414 1415 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1416 tr->tr_size = lsize; 1417 list_insert_tail(tr_list, tr); 1418 } else { 1419 if (err == EAGAIN) { 1420 /* 1421 * If arc_memory_throttle() detected that pageout 1422 * is running and we are low on memory, we delay new 1423 * non-pageout transactions to give pageout an 1424 * advantage. 1425 * 1426 * It is unfortunate to be delaying while the caller's 1427 * locks are held. 1428 */ 1429 txg_delay(dd->dd_pool, tx->tx_txg, 1430 MSEC2NSEC(10), MSEC2NSEC(10)); 1431 err = SET_ERROR(ERESTART); 1432 } 1433 } 1434 1435 if (err == 0) { 1436 err = dsl_dir_tempreserve_impl(dd, asize, netfree, 1437 B_FALSE, tr_list, tx, B_TRUE); 1438 } 1439 1440 if (err != 0) 1441 dsl_dir_tempreserve_clear(tr_list, tx); 1442 else 1443 *tr_cookiep = tr_list; 1444 1445 return (err); 1446 } 1447 1448 /* 1449 * Clear a temporary reservation that we previously made with 1450 * dsl_dir_tempreserve_space(). 1451 */ 1452 void 1453 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1454 { 1455 int txgidx = tx->tx_txg & TXG_MASK; 1456 list_t *tr_list = tr_cookie; 1457 struct tempreserve *tr; 1458 1459 ASSERT3U(tx->tx_txg, !=, 0); 1460 1461 if (tr_cookie == NULL) 1462 return; 1463 1464 while ((tr = list_head(tr_list)) != NULL) { 1465 if (tr->tr_ds) { 1466 mutex_enter(&tr->tr_ds->dd_lock); 1467 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1468 tr->tr_size); 1469 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1470 mutex_exit(&tr->tr_ds->dd_lock); 1471 } else { 1472 arc_tempreserve_clear(tr->tr_size); 1473 } 1474 list_remove(tr_list, tr); 1475 kmem_free(tr, sizeof (struct tempreserve)); 1476 } 1477 1478 kmem_free(tr_list, sizeof (list_t)); 1479 } 1480 1481 /* 1482 * This should be called from open context when we think we're going to write 1483 * or free space, for example when dirtying data. Be conservative; it's okay 1484 * to write less space or free more, but we don't want to write more or free 1485 * less than the amount specified. 1486 * 1487 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD 1488 * version however it has been adjusted to use an iterative rather than 1489 * recursive algorithm to minimize stack usage. 1490 */ 1491 void 1492 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1493 { 1494 int64_t parent_space; 1495 uint64_t est_used; 1496 1497 do { 1498 mutex_enter(&dd->dd_lock); 1499 if (space > 0) 1500 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1501 1502 est_used = dsl_dir_space_towrite(dd) + 1503 dsl_dir_phys(dd)->dd_used_bytes; 1504 parent_space = parent_delta(dd, est_used, space); 1505 mutex_exit(&dd->dd_lock); 1506 1507 /* Make sure that we clean up dd_space_to* */ 1508 dsl_dir_dirty(dd, tx); 1509 1510 dd = dd->dd_parent; 1511 space = parent_space; 1512 } while (space && dd); 1513 } 1514 1515 /* call from syncing context when we actually write/free space for this dd */ 1516 void 1517 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1518 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1519 { 1520 int64_t accounted_delta; 1521 1522 ASSERT(dmu_tx_is_syncing(tx)); 1523 ASSERT(type < DD_USED_NUM); 1524 1525 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1526 1527 /* 1528 * dsl_dataset_set_refreservation_sync_impl() calls this with 1529 * dd_lock held, so that it can atomically update 1530 * ds->ds_reserved and the dsl_dir accounting, so that 1531 * dsl_dataset_check_quota() can see dataset and dir accounting 1532 * consistently. 1533 */ 1534 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1535 if (needlock) 1536 mutex_enter(&dd->dd_lock); 1537 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1538 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used); 1539 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used); 1540 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed); 1541 ASSERT(uncompressed >= 0 || 1542 ddp->dd_uncompressed_bytes >= -uncompressed); 1543 ddp->dd_used_bytes += used; 1544 ddp->dd_uncompressed_bytes += uncompressed; 1545 ddp->dd_compressed_bytes += compressed; 1546 1547 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1548 ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used); 1549 ddp->dd_used_breakdown[type] += used; 1550 #ifdef ZFS_DEBUG 1551 { 1552 dd_used_t t; 1553 uint64_t u = 0; 1554 for (t = 0; t < DD_USED_NUM; t++) 1555 u += ddp->dd_used_breakdown[t]; 1556 ASSERT3U(u, ==, ddp->dd_used_bytes); 1557 } 1558 #endif 1559 } 1560 if (needlock) 1561 mutex_exit(&dd->dd_lock); 1562 1563 if (dd->dd_parent != NULL) { 1564 dsl_dir_diduse_transfer_space(dd->dd_parent, 1565 accounted_delta, compressed, uncompressed, 1566 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1567 } 1568 } 1569 1570 void 1571 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1572 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1573 { 1574 ASSERT(dmu_tx_is_syncing(tx)); 1575 ASSERT(oldtype < DD_USED_NUM); 1576 ASSERT(newtype < DD_USED_NUM); 1577 1578 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1579 if (delta == 0 || 1580 !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1581 return; 1582 1583 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1584 mutex_enter(&dd->dd_lock); 1585 ASSERT(delta > 0 ? 1586 ddp->dd_used_breakdown[oldtype] >= delta : 1587 ddp->dd_used_breakdown[newtype] >= -delta); 1588 ASSERT(ddp->dd_used_bytes >= ABS(delta)); 1589 ddp->dd_used_breakdown[oldtype] -= delta; 1590 ddp->dd_used_breakdown[newtype] += delta; 1591 mutex_exit(&dd->dd_lock); 1592 } 1593 1594 void 1595 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used, 1596 int64_t compressed, int64_t uncompressed, int64_t tonew, 1597 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1598 { 1599 int64_t accounted_delta; 1600 1601 ASSERT(dmu_tx_is_syncing(tx)); 1602 ASSERT(oldtype < DD_USED_NUM); 1603 ASSERT(newtype < DD_USED_NUM); 1604 1605 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1606 1607 mutex_enter(&dd->dd_lock); 1608 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1609 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used); 1610 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used); 1611 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed); 1612 ASSERT(uncompressed >= 0 || 1613 ddp->dd_uncompressed_bytes >= -uncompressed); 1614 ddp->dd_used_bytes += used; 1615 ddp->dd_uncompressed_bytes += uncompressed; 1616 ddp->dd_compressed_bytes += compressed; 1617 1618 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1619 ASSERT(tonew - used <= 0 || 1620 ddp->dd_used_breakdown[oldtype] >= tonew - used); 1621 ASSERT(tonew >= 0 || 1622 ddp->dd_used_breakdown[newtype] >= -tonew); 1623 ddp->dd_used_breakdown[oldtype] -= tonew - used; 1624 ddp->dd_used_breakdown[newtype] += tonew; 1625 #ifdef ZFS_DEBUG 1626 { 1627 dd_used_t t; 1628 uint64_t u = 0; 1629 for (t = 0; t < DD_USED_NUM; t++) 1630 u += ddp->dd_used_breakdown[t]; 1631 ASSERT3U(u, ==, ddp->dd_used_bytes); 1632 } 1633 #endif 1634 } 1635 mutex_exit(&dd->dd_lock); 1636 1637 if (dd->dd_parent != NULL) { 1638 dsl_dir_diduse_transfer_space(dd->dd_parent, 1639 accounted_delta, compressed, uncompressed, 1640 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1641 } 1642 } 1643 1644 typedef struct dsl_dir_set_qr_arg { 1645 const char *ddsqra_name; 1646 zprop_source_t ddsqra_source; 1647 uint64_t ddsqra_value; 1648 } dsl_dir_set_qr_arg_t; 1649 1650 static int 1651 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1652 { 1653 dsl_dir_set_qr_arg_t *ddsqra = arg; 1654 dsl_pool_t *dp = dmu_tx_pool(tx); 1655 dsl_dataset_t *ds; 1656 int error; 1657 uint64_t towrite, newval; 1658 1659 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1660 if (error != 0) 1661 return (error); 1662 1663 error = dsl_prop_predict(ds->ds_dir, "quota", 1664 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1665 if (error != 0) { 1666 dsl_dataset_rele(ds, FTAG); 1667 return (error); 1668 } 1669 1670 if (newval == 0) { 1671 dsl_dataset_rele(ds, FTAG); 1672 return (0); 1673 } 1674 1675 mutex_enter(&ds->ds_dir->dd_lock); 1676 /* 1677 * If we are doing the preliminary check in open context, and 1678 * there are pending changes, then don't fail it, since the 1679 * pending changes could under-estimate the amount of space to be 1680 * freed up. 1681 */ 1682 towrite = dsl_dir_space_towrite(ds->ds_dir); 1683 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1684 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1685 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1686 error = SET_ERROR(ENOSPC); 1687 } 1688 mutex_exit(&ds->ds_dir->dd_lock); 1689 dsl_dataset_rele(ds, FTAG); 1690 return (error); 1691 } 1692 1693 static void 1694 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1695 { 1696 dsl_dir_set_qr_arg_t *ddsqra = arg; 1697 dsl_pool_t *dp = dmu_tx_pool(tx); 1698 dsl_dataset_t *ds; 1699 uint64_t newval; 1700 1701 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1702 1703 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1704 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1705 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1706 &ddsqra->ddsqra_value, tx); 1707 1708 VERIFY0(dsl_prop_get_int_ds(ds, 1709 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1710 } else { 1711 newval = ddsqra->ddsqra_value; 1712 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1713 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1714 } 1715 1716 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1717 mutex_enter(&ds->ds_dir->dd_lock); 1718 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1719 mutex_exit(&ds->ds_dir->dd_lock); 1720 dsl_dataset_rele(ds, FTAG); 1721 } 1722 1723 int 1724 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1725 { 1726 dsl_dir_set_qr_arg_t ddsqra; 1727 1728 ddsqra.ddsqra_name = ddname; 1729 ddsqra.ddsqra_source = source; 1730 ddsqra.ddsqra_value = quota; 1731 1732 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1733 dsl_dir_set_quota_sync, &ddsqra, 0, 1734 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1735 } 1736 1737 static int 1738 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1739 { 1740 dsl_dir_set_qr_arg_t *ddsqra = arg; 1741 dsl_pool_t *dp = dmu_tx_pool(tx); 1742 dsl_dataset_t *ds; 1743 dsl_dir_t *dd; 1744 uint64_t newval, used, avail; 1745 int error; 1746 1747 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1748 if (error != 0) 1749 return (error); 1750 dd = ds->ds_dir; 1751 1752 /* 1753 * If we are doing the preliminary check in open context, the 1754 * space estimates may be inaccurate. 1755 */ 1756 if (!dmu_tx_is_syncing(tx)) { 1757 dsl_dataset_rele(ds, FTAG); 1758 return (0); 1759 } 1760 1761 error = dsl_prop_predict(ds->ds_dir, 1762 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1763 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1764 if (error != 0) { 1765 dsl_dataset_rele(ds, FTAG); 1766 return (error); 1767 } 1768 1769 mutex_enter(&dd->dd_lock); 1770 used = dsl_dir_phys(dd)->dd_used_bytes; 1771 mutex_exit(&dd->dd_lock); 1772 1773 if (dd->dd_parent) { 1774 avail = dsl_dir_space_available(dd->dd_parent, 1775 NULL, 0, FALSE); 1776 } else { 1777 avail = dsl_pool_adjustedsize(dd->dd_pool, 1778 ZFS_SPACE_CHECK_NORMAL) - used; 1779 } 1780 1781 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1782 uint64_t delta = MAX(used, newval) - 1783 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1784 1785 if (delta > avail || 1786 (dsl_dir_phys(dd)->dd_quota > 0 && 1787 newval > dsl_dir_phys(dd)->dd_quota)) 1788 error = SET_ERROR(ENOSPC); 1789 } 1790 1791 dsl_dataset_rele(ds, FTAG); 1792 return (error); 1793 } 1794 1795 void 1796 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1797 { 1798 uint64_t used; 1799 int64_t delta; 1800 1801 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1802 1803 mutex_enter(&dd->dd_lock); 1804 used = dsl_dir_phys(dd)->dd_used_bytes; 1805 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1806 dsl_dir_phys(dd)->dd_reserved = value; 1807 1808 if (dd->dd_parent != NULL) { 1809 /* Roll up this additional usage into our ancestors */ 1810 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1811 delta, 0, 0, tx); 1812 } 1813 mutex_exit(&dd->dd_lock); 1814 } 1815 1816 static void 1817 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1818 { 1819 dsl_dir_set_qr_arg_t *ddsqra = arg; 1820 dsl_pool_t *dp = dmu_tx_pool(tx); 1821 dsl_dataset_t *ds; 1822 uint64_t newval; 1823 1824 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1825 1826 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1827 dsl_prop_set_sync_impl(ds, 1828 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1829 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1830 &ddsqra->ddsqra_value, tx); 1831 1832 VERIFY0(dsl_prop_get_int_ds(ds, 1833 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1834 } else { 1835 newval = ddsqra->ddsqra_value; 1836 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1837 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1838 (longlong_t)newval); 1839 } 1840 1841 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1842 dsl_dataset_rele(ds, FTAG); 1843 } 1844 1845 int 1846 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1847 uint64_t reservation) 1848 { 1849 dsl_dir_set_qr_arg_t ddsqra; 1850 1851 ddsqra.ddsqra_name = ddname; 1852 ddsqra.ddsqra_source = source; 1853 ddsqra.ddsqra_value = reservation; 1854 1855 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1856 dsl_dir_set_reservation_sync, &ddsqra, 0, 1857 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1858 } 1859 1860 static dsl_dir_t * 1861 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1862 { 1863 for (; ds1; ds1 = ds1->dd_parent) { 1864 dsl_dir_t *dd; 1865 for (dd = ds2; dd; dd = dd->dd_parent) { 1866 if (ds1 == dd) 1867 return (dd); 1868 } 1869 } 1870 return (NULL); 1871 } 1872 1873 /* 1874 * If delta is applied to dd, how much of that delta would be applied to 1875 * ancestor? Syncing context only. 1876 */ 1877 static int64_t 1878 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1879 { 1880 if (dd == ancestor) 1881 return (delta); 1882 1883 mutex_enter(&dd->dd_lock); 1884 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1885 mutex_exit(&dd->dd_lock); 1886 return (would_change(dd->dd_parent, delta, ancestor)); 1887 } 1888 1889 typedef struct dsl_dir_rename_arg { 1890 const char *ddra_oldname; 1891 const char *ddra_newname; 1892 cred_t *ddra_cred; 1893 proc_t *ddra_proc; 1894 } dsl_dir_rename_arg_t; 1895 1896 typedef struct dsl_valid_rename_arg { 1897 int char_delta; 1898 int nest_delta; 1899 } dsl_valid_rename_arg_t; 1900 1901 static int 1902 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1903 { 1904 (void) dp; 1905 dsl_valid_rename_arg_t *dvra = arg; 1906 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1907 1908 dsl_dataset_name(ds, namebuf); 1909 1910 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN), 1911 <, ZFS_MAX_DATASET_NAME_LEN); 1912 int namelen = strlen(namebuf) + dvra->char_delta; 1913 int depth = get_dataset_depth(namebuf) + dvra->nest_delta; 1914 1915 if (namelen >= ZFS_MAX_DATASET_NAME_LEN) 1916 return (SET_ERROR(ENAMETOOLONG)); 1917 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting) 1918 return (SET_ERROR(ENAMETOOLONG)); 1919 return (0); 1920 } 1921 1922 static int 1923 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1924 { 1925 dsl_dir_rename_arg_t *ddra = arg; 1926 dsl_pool_t *dp = dmu_tx_pool(tx); 1927 dsl_dir_t *dd, *newparent; 1928 dsl_valid_rename_arg_t dvra; 1929 dsl_dataset_t *parentds; 1930 objset_t *parentos; 1931 const char *mynewname; 1932 int error; 1933 1934 /* target dir should exist */ 1935 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1936 if (error != 0) 1937 return (error); 1938 1939 /* new parent should exist */ 1940 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1941 &newparent, &mynewname); 1942 if (error != 0) { 1943 dsl_dir_rele(dd, FTAG); 1944 return (error); 1945 } 1946 1947 /* can't rename to different pool */ 1948 if (dd->dd_pool != newparent->dd_pool) { 1949 dsl_dir_rele(newparent, FTAG); 1950 dsl_dir_rele(dd, FTAG); 1951 return (SET_ERROR(EXDEV)); 1952 } 1953 1954 /* new name should not already exist */ 1955 if (mynewname == NULL) { 1956 dsl_dir_rele(newparent, FTAG); 1957 dsl_dir_rele(dd, FTAG); 1958 return (SET_ERROR(EEXIST)); 1959 } 1960 1961 /* can't rename below anything but filesystems (eg. no ZVOLs) */ 1962 error = dsl_dataset_hold_obj(newparent->dd_pool, 1963 dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds); 1964 if (error != 0) { 1965 dsl_dir_rele(newparent, FTAG); 1966 dsl_dir_rele(dd, FTAG); 1967 return (error); 1968 } 1969 error = dmu_objset_from_ds(parentds, &parentos); 1970 if (error != 0) { 1971 dsl_dataset_rele(parentds, FTAG); 1972 dsl_dir_rele(newparent, FTAG); 1973 dsl_dir_rele(dd, FTAG); 1974 return (error); 1975 } 1976 if (dmu_objset_type(parentos) != DMU_OST_ZFS) { 1977 dsl_dataset_rele(parentds, FTAG); 1978 dsl_dir_rele(newparent, FTAG); 1979 dsl_dir_rele(dd, FTAG); 1980 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 1981 } 1982 dsl_dataset_rele(parentds, FTAG); 1983 1984 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN), 1985 <, ZFS_MAX_DATASET_NAME_LEN); 1986 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN), 1987 <, ZFS_MAX_DATASET_NAME_LEN); 1988 dvra.char_delta = strlen(ddra->ddra_newname) 1989 - strlen(ddra->ddra_oldname); 1990 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname) 1991 - get_dataset_depth(ddra->ddra_oldname); 1992 1993 /* if the name length is growing, validate child name lengths */ 1994 if (dvra.char_delta > 0 || dvra.nest_delta > 0) { 1995 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 1996 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1997 if (error != 0) { 1998 dsl_dir_rele(newparent, FTAG); 1999 dsl_dir_rele(dd, FTAG); 2000 return (error); 2001 } 2002 } 2003 2004 if (dmu_tx_is_syncing(tx)) { 2005 if (spa_feature_is_active(dp->dp_spa, 2006 SPA_FEATURE_FS_SS_LIMIT)) { 2007 /* 2008 * Although this is the check function and we don't 2009 * normally make on-disk changes in check functions, 2010 * we need to do that here. 2011 * 2012 * Ensure this portion of the tree's counts have been 2013 * initialized in case the new parent has limits set. 2014 */ 2015 dsl_dir_init_fs_ss_count(dd, tx); 2016 } 2017 } 2018 2019 if (newparent != dd->dd_parent) { 2020 /* is there enough space? */ 2021 uint64_t myspace = 2022 MAX(dsl_dir_phys(dd)->dd_used_bytes, 2023 dsl_dir_phys(dd)->dd_reserved); 2024 objset_t *os = dd->dd_pool->dp_meta_objset; 2025 uint64_t fs_cnt = 0; 2026 uint64_t ss_cnt = 0; 2027 2028 if (dsl_dir_is_zapified(dd)) { 2029 int err; 2030 2031 err = zap_lookup(os, dd->dd_object, 2032 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2033 &fs_cnt); 2034 if (err != ENOENT && err != 0) { 2035 dsl_dir_rele(newparent, FTAG); 2036 dsl_dir_rele(dd, FTAG); 2037 return (err); 2038 } 2039 2040 /* 2041 * have to add 1 for the filesystem itself that we're 2042 * moving 2043 */ 2044 fs_cnt++; 2045 2046 err = zap_lookup(os, dd->dd_object, 2047 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2048 &ss_cnt); 2049 if (err != ENOENT && err != 0) { 2050 dsl_dir_rele(newparent, FTAG); 2051 dsl_dir_rele(dd, FTAG); 2052 return (err); 2053 } 2054 } 2055 2056 /* check for encryption errors */ 2057 error = dsl_dir_rename_crypt_check(dd, newparent); 2058 if (error != 0) { 2059 dsl_dir_rele(newparent, FTAG); 2060 dsl_dir_rele(dd, FTAG); 2061 return (SET_ERROR(EACCES)); 2062 } 2063 2064 /* no rename into our descendant */ 2065 if (closest_common_ancestor(dd, newparent) == dd) { 2066 dsl_dir_rele(newparent, FTAG); 2067 dsl_dir_rele(dd, FTAG); 2068 return (SET_ERROR(EINVAL)); 2069 } 2070 2071 error = dsl_dir_transfer_possible(dd->dd_parent, 2072 newparent, fs_cnt, ss_cnt, myspace, 2073 ddra->ddra_cred, ddra->ddra_proc); 2074 if (error != 0) { 2075 dsl_dir_rele(newparent, FTAG); 2076 dsl_dir_rele(dd, FTAG); 2077 return (error); 2078 } 2079 } 2080 2081 dsl_dir_rele(newparent, FTAG); 2082 dsl_dir_rele(dd, FTAG); 2083 return (0); 2084 } 2085 2086 static void 2087 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 2088 { 2089 dsl_dir_rename_arg_t *ddra = arg; 2090 dsl_pool_t *dp = dmu_tx_pool(tx); 2091 dsl_dir_t *dd, *newparent; 2092 const char *mynewname; 2093 objset_t *mos = dp->dp_meta_objset; 2094 2095 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 2096 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 2097 &mynewname)); 2098 2099 /* Log this before we change the name. */ 2100 spa_history_log_internal_dd(dd, "rename", tx, 2101 "-> %s", ddra->ddra_newname); 2102 2103 if (newparent != dd->dd_parent) { 2104 objset_t *os = dd->dd_pool->dp_meta_objset; 2105 uint64_t fs_cnt = 0; 2106 uint64_t ss_cnt = 0; 2107 2108 /* 2109 * We already made sure the dd counts were initialized in the 2110 * check function. 2111 */ 2112 if (spa_feature_is_active(dp->dp_spa, 2113 SPA_FEATURE_FS_SS_LIMIT)) { 2114 VERIFY0(zap_lookup(os, dd->dd_object, 2115 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2116 &fs_cnt)); 2117 /* add 1 for the filesystem itself that we're moving */ 2118 fs_cnt++; 2119 2120 VERIFY0(zap_lookup(os, dd->dd_object, 2121 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2122 &ss_cnt)); 2123 } 2124 2125 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 2126 DD_FIELD_FILESYSTEM_COUNT, tx); 2127 dsl_fs_ss_count_adjust(newparent, fs_cnt, 2128 DD_FIELD_FILESYSTEM_COUNT, tx); 2129 2130 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 2131 DD_FIELD_SNAPSHOT_COUNT, tx); 2132 dsl_fs_ss_count_adjust(newparent, ss_cnt, 2133 DD_FIELD_SNAPSHOT_COUNT, tx); 2134 2135 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 2136 -dsl_dir_phys(dd)->dd_used_bytes, 2137 -dsl_dir_phys(dd)->dd_compressed_bytes, 2138 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2139 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 2140 dsl_dir_phys(dd)->dd_used_bytes, 2141 dsl_dir_phys(dd)->dd_compressed_bytes, 2142 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2143 2144 if (dsl_dir_phys(dd)->dd_reserved > 2145 dsl_dir_phys(dd)->dd_used_bytes) { 2146 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 2147 dsl_dir_phys(dd)->dd_used_bytes; 2148 2149 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 2150 -unused_rsrv, 0, 0, tx); 2151 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 2152 unused_rsrv, 0, 0, tx); 2153 } 2154 } 2155 2156 dmu_buf_will_dirty(dd->dd_dbuf, tx); 2157 2158 /* remove from old parent zapobj */ 2159 VERIFY0(zap_remove(mos, 2160 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 2161 dd->dd_myname, tx)); 2162 2163 (void) strlcpy(dd->dd_myname, mynewname, 2164 sizeof (dd->dd_myname)); 2165 dsl_dir_rele(dd->dd_parent, dd); 2166 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 2167 VERIFY0(dsl_dir_hold_obj(dp, 2168 newparent->dd_object, NULL, dd, &dd->dd_parent)); 2169 2170 /* add to new parent zapobj */ 2171 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 2172 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 2173 2174 /* TODO: A rename callback to avoid these layering violations. */ 2175 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname); 2176 zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname, 2177 ddra->ddra_newname, B_TRUE); 2178 2179 dsl_prop_notify_all(dd); 2180 2181 dsl_dir_rele(newparent, FTAG); 2182 dsl_dir_rele(dd, FTAG); 2183 } 2184 2185 int 2186 dsl_dir_rename(const char *oldname, const char *newname) 2187 { 2188 dsl_dir_rename_arg_t ddra; 2189 2190 ddra.ddra_oldname = oldname; 2191 ddra.ddra_newname = newname; 2192 ddra.ddra_cred = CRED(); 2193 ddra.ddra_proc = curproc; 2194 2195 return (dsl_sync_task(oldname, 2196 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 2197 3, ZFS_SPACE_CHECK_RESERVED)); 2198 } 2199 2200 int 2201 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 2202 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, 2203 cred_t *cr, proc_t *proc) 2204 { 2205 dsl_dir_t *ancestor; 2206 int64_t adelta; 2207 uint64_t avail; 2208 int err; 2209 2210 ancestor = closest_common_ancestor(sdd, tdd); 2211 adelta = would_change(sdd, -space, ancestor); 2212 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 2213 if (avail < space) 2214 return (SET_ERROR(ENOSPC)); 2215 2216 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 2217 ancestor, cr, proc); 2218 if (err != 0) 2219 return (err); 2220 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 2221 ancestor, cr, proc); 2222 if (err != 0) 2223 return (err); 2224 2225 return (0); 2226 } 2227 2228 inode_timespec_t 2229 dsl_dir_snap_cmtime(dsl_dir_t *dd) 2230 { 2231 inode_timespec_t t; 2232 2233 mutex_enter(&dd->dd_lock); 2234 t = dd->dd_snap_cmtime; 2235 mutex_exit(&dd->dd_lock); 2236 2237 return (t); 2238 } 2239 2240 void 2241 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 2242 { 2243 inode_timespec_t t; 2244 2245 gethrestime(&t); 2246 mutex_enter(&dd->dd_lock); 2247 dd->dd_snap_cmtime = t; 2248 mutex_exit(&dd->dd_lock); 2249 } 2250 2251 void 2252 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 2253 { 2254 objset_t *mos = dd->dd_pool->dp_meta_objset; 2255 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 2256 } 2257 2258 boolean_t 2259 dsl_dir_is_zapified(dsl_dir_t *dd) 2260 { 2261 dmu_object_info_t doi; 2262 2263 dmu_object_info_from_db(dd->dd_dbuf, &doi); 2264 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 2265 } 2266 2267 void 2268 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj) 2269 { 2270 objset_t *mos = dd->dd_pool->dp_meta_objset; 2271 ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa, 2272 SPA_FEATURE_LIVELIST)); 2273 dsl_deadlist_open(&dd->dd_livelist, mos, obj); 2274 bplist_create(&dd->dd_pending_allocs); 2275 bplist_create(&dd->dd_pending_frees); 2276 } 2277 2278 void 2279 dsl_dir_livelist_close(dsl_dir_t *dd) 2280 { 2281 dsl_deadlist_close(&dd->dd_livelist); 2282 bplist_destroy(&dd->dd_pending_allocs); 2283 bplist_destroy(&dd->dd_pending_frees); 2284 } 2285 2286 void 2287 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total) 2288 { 2289 uint64_t obj; 2290 dsl_pool_t *dp = dmu_tx_pool(tx); 2291 spa_t *spa = dp->dp_spa; 2292 livelist_condense_entry_t to_condense = spa->spa_to_condense; 2293 2294 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2295 return; 2296 2297 /* 2298 * If the livelist being removed is set to be condensed, stop the 2299 * condense zthr and indicate the cancellation in the spa_to_condense 2300 * struct in case the condense no-wait synctask has already started 2301 */ 2302 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 2303 if (ll_condense_thread != NULL && 2304 (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) { 2305 /* 2306 * We use zthr_wait_cycle_done instead of zthr_cancel 2307 * because we don't want to destroy the zthr, just have 2308 * it skip its current task. 2309 */ 2310 spa->spa_to_condense.cancelled = B_TRUE; 2311 zthr_wait_cycle_done(ll_condense_thread); 2312 /* 2313 * If we've returned from zthr_wait_cycle_done without 2314 * clearing the to_condense data structure it's either 2315 * because the no-wait synctask has started (which is 2316 * indicated by 'syncing' field of to_condense) and we 2317 * can expect it to clear to_condense on its own. 2318 * Otherwise, we returned before the zthr ran. The 2319 * checkfunc will now fail as cancelled == B_TRUE so we 2320 * can safely NULL out ds, allowing a different dir's 2321 * livelist to be condensed. 2322 * 2323 * We can be sure that the to_condense struct will not 2324 * be repopulated at this stage because both this 2325 * function and dsl_livelist_try_condense execute in 2326 * syncing context. 2327 */ 2328 if ((spa->spa_to_condense.ds != NULL) && 2329 !spa->spa_to_condense.syncing) { 2330 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, 2331 spa); 2332 spa->spa_to_condense.ds = NULL; 2333 } 2334 } 2335 2336 dsl_dir_livelist_close(dd); 2337 VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object, 2338 DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj)); 2339 VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object, 2340 DD_FIELD_LIVELIST, tx)); 2341 if (total) { 2342 dsl_deadlist_free(dp->dp_meta_objset, obj, tx); 2343 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2344 } 2345 } 2346 2347 static int 2348 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds, 2349 zfs_wait_activity_t activity, boolean_t *in_progress) 2350 { 2351 int error = 0; 2352 2353 ASSERT(MUTEX_HELD(&dd->dd_activity_lock)); 2354 2355 switch (activity) { 2356 case ZFS_WAIT_DELETEQ: { 2357 #ifdef _KERNEL 2358 objset_t *os; 2359 error = dmu_objset_from_ds(ds, &os); 2360 if (error != 0) 2361 break; 2362 2363 mutex_enter(&os->os_user_ptr_lock); 2364 void *user = dmu_objset_get_user(os); 2365 mutex_exit(&os->os_user_ptr_lock); 2366 if (dmu_objset_type(os) != DMU_OST_ZFS || 2367 user == NULL || zfs_get_vfs_flag_unmounted(os)) { 2368 *in_progress = B_FALSE; 2369 return (0); 2370 } 2371 2372 uint64_t readonly = B_FALSE; 2373 error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly, 2374 NULL); 2375 2376 if (error != 0) 2377 break; 2378 2379 if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) { 2380 *in_progress = B_FALSE; 2381 return (0); 2382 } 2383 2384 uint64_t count, unlinked_obj; 2385 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 2386 &unlinked_obj); 2387 if (error != 0) { 2388 dsl_dataset_rele(ds, FTAG); 2389 break; 2390 } 2391 error = zap_count(os, unlinked_obj, &count); 2392 2393 if (error == 0) 2394 *in_progress = (count != 0); 2395 break; 2396 #else 2397 /* 2398 * The delete queue is ZPL specific, and libzpool doesn't have 2399 * it. It doesn't make sense to wait for it. 2400 */ 2401 (void) ds; 2402 *in_progress = B_FALSE; 2403 break; 2404 #endif 2405 } 2406 default: 2407 panic("unrecognized value for activity %d", activity); 2408 } 2409 2410 return (error); 2411 } 2412 2413 int 2414 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity, 2415 boolean_t *waited) 2416 { 2417 int error = 0; 2418 boolean_t in_progress; 2419 dsl_pool_t *dp = dd->dd_pool; 2420 for (;;) { 2421 dsl_pool_config_enter(dp, FTAG); 2422 error = dsl_dir_activity_in_progress(dd, ds, activity, 2423 &in_progress); 2424 dsl_pool_config_exit(dp, FTAG); 2425 if (error != 0 || !in_progress) 2426 break; 2427 2428 *waited = B_TRUE; 2429 2430 if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) == 2431 0 || dd->dd_activity_cancelled) { 2432 error = SET_ERROR(EINTR); 2433 break; 2434 } 2435 } 2436 return (error); 2437 } 2438 2439 void 2440 dsl_dir_cancel_waiters(dsl_dir_t *dd) 2441 { 2442 mutex_enter(&dd->dd_activity_lock); 2443 dd->dd_activity_cancelled = B_TRUE; 2444 cv_broadcast(&dd->dd_activity_cv); 2445 while (dd->dd_activity_waiters > 0) 2446 cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock); 2447 mutex_exit(&dd->dd_activity_lock); 2448 } 2449 2450 #if defined(_KERNEL) 2451 EXPORT_SYMBOL(dsl_dir_set_quota); 2452 EXPORT_SYMBOL(dsl_dir_set_reservation); 2453 #endif 2454