xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_dir.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Martin Matuska. All rights reserved.
25  * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
30  */
31 
32 #include <sys/dmu.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dsl_prop.h>
38 #include <sys/dsl_synctask.h>
39 #include <sys/dsl_deleg.h>
40 #include <sys/dmu_impl.h>
41 #include <sys/spa.h>
42 #include <sys/spa_impl.h>
43 #include <sys/metaslab.h>
44 #include <sys/zap.h>
45 #include <sys/zio.h>
46 #include <sys/arc.h>
47 #include <sys/sunddi.h>
48 #include <sys/zfeature.h>
49 #include <sys/policy.h>
50 #include <sys/zfs_vfsops.h>
51 #include <sys/zfs_znode.h>
52 #include <sys/zvol.h>
53 #include <sys/zthr.h>
54 #include "zfs_namecheck.h"
55 #include "zfs_prop.h"
56 
57 /*
58  * This controls if we verify the ZVOL quota or not.
59  * Currently, quotas are not implemented for ZVOLs.
60  * The quota size is the size of the ZVOL.
61  * The size of the volume already implies the ZVOL size quota.
62  * The quota mechanism can introduce a significant performance drop.
63  */
64 static int zvol_enforce_quotas = B_TRUE;
65 
66 /*
67  * Filesystem and Snapshot Limits
68  * ------------------------------
69  *
70  * These limits are used to restrict the number of filesystems and/or snapshots
71  * that can be created at a given level in the tree or below. A typical
72  * use-case is with a delegated dataset where the administrator wants to ensure
73  * that a user within the zone is not creating too many additional filesystems
74  * or snapshots, even though they're not exceeding their space quota.
75  *
76  * The filesystem and snapshot counts are stored as extensible properties. This
77  * capability is controlled by a feature flag and must be enabled to be used.
78  * Once enabled, the feature is not active until the first limit is set. At
79  * that point, future operations to create/destroy filesystems or snapshots
80  * will validate and update the counts.
81  *
82  * Because the count properties will not exist before the feature is active,
83  * the counts are updated when a limit is first set on an uninitialized
84  * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
85  * all of the nested filesystems/snapshots. Thus, a new leaf node has a
86  * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
87  * snapshot count properties on a node indicate uninitialized counts on that
88  * node.) When first setting a limit on an uninitialized node, the code starts
89  * at the filesystem with the new limit and descends into all sub-filesystems
90  * to add the count properties.
91  *
92  * In practice this is lightweight since a limit is typically set when the
93  * filesystem is created and thus has no children. Once valid, changing the
94  * limit value won't require a re-traversal since the counts are already valid.
95  * When recursively fixing the counts, if a node with a limit is encountered
96  * during the descent, the counts are known to be valid and there is no need to
97  * descend into that filesystem's children. The counts on filesystems above the
98  * one with the new limit will still be uninitialized, unless a limit is
99  * eventually set on one of those filesystems. The counts are always recursively
100  * updated when a limit is set on a dataset, unless there is already a limit.
101  * When a new limit value is set on a filesystem with an existing limit, it is
102  * possible for the new limit to be less than the current count at that level
103  * since a user who can change the limit is also allowed to exceed the limit.
104  *
105  * Once the feature is active, then whenever a filesystem or snapshot is
106  * created, the code recurses up the tree, validating the new count against the
107  * limit at each initialized level. In practice, most levels will not have a
108  * limit set. If there is a limit at any initialized level up the tree, the
109  * check must pass or the creation will fail. Likewise, when a filesystem or
110  * snapshot is destroyed, the counts are recursively adjusted all the way up
111  * the initialized nodes in the tree. Renaming a filesystem into different point
112  * in the tree will first validate, then update the counts on each branch up to
113  * the common ancestor. A receive will also validate the counts and then update
114  * them.
115  *
116  * An exception to the above behavior is that the limit is not enforced if the
117  * user has permission to modify the limit. This is primarily so that
118  * recursive snapshots in the global zone always work. We want to prevent a
119  * denial-of-service in which a lower level delegated dataset could max out its
120  * limit and thus block recursive snapshots from being taken in the global zone.
121  * Because of this, it is possible for the snapshot count to be over the limit
122  * and snapshots taken in the global zone could cause a lower level dataset to
123  * hit or exceed its limit. The administrator taking the global zone recursive
124  * snapshot should be aware of this side-effect and behave accordingly.
125  * For consistency, the filesystem limit is also not enforced if the user can
126  * modify the limit.
127  *
128  * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
129  * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
130  * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
131  * dsl_dir_init_fs_ss_count().
132  */
133 
134 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
135 
136 typedef struct ddulrt_arg {
137 	dsl_dir_t	*ddulrta_dd;
138 	uint64_t	ddlrta_txg;
139 } ddulrt_arg_t;
140 
141 static void
142 dsl_dir_evict_async(void *dbu)
143 {
144 	dsl_dir_t *dd = dbu;
145 	int t;
146 	dsl_pool_t *dp __maybe_unused = dd->dd_pool;
147 
148 	dd->dd_dbuf = NULL;
149 
150 	for (t = 0; t < TXG_SIZE; t++) {
151 		ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
152 		ASSERT(dd->dd_tempreserved[t] == 0);
153 		ASSERT(dd->dd_space_towrite[t] == 0);
154 	}
155 
156 	if (dd->dd_parent)
157 		dsl_dir_async_rele(dd->dd_parent, dd);
158 
159 	spa_async_close(dd->dd_pool->dp_spa, dd);
160 
161 	if (dsl_deadlist_is_open(&dd->dd_livelist))
162 		dsl_dir_livelist_close(dd);
163 
164 	dsl_prop_fini(dd);
165 	cv_destroy(&dd->dd_activity_cv);
166 	mutex_destroy(&dd->dd_activity_lock);
167 	mutex_destroy(&dd->dd_lock);
168 	kmem_free(dd, sizeof (dsl_dir_t));
169 }
170 
171 int
172 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
173     const char *tail, const void *tag, dsl_dir_t **ddp)
174 {
175 	dmu_buf_t *dbuf;
176 	dsl_dir_t *dd;
177 	dmu_object_info_t doi;
178 	int err;
179 
180 	ASSERT(dsl_pool_config_held(dp));
181 
182 	err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
183 	if (err != 0)
184 		return (err);
185 	dd = dmu_buf_get_user(dbuf);
186 
187 	dmu_object_info_from_db(dbuf, &doi);
188 	ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
189 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
190 
191 	if (dd == NULL) {
192 		dsl_dir_t *winner;
193 
194 		dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
195 		dd->dd_object = ddobj;
196 		dd->dd_dbuf = dbuf;
197 		dd->dd_pool = dp;
198 
199 		mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
200 		mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
201 		cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
202 		dsl_prop_init(dd);
203 
204 		if (dsl_dir_is_zapified(dd)) {
205 			err = zap_lookup(dp->dp_meta_objset,
206 			    ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
207 			    sizeof (uint64_t), 1, &dd->dd_crypto_obj);
208 			if (err == 0) {
209 				/* check for on-disk format errata */
210 				if (dsl_dir_incompatible_encryption_version(
211 				    dd)) {
212 					dp->dp_spa->spa_errata =
213 					    ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
214 				}
215 			} else if (err != ENOENT) {
216 				goto errout;
217 			}
218 		}
219 
220 		if (dsl_dir_phys(dd)->dd_parent_obj) {
221 			err = dsl_dir_hold_obj(dp,
222 			    dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
223 			    &dd->dd_parent);
224 			if (err != 0)
225 				goto errout;
226 			if (tail) {
227 #ifdef ZFS_DEBUG
228 				uint64_t foundobj;
229 
230 				err = zap_lookup(dp->dp_meta_objset,
231 				    dsl_dir_phys(dd->dd_parent)->
232 				    dd_child_dir_zapobj, tail,
233 				    sizeof (foundobj), 1, &foundobj);
234 				ASSERT(err || foundobj == ddobj);
235 #endif
236 				(void) strlcpy(dd->dd_myname, tail,
237 				    sizeof (dd->dd_myname));
238 			} else {
239 				err = zap_value_search(dp->dp_meta_objset,
240 				    dsl_dir_phys(dd->dd_parent)->
241 				    dd_child_dir_zapobj,
242 				    ddobj, 0, dd->dd_myname,
243 				    sizeof (dd->dd_myname));
244 			}
245 			if (err != 0)
246 				goto errout;
247 		} else {
248 			(void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
249 			    sizeof (dd->dd_myname));
250 		}
251 
252 		if (dsl_dir_is_clone(dd)) {
253 			dmu_buf_t *origin_bonus;
254 			dsl_dataset_phys_t *origin_phys;
255 
256 			/*
257 			 * We can't open the origin dataset, because
258 			 * that would require opening this dsl_dir.
259 			 * Just look at its phys directly instead.
260 			 */
261 			err = dmu_bonus_hold(dp->dp_meta_objset,
262 			    dsl_dir_phys(dd)->dd_origin_obj, FTAG,
263 			    &origin_bonus);
264 			if (err != 0)
265 				goto errout;
266 			origin_phys = origin_bonus->db_data;
267 			dd->dd_origin_txg =
268 			    origin_phys->ds_creation_txg;
269 			dmu_buf_rele(origin_bonus, FTAG);
270 			if (dsl_dir_is_zapified(dd)) {
271 				uint64_t obj;
272 				err = zap_lookup(dp->dp_meta_objset,
273 				    dd->dd_object, DD_FIELD_LIVELIST,
274 				    sizeof (uint64_t), 1, &obj);
275 				if (err == 0) {
276 					err = dsl_dir_livelist_open(dd, obj);
277 					if (err != 0)
278 						goto errout;
279 				} else if (err != ENOENT)
280 					goto errout;
281 			}
282 		}
283 
284 		if (dsl_dir_is_zapified(dd)) {
285 			inode_timespec_t t = {0};
286 			(void) zap_lookup(dp->dp_meta_objset, ddobj,
287 			    DD_FIELD_SNAPSHOTS_CHANGED,
288 			    sizeof (uint64_t),
289 			    sizeof (inode_timespec_t) / sizeof (uint64_t),
290 			    &t);
291 			dd->dd_snap_cmtime = t;
292 		}
293 
294 		dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
295 		    &dd->dd_dbuf);
296 		winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
297 		if (winner != NULL) {
298 			if (dd->dd_parent)
299 				dsl_dir_rele(dd->dd_parent, dd);
300 			if (dsl_deadlist_is_open(&dd->dd_livelist))
301 				dsl_dir_livelist_close(dd);
302 			dsl_prop_fini(dd);
303 			cv_destroy(&dd->dd_activity_cv);
304 			mutex_destroy(&dd->dd_activity_lock);
305 			mutex_destroy(&dd->dd_lock);
306 			kmem_free(dd, sizeof (dsl_dir_t));
307 			dd = winner;
308 		} else {
309 			spa_open_ref(dp->dp_spa, dd);
310 		}
311 	}
312 
313 	/*
314 	 * The dsl_dir_t has both open-to-close and instantiate-to-evict
315 	 * holds on the spa.  We need the open-to-close holds because
316 	 * otherwise the spa_refcnt wouldn't change when we open a
317 	 * dir which the spa also has open, so we could incorrectly
318 	 * think it was OK to unload/export/destroy the pool.  We need
319 	 * the instantiate-to-evict hold because the dsl_dir_t has a
320 	 * pointer to the dd_pool, which has a pointer to the spa_t.
321 	 */
322 	spa_open_ref(dp->dp_spa, tag);
323 	ASSERT3P(dd->dd_pool, ==, dp);
324 	ASSERT3U(dd->dd_object, ==, ddobj);
325 	ASSERT3P(dd->dd_dbuf, ==, dbuf);
326 	*ddp = dd;
327 	return (0);
328 
329 errout:
330 	if (dd->dd_parent)
331 		dsl_dir_rele(dd->dd_parent, dd);
332 	if (dsl_deadlist_is_open(&dd->dd_livelist))
333 		dsl_dir_livelist_close(dd);
334 	dsl_prop_fini(dd);
335 	cv_destroy(&dd->dd_activity_cv);
336 	mutex_destroy(&dd->dd_activity_lock);
337 	mutex_destroy(&dd->dd_lock);
338 	kmem_free(dd, sizeof (dsl_dir_t));
339 	dmu_buf_rele(dbuf, tag);
340 	return (err);
341 }
342 
343 void
344 dsl_dir_rele(dsl_dir_t *dd, const void *tag)
345 {
346 	dprintf_dd(dd, "%s\n", "");
347 	spa_close(dd->dd_pool->dp_spa, tag);
348 	dmu_buf_rele(dd->dd_dbuf, tag);
349 }
350 
351 /*
352  * Remove a reference to the given dsl dir that is being asynchronously
353  * released.  Async releases occur from a taskq performing eviction of
354  * dsl datasets and dirs.  This process is identical to a normal release
355  * with the exception of using the async API for releasing the reference on
356  * the spa.
357  */
358 void
359 dsl_dir_async_rele(dsl_dir_t *dd, const void *tag)
360 {
361 	dprintf_dd(dd, "%s\n", "");
362 	spa_async_close(dd->dd_pool->dp_spa, tag);
363 	dmu_buf_rele(dd->dd_dbuf, tag);
364 }
365 
366 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
367 void
368 dsl_dir_name(dsl_dir_t *dd, char *buf)
369 {
370 	if (dd->dd_parent) {
371 		dsl_dir_name(dd->dd_parent, buf);
372 		VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
373 		    ZFS_MAX_DATASET_NAME_LEN);
374 	} else {
375 		buf[0] = '\0';
376 	}
377 	if (!MUTEX_HELD(&dd->dd_lock)) {
378 		/*
379 		 * recursive mutex so that we can use
380 		 * dprintf_dd() with dd_lock held
381 		 */
382 		mutex_enter(&dd->dd_lock);
383 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
384 		    <, ZFS_MAX_DATASET_NAME_LEN);
385 		mutex_exit(&dd->dd_lock);
386 	} else {
387 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
388 		    <, ZFS_MAX_DATASET_NAME_LEN);
389 	}
390 }
391 
392 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
393 int
394 dsl_dir_namelen(dsl_dir_t *dd)
395 {
396 	int result = 0;
397 
398 	if (dd->dd_parent) {
399 		/* parent's name + 1 for the "/" */
400 		result = dsl_dir_namelen(dd->dd_parent) + 1;
401 	}
402 
403 	if (!MUTEX_HELD(&dd->dd_lock)) {
404 		/* see dsl_dir_name */
405 		mutex_enter(&dd->dd_lock);
406 		result += strlen(dd->dd_myname);
407 		mutex_exit(&dd->dd_lock);
408 	} else {
409 		result += strlen(dd->dd_myname);
410 	}
411 
412 	return (result);
413 }
414 
415 static int
416 getcomponent(const char *path, char *component, const char **nextp)
417 {
418 	char *p;
419 
420 	if ((path == NULL) || (path[0] == '\0'))
421 		return (SET_ERROR(ENOENT));
422 	/* This would be a good place to reserve some namespace... */
423 	p = strpbrk(path, "/@");
424 	if (p && (p[1] == '/' || p[1] == '@')) {
425 		/* two separators in a row */
426 		return (SET_ERROR(EINVAL));
427 	}
428 	if (p == NULL || p == path) {
429 		/*
430 		 * if the first thing is an @ or /, it had better be an
431 		 * @ and it had better not have any more ats or slashes,
432 		 * and it had better have something after the @.
433 		 */
434 		if (p != NULL &&
435 		    (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
436 			return (SET_ERROR(EINVAL));
437 		if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
438 			return (SET_ERROR(ENAMETOOLONG));
439 		(void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
440 		p = NULL;
441 	} else if (p[0] == '/') {
442 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
443 			return (SET_ERROR(ENAMETOOLONG));
444 		(void) strlcpy(component, path, p - path + 1);
445 		p++;
446 	} else if (p[0] == '@') {
447 		/*
448 		 * if the next separator is an @, there better not be
449 		 * any more slashes.
450 		 */
451 		if (strchr(path, '/'))
452 			return (SET_ERROR(EINVAL));
453 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
454 			return (SET_ERROR(ENAMETOOLONG));
455 		(void) strlcpy(component, path, p - path + 1);
456 	} else {
457 		panic("invalid p=%p", (void *)p);
458 	}
459 	*nextp = p;
460 	return (0);
461 }
462 
463 /*
464  * Return the dsl_dir_t, and possibly the last component which couldn't
465  * be found in *tail.  The name must be in the specified dsl_pool_t.  This
466  * thread must hold the dp_config_rwlock for the pool.  Returns NULL if the
467  * path is bogus, or if tail==NULL and we couldn't parse the whole name.
468  * (*tail)[0] == '@' means that the last component is a snapshot.
469  */
470 int
471 dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag,
472     dsl_dir_t **ddp, const char **tailp)
473 {
474 	char *buf;
475 	const char *spaname, *next, *nextnext = NULL;
476 	int err;
477 	dsl_dir_t *dd;
478 	uint64_t ddobj;
479 
480 	buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
481 	err = getcomponent(name, buf, &next);
482 	if (err != 0)
483 		goto error;
484 
485 	/* Make sure the name is in the specified pool. */
486 	spaname = spa_name(dp->dp_spa);
487 	if (strcmp(buf, spaname) != 0) {
488 		err = SET_ERROR(EXDEV);
489 		goto error;
490 	}
491 
492 	ASSERT(dsl_pool_config_held(dp));
493 
494 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
495 	if (err != 0) {
496 		goto error;
497 	}
498 
499 	while (next != NULL) {
500 		dsl_dir_t *child_dd;
501 		err = getcomponent(next, buf, &nextnext);
502 		if (err != 0)
503 			break;
504 		ASSERT(next[0] != '\0');
505 		if (next[0] == '@')
506 			break;
507 		dprintf("looking up %s in obj%lld\n",
508 		    buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj);
509 
510 		err = zap_lookup(dp->dp_meta_objset,
511 		    dsl_dir_phys(dd)->dd_child_dir_zapobj,
512 		    buf, sizeof (ddobj), 1, &ddobj);
513 		if (err != 0) {
514 			if (err == ENOENT)
515 				err = 0;
516 			break;
517 		}
518 
519 		err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
520 		if (err != 0)
521 			break;
522 		dsl_dir_rele(dd, tag);
523 		dd = child_dd;
524 		next = nextnext;
525 	}
526 
527 	if (err != 0) {
528 		dsl_dir_rele(dd, tag);
529 		goto error;
530 	}
531 
532 	/*
533 	 * It's an error if there's more than one component left, or
534 	 * tailp==NULL and there's any component left.
535 	 */
536 	if (next != NULL &&
537 	    (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
538 		/* bad path name */
539 		dsl_dir_rele(dd, tag);
540 		dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
541 		err = SET_ERROR(ENOENT);
542 	}
543 	if (tailp != NULL)
544 		*tailp = next;
545 	if (err == 0)
546 		*ddp = dd;
547 error:
548 	kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
549 	return (err);
550 }
551 
552 /*
553  * If the counts are already initialized for this filesystem and its
554  * descendants then do nothing, otherwise initialize the counts.
555  *
556  * The counts on this filesystem, and those below, may be uninitialized due to
557  * either the use of a pre-existing pool which did not support the
558  * filesystem/snapshot limit feature, or one in which the feature had not yet
559  * been enabled.
560  *
561  * Recursively descend the filesystem tree and update the filesystem/snapshot
562  * counts on each filesystem below, then update the cumulative count on the
563  * current filesystem. If the filesystem already has a count set on it,
564  * then we know that its counts, and the counts on the filesystems below it,
565  * are already correct, so we don't have to update this filesystem.
566  */
567 static void
568 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
569 {
570 	uint64_t my_fs_cnt = 0;
571 	uint64_t my_ss_cnt = 0;
572 	dsl_pool_t *dp = dd->dd_pool;
573 	objset_t *os = dp->dp_meta_objset;
574 	zap_cursor_t *zc;
575 	zap_attribute_t *za;
576 	dsl_dataset_t *ds;
577 
578 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
579 	ASSERT(dsl_pool_config_held(dp));
580 	ASSERT(dmu_tx_is_syncing(tx));
581 
582 	dsl_dir_zapify(dd, tx);
583 
584 	/*
585 	 * If the filesystem count has already been initialized then we
586 	 * don't need to recurse down any further.
587 	 */
588 	if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
589 		return;
590 
591 	zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
592 	za = zap_attribute_alloc();
593 
594 	/* Iterate my child dirs */
595 	for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
596 	    zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
597 		dsl_dir_t *chld_dd;
598 		uint64_t count;
599 
600 		VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
601 		    &chld_dd));
602 
603 		/*
604 		 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
605 		 */
606 		if (chld_dd->dd_myname[0] == '$') {
607 			dsl_dir_rele(chld_dd, FTAG);
608 			continue;
609 		}
610 
611 		my_fs_cnt++;	/* count this child */
612 
613 		dsl_dir_init_fs_ss_count(chld_dd, tx);
614 
615 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
616 		    DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
617 		my_fs_cnt += count;
618 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
619 		    DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
620 		my_ss_cnt += count;
621 
622 		dsl_dir_rele(chld_dd, FTAG);
623 	}
624 	zap_cursor_fini(zc);
625 	/* Count my snapshots (we counted children's snapshots above) */
626 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
627 	    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
628 
629 	for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
630 	    zap_cursor_retrieve(zc, za) == 0;
631 	    zap_cursor_advance(zc)) {
632 		/* Don't count temporary snapshots */
633 		if (za->za_name[0] != '%')
634 			my_ss_cnt++;
635 	}
636 	zap_cursor_fini(zc);
637 
638 	dsl_dataset_rele(ds, FTAG);
639 
640 	kmem_free(zc, sizeof (zap_cursor_t));
641 	zap_attribute_free(za);
642 
643 	/* we're in a sync task, update counts */
644 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
645 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
646 	    sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
647 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
648 	    sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
649 }
650 
651 static int
652 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
653 {
654 	char *ddname = (char *)arg;
655 	dsl_pool_t *dp = dmu_tx_pool(tx);
656 	dsl_dataset_t *ds;
657 	dsl_dir_t *dd;
658 	int error;
659 
660 	error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
661 	if (error != 0)
662 		return (error);
663 
664 	if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
665 		dsl_dataset_rele(ds, FTAG);
666 		return (SET_ERROR(ENOTSUP));
667 	}
668 
669 	dd = ds->ds_dir;
670 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
671 	    dsl_dir_is_zapified(dd) &&
672 	    zap_contains(dp->dp_meta_objset, dd->dd_object,
673 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
674 		dsl_dataset_rele(ds, FTAG);
675 		return (SET_ERROR(EALREADY));
676 	}
677 
678 	dsl_dataset_rele(ds, FTAG);
679 	return (0);
680 }
681 
682 static void
683 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
684 {
685 	char *ddname = (char *)arg;
686 	dsl_pool_t *dp = dmu_tx_pool(tx);
687 	dsl_dataset_t *ds;
688 	spa_t *spa;
689 
690 	VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
691 
692 	spa = dsl_dataset_get_spa(ds);
693 
694 	if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
695 		/*
696 		 * Since the feature was not active and we're now setting a
697 		 * limit, increment the feature-active counter so that the
698 		 * feature becomes active for the first time.
699 		 *
700 		 * We are already in a sync task so we can update the MOS.
701 		 */
702 		spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
703 	}
704 
705 	/*
706 	 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
707 	 * we need to ensure the counts are correct. Descend down the tree from
708 	 * this point and update all of the counts to be accurate.
709 	 */
710 	dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
711 
712 	dsl_dataset_rele(ds, FTAG);
713 }
714 
715 /*
716  * Make sure the feature is enabled and activate it if necessary.
717  * Since we're setting a limit, ensure the on-disk counts are valid.
718  * This is only called by the ioctl path when setting a limit value.
719  *
720  * We do not need to validate the new limit, since users who can change the
721  * limit are also allowed to exceed the limit.
722  */
723 int
724 dsl_dir_activate_fs_ss_limit(const char *ddname)
725 {
726 	int error;
727 
728 	error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
729 	    dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
730 	    ZFS_SPACE_CHECK_RESERVED);
731 
732 	if (error == EALREADY)
733 		error = 0;
734 
735 	return (error);
736 }
737 
738 /*
739  * Used to determine if the filesystem_limit or snapshot_limit should be
740  * enforced. We allow the limit to be exceeded if the user has permission to
741  * write the property value. We pass in the creds that we got in the open
742  * context since we will always be the GZ root in syncing context. We also have
743  * to handle the case where we are allowed to change the limit on the current
744  * dataset, but there may be another limit in the tree above.
745  *
746  * We can never modify these two properties within a non-global zone. In
747  * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
748  * can't use that function since we are already holding the dp_config_rwlock.
749  * In addition, we already have the dd and dealing with snapshots is simplified
750  * in this code.
751  */
752 
753 typedef enum {
754 	ENFORCE_ALWAYS,
755 	ENFORCE_NEVER,
756 	ENFORCE_ABOVE
757 } enforce_res_t;
758 
759 static enforce_res_t
760 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
761     cred_t *cr, proc_t *proc)
762 {
763 	enforce_res_t enforce = ENFORCE_ALWAYS;
764 	uint64_t obj;
765 	dsl_dataset_t *ds;
766 	uint64_t zoned;
767 	const char *zonedstr;
768 
769 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
770 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
771 
772 #ifdef _KERNEL
773 	if (crgetzoneid(cr) != GLOBAL_ZONEID)
774 		return (ENFORCE_ALWAYS);
775 
776 	/*
777 	 * We are checking the saved credentials of the user process, which is
778 	 * not the current process.  Note that we can't use secpolicy_zfs(),
779 	 * because it only works if the cred is that of the current process (on
780 	 * Linux).
781 	 */
782 	if (secpolicy_zfs_proc(cr, proc) == 0)
783 		return (ENFORCE_NEVER);
784 #else
785 	(void) proc;
786 #endif
787 
788 	if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
789 		return (ENFORCE_ALWAYS);
790 
791 	ASSERT(dsl_pool_config_held(dd->dd_pool));
792 
793 	if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
794 		return (ENFORCE_ALWAYS);
795 
796 	zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
797 	if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
798 		/* Only root can access zoned fs's from the GZ */
799 		enforce = ENFORCE_ALWAYS;
800 	} else {
801 		if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
802 			enforce = ENFORCE_ABOVE;
803 	}
804 
805 	dsl_dataset_rele(ds, FTAG);
806 	return (enforce);
807 }
808 
809 /*
810  * Check if adding additional child filesystem(s) would exceed any filesystem
811  * limits or adding additional snapshot(s) would exceed any snapshot limits.
812  * The prop argument indicates which limit to check.
813  *
814  * Note that all filesystem limits up to the root (or the highest
815  * initialized) filesystem or the given ancestor must be satisfied.
816  */
817 int
818 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
819     dsl_dir_t *ancestor, cred_t *cr, proc_t *proc)
820 {
821 	objset_t *os = dd->dd_pool->dp_meta_objset;
822 	uint64_t limit, count;
823 	const char *count_prop;
824 	enforce_res_t enforce;
825 	int err = 0;
826 
827 	ASSERT(dsl_pool_config_held(dd->dd_pool));
828 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
829 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
830 
831 	if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
832 		/*
833 		 * We don't enforce the limit for temporary snapshots. This is
834 		 * indicated by a NULL cred_t argument.
835 		 */
836 		if (cr == NULL)
837 			return (0);
838 
839 		count_prop = DD_FIELD_SNAPSHOT_COUNT;
840 	} else {
841 		count_prop = DD_FIELD_FILESYSTEM_COUNT;
842 	}
843 	/*
844 	 * If we're allowed to change the limit, don't enforce the limit
845 	 * e.g. this can happen if a snapshot is taken by an administrative
846 	 * user in the global zone (i.e. a recursive snapshot by root).
847 	 * However, we must handle the case of delegated permissions where we
848 	 * are allowed to change the limit on the current dataset, but there
849 	 * is another limit in the tree above.
850 	 */
851 	enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc);
852 	if (enforce == ENFORCE_NEVER)
853 		return (0);
854 
855 	/*
856 	 * e.g. if renaming a dataset with no snapshots, count adjustment
857 	 * is 0.
858 	 */
859 	if (delta == 0)
860 		return (0);
861 
862 	/*
863 	 * If an ancestor has been provided, stop checking the limit once we
864 	 * hit that dir. We need this during rename so that we don't overcount
865 	 * the check once we recurse up to the common ancestor.
866 	 */
867 	if (ancestor == dd)
868 		return (0);
869 
870 	/*
871 	 * If we hit an uninitialized node while recursing up the tree, we can
872 	 * stop since we know there is no limit here (or above). The counts are
873 	 * not valid on this node and we know we won't touch this node's counts.
874 	 */
875 	if (!dsl_dir_is_zapified(dd))
876 		return (0);
877 	err = zap_lookup(os, dd->dd_object,
878 	    count_prop, sizeof (count), 1, &count);
879 	if (err == ENOENT)
880 		return (0);
881 	if (err != 0)
882 		return (err);
883 
884 	err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
885 	    B_FALSE);
886 	if (err != 0)
887 		return (err);
888 
889 	/* Is there a limit which we've hit? */
890 	if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
891 		return (SET_ERROR(EDQUOT));
892 
893 	if (dd->dd_parent != NULL)
894 		err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
895 		    ancestor, cr, proc);
896 
897 	return (err);
898 }
899 
900 /*
901  * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
902  * parents. When a new filesystem/snapshot is created, increment the count on
903  * all parents, and when a filesystem/snapshot is destroyed, decrement the
904  * count.
905  */
906 void
907 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
908     dmu_tx_t *tx)
909 {
910 	int err;
911 	objset_t *os = dd->dd_pool->dp_meta_objset;
912 	uint64_t count;
913 
914 	ASSERT(dsl_pool_config_held(dd->dd_pool));
915 	ASSERT(dmu_tx_is_syncing(tx));
916 	ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
917 	    strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
918 
919 	/*
920 	 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
921 	 */
922 	if (dd->dd_myname[0] == '$' && strcmp(prop,
923 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
924 		return;
925 	}
926 
927 	/*
928 	 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
929 	 */
930 	if (delta == 0)
931 		return;
932 
933 	/*
934 	 * If we hit an uninitialized node while recursing up the tree, we can
935 	 * stop since we know the counts are not valid on this node and we
936 	 * know we shouldn't touch this node's counts. An uninitialized count
937 	 * on the node indicates that either the feature has not yet been
938 	 * activated or there are no limits on this part of the tree.
939 	 */
940 	if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
941 	    prop, sizeof (count), 1, &count)) == ENOENT)
942 		return;
943 	VERIFY0(err);
944 
945 	count += delta;
946 	/* Use a signed verify to make sure we're not neg. */
947 	VERIFY3S(count, >=, 0);
948 
949 	VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
950 	    tx));
951 
952 	/* Roll up this additional count into our ancestors */
953 	if (dd->dd_parent != NULL)
954 		dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
955 }
956 
957 uint64_t
958 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
959     dmu_tx_t *tx)
960 {
961 	objset_t *mos = dp->dp_meta_objset;
962 	uint64_t ddobj;
963 	dsl_dir_phys_t *ddphys;
964 	dmu_buf_t *dbuf;
965 
966 	ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
967 	    DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
968 	if (pds) {
969 		VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
970 		    name, sizeof (uint64_t), 1, &ddobj, tx));
971 	} else {
972 		/* it's the root dir */
973 		VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
974 		    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
975 	}
976 	VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
977 	dmu_buf_will_dirty(dbuf, tx);
978 	ddphys = dbuf->db_data;
979 
980 	ddphys->dd_creation_time = gethrestime_sec();
981 	if (pds) {
982 		ddphys->dd_parent_obj = pds->dd_object;
983 
984 		/* update the filesystem counts */
985 		dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
986 	}
987 	ddphys->dd_props_zapobj = zap_create(mos,
988 	    DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
989 	ddphys->dd_child_dir_zapobj = zap_create(mos,
990 	    DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
991 	if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
992 		ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
993 
994 	dmu_buf_rele(dbuf, FTAG);
995 
996 	return (ddobj);
997 }
998 
999 boolean_t
1000 dsl_dir_is_clone(dsl_dir_t *dd)
1001 {
1002 	return (dsl_dir_phys(dd)->dd_origin_obj &&
1003 	    (dd->dd_pool->dp_origin_snap == NULL ||
1004 	    dsl_dir_phys(dd)->dd_origin_obj !=
1005 	    dd->dd_pool->dp_origin_snap->ds_object));
1006 }
1007 
1008 uint64_t
1009 dsl_dir_get_used(dsl_dir_t *dd)
1010 {
1011 	return (dsl_dir_phys(dd)->dd_used_bytes);
1012 }
1013 
1014 uint64_t
1015 dsl_dir_get_compressed(dsl_dir_t *dd)
1016 {
1017 	return (dsl_dir_phys(dd)->dd_compressed_bytes);
1018 }
1019 
1020 uint64_t
1021 dsl_dir_get_quota(dsl_dir_t *dd)
1022 {
1023 	return (dsl_dir_phys(dd)->dd_quota);
1024 }
1025 
1026 uint64_t
1027 dsl_dir_get_reservation(dsl_dir_t *dd)
1028 {
1029 	return (dsl_dir_phys(dd)->dd_reserved);
1030 }
1031 
1032 uint64_t
1033 dsl_dir_get_compressratio(dsl_dir_t *dd)
1034 {
1035 	/* a fixed point number, 100x the ratio */
1036 	return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1037 	    (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1038 	    dsl_dir_phys(dd)->dd_compressed_bytes));
1039 }
1040 
1041 uint64_t
1042 dsl_dir_get_logicalused(dsl_dir_t *dd)
1043 {
1044 	return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1045 }
1046 
1047 uint64_t
1048 dsl_dir_get_usedsnap(dsl_dir_t *dd)
1049 {
1050 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1051 }
1052 
1053 uint64_t
1054 dsl_dir_get_usedds(dsl_dir_t *dd)
1055 {
1056 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1057 }
1058 
1059 uint64_t
1060 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1061 {
1062 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1063 }
1064 
1065 uint64_t
1066 dsl_dir_get_usedchild(dsl_dir_t *dd)
1067 {
1068 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1069 	    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1070 }
1071 
1072 void
1073 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1074 {
1075 	dsl_dataset_t *ds;
1076 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1077 	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1078 
1079 	dsl_dataset_name(ds, buf);
1080 
1081 	dsl_dataset_rele(ds, FTAG);
1082 }
1083 
1084 int
1085 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1086 {
1087 	if (dsl_dir_is_zapified(dd)) {
1088 		objset_t *os = dd->dd_pool->dp_meta_objset;
1089 		return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1090 		    sizeof (*count), 1, count));
1091 	} else {
1092 		return (SET_ERROR(ENOENT));
1093 	}
1094 }
1095 
1096 int
1097 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1098 {
1099 	if (dsl_dir_is_zapified(dd)) {
1100 		objset_t *os = dd->dd_pool->dp_meta_objset;
1101 		return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1102 		    sizeof (*count), 1, count));
1103 	} else {
1104 		return (SET_ERROR(ENOENT));
1105 	}
1106 }
1107 
1108 void
1109 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1110 {
1111 	mutex_enter(&dd->dd_lock);
1112 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1113 	    dsl_dir_get_quota(dd));
1114 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1115 	    dsl_dir_get_reservation(dd));
1116 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1117 	    dsl_dir_get_logicalused(dd));
1118 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1119 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1120 		    dsl_dir_get_usedsnap(dd));
1121 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1122 		    dsl_dir_get_usedds(dd));
1123 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1124 		    dsl_dir_get_usedrefreserv(dd));
1125 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1126 		    dsl_dir_get_usedchild(dd));
1127 	}
1128 	mutex_exit(&dd->dd_lock);
1129 
1130 	uint64_t count;
1131 	if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1132 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1133 		    count);
1134 	}
1135 	if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1136 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1137 		    count);
1138 	}
1139 
1140 	if (dsl_dir_is_clone(dd)) {
1141 		char buf[ZFS_MAX_DATASET_NAME_LEN];
1142 		dsl_dir_get_origin(dd, buf);
1143 		dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1144 	}
1145 
1146 }
1147 
1148 void
1149 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1150 {
1151 	dsl_pool_t *dp = dd->dd_pool;
1152 
1153 	ASSERT(dsl_dir_phys(dd));
1154 
1155 	if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1156 		/* up the hold count until we can be written out */
1157 		dmu_buf_add_ref(dd->dd_dbuf, dd);
1158 	}
1159 }
1160 
1161 static int64_t
1162 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1163 {
1164 	uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1165 	uint64_t new_accounted =
1166 	    MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1167 	return (new_accounted - old_accounted);
1168 }
1169 
1170 void
1171 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1172 {
1173 	ASSERT(dmu_tx_is_syncing(tx));
1174 
1175 	mutex_enter(&dd->dd_lock);
1176 	ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
1177 	dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg,
1178 	    (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
1179 	dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
1180 	mutex_exit(&dd->dd_lock);
1181 
1182 	/* release the hold from dsl_dir_dirty */
1183 	dmu_buf_rele(dd->dd_dbuf, dd);
1184 }
1185 
1186 static uint64_t
1187 dsl_dir_space_towrite(dsl_dir_t *dd)
1188 {
1189 	uint64_t space = 0;
1190 
1191 	ASSERT(MUTEX_HELD(&dd->dd_lock));
1192 
1193 	for (int i = 0; i < TXG_SIZE; i++)
1194 		space += dd->dd_space_towrite[i & TXG_MASK];
1195 
1196 	return (space);
1197 }
1198 
1199 /*
1200  * How much space would dd have available if ancestor had delta applied
1201  * to it?  If ondiskonly is set, we're only interested in what's
1202  * on-disk, not estimated pending changes.
1203  */
1204 uint64_t
1205 dsl_dir_space_available(dsl_dir_t *dd,
1206     dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1207 {
1208 	uint64_t parentspace, myspace, quota, used;
1209 
1210 	/*
1211 	 * If there are no restrictions otherwise, assume we have
1212 	 * unlimited space available.
1213 	 */
1214 	quota = UINT64_MAX;
1215 	parentspace = UINT64_MAX;
1216 
1217 	if (dd->dd_parent != NULL) {
1218 		parentspace = dsl_dir_space_available(dd->dd_parent,
1219 		    ancestor, delta, ondiskonly);
1220 	}
1221 
1222 	mutex_enter(&dd->dd_lock);
1223 	if (dsl_dir_phys(dd)->dd_quota != 0)
1224 		quota = dsl_dir_phys(dd)->dd_quota;
1225 	used = dsl_dir_phys(dd)->dd_used_bytes;
1226 	if (!ondiskonly)
1227 		used += dsl_dir_space_towrite(dd);
1228 
1229 	if (dd->dd_parent == NULL) {
1230 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1231 		    ZFS_SPACE_CHECK_NORMAL);
1232 		quota = MIN(quota, poolsize);
1233 	}
1234 
1235 	if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1236 		/*
1237 		 * We have some space reserved, in addition to what our
1238 		 * parent gave us.
1239 		 */
1240 		parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1241 	}
1242 
1243 	if (dd == ancestor) {
1244 		ASSERT(delta <= 0);
1245 		ASSERT(used >= -delta);
1246 		used += delta;
1247 		if (parentspace != UINT64_MAX)
1248 			parentspace -= delta;
1249 	}
1250 
1251 	if (used > quota) {
1252 		/* over quota */
1253 		myspace = 0;
1254 	} else {
1255 		/*
1256 		 * the lesser of the space provided by our parent and
1257 		 * the space left in our quota
1258 		 */
1259 		myspace = MIN(parentspace, quota - used);
1260 	}
1261 
1262 	mutex_exit(&dd->dd_lock);
1263 
1264 	return (myspace);
1265 }
1266 
1267 struct tempreserve {
1268 	list_node_t tr_node;
1269 	dsl_dir_t *tr_ds;
1270 	uint64_t tr_size;
1271 };
1272 
1273 static int
1274 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1275     boolean_t ignorequota, list_t *tr_list,
1276     dmu_tx_t *tx, boolean_t first)
1277 {
1278 	uint64_t txg;
1279 	uint64_t quota;
1280 	struct tempreserve *tr;
1281 	int retval;
1282 	uint64_t ext_quota;
1283 	uint64_t ref_rsrv;
1284 
1285 top_of_function:
1286 	txg = tx->tx_txg;
1287 	retval = EDQUOT;
1288 	ref_rsrv = 0;
1289 
1290 	ASSERT3U(txg, !=, 0);
1291 	ASSERT3S(asize, >, 0);
1292 
1293 	mutex_enter(&dd->dd_lock);
1294 
1295 	/*
1296 	 * Check against the dsl_dir's quota.  We don't add in the delta
1297 	 * when checking for over-quota because they get one free hit.
1298 	 */
1299 	uint64_t est_inflight = dsl_dir_space_towrite(dd);
1300 	for (int i = 0; i < TXG_SIZE; i++)
1301 		est_inflight += dd->dd_tempreserved[i];
1302 	uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1303 
1304 	/*
1305 	 * On the first iteration, fetch the dataset's used-on-disk and
1306 	 * refreservation values. Also, if checkrefquota is set, test if
1307 	 * allocating this space would exceed the dataset's refquota.
1308 	 */
1309 	if (first && tx->tx_objset) {
1310 		int error;
1311 		dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1312 
1313 		error = dsl_dataset_check_quota(ds, !netfree,
1314 		    asize, est_inflight, &used_on_disk, &ref_rsrv);
1315 		if (error != 0) {
1316 			mutex_exit(&dd->dd_lock);
1317 			DMU_TX_STAT_BUMP(dmu_tx_quota);
1318 			return (error);
1319 		}
1320 	}
1321 
1322 	/*
1323 	 * If this transaction will result in a net free of space,
1324 	 * we want to let it through.
1325 	 */
1326 	if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0 ||
1327 	    (tx->tx_objset && dmu_objset_type(tx->tx_objset) == DMU_OST_ZVOL &&
1328 	    zvol_enforce_quotas == B_FALSE))
1329 		quota = UINT64_MAX;
1330 	else
1331 		quota = dsl_dir_phys(dd)->dd_quota;
1332 
1333 	/*
1334 	 * Adjust the quota against the actual pool size at the root
1335 	 * minus any outstanding deferred frees.
1336 	 * To ensure that it's possible to remove files from a full
1337 	 * pool without inducing transient overcommits, we throttle
1338 	 * netfree transactions against a quota that is slightly larger,
1339 	 * but still within the pool's allocation slop.  In cases where
1340 	 * we're very close to full, this will allow a steady trickle of
1341 	 * removes to get through.
1342 	 */
1343 	if (dd->dd_parent == NULL) {
1344 		uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1345 		    (netfree) ?
1346 		    ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1347 
1348 		if (avail < quota) {
1349 			quota = avail;
1350 			retval = SET_ERROR(ENOSPC);
1351 		}
1352 	}
1353 
1354 	/*
1355 	 * If they are requesting more space, and our current estimate
1356 	 * is over quota, they get to try again unless the actual
1357 	 * on-disk is over quota and there are no pending changes
1358 	 * or deferred frees (which may free up space for us).
1359 	 */
1360 	ext_quota = quota >> 5;
1361 	if (quota == UINT64_MAX)
1362 		ext_quota = 0;
1363 
1364 	if (used_on_disk >= quota) {
1365 		if (retval == ENOSPC && (used_on_disk - quota) <
1366 		    dsl_pool_deferred_space(dd->dd_pool)) {
1367 			retval = SET_ERROR(ERESTART);
1368 		}
1369 		/* Quota exceeded */
1370 		mutex_exit(&dd->dd_lock);
1371 		DMU_TX_STAT_BUMP(dmu_tx_quota);
1372 		return (retval);
1373 	} else if (used_on_disk + est_inflight >= quota + ext_quota) {
1374 		dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1375 		    "quota=%lluK tr=%lluK\n",
1376 		    (u_longlong_t)used_on_disk>>10,
1377 		    (u_longlong_t)est_inflight>>10,
1378 		    (u_longlong_t)quota>>10, (u_longlong_t)asize>>10);
1379 		mutex_exit(&dd->dd_lock);
1380 		DMU_TX_STAT_BUMP(dmu_tx_quota);
1381 		return (SET_ERROR(ERESTART));
1382 	}
1383 
1384 	/* We need to up our estimated delta before dropping dd_lock */
1385 	dd->dd_tempreserved[txg & TXG_MASK] += asize;
1386 
1387 	uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1388 	    asize - ref_rsrv);
1389 	mutex_exit(&dd->dd_lock);
1390 
1391 	tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1392 	tr->tr_ds = dd;
1393 	tr->tr_size = asize;
1394 	list_insert_tail(tr_list, tr);
1395 
1396 	/* see if it's OK with our parent */
1397 	if (dd->dd_parent != NULL && parent_rsrv != 0) {
1398 		/*
1399 		 * Recurse on our parent without recursion. This has been
1400 		 * observed to be potentially large stack usage even within
1401 		 * the test suite. Largest seen stack was 7632 bytes on linux.
1402 		 */
1403 
1404 		dd = dd->dd_parent;
1405 		asize = parent_rsrv;
1406 		ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1407 		first = B_FALSE;
1408 		goto top_of_function;
1409 	}
1410 
1411 	return (0);
1412 }
1413 
1414 /*
1415  * Reserve space in this dsl_dir, to be used in this tx's txg.
1416  * After the space has been dirtied (and dsl_dir_willuse_space()
1417  * has been called), the reservation should be canceled, using
1418  * dsl_dir_tempreserve_clear().
1419  */
1420 int
1421 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1422     boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1423 {
1424 	int err;
1425 	list_t *tr_list;
1426 
1427 	if (asize == 0) {
1428 		*tr_cookiep = NULL;
1429 		return (0);
1430 	}
1431 
1432 	tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1433 	list_create(tr_list, sizeof (struct tempreserve),
1434 	    offsetof(struct tempreserve, tr_node));
1435 	ASSERT3S(asize, >, 0);
1436 
1437 	err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1438 	if (err == 0) {
1439 		struct tempreserve *tr;
1440 
1441 		tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1442 		tr->tr_size = lsize;
1443 		list_insert_tail(tr_list, tr);
1444 	} else {
1445 		if (err == EAGAIN) {
1446 			/*
1447 			 * If arc_memory_throttle() detected that pageout
1448 			 * is running and we are low on memory, we delay new
1449 			 * non-pageout transactions to give pageout an
1450 			 * advantage.
1451 			 *
1452 			 * It is unfortunate to be delaying while the caller's
1453 			 * locks are held.
1454 			 */
1455 			txg_delay(dd->dd_pool, tx->tx_txg,
1456 			    MSEC2NSEC(10), MSEC2NSEC(10));
1457 			err = SET_ERROR(ERESTART);
1458 		}
1459 	}
1460 
1461 	if (err == 0) {
1462 		err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1463 		    B_FALSE, tr_list, tx, B_TRUE);
1464 	}
1465 
1466 	if (err != 0)
1467 		dsl_dir_tempreserve_clear(tr_list, tx);
1468 	else
1469 		*tr_cookiep = tr_list;
1470 
1471 	return (err);
1472 }
1473 
1474 /*
1475  * Clear a temporary reservation that we previously made with
1476  * dsl_dir_tempreserve_space().
1477  */
1478 void
1479 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1480 {
1481 	int txgidx = tx->tx_txg & TXG_MASK;
1482 	list_t *tr_list = tr_cookie;
1483 	struct tempreserve *tr;
1484 
1485 	ASSERT3U(tx->tx_txg, !=, 0);
1486 
1487 	if (tr_cookie == NULL)
1488 		return;
1489 
1490 	while ((tr = list_remove_head(tr_list)) != NULL) {
1491 		if (tr->tr_ds) {
1492 			mutex_enter(&tr->tr_ds->dd_lock);
1493 			ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1494 			    tr->tr_size);
1495 			tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1496 			mutex_exit(&tr->tr_ds->dd_lock);
1497 		} else {
1498 			arc_tempreserve_clear(tr->tr_size);
1499 		}
1500 		kmem_free(tr, sizeof (struct tempreserve));
1501 	}
1502 
1503 	kmem_free(tr_list, sizeof (list_t));
1504 }
1505 
1506 /*
1507  * This should be called from open context when we think we're going to write
1508  * or free space, for example when dirtying data. Be conservative; it's okay
1509  * to write less space or free more, but we don't want to write more or free
1510  * less than the amount specified.
1511  *
1512  * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1513  * version however it has been adjusted to use an iterative rather than
1514  * recursive algorithm to minimize stack usage.
1515  */
1516 void
1517 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1518 {
1519 	int64_t parent_space;
1520 	uint64_t est_used;
1521 
1522 	do {
1523 		mutex_enter(&dd->dd_lock);
1524 		if (space > 0)
1525 			dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1526 
1527 		est_used = dsl_dir_space_towrite(dd) +
1528 		    dsl_dir_phys(dd)->dd_used_bytes;
1529 		parent_space = parent_delta(dd, est_used, space);
1530 		mutex_exit(&dd->dd_lock);
1531 
1532 		/* Make sure that we clean up dd_space_to* */
1533 		dsl_dir_dirty(dd, tx);
1534 
1535 		dd = dd->dd_parent;
1536 		space = parent_space;
1537 	} while (space && dd);
1538 }
1539 
1540 /* call from syncing context when we actually write/free space for this dd */
1541 void
1542 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1543     int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1544 {
1545 	int64_t accounted_delta;
1546 
1547 	ASSERT(dmu_tx_is_syncing(tx));
1548 	ASSERT(type < DD_USED_NUM);
1549 
1550 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1551 
1552 	/*
1553 	 * dsl_dataset_set_refreservation_sync_impl() calls this with
1554 	 * dd_lock held, so that it can atomically update
1555 	 * ds->ds_reserved and the dsl_dir accounting, so that
1556 	 * dsl_dataset_check_quota() can see dataset and dir accounting
1557 	 * consistently.
1558 	 */
1559 	boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1560 	if (needlock)
1561 		mutex_enter(&dd->dd_lock);
1562 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1563 	accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1564 	ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1565 	ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1566 	ASSERT(uncompressed >= 0 ||
1567 	    ddp->dd_uncompressed_bytes >= -uncompressed);
1568 	ddp->dd_used_bytes += used;
1569 	ddp->dd_uncompressed_bytes += uncompressed;
1570 	ddp->dd_compressed_bytes += compressed;
1571 
1572 	if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1573 		ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used);
1574 		ddp->dd_used_breakdown[type] += used;
1575 #ifdef ZFS_DEBUG
1576 		{
1577 			dd_used_t t;
1578 			uint64_t u = 0;
1579 			for (t = 0; t < DD_USED_NUM; t++)
1580 				u += ddp->dd_used_breakdown[t];
1581 			ASSERT3U(u, ==, ddp->dd_used_bytes);
1582 		}
1583 #endif
1584 	}
1585 	if (needlock)
1586 		mutex_exit(&dd->dd_lock);
1587 
1588 	if (dd->dd_parent != NULL) {
1589 		dsl_dir_diduse_transfer_space(dd->dd_parent,
1590 		    accounted_delta, compressed, uncompressed,
1591 		    used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1592 	}
1593 }
1594 
1595 void
1596 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1597     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1598 {
1599 	ASSERT(dmu_tx_is_syncing(tx));
1600 	ASSERT(oldtype < DD_USED_NUM);
1601 	ASSERT(newtype < DD_USED_NUM);
1602 
1603 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1604 	if (delta == 0 ||
1605 	    !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN))
1606 		return;
1607 
1608 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1609 	mutex_enter(&dd->dd_lock);
1610 	ASSERT(delta > 0 ?
1611 	    ddp->dd_used_breakdown[oldtype] >= delta :
1612 	    ddp->dd_used_breakdown[newtype] >= -delta);
1613 	ASSERT(ddp->dd_used_bytes >= ABS(delta));
1614 	ddp->dd_used_breakdown[oldtype] -= delta;
1615 	ddp->dd_used_breakdown[newtype] += delta;
1616 	mutex_exit(&dd->dd_lock);
1617 }
1618 
1619 void
1620 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used,
1621     int64_t compressed, int64_t uncompressed, int64_t tonew,
1622     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1623 {
1624 	int64_t accounted_delta;
1625 
1626 	ASSERT(dmu_tx_is_syncing(tx));
1627 	ASSERT(oldtype < DD_USED_NUM);
1628 	ASSERT(newtype < DD_USED_NUM);
1629 
1630 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1631 
1632 	mutex_enter(&dd->dd_lock);
1633 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1634 	accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1635 	ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1636 	ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1637 	ASSERT(uncompressed >= 0 ||
1638 	    ddp->dd_uncompressed_bytes >= -uncompressed);
1639 	ddp->dd_used_bytes += used;
1640 	ddp->dd_uncompressed_bytes += uncompressed;
1641 	ddp->dd_compressed_bytes += compressed;
1642 
1643 	if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1644 		ASSERT(tonew - used <= 0 ||
1645 		    ddp->dd_used_breakdown[oldtype] >= tonew - used);
1646 		ASSERT(tonew >= 0 ||
1647 		    ddp->dd_used_breakdown[newtype] >= -tonew);
1648 		ddp->dd_used_breakdown[oldtype] -= tonew - used;
1649 		ddp->dd_used_breakdown[newtype] += tonew;
1650 #ifdef ZFS_DEBUG
1651 		{
1652 			dd_used_t t;
1653 			uint64_t u = 0;
1654 			for (t = 0; t < DD_USED_NUM; t++)
1655 				u += ddp->dd_used_breakdown[t];
1656 			ASSERT3U(u, ==, ddp->dd_used_bytes);
1657 		}
1658 #endif
1659 	}
1660 	mutex_exit(&dd->dd_lock);
1661 
1662 	if (dd->dd_parent != NULL) {
1663 		dsl_dir_diduse_transfer_space(dd->dd_parent,
1664 		    accounted_delta, compressed, uncompressed,
1665 		    used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1666 	}
1667 }
1668 
1669 typedef struct dsl_dir_set_qr_arg {
1670 	const char *ddsqra_name;
1671 	zprop_source_t ddsqra_source;
1672 	uint64_t ddsqra_value;
1673 } dsl_dir_set_qr_arg_t;
1674 
1675 static int
1676 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1677 {
1678 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1679 	dsl_pool_t *dp = dmu_tx_pool(tx);
1680 	dsl_dataset_t *ds;
1681 	int error;
1682 	uint64_t towrite, newval;
1683 
1684 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1685 	if (error != 0)
1686 		return (error);
1687 
1688 	error = dsl_prop_predict(ds->ds_dir, "quota",
1689 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1690 	if (error != 0) {
1691 		dsl_dataset_rele(ds, FTAG);
1692 		return (error);
1693 	}
1694 
1695 	if (newval == 0) {
1696 		dsl_dataset_rele(ds, FTAG);
1697 		return (0);
1698 	}
1699 
1700 	mutex_enter(&ds->ds_dir->dd_lock);
1701 	/*
1702 	 * If we are doing the preliminary check in open context, and
1703 	 * there are pending changes, then don't fail it, since the
1704 	 * pending changes could under-estimate the amount of space to be
1705 	 * freed up.
1706 	 */
1707 	towrite = dsl_dir_space_towrite(ds->ds_dir);
1708 	if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1709 	    (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1710 	    newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1711 		error = SET_ERROR(ENOSPC);
1712 	}
1713 	mutex_exit(&ds->ds_dir->dd_lock);
1714 	dsl_dataset_rele(ds, FTAG);
1715 	return (error);
1716 }
1717 
1718 static void
1719 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1720 {
1721 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1722 	dsl_pool_t *dp = dmu_tx_pool(tx);
1723 	dsl_dataset_t *ds;
1724 	uint64_t newval;
1725 
1726 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1727 
1728 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1729 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1730 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1731 		    &ddsqra->ddsqra_value, tx);
1732 
1733 		VERIFY0(dsl_prop_get_int_ds(ds,
1734 		    zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1735 	} else {
1736 		newval = ddsqra->ddsqra_value;
1737 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1738 		    zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1739 	}
1740 
1741 	dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1742 	mutex_enter(&ds->ds_dir->dd_lock);
1743 	dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1744 	mutex_exit(&ds->ds_dir->dd_lock);
1745 	dsl_dataset_rele(ds, FTAG);
1746 }
1747 
1748 int
1749 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1750 {
1751 	dsl_dir_set_qr_arg_t ddsqra;
1752 
1753 	ddsqra.ddsqra_name = ddname;
1754 	ddsqra.ddsqra_source = source;
1755 	ddsqra.ddsqra_value = quota;
1756 
1757 	return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1758 	    dsl_dir_set_quota_sync, &ddsqra, 0,
1759 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
1760 }
1761 
1762 static int
1763 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1764 {
1765 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1766 	dsl_pool_t *dp = dmu_tx_pool(tx);
1767 	dsl_dataset_t *ds;
1768 	dsl_dir_t *dd;
1769 	uint64_t newval, used, avail;
1770 	int error;
1771 
1772 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1773 	if (error != 0)
1774 		return (error);
1775 	dd = ds->ds_dir;
1776 
1777 	/*
1778 	 * If we are doing the preliminary check in open context, the
1779 	 * space estimates may be inaccurate.
1780 	 */
1781 	if (!dmu_tx_is_syncing(tx)) {
1782 		dsl_dataset_rele(ds, FTAG);
1783 		return (0);
1784 	}
1785 
1786 	error = dsl_prop_predict(ds->ds_dir,
1787 	    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1788 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1789 	if (error != 0) {
1790 		dsl_dataset_rele(ds, FTAG);
1791 		return (error);
1792 	}
1793 
1794 	mutex_enter(&dd->dd_lock);
1795 	used = dsl_dir_phys(dd)->dd_used_bytes;
1796 	mutex_exit(&dd->dd_lock);
1797 
1798 	if (dd->dd_parent) {
1799 		avail = dsl_dir_space_available(dd->dd_parent,
1800 		    NULL, 0, FALSE);
1801 	} else {
1802 		avail = dsl_pool_adjustedsize(dd->dd_pool,
1803 		    ZFS_SPACE_CHECK_NORMAL) - used;
1804 	}
1805 
1806 	if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1807 		uint64_t delta = MAX(used, newval) -
1808 		    MAX(used, dsl_dir_phys(dd)->dd_reserved);
1809 
1810 		if (delta > avail ||
1811 		    (dsl_dir_phys(dd)->dd_quota > 0 &&
1812 		    newval > dsl_dir_phys(dd)->dd_quota))
1813 			error = SET_ERROR(ENOSPC);
1814 	}
1815 
1816 	dsl_dataset_rele(ds, FTAG);
1817 	return (error);
1818 }
1819 
1820 void
1821 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1822 {
1823 	uint64_t used;
1824 	int64_t delta;
1825 
1826 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1827 
1828 	mutex_enter(&dd->dd_lock);
1829 	used = dsl_dir_phys(dd)->dd_used_bytes;
1830 	delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1831 	dsl_dir_phys(dd)->dd_reserved = value;
1832 
1833 	if (dd->dd_parent != NULL) {
1834 		/* Roll up this additional usage into our ancestors */
1835 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1836 		    delta, 0, 0, tx);
1837 	}
1838 	mutex_exit(&dd->dd_lock);
1839 }
1840 
1841 static void
1842 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1843 {
1844 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1845 	dsl_pool_t *dp = dmu_tx_pool(tx);
1846 	dsl_dataset_t *ds;
1847 	uint64_t newval;
1848 
1849 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1850 
1851 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1852 		dsl_prop_set_sync_impl(ds,
1853 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1854 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1855 		    &ddsqra->ddsqra_value, tx);
1856 
1857 		VERIFY0(dsl_prop_get_int_ds(ds,
1858 		    zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1859 	} else {
1860 		newval = ddsqra->ddsqra_value;
1861 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1862 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1863 		    (longlong_t)newval);
1864 	}
1865 
1866 	dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1867 	dsl_dataset_rele(ds, FTAG);
1868 }
1869 
1870 int
1871 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1872     uint64_t reservation)
1873 {
1874 	dsl_dir_set_qr_arg_t ddsqra;
1875 
1876 	ddsqra.ddsqra_name = ddname;
1877 	ddsqra.ddsqra_source = source;
1878 	ddsqra.ddsqra_value = reservation;
1879 
1880 	return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1881 	    dsl_dir_set_reservation_sync, &ddsqra, 0,
1882 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
1883 }
1884 
1885 static dsl_dir_t *
1886 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1887 {
1888 	for (; ds1; ds1 = ds1->dd_parent) {
1889 		dsl_dir_t *dd;
1890 		for (dd = ds2; dd; dd = dd->dd_parent) {
1891 			if (ds1 == dd)
1892 				return (dd);
1893 		}
1894 	}
1895 	return (NULL);
1896 }
1897 
1898 /*
1899  * If delta is applied to dd, how much of that delta would be applied to
1900  * ancestor?  Syncing context only.
1901  */
1902 static int64_t
1903 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1904 {
1905 	if (dd == ancestor)
1906 		return (delta);
1907 
1908 	mutex_enter(&dd->dd_lock);
1909 	delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1910 	mutex_exit(&dd->dd_lock);
1911 	return (would_change(dd->dd_parent, delta, ancestor));
1912 }
1913 
1914 typedef struct dsl_dir_rename_arg {
1915 	const char *ddra_oldname;
1916 	const char *ddra_newname;
1917 	cred_t *ddra_cred;
1918 	proc_t *ddra_proc;
1919 } dsl_dir_rename_arg_t;
1920 
1921 typedef struct dsl_valid_rename_arg {
1922 	int char_delta;
1923 	int nest_delta;
1924 } dsl_valid_rename_arg_t;
1925 
1926 static int
1927 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1928 {
1929 	(void) dp;
1930 	dsl_valid_rename_arg_t *dvra = arg;
1931 	char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1932 
1933 	dsl_dataset_name(ds, namebuf);
1934 
1935 	ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1936 	    <, ZFS_MAX_DATASET_NAME_LEN);
1937 	int namelen = strlen(namebuf) + dvra->char_delta;
1938 	int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1939 
1940 	if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1941 		return (SET_ERROR(ENAMETOOLONG));
1942 	if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1943 		return (SET_ERROR(ENAMETOOLONG));
1944 	return (0);
1945 }
1946 
1947 static int
1948 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1949 {
1950 	dsl_dir_rename_arg_t *ddra = arg;
1951 	dsl_pool_t *dp = dmu_tx_pool(tx);
1952 	dsl_dir_t *dd, *newparent;
1953 	dsl_valid_rename_arg_t dvra;
1954 	dsl_dataset_t *parentds;
1955 	objset_t *parentos;
1956 	const char *mynewname;
1957 	int error;
1958 
1959 	/* target dir should exist */
1960 	error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1961 	if (error != 0)
1962 		return (error);
1963 
1964 	/* new parent should exist */
1965 	error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1966 	    &newparent, &mynewname);
1967 	if (error != 0) {
1968 		dsl_dir_rele(dd, FTAG);
1969 		return (error);
1970 	}
1971 
1972 	/* can't rename to different pool */
1973 	if (dd->dd_pool != newparent->dd_pool) {
1974 		dsl_dir_rele(newparent, FTAG);
1975 		dsl_dir_rele(dd, FTAG);
1976 		return (SET_ERROR(EXDEV));
1977 	}
1978 
1979 	/* new name should not already exist */
1980 	if (mynewname == NULL) {
1981 		dsl_dir_rele(newparent, FTAG);
1982 		dsl_dir_rele(dd, FTAG);
1983 		return (SET_ERROR(EEXIST));
1984 	}
1985 
1986 	/* can't rename below anything but filesystems (eg. no ZVOLs) */
1987 	error = dsl_dataset_hold_obj(newparent->dd_pool,
1988 	    dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
1989 	if (error != 0) {
1990 		dsl_dir_rele(newparent, FTAG);
1991 		dsl_dir_rele(dd, FTAG);
1992 		return (error);
1993 	}
1994 	error = dmu_objset_from_ds(parentds, &parentos);
1995 	if (error != 0) {
1996 		dsl_dataset_rele(parentds, FTAG);
1997 		dsl_dir_rele(newparent, FTAG);
1998 		dsl_dir_rele(dd, FTAG);
1999 		return (error);
2000 	}
2001 	if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
2002 		dsl_dataset_rele(parentds, FTAG);
2003 		dsl_dir_rele(newparent, FTAG);
2004 		dsl_dir_rele(dd, FTAG);
2005 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
2006 	}
2007 	dsl_dataset_rele(parentds, FTAG);
2008 
2009 	ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
2010 	    <, ZFS_MAX_DATASET_NAME_LEN);
2011 	ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
2012 	    <, ZFS_MAX_DATASET_NAME_LEN);
2013 	dvra.char_delta = strlen(ddra->ddra_newname)
2014 	    - strlen(ddra->ddra_oldname);
2015 	dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
2016 	    - get_dataset_depth(ddra->ddra_oldname);
2017 
2018 	/* if the name length is growing, validate child name lengths */
2019 	if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
2020 		error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
2021 		    &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
2022 		if (error != 0) {
2023 			dsl_dir_rele(newparent, FTAG);
2024 			dsl_dir_rele(dd, FTAG);
2025 			return (error);
2026 		}
2027 	}
2028 
2029 	if (dmu_tx_is_syncing(tx)) {
2030 		if (spa_feature_is_active(dp->dp_spa,
2031 		    SPA_FEATURE_FS_SS_LIMIT)) {
2032 			/*
2033 			 * Although this is the check function and we don't
2034 			 * normally make on-disk changes in check functions,
2035 			 * we need to do that here.
2036 			 *
2037 			 * Ensure this portion of the tree's counts have been
2038 			 * initialized in case the new parent has limits set.
2039 			 */
2040 			dsl_dir_init_fs_ss_count(dd, tx);
2041 		}
2042 	}
2043 
2044 	if (newparent != dd->dd_parent) {
2045 		/* is there enough space? */
2046 		uint64_t myspace =
2047 		    MAX(dsl_dir_phys(dd)->dd_used_bytes,
2048 		    dsl_dir_phys(dd)->dd_reserved);
2049 		objset_t *os = dd->dd_pool->dp_meta_objset;
2050 		uint64_t fs_cnt = 0;
2051 		uint64_t ss_cnt = 0;
2052 
2053 		if (dsl_dir_is_zapified(dd)) {
2054 			int err;
2055 
2056 			err = zap_lookup(os, dd->dd_object,
2057 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2058 			    &fs_cnt);
2059 			if (err != ENOENT && err != 0) {
2060 				dsl_dir_rele(newparent, FTAG);
2061 				dsl_dir_rele(dd, FTAG);
2062 				return (err);
2063 			}
2064 
2065 			/*
2066 			 * have to add 1 for the filesystem itself that we're
2067 			 * moving
2068 			 */
2069 			fs_cnt++;
2070 
2071 			err = zap_lookup(os, dd->dd_object,
2072 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2073 			    &ss_cnt);
2074 			if (err != ENOENT && err != 0) {
2075 				dsl_dir_rele(newparent, FTAG);
2076 				dsl_dir_rele(dd, FTAG);
2077 				return (err);
2078 			}
2079 		}
2080 
2081 		/* check for encryption errors */
2082 		error = dsl_dir_rename_crypt_check(dd, newparent);
2083 		if (error != 0) {
2084 			dsl_dir_rele(newparent, FTAG);
2085 			dsl_dir_rele(dd, FTAG);
2086 			return (SET_ERROR(EACCES));
2087 		}
2088 
2089 		/* no rename into our descendant */
2090 		if (closest_common_ancestor(dd, newparent) == dd) {
2091 			dsl_dir_rele(newparent, FTAG);
2092 			dsl_dir_rele(dd, FTAG);
2093 			return (SET_ERROR(EINVAL));
2094 		}
2095 
2096 		error = dsl_dir_transfer_possible(dd->dd_parent,
2097 		    newparent, fs_cnt, ss_cnt, myspace,
2098 		    ddra->ddra_cred, ddra->ddra_proc);
2099 		if (error != 0) {
2100 			dsl_dir_rele(newparent, FTAG);
2101 			dsl_dir_rele(dd, FTAG);
2102 			return (error);
2103 		}
2104 	}
2105 
2106 	dsl_dir_rele(newparent, FTAG);
2107 	dsl_dir_rele(dd, FTAG);
2108 	return (0);
2109 }
2110 
2111 static void
2112 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
2113 {
2114 	dsl_dir_rename_arg_t *ddra = arg;
2115 	dsl_pool_t *dp = dmu_tx_pool(tx);
2116 	dsl_dir_t *dd, *newparent;
2117 	const char *mynewname;
2118 	objset_t *mos = dp->dp_meta_objset;
2119 
2120 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2121 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2122 	    &mynewname));
2123 
2124 	ASSERT3P(mynewname, !=, NULL);
2125 
2126 	/* Log this before we change the name. */
2127 	spa_history_log_internal_dd(dd, "rename", tx,
2128 	    "-> %s", ddra->ddra_newname);
2129 
2130 	if (newparent != dd->dd_parent) {
2131 		objset_t *os = dd->dd_pool->dp_meta_objset;
2132 		uint64_t fs_cnt = 0;
2133 		uint64_t ss_cnt = 0;
2134 
2135 		/*
2136 		 * We already made sure the dd counts were initialized in the
2137 		 * check function.
2138 		 */
2139 		if (spa_feature_is_active(dp->dp_spa,
2140 		    SPA_FEATURE_FS_SS_LIMIT)) {
2141 			VERIFY0(zap_lookup(os, dd->dd_object,
2142 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2143 			    &fs_cnt));
2144 			/* add 1 for the filesystem itself that we're moving */
2145 			fs_cnt++;
2146 
2147 			VERIFY0(zap_lookup(os, dd->dd_object,
2148 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2149 			    &ss_cnt));
2150 		}
2151 
2152 		dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2153 		    DD_FIELD_FILESYSTEM_COUNT, tx);
2154 		dsl_fs_ss_count_adjust(newparent, fs_cnt,
2155 		    DD_FIELD_FILESYSTEM_COUNT, tx);
2156 
2157 		dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2158 		    DD_FIELD_SNAPSHOT_COUNT, tx);
2159 		dsl_fs_ss_count_adjust(newparent, ss_cnt,
2160 		    DD_FIELD_SNAPSHOT_COUNT, tx);
2161 
2162 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2163 		    -dsl_dir_phys(dd)->dd_used_bytes,
2164 		    -dsl_dir_phys(dd)->dd_compressed_bytes,
2165 		    -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2166 		dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2167 		    dsl_dir_phys(dd)->dd_used_bytes,
2168 		    dsl_dir_phys(dd)->dd_compressed_bytes,
2169 		    dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2170 
2171 		if (dsl_dir_phys(dd)->dd_reserved >
2172 		    dsl_dir_phys(dd)->dd_used_bytes) {
2173 			uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2174 			    dsl_dir_phys(dd)->dd_used_bytes;
2175 
2176 			dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2177 			    -unused_rsrv, 0, 0, tx);
2178 			dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2179 			    unused_rsrv, 0, 0, tx);
2180 		}
2181 	}
2182 
2183 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
2184 
2185 	/* remove from old parent zapobj */
2186 	VERIFY0(zap_remove(mos,
2187 	    dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2188 	    dd->dd_myname, tx));
2189 
2190 	(void) strlcpy(dd->dd_myname, mynewname,
2191 	    sizeof (dd->dd_myname));
2192 	dsl_dir_rele(dd->dd_parent, dd);
2193 	dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2194 	VERIFY0(dsl_dir_hold_obj(dp,
2195 	    newparent->dd_object, NULL, dd, &dd->dd_parent));
2196 
2197 	/* add to new parent zapobj */
2198 	VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2199 	    dd->dd_myname, 8, 1, &dd->dd_object, tx));
2200 
2201 	/* TODO: A rename callback to avoid these layering violations. */
2202 	zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
2203 	zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
2204 	    ddra->ddra_newname, B_TRUE);
2205 
2206 	dsl_prop_notify_all(dd);
2207 
2208 	dsl_dir_rele(newparent, FTAG);
2209 	dsl_dir_rele(dd, FTAG);
2210 }
2211 
2212 int
2213 dsl_dir_rename(const char *oldname, const char *newname)
2214 {
2215 	dsl_dir_rename_arg_t ddra;
2216 
2217 	ddra.ddra_oldname = oldname;
2218 	ddra.ddra_newname = newname;
2219 	ddra.ddra_cred = CRED();
2220 	ddra.ddra_proc = curproc;
2221 
2222 	return (dsl_sync_task(oldname,
2223 	    dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2224 	    3, ZFS_SPACE_CHECK_RESERVED));
2225 }
2226 
2227 int
2228 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2229     uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
2230     cred_t *cr, proc_t *proc)
2231 {
2232 	dsl_dir_t *ancestor;
2233 	int64_t adelta;
2234 	uint64_t avail;
2235 	int err;
2236 
2237 	ancestor = closest_common_ancestor(sdd, tdd);
2238 	adelta = would_change(sdd, -space, ancestor);
2239 	avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2240 	if (avail < space)
2241 		return (SET_ERROR(ENOSPC));
2242 
2243 	err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2244 	    ancestor, cr, proc);
2245 	if (err != 0)
2246 		return (err);
2247 	err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2248 	    ancestor, cr, proc);
2249 	if (err != 0)
2250 		return (err);
2251 
2252 	return (0);
2253 }
2254 
2255 inode_timespec_t
2256 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2257 {
2258 	inode_timespec_t t;
2259 
2260 	mutex_enter(&dd->dd_lock);
2261 	t = dd->dd_snap_cmtime;
2262 	mutex_exit(&dd->dd_lock);
2263 
2264 	return (t);
2265 }
2266 
2267 void
2268 dsl_dir_snap_cmtime_update(dsl_dir_t *dd, dmu_tx_t *tx)
2269 {
2270 	dsl_pool_t *dp = dmu_tx_pool(tx);
2271 	inode_timespec_t t;
2272 	gethrestime(&t);
2273 
2274 	mutex_enter(&dd->dd_lock);
2275 	dd->dd_snap_cmtime = t;
2276 	if (spa_feature_is_enabled(dp->dp_spa,
2277 	    SPA_FEATURE_EXTENSIBLE_DATASET)) {
2278 		objset_t *mos = dd->dd_pool->dp_meta_objset;
2279 		uint64_t ddobj = dd->dd_object;
2280 		dsl_dir_zapify(dd, tx);
2281 		VERIFY0(zap_update(mos, ddobj,
2282 		    DD_FIELD_SNAPSHOTS_CHANGED,
2283 		    sizeof (uint64_t),
2284 		    sizeof (inode_timespec_t) / sizeof (uint64_t),
2285 		    &t, tx));
2286 	}
2287 	mutex_exit(&dd->dd_lock);
2288 }
2289 
2290 void
2291 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2292 {
2293 	objset_t *mos = dd->dd_pool->dp_meta_objset;
2294 	dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2295 }
2296 
2297 boolean_t
2298 dsl_dir_is_zapified(dsl_dir_t *dd)
2299 {
2300 	dmu_object_info_t doi;
2301 
2302 	dmu_object_info_from_db(dd->dd_dbuf, &doi);
2303 	return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2304 }
2305 
2306 int
2307 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
2308 {
2309 	objset_t *mos = dd->dd_pool->dp_meta_objset;
2310 	ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
2311 	    SPA_FEATURE_LIVELIST));
2312 	int err = dsl_deadlist_open(&dd->dd_livelist, mos, obj);
2313 	if (err != 0)
2314 		return (err);
2315 	bplist_create(&dd->dd_pending_allocs);
2316 	bplist_create(&dd->dd_pending_frees);
2317 	return (0);
2318 }
2319 
2320 void
2321 dsl_dir_livelist_close(dsl_dir_t *dd)
2322 {
2323 	dsl_deadlist_close(&dd->dd_livelist);
2324 	bplist_destroy(&dd->dd_pending_allocs);
2325 	bplist_destroy(&dd->dd_pending_frees);
2326 }
2327 
2328 void
2329 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
2330 {
2331 	uint64_t obj;
2332 	dsl_pool_t *dp = dmu_tx_pool(tx);
2333 	spa_t *spa = dp->dp_spa;
2334 	livelist_condense_entry_t to_condense = spa->spa_to_condense;
2335 
2336 	if (!dsl_deadlist_is_open(&dd->dd_livelist))
2337 		return;
2338 
2339 	/*
2340 	 * If the livelist being removed is set to be condensed, stop the
2341 	 * condense zthr and indicate the cancellation in the spa_to_condense
2342 	 * struct in case the condense no-wait synctask has already started
2343 	 */
2344 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
2345 	if (ll_condense_thread != NULL &&
2346 	    (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
2347 		/*
2348 		 * We use zthr_wait_cycle_done instead of zthr_cancel
2349 		 * because we don't want to destroy the zthr, just have
2350 		 * it skip its current task.
2351 		 */
2352 		spa->spa_to_condense.cancelled = B_TRUE;
2353 		zthr_wait_cycle_done(ll_condense_thread);
2354 		/*
2355 		 * If we've returned from zthr_wait_cycle_done without
2356 		 * clearing the to_condense data structure it's either
2357 		 * because the no-wait synctask has started (which is
2358 		 * indicated by 'syncing' field of to_condense) and we
2359 		 * can expect it to clear to_condense on its own.
2360 		 * Otherwise, we returned before the zthr ran. The
2361 		 * checkfunc will now fail as cancelled == B_TRUE so we
2362 		 * can safely NULL out ds, allowing a different dir's
2363 		 * livelist to be condensed.
2364 		 *
2365 		 * We can be sure that the to_condense struct will not
2366 		 * be repopulated at this stage because both this
2367 		 * function and dsl_livelist_try_condense execute in
2368 		 * syncing context.
2369 		 */
2370 		if ((spa->spa_to_condense.ds != NULL) &&
2371 		    !spa->spa_to_condense.syncing) {
2372 			dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
2373 			    spa);
2374 			spa->spa_to_condense.ds = NULL;
2375 		}
2376 	}
2377 
2378 	dsl_dir_livelist_close(dd);
2379 	VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
2380 	    DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
2381 	VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
2382 	    DD_FIELD_LIVELIST, tx));
2383 	if (total) {
2384 		dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
2385 		spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2386 	}
2387 }
2388 
2389 static int
2390 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
2391     zfs_wait_activity_t activity, boolean_t *in_progress)
2392 {
2393 	int error = 0;
2394 
2395 	ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
2396 
2397 	switch (activity) {
2398 	case ZFS_WAIT_DELETEQ: {
2399 #ifdef _KERNEL
2400 		objset_t *os;
2401 		error = dmu_objset_from_ds(ds, &os);
2402 		if (error != 0)
2403 			break;
2404 
2405 		mutex_enter(&os->os_user_ptr_lock);
2406 		void *user = dmu_objset_get_user(os);
2407 		mutex_exit(&os->os_user_ptr_lock);
2408 		if (dmu_objset_type(os) != DMU_OST_ZFS ||
2409 		    user == NULL || zfs_get_vfs_flag_unmounted(os)) {
2410 			*in_progress = B_FALSE;
2411 			return (0);
2412 		}
2413 
2414 		uint64_t readonly = B_FALSE;
2415 		error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
2416 		    NULL);
2417 
2418 		if (error != 0)
2419 			break;
2420 
2421 		if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
2422 			*in_progress = B_FALSE;
2423 			return (0);
2424 		}
2425 
2426 		uint64_t count, unlinked_obj;
2427 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
2428 		    &unlinked_obj);
2429 		if (error != 0) {
2430 			dsl_dataset_rele(ds, FTAG);
2431 			break;
2432 		}
2433 		error = zap_count(os, unlinked_obj, &count);
2434 
2435 		if (error == 0)
2436 			*in_progress = (count != 0);
2437 		break;
2438 #else
2439 		/*
2440 		 * The delete queue is ZPL specific, and libzpool doesn't have
2441 		 * it. It doesn't make sense to wait for it.
2442 		 */
2443 		(void) ds;
2444 		*in_progress = B_FALSE;
2445 		break;
2446 #endif
2447 	}
2448 	default:
2449 		panic("unrecognized value for activity %d", activity);
2450 	}
2451 
2452 	return (error);
2453 }
2454 
2455 int
2456 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
2457     boolean_t *waited)
2458 {
2459 	int error = 0;
2460 	boolean_t in_progress;
2461 	dsl_pool_t *dp = dd->dd_pool;
2462 	for (;;) {
2463 		dsl_pool_config_enter(dp, FTAG);
2464 		error = dsl_dir_activity_in_progress(dd, ds, activity,
2465 		    &in_progress);
2466 		dsl_pool_config_exit(dp, FTAG);
2467 		if (error != 0 || !in_progress)
2468 			break;
2469 
2470 		*waited = B_TRUE;
2471 
2472 		if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
2473 		    0 || dd->dd_activity_cancelled) {
2474 			error = SET_ERROR(EINTR);
2475 			break;
2476 		}
2477 	}
2478 	return (error);
2479 }
2480 
2481 void
2482 dsl_dir_cancel_waiters(dsl_dir_t *dd)
2483 {
2484 	mutex_enter(&dd->dd_activity_lock);
2485 	dd->dd_activity_cancelled = B_TRUE;
2486 	cv_broadcast(&dd->dd_activity_cv);
2487 	while (dd->dd_activity_waiters > 0)
2488 		cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
2489 	mutex_exit(&dd->dd_activity_lock);
2490 }
2491 
2492 #if defined(_KERNEL)
2493 EXPORT_SYMBOL(dsl_dir_set_quota);
2494 EXPORT_SYMBOL(dsl_dir_set_reservation);
2495 #endif
2496 
2497 ZFS_MODULE_PARAM(zfs, , zvol_enforce_quotas, INT, ZMOD_RW,
2498 	"Enable strict ZVOL quota enforcment");
2499