xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_dir.c (revision b197d4b893974c9eb4d7b38704c6d5c486235d6f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Martin Matuska. All rights reserved.
25  * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29  */
30 
31 #include <sys/dmu.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_prop.h>
37 #include <sys/dsl_synctask.h>
38 #include <sys/dsl_deleg.h>
39 #include <sys/dmu_impl.h>
40 #include <sys/spa.h>
41 #include <sys/spa_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/zap.h>
44 #include <sys/zio.h>
45 #include <sys/arc.h>
46 #include <sys/sunddi.h>
47 #include <sys/zfeature.h>
48 #include <sys/policy.h>
49 #include <sys/zfs_vfsops.h>
50 #include <sys/zfs_znode.h>
51 #include <sys/zvol.h>
52 #include <sys/zthr.h>
53 #include "zfs_namecheck.h"
54 #include "zfs_prop.h"
55 
56 /*
57  * Filesystem and Snapshot Limits
58  * ------------------------------
59  *
60  * These limits are used to restrict the number of filesystems and/or snapshots
61  * that can be created at a given level in the tree or below. A typical
62  * use-case is with a delegated dataset where the administrator wants to ensure
63  * that a user within the zone is not creating too many additional filesystems
64  * or snapshots, even though they're not exceeding their space quota.
65  *
66  * The filesystem and snapshot counts are stored as extensible properties. This
67  * capability is controlled by a feature flag and must be enabled to be used.
68  * Once enabled, the feature is not active until the first limit is set. At
69  * that point, future operations to create/destroy filesystems or snapshots
70  * will validate and update the counts.
71  *
72  * Because the count properties will not exist before the feature is active,
73  * the counts are updated when a limit is first set on an uninitialized
74  * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
75  * all of the nested filesystems/snapshots. Thus, a new leaf node has a
76  * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
77  * snapshot count properties on a node indicate uninitialized counts on that
78  * node.) When first setting a limit on an uninitialized node, the code starts
79  * at the filesystem with the new limit and descends into all sub-filesystems
80  * to add the count properties.
81  *
82  * In practice this is lightweight since a limit is typically set when the
83  * filesystem is created and thus has no children. Once valid, changing the
84  * limit value won't require a re-traversal since the counts are already valid.
85  * When recursively fixing the counts, if a node with a limit is encountered
86  * during the descent, the counts are known to be valid and there is no need to
87  * descend into that filesystem's children. The counts on filesystems above the
88  * one with the new limit will still be uninitialized, unless a limit is
89  * eventually set on one of those filesystems. The counts are always recursively
90  * updated when a limit is set on a dataset, unless there is already a limit.
91  * When a new limit value is set on a filesystem with an existing limit, it is
92  * possible for the new limit to be less than the current count at that level
93  * since a user who can change the limit is also allowed to exceed the limit.
94  *
95  * Once the feature is active, then whenever a filesystem or snapshot is
96  * created, the code recurses up the tree, validating the new count against the
97  * limit at each initialized level. In practice, most levels will not have a
98  * limit set. If there is a limit at any initialized level up the tree, the
99  * check must pass or the creation will fail. Likewise, when a filesystem or
100  * snapshot is destroyed, the counts are recursively adjusted all the way up
101  * the initialized nodes in the tree. Renaming a filesystem into different point
102  * in the tree will first validate, then update the counts on each branch up to
103  * the common ancestor. A receive will also validate the counts and then update
104  * them.
105  *
106  * An exception to the above behavior is that the limit is not enforced if the
107  * user has permission to modify the limit. This is primarily so that
108  * recursive snapshots in the global zone always work. We want to prevent a
109  * denial-of-service in which a lower level delegated dataset could max out its
110  * limit and thus block recursive snapshots from being taken in the global zone.
111  * Because of this, it is possible for the snapshot count to be over the limit
112  * and snapshots taken in the global zone could cause a lower level dataset to
113  * hit or exceed its limit. The administrator taking the global zone recursive
114  * snapshot should be aware of this side-effect and behave accordingly.
115  * For consistency, the filesystem limit is also not enforced if the user can
116  * modify the limit.
117  *
118  * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
119  * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
120  * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
121  * dsl_dir_init_fs_ss_count().
122  */
123 
124 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
125 
126 typedef struct ddulrt_arg {
127 	dsl_dir_t	*ddulrta_dd;
128 	uint64_t	ddlrta_txg;
129 } ddulrt_arg_t;
130 
131 static void
132 dsl_dir_evict_async(void *dbu)
133 {
134 	dsl_dir_t *dd = dbu;
135 	int t;
136 	dsl_pool_t *dp __maybe_unused = dd->dd_pool;
137 
138 	dd->dd_dbuf = NULL;
139 
140 	for (t = 0; t < TXG_SIZE; t++) {
141 		ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
142 		ASSERT(dd->dd_tempreserved[t] == 0);
143 		ASSERT(dd->dd_space_towrite[t] == 0);
144 	}
145 
146 	if (dd->dd_parent)
147 		dsl_dir_async_rele(dd->dd_parent, dd);
148 
149 	spa_async_close(dd->dd_pool->dp_spa, dd);
150 
151 	if (dsl_deadlist_is_open(&dd->dd_livelist))
152 		dsl_dir_livelist_close(dd);
153 
154 	dsl_prop_fini(dd);
155 	cv_destroy(&dd->dd_activity_cv);
156 	mutex_destroy(&dd->dd_activity_lock);
157 	mutex_destroy(&dd->dd_lock);
158 	kmem_free(dd, sizeof (dsl_dir_t));
159 }
160 
161 int
162 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
163     const char *tail, const void *tag, dsl_dir_t **ddp)
164 {
165 	dmu_buf_t *dbuf;
166 	dsl_dir_t *dd;
167 	dmu_object_info_t doi;
168 	int err;
169 
170 	ASSERT(dsl_pool_config_held(dp));
171 
172 	err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
173 	if (err != 0)
174 		return (err);
175 	dd = dmu_buf_get_user(dbuf);
176 
177 	dmu_object_info_from_db(dbuf, &doi);
178 	ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
179 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
180 
181 	if (dd == NULL) {
182 		dsl_dir_t *winner;
183 
184 		dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
185 		dd->dd_object = ddobj;
186 		dd->dd_dbuf = dbuf;
187 		dd->dd_pool = dp;
188 
189 		mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
190 		mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
191 		cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
192 		dsl_prop_init(dd);
193 
194 		if (dsl_dir_is_zapified(dd)) {
195 			err = zap_lookup(dp->dp_meta_objset,
196 			    ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
197 			    sizeof (uint64_t), 1, &dd->dd_crypto_obj);
198 			if (err == 0) {
199 				/* check for on-disk format errata */
200 				if (dsl_dir_incompatible_encryption_version(
201 				    dd)) {
202 					dp->dp_spa->spa_errata =
203 					    ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
204 				}
205 			} else if (err != ENOENT) {
206 				goto errout;
207 			}
208 		}
209 
210 		if (dsl_dir_phys(dd)->dd_parent_obj) {
211 			err = dsl_dir_hold_obj(dp,
212 			    dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
213 			    &dd->dd_parent);
214 			if (err != 0)
215 				goto errout;
216 			if (tail) {
217 #ifdef ZFS_DEBUG
218 				uint64_t foundobj;
219 
220 				err = zap_lookup(dp->dp_meta_objset,
221 				    dsl_dir_phys(dd->dd_parent)->
222 				    dd_child_dir_zapobj, tail,
223 				    sizeof (foundobj), 1, &foundobj);
224 				ASSERT(err || foundobj == ddobj);
225 #endif
226 				(void) strlcpy(dd->dd_myname, tail,
227 				    sizeof (dd->dd_myname));
228 			} else {
229 				err = zap_value_search(dp->dp_meta_objset,
230 				    dsl_dir_phys(dd->dd_parent)->
231 				    dd_child_dir_zapobj,
232 				    ddobj, 0, dd->dd_myname);
233 			}
234 			if (err != 0)
235 				goto errout;
236 		} else {
237 			(void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
238 			    sizeof (dd->dd_myname));
239 		}
240 
241 		if (dsl_dir_is_clone(dd)) {
242 			dmu_buf_t *origin_bonus;
243 			dsl_dataset_phys_t *origin_phys;
244 
245 			/*
246 			 * We can't open the origin dataset, because
247 			 * that would require opening this dsl_dir.
248 			 * Just look at its phys directly instead.
249 			 */
250 			err = dmu_bonus_hold(dp->dp_meta_objset,
251 			    dsl_dir_phys(dd)->dd_origin_obj, FTAG,
252 			    &origin_bonus);
253 			if (err != 0)
254 				goto errout;
255 			origin_phys = origin_bonus->db_data;
256 			dd->dd_origin_txg =
257 			    origin_phys->ds_creation_txg;
258 			dmu_buf_rele(origin_bonus, FTAG);
259 			if (dsl_dir_is_zapified(dd)) {
260 				uint64_t obj;
261 				err = zap_lookup(dp->dp_meta_objset,
262 				    dd->dd_object, DD_FIELD_LIVELIST,
263 				    sizeof (uint64_t), 1, &obj);
264 				if (err == 0)
265 					dsl_dir_livelist_open(dd, obj);
266 				else if (err != ENOENT)
267 					goto errout;
268 			}
269 		}
270 
271 		if (dsl_dir_is_zapified(dd)) {
272 			inode_timespec_t t = {0};
273 			zap_lookup(dp->dp_meta_objset, ddobj,
274 			    zfs_prop_to_name(ZFS_PROP_SNAPSHOTS_CHANGED),
275 			    sizeof (uint64_t),
276 			    sizeof (inode_timespec_t) / sizeof (uint64_t),
277 			    &t);
278 			dd->dd_snap_cmtime = t;
279 		}
280 
281 		dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
282 		    &dd->dd_dbuf);
283 		winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
284 		if (winner != NULL) {
285 			if (dd->dd_parent)
286 				dsl_dir_rele(dd->dd_parent, dd);
287 			if (dsl_deadlist_is_open(&dd->dd_livelist))
288 				dsl_dir_livelist_close(dd);
289 			dsl_prop_fini(dd);
290 			cv_destroy(&dd->dd_activity_cv);
291 			mutex_destroy(&dd->dd_activity_lock);
292 			mutex_destroy(&dd->dd_lock);
293 			kmem_free(dd, sizeof (dsl_dir_t));
294 			dd = winner;
295 		} else {
296 			spa_open_ref(dp->dp_spa, dd);
297 		}
298 	}
299 
300 	/*
301 	 * The dsl_dir_t has both open-to-close and instantiate-to-evict
302 	 * holds on the spa.  We need the open-to-close holds because
303 	 * otherwise the spa_refcnt wouldn't change when we open a
304 	 * dir which the spa also has open, so we could incorrectly
305 	 * think it was OK to unload/export/destroy the pool.  We need
306 	 * the instantiate-to-evict hold because the dsl_dir_t has a
307 	 * pointer to the dd_pool, which has a pointer to the spa_t.
308 	 */
309 	spa_open_ref(dp->dp_spa, tag);
310 	ASSERT3P(dd->dd_pool, ==, dp);
311 	ASSERT3U(dd->dd_object, ==, ddobj);
312 	ASSERT3P(dd->dd_dbuf, ==, dbuf);
313 	*ddp = dd;
314 	return (0);
315 
316 errout:
317 	if (dd->dd_parent)
318 		dsl_dir_rele(dd->dd_parent, dd);
319 	if (dsl_deadlist_is_open(&dd->dd_livelist))
320 		dsl_dir_livelist_close(dd);
321 	dsl_prop_fini(dd);
322 	cv_destroy(&dd->dd_activity_cv);
323 	mutex_destroy(&dd->dd_activity_lock);
324 	mutex_destroy(&dd->dd_lock);
325 	kmem_free(dd, sizeof (dsl_dir_t));
326 	dmu_buf_rele(dbuf, tag);
327 	return (err);
328 }
329 
330 void
331 dsl_dir_rele(dsl_dir_t *dd, const void *tag)
332 {
333 	dprintf_dd(dd, "%s\n", "");
334 	spa_close(dd->dd_pool->dp_spa, tag);
335 	dmu_buf_rele(dd->dd_dbuf, tag);
336 }
337 
338 /*
339  * Remove a reference to the given dsl dir that is being asynchronously
340  * released.  Async releases occur from a taskq performing eviction of
341  * dsl datasets and dirs.  This process is identical to a normal release
342  * with the exception of using the async API for releasing the reference on
343  * the spa.
344  */
345 void
346 dsl_dir_async_rele(dsl_dir_t *dd, const void *tag)
347 {
348 	dprintf_dd(dd, "%s\n", "");
349 	spa_async_close(dd->dd_pool->dp_spa, tag);
350 	dmu_buf_rele(dd->dd_dbuf, tag);
351 }
352 
353 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
354 void
355 dsl_dir_name(dsl_dir_t *dd, char *buf)
356 {
357 	if (dd->dd_parent) {
358 		dsl_dir_name(dd->dd_parent, buf);
359 		VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
360 		    ZFS_MAX_DATASET_NAME_LEN);
361 	} else {
362 		buf[0] = '\0';
363 	}
364 	if (!MUTEX_HELD(&dd->dd_lock)) {
365 		/*
366 		 * recursive mutex so that we can use
367 		 * dprintf_dd() with dd_lock held
368 		 */
369 		mutex_enter(&dd->dd_lock);
370 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
371 		    <, ZFS_MAX_DATASET_NAME_LEN);
372 		mutex_exit(&dd->dd_lock);
373 	} else {
374 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
375 		    <, ZFS_MAX_DATASET_NAME_LEN);
376 	}
377 }
378 
379 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
380 int
381 dsl_dir_namelen(dsl_dir_t *dd)
382 {
383 	int result = 0;
384 
385 	if (dd->dd_parent) {
386 		/* parent's name + 1 for the "/" */
387 		result = dsl_dir_namelen(dd->dd_parent) + 1;
388 	}
389 
390 	if (!MUTEX_HELD(&dd->dd_lock)) {
391 		/* see dsl_dir_name */
392 		mutex_enter(&dd->dd_lock);
393 		result += strlen(dd->dd_myname);
394 		mutex_exit(&dd->dd_lock);
395 	} else {
396 		result += strlen(dd->dd_myname);
397 	}
398 
399 	return (result);
400 }
401 
402 static int
403 getcomponent(const char *path, char *component, const char **nextp)
404 {
405 	char *p;
406 
407 	if ((path == NULL) || (path[0] == '\0'))
408 		return (SET_ERROR(ENOENT));
409 	/* This would be a good place to reserve some namespace... */
410 	p = strpbrk(path, "/@");
411 	if (p && (p[1] == '/' || p[1] == '@')) {
412 		/* two separators in a row */
413 		return (SET_ERROR(EINVAL));
414 	}
415 	if (p == NULL || p == path) {
416 		/*
417 		 * if the first thing is an @ or /, it had better be an
418 		 * @ and it had better not have any more ats or slashes,
419 		 * and it had better have something after the @.
420 		 */
421 		if (p != NULL &&
422 		    (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
423 			return (SET_ERROR(EINVAL));
424 		if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
425 			return (SET_ERROR(ENAMETOOLONG));
426 		(void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
427 		p = NULL;
428 	} else if (p[0] == '/') {
429 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
430 			return (SET_ERROR(ENAMETOOLONG));
431 		(void) strncpy(component, path, p - path);
432 		component[p - path] = '\0';
433 		p++;
434 	} else if (p[0] == '@') {
435 		/*
436 		 * if the next separator is an @, there better not be
437 		 * any more slashes.
438 		 */
439 		if (strchr(path, '/'))
440 			return (SET_ERROR(EINVAL));
441 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
442 			return (SET_ERROR(ENAMETOOLONG));
443 		(void) strncpy(component, path, p - path);
444 		component[p - path] = '\0';
445 	} else {
446 		panic("invalid p=%p", (void *)p);
447 	}
448 	*nextp = p;
449 	return (0);
450 }
451 
452 /*
453  * Return the dsl_dir_t, and possibly the last component which couldn't
454  * be found in *tail.  The name must be in the specified dsl_pool_t.  This
455  * thread must hold the dp_config_rwlock for the pool.  Returns NULL if the
456  * path is bogus, or if tail==NULL and we couldn't parse the whole name.
457  * (*tail)[0] == '@' means that the last component is a snapshot.
458  */
459 int
460 dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag,
461     dsl_dir_t **ddp, const char **tailp)
462 {
463 	char *buf;
464 	const char *spaname, *next, *nextnext = NULL;
465 	int err;
466 	dsl_dir_t *dd;
467 	uint64_t ddobj;
468 
469 	buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
470 	err = getcomponent(name, buf, &next);
471 	if (err != 0)
472 		goto error;
473 
474 	/* Make sure the name is in the specified pool. */
475 	spaname = spa_name(dp->dp_spa);
476 	if (strcmp(buf, spaname) != 0) {
477 		err = SET_ERROR(EXDEV);
478 		goto error;
479 	}
480 
481 	ASSERT(dsl_pool_config_held(dp));
482 
483 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
484 	if (err != 0) {
485 		goto error;
486 	}
487 
488 	while (next != NULL) {
489 		dsl_dir_t *child_dd;
490 		err = getcomponent(next, buf, &nextnext);
491 		if (err != 0)
492 			break;
493 		ASSERT(next[0] != '\0');
494 		if (next[0] == '@')
495 			break;
496 		dprintf("looking up %s in obj%lld\n",
497 		    buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj);
498 
499 		err = zap_lookup(dp->dp_meta_objset,
500 		    dsl_dir_phys(dd)->dd_child_dir_zapobj,
501 		    buf, sizeof (ddobj), 1, &ddobj);
502 		if (err != 0) {
503 			if (err == ENOENT)
504 				err = 0;
505 			break;
506 		}
507 
508 		err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
509 		if (err != 0)
510 			break;
511 		dsl_dir_rele(dd, tag);
512 		dd = child_dd;
513 		next = nextnext;
514 	}
515 
516 	if (err != 0) {
517 		dsl_dir_rele(dd, tag);
518 		goto error;
519 	}
520 
521 	/*
522 	 * It's an error if there's more than one component left, or
523 	 * tailp==NULL and there's any component left.
524 	 */
525 	if (next != NULL &&
526 	    (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
527 		/* bad path name */
528 		dsl_dir_rele(dd, tag);
529 		dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
530 		err = SET_ERROR(ENOENT);
531 	}
532 	if (tailp != NULL)
533 		*tailp = next;
534 	if (err == 0)
535 		*ddp = dd;
536 error:
537 	kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
538 	return (err);
539 }
540 
541 /*
542  * If the counts are already initialized for this filesystem and its
543  * descendants then do nothing, otherwise initialize the counts.
544  *
545  * The counts on this filesystem, and those below, may be uninitialized due to
546  * either the use of a pre-existing pool which did not support the
547  * filesystem/snapshot limit feature, or one in which the feature had not yet
548  * been enabled.
549  *
550  * Recursively descend the filesystem tree and update the filesystem/snapshot
551  * counts on each filesystem below, then update the cumulative count on the
552  * current filesystem. If the filesystem already has a count set on it,
553  * then we know that its counts, and the counts on the filesystems below it,
554  * are already correct, so we don't have to update this filesystem.
555  */
556 static void
557 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
558 {
559 	uint64_t my_fs_cnt = 0;
560 	uint64_t my_ss_cnt = 0;
561 	dsl_pool_t *dp = dd->dd_pool;
562 	objset_t *os = dp->dp_meta_objset;
563 	zap_cursor_t *zc;
564 	zap_attribute_t *za;
565 	dsl_dataset_t *ds;
566 
567 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
568 	ASSERT(dsl_pool_config_held(dp));
569 	ASSERT(dmu_tx_is_syncing(tx));
570 
571 	dsl_dir_zapify(dd, tx);
572 
573 	/*
574 	 * If the filesystem count has already been initialized then we
575 	 * don't need to recurse down any further.
576 	 */
577 	if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
578 		return;
579 
580 	zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
581 	za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
582 
583 	/* Iterate my child dirs */
584 	for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
585 	    zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
586 		dsl_dir_t *chld_dd;
587 		uint64_t count;
588 
589 		VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
590 		    &chld_dd));
591 
592 		/*
593 		 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
594 		 */
595 		if (chld_dd->dd_myname[0] == '$') {
596 			dsl_dir_rele(chld_dd, FTAG);
597 			continue;
598 		}
599 
600 		my_fs_cnt++;	/* count this child */
601 
602 		dsl_dir_init_fs_ss_count(chld_dd, tx);
603 
604 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
605 		    DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
606 		my_fs_cnt += count;
607 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
608 		    DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
609 		my_ss_cnt += count;
610 
611 		dsl_dir_rele(chld_dd, FTAG);
612 	}
613 	zap_cursor_fini(zc);
614 	/* Count my snapshots (we counted children's snapshots above) */
615 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
616 	    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
617 
618 	for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
619 	    zap_cursor_retrieve(zc, za) == 0;
620 	    zap_cursor_advance(zc)) {
621 		/* Don't count temporary snapshots */
622 		if (za->za_name[0] != '%')
623 			my_ss_cnt++;
624 	}
625 	zap_cursor_fini(zc);
626 
627 	dsl_dataset_rele(ds, FTAG);
628 
629 	kmem_free(zc, sizeof (zap_cursor_t));
630 	kmem_free(za, sizeof (zap_attribute_t));
631 
632 	/* we're in a sync task, update counts */
633 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
634 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
635 	    sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
636 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
637 	    sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
638 }
639 
640 static int
641 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
642 {
643 	char *ddname = (char *)arg;
644 	dsl_pool_t *dp = dmu_tx_pool(tx);
645 	dsl_dataset_t *ds;
646 	dsl_dir_t *dd;
647 	int error;
648 
649 	error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
650 	if (error != 0)
651 		return (error);
652 
653 	if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
654 		dsl_dataset_rele(ds, FTAG);
655 		return (SET_ERROR(ENOTSUP));
656 	}
657 
658 	dd = ds->ds_dir;
659 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
660 	    dsl_dir_is_zapified(dd) &&
661 	    zap_contains(dp->dp_meta_objset, dd->dd_object,
662 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
663 		dsl_dataset_rele(ds, FTAG);
664 		return (SET_ERROR(EALREADY));
665 	}
666 
667 	dsl_dataset_rele(ds, FTAG);
668 	return (0);
669 }
670 
671 static void
672 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
673 {
674 	char *ddname = (char *)arg;
675 	dsl_pool_t *dp = dmu_tx_pool(tx);
676 	dsl_dataset_t *ds;
677 	spa_t *spa;
678 
679 	VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
680 
681 	spa = dsl_dataset_get_spa(ds);
682 
683 	if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
684 		/*
685 		 * Since the feature was not active and we're now setting a
686 		 * limit, increment the feature-active counter so that the
687 		 * feature becomes active for the first time.
688 		 *
689 		 * We are already in a sync task so we can update the MOS.
690 		 */
691 		spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
692 	}
693 
694 	/*
695 	 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
696 	 * we need to ensure the counts are correct. Descend down the tree from
697 	 * this point and update all of the counts to be accurate.
698 	 */
699 	dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
700 
701 	dsl_dataset_rele(ds, FTAG);
702 }
703 
704 /*
705  * Make sure the feature is enabled and activate it if necessary.
706  * Since we're setting a limit, ensure the on-disk counts are valid.
707  * This is only called by the ioctl path when setting a limit value.
708  *
709  * We do not need to validate the new limit, since users who can change the
710  * limit are also allowed to exceed the limit.
711  */
712 int
713 dsl_dir_activate_fs_ss_limit(const char *ddname)
714 {
715 	int error;
716 
717 	error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
718 	    dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
719 	    ZFS_SPACE_CHECK_RESERVED);
720 
721 	if (error == EALREADY)
722 		error = 0;
723 
724 	return (error);
725 }
726 
727 /*
728  * Used to determine if the filesystem_limit or snapshot_limit should be
729  * enforced. We allow the limit to be exceeded if the user has permission to
730  * write the property value. We pass in the creds that we got in the open
731  * context since we will always be the GZ root in syncing context. We also have
732  * to handle the case where we are allowed to change the limit on the current
733  * dataset, but there may be another limit in the tree above.
734  *
735  * We can never modify these two properties within a non-global zone. In
736  * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
737  * can't use that function since we are already holding the dp_config_rwlock.
738  * In addition, we already have the dd and dealing with snapshots is simplified
739  * in this code.
740  */
741 
742 typedef enum {
743 	ENFORCE_ALWAYS,
744 	ENFORCE_NEVER,
745 	ENFORCE_ABOVE
746 } enforce_res_t;
747 
748 static enforce_res_t
749 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
750     cred_t *cr, proc_t *proc)
751 {
752 	enforce_res_t enforce = ENFORCE_ALWAYS;
753 	uint64_t obj;
754 	dsl_dataset_t *ds;
755 	uint64_t zoned;
756 	const char *zonedstr;
757 
758 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
759 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
760 
761 #ifdef _KERNEL
762 	if (crgetzoneid(cr) != GLOBAL_ZONEID)
763 		return (ENFORCE_ALWAYS);
764 
765 	/*
766 	 * We are checking the saved credentials of the user process, which is
767 	 * not the current process.  Note that we can't use secpolicy_zfs(),
768 	 * because it only works if the cred is that of the current process (on
769 	 * Linux).
770 	 */
771 	if (secpolicy_zfs_proc(cr, proc) == 0)
772 		return (ENFORCE_NEVER);
773 #else
774 	(void) proc;
775 #endif
776 
777 	if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
778 		return (ENFORCE_ALWAYS);
779 
780 	ASSERT(dsl_pool_config_held(dd->dd_pool));
781 
782 	if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
783 		return (ENFORCE_ALWAYS);
784 
785 	zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
786 	if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
787 		/* Only root can access zoned fs's from the GZ */
788 		enforce = ENFORCE_ALWAYS;
789 	} else {
790 		if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
791 			enforce = ENFORCE_ABOVE;
792 	}
793 
794 	dsl_dataset_rele(ds, FTAG);
795 	return (enforce);
796 }
797 
798 /*
799  * Check if adding additional child filesystem(s) would exceed any filesystem
800  * limits or adding additional snapshot(s) would exceed any snapshot limits.
801  * The prop argument indicates which limit to check.
802  *
803  * Note that all filesystem limits up to the root (or the highest
804  * initialized) filesystem or the given ancestor must be satisfied.
805  */
806 int
807 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
808     dsl_dir_t *ancestor, cred_t *cr, proc_t *proc)
809 {
810 	objset_t *os = dd->dd_pool->dp_meta_objset;
811 	uint64_t limit, count;
812 	const char *count_prop;
813 	enforce_res_t enforce;
814 	int err = 0;
815 
816 	ASSERT(dsl_pool_config_held(dd->dd_pool));
817 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
818 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
819 
820 	/*
821 	 * If we're allowed to change the limit, don't enforce the limit
822 	 * e.g. this can happen if a snapshot is taken by an administrative
823 	 * user in the global zone (i.e. a recursive snapshot by root).
824 	 * However, we must handle the case of delegated permissions where we
825 	 * are allowed to change the limit on the current dataset, but there
826 	 * is another limit in the tree above.
827 	 */
828 	enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc);
829 	if (enforce == ENFORCE_NEVER)
830 		return (0);
831 
832 	/*
833 	 * e.g. if renaming a dataset with no snapshots, count adjustment
834 	 * is 0.
835 	 */
836 	if (delta == 0)
837 		return (0);
838 
839 	if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
840 		/*
841 		 * We don't enforce the limit for temporary snapshots. This is
842 		 * indicated by a NULL cred_t argument.
843 		 */
844 		if (cr == NULL)
845 			return (0);
846 
847 		count_prop = DD_FIELD_SNAPSHOT_COUNT;
848 	} else {
849 		count_prop = DD_FIELD_FILESYSTEM_COUNT;
850 	}
851 
852 	/*
853 	 * If an ancestor has been provided, stop checking the limit once we
854 	 * hit that dir. We need this during rename so that we don't overcount
855 	 * the check once we recurse up to the common ancestor.
856 	 */
857 	if (ancestor == dd)
858 		return (0);
859 
860 	/*
861 	 * If we hit an uninitialized node while recursing up the tree, we can
862 	 * stop since we know there is no limit here (or above). The counts are
863 	 * not valid on this node and we know we won't touch this node's counts.
864 	 */
865 	if (!dsl_dir_is_zapified(dd))
866 		return (0);
867 	err = zap_lookup(os, dd->dd_object,
868 	    count_prop, sizeof (count), 1, &count);
869 	if (err == ENOENT)
870 		return (0);
871 	if (err != 0)
872 		return (err);
873 
874 	err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
875 	    B_FALSE);
876 	if (err != 0)
877 		return (err);
878 
879 	/* Is there a limit which we've hit? */
880 	if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
881 		return (SET_ERROR(EDQUOT));
882 
883 	if (dd->dd_parent != NULL)
884 		err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
885 		    ancestor, cr, proc);
886 
887 	return (err);
888 }
889 
890 /*
891  * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
892  * parents. When a new filesystem/snapshot is created, increment the count on
893  * all parents, and when a filesystem/snapshot is destroyed, decrement the
894  * count.
895  */
896 void
897 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
898     dmu_tx_t *tx)
899 {
900 	int err;
901 	objset_t *os = dd->dd_pool->dp_meta_objset;
902 	uint64_t count;
903 
904 	ASSERT(dsl_pool_config_held(dd->dd_pool));
905 	ASSERT(dmu_tx_is_syncing(tx));
906 	ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
907 	    strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
908 
909 	/*
910 	 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
911 	 */
912 	if (dd->dd_myname[0] == '$' && strcmp(prop,
913 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
914 		return;
915 	}
916 
917 	/*
918 	 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
919 	 */
920 	if (delta == 0)
921 		return;
922 
923 	/*
924 	 * If we hit an uninitialized node while recursing up the tree, we can
925 	 * stop since we know the counts are not valid on this node and we
926 	 * know we shouldn't touch this node's counts. An uninitialized count
927 	 * on the node indicates that either the feature has not yet been
928 	 * activated or there are no limits on this part of the tree.
929 	 */
930 	if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
931 	    prop, sizeof (count), 1, &count)) == ENOENT)
932 		return;
933 	VERIFY0(err);
934 
935 	count += delta;
936 	/* Use a signed verify to make sure we're not neg. */
937 	VERIFY3S(count, >=, 0);
938 
939 	VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
940 	    tx));
941 
942 	/* Roll up this additional count into our ancestors */
943 	if (dd->dd_parent != NULL)
944 		dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
945 }
946 
947 uint64_t
948 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
949     dmu_tx_t *tx)
950 {
951 	objset_t *mos = dp->dp_meta_objset;
952 	uint64_t ddobj;
953 	dsl_dir_phys_t *ddphys;
954 	dmu_buf_t *dbuf;
955 
956 	ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
957 	    DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
958 	if (pds) {
959 		VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
960 		    name, sizeof (uint64_t), 1, &ddobj, tx));
961 	} else {
962 		/* it's the root dir */
963 		VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
964 		    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
965 	}
966 	VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
967 	dmu_buf_will_dirty(dbuf, tx);
968 	ddphys = dbuf->db_data;
969 
970 	ddphys->dd_creation_time = gethrestime_sec();
971 	if (pds) {
972 		ddphys->dd_parent_obj = pds->dd_object;
973 
974 		/* update the filesystem counts */
975 		dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
976 	}
977 	ddphys->dd_props_zapobj = zap_create(mos,
978 	    DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
979 	ddphys->dd_child_dir_zapobj = zap_create(mos,
980 	    DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
981 	if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
982 		ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
983 
984 	dmu_buf_rele(dbuf, FTAG);
985 
986 	return (ddobj);
987 }
988 
989 boolean_t
990 dsl_dir_is_clone(dsl_dir_t *dd)
991 {
992 	return (dsl_dir_phys(dd)->dd_origin_obj &&
993 	    (dd->dd_pool->dp_origin_snap == NULL ||
994 	    dsl_dir_phys(dd)->dd_origin_obj !=
995 	    dd->dd_pool->dp_origin_snap->ds_object));
996 }
997 
998 uint64_t
999 dsl_dir_get_used(dsl_dir_t *dd)
1000 {
1001 	return (dsl_dir_phys(dd)->dd_used_bytes);
1002 }
1003 
1004 uint64_t
1005 dsl_dir_get_compressed(dsl_dir_t *dd)
1006 {
1007 	return (dsl_dir_phys(dd)->dd_compressed_bytes);
1008 }
1009 
1010 uint64_t
1011 dsl_dir_get_quota(dsl_dir_t *dd)
1012 {
1013 	return (dsl_dir_phys(dd)->dd_quota);
1014 }
1015 
1016 uint64_t
1017 dsl_dir_get_reservation(dsl_dir_t *dd)
1018 {
1019 	return (dsl_dir_phys(dd)->dd_reserved);
1020 }
1021 
1022 uint64_t
1023 dsl_dir_get_compressratio(dsl_dir_t *dd)
1024 {
1025 	/* a fixed point number, 100x the ratio */
1026 	return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1027 	    (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1028 	    dsl_dir_phys(dd)->dd_compressed_bytes));
1029 }
1030 
1031 uint64_t
1032 dsl_dir_get_logicalused(dsl_dir_t *dd)
1033 {
1034 	return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1035 }
1036 
1037 uint64_t
1038 dsl_dir_get_usedsnap(dsl_dir_t *dd)
1039 {
1040 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1041 }
1042 
1043 uint64_t
1044 dsl_dir_get_usedds(dsl_dir_t *dd)
1045 {
1046 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1047 }
1048 
1049 uint64_t
1050 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1051 {
1052 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1053 }
1054 
1055 uint64_t
1056 dsl_dir_get_usedchild(dsl_dir_t *dd)
1057 {
1058 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1059 	    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1060 }
1061 
1062 void
1063 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1064 {
1065 	dsl_dataset_t *ds;
1066 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1067 	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1068 
1069 	dsl_dataset_name(ds, buf);
1070 
1071 	dsl_dataset_rele(ds, FTAG);
1072 }
1073 
1074 int
1075 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1076 {
1077 	if (dsl_dir_is_zapified(dd)) {
1078 		objset_t *os = dd->dd_pool->dp_meta_objset;
1079 		return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1080 		    sizeof (*count), 1, count));
1081 	} else {
1082 		return (SET_ERROR(ENOENT));
1083 	}
1084 }
1085 
1086 int
1087 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1088 {
1089 	if (dsl_dir_is_zapified(dd)) {
1090 		objset_t *os = dd->dd_pool->dp_meta_objset;
1091 		return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1092 		    sizeof (*count), 1, count));
1093 	} else {
1094 		return (SET_ERROR(ENOENT));
1095 	}
1096 }
1097 
1098 void
1099 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1100 {
1101 	mutex_enter(&dd->dd_lock);
1102 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1103 	    dsl_dir_get_quota(dd));
1104 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1105 	    dsl_dir_get_reservation(dd));
1106 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1107 	    dsl_dir_get_logicalused(dd));
1108 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1109 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1110 		    dsl_dir_get_usedsnap(dd));
1111 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1112 		    dsl_dir_get_usedds(dd));
1113 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1114 		    dsl_dir_get_usedrefreserv(dd));
1115 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1116 		    dsl_dir_get_usedchild(dd));
1117 	}
1118 	mutex_exit(&dd->dd_lock);
1119 
1120 	uint64_t count;
1121 	if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1122 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1123 		    count);
1124 	}
1125 	if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1126 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1127 		    count);
1128 	}
1129 
1130 	if (dsl_dir_is_clone(dd)) {
1131 		char buf[ZFS_MAX_DATASET_NAME_LEN];
1132 		dsl_dir_get_origin(dd, buf);
1133 		dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1134 	}
1135 
1136 }
1137 
1138 void
1139 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1140 {
1141 	dsl_pool_t *dp = dd->dd_pool;
1142 
1143 	ASSERT(dsl_dir_phys(dd));
1144 
1145 	if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1146 		/* up the hold count until we can be written out */
1147 		dmu_buf_add_ref(dd->dd_dbuf, dd);
1148 	}
1149 }
1150 
1151 static int64_t
1152 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1153 {
1154 	uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1155 	uint64_t new_accounted =
1156 	    MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1157 	return (new_accounted - old_accounted);
1158 }
1159 
1160 void
1161 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1162 {
1163 	ASSERT(dmu_tx_is_syncing(tx));
1164 
1165 	mutex_enter(&dd->dd_lock);
1166 	ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
1167 	dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg,
1168 	    (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
1169 	dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
1170 	mutex_exit(&dd->dd_lock);
1171 
1172 	/* release the hold from dsl_dir_dirty */
1173 	dmu_buf_rele(dd->dd_dbuf, dd);
1174 }
1175 
1176 static uint64_t
1177 dsl_dir_space_towrite(dsl_dir_t *dd)
1178 {
1179 	uint64_t space = 0;
1180 
1181 	ASSERT(MUTEX_HELD(&dd->dd_lock));
1182 
1183 	for (int i = 0; i < TXG_SIZE; i++) {
1184 		space += dd->dd_space_towrite[i & TXG_MASK];
1185 		ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
1186 	}
1187 	return (space);
1188 }
1189 
1190 /*
1191  * How much space would dd have available if ancestor had delta applied
1192  * to it?  If ondiskonly is set, we're only interested in what's
1193  * on-disk, not estimated pending changes.
1194  */
1195 uint64_t
1196 dsl_dir_space_available(dsl_dir_t *dd,
1197     dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1198 {
1199 	uint64_t parentspace, myspace, quota, used;
1200 
1201 	/*
1202 	 * If there are no restrictions otherwise, assume we have
1203 	 * unlimited space available.
1204 	 */
1205 	quota = UINT64_MAX;
1206 	parentspace = UINT64_MAX;
1207 
1208 	if (dd->dd_parent != NULL) {
1209 		parentspace = dsl_dir_space_available(dd->dd_parent,
1210 		    ancestor, delta, ondiskonly);
1211 	}
1212 
1213 	mutex_enter(&dd->dd_lock);
1214 	if (dsl_dir_phys(dd)->dd_quota != 0)
1215 		quota = dsl_dir_phys(dd)->dd_quota;
1216 	used = dsl_dir_phys(dd)->dd_used_bytes;
1217 	if (!ondiskonly)
1218 		used += dsl_dir_space_towrite(dd);
1219 
1220 	if (dd->dd_parent == NULL) {
1221 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1222 		    ZFS_SPACE_CHECK_NORMAL);
1223 		quota = MIN(quota, poolsize);
1224 	}
1225 
1226 	if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1227 		/*
1228 		 * We have some space reserved, in addition to what our
1229 		 * parent gave us.
1230 		 */
1231 		parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1232 	}
1233 
1234 	if (dd == ancestor) {
1235 		ASSERT(delta <= 0);
1236 		ASSERT(used >= -delta);
1237 		used += delta;
1238 		if (parentspace != UINT64_MAX)
1239 			parentspace -= delta;
1240 	}
1241 
1242 	if (used > quota) {
1243 		/* over quota */
1244 		myspace = 0;
1245 	} else {
1246 		/*
1247 		 * the lesser of the space provided by our parent and
1248 		 * the space left in our quota
1249 		 */
1250 		myspace = MIN(parentspace, quota - used);
1251 	}
1252 
1253 	mutex_exit(&dd->dd_lock);
1254 
1255 	return (myspace);
1256 }
1257 
1258 struct tempreserve {
1259 	list_node_t tr_node;
1260 	dsl_dir_t *tr_ds;
1261 	uint64_t tr_size;
1262 };
1263 
1264 static int
1265 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1266     boolean_t ignorequota, list_t *tr_list,
1267     dmu_tx_t *tx, boolean_t first)
1268 {
1269 	uint64_t txg;
1270 	uint64_t quota;
1271 	struct tempreserve *tr;
1272 	int retval;
1273 	uint64_t ref_rsrv;
1274 
1275 top_of_function:
1276 	txg = tx->tx_txg;
1277 	retval = EDQUOT;
1278 	ref_rsrv = 0;
1279 
1280 	ASSERT3U(txg, !=, 0);
1281 	ASSERT3S(asize, >, 0);
1282 
1283 	mutex_enter(&dd->dd_lock);
1284 
1285 	/*
1286 	 * Check against the dsl_dir's quota.  We don't add in the delta
1287 	 * when checking for over-quota because they get one free hit.
1288 	 */
1289 	uint64_t est_inflight = dsl_dir_space_towrite(dd);
1290 	for (int i = 0; i < TXG_SIZE; i++)
1291 		est_inflight += dd->dd_tempreserved[i];
1292 	uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1293 
1294 	/*
1295 	 * On the first iteration, fetch the dataset's used-on-disk and
1296 	 * refreservation values. Also, if checkrefquota is set, test if
1297 	 * allocating this space would exceed the dataset's refquota.
1298 	 */
1299 	if (first && tx->tx_objset) {
1300 		int error;
1301 		dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1302 
1303 		error = dsl_dataset_check_quota(ds, !netfree,
1304 		    asize, est_inflight, &used_on_disk, &ref_rsrv);
1305 		if (error != 0) {
1306 			mutex_exit(&dd->dd_lock);
1307 			DMU_TX_STAT_BUMP(dmu_tx_quota);
1308 			return (error);
1309 		}
1310 	}
1311 
1312 	/*
1313 	 * If this transaction will result in a net free of space,
1314 	 * we want to let it through.
1315 	 */
1316 	if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1317 		quota = UINT64_MAX;
1318 	else
1319 		quota = dsl_dir_phys(dd)->dd_quota;
1320 
1321 	/*
1322 	 * Adjust the quota against the actual pool size at the root
1323 	 * minus any outstanding deferred frees.
1324 	 * To ensure that it's possible to remove files from a full
1325 	 * pool without inducing transient overcommits, we throttle
1326 	 * netfree transactions against a quota that is slightly larger,
1327 	 * but still within the pool's allocation slop.  In cases where
1328 	 * we're very close to full, this will allow a steady trickle of
1329 	 * removes to get through.
1330 	 */
1331 	if (dd->dd_parent == NULL) {
1332 		uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1333 		    (netfree) ?
1334 		    ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1335 
1336 		if (avail < quota) {
1337 			quota = avail;
1338 			retval = SET_ERROR(ENOSPC);
1339 		}
1340 	}
1341 
1342 	/*
1343 	 * If they are requesting more space, and our current estimate
1344 	 * is over quota, they get to try again unless the actual
1345 	 * on-disk is over quota and there are no pending changes
1346 	 * or deferred frees (which may free up space for us).
1347 	 */
1348 	if (used_on_disk + est_inflight >= quota) {
1349 		if (est_inflight > 0 || used_on_disk < quota) {
1350 			retval = SET_ERROR(ERESTART);
1351 		} else {
1352 			ASSERT3U(used_on_disk, >=, quota);
1353 
1354 			if (retval == ENOSPC && (used_on_disk - quota) <
1355 			    dsl_pool_deferred_space(dd->dd_pool)) {
1356 				retval = SET_ERROR(ERESTART);
1357 			}
1358 		}
1359 
1360 		dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1361 		    "quota=%lluK tr=%lluK err=%d\n",
1362 		    (u_longlong_t)used_on_disk>>10,
1363 		    (u_longlong_t)est_inflight>>10,
1364 		    (u_longlong_t)quota>>10, (u_longlong_t)asize>>10, retval);
1365 		mutex_exit(&dd->dd_lock);
1366 		DMU_TX_STAT_BUMP(dmu_tx_quota);
1367 		return (retval);
1368 	}
1369 
1370 	/* We need to up our estimated delta before dropping dd_lock */
1371 	dd->dd_tempreserved[txg & TXG_MASK] += asize;
1372 
1373 	uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1374 	    asize - ref_rsrv);
1375 	mutex_exit(&dd->dd_lock);
1376 
1377 	tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1378 	tr->tr_ds = dd;
1379 	tr->tr_size = asize;
1380 	list_insert_tail(tr_list, tr);
1381 
1382 	/* see if it's OK with our parent */
1383 	if (dd->dd_parent != NULL && parent_rsrv != 0) {
1384 		/*
1385 		 * Recurse on our parent without recursion. This has been
1386 		 * observed to be potentially large stack usage even within
1387 		 * the test suite. Largest seen stack was 7632 bytes on linux.
1388 		 */
1389 
1390 		dd = dd->dd_parent;
1391 		asize = parent_rsrv;
1392 		ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1393 		first = B_FALSE;
1394 		goto top_of_function;
1395 
1396 	} else {
1397 		return (0);
1398 	}
1399 }
1400 
1401 /*
1402  * Reserve space in this dsl_dir, to be used in this tx's txg.
1403  * After the space has been dirtied (and dsl_dir_willuse_space()
1404  * has been called), the reservation should be canceled, using
1405  * dsl_dir_tempreserve_clear().
1406  */
1407 int
1408 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1409     boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1410 {
1411 	int err;
1412 	list_t *tr_list;
1413 
1414 	if (asize == 0) {
1415 		*tr_cookiep = NULL;
1416 		return (0);
1417 	}
1418 
1419 	tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1420 	list_create(tr_list, sizeof (struct tempreserve),
1421 	    offsetof(struct tempreserve, tr_node));
1422 	ASSERT3S(asize, >, 0);
1423 
1424 	err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1425 	if (err == 0) {
1426 		struct tempreserve *tr;
1427 
1428 		tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1429 		tr->tr_size = lsize;
1430 		list_insert_tail(tr_list, tr);
1431 	} else {
1432 		if (err == EAGAIN) {
1433 			/*
1434 			 * If arc_memory_throttle() detected that pageout
1435 			 * is running and we are low on memory, we delay new
1436 			 * non-pageout transactions to give pageout an
1437 			 * advantage.
1438 			 *
1439 			 * It is unfortunate to be delaying while the caller's
1440 			 * locks are held.
1441 			 */
1442 			txg_delay(dd->dd_pool, tx->tx_txg,
1443 			    MSEC2NSEC(10), MSEC2NSEC(10));
1444 			err = SET_ERROR(ERESTART);
1445 		}
1446 	}
1447 
1448 	if (err == 0) {
1449 		err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1450 		    B_FALSE, tr_list, tx, B_TRUE);
1451 	}
1452 
1453 	if (err != 0)
1454 		dsl_dir_tempreserve_clear(tr_list, tx);
1455 	else
1456 		*tr_cookiep = tr_list;
1457 
1458 	return (err);
1459 }
1460 
1461 /*
1462  * Clear a temporary reservation that we previously made with
1463  * dsl_dir_tempreserve_space().
1464  */
1465 void
1466 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1467 {
1468 	int txgidx = tx->tx_txg & TXG_MASK;
1469 	list_t *tr_list = tr_cookie;
1470 	struct tempreserve *tr;
1471 
1472 	ASSERT3U(tx->tx_txg, !=, 0);
1473 
1474 	if (tr_cookie == NULL)
1475 		return;
1476 
1477 	while ((tr = list_head(tr_list)) != NULL) {
1478 		if (tr->tr_ds) {
1479 			mutex_enter(&tr->tr_ds->dd_lock);
1480 			ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1481 			    tr->tr_size);
1482 			tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1483 			mutex_exit(&tr->tr_ds->dd_lock);
1484 		} else {
1485 			arc_tempreserve_clear(tr->tr_size);
1486 		}
1487 		list_remove(tr_list, tr);
1488 		kmem_free(tr, sizeof (struct tempreserve));
1489 	}
1490 
1491 	kmem_free(tr_list, sizeof (list_t));
1492 }
1493 
1494 /*
1495  * This should be called from open context when we think we're going to write
1496  * or free space, for example when dirtying data. Be conservative; it's okay
1497  * to write less space or free more, but we don't want to write more or free
1498  * less than the amount specified.
1499  *
1500  * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1501  * version however it has been adjusted to use an iterative rather than
1502  * recursive algorithm to minimize stack usage.
1503  */
1504 void
1505 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1506 {
1507 	int64_t parent_space;
1508 	uint64_t est_used;
1509 
1510 	do {
1511 		mutex_enter(&dd->dd_lock);
1512 		if (space > 0)
1513 			dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1514 
1515 		est_used = dsl_dir_space_towrite(dd) +
1516 		    dsl_dir_phys(dd)->dd_used_bytes;
1517 		parent_space = parent_delta(dd, est_used, space);
1518 		mutex_exit(&dd->dd_lock);
1519 
1520 		/* Make sure that we clean up dd_space_to* */
1521 		dsl_dir_dirty(dd, tx);
1522 
1523 		dd = dd->dd_parent;
1524 		space = parent_space;
1525 	} while (space && dd);
1526 }
1527 
1528 /* call from syncing context when we actually write/free space for this dd */
1529 void
1530 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1531     int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1532 {
1533 	int64_t accounted_delta;
1534 
1535 	ASSERT(dmu_tx_is_syncing(tx));
1536 	ASSERT(type < DD_USED_NUM);
1537 
1538 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1539 
1540 	/*
1541 	 * dsl_dataset_set_refreservation_sync_impl() calls this with
1542 	 * dd_lock held, so that it can atomically update
1543 	 * ds->ds_reserved and the dsl_dir accounting, so that
1544 	 * dsl_dataset_check_quota() can see dataset and dir accounting
1545 	 * consistently.
1546 	 */
1547 	boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1548 	if (needlock)
1549 		mutex_enter(&dd->dd_lock);
1550 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1551 	accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1552 	ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1553 	ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1554 	ASSERT(uncompressed >= 0 ||
1555 	    ddp->dd_uncompressed_bytes >= -uncompressed);
1556 	ddp->dd_used_bytes += used;
1557 	ddp->dd_uncompressed_bytes += uncompressed;
1558 	ddp->dd_compressed_bytes += compressed;
1559 
1560 	if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1561 		ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used);
1562 		ddp->dd_used_breakdown[type] += used;
1563 #ifdef ZFS_DEBUG
1564 		{
1565 			dd_used_t t;
1566 			uint64_t u = 0;
1567 			for (t = 0; t < DD_USED_NUM; t++)
1568 				u += ddp->dd_used_breakdown[t];
1569 			ASSERT3U(u, ==, ddp->dd_used_bytes);
1570 		}
1571 #endif
1572 	}
1573 	if (needlock)
1574 		mutex_exit(&dd->dd_lock);
1575 
1576 	if (dd->dd_parent != NULL) {
1577 		dsl_dir_diduse_transfer_space(dd->dd_parent,
1578 		    accounted_delta, compressed, uncompressed,
1579 		    used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1580 	}
1581 }
1582 
1583 void
1584 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1585     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1586 {
1587 	ASSERT(dmu_tx_is_syncing(tx));
1588 	ASSERT(oldtype < DD_USED_NUM);
1589 	ASSERT(newtype < DD_USED_NUM);
1590 
1591 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1592 	if (delta == 0 ||
1593 	    !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN))
1594 		return;
1595 
1596 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1597 	mutex_enter(&dd->dd_lock);
1598 	ASSERT(delta > 0 ?
1599 	    ddp->dd_used_breakdown[oldtype] >= delta :
1600 	    ddp->dd_used_breakdown[newtype] >= -delta);
1601 	ASSERT(ddp->dd_used_bytes >= ABS(delta));
1602 	ddp->dd_used_breakdown[oldtype] -= delta;
1603 	ddp->dd_used_breakdown[newtype] += delta;
1604 	mutex_exit(&dd->dd_lock);
1605 }
1606 
1607 void
1608 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used,
1609     int64_t compressed, int64_t uncompressed, int64_t tonew,
1610     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1611 {
1612 	int64_t accounted_delta;
1613 
1614 	ASSERT(dmu_tx_is_syncing(tx));
1615 	ASSERT(oldtype < DD_USED_NUM);
1616 	ASSERT(newtype < DD_USED_NUM);
1617 
1618 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1619 
1620 	mutex_enter(&dd->dd_lock);
1621 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1622 	accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1623 	ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1624 	ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1625 	ASSERT(uncompressed >= 0 ||
1626 	    ddp->dd_uncompressed_bytes >= -uncompressed);
1627 	ddp->dd_used_bytes += used;
1628 	ddp->dd_uncompressed_bytes += uncompressed;
1629 	ddp->dd_compressed_bytes += compressed;
1630 
1631 	if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1632 		ASSERT(tonew - used <= 0 ||
1633 		    ddp->dd_used_breakdown[oldtype] >= tonew - used);
1634 		ASSERT(tonew >= 0 ||
1635 		    ddp->dd_used_breakdown[newtype] >= -tonew);
1636 		ddp->dd_used_breakdown[oldtype] -= tonew - used;
1637 		ddp->dd_used_breakdown[newtype] += tonew;
1638 #ifdef ZFS_DEBUG
1639 		{
1640 			dd_used_t t;
1641 			uint64_t u = 0;
1642 			for (t = 0; t < DD_USED_NUM; t++)
1643 				u += ddp->dd_used_breakdown[t];
1644 			ASSERT3U(u, ==, ddp->dd_used_bytes);
1645 		}
1646 #endif
1647 	}
1648 	mutex_exit(&dd->dd_lock);
1649 
1650 	if (dd->dd_parent != NULL) {
1651 		dsl_dir_diduse_transfer_space(dd->dd_parent,
1652 		    accounted_delta, compressed, uncompressed,
1653 		    used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1654 	}
1655 }
1656 
1657 typedef struct dsl_dir_set_qr_arg {
1658 	const char *ddsqra_name;
1659 	zprop_source_t ddsqra_source;
1660 	uint64_t ddsqra_value;
1661 } dsl_dir_set_qr_arg_t;
1662 
1663 static int
1664 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1665 {
1666 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1667 	dsl_pool_t *dp = dmu_tx_pool(tx);
1668 	dsl_dataset_t *ds;
1669 	int error;
1670 	uint64_t towrite, newval;
1671 
1672 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1673 	if (error != 0)
1674 		return (error);
1675 
1676 	error = dsl_prop_predict(ds->ds_dir, "quota",
1677 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1678 	if (error != 0) {
1679 		dsl_dataset_rele(ds, FTAG);
1680 		return (error);
1681 	}
1682 
1683 	if (newval == 0) {
1684 		dsl_dataset_rele(ds, FTAG);
1685 		return (0);
1686 	}
1687 
1688 	mutex_enter(&ds->ds_dir->dd_lock);
1689 	/*
1690 	 * If we are doing the preliminary check in open context, and
1691 	 * there are pending changes, then don't fail it, since the
1692 	 * pending changes could under-estimate the amount of space to be
1693 	 * freed up.
1694 	 */
1695 	towrite = dsl_dir_space_towrite(ds->ds_dir);
1696 	if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1697 	    (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1698 	    newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1699 		error = SET_ERROR(ENOSPC);
1700 	}
1701 	mutex_exit(&ds->ds_dir->dd_lock);
1702 	dsl_dataset_rele(ds, FTAG);
1703 	return (error);
1704 }
1705 
1706 static void
1707 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1708 {
1709 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1710 	dsl_pool_t *dp = dmu_tx_pool(tx);
1711 	dsl_dataset_t *ds;
1712 	uint64_t newval;
1713 
1714 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1715 
1716 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1717 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1718 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1719 		    &ddsqra->ddsqra_value, tx);
1720 
1721 		VERIFY0(dsl_prop_get_int_ds(ds,
1722 		    zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1723 	} else {
1724 		newval = ddsqra->ddsqra_value;
1725 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1726 		    zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1727 	}
1728 
1729 	dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1730 	mutex_enter(&ds->ds_dir->dd_lock);
1731 	dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1732 	mutex_exit(&ds->ds_dir->dd_lock);
1733 	dsl_dataset_rele(ds, FTAG);
1734 }
1735 
1736 int
1737 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1738 {
1739 	dsl_dir_set_qr_arg_t ddsqra;
1740 
1741 	ddsqra.ddsqra_name = ddname;
1742 	ddsqra.ddsqra_source = source;
1743 	ddsqra.ddsqra_value = quota;
1744 
1745 	return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1746 	    dsl_dir_set_quota_sync, &ddsqra, 0,
1747 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
1748 }
1749 
1750 static int
1751 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1752 {
1753 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1754 	dsl_pool_t *dp = dmu_tx_pool(tx);
1755 	dsl_dataset_t *ds;
1756 	dsl_dir_t *dd;
1757 	uint64_t newval, used, avail;
1758 	int error;
1759 
1760 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1761 	if (error != 0)
1762 		return (error);
1763 	dd = ds->ds_dir;
1764 
1765 	/*
1766 	 * If we are doing the preliminary check in open context, the
1767 	 * space estimates may be inaccurate.
1768 	 */
1769 	if (!dmu_tx_is_syncing(tx)) {
1770 		dsl_dataset_rele(ds, FTAG);
1771 		return (0);
1772 	}
1773 
1774 	error = dsl_prop_predict(ds->ds_dir,
1775 	    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1776 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1777 	if (error != 0) {
1778 		dsl_dataset_rele(ds, FTAG);
1779 		return (error);
1780 	}
1781 
1782 	mutex_enter(&dd->dd_lock);
1783 	used = dsl_dir_phys(dd)->dd_used_bytes;
1784 	mutex_exit(&dd->dd_lock);
1785 
1786 	if (dd->dd_parent) {
1787 		avail = dsl_dir_space_available(dd->dd_parent,
1788 		    NULL, 0, FALSE);
1789 	} else {
1790 		avail = dsl_pool_adjustedsize(dd->dd_pool,
1791 		    ZFS_SPACE_CHECK_NORMAL) - used;
1792 	}
1793 
1794 	if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1795 		uint64_t delta = MAX(used, newval) -
1796 		    MAX(used, dsl_dir_phys(dd)->dd_reserved);
1797 
1798 		if (delta > avail ||
1799 		    (dsl_dir_phys(dd)->dd_quota > 0 &&
1800 		    newval > dsl_dir_phys(dd)->dd_quota))
1801 			error = SET_ERROR(ENOSPC);
1802 	}
1803 
1804 	dsl_dataset_rele(ds, FTAG);
1805 	return (error);
1806 }
1807 
1808 void
1809 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1810 {
1811 	uint64_t used;
1812 	int64_t delta;
1813 
1814 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1815 
1816 	mutex_enter(&dd->dd_lock);
1817 	used = dsl_dir_phys(dd)->dd_used_bytes;
1818 	delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1819 	dsl_dir_phys(dd)->dd_reserved = value;
1820 
1821 	if (dd->dd_parent != NULL) {
1822 		/* Roll up this additional usage into our ancestors */
1823 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1824 		    delta, 0, 0, tx);
1825 	}
1826 	mutex_exit(&dd->dd_lock);
1827 }
1828 
1829 static void
1830 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1831 {
1832 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1833 	dsl_pool_t *dp = dmu_tx_pool(tx);
1834 	dsl_dataset_t *ds;
1835 	uint64_t newval;
1836 
1837 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1838 
1839 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1840 		dsl_prop_set_sync_impl(ds,
1841 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1842 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1843 		    &ddsqra->ddsqra_value, tx);
1844 
1845 		VERIFY0(dsl_prop_get_int_ds(ds,
1846 		    zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1847 	} else {
1848 		newval = ddsqra->ddsqra_value;
1849 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1850 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1851 		    (longlong_t)newval);
1852 	}
1853 
1854 	dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1855 	dsl_dataset_rele(ds, FTAG);
1856 }
1857 
1858 int
1859 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1860     uint64_t reservation)
1861 {
1862 	dsl_dir_set_qr_arg_t ddsqra;
1863 
1864 	ddsqra.ddsqra_name = ddname;
1865 	ddsqra.ddsqra_source = source;
1866 	ddsqra.ddsqra_value = reservation;
1867 
1868 	return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1869 	    dsl_dir_set_reservation_sync, &ddsqra, 0,
1870 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
1871 }
1872 
1873 static dsl_dir_t *
1874 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1875 {
1876 	for (; ds1; ds1 = ds1->dd_parent) {
1877 		dsl_dir_t *dd;
1878 		for (dd = ds2; dd; dd = dd->dd_parent) {
1879 			if (ds1 == dd)
1880 				return (dd);
1881 		}
1882 	}
1883 	return (NULL);
1884 }
1885 
1886 /*
1887  * If delta is applied to dd, how much of that delta would be applied to
1888  * ancestor?  Syncing context only.
1889  */
1890 static int64_t
1891 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1892 {
1893 	if (dd == ancestor)
1894 		return (delta);
1895 
1896 	mutex_enter(&dd->dd_lock);
1897 	delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1898 	mutex_exit(&dd->dd_lock);
1899 	return (would_change(dd->dd_parent, delta, ancestor));
1900 }
1901 
1902 typedef struct dsl_dir_rename_arg {
1903 	const char *ddra_oldname;
1904 	const char *ddra_newname;
1905 	cred_t *ddra_cred;
1906 	proc_t *ddra_proc;
1907 } dsl_dir_rename_arg_t;
1908 
1909 typedef struct dsl_valid_rename_arg {
1910 	int char_delta;
1911 	int nest_delta;
1912 } dsl_valid_rename_arg_t;
1913 
1914 static int
1915 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1916 {
1917 	(void) dp;
1918 	dsl_valid_rename_arg_t *dvra = arg;
1919 	char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1920 
1921 	dsl_dataset_name(ds, namebuf);
1922 
1923 	ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1924 	    <, ZFS_MAX_DATASET_NAME_LEN);
1925 	int namelen = strlen(namebuf) + dvra->char_delta;
1926 	int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1927 
1928 	if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1929 		return (SET_ERROR(ENAMETOOLONG));
1930 	if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1931 		return (SET_ERROR(ENAMETOOLONG));
1932 	return (0);
1933 }
1934 
1935 static int
1936 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1937 {
1938 	dsl_dir_rename_arg_t *ddra = arg;
1939 	dsl_pool_t *dp = dmu_tx_pool(tx);
1940 	dsl_dir_t *dd, *newparent;
1941 	dsl_valid_rename_arg_t dvra;
1942 	dsl_dataset_t *parentds;
1943 	objset_t *parentos;
1944 	const char *mynewname;
1945 	int error;
1946 
1947 	/* target dir should exist */
1948 	error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1949 	if (error != 0)
1950 		return (error);
1951 
1952 	/* new parent should exist */
1953 	error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1954 	    &newparent, &mynewname);
1955 	if (error != 0) {
1956 		dsl_dir_rele(dd, FTAG);
1957 		return (error);
1958 	}
1959 
1960 	/* can't rename to different pool */
1961 	if (dd->dd_pool != newparent->dd_pool) {
1962 		dsl_dir_rele(newparent, FTAG);
1963 		dsl_dir_rele(dd, FTAG);
1964 		return (SET_ERROR(EXDEV));
1965 	}
1966 
1967 	/* new name should not already exist */
1968 	if (mynewname == NULL) {
1969 		dsl_dir_rele(newparent, FTAG);
1970 		dsl_dir_rele(dd, FTAG);
1971 		return (SET_ERROR(EEXIST));
1972 	}
1973 
1974 	/* can't rename below anything but filesystems (eg. no ZVOLs) */
1975 	error = dsl_dataset_hold_obj(newparent->dd_pool,
1976 	    dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
1977 	if (error != 0) {
1978 		dsl_dir_rele(newparent, FTAG);
1979 		dsl_dir_rele(dd, FTAG);
1980 		return (error);
1981 	}
1982 	error = dmu_objset_from_ds(parentds, &parentos);
1983 	if (error != 0) {
1984 		dsl_dataset_rele(parentds, FTAG);
1985 		dsl_dir_rele(newparent, FTAG);
1986 		dsl_dir_rele(dd, FTAG);
1987 		return (error);
1988 	}
1989 	if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
1990 		dsl_dataset_rele(parentds, FTAG);
1991 		dsl_dir_rele(newparent, FTAG);
1992 		dsl_dir_rele(dd, FTAG);
1993 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
1994 	}
1995 	dsl_dataset_rele(parentds, FTAG);
1996 
1997 	ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
1998 	    <, ZFS_MAX_DATASET_NAME_LEN);
1999 	ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
2000 	    <, ZFS_MAX_DATASET_NAME_LEN);
2001 	dvra.char_delta = strlen(ddra->ddra_newname)
2002 	    - strlen(ddra->ddra_oldname);
2003 	dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
2004 	    - get_dataset_depth(ddra->ddra_oldname);
2005 
2006 	/* if the name length is growing, validate child name lengths */
2007 	if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
2008 		error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
2009 		    &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
2010 		if (error != 0) {
2011 			dsl_dir_rele(newparent, FTAG);
2012 			dsl_dir_rele(dd, FTAG);
2013 			return (error);
2014 		}
2015 	}
2016 
2017 	if (dmu_tx_is_syncing(tx)) {
2018 		if (spa_feature_is_active(dp->dp_spa,
2019 		    SPA_FEATURE_FS_SS_LIMIT)) {
2020 			/*
2021 			 * Although this is the check function and we don't
2022 			 * normally make on-disk changes in check functions,
2023 			 * we need to do that here.
2024 			 *
2025 			 * Ensure this portion of the tree's counts have been
2026 			 * initialized in case the new parent has limits set.
2027 			 */
2028 			dsl_dir_init_fs_ss_count(dd, tx);
2029 		}
2030 	}
2031 
2032 	if (newparent != dd->dd_parent) {
2033 		/* is there enough space? */
2034 		uint64_t myspace =
2035 		    MAX(dsl_dir_phys(dd)->dd_used_bytes,
2036 		    dsl_dir_phys(dd)->dd_reserved);
2037 		objset_t *os = dd->dd_pool->dp_meta_objset;
2038 		uint64_t fs_cnt = 0;
2039 		uint64_t ss_cnt = 0;
2040 
2041 		if (dsl_dir_is_zapified(dd)) {
2042 			int err;
2043 
2044 			err = zap_lookup(os, dd->dd_object,
2045 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2046 			    &fs_cnt);
2047 			if (err != ENOENT && err != 0) {
2048 				dsl_dir_rele(newparent, FTAG);
2049 				dsl_dir_rele(dd, FTAG);
2050 				return (err);
2051 			}
2052 
2053 			/*
2054 			 * have to add 1 for the filesystem itself that we're
2055 			 * moving
2056 			 */
2057 			fs_cnt++;
2058 
2059 			err = zap_lookup(os, dd->dd_object,
2060 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2061 			    &ss_cnt);
2062 			if (err != ENOENT && err != 0) {
2063 				dsl_dir_rele(newparent, FTAG);
2064 				dsl_dir_rele(dd, FTAG);
2065 				return (err);
2066 			}
2067 		}
2068 
2069 		/* check for encryption errors */
2070 		error = dsl_dir_rename_crypt_check(dd, newparent);
2071 		if (error != 0) {
2072 			dsl_dir_rele(newparent, FTAG);
2073 			dsl_dir_rele(dd, FTAG);
2074 			return (SET_ERROR(EACCES));
2075 		}
2076 
2077 		/* no rename into our descendant */
2078 		if (closest_common_ancestor(dd, newparent) == dd) {
2079 			dsl_dir_rele(newparent, FTAG);
2080 			dsl_dir_rele(dd, FTAG);
2081 			return (SET_ERROR(EINVAL));
2082 		}
2083 
2084 		error = dsl_dir_transfer_possible(dd->dd_parent,
2085 		    newparent, fs_cnt, ss_cnt, myspace,
2086 		    ddra->ddra_cred, ddra->ddra_proc);
2087 		if (error != 0) {
2088 			dsl_dir_rele(newparent, FTAG);
2089 			dsl_dir_rele(dd, FTAG);
2090 			return (error);
2091 		}
2092 	}
2093 
2094 	dsl_dir_rele(newparent, FTAG);
2095 	dsl_dir_rele(dd, FTAG);
2096 	return (0);
2097 }
2098 
2099 static void
2100 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
2101 {
2102 	dsl_dir_rename_arg_t *ddra = arg;
2103 	dsl_pool_t *dp = dmu_tx_pool(tx);
2104 	dsl_dir_t *dd, *newparent;
2105 	const char *mynewname;
2106 	objset_t *mos = dp->dp_meta_objset;
2107 
2108 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2109 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2110 	    &mynewname));
2111 
2112 	/* Log this before we change the name. */
2113 	spa_history_log_internal_dd(dd, "rename", tx,
2114 	    "-> %s", ddra->ddra_newname);
2115 
2116 	if (newparent != dd->dd_parent) {
2117 		objset_t *os = dd->dd_pool->dp_meta_objset;
2118 		uint64_t fs_cnt = 0;
2119 		uint64_t ss_cnt = 0;
2120 
2121 		/*
2122 		 * We already made sure the dd counts were initialized in the
2123 		 * check function.
2124 		 */
2125 		if (spa_feature_is_active(dp->dp_spa,
2126 		    SPA_FEATURE_FS_SS_LIMIT)) {
2127 			VERIFY0(zap_lookup(os, dd->dd_object,
2128 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2129 			    &fs_cnt));
2130 			/* add 1 for the filesystem itself that we're moving */
2131 			fs_cnt++;
2132 
2133 			VERIFY0(zap_lookup(os, dd->dd_object,
2134 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2135 			    &ss_cnt));
2136 		}
2137 
2138 		dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2139 		    DD_FIELD_FILESYSTEM_COUNT, tx);
2140 		dsl_fs_ss_count_adjust(newparent, fs_cnt,
2141 		    DD_FIELD_FILESYSTEM_COUNT, tx);
2142 
2143 		dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2144 		    DD_FIELD_SNAPSHOT_COUNT, tx);
2145 		dsl_fs_ss_count_adjust(newparent, ss_cnt,
2146 		    DD_FIELD_SNAPSHOT_COUNT, tx);
2147 
2148 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2149 		    -dsl_dir_phys(dd)->dd_used_bytes,
2150 		    -dsl_dir_phys(dd)->dd_compressed_bytes,
2151 		    -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2152 		dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2153 		    dsl_dir_phys(dd)->dd_used_bytes,
2154 		    dsl_dir_phys(dd)->dd_compressed_bytes,
2155 		    dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2156 
2157 		if (dsl_dir_phys(dd)->dd_reserved >
2158 		    dsl_dir_phys(dd)->dd_used_bytes) {
2159 			uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2160 			    dsl_dir_phys(dd)->dd_used_bytes;
2161 
2162 			dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2163 			    -unused_rsrv, 0, 0, tx);
2164 			dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2165 			    unused_rsrv, 0, 0, tx);
2166 		}
2167 	}
2168 
2169 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
2170 
2171 	/* remove from old parent zapobj */
2172 	VERIFY0(zap_remove(mos,
2173 	    dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2174 	    dd->dd_myname, tx));
2175 
2176 	(void) strlcpy(dd->dd_myname, mynewname,
2177 	    sizeof (dd->dd_myname));
2178 	dsl_dir_rele(dd->dd_parent, dd);
2179 	dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2180 	VERIFY0(dsl_dir_hold_obj(dp,
2181 	    newparent->dd_object, NULL, dd, &dd->dd_parent));
2182 
2183 	/* add to new parent zapobj */
2184 	VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2185 	    dd->dd_myname, 8, 1, &dd->dd_object, tx));
2186 
2187 	/* TODO: A rename callback to avoid these layering violations. */
2188 	zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
2189 	zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
2190 	    ddra->ddra_newname, B_TRUE);
2191 
2192 	dsl_prop_notify_all(dd);
2193 
2194 	dsl_dir_rele(newparent, FTAG);
2195 	dsl_dir_rele(dd, FTAG);
2196 }
2197 
2198 int
2199 dsl_dir_rename(const char *oldname, const char *newname)
2200 {
2201 	dsl_dir_rename_arg_t ddra;
2202 
2203 	ddra.ddra_oldname = oldname;
2204 	ddra.ddra_newname = newname;
2205 	ddra.ddra_cred = CRED();
2206 	ddra.ddra_proc = curproc;
2207 
2208 	return (dsl_sync_task(oldname,
2209 	    dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2210 	    3, ZFS_SPACE_CHECK_RESERVED));
2211 }
2212 
2213 int
2214 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2215     uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
2216     cred_t *cr, proc_t *proc)
2217 {
2218 	dsl_dir_t *ancestor;
2219 	int64_t adelta;
2220 	uint64_t avail;
2221 	int err;
2222 
2223 	ancestor = closest_common_ancestor(sdd, tdd);
2224 	adelta = would_change(sdd, -space, ancestor);
2225 	avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2226 	if (avail < space)
2227 		return (SET_ERROR(ENOSPC));
2228 
2229 	err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2230 	    ancestor, cr, proc);
2231 	if (err != 0)
2232 		return (err);
2233 	err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2234 	    ancestor, cr, proc);
2235 	if (err != 0)
2236 		return (err);
2237 
2238 	return (0);
2239 }
2240 
2241 inode_timespec_t
2242 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2243 {
2244 	inode_timespec_t t;
2245 
2246 	mutex_enter(&dd->dd_lock);
2247 	t = dd->dd_snap_cmtime;
2248 	mutex_exit(&dd->dd_lock);
2249 
2250 	return (t);
2251 }
2252 
2253 void
2254 dsl_dir_snap_cmtime_update(dsl_dir_t *dd, dmu_tx_t *tx)
2255 {
2256 	dsl_pool_t *dp = dmu_tx_pool(tx);
2257 	inode_timespec_t t;
2258 	gethrestime(&t);
2259 
2260 	mutex_enter(&dd->dd_lock);
2261 	dd->dd_snap_cmtime = t;
2262 	if (spa_feature_is_enabled(dp->dp_spa,
2263 	    SPA_FEATURE_EXTENSIBLE_DATASET)) {
2264 		objset_t *mos = dd->dd_pool->dp_meta_objset;
2265 		uint64_t ddobj = dd->dd_object;
2266 		dsl_dir_zapify(dd, tx);
2267 		VERIFY0(zap_update(mos, ddobj,
2268 		    zfs_prop_to_name(ZFS_PROP_SNAPSHOTS_CHANGED),
2269 		    sizeof (uint64_t),
2270 		    sizeof (inode_timespec_t) / sizeof (uint64_t),
2271 		    &t, tx));
2272 	}
2273 	mutex_exit(&dd->dd_lock);
2274 }
2275 
2276 void
2277 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2278 {
2279 	objset_t *mos = dd->dd_pool->dp_meta_objset;
2280 	dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2281 }
2282 
2283 boolean_t
2284 dsl_dir_is_zapified(dsl_dir_t *dd)
2285 {
2286 	dmu_object_info_t doi;
2287 
2288 	dmu_object_info_from_db(dd->dd_dbuf, &doi);
2289 	return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2290 }
2291 
2292 void
2293 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
2294 {
2295 	objset_t *mos = dd->dd_pool->dp_meta_objset;
2296 	ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
2297 	    SPA_FEATURE_LIVELIST));
2298 	dsl_deadlist_open(&dd->dd_livelist, mos, obj);
2299 	bplist_create(&dd->dd_pending_allocs);
2300 	bplist_create(&dd->dd_pending_frees);
2301 }
2302 
2303 void
2304 dsl_dir_livelist_close(dsl_dir_t *dd)
2305 {
2306 	dsl_deadlist_close(&dd->dd_livelist);
2307 	bplist_destroy(&dd->dd_pending_allocs);
2308 	bplist_destroy(&dd->dd_pending_frees);
2309 }
2310 
2311 void
2312 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
2313 {
2314 	uint64_t obj;
2315 	dsl_pool_t *dp = dmu_tx_pool(tx);
2316 	spa_t *spa = dp->dp_spa;
2317 	livelist_condense_entry_t to_condense = spa->spa_to_condense;
2318 
2319 	if (!dsl_deadlist_is_open(&dd->dd_livelist))
2320 		return;
2321 
2322 	/*
2323 	 * If the livelist being removed is set to be condensed, stop the
2324 	 * condense zthr and indicate the cancellation in the spa_to_condense
2325 	 * struct in case the condense no-wait synctask has already started
2326 	 */
2327 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
2328 	if (ll_condense_thread != NULL &&
2329 	    (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
2330 		/*
2331 		 * We use zthr_wait_cycle_done instead of zthr_cancel
2332 		 * because we don't want to destroy the zthr, just have
2333 		 * it skip its current task.
2334 		 */
2335 		spa->spa_to_condense.cancelled = B_TRUE;
2336 		zthr_wait_cycle_done(ll_condense_thread);
2337 		/*
2338 		 * If we've returned from zthr_wait_cycle_done without
2339 		 * clearing the to_condense data structure it's either
2340 		 * because the no-wait synctask has started (which is
2341 		 * indicated by 'syncing' field of to_condense) and we
2342 		 * can expect it to clear to_condense on its own.
2343 		 * Otherwise, we returned before the zthr ran. The
2344 		 * checkfunc will now fail as cancelled == B_TRUE so we
2345 		 * can safely NULL out ds, allowing a different dir's
2346 		 * livelist to be condensed.
2347 		 *
2348 		 * We can be sure that the to_condense struct will not
2349 		 * be repopulated at this stage because both this
2350 		 * function and dsl_livelist_try_condense execute in
2351 		 * syncing context.
2352 		 */
2353 		if ((spa->spa_to_condense.ds != NULL) &&
2354 		    !spa->spa_to_condense.syncing) {
2355 			dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
2356 			    spa);
2357 			spa->spa_to_condense.ds = NULL;
2358 		}
2359 	}
2360 
2361 	dsl_dir_livelist_close(dd);
2362 	VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
2363 	    DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
2364 	VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
2365 	    DD_FIELD_LIVELIST, tx));
2366 	if (total) {
2367 		dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
2368 		spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2369 	}
2370 }
2371 
2372 static int
2373 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
2374     zfs_wait_activity_t activity, boolean_t *in_progress)
2375 {
2376 	int error = 0;
2377 
2378 	ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
2379 
2380 	switch (activity) {
2381 	case ZFS_WAIT_DELETEQ: {
2382 #ifdef _KERNEL
2383 		objset_t *os;
2384 		error = dmu_objset_from_ds(ds, &os);
2385 		if (error != 0)
2386 			break;
2387 
2388 		mutex_enter(&os->os_user_ptr_lock);
2389 		void *user = dmu_objset_get_user(os);
2390 		mutex_exit(&os->os_user_ptr_lock);
2391 		if (dmu_objset_type(os) != DMU_OST_ZFS ||
2392 		    user == NULL || zfs_get_vfs_flag_unmounted(os)) {
2393 			*in_progress = B_FALSE;
2394 			return (0);
2395 		}
2396 
2397 		uint64_t readonly = B_FALSE;
2398 		error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
2399 		    NULL);
2400 
2401 		if (error != 0)
2402 			break;
2403 
2404 		if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
2405 			*in_progress = B_FALSE;
2406 			return (0);
2407 		}
2408 
2409 		uint64_t count, unlinked_obj;
2410 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
2411 		    &unlinked_obj);
2412 		if (error != 0) {
2413 			dsl_dataset_rele(ds, FTAG);
2414 			break;
2415 		}
2416 		error = zap_count(os, unlinked_obj, &count);
2417 
2418 		if (error == 0)
2419 			*in_progress = (count != 0);
2420 		break;
2421 #else
2422 		/*
2423 		 * The delete queue is ZPL specific, and libzpool doesn't have
2424 		 * it. It doesn't make sense to wait for it.
2425 		 */
2426 		(void) ds;
2427 		*in_progress = B_FALSE;
2428 		break;
2429 #endif
2430 	}
2431 	default:
2432 		panic("unrecognized value for activity %d", activity);
2433 	}
2434 
2435 	return (error);
2436 }
2437 
2438 int
2439 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
2440     boolean_t *waited)
2441 {
2442 	int error = 0;
2443 	boolean_t in_progress;
2444 	dsl_pool_t *dp = dd->dd_pool;
2445 	for (;;) {
2446 		dsl_pool_config_enter(dp, FTAG);
2447 		error = dsl_dir_activity_in_progress(dd, ds, activity,
2448 		    &in_progress);
2449 		dsl_pool_config_exit(dp, FTAG);
2450 		if (error != 0 || !in_progress)
2451 			break;
2452 
2453 		*waited = B_TRUE;
2454 
2455 		if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
2456 		    0 || dd->dd_activity_cancelled) {
2457 			error = SET_ERROR(EINTR);
2458 			break;
2459 		}
2460 	}
2461 	return (error);
2462 }
2463 
2464 void
2465 dsl_dir_cancel_waiters(dsl_dir_t *dd)
2466 {
2467 	mutex_enter(&dd->dd_activity_lock);
2468 	dd->dd_activity_cancelled = B_TRUE;
2469 	cv_broadcast(&dd->dd_activity_cv);
2470 	while (dd->dd_activity_waiters > 0)
2471 		cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
2472 	mutex_exit(&dd->dd_activity_lock);
2473 }
2474 
2475 #if defined(_KERNEL)
2476 EXPORT_SYMBOL(dsl_dir_set_quota);
2477 EXPORT_SYMBOL(dsl_dir_set_reservation);
2478 #endif
2479