1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 28 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_prop.h> 37 #include <sys/dsl_synctask.h> 38 #include <sys/dsl_deleg.h> 39 #include <sys/dmu_impl.h> 40 #include <sys/spa.h> 41 #include <sys/spa_impl.h> 42 #include <sys/metaslab.h> 43 #include <sys/zap.h> 44 #include <sys/zio.h> 45 #include <sys/arc.h> 46 #include <sys/sunddi.h> 47 #include <sys/zfeature.h> 48 #include <sys/policy.h> 49 #include <sys/zfs_vfsops.h> 50 #include <sys/zfs_znode.h> 51 #include <sys/zvol.h> 52 #include <sys/zthr.h> 53 #include "zfs_namecheck.h" 54 #include "zfs_prop.h" 55 56 /* 57 * This controls if we verify the ZVOL quota or not. 58 * Currently, quotas are not implemented for ZVOLs. 59 * The quota size is the size of the ZVOL. 60 * The size of the volume already implies the ZVOL size quota. 61 * The quota mechanism can introduce a significant performance drop. 62 */ 63 static int zvol_enforce_quotas = B_TRUE; 64 65 /* 66 * Filesystem and Snapshot Limits 67 * ------------------------------ 68 * 69 * These limits are used to restrict the number of filesystems and/or snapshots 70 * that can be created at a given level in the tree or below. A typical 71 * use-case is with a delegated dataset where the administrator wants to ensure 72 * that a user within the zone is not creating too many additional filesystems 73 * or snapshots, even though they're not exceeding their space quota. 74 * 75 * The filesystem and snapshot counts are stored as extensible properties. This 76 * capability is controlled by a feature flag and must be enabled to be used. 77 * Once enabled, the feature is not active until the first limit is set. At 78 * that point, future operations to create/destroy filesystems or snapshots 79 * will validate and update the counts. 80 * 81 * Because the count properties will not exist before the feature is active, 82 * the counts are updated when a limit is first set on an uninitialized 83 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 84 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 85 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 86 * snapshot count properties on a node indicate uninitialized counts on that 87 * node.) When first setting a limit on an uninitialized node, the code starts 88 * at the filesystem with the new limit and descends into all sub-filesystems 89 * to add the count properties. 90 * 91 * In practice this is lightweight since a limit is typically set when the 92 * filesystem is created and thus has no children. Once valid, changing the 93 * limit value won't require a re-traversal since the counts are already valid. 94 * When recursively fixing the counts, if a node with a limit is encountered 95 * during the descent, the counts are known to be valid and there is no need to 96 * descend into that filesystem's children. The counts on filesystems above the 97 * one with the new limit will still be uninitialized, unless a limit is 98 * eventually set on one of those filesystems. The counts are always recursively 99 * updated when a limit is set on a dataset, unless there is already a limit. 100 * When a new limit value is set on a filesystem with an existing limit, it is 101 * possible for the new limit to be less than the current count at that level 102 * since a user who can change the limit is also allowed to exceed the limit. 103 * 104 * Once the feature is active, then whenever a filesystem or snapshot is 105 * created, the code recurses up the tree, validating the new count against the 106 * limit at each initialized level. In practice, most levels will not have a 107 * limit set. If there is a limit at any initialized level up the tree, the 108 * check must pass or the creation will fail. Likewise, when a filesystem or 109 * snapshot is destroyed, the counts are recursively adjusted all the way up 110 * the initialized nodes in the tree. Renaming a filesystem into different point 111 * in the tree will first validate, then update the counts on each branch up to 112 * the common ancestor. A receive will also validate the counts and then update 113 * them. 114 * 115 * An exception to the above behavior is that the limit is not enforced if the 116 * user has permission to modify the limit. This is primarily so that 117 * recursive snapshots in the global zone always work. We want to prevent a 118 * denial-of-service in which a lower level delegated dataset could max out its 119 * limit and thus block recursive snapshots from being taken in the global zone. 120 * Because of this, it is possible for the snapshot count to be over the limit 121 * and snapshots taken in the global zone could cause a lower level dataset to 122 * hit or exceed its limit. The administrator taking the global zone recursive 123 * snapshot should be aware of this side-effect and behave accordingly. 124 * For consistency, the filesystem limit is also not enforced if the user can 125 * modify the limit. 126 * 127 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 128 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 129 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 130 * dsl_dir_init_fs_ss_count(). 131 */ 132 133 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 134 135 typedef struct ddulrt_arg { 136 dsl_dir_t *ddulrta_dd; 137 uint64_t ddlrta_txg; 138 } ddulrt_arg_t; 139 140 static void 141 dsl_dir_evict_async(void *dbu) 142 { 143 dsl_dir_t *dd = dbu; 144 int t; 145 dsl_pool_t *dp __maybe_unused = dd->dd_pool; 146 147 dd->dd_dbuf = NULL; 148 149 for (t = 0; t < TXG_SIZE; t++) { 150 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 151 ASSERT(dd->dd_tempreserved[t] == 0); 152 ASSERT(dd->dd_space_towrite[t] == 0); 153 } 154 155 if (dd->dd_parent) 156 dsl_dir_async_rele(dd->dd_parent, dd); 157 158 spa_async_close(dd->dd_pool->dp_spa, dd); 159 160 if (dsl_deadlist_is_open(&dd->dd_livelist)) 161 dsl_dir_livelist_close(dd); 162 163 dsl_prop_fini(dd); 164 cv_destroy(&dd->dd_activity_cv); 165 mutex_destroy(&dd->dd_activity_lock); 166 mutex_destroy(&dd->dd_lock); 167 kmem_free(dd, sizeof (dsl_dir_t)); 168 } 169 170 int 171 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 172 const char *tail, const void *tag, dsl_dir_t **ddp) 173 { 174 dmu_buf_t *dbuf; 175 dsl_dir_t *dd; 176 dmu_object_info_t doi; 177 int err; 178 179 ASSERT(dsl_pool_config_held(dp)); 180 181 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 182 if (err != 0) 183 return (err); 184 dd = dmu_buf_get_user(dbuf); 185 186 dmu_object_info_from_db(dbuf, &doi); 187 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 188 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 189 190 if (dd == NULL) { 191 dsl_dir_t *winner; 192 193 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 194 dd->dd_object = ddobj; 195 dd->dd_dbuf = dbuf; 196 dd->dd_pool = dp; 197 198 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 199 mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL); 200 cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL); 201 dsl_prop_init(dd); 202 203 if (dsl_dir_is_zapified(dd)) { 204 err = zap_lookup(dp->dp_meta_objset, 205 ddobj, DD_FIELD_CRYPTO_KEY_OBJ, 206 sizeof (uint64_t), 1, &dd->dd_crypto_obj); 207 if (err == 0) { 208 /* check for on-disk format errata */ 209 if (dsl_dir_incompatible_encryption_version( 210 dd)) { 211 dp->dp_spa->spa_errata = 212 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION; 213 } 214 } else if (err != ENOENT) { 215 goto errout; 216 } 217 } 218 219 if (dsl_dir_phys(dd)->dd_parent_obj) { 220 err = dsl_dir_hold_obj(dp, 221 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 222 &dd->dd_parent); 223 if (err != 0) 224 goto errout; 225 if (tail) { 226 #ifdef ZFS_DEBUG 227 uint64_t foundobj; 228 229 err = zap_lookup(dp->dp_meta_objset, 230 dsl_dir_phys(dd->dd_parent)-> 231 dd_child_dir_zapobj, tail, 232 sizeof (foundobj), 1, &foundobj); 233 ASSERT(err || foundobj == ddobj); 234 #endif 235 (void) strlcpy(dd->dd_myname, tail, 236 sizeof (dd->dd_myname)); 237 } else { 238 err = zap_value_search(dp->dp_meta_objset, 239 dsl_dir_phys(dd->dd_parent)-> 240 dd_child_dir_zapobj, 241 ddobj, 0, dd->dd_myname); 242 } 243 if (err != 0) 244 goto errout; 245 } else { 246 (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa), 247 sizeof (dd->dd_myname)); 248 } 249 250 if (dsl_dir_is_clone(dd)) { 251 dmu_buf_t *origin_bonus; 252 dsl_dataset_phys_t *origin_phys; 253 254 /* 255 * We can't open the origin dataset, because 256 * that would require opening this dsl_dir. 257 * Just look at its phys directly instead. 258 */ 259 err = dmu_bonus_hold(dp->dp_meta_objset, 260 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 261 &origin_bonus); 262 if (err != 0) 263 goto errout; 264 origin_phys = origin_bonus->db_data; 265 dd->dd_origin_txg = 266 origin_phys->ds_creation_txg; 267 dmu_buf_rele(origin_bonus, FTAG); 268 if (dsl_dir_is_zapified(dd)) { 269 uint64_t obj; 270 err = zap_lookup(dp->dp_meta_objset, 271 dd->dd_object, DD_FIELD_LIVELIST, 272 sizeof (uint64_t), 1, &obj); 273 if (err == 0) 274 dsl_dir_livelist_open(dd, obj); 275 else if (err != ENOENT) 276 goto errout; 277 } 278 } 279 280 if (dsl_dir_is_zapified(dd)) { 281 inode_timespec_t t = {0}; 282 (void) zap_lookup(dp->dp_meta_objset, ddobj, 283 DD_FIELD_SNAPSHOTS_CHANGED, 284 sizeof (uint64_t), 285 sizeof (inode_timespec_t) / sizeof (uint64_t), 286 &t); 287 dd->dd_snap_cmtime = t; 288 } 289 290 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 291 &dd->dd_dbuf); 292 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 293 if (winner != NULL) { 294 if (dd->dd_parent) 295 dsl_dir_rele(dd->dd_parent, dd); 296 if (dsl_deadlist_is_open(&dd->dd_livelist)) 297 dsl_dir_livelist_close(dd); 298 dsl_prop_fini(dd); 299 cv_destroy(&dd->dd_activity_cv); 300 mutex_destroy(&dd->dd_activity_lock); 301 mutex_destroy(&dd->dd_lock); 302 kmem_free(dd, sizeof (dsl_dir_t)); 303 dd = winner; 304 } else { 305 spa_open_ref(dp->dp_spa, dd); 306 } 307 } 308 309 /* 310 * The dsl_dir_t has both open-to-close and instantiate-to-evict 311 * holds on the spa. We need the open-to-close holds because 312 * otherwise the spa_refcnt wouldn't change when we open a 313 * dir which the spa also has open, so we could incorrectly 314 * think it was OK to unload/export/destroy the pool. We need 315 * the instantiate-to-evict hold because the dsl_dir_t has a 316 * pointer to the dd_pool, which has a pointer to the spa_t. 317 */ 318 spa_open_ref(dp->dp_spa, tag); 319 ASSERT3P(dd->dd_pool, ==, dp); 320 ASSERT3U(dd->dd_object, ==, ddobj); 321 ASSERT3P(dd->dd_dbuf, ==, dbuf); 322 *ddp = dd; 323 return (0); 324 325 errout: 326 if (dd->dd_parent) 327 dsl_dir_rele(dd->dd_parent, dd); 328 if (dsl_deadlist_is_open(&dd->dd_livelist)) 329 dsl_dir_livelist_close(dd); 330 dsl_prop_fini(dd); 331 cv_destroy(&dd->dd_activity_cv); 332 mutex_destroy(&dd->dd_activity_lock); 333 mutex_destroy(&dd->dd_lock); 334 kmem_free(dd, sizeof (dsl_dir_t)); 335 dmu_buf_rele(dbuf, tag); 336 return (err); 337 } 338 339 void 340 dsl_dir_rele(dsl_dir_t *dd, const void *tag) 341 { 342 dprintf_dd(dd, "%s\n", ""); 343 spa_close(dd->dd_pool->dp_spa, tag); 344 dmu_buf_rele(dd->dd_dbuf, tag); 345 } 346 347 /* 348 * Remove a reference to the given dsl dir that is being asynchronously 349 * released. Async releases occur from a taskq performing eviction of 350 * dsl datasets and dirs. This process is identical to a normal release 351 * with the exception of using the async API for releasing the reference on 352 * the spa. 353 */ 354 void 355 dsl_dir_async_rele(dsl_dir_t *dd, const void *tag) 356 { 357 dprintf_dd(dd, "%s\n", ""); 358 spa_async_close(dd->dd_pool->dp_spa, tag); 359 dmu_buf_rele(dd->dd_dbuf, tag); 360 } 361 362 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 363 void 364 dsl_dir_name(dsl_dir_t *dd, char *buf) 365 { 366 if (dd->dd_parent) { 367 dsl_dir_name(dd->dd_parent, buf); 368 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 369 ZFS_MAX_DATASET_NAME_LEN); 370 } else { 371 buf[0] = '\0'; 372 } 373 if (!MUTEX_HELD(&dd->dd_lock)) { 374 /* 375 * recursive mutex so that we can use 376 * dprintf_dd() with dd_lock held 377 */ 378 mutex_enter(&dd->dd_lock); 379 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 380 <, ZFS_MAX_DATASET_NAME_LEN); 381 mutex_exit(&dd->dd_lock); 382 } else { 383 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 384 <, ZFS_MAX_DATASET_NAME_LEN); 385 } 386 } 387 388 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 389 int 390 dsl_dir_namelen(dsl_dir_t *dd) 391 { 392 int result = 0; 393 394 if (dd->dd_parent) { 395 /* parent's name + 1 for the "/" */ 396 result = dsl_dir_namelen(dd->dd_parent) + 1; 397 } 398 399 if (!MUTEX_HELD(&dd->dd_lock)) { 400 /* see dsl_dir_name */ 401 mutex_enter(&dd->dd_lock); 402 result += strlen(dd->dd_myname); 403 mutex_exit(&dd->dd_lock); 404 } else { 405 result += strlen(dd->dd_myname); 406 } 407 408 return (result); 409 } 410 411 static int 412 getcomponent(const char *path, char *component, const char **nextp) 413 { 414 char *p; 415 416 if ((path == NULL) || (path[0] == '\0')) 417 return (SET_ERROR(ENOENT)); 418 /* This would be a good place to reserve some namespace... */ 419 p = strpbrk(path, "/@"); 420 if (p && (p[1] == '/' || p[1] == '@')) { 421 /* two separators in a row */ 422 return (SET_ERROR(EINVAL)); 423 } 424 if (p == NULL || p == path) { 425 /* 426 * if the first thing is an @ or /, it had better be an 427 * @ and it had better not have any more ats or slashes, 428 * and it had better have something after the @. 429 */ 430 if (p != NULL && 431 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 432 return (SET_ERROR(EINVAL)); 433 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 434 return (SET_ERROR(ENAMETOOLONG)); 435 (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN); 436 p = NULL; 437 } else if (p[0] == '/') { 438 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 439 return (SET_ERROR(ENAMETOOLONG)); 440 (void) strlcpy(component, path, p - path + 1); 441 p++; 442 } else if (p[0] == '@') { 443 /* 444 * if the next separator is an @, there better not be 445 * any more slashes. 446 */ 447 if (strchr(path, '/')) 448 return (SET_ERROR(EINVAL)); 449 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 450 return (SET_ERROR(ENAMETOOLONG)); 451 (void) strlcpy(component, path, p - path + 1); 452 } else { 453 panic("invalid p=%p", (void *)p); 454 } 455 *nextp = p; 456 return (0); 457 } 458 459 /* 460 * Return the dsl_dir_t, and possibly the last component which couldn't 461 * be found in *tail. The name must be in the specified dsl_pool_t. This 462 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 463 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 464 * (*tail)[0] == '@' means that the last component is a snapshot. 465 */ 466 int 467 dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag, 468 dsl_dir_t **ddp, const char **tailp) 469 { 470 char *buf; 471 const char *spaname, *next, *nextnext = NULL; 472 int err; 473 dsl_dir_t *dd; 474 uint64_t ddobj; 475 476 buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 477 err = getcomponent(name, buf, &next); 478 if (err != 0) 479 goto error; 480 481 /* Make sure the name is in the specified pool. */ 482 spaname = spa_name(dp->dp_spa); 483 if (strcmp(buf, spaname) != 0) { 484 err = SET_ERROR(EXDEV); 485 goto error; 486 } 487 488 ASSERT(dsl_pool_config_held(dp)); 489 490 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 491 if (err != 0) { 492 goto error; 493 } 494 495 while (next != NULL) { 496 dsl_dir_t *child_dd; 497 err = getcomponent(next, buf, &nextnext); 498 if (err != 0) 499 break; 500 ASSERT(next[0] != '\0'); 501 if (next[0] == '@') 502 break; 503 dprintf("looking up %s in obj%lld\n", 504 buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj); 505 506 err = zap_lookup(dp->dp_meta_objset, 507 dsl_dir_phys(dd)->dd_child_dir_zapobj, 508 buf, sizeof (ddobj), 1, &ddobj); 509 if (err != 0) { 510 if (err == ENOENT) 511 err = 0; 512 break; 513 } 514 515 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 516 if (err != 0) 517 break; 518 dsl_dir_rele(dd, tag); 519 dd = child_dd; 520 next = nextnext; 521 } 522 523 if (err != 0) { 524 dsl_dir_rele(dd, tag); 525 goto error; 526 } 527 528 /* 529 * It's an error if there's more than one component left, or 530 * tailp==NULL and there's any component left. 531 */ 532 if (next != NULL && 533 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 534 /* bad path name */ 535 dsl_dir_rele(dd, tag); 536 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 537 err = SET_ERROR(ENOENT); 538 } 539 if (tailp != NULL) 540 *tailp = next; 541 if (err == 0) 542 *ddp = dd; 543 error: 544 kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN); 545 return (err); 546 } 547 548 /* 549 * If the counts are already initialized for this filesystem and its 550 * descendants then do nothing, otherwise initialize the counts. 551 * 552 * The counts on this filesystem, and those below, may be uninitialized due to 553 * either the use of a pre-existing pool which did not support the 554 * filesystem/snapshot limit feature, or one in which the feature had not yet 555 * been enabled. 556 * 557 * Recursively descend the filesystem tree and update the filesystem/snapshot 558 * counts on each filesystem below, then update the cumulative count on the 559 * current filesystem. If the filesystem already has a count set on it, 560 * then we know that its counts, and the counts on the filesystems below it, 561 * are already correct, so we don't have to update this filesystem. 562 */ 563 static void 564 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 565 { 566 uint64_t my_fs_cnt = 0; 567 uint64_t my_ss_cnt = 0; 568 dsl_pool_t *dp = dd->dd_pool; 569 objset_t *os = dp->dp_meta_objset; 570 zap_cursor_t *zc; 571 zap_attribute_t *za; 572 dsl_dataset_t *ds; 573 574 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 575 ASSERT(dsl_pool_config_held(dp)); 576 ASSERT(dmu_tx_is_syncing(tx)); 577 578 dsl_dir_zapify(dd, tx); 579 580 /* 581 * If the filesystem count has already been initialized then we 582 * don't need to recurse down any further. 583 */ 584 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 585 return; 586 587 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 588 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 589 590 /* Iterate my child dirs */ 591 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 592 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 593 dsl_dir_t *chld_dd; 594 uint64_t count; 595 596 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 597 &chld_dd)); 598 599 /* 600 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets. 601 */ 602 if (chld_dd->dd_myname[0] == '$') { 603 dsl_dir_rele(chld_dd, FTAG); 604 continue; 605 } 606 607 my_fs_cnt++; /* count this child */ 608 609 dsl_dir_init_fs_ss_count(chld_dd, tx); 610 611 VERIFY0(zap_lookup(os, chld_dd->dd_object, 612 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 613 my_fs_cnt += count; 614 VERIFY0(zap_lookup(os, chld_dd->dd_object, 615 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 616 my_ss_cnt += count; 617 618 dsl_dir_rele(chld_dd, FTAG); 619 } 620 zap_cursor_fini(zc); 621 /* Count my snapshots (we counted children's snapshots above) */ 622 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 623 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 624 625 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 626 zap_cursor_retrieve(zc, za) == 0; 627 zap_cursor_advance(zc)) { 628 /* Don't count temporary snapshots */ 629 if (za->za_name[0] != '%') 630 my_ss_cnt++; 631 } 632 zap_cursor_fini(zc); 633 634 dsl_dataset_rele(ds, FTAG); 635 636 kmem_free(zc, sizeof (zap_cursor_t)); 637 kmem_free(za, sizeof (zap_attribute_t)); 638 639 /* we're in a sync task, update counts */ 640 dmu_buf_will_dirty(dd->dd_dbuf, tx); 641 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 642 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 643 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 644 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 645 } 646 647 static int 648 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 649 { 650 char *ddname = (char *)arg; 651 dsl_pool_t *dp = dmu_tx_pool(tx); 652 dsl_dataset_t *ds; 653 dsl_dir_t *dd; 654 int error; 655 656 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 657 if (error != 0) 658 return (error); 659 660 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 661 dsl_dataset_rele(ds, FTAG); 662 return (SET_ERROR(ENOTSUP)); 663 } 664 665 dd = ds->ds_dir; 666 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 667 dsl_dir_is_zapified(dd) && 668 zap_contains(dp->dp_meta_objset, dd->dd_object, 669 DD_FIELD_FILESYSTEM_COUNT) == 0) { 670 dsl_dataset_rele(ds, FTAG); 671 return (SET_ERROR(EALREADY)); 672 } 673 674 dsl_dataset_rele(ds, FTAG); 675 return (0); 676 } 677 678 static void 679 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 680 { 681 char *ddname = (char *)arg; 682 dsl_pool_t *dp = dmu_tx_pool(tx); 683 dsl_dataset_t *ds; 684 spa_t *spa; 685 686 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 687 688 spa = dsl_dataset_get_spa(ds); 689 690 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 691 /* 692 * Since the feature was not active and we're now setting a 693 * limit, increment the feature-active counter so that the 694 * feature becomes active for the first time. 695 * 696 * We are already in a sync task so we can update the MOS. 697 */ 698 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 699 } 700 701 /* 702 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 703 * we need to ensure the counts are correct. Descend down the tree from 704 * this point and update all of the counts to be accurate. 705 */ 706 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 707 708 dsl_dataset_rele(ds, FTAG); 709 } 710 711 /* 712 * Make sure the feature is enabled and activate it if necessary. 713 * Since we're setting a limit, ensure the on-disk counts are valid. 714 * This is only called by the ioctl path when setting a limit value. 715 * 716 * We do not need to validate the new limit, since users who can change the 717 * limit are also allowed to exceed the limit. 718 */ 719 int 720 dsl_dir_activate_fs_ss_limit(const char *ddname) 721 { 722 int error; 723 724 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 725 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 726 ZFS_SPACE_CHECK_RESERVED); 727 728 if (error == EALREADY) 729 error = 0; 730 731 return (error); 732 } 733 734 /* 735 * Used to determine if the filesystem_limit or snapshot_limit should be 736 * enforced. We allow the limit to be exceeded if the user has permission to 737 * write the property value. We pass in the creds that we got in the open 738 * context since we will always be the GZ root in syncing context. We also have 739 * to handle the case where we are allowed to change the limit on the current 740 * dataset, but there may be another limit in the tree above. 741 * 742 * We can never modify these two properties within a non-global zone. In 743 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 744 * can't use that function since we are already holding the dp_config_rwlock. 745 * In addition, we already have the dd and dealing with snapshots is simplified 746 * in this code. 747 */ 748 749 typedef enum { 750 ENFORCE_ALWAYS, 751 ENFORCE_NEVER, 752 ENFORCE_ABOVE 753 } enforce_res_t; 754 755 static enforce_res_t 756 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, 757 cred_t *cr, proc_t *proc) 758 { 759 enforce_res_t enforce = ENFORCE_ALWAYS; 760 uint64_t obj; 761 dsl_dataset_t *ds; 762 uint64_t zoned; 763 const char *zonedstr; 764 765 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 766 prop == ZFS_PROP_SNAPSHOT_LIMIT); 767 768 #ifdef _KERNEL 769 if (crgetzoneid(cr) != GLOBAL_ZONEID) 770 return (ENFORCE_ALWAYS); 771 772 /* 773 * We are checking the saved credentials of the user process, which is 774 * not the current process. Note that we can't use secpolicy_zfs(), 775 * because it only works if the cred is that of the current process (on 776 * Linux). 777 */ 778 if (secpolicy_zfs_proc(cr, proc) == 0) 779 return (ENFORCE_NEVER); 780 #else 781 (void) proc; 782 #endif 783 784 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 785 return (ENFORCE_ALWAYS); 786 787 ASSERT(dsl_pool_config_held(dd->dd_pool)); 788 789 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 790 return (ENFORCE_ALWAYS); 791 792 zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED); 793 if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) { 794 /* Only root can access zoned fs's from the GZ */ 795 enforce = ENFORCE_ALWAYS; 796 } else { 797 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 798 enforce = ENFORCE_ABOVE; 799 } 800 801 dsl_dataset_rele(ds, FTAG); 802 return (enforce); 803 } 804 805 /* 806 * Check if adding additional child filesystem(s) would exceed any filesystem 807 * limits or adding additional snapshot(s) would exceed any snapshot limits. 808 * The prop argument indicates which limit to check. 809 * 810 * Note that all filesystem limits up to the root (or the highest 811 * initialized) filesystem or the given ancestor must be satisfied. 812 */ 813 int 814 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 815 dsl_dir_t *ancestor, cred_t *cr, proc_t *proc) 816 { 817 objset_t *os = dd->dd_pool->dp_meta_objset; 818 uint64_t limit, count; 819 const char *count_prop; 820 enforce_res_t enforce; 821 int err = 0; 822 823 ASSERT(dsl_pool_config_held(dd->dd_pool)); 824 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 825 prop == ZFS_PROP_SNAPSHOT_LIMIT); 826 827 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 828 /* 829 * We don't enforce the limit for temporary snapshots. This is 830 * indicated by a NULL cred_t argument. 831 */ 832 if (cr == NULL) 833 return (0); 834 835 count_prop = DD_FIELD_SNAPSHOT_COUNT; 836 } else { 837 count_prop = DD_FIELD_FILESYSTEM_COUNT; 838 } 839 /* 840 * If we're allowed to change the limit, don't enforce the limit 841 * e.g. this can happen if a snapshot is taken by an administrative 842 * user in the global zone (i.e. a recursive snapshot by root). 843 * However, we must handle the case of delegated permissions where we 844 * are allowed to change the limit on the current dataset, but there 845 * is another limit in the tree above. 846 */ 847 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc); 848 if (enforce == ENFORCE_NEVER) 849 return (0); 850 851 /* 852 * e.g. if renaming a dataset with no snapshots, count adjustment 853 * is 0. 854 */ 855 if (delta == 0) 856 return (0); 857 858 /* 859 * If an ancestor has been provided, stop checking the limit once we 860 * hit that dir. We need this during rename so that we don't overcount 861 * the check once we recurse up to the common ancestor. 862 */ 863 if (ancestor == dd) 864 return (0); 865 866 /* 867 * If we hit an uninitialized node while recursing up the tree, we can 868 * stop since we know there is no limit here (or above). The counts are 869 * not valid on this node and we know we won't touch this node's counts. 870 */ 871 if (!dsl_dir_is_zapified(dd)) 872 return (0); 873 err = zap_lookup(os, dd->dd_object, 874 count_prop, sizeof (count), 1, &count); 875 if (err == ENOENT) 876 return (0); 877 if (err != 0) 878 return (err); 879 880 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 881 B_FALSE); 882 if (err != 0) 883 return (err); 884 885 /* Is there a limit which we've hit? */ 886 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 887 return (SET_ERROR(EDQUOT)); 888 889 if (dd->dd_parent != NULL) 890 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 891 ancestor, cr, proc); 892 893 return (err); 894 } 895 896 /* 897 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 898 * parents. When a new filesystem/snapshot is created, increment the count on 899 * all parents, and when a filesystem/snapshot is destroyed, decrement the 900 * count. 901 */ 902 void 903 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 904 dmu_tx_t *tx) 905 { 906 int err; 907 objset_t *os = dd->dd_pool->dp_meta_objset; 908 uint64_t count; 909 910 ASSERT(dsl_pool_config_held(dd->dd_pool)); 911 ASSERT(dmu_tx_is_syncing(tx)); 912 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 913 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 914 915 /* 916 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets. 917 */ 918 if (dd->dd_myname[0] == '$' && strcmp(prop, 919 DD_FIELD_FILESYSTEM_COUNT) == 0) { 920 return; 921 } 922 923 /* 924 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 925 */ 926 if (delta == 0) 927 return; 928 929 /* 930 * If we hit an uninitialized node while recursing up the tree, we can 931 * stop since we know the counts are not valid on this node and we 932 * know we shouldn't touch this node's counts. An uninitialized count 933 * on the node indicates that either the feature has not yet been 934 * activated or there are no limits on this part of the tree. 935 */ 936 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 937 prop, sizeof (count), 1, &count)) == ENOENT) 938 return; 939 VERIFY0(err); 940 941 count += delta; 942 /* Use a signed verify to make sure we're not neg. */ 943 VERIFY3S(count, >=, 0); 944 945 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 946 tx)); 947 948 /* Roll up this additional count into our ancestors */ 949 if (dd->dd_parent != NULL) 950 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 951 } 952 953 uint64_t 954 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 955 dmu_tx_t *tx) 956 { 957 objset_t *mos = dp->dp_meta_objset; 958 uint64_t ddobj; 959 dsl_dir_phys_t *ddphys; 960 dmu_buf_t *dbuf; 961 962 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 963 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 964 if (pds) { 965 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 966 name, sizeof (uint64_t), 1, &ddobj, tx)); 967 } else { 968 /* it's the root dir */ 969 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 970 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 971 } 972 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 973 dmu_buf_will_dirty(dbuf, tx); 974 ddphys = dbuf->db_data; 975 976 ddphys->dd_creation_time = gethrestime_sec(); 977 if (pds) { 978 ddphys->dd_parent_obj = pds->dd_object; 979 980 /* update the filesystem counts */ 981 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 982 } 983 ddphys->dd_props_zapobj = zap_create(mos, 984 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 985 ddphys->dd_child_dir_zapobj = zap_create(mos, 986 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 987 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 988 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 989 990 dmu_buf_rele(dbuf, FTAG); 991 992 return (ddobj); 993 } 994 995 boolean_t 996 dsl_dir_is_clone(dsl_dir_t *dd) 997 { 998 return (dsl_dir_phys(dd)->dd_origin_obj && 999 (dd->dd_pool->dp_origin_snap == NULL || 1000 dsl_dir_phys(dd)->dd_origin_obj != 1001 dd->dd_pool->dp_origin_snap->ds_object)); 1002 } 1003 1004 uint64_t 1005 dsl_dir_get_used(dsl_dir_t *dd) 1006 { 1007 return (dsl_dir_phys(dd)->dd_used_bytes); 1008 } 1009 1010 uint64_t 1011 dsl_dir_get_compressed(dsl_dir_t *dd) 1012 { 1013 return (dsl_dir_phys(dd)->dd_compressed_bytes); 1014 } 1015 1016 uint64_t 1017 dsl_dir_get_quota(dsl_dir_t *dd) 1018 { 1019 return (dsl_dir_phys(dd)->dd_quota); 1020 } 1021 1022 uint64_t 1023 dsl_dir_get_reservation(dsl_dir_t *dd) 1024 { 1025 return (dsl_dir_phys(dd)->dd_reserved); 1026 } 1027 1028 uint64_t 1029 dsl_dir_get_compressratio(dsl_dir_t *dd) 1030 { 1031 /* a fixed point number, 100x the ratio */ 1032 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 1033 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 1034 dsl_dir_phys(dd)->dd_compressed_bytes)); 1035 } 1036 1037 uint64_t 1038 dsl_dir_get_logicalused(dsl_dir_t *dd) 1039 { 1040 return (dsl_dir_phys(dd)->dd_uncompressed_bytes); 1041 } 1042 1043 uint64_t 1044 dsl_dir_get_usedsnap(dsl_dir_t *dd) 1045 { 1046 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 1047 } 1048 1049 uint64_t 1050 dsl_dir_get_usedds(dsl_dir_t *dd) 1051 { 1052 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 1053 } 1054 1055 uint64_t 1056 dsl_dir_get_usedrefreserv(dsl_dir_t *dd) 1057 { 1058 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 1059 } 1060 1061 uint64_t 1062 dsl_dir_get_usedchild(dsl_dir_t *dd) 1063 { 1064 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 1065 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 1066 } 1067 1068 void 1069 dsl_dir_get_origin(dsl_dir_t *dd, char *buf) 1070 { 1071 dsl_dataset_t *ds; 1072 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 1073 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 1074 1075 dsl_dataset_name(ds, buf); 1076 1077 dsl_dataset_rele(ds, FTAG); 1078 } 1079 1080 int 1081 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count) 1082 { 1083 if (dsl_dir_is_zapified(dd)) { 1084 objset_t *os = dd->dd_pool->dp_meta_objset; 1085 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 1086 sizeof (*count), 1, count)); 1087 } else { 1088 return (SET_ERROR(ENOENT)); 1089 } 1090 } 1091 1092 int 1093 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count) 1094 { 1095 if (dsl_dir_is_zapified(dd)) { 1096 objset_t *os = dd->dd_pool->dp_meta_objset; 1097 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 1098 sizeof (*count), 1, count)); 1099 } else { 1100 return (SET_ERROR(ENOENT)); 1101 } 1102 } 1103 1104 void 1105 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 1106 { 1107 mutex_enter(&dd->dd_lock); 1108 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 1109 dsl_dir_get_quota(dd)); 1110 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 1111 dsl_dir_get_reservation(dd)); 1112 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 1113 dsl_dir_get_logicalused(dd)); 1114 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1115 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 1116 dsl_dir_get_usedsnap(dd)); 1117 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 1118 dsl_dir_get_usedds(dd)); 1119 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 1120 dsl_dir_get_usedrefreserv(dd)); 1121 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 1122 dsl_dir_get_usedchild(dd)); 1123 } 1124 mutex_exit(&dd->dd_lock); 1125 1126 uint64_t count; 1127 if (dsl_dir_get_filesystem_count(dd, &count) == 0) { 1128 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT, 1129 count); 1130 } 1131 if (dsl_dir_get_snapshot_count(dd, &count) == 0) { 1132 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT, 1133 count); 1134 } 1135 1136 if (dsl_dir_is_clone(dd)) { 1137 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1138 dsl_dir_get_origin(dd, buf); 1139 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 1140 } 1141 1142 } 1143 1144 void 1145 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 1146 { 1147 dsl_pool_t *dp = dd->dd_pool; 1148 1149 ASSERT(dsl_dir_phys(dd)); 1150 1151 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 1152 /* up the hold count until we can be written out */ 1153 dmu_buf_add_ref(dd->dd_dbuf, dd); 1154 } 1155 } 1156 1157 static int64_t 1158 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1159 { 1160 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1161 uint64_t new_accounted = 1162 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1163 return (new_accounted - old_accounted); 1164 } 1165 1166 void 1167 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1168 { 1169 ASSERT(dmu_tx_is_syncing(tx)); 1170 1171 mutex_enter(&dd->dd_lock); 1172 ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]); 1173 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg, 1174 (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024); 1175 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0; 1176 mutex_exit(&dd->dd_lock); 1177 1178 /* release the hold from dsl_dir_dirty */ 1179 dmu_buf_rele(dd->dd_dbuf, dd); 1180 } 1181 1182 static uint64_t 1183 dsl_dir_space_towrite(dsl_dir_t *dd) 1184 { 1185 uint64_t space = 0; 1186 1187 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1188 1189 for (int i = 0; i < TXG_SIZE; i++) 1190 space += dd->dd_space_towrite[i & TXG_MASK]; 1191 1192 return (space); 1193 } 1194 1195 /* 1196 * How much space would dd have available if ancestor had delta applied 1197 * to it? If ondiskonly is set, we're only interested in what's 1198 * on-disk, not estimated pending changes. 1199 */ 1200 uint64_t 1201 dsl_dir_space_available(dsl_dir_t *dd, 1202 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1203 { 1204 uint64_t parentspace, myspace, quota, used; 1205 1206 /* 1207 * If there are no restrictions otherwise, assume we have 1208 * unlimited space available. 1209 */ 1210 quota = UINT64_MAX; 1211 parentspace = UINT64_MAX; 1212 1213 if (dd->dd_parent != NULL) { 1214 parentspace = dsl_dir_space_available(dd->dd_parent, 1215 ancestor, delta, ondiskonly); 1216 } 1217 1218 mutex_enter(&dd->dd_lock); 1219 if (dsl_dir_phys(dd)->dd_quota != 0) 1220 quota = dsl_dir_phys(dd)->dd_quota; 1221 used = dsl_dir_phys(dd)->dd_used_bytes; 1222 if (!ondiskonly) 1223 used += dsl_dir_space_towrite(dd); 1224 1225 if (dd->dd_parent == NULL) { 1226 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, 1227 ZFS_SPACE_CHECK_NORMAL); 1228 quota = MIN(quota, poolsize); 1229 } 1230 1231 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1232 /* 1233 * We have some space reserved, in addition to what our 1234 * parent gave us. 1235 */ 1236 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1237 } 1238 1239 if (dd == ancestor) { 1240 ASSERT(delta <= 0); 1241 ASSERT(used >= -delta); 1242 used += delta; 1243 if (parentspace != UINT64_MAX) 1244 parentspace -= delta; 1245 } 1246 1247 if (used > quota) { 1248 /* over quota */ 1249 myspace = 0; 1250 } else { 1251 /* 1252 * the lesser of the space provided by our parent and 1253 * the space left in our quota 1254 */ 1255 myspace = MIN(parentspace, quota - used); 1256 } 1257 1258 mutex_exit(&dd->dd_lock); 1259 1260 return (myspace); 1261 } 1262 1263 struct tempreserve { 1264 list_node_t tr_node; 1265 dsl_dir_t *tr_ds; 1266 uint64_t tr_size; 1267 }; 1268 1269 static int 1270 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1271 boolean_t ignorequota, list_t *tr_list, 1272 dmu_tx_t *tx, boolean_t first) 1273 { 1274 uint64_t txg; 1275 uint64_t quota; 1276 struct tempreserve *tr; 1277 int retval; 1278 uint64_t ext_quota; 1279 uint64_t ref_rsrv; 1280 1281 top_of_function: 1282 txg = tx->tx_txg; 1283 retval = EDQUOT; 1284 ref_rsrv = 0; 1285 1286 ASSERT3U(txg, !=, 0); 1287 ASSERT3S(asize, >, 0); 1288 1289 mutex_enter(&dd->dd_lock); 1290 1291 /* 1292 * Check against the dsl_dir's quota. We don't add in the delta 1293 * when checking for over-quota because they get one free hit. 1294 */ 1295 uint64_t est_inflight = dsl_dir_space_towrite(dd); 1296 for (int i = 0; i < TXG_SIZE; i++) 1297 est_inflight += dd->dd_tempreserved[i]; 1298 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1299 1300 /* 1301 * On the first iteration, fetch the dataset's used-on-disk and 1302 * refreservation values. Also, if checkrefquota is set, test if 1303 * allocating this space would exceed the dataset's refquota. 1304 */ 1305 if (first && tx->tx_objset) { 1306 int error; 1307 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1308 1309 error = dsl_dataset_check_quota(ds, !netfree, 1310 asize, est_inflight, &used_on_disk, &ref_rsrv); 1311 if (error != 0) { 1312 mutex_exit(&dd->dd_lock); 1313 DMU_TX_STAT_BUMP(dmu_tx_quota); 1314 return (error); 1315 } 1316 } 1317 1318 /* 1319 * If this transaction will result in a net free of space, 1320 * we want to let it through. 1321 */ 1322 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0 || 1323 (tx->tx_objset && dmu_objset_type(tx->tx_objset) == DMU_OST_ZVOL && 1324 zvol_enforce_quotas == B_FALSE)) 1325 quota = UINT64_MAX; 1326 else 1327 quota = dsl_dir_phys(dd)->dd_quota; 1328 1329 /* 1330 * Adjust the quota against the actual pool size at the root 1331 * minus any outstanding deferred frees. 1332 * To ensure that it's possible to remove files from a full 1333 * pool without inducing transient overcommits, we throttle 1334 * netfree transactions against a quota that is slightly larger, 1335 * but still within the pool's allocation slop. In cases where 1336 * we're very close to full, this will allow a steady trickle of 1337 * removes to get through. 1338 */ 1339 if (dd->dd_parent == NULL) { 1340 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool, 1341 (netfree) ? 1342 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL); 1343 1344 if (avail < quota) { 1345 quota = avail; 1346 retval = SET_ERROR(ENOSPC); 1347 } 1348 } 1349 1350 /* 1351 * If they are requesting more space, and our current estimate 1352 * is over quota, they get to try again unless the actual 1353 * on-disk is over quota and there are no pending changes 1354 * or deferred frees (which may free up space for us). 1355 */ 1356 ext_quota = quota >> 5; 1357 if (quota == UINT64_MAX) 1358 ext_quota = 0; 1359 1360 if (used_on_disk >= quota) { 1361 /* Quota exceeded */ 1362 mutex_exit(&dd->dd_lock); 1363 DMU_TX_STAT_BUMP(dmu_tx_quota); 1364 return (retval); 1365 } else if (used_on_disk + est_inflight >= quota + ext_quota) { 1366 if (est_inflight > 0 || used_on_disk < quota) { 1367 retval = SET_ERROR(ERESTART); 1368 } else { 1369 ASSERT3U(used_on_disk, >=, quota); 1370 1371 if (retval == ENOSPC && (used_on_disk - quota) < 1372 dsl_pool_deferred_space(dd->dd_pool)) { 1373 retval = SET_ERROR(ERESTART); 1374 } 1375 } 1376 1377 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1378 "quota=%lluK tr=%lluK err=%d\n", 1379 (u_longlong_t)used_on_disk>>10, 1380 (u_longlong_t)est_inflight>>10, 1381 (u_longlong_t)quota>>10, (u_longlong_t)asize>>10, retval); 1382 mutex_exit(&dd->dd_lock); 1383 DMU_TX_STAT_BUMP(dmu_tx_quota); 1384 return (retval); 1385 } 1386 1387 /* We need to up our estimated delta before dropping dd_lock */ 1388 dd->dd_tempreserved[txg & TXG_MASK] += asize; 1389 1390 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1391 asize - ref_rsrv); 1392 mutex_exit(&dd->dd_lock); 1393 1394 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1395 tr->tr_ds = dd; 1396 tr->tr_size = asize; 1397 list_insert_tail(tr_list, tr); 1398 1399 /* see if it's OK with our parent */ 1400 if (dd->dd_parent != NULL && parent_rsrv != 0) { 1401 /* 1402 * Recurse on our parent without recursion. This has been 1403 * observed to be potentially large stack usage even within 1404 * the test suite. Largest seen stack was 7632 bytes on linux. 1405 */ 1406 1407 dd = dd->dd_parent; 1408 asize = parent_rsrv; 1409 ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1410 first = B_FALSE; 1411 goto top_of_function; 1412 } 1413 1414 return (0); 1415 } 1416 1417 /* 1418 * Reserve space in this dsl_dir, to be used in this tx's txg. 1419 * After the space has been dirtied (and dsl_dir_willuse_space() 1420 * has been called), the reservation should be canceled, using 1421 * dsl_dir_tempreserve_clear(). 1422 */ 1423 int 1424 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1425 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx) 1426 { 1427 int err; 1428 list_t *tr_list; 1429 1430 if (asize == 0) { 1431 *tr_cookiep = NULL; 1432 return (0); 1433 } 1434 1435 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1436 list_create(tr_list, sizeof (struct tempreserve), 1437 offsetof(struct tempreserve, tr_node)); 1438 ASSERT3S(asize, >, 0); 1439 1440 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg); 1441 if (err == 0) { 1442 struct tempreserve *tr; 1443 1444 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1445 tr->tr_size = lsize; 1446 list_insert_tail(tr_list, tr); 1447 } else { 1448 if (err == EAGAIN) { 1449 /* 1450 * If arc_memory_throttle() detected that pageout 1451 * is running and we are low on memory, we delay new 1452 * non-pageout transactions to give pageout an 1453 * advantage. 1454 * 1455 * It is unfortunate to be delaying while the caller's 1456 * locks are held. 1457 */ 1458 txg_delay(dd->dd_pool, tx->tx_txg, 1459 MSEC2NSEC(10), MSEC2NSEC(10)); 1460 err = SET_ERROR(ERESTART); 1461 } 1462 } 1463 1464 if (err == 0) { 1465 err = dsl_dir_tempreserve_impl(dd, asize, netfree, 1466 B_FALSE, tr_list, tx, B_TRUE); 1467 } 1468 1469 if (err != 0) 1470 dsl_dir_tempreserve_clear(tr_list, tx); 1471 else 1472 *tr_cookiep = tr_list; 1473 1474 return (err); 1475 } 1476 1477 /* 1478 * Clear a temporary reservation that we previously made with 1479 * dsl_dir_tempreserve_space(). 1480 */ 1481 void 1482 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1483 { 1484 int txgidx = tx->tx_txg & TXG_MASK; 1485 list_t *tr_list = tr_cookie; 1486 struct tempreserve *tr; 1487 1488 ASSERT3U(tx->tx_txg, !=, 0); 1489 1490 if (tr_cookie == NULL) 1491 return; 1492 1493 while ((tr = list_head(tr_list)) != NULL) { 1494 if (tr->tr_ds) { 1495 mutex_enter(&tr->tr_ds->dd_lock); 1496 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1497 tr->tr_size); 1498 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1499 mutex_exit(&tr->tr_ds->dd_lock); 1500 } else { 1501 arc_tempreserve_clear(tr->tr_size); 1502 } 1503 list_remove(tr_list, tr); 1504 kmem_free(tr, sizeof (struct tempreserve)); 1505 } 1506 1507 kmem_free(tr_list, sizeof (list_t)); 1508 } 1509 1510 /* 1511 * This should be called from open context when we think we're going to write 1512 * or free space, for example when dirtying data. Be conservative; it's okay 1513 * to write less space or free more, but we don't want to write more or free 1514 * less than the amount specified. 1515 * 1516 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD 1517 * version however it has been adjusted to use an iterative rather than 1518 * recursive algorithm to minimize stack usage. 1519 */ 1520 void 1521 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1522 { 1523 int64_t parent_space; 1524 uint64_t est_used; 1525 1526 do { 1527 mutex_enter(&dd->dd_lock); 1528 if (space > 0) 1529 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1530 1531 est_used = dsl_dir_space_towrite(dd) + 1532 dsl_dir_phys(dd)->dd_used_bytes; 1533 parent_space = parent_delta(dd, est_used, space); 1534 mutex_exit(&dd->dd_lock); 1535 1536 /* Make sure that we clean up dd_space_to* */ 1537 dsl_dir_dirty(dd, tx); 1538 1539 dd = dd->dd_parent; 1540 space = parent_space; 1541 } while (space && dd); 1542 } 1543 1544 /* call from syncing context when we actually write/free space for this dd */ 1545 void 1546 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1547 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1548 { 1549 int64_t accounted_delta; 1550 1551 ASSERT(dmu_tx_is_syncing(tx)); 1552 ASSERT(type < DD_USED_NUM); 1553 1554 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1555 1556 /* 1557 * dsl_dataset_set_refreservation_sync_impl() calls this with 1558 * dd_lock held, so that it can atomically update 1559 * ds->ds_reserved and the dsl_dir accounting, so that 1560 * dsl_dataset_check_quota() can see dataset and dir accounting 1561 * consistently. 1562 */ 1563 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1564 if (needlock) 1565 mutex_enter(&dd->dd_lock); 1566 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1567 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used); 1568 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used); 1569 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed); 1570 ASSERT(uncompressed >= 0 || 1571 ddp->dd_uncompressed_bytes >= -uncompressed); 1572 ddp->dd_used_bytes += used; 1573 ddp->dd_uncompressed_bytes += uncompressed; 1574 ddp->dd_compressed_bytes += compressed; 1575 1576 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1577 ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used); 1578 ddp->dd_used_breakdown[type] += used; 1579 #ifdef ZFS_DEBUG 1580 { 1581 dd_used_t t; 1582 uint64_t u = 0; 1583 for (t = 0; t < DD_USED_NUM; t++) 1584 u += ddp->dd_used_breakdown[t]; 1585 ASSERT3U(u, ==, ddp->dd_used_bytes); 1586 } 1587 #endif 1588 } 1589 if (needlock) 1590 mutex_exit(&dd->dd_lock); 1591 1592 if (dd->dd_parent != NULL) { 1593 dsl_dir_diduse_transfer_space(dd->dd_parent, 1594 accounted_delta, compressed, uncompressed, 1595 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1596 } 1597 } 1598 1599 void 1600 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1601 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1602 { 1603 ASSERT(dmu_tx_is_syncing(tx)); 1604 ASSERT(oldtype < DD_USED_NUM); 1605 ASSERT(newtype < DD_USED_NUM); 1606 1607 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1608 if (delta == 0 || 1609 !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1610 return; 1611 1612 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1613 mutex_enter(&dd->dd_lock); 1614 ASSERT(delta > 0 ? 1615 ddp->dd_used_breakdown[oldtype] >= delta : 1616 ddp->dd_used_breakdown[newtype] >= -delta); 1617 ASSERT(ddp->dd_used_bytes >= ABS(delta)); 1618 ddp->dd_used_breakdown[oldtype] -= delta; 1619 ddp->dd_used_breakdown[newtype] += delta; 1620 mutex_exit(&dd->dd_lock); 1621 } 1622 1623 void 1624 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used, 1625 int64_t compressed, int64_t uncompressed, int64_t tonew, 1626 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1627 { 1628 int64_t accounted_delta; 1629 1630 ASSERT(dmu_tx_is_syncing(tx)); 1631 ASSERT(oldtype < DD_USED_NUM); 1632 ASSERT(newtype < DD_USED_NUM); 1633 1634 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1635 1636 mutex_enter(&dd->dd_lock); 1637 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1638 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used); 1639 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used); 1640 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed); 1641 ASSERT(uncompressed >= 0 || 1642 ddp->dd_uncompressed_bytes >= -uncompressed); 1643 ddp->dd_used_bytes += used; 1644 ddp->dd_uncompressed_bytes += uncompressed; 1645 ddp->dd_compressed_bytes += compressed; 1646 1647 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1648 ASSERT(tonew - used <= 0 || 1649 ddp->dd_used_breakdown[oldtype] >= tonew - used); 1650 ASSERT(tonew >= 0 || 1651 ddp->dd_used_breakdown[newtype] >= -tonew); 1652 ddp->dd_used_breakdown[oldtype] -= tonew - used; 1653 ddp->dd_used_breakdown[newtype] += tonew; 1654 #ifdef ZFS_DEBUG 1655 { 1656 dd_used_t t; 1657 uint64_t u = 0; 1658 for (t = 0; t < DD_USED_NUM; t++) 1659 u += ddp->dd_used_breakdown[t]; 1660 ASSERT3U(u, ==, ddp->dd_used_bytes); 1661 } 1662 #endif 1663 } 1664 mutex_exit(&dd->dd_lock); 1665 1666 if (dd->dd_parent != NULL) { 1667 dsl_dir_diduse_transfer_space(dd->dd_parent, 1668 accounted_delta, compressed, uncompressed, 1669 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1670 } 1671 } 1672 1673 typedef struct dsl_dir_set_qr_arg { 1674 const char *ddsqra_name; 1675 zprop_source_t ddsqra_source; 1676 uint64_t ddsqra_value; 1677 } dsl_dir_set_qr_arg_t; 1678 1679 static int 1680 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1681 { 1682 dsl_dir_set_qr_arg_t *ddsqra = arg; 1683 dsl_pool_t *dp = dmu_tx_pool(tx); 1684 dsl_dataset_t *ds; 1685 int error; 1686 uint64_t towrite, newval; 1687 1688 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1689 if (error != 0) 1690 return (error); 1691 1692 error = dsl_prop_predict(ds->ds_dir, "quota", 1693 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1694 if (error != 0) { 1695 dsl_dataset_rele(ds, FTAG); 1696 return (error); 1697 } 1698 1699 if (newval == 0) { 1700 dsl_dataset_rele(ds, FTAG); 1701 return (0); 1702 } 1703 1704 mutex_enter(&ds->ds_dir->dd_lock); 1705 /* 1706 * If we are doing the preliminary check in open context, and 1707 * there are pending changes, then don't fail it, since the 1708 * pending changes could under-estimate the amount of space to be 1709 * freed up. 1710 */ 1711 towrite = dsl_dir_space_towrite(ds->ds_dir); 1712 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1713 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1714 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1715 error = SET_ERROR(ENOSPC); 1716 } 1717 mutex_exit(&ds->ds_dir->dd_lock); 1718 dsl_dataset_rele(ds, FTAG); 1719 return (error); 1720 } 1721 1722 static void 1723 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1724 { 1725 dsl_dir_set_qr_arg_t *ddsqra = arg; 1726 dsl_pool_t *dp = dmu_tx_pool(tx); 1727 dsl_dataset_t *ds; 1728 uint64_t newval; 1729 1730 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1731 1732 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1733 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1734 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1735 &ddsqra->ddsqra_value, tx); 1736 1737 VERIFY0(dsl_prop_get_int_ds(ds, 1738 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1739 } else { 1740 newval = ddsqra->ddsqra_value; 1741 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1742 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1743 } 1744 1745 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1746 mutex_enter(&ds->ds_dir->dd_lock); 1747 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1748 mutex_exit(&ds->ds_dir->dd_lock); 1749 dsl_dataset_rele(ds, FTAG); 1750 } 1751 1752 int 1753 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1754 { 1755 dsl_dir_set_qr_arg_t ddsqra; 1756 1757 ddsqra.ddsqra_name = ddname; 1758 ddsqra.ddsqra_source = source; 1759 ddsqra.ddsqra_value = quota; 1760 1761 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1762 dsl_dir_set_quota_sync, &ddsqra, 0, 1763 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1764 } 1765 1766 static int 1767 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1768 { 1769 dsl_dir_set_qr_arg_t *ddsqra = arg; 1770 dsl_pool_t *dp = dmu_tx_pool(tx); 1771 dsl_dataset_t *ds; 1772 dsl_dir_t *dd; 1773 uint64_t newval, used, avail; 1774 int error; 1775 1776 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1777 if (error != 0) 1778 return (error); 1779 dd = ds->ds_dir; 1780 1781 /* 1782 * If we are doing the preliminary check in open context, the 1783 * space estimates may be inaccurate. 1784 */ 1785 if (!dmu_tx_is_syncing(tx)) { 1786 dsl_dataset_rele(ds, FTAG); 1787 return (0); 1788 } 1789 1790 error = dsl_prop_predict(ds->ds_dir, 1791 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1792 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1793 if (error != 0) { 1794 dsl_dataset_rele(ds, FTAG); 1795 return (error); 1796 } 1797 1798 mutex_enter(&dd->dd_lock); 1799 used = dsl_dir_phys(dd)->dd_used_bytes; 1800 mutex_exit(&dd->dd_lock); 1801 1802 if (dd->dd_parent) { 1803 avail = dsl_dir_space_available(dd->dd_parent, 1804 NULL, 0, FALSE); 1805 } else { 1806 avail = dsl_pool_adjustedsize(dd->dd_pool, 1807 ZFS_SPACE_CHECK_NORMAL) - used; 1808 } 1809 1810 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1811 uint64_t delta = MAX(used, newval) - 1812 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1813 1814 if (delta > avail || 1815 (dsl_dir_phys(dd)->dd_quota > 0 && 1816 newval > dsl_dir_phys(dd)->dd_quota)) 1817 error = SET_ERROR(ENOSPC); 1818 } 1819 1820 dsl_dataset_rele(ds, FTAG); 1821 return (error); 1822 } 1823 1824 void 1825 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1826 { 1827 uint64_t used; 1828 int64_t delta; 1829 1830 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1831 1832 mutex_enter(&dd->dd_lock); 1833 used = dsl_dir_phys(dd)->dd_used_bytes; 1834 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1835 dsl_dir_phys(dd)->dd_reserved = value; 1836 1837 if (dd->dd_parent != NULL) { 1838 /* Roll up this additional usage into our ancestors */ 1839 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1840 delta, 0, 0, tx); 1841 } 1842 mutex_exit(&dd->dd_lock); 1843 } 1844 1845 static void 1846 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1847 { 1848 dsl_dir_set_qr_arg_t *ddsqra = arg; 1849 dsl_pool_t *dp = dmu_tx_pool(tx); 1850 dsl_dataset_t *ds; 1851 uint64_t newval; 1852 1853 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1854 1855 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1856 dsl_prop_set_sync_impl(ds, 1857 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1858 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1859 &ddsqra->ddsqra_value, tx); 1860 1861 VERIFY0(dsl_prop_get_int_ds(ds, 1862 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1863 } else { 1864 newval = ddsqra->ddsqra_value; 1865 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1866 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1867 (longlong_t)newval); 1868 } 1869 1870 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1871 dsl_dataset_rele(ds, FTAG); 1872 } 1873 1874 int 1875 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1876 uint64_t reservation) 1877 { 1878 dsl_dir_set_qr_arg_t ddsqra; 1879 1880 ddsqra.ddsqra_name = ddname; 1881 ddsqra.ddsqra_source = source; 1882 ddsqra.ddsqra_value = reservation; 1883 1884 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1885 dsl_dir_set_reservation_sync, &ddsqra, 0, 1886 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1887 } 1888 1889 static dsl_dir_t * 1890 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1891 { 1892 for (; ds1; ds1 = ds1->dd_parent) { 1893 dsl_dir_t *dd; 1894 for (dd = ds2; dd; dd = dd->dd_parent) { 1895 if (ds1 == dd) 1896 return (dd); 1897 } 1898 } 1899 return (NULL); 1900 } 1901 1902 /* 1903 * If delta is applied to dd, how much of that delta would be applied to 1904 * ancestor? Syncing context only. 1905 */ 1906 static int64_t 1907 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1908 { 1909 if (dd == ancestor) 1910 return (delta); 1911 1912 mutex_enter(&dd->dd_lock); 1913 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1914 mutex_exit(&dd->dd_lock); 1915 return (would_change(dd->dd_parent, delta, ancestor)); 1916 } 1917 1918 typedef struct dsl_dir_rename_arg { 1919 const char *ddra_oldname; 1920 const char *ddra_newname; 1921 cred_t *ddra_cred; 1922 proc_t *ddra_proc; 1923 } dsl_dir_rename_arg_t; 1924 1925 typedef struct dsl_valid_rename_arg { 1926 int char_delta; 1927 int nest_delta; 1928 } dsl_valid_rename_arg_t; 1929 1930 static int 1931 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1932 { 1933 (void) dp; 1934 dsl_valid_rename_arg_t *dvra = arg; 1935 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1936 1937 dsl_dataset_name(ds, namebuf); 1938 1939 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN), 1940 <, ZFS_MAX_DATASET_NAME_LEN); 1941 int namelen = strlen(namebuf) + dvra->char_delta; 1942 int depth = get_dataset_depth(namebuf) + dvra->nest_delta; 1943 1944 if (namelen >= ZFS_MAX_DATASET_NAME_LEN) 1945 return (SET_ERROR(ENAMETOOLONG)); 1946 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting) 1947 return (SET_ERROR(ENAMETOOLONG)); 1948 return (0); 1949 } 1950 1951 static int 1952 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1953 { 1954 dsl_dir_rename_arg_t *ddra = arg; 1955 dsl_pool_t *dp = dmu_tx_pool(tx); 1956 dsl_dir_t *dd, *newparent; 1957 dsl_valid_rename_arg_t dvra; 1958 dsl_dataset_t *parentds; 1959 objset_t *parentos; 1960 const char *mynewname; 1961 int error; 1962 1963 /* target dir should exist */ 1964 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1965 if (error != 0) 1966 return (error); 1967 1968 /* new parent should exist */ 1969 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1970 &newparent, &mynewname); 1971 if (error != 0) { 1972 dsl_dir_rele(dd, FTAG); 1973 return (error); 1974 } 1975 1976 /* can't rename to different pool */ 1977 if (dd->dd_pool != newparent->dd_pool) { 1978 dsl_dir_rele(newparent, FTAG); 1979 dsl_dir_rele(dd, FTAG); 1980 return (SET_ERROR(EXDEV)); 1981 } 1982 1983 /* new name should not already exist */ 1984 if (mynewname == NULL) { 1985 dsl_dir_rele(newparent, FTAG); 1986 dsl_dir_rele(dd, FTAG); 1987 return (SET_ERROR(EEXIST)); 1988 } 1989 1990 /* can't rename below anything but filesystems (eg. no ZVOLs) */ 1991 error = dsl_dataset_hold_obj(newparent->dd_pool, 1992 dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds); 1993 if (error != 0) { 1994 dsl_dir_rele(newparent, FTAG); 1995 dsl_dir_rele(dd, FTAG); 1996 return (error); 1997 } 1998 error = dmu_objset_from_ds(parentds, &parentos); 1999 if (error != 0) { 2000 dsl_dataset_rele(parentds, FTAG); 2001 dsl_dir_rele(newparent, FTAG); 2002 dsl_dir_rele(dd, FTAG); 2003 return (error); 2004 } 2005 if (dmu_objset_type(parentos) != DMU_OST_ZFS) { 2006 dsl_dataset_rele(parentds, FTAG); 2007 dsl_dir_rele(newparent, FTAG); 2008 dsl_dir_rele(dd, FTAG); 2009 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 2010 } 2011 dsl_dataset_rele(parentds, FTAG); 2012 2013 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN), 2014 <, ZFS_MAX_DATASET_NAME_LEN); 2015 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN), 2016 <, ZFS_MAX_DATASET_NAME_LEN); 2017 dvra.char_delta = strlen(ddra->ddra_newname) 2018 - strlen(ddra->ddra_oldname); 2019 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname) 2020 - get_dataset_depth(ddra->ddra_oldname); 2021 2022 /* if the name length is growing, validate child name lengths */ 2023 if (dvra.char_delta > 0 || dvra.nest_delta > 0) { 2024 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 2025 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 2026 if (error != 0) { 2027 dsl_dir_rele(newparent, FTAG); 2028 dsl_dir_rele(dd, FTAG); 2029 return (error); 2030 } 2031 } 2032 2033 if (dmu_tx_is_syncing(tx)) { 2034 if (spa_feature_is_active(dp->dp_spa, 2035 SPA_FEATURE_FS_SS_LIMIT)) { 2036 /* 2037 * Although this is the check function and we don't 2038 * normally make on-disk changes in check functions, 2039 * we need to do that here. 2040 * 2041 * Ensure this portion of the tree's counts have been 2042 * initialized in case the new parent has limits set. 2043 */ 2044 dsl_dir_init_fs_ss_count(dd, tx); 2045 } 2046 } 2047 2048 if (newparent != dd->dd_parent) { 2049 /* is there enough space? */ 2050 uint64_t myspace = 2051 MAX(dsl_dir_phys(dd)->dd_used_bytes, 2052 dsl_dir_phys(dd)->dd_reserved); 2053 objset_t *os = dd->dd_pool->dp_meta_objset; 2054 uint64_t fs_cnt = 0; 2055 uint64_t ss_cnt = 0; 2056 2057 if (dsl_dir_is_zapified(dd)) { 2058 int err; 2059 2060 err = zap_lookup(os, dd->dd_object, 2061 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2062 &fs_cnt); 2063 if (err != ENOENT && err != 0) { 2064 dsl_dir_rele(newparent, FTAG); 2065 dsl_dir_rele(dd, FTAG); 2066 return (err); 2067 } 2068 2069 /* 2070 * have to add 1 for the filesystem itself that we're 2071 * moving 2072 */ 2073 fs_cnt++; 2074 2075 err = zap_lookup(os, dd->dd_object, 2076 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2077 &ss_cnt); 2078 if (err != ENOENT && err != 0) { 2079 dsl_dir_rele(newparent, FTAG); 2080 dsl_dir_rele(dd, FTAG); 2081 return (err); 2082 } 2083 } 2084 2085 /* check for encryption errors */ 2086 error = dsl_dir_rename_crypt_check(dd, newparent); 2087 if (error != 0) { 2088 dsl_dir_rele(newparent, FTAG); 2089 dsl_dir_rele(dd, FTAG); 2090 return (SET_ERROR(EACCES)); 2091 } 2092 2093 /* no rename into our descendant */ 2094 if (closest_common_ancestor(dd, newparent) == dd) { 2095 dsl_dir_rele(newparent, FTAG); 2096 dsl_dir_rele(dd, FTAG); 2097 return (SET_ERROR(EINVAL)); 2098 } 2099 2100 error = dsl_dir_transfer_possible(dd->dd_parent, 2101 newparent, fs_cnt, ss_cnt, myspace, 2102 ddra->ddra_cred, ddra->ddra_proc); 2103 if (error != 0) { 2104 dsl_dir_rele(newparent, FTAG); 2105 dsl_dir_rele(dd, FTAG); 2106 return (error); 2107 } 2108 } 2109 2110 dsl_dir_rele(newparent, FTAG); 2111 dsl_dir_rele(dd, FTAG); 2112 return (0); 2113 } 2114 2115 static void 2116 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 2117 { 2118 dsl_dir_rename_arg_t *ddra = arg; 2119 dsl_pool_t *dp = dmu_tx_pool(tx); 2120 dsl_dir_t *dd, *newparent; 2121 const char *mynewname; 2122 objset_t *mos = dp->dp_meta_objset; 2123 2124 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 2125 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 2126 &mynewname)); 2127 2128 ASSERT3P(mynewname, !=, NULL); 2129 2130 /* Log this before we change the name. */ 2131 spa_history_log_internal_dd(dd, "rename", tx, 2132 "-> %s", ddra->ddra_newname); 2133 2134 if (newparent != dd->dd_parent) { 2135 objset_t *os = dd->dd_pool->dp_meta_objset; 2136 uint64_t fs_cnt = 0; 2137 uint64_t ss_cnt = 0; 2138 2139 /* 2140 * We already made sure the dd counts were initialized in the 2141 * check function. 2142 */ 2143 if (spa_feature_is_active(dp->dp_spa, 2144 SPA_FEATURE_FS_SS_LIMIT)) { 2145 VERIFY0(zap_lookup(os, dd->dd_object, 2146 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2147 &fs_cnt)); 2148 /* add 1 for the filesystem itself that we're moving */ 2149 fs_cnt++; 2150 2151 VERIFY0(zap_lookup(os, dd->dd_object, 2152 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2153 &ss_cnt)); 2154 } 2155 2156 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 2157 DD_FIELD_FILESYSTEM_COUNT, tx); 2158 dsl_fs_ss_count_adjust(newparent, fs_cnt, 2159 DD_FIELD_FILESYSTEM_COUNT, tx); 2160 2161 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 2162 DD_FIELD_SNAPSHOT_COUNT, tx); 2163 dsl_fs_ss_count_adjust(newparent, ss_cnt, 2164 DD_FIELD_SNAPSHOT_COUNT, tx); 2165 2166 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 2167 -dsl_dir_phys(dd)->dd_used_bytes, 2168 -dsl_dir_phys(dd)->dd_compressed_bytes, 2169 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2170 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 2171 dsl_dir_phys(dd)->dd_used_bytes, 2172 dsl_dir_phys(dd)->dd_compressed_bytes, 2173 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2174 2175 if (dsl_dir_phys(dd)->dd_reserved > 2176 dsl_dir_phys(dd)->dd_used_bytes) { 2177 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 2178 dsl_dir_phys(dd)->dd_used_bytes; 2179 2180 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 2181 -unused_rsrv, 0, 0, tx); 2182 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 2183 unused_rsrv, 0, 0, tx); 2184 } 2185 } 2186 2187 dmu_buf_will_dirty(dd->dd_dbuf, tx); 2188 2189 /* remove from old parent zapobj */ 2190 VERIFY0(zap_remove(mos, 2191 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 2192 dd->dd_myname, tx)); 2193 2194 (void) strlcpy(dd->dd_myname, mynewname, 2195 sizeof (dd->dd_myname)); 2196 dsl_dir_rele(dd->dd_parent, dd); 2197 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 2198 VERIFY0(dsl_dir_hold_obj(dp, 2199 newparent->dd_object, NULL, dd, &dd->dd_parent)); 2200 2201 /* add to new parent zapobj */ 2202 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 2203 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 2204 2205 /* TODO: A rename callback to avoid these layering violations. */ 2206 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname); 2207 zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname, 2208 ddra->ddra_newname, B_TRUE); 2209 2210 dsl_prop_notify_all(dd); 2211 2212 dsl_dir_rele(newparent, FTAG); 2213 dsl_dir_rele(dd, FTAG); 2214 } 2215 2216 int 2217 dsl_dir_rename(const char *oldname, const char *newname) 2218 { 2219 dsl_dir_rename_arg_t ddra; 2220 2221 ddra.ddra_oldname = oldname; 2222 ddra.ddra_newname = newname; 2223 ddra.ddra_cred = CRED(); 2224 ddra.ddra_proc = curproc; 2225 2226 return (dsl_sync_task(oldname, 2227 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 2228 3, ZFS_SPACE_CHECK_RESERVED)); 2229 } 2230 2231 int 2232 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 2233 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, 2234 cred_t *cr, proc_t *proc) 2235 { 2236 dsl_dir_t *ancestor; 2237 int64_t adelta; 2238 uint64_t avail; 2239 int err; 2240 2241 ancestor = closest_common_ancestor(sdd, tdd); 2242 adelta = would_change(sdd, -space, ancestor); 2243 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 2244 if (avail < space) 2245 return (SET_ERROR(ENOSPC)); 2246 2247 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 2248 ancestor, cr, proc); 2249 if (err != 0) 2250 return (err); 2251 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 2252 ancestor, cr, proc); 2253 if (err != 0) 2254 return (err); 2255 2256 return (0); 2257 } 2258 2259 inode_timespec_t 2260 dsl_dir_snap_cmtime(dsl_dir_t *dd) 2261 { 2262 inode_timespec_t t; 2263 2264 mutex_enter(&dd->dd_lock); 2265 t = dd->dd_snap_cmtime; 2266 mutex_exit(&dd->dd_lock); 2267 2268 return (t); 2269 } 2270 2271 void 2272 dsl_dir_snap_cmtime_update(dsl_dir_t *dd, dmu_tx_t *tx) 2273 { 2274 dsl_pool_t *dp = dmu_tx_pool(tx); 2275 inode_timespec_t t; 2276 gethrestime(&t); 2277 2278 mutex_enter(&dd->dd_lock); 2279 dd->dd_snap_cmtime = t; 2280 if (spa_feature_is_enabled(dp->dp_spa, 2281 SPA_FEATURE_EXTENSIBLE_DATASET)) { 2282 objset_t *mos = dd->dd_pool->dp_meta_objset; 2283 uint64_t ddobj = dd->dd_object; 2284 dsl_dir_zapify(dd, tx); 2285 VERIFY0(zap_update(mos, ddobj, 2286 DD_FIELD_SNAPSHOTS_CHANGED, 2287 sizeof (uint64_t), 2288 sizeof (inode_timespec_t) / sizeof (uint64_t), 2289 &t, tx)); 2290 } 2291 mutex_exit(&dd->dd_lock); 2292 } 2293 2294 void 2295 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 2296 { 2297 objset_t *mos = dd->dd_pool->dp_meta_objset; 2298 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 2299 } 2300 2301 boolean_t 2302 dsl_dir_is_zapified(dsl_dir_t *dd) 2303 { 2304 dmu_object_info_t doi; 2305 2306 dmu_object_info_from_db(dd->dd_dbuf, &doi); 2307 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 2308 } 2309 2310 void 2311 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj) 2312 { 2313 objset_t *mos = dd->dd_pool->dp_meta_objset; 2314 ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa, 2315 SPA_FEATURE_LIVELIST)); 2316 dsl_deadlist_open(&dd->dd_livelist, mos, obj); 2317 bplist_create(&dd->dd_pending_allocs); 2318 bplist_create(&dd->dd_pending_frees); 2319 } 2320 2321 void 2322 dsl_dir_livelist_close(dsl_dir_t *dd) 2323 { 2324 dsl_deadlist_close(&dd->dd_livelist); 2325 bplist_destroy(&dd->dd_pending_allocs); 2326 bplist_destroy(&dd->dd_pending_frees); 2327 } 2328 2329 void 2330 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total) 2331 { 2332 uint64_t obj; 2333 dsl_pool_t *dp = dmu_tx_pool(tx); 2334 spa_t *spa = dp->dp_spa; 2335 livelist_condense_entry_t to_condense = spa->spa_to_condense; 2336 2337 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2338 return; 2339 2340 /* 2341 * If the livelist being removed is set to be condensed, stop the 2342 * condense zthr and indicate the cancellation in the spa_to_condense 2343 * struct in case the condense no-wait synctask has already started 2344 */ 2345 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 2346 if (ll_condense_thread != NULL && 2347 (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) { 2348 /* 2349 * We use zthr_wait_cycle_done instead of zthr_cancel 2350 * because we don't want to destroy the zthr, just have 2351 * it skip its current task. 2352 */ 2353 spa->spa_to_condense.cancelled = B_TRUE; 2354 zthr_wait_cycle_done(ll_condense_thread); 2355 /* 2356 * If we've returned from zthr_wait_cycle_done without 2357 * clearing the to_condense data structure it's either 2358 * because the no-wait synctask has started (which is 2359 * indicated by 'syncing' field of to_condense) and we 2360 * can expect it to clear to_condense on its own. 2361 * Otherwise, we returned before the zthr ran. The 2362 * checkfunc will now fail as cancelled == B_TRUE so we 2363 * can safely NULL out ds, allowing a different dir's 2364 * livelist to be condensed. 2365 * 2366 * We can be sure that the to_condense struct will not 2367 * be repopulated at this stage because both this 2368 * function and dsl_livelist_try_condense execute in 2369 * syncing context. 2370 */ 2371 if ((spa->spa_to_condense.ds != NULL) && 2372 !spa->spa_to_condense.syncing) { 2373 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, 2374 spa); 2375 spa->spa_to_condense.ds = NULL; 2376 } 2377 } 2378 2379 dsl_dir_livelist_close(dd); 2380 VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object, 2381 DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj)); 2382 VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object, 2383 DD_FIELD_LIVELIST, tx)); 2384 if (total) { 2385 dsl_deadlist_free(dp->dp_meta_objset, obj, tx); 2386 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2387 } 2388 } 2389 2390 static int 2391 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds, 2392 zfs_wait_activity_t activity, boolean_t *in_progress) 2393 { 2394 int error = 0; 2395 2396 ASSERT(MUTEX_HELD(&dd->dd_activity_lock)); 2397 2398 switch (activity) { 2399 case ZFS_WAIT_DELETEQ: { 2400 #ifdef _KERNEL 2401 objset_t *os; 2402 error = dmu_objset_from_ds(ds, &os); 2403 if (error != 0) 2404 break; 2405 2406 mutex_enter(&os->os_user_ptr_lock); 2407 void *user = dmu_objset_get_user(os); 2408 mutex_exit(&os->os_user_ptr_lock); 2409 if (dmu_objset_type(os) != DMU_OST_ZFS || 2410 user == NULL || zfs_get_vfs_flag_unmounted(os)) { 2411 *in_progress = B_FALSE; 2412 return (0); 2413 } 2414 2415 uint64_t readonly = B_FALSE; 2416 error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly, 2417 NULL); 2418 2419 if (error != 0) 2420 break; 2421 2422 if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) { 2423 *in_progress = B_FALSE; 2424 return (0); 2425 } 2426 2427 uint64_t count, unlinked_obj; 2428 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 2429 &unlinked_obj); 2430 if (error != 0) { 2431 dsl_dataset_rele(ds, FTAG); 2432 break; 2433 } 2434 error = zap_count(os, unlinked_obj, &count); 2435 2436 if (error == 0) 2437 *in_progress = (count != 0); 2438 break; 2439 #else 2440 /* 2441 * The delete queue is ZPL specific, and libzpool doesn't have 2442 * it. It doesn't make sense to wait for it. 2443 */ 2444 (void) ds; 2445 *in_progress = B_FALSE; 2446 break; 2447 #endif 2448 } 2449 default: 2450 panic("unrecognized value for activity %d", activity); 2451 } 2452 2453 return (error); 2454 } 2455 2456 int 2457 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity, 2458 boolean_t *waited) 2459 { 2460 int error = 0; 2461 boolean_t in_progress; 2462 dsl_pool_t *dp = dd->dd_pool; 2463 for (;;) { 2464 dsl_pool_config_enter(dp, FTAG); 2465 error = dsl_dir_activity_in_progress(dd, ds, activity, 2466 &in_progress); 2467 dsl_pool_config_exit(dp, FTAG); 2468 if (error != 0 || !in_progress) 2469 break; 2470 2471 *waited = B_TRUE; 2472 2473 if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) == 2474 0 || dd->dd_activity_cancelled) { 2475 error = SET_ERROR(EINTR); 2476 break; 2477 } 2478 } 2479 return (error); 2480 } 2481 2482 void 2483 dsl_dir_cancel_waiters(dsl_dir_t *dd) 2484 { 2485 mutex_enter(&dd->dd_activity_lock); 2486 dd->dd_activity_cancelled = B_TRUE; 2487 cv_broadcast(&dd->dd_activity_cv); 2488 while (dd->dd_activity_waiters > 0) 2489 cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock); 2490 mutex_exit(&dd->dd_activity_lock); 2491 } 2492 2493 #if defined(_KERNEL) 2494 EXPORT_SYMBOL(dsl_dir_set_quota); 2495 EXPORT_SYMBOL(dsl_dir_set_reservation); 2496 #endif 2497 2498 /* CSTYLED */ 2499 ZFS_MODULE_PARAM(zfs, , zvol_enforce_quotas, INT, ZMOD_RW, 2500 "Enable strict ZVOL quota enforcment"); 2501