1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 28 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_prop.h> 37 #include <sys/dsl_synctask.h> 38 #include <sys/dsl_deleg.h> 39 #include <sys/dmu_impl.h> 40 #include <sys/spa.h> 41 #include <sys/spa_impl.h> 42 #include <sys/metaslab.h> 43 #include <sys/zap.h> 44 #include <sys/zio.h> 45 #include <sys/arc.h> 46 #include <sys/sunddi.h> 47 #include <sys/zfeature.h> 48 #include <sys/policy.h> 49 #include <sys/zfs_vfsops.h> 50 #include <sys/zfs_znode.h> 51 #include <sys/zvol.h> 52 #include <sys/zthr.h> 53 #include "zfs_namecheck.h" 54 #include "zfs_prop.h" 55 56 /* 57 * Filesystem and Snapshot Limits 58 * ------------------------------ 59 * 60 * These limits are used to restrict the number of filesystems and/or snapshots 61 * that can be created at a given level in the tree or below. A typical 62 * use-case is with a delegated dataset where the administrator wants to ensure 63 * that a user within the zone is not creating too many additional filesystems 64 * or snapshots, even though they're not exceeding their space quota. 65 * 66 * The filesystem and snapshot counts are stored as extensible properties. This 67 * capability is controlled by a feature flag and must be enabled to be used. 68 * Once enabled, the feature is not active until the first limit is set. At 69 * that point, future operations to create/destroy filesystems or snapshots 70 * will validate and update the counts. 71 * 72 * Because the count properties will not exist before the feature is active, 73 * the counts are updated when a limit is first set on an uninitialized 74 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 75 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 76 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 77 * snapshot count properties on a node indicate uninitialized counts on that 78 * node.) When first setting a limit on an uninitialized node, the code starts 79 * at the filesystem with the new limit and descends into all sub-filesystems 80 * to add the count properties. 81 * 82 * In practice this is lightweight since a limit is typically set when the 83 * filesystem is created and thus has no children. Once valid, changing the 84 * limit value won't require a re-traversal since the counts are already valid. 85 * When recursively fixing the counts, if a node with a limit is encountered 86 * during the descent, the counts are known to be valid and there is no need to 87 * descend into that filesystem's children. The counts on filesystems above the 88 * one with the new limit will still be uninitialized, unless a limit is 89 * eventually set on one of those filesystems. The counts are always recursively 90 * updated when a limit is set on a dataset, unless there is already a limit. 91 * When a new limit value is set on a filesystem with an existing limit, it is 92 * possible for the new limit to be less than the current count at that level 93 * since a user who can change the limit is also allowed to exceed the limit. 94 * 95 * Once the feature is active, then whenever a filesystem or snapshot is 96 * created, the code recurses up the tree, validating the new count against the 97 * limit at each initialized level. In practice, most levels will not have a 98 * limit set. If there is a limit at any initialized level up the tree, the 99 * check must pass or the creation will fail. Likewise, when a filesystem or 100 * snapshot is destroyed, the counts are recursively adjusted all the way up 101 * the initialized nodes in the tree. Renaming a filesystem into different point 102 * in the tree will first validate, then update the counts on each branch up to 103 * the common ancestor. A receive will also validate the counts and then update 104 * them. 105 * 106 * An exception to the above behavior is that the limit is not enforced if the 107 * user has permission to modify the limit. This is primarily so that 108 * recursive snapshots in the global zone always work. We want to prevent a 109 * denial-of-service in which a lower level delegated dataset could max out its 110 * limit and thus block recursive snapshots from being taken in the global zone. 111 * Because of this, it is possible for the snapshot count to be over the limit 112 * and snapshots taken in the global zone could cause a lower level dataset to 113 * hit or exceed its limit. The administrator taking the global zone recursive 114 * snapshot should be aware of this side-effect and behave accordingly. 115 * For consistency, the filesystem limit is also not enforced if the user can 116 * modify the limit. 117 * 118 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 119 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 120 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 121 * dsl_dir_init_fs_ss_count(). 122 */ 123 124 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 125 126 typedef struct ddulrt_arg { 127 dsl_dir_t *ddulrta_dd; 128 uint64_t ddlrta_txg; 129 } ddulrt_arg_t; 130 131 static void 132 dsl_dir_evict_async(void *dbu) 133 { 134 dsl_dir_t *dd = dbu; 135 int t; 136 dsl_pool_t *dp __maybe_unused = dd->dd_pool; 137 138 dd->dd_dbuf = NULL; 139 140 for (t = 0; t < TXG_SIZE; t++) { 141 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 142 ASSERT(dd->dd_tempreserved[t] == 0); 143 ASSERT(dd->dd_space_towrite[t] == 0); 144 } 145 146 if (dd->dd_parent) 147 dsl_dir_async_rele(dd->dd_parent, dd); 148 149 spa_async_close(dd->dd_pool->dp_spa, dd); 150 151 if (dsl_deadlist_is_open(&dd->dd_livelist)) 152 dsl_dir_livelist_close(dd); 153 154 dsl_prop_fini(dd); 155 cv_destroy(&dd->dd_activity_cv); 156 mutex_destroy(&dd->dd_activity_lock); 157 mutex_destroy(&dd->dd_lock); 158 kmem_free(dd, sizeof (dsl_dir_t)); 159 } 160 161 int 162 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 163 const char *tail, const void *tag, dsl_dir_t **ddp) 164 { 165 dmu_buf_t *dbuf; 166 dsl_dir_t *dd; 167 dmu_object_info_t doi; 168 int err; 169 170 ASSERT(dsl_pool_config_held(dp)); 171 172 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 173 if (err != 0) 174 return (err); 175 dd = dmu_buf_get_user(dbuf); 176 177 dmu_object_info_from_db(dbuf, &doi); 178 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 179 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 180 181 if (dd == NULL) { 182 dsl_dir_t *winner; 183 184 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 185 dd->dd_object = ddobj; 186 dd->dd_dbuf = dbuf; 187 dd->dd_pool = dp; 188 189 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 190 mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL); 191 cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL); 192 dsl_prop_init(dd); 193 194 if (dsl_dir_is_zapified(dd)) { 195 err = zap_lookup(dp->dp_meta_objset, 196 ddobj, DD_FIELD_CRYPTO_KEY_OBJ, 197 sizeof (uint64_t), 1, &dd->dd_crypto_obj); 198 if (err == 0) { 199 /* check for on-disk format errata */ 200 if (dsl_dir_incompatible_encryption_version( 201 dd)) { 202 dp->dp_spa->spa_errata = 203 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION; 204 } 205 } else if (err != ENOENT) { 206 goto errout; 207 } 208 } 209 210 if (dsl_dir_phys(dd)->dd_parent_obj) { 211 err = dsl_dir_hold_obj(dp, 212 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 213 &dd->dd_parent); 214 if (err != 0) 215 goto errout; 216 if (tail) { 217 #ifdef ZFS_DEBUG 218 uint64_t foundobj; 219 220 err = zap_lookup(dp->dp_meta_objset, 221 dsl_dir_phys(dd->dd_parent)-> 222 dd_child_dir_zapobj, tail, 223 sizeof (foundobj), 1, &foundobj); 224 ASSERT(err || foundobj == ddobj); 225 #endif 226 (void) strlcpy(dd->dd_myname, tail, 227 sizeof (dd->dd_myname)); 228 } else { 229 err = zap_value_search(dp->dp_meta_objset, 230 dsl_dir_phys(dd->dd_parent)-> 231 dd_child_dir_zapobj, 232 ddobj, 0, dd->dd_myname); 233 } 234 if (err != 0) 235 goto errout; 236 } else { 237 (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa), 238 sizeof (dd->dd_myname)); 239 } 240 241 if (dsl_dir_is_clone(dd)) { 242 dmu_buf_t *origin_bonus; 243 dsl_dataset_phys_t *origin_phys; 244 245 /* 246 * We can't open the origin dataset, because 247 * that would require opening this dsl_dir. 248 * Just look at its phys directly instead. 249 */ 250 err = dmu_bonus_hold(dp->dp_meta_objset, 251 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 252 &origin_bonus); 253 if (err != 0) 254 goto errout; 255 origin_phys = origin_bonus->db_data; 256 dd->dd_origin_txg = 257 origin_phys->ds_creation_txg; 258 dmu_buf_rele(origin_bonus, FTAG); 259 if (dsl_dir_is_zapified(dd)) { 260 uint64_t obj; 261 err = zap_lookup(dp->dp_meta_objset, 262 dd->dd_object, DD_FIELD_LIVELIST, 263 sizeof (uint64_t), 1, &obj); 264 if (err == 0) 265 dsl_dir_livelist_open(dd, obj); 266 else if (err != ENOENT) 267 goto errout; 268 } 269 } 270 271 if (dsl_dir_is_zapified(dd)) { 272 inode_timespec_t t = {0}; 273 zap_lookup(dp->dp_meta_objset, ddobj, 274 zfs_prop_to_name(ZFS_PROP_SNAPSHOTS_CHANGED), 275 sizeof (uint64_t), 276 sizeof (inode_timespec_t) / sizeof (uint64_t), 277 &t); 278 dd->dd_snap_cmtime = t; 279 } 280 281 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 282 &dd->dd_dbuf); 283 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 284 if (winner != NULL) { 285 if (dd->dd_parent) 286 dsl_dir_rele(dd->dd_parent, dd); 287 if (dsl_deadlist_is_open(&dd->dd_livelist)) 288 dsl_dir_livelist_close(dd); 289 dsl_prop_fini(dd); 290 cv_destroy(&dd->dd_activity_cv); 291 mutex_destroy(&dd->dd_activity_lock); 292 mutex_destroy(&dd->dd_lock); 293 kmem_free(dd, sizeof (dsl_dir_t)); 294 dd = winner; 295 } else { 296 spa_open_ref(dp->dp_spa, dd); 297 } 298 } 299 300 /* 301 * The dsl_dir_t has both open-to-close and instantiate-to-evict 302 * holds on the spa. We need the open-to-close holds because 303 * otherwise the spa_refcnt wouldn't change when we open a 304 * dir which the spa also has open, so we could incorrectly 305 * think it was OK to unload/export/destroy the pool. We need 306 * the instantiate-to-evict hold because the dsl_dir_t has a 307 * pointer to the dd_pool, which has a pointer to the spa_t. 308 */ 309 spa_open_ref(dp->dp_spa, tag); 310 ASSERT3P(dd->dd_pool, ==, dp); 311 ASSERT3U(dd->dd_object, ==, ddobj); 312 ASSERT3P(dd->dd_dbuf, ==, dbuf); 313 *ddp = dd; 314 return (0); 315 316 errout: 317 if (dd->dd_parent) 318 dsl_dir_rele(dd->dd_parent, dd); 319 if (dsl_deadlist_is_open(&dd->dd_livelist)) 320 dsl_dir_livelist_close(dd); 321 dsl_prop_fini(dd); 322 cv_destroy(&dd->dd_activity_cv); 323 mutex_destroy(&dd->dd_activity_lock); 324 mutex_destroy(&dd->dd_lock); 325 kmem_free(dd, sizeof (dsl_dir_t)); 326 dmu_buf_rele(dbuf, tag); 327 return (err); 328 } 329 330 void 331 dsl_dir_rele(dsl_dir_t *dd, const void *tag) 332 { 333 dprintf_dd(dd, "%s\n", ""); 334 spa_close(dd->dd_pool->dp_spa, tag); 335 dmu_buf_rele(dd->dd_dbuf, tag); 336 } 337 338 /* 339 * Remove a reference to the given dsl dir that is being asynchronously 340 * released. Async releases occur from a taskq performing eviction of 341 * dsl datasets and dirs. This process is identical to a normal release 342 * with the exception of using the async API for releasing the reference on 343 * the spa. 344 */ 345 void 346 dsl_dir_async_rele(dsl_dir_t *dd, const void *tag) 347 { 348 dprintf_dd(dd, "%s\n", ""); 349 spa_async_close(dd->dd_pool->dp_spa, tag); 350 dmu_buf_rele(dd->dd_dbuf, tag); 351 } 352 353 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 354 void 355 dsl_dir_name(dsl_dir_t *dd, char *buf) 356 { 357 if (dd->dd_parent) { 358 dsl_dir_name(dd->dd_parent, buf); 359 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 360 ZFS_MAX_DATASET_NAME_LEN); 361 } else { 362 buf[0] = '\0'; 363 } 364 if (!MUTEX_HELD(&dd->dd_lock)) { 365 /* 366 * recursive mutex so that we can use 367 * dprintf_dd() with dd_lock held 368 */ 369 mutex_enter(&dd->dd_lock); 370 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 371 <, ZFS_MAX_DATASET_NAME_LEN); 372 mutex_exit(&dd->dd_lock); 373 } else { 374 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 375 <, ZFS_MAX_DATASET_NAME_LEN); 376 } 377 } 378 379 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 380 int 381 dsl_dir_namelen(dsl_dir_t *dd) 382 { 383 int result = 0; 384 385 if (dd->dd_parent) { 386 /* parent's name + 1 for the "/" */ 387 result = dsl_dir_namelen(dd->dd_parent) + 1; 388 } 389 390 if (!MUTEX_HELD(&dd->dd_lock)) { 391 /* see dsl_dir_name */ 392 mutex_enter(&dd->dd_lock); 393 result += strlen(dd->dd_myname); 394 mutex_exit(&dd->dd_lock); 395 } else { 396 result += strlen(dd->dd_myname); 397 } 398 399 return (result); 400 } 401 402 static int 403 getcomponent(const char *path, char *component, const char **nextp) 404 { 405 char *p; 406 407 if ((path == NULL) || (path[0] == '\0')) 408 return (SET_ERROR(ENOENT)); 409 /* This would be a good place to reserve some namespace... */ 410 p = strpbrk(path, "/@"); 411 if (p && (p[1] == '/' || p[1] == '@')) { 412 /* two separators in a row */ 413 return (SET_ERROR(EINVAL)); 414 } 415 if (p == NULL || p == path) { 416 /* 417 * if the first thing is an @ or /, it had better be an 418 * @ and it had better not have any more ats or slashes, 419 * and it had better have something after the @. 420 */ 421 if (p != NULL && 422 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 423 return (SET_ERROR(EINVAL)); 424 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 425 return (SET_ERROR(ENAMETOOLONG)); 426 (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN); 427 p = NULL; 428 } else if (p[0] == '/') { 429 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 430 return (SET_ERROR(ENAMETOOLONG)); 431 (void) strncpy(component, path, p - path); 432 component[p - path] = '\0'; 433 p++; 434 } else if (p[0] == '@') { 435 /* 436 * if the next separator is an @, there better not be 437 * any more slashes. 438 */ 439 if (strchr(path, '/')) 440 return (SET_ERROR(EINVAL)); 441 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 442 return (SET_ERROR(ENAMETOOLONG)); 443 (void) strncpy(component, path, p - path); 444 component[p - path] = '\0'; 445 } else { 446 panic("invalid p=%p", (void *)p); 447 } 448 *nextp = p; 449 return (0); 450 } 451 452 /* 453 * Return the dsl_dir_t, and possibly the last component which couldn't 454 * be found in *tail. The name must be in the specified dsl_pool_t. This 455 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 456 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 457 * (*tail)[0] == '@' means that the last component is a snapshot. 458 */ 459 int 460 dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag, 461 dsl_dir_t **ddp, const char **tailp) 462 { 463 char *buf; 464 const char *spaname, *next, *nextnext = NULL; 465 int err; 466 dsl_dir_t *dd; 467 uint64_t ddobj; 468 469 buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 470 err = getcomponent(name, buf, &next); 471 if (err != 0) 472 goto error; 473 474 /* Make sure the name is in the specified pool. */ 475 spaname = spa_name(dp->dp_spa); 476 if (strcmp(buf, spaname) != 0) { 477 err = SET_ERROR(EXDEV); 478 goto error; 479 } 480 481 ASSERT(dsl_pool_config_held(dp)); 482 483 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 484 if (err != 0) { 485 goto error; 486 } 487 488 while (next != NULL) { 489 dsl_dir_t *child_dd; 490 err = getcomponent(next, buf, &nextnext); 491 if (err != 0) 492 break; 493 ASSERT(next[0] != '\0'); 494 if (next[0] == '@') 495 break; 496 dprintf("looking up %s in obj%lld\n", 497 buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj); 498 499 err = zap_lookup(dp->dp_meta_objset, 500 dsl_dir_phys(dd)->dd_child_dir_zapobj, 501 buf, sizeof (ddobj), 1, &ddobj); 502 if (err != 0) { 503 if (err == ENOENT) 504 err = 0; 505 break; 506 } 507 508 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 509 if (err != 0) 510 break; 511 dsl_dir_rele(dd, tag); 512 dd = child_dd; 513 next = nextnext; 514 } 515 516 if (err != 0) { 517 dsl_dir_rele(dd, tag); 518 goto error; 519 } 520 521 /* 522 * It's an error if there's more than one component left, or 523 * tailp==NULL and there's any component left. 524 */ 525 if (next != NULL && 526 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 527 /* bad path name */ 528 dsl_dir_rele(dd, tag); 529 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 530 err = SET_ERROR(ENOENT); 531 } 532 if (tailp != NULL) 533 *tailp = next; 534 if (err == 0) 535 *ddp = dd; 536 error: 537 kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN); 538 return (err); 539 } 540 541 /* 542 * If the counts are already initialized for this filesystem and its 543 * descendants then do nothing, otherwise initialize the counts. 544 * 545 * The counts on this filesystem, and those below, may be uninitialized due to 546 * either the use of a pre-existing pool which did not support the 547 * filesystem/snapshot limit feature, or one in which the feature had not yet 548 * been enabled. 549 * 550 * Recursively descend the filesystem tree and update the filesystem/snapshot 551 * counts on each filesystem below, then update the cumulative count on the 552 * current filesystem. If the filesystem already has a count set on it, 553 * then we know that its counts, and the counts on the filesystems below it, 554 * are already correct, so we don't have to update this filesystem. 555 */ 556 static void 557 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 558 { 559 uint64_t my_fs_cnt = 0; 560 uint64_t my_ss_cnt = 0; 561 dsl_pool_t *dp = dd->dd_pool; 562 objset_t *os = dp->dp_meta_objset; 563 zap_cursor_t *zc; 564 zap_attribute_t *za; 565 dsl_dataset_t *ds; 566 567 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 568 ASSERT(dsl_pool_config_held(dp)); 569 ASSERT(dmu_tx_is_syncing(tx)); 570 571 dsl_dir_zapify(dd, tx); 572 573 /* 574 * If the filesystem count has already been initialized then we 575 * don't need to recurse down any further. 576 */ 577 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 578 return; 579 580 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 581 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 582 583 /* Iterate my child dirs */ 584 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 585 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 586 dsl_dir_t *chld_dd; 587 uint64_t count; 588 589 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 590 &chld_dd)); 591 592 /* 593 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets. 594 */ 595 if (chld_dd->dd_myname[0] == '$') { 596 dsl_dir_rele(chld_dd, FTAG); 597 continue; 598 } 599 600 my_fs_cnt++; /* count this child */ 601 602 dsl_dir_init_fs_ss_count(chld_dd, tx); 603 604 VERIFY0(zap_lookup(os, chld_dd->dd_object, 605 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 606 my_fs_cnt += count; 607 VERIFY0(zap_lookup(os, chld_dd->dd_object, 608 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 609 my_ss_cnt += count; 610 611 dsl_dir_rele(chld_dd, FTAG); 612 } 613 zap_cursor_fini(zc); 614 /* Count my snapshots (we counted children's snapshots above) */ 615 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 616 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 617 618 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 619 zap_cursor_retrieve(zc, za) == 0; 620 zap_cursor_advance(zc)) { 621 /* Don't count temporary snapshots */ 622 if (za->za_name[0] != '%') 623 my_ss_cnt++; 624 } 625 zap_cursor_fini(zc); 626 627 dsl_dataset_rele(ds, FTAG); 628 629 kmem_free(zc, sizeof (zap_cursor_t)); 630 kmem_free(za, sizeof (zap_attribute_t)); 631 632 /* we're in a sync task, update counts */ 633 dmu_buf_will_dirty(dd->dd_dbuf, tx); 634 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 635 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 636 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 637 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 638 } 639 640 static int 641 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 642 { 643 char *ddname = (char *)arg; 644 dsl_pool_t *dp = dmu_tx_pool(tx); 645 dsl_dataset_t *ds; 646 dsl_dir_t *dd; 647 int error; 648 649 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 650 if (error != 0) 651 return (error); 652 653 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 654 dsl_dataset_rele(ds, FTAG); 655 return (SET_ERROR(ENOTSUP)); 656 } 657 658 dd = ds->ds_dir; 659 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 660 dsl_dir_is_zapified(dd) && 661 zap_contains(dp->dp_meta_objset, dd->dd_object, 662 DD_FIELD_FILESYSTEM_COUNT) == 0) { 663 dsl_dataset_rele(ds, FTAG); 664 return (SET_ERROR(EALREADY)); 665 } 666 667 dsl_dataset_rele(ds, FTAG); 668 return (0); 669 } 670 671 static void 672 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 673 { 674 char *ddname = (char *)arg; 675 dsl_pool_t *dp = dmu_tx_pool(tx); 676 dsl_dataset_t *ds; 677 spa_t *spa; 678 679 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 680 681 spa = dsl_dataset_get_spa(ds); 682 683 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 684 /* 685 * Since the feature was not active and we're now setting a 686 * limit, increment the feature-active counter so that the 687 * feature becomes active for the first time. 688 * 689 * We are already in a sync task so we can update the MOS. 690 */ 691 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 692 } 693 694 /* 695 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 696 * we need to ensure the counts are correct. Descend down the tree from 697 * this point and update all of the counts to be accurate. 698 */ 699 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 700 701 dsl_dataset_rele(ds, FTAG); 702 } 703 704 /* 705 * Make sure the feature is enabled and activate it if necessary. 706 * Since we're setting a limit, ensure the on-disk counts are valid. 707 * This is only called by the ioctl path when setting a limit value. 708 * 709 * We do not need to validate the new limit, since users who can change the 710 * limit are also allowed to exceed the limit. 711 */ 712 int 713 dsl_dir_activate_fs_ss_limit(const char *ddname) 714 { 715 int error; 716 717 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 718 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 719 ZFS_SPACE_CHECK_RESERVED); 720 721 if (error == EALREADY) 722 error = 0; 723 724 return (error); 725 } 726 727 /* 728 * Used to determine if the filesystem_limit or snapshot_limit should be 729 * enforced. We allow the limit to be exceeded if the user has permission to 730 * write the property value. We pass in the creds that we got in the open 731 * context since we will always be the GZ root in syncing context. We also have 732 * to handle the case where we are allowed to change the limit on the current 733 * dataset, but there may be another limit in the tree above. 734 * 735 * We can never modify these two properties within a non-global zone. In 736 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 737 * can't use that function since we are already holding the dp_config_rwlock. 738 * In addition, we already have the dd and dealing with snapshots is simplified 739 * in this code. 740 */ 741 742 typedef enum { 743 ENFORCE_ALWAYS, 744 ENFORCE_NEVER, 745 ENFORCE_ABOVE 746 } enforce_res_t; 747 748 static enforce_res_t 749 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, 750 cred_t *cr, proc_t *proc) 751 { 752 enforce_res_t enforce = ENFORCE_ALWAYS; 753 uint64_t obj; 754 dsl_dataset_t *ds; 755 uint64_t zoned; 756 const char *zonedstr; 757 758 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 759 prop == ZFS_PROP_SNAPSHOT_LIMIT); 760 761 #ifdef _KERNEL 762 if (crgetzoneid(cr) != GLOBAL_ZONEID) 763 return (ENFORCE_ALWAYS); 764 765 /* 766 * We are checking the saved credentials of the user process, which is 767 * not the current process. Note that we can't use secpolicy_zfs(), 768 * because it only works if the cred is that of the current process (on 769 * Linux). 770 */ 771 if (secpolicy_zfs_proc(cr, proc) == 0) 772 return (ENFORCE_NEVER); 773 #else 774 (void) proc; 775 #endif 776 777 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 778 return (ENFORCE_ALWAYS); 779 780 ASSERT(dsl_pool_config_held(dd->dd_pool)); 781 782 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 783 return (ENFORCE_ALWAYS); 784 785 zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED); 786 if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) { 787 /* Only root can access zoned fs's from the GZ */ 788 enforce = ENFORCE_ALWAYS; 789 } else { 790 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 791 enforce = ENFORCE_ABOVE; 792 } 793 794 dsl_dataset_rele(ds, FTAG); 795 return (enforce); 796 } 797 798 /* 799 * Check if adding additional child filesystem(s) would exceed any filesystem 800 * limits or adding additional snapshot(s) would exceed any snapshot limits. 801 * The prop argument indicates which limit to check. 802 * 803 * Note that all filesystem limits up to the root (or the highest 804 * initialized) filesystem or the given ancestor must be satisfied. 805 */ 806 int 807 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 808 dsl_dir_t *ancestor, cred_t *cr, proc_t *proc) 809 { 810 objset_t *os = dd->dd_pool->dp_meta_objset; 811 uint64_t limit, count; 812 const char *count_prop; 813 enforce_res_t enforce; 814 int err = 0; 815 816 ASSERT(dsl_pool_config_held(dd->dd_pool)); 817 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 818 prop == ZFS_PROP_SNAPSHOT_LIMIT); 819 820 /* 821 * If we're allowed to change the limit, don't enforce the limit 822 * e.g. this can happen if a snapshot is taken by an administrative 823 * user in the global zone (i.e. a recursive snapshot by root). 824 * However, we must handle the case of delegated permissions where we 825 * are allowed to change the limit on the current dataset, but there 826 * is another limit in the tree above. 827 */ 828 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc); 829 if (enforce == ENFORCE_NEVER) 830 return (0); 831 832 /* 833 * e.g. if renaming a dataset with no snapshots, count adjustment 834 * is 0. 835 */ 836 if (delta == 0) 837 return (0); 838 839 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 840 /* 841 * We don't enforce the limit for temporary snapshots. This is 842 * indicated by a NULL cred_t argument. 843 */ 844 if (cr == NULL) 845 return (0); 846 847 count_prop = DD_FIELD_SNAPSHOT_COUNT; 848 } else { 849 count_prop = DD_FIELD_FILESYSTEM_COUNT; 850 } 851 852 /* 853 * If an ancestor has been provided, stop checking the limit once we 854 * hit that dir. We need this during rename so that we don't overcount 855 * the check once we recurse up to the common ancestor. 856 */ 857 if (ancestor == dd) 858 return (0); 859 860 /* 861 * If we hit an uninitialized node while recursing up the tree, we can 862 * stop since we know there is no limit here (or above). The counts are 863 * not valid on this node and we know we won't touch this node's counts. 864 */ 865 if (!dsl_dir_is_zapified(dd)) 866 return (0); 867 err = zap_lookup(os, dd->dd_object, 868 count_prop, sizeof (count), 1, &count); 869 if (err == ENOENT) 870 return (0); 871 if (err != 0) 872 return (err); 873 874 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 875 B_FALSE); 876 if (err != 0) 877 return (err); 878 879 /* Is there a limit which we've hit? */ 880 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 881 return (SET_ERROR(EDQUOT)); 882 883 if (dd->dd_parent != NULL) 884 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 885 ancestor, cr, proc); 886 887 return (err); 888 } 889 890 /* 891 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 892 * parents. When a new filesystem/snapshot is created, increment the count on 893 * all parents, and when a filesystem/snapshot is destroyed, decrement the 894 * count. 895 */ 896 void 897 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 898 dmu_tx_t *tx) 899 { 900 int err; 901 objset_t *os = dd->dd_pool->dp_meta_objset; 902 uint64_t count; 903 904 ASSERT(dsl_pool_config_held(dd->dd_pool)); 905 ASSERT(dmu_tx_is_syncing(tx)); 906 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 907 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 908 909 /* 910 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets. 911 */ 912 if (dd->dd_myname[0] == '$' && strcmp(prop, 913 DD_FIELD_FILESYSTEM_COUNT) == 0) { 914 return; 915 } 916 917 /* 918 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 919 */ 920 if (delta == 0) 921 return; 922 923 /* 924 * If we hit an uninitialized node while recursing up the tree, we can 925 * stop since we know the counts are not valid on this node and we 926 * know we shouldn't touch this node's counts. An uninitialized count 927 * on the node indicates that either the feature has not yet been 928 * activated or there are no limits on this part of the tree. 929 */ 930 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 931 prop, sizeof (count), 1, &count)) == ENOENT) 932 return; 933 VERIFY0(err); 934 935 count += delta; 936 /* Use a signed verify to make sure we're not neg. */ 937 VERIFY3S(count, >=, 0); 938 939 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 940 tx)); 941 942 /* Roll up this additional count into our ancestors */ 943 if (dd->dd_parent != NULL) 944 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 945 } 946 947 uint64_t 948 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 949 dmu_tx_t *tx) 950 { 951 objset_t *mos = dp->dp_meta_objset; 952 uint64_t ddobj; 953 dsl_dir_phys_t *ddphys; 954 dmu_buf_t *dbuf; 955 956 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 957 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 958 if (pds) { 959 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 960 name, sizeof (uint64_t), 1, &ddobj, tx)); 961 } else { 962 /* it's the root dir */ 963 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 964 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 965 } 966 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 967 dmu_buf_will_dirty(dbuf, tx); 968 ddphys = dbuf->db_data; 969 970 ddphys->dd_creation_time = gethrestime_sec(); 971 if (pds) { 972 ddphys->dd_parent_obj = pds->dd_object; 973 974 /* update the filesystem counts */ 975 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 976 } 977 ddphys->dd_props_zapobj = zap_create(mos, 978 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 979 ddphys->dd_child_dir_zapobj = zap_create(mos, 980 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 981 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 982 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 983 984 dmu_buf_rele(dbuf, FTAG); 985 986 return (ddobj); 987 } 988 989 boolean_t 990 dsl_dir_is_clone(dsl_dir_t *dd) 991 { 992 return (dsl_dir_phys(dd)->dd_origin_obj && 993 (dd->dd_pool->dp_origin_snap == NULL || 994 dsl_dir_phys(dd)->dd_origin_obj != 995 dd->dd_pool->dp_origin_snap->ds_object)); 996 } 997 998 uint64_t 999 dsl_dir_get_used(dsl_dir_t *dd) 1000 { 1001 return (dsl_dir_phys(dd)->dd_used_bytes); 1002 } 1003 1004 uint64_t 1005 dsl_dir_get_compressed(dsl_dir_t *dd) 1006 { 1007 return (dsl_dir_phys(dd)->dd_compressed_bytes); 1008 } 1009 1010 uint64_t 1011 dsl_dir_get_quota(dsl_dir_t *dd) 1012 { 1013 return (dsl_dir_phys(dd)->dd_quota); 1014 } 1015 1016 uint64_t 1017 dsl_dir_get_reservation(dsl_dir_t *dd) 1018 { 1019 return (dsl_dir_phys(dd)->dd_reserved); 1020 } 1021 1022 uint64_t 1023 dsl_dir_get_compressratio(dsl_dir_t *dd) 1024 { 1025 /* a fixed point number, 100x the ratio */ 1026 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 1027 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 1028 dsl_dir_phys(dd)->dd_compressed_bytes)); 1029 } 1030 1031 uint64_t 1032 dsl_dir_get_logicalused(dsl_dir_t *dd) 1033 { 1034 return (dsl_dir_phys(dd)->dd_uncompressed_bytes); 1035 } 1036 1037 uint64_t 1038 dsl_dir_get_usedsnap(dsl_dir_t *dd) 1039 { 1040 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 1041 } 1042 1043 uint64_t 1044 dsl_dir_get_usedds(dsl_dir_t *dd) 1045 { 1046 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 1047 } 1048 1049 uint64_t 1050 dsl_dir_get_usedrefreserv(dsl_dir_t *dd) 1051 { 1052 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 1053 } 1054 1055 uint64_t 1056 dsl_dir_get_usedchild(dsl_dir_t *dd) 1057 { 1058 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 1059 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 1060 } 1061 1062 void 1063 dsl_dir_get_origin(dsl_dir_t *dd, char *buf) 1064 { 1065 dsl_dataset_t *ds; 1066 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 1067 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 1068 1069 dsl_dataset_name(ds, buf); 1070 1071 dsl_dataset_rele(ds, FTAG); 1072 } 1073 1074 int 1075 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count) 1076 { 1077 if (dsl_dir_is_zapified(dd)) { 1078 objset_t *os = dd->dd_pool->dp_meta_objset; 1079 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 1080 sizeof (*count), 1, count)); 1081 } else { 1082 return (SET_ERROR(ENOENT)); 1083 } 1084 } 1085 1086 int 1087 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count) 1088 { 1089 if (dsl_dir_is_zapified(dd)) { 1090 objset_t *os = dd->dd_pool->dp_meta_objset; 1091 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 1092 sizeof (*count), 1, count)); 1093 } else { 1094 return (SET_ERROR(ENOENT)); 1095 } 1096 } 1097 1098 void 1099 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 1100 { 1101 mutex_enter(&dd->dd_lock); 1102 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 1103 dsl_dir_get_quota(dd)); 1104 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 1105 dsl_dir_get_reservation(dd)); 1106 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 1107 dsl_dir_get_logicalused(dd)); 1108 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1109 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 1110 dsl_dir_get_usedsnap(dd)); 1111 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 1112 dsl_dir_get_usedds(dd)); 1113 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 1114 dsl_dir_get_usedrefreserv(dd)); 1115 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 1116 dsl_dir_get_usedchild(dd)); 1117 } 1118 mutex_exit(&dd->dd_lock); 1119 1120 uint64_t count; 1121 if (dsl_dir_get_filesystem_count(dd, &count) == 0) { 1122 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT, 1123 count); 1124 } 1125 if (dsl_dir_get_snapshot_count(dd, &count) == 0) { 1126 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT, 1127 count); 1128 } 1129 1130 if (dsl_dir_is_clone(dd)) { 1131 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1132 dsl_dir_get_origin(dd, buf); 1133 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 1134 } 1135 1136 } 1137 1138 void 1139 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 1140 { 1141 dsl_pool_t *dp = dd->dd_pool; 1142 1143 ASSERT(dsl_dir_phys(dd)); 1144 1145 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 1146 /* up the hold count until we can be written out */ 1147 dmu_buf_add_ref(dd->dd_dbuf, dd); 1148 } 1149 } 1150 1151 static int64_t 1152 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1153 { 1154 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1155 uint64_t new_accounted = 1156 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1157 return (new_accounted - old_accounted); 1158 } 1159 1160 void 1161 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1162 { 1163 ASSERT(dmu_tx_is_syncing(tx)); 1164 1165 mutex_enter(&dd->dd_lock); 1166 ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]); 1167 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg, 1168 (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024); 1169 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0; 1170 mutex_exit(&dd->dd_lock); 1171 1172 /* release the hold from dsl_dir_dirty */ 1173 dmu_buf_rele(dd->dd_dbuf, dd); 1174 } 1175 1176 static uint64_t 1177 dsl_dir_space_towrite(dsl_dir_t *dd) 1178 { 1179 uint64_t space = 0; 1180 1181 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1182 1183 for (int i = 0; i < TXG_SIZE; i++) { 1184 space += dd->dd_space_towrite[i & TXG_MASK]; 1185 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0); 1186 } 1187 return (space); 1188 } 1189 1190 /* 1191 * How much space would dd have available if ancestor had delta applied 1192 * to it? If ondiskonly is set, we're only interested in what's 1193 * on-disk, not estimated pending changes. 1194 */ 1195 uint64_t 1196 dsl_dir_space_available(dsl_dir_t *dd, 1197 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1198 { 1199 uint64_t parentspace, myspace, quota, used; 1200 1201 /* 1202 * If there are no restrictions otherwise, assume we have 1203 * unlimited space available. 1204 */ 1205 quota = UINT64_MAX; 1206 parentspace = UINT64_MAX; 1207 1208 if (dd->dd_parent != NULL) { 1209 parentspace = dsl_dir_space_available(dd->dd_parent, 1210 ancestor, delta, ondiskonly); 1211 } 1212 1213 mutex_enter(&dd->dd_lock); 1214 if (dsl_dir_phys(dd)->dd_quota != 0) 1215 quota = dsl_dir_phys(dd)->dd_quota; 1216 used = dsl_dir_phys(dd)->dd_used_bytes; 1217 if (!ondiskonly) 1218 used += dsl_dir_space_towrite(dd); 1219 1220 if (dd->dd_parent == NULL) { 1221 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, 1222 ZFS_SPACE_CHECK_NORMAL); 1223 quota = MIN(quota, poolsize); 1224 } 1225 1226 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1227 /* 1228 * We have some space reserved, in addition to what our 1229 * parent gave us. 1230 */ 1231 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1232 } 1233 1234 if (dd == ancestor) { 1235 ASSERT(delta <= 0); 1236 ASSERT(used >= -delta); 1237 used += delta; 1238 if (parentspace != UINT64_MAX) 1239 parentspace -= delta; 1240 } 1241 1242 if (used > quota) { 1243 /* over quota */ 1244 myspace = 0; 1245 } else { 1246 /* 1247 * the lesser of the space provided by our parent and 1248 * the space left in our quota 1249 */ 1250 myspace = MIN(parentspace, quota - used); 1251 } 1252 1253 mutex_exit(&dd->dd_lock); 1254 1255 return (myspace); 1256 } 1257 1258 struct tempreserve { 1259 list_node_t tr_node; 1260 dsl_dir_t *tr_ds; 1261 uint64_t tr_size; 1262 }; 1263 1264 static int 1265 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1266 boolean_t ignorequota, list_t *tr_list, 1267 dmu_tx_t *tx, boolean_t first) 1268 { 1269 uint64_t txg; 1270 uint64_t quota; 1271 struct tempreserve *tr; 1272 int retval; 1273 uint64_t ref_rsrv; 1274 1275 top_of_function: 1276 txg = tx->tx_txg; 1277 retval = EDQUOT; 1278 ref_rsrv = 0; 1279 1280 ASSERT3U(txg, !=, 0); 1281 ASSERT3S(asize, >, 0); 1282 1283 mutex_enter(&dd->dd_lock); 1284 1285 /* 1286 * Check against the dsl_dir's quota. We don't add in the delta 1287 * when checking for over-quota because they get one free hit. 1288 */ 1289 uint64_t est_inflight = dsl_dir_space_towrite(dd); 1290 for (int i = 0; i < TXG_SIZE; i++) 1291 est_inflight += dd->dd_tempreserved[i]; 1292 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1293 1294 /* 1295 * On the first iteration, fetch the dataset's used-on-disk and 1296 * refreservation values. Also, if checkrefquota is set, test if 1297 * allocating this space would exceed the dataset's refquota. 1298 */ 1299 if (first && tx->tx_objset) { 1300 int error; 1301 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1302 1303 error = dsl_dataset_check_quota(ds, !netfree, 1304 asize, est_inflight, &used_on_disk, &ref_rsrv); 1305 if (error != 0) { 1306 mutex_exit(&dd->dd_lock); 1307 DMU_TX_STAT_BUMP(dmu_tx_quota); 1308 return (error); 1309 } 1310 } 1311 1312 /* 1313 * If this transaction will result in a net free of space, 1314 * we want to let it through. 1315 */ 1316 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1317 quota = UINT64_MAX; 1318 else 1319 quota = dsl_dir_phys(dd)->dd_quota; 1320 1321 /* 1322 * Adjust the quota against the actual pool size at the root 1323 * minus any outstanding deferred frees. 1324 * To ensure that it's possible to remove files from a full 1325 * pool without inducing transient overcommits, we throttle 1326 * netfree transactions against a quota that is slightly larger, 1327 * but still within the pool's allocation slop. In cases where 1328 * we're very close to full, this will allow a steady trickle of 1329 * removes to get through. 1330 */ 1331 if (dd->dd_parent == NULL) { 1332 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool, 1333 (netfree) ? 1334 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL); 1335 1336 if (avail < quota) { 1337 quota = avail; 1338 retval = SET_ERROR(ENOSPC); 1339 } 1340 } 1341 1342 /* 1343 * If they are requesting more space, and our current estimate 1344 * is over quota, they get to try again unless the actual 1345 * on-disk is over quota and there are no pending changes 1346 * or deferred frees (which may free up space for us). 1347 */ 1348 if (used_on_disk + est_inflight >= quota) { 1349 if (est_inflight > 0 || used_on_disk < quota) { 1350 retval = SET_ERROR(ERESTART); 1351 } else { 1352 ASSERT3U(used_on_disk, >=, quota); 1353 1354 if (retval == ENOSPC && (used_on_disk - quota) < 1355 dsl_pool_deferred_space(dd->dd_pool)) { 1356 retval = SET_ERROR(ERESTART); 1357 } 1358 } 1359 1360 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1361 "quota=%lluK tr=%lluK err=%d\n", 1362 (u_longlong_t)used_on_disk>>10, 1363 (u_longlong_t)est_inflight>>10, 1364 (u_longlong_t)quota>>10, (u_longlong_t)asize>>10, retval); 1365 mutex_exit(&dd->dd_lock); 1366 DMU_TX_STAT_BUMP(dmu_tx_quota); 1367 return (retval); 1368 } 1369 1370 /* We need to up our estimated delta before dropping dd_lock */ 1371 dd->dd_tempreserved[txg & TXG_MASK] += asize; 1372 1373 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1374 asize - ref_rsrv); 1375 mutex_exit(&dd->dd_lock); 1376 1377 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1378 tr->tr_ds = dd; 1379 tr->tr_size = asize; 1380 list_insert_tail(tr_list, tr); 1381 1382 /* see if it's OK with our parent */ 1383 if (dd->dd_parent != NULL && parent_rsrv != 0) { 1384 /* 1385 * Recurse on our parent without recursion. This has been 1386 * observed to be potentially large stack usage even within 1387 * the test suite. Largest seen stack was 7632 bytes on linux. 1388 */ 1389 1390 dd = dd->dd_parent; 1391 asize = parent_rsrv; 1392 ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1393 first = B_FALSE; 1394 goto top_of_function; 1395 1396 } else { 1397 return (0); 1398 } 1399 } 1400 1401 /* 1402 * Reserve space in this dsl_dir, to be used in this tx's txg. 1403 * After the space has been dirtied (and dsl_dir_willuse_space() 1404 * has been called), the reservation should be canceled, using 1405 * dsl_dir_tempreserve_clear(). 1406 */ 1407 int 1408 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1409 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx) 1410 { 1411 int err; 1412 list_t *tr_list; 1413 1414 if (asize == 0) { 1415 *tr_cookiep = NULL; 1416 return (0); 1417 } 1418 1419 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1420 list_create(tr_list, sizeof (struct tempreserve), 1421 offsetof(struct tempreserve, tr_node)); 1422 ASSERT3S(asize, >, 0); 1423 1424 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg); 1425 if (err == 0) { 1426 struct tempreserve *tr; 1427 1428 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1429 tr->tr_size = lsize; 1430 list_insert_tail(tr_list, tr); 1431 } else { 1432 if (err == EAGAIN) { 1433 /* 1434 * If arc_memory_throttle() detected that pageout 1435 * is running and we are low on memory, we delay new 1436 * non-pageout transactions to give pageout an 1437 * advantage. 1438 * 1439 * It is unfortunate to be delaying while the caller's 1440 * locks are held. 1441 */ 1442 txg_delay(dd->dd_pool, tx->tx_txg, 1443 MSEC2NSEC(10), MSEC2NSEC(10)); 1444 err = SET_ERROR(ERESTART); 1445 } 1446 } 1447 1448 if (err == 0) { 1449 err = dsl_dir_tempreserve_impl(dd, asize, netfree, 1450 B_FALSE, tr_list, tx, B_TRUE); 1451 } 1452 1453 if (err != 0) 1454 dsl_dir_tempreserve_clear(tr_list, tx); 1455 else 1456 *tr_cookiep = tr_list; 1457 1458 return (err); 1459 } 1460 1461 /* 1462 * Clear a temporary reservation that we previously made with 1463 * dsl_dir_tempreserve_space(). 1464 */ 1465 void 1466 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1467 { 1468 int txgidx = tx->tx_txg & TXG_MASK; 1469 list_t *tr_list = tr_cookie; 1470 struct tempreserve *tr; 1471 1472 ASSERT3U(tx->tx_txg, !=, 0); 1473 1474 if (tr_cookie == NULL) 1475 return; 1476 1477 while ((tr = list_head(tr_list)) != NULL) { 1478 if (tr->tr_ds) { 1479 mutex_enter(&tr->tr_ds->dd_lock); 1480 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1481 tr->tr_size); 1482 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1483 mutex_exit(&tr->tr_ds->dd_lock); 1484 } else { 1485 arc_tempreserve_clear(tr->tr_size); 1486 } 1487 list_remove(tr_list, tr); 1488 kmem_free(tr, sizeof (struct tempreserve)); 1489 } 1490 1491 kmem_free(tr_list, sizeof (list_t)); 1492 } 1493 1494 /* 1495 * This should be called from open context when we think we're going to write 1496 * or free space, for example when dirtying data. Be conservative; it's okay 1497 * to write less space or free more, but we don't want to write more or free 1498 * less than the amount specified. 1499 * 1500 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD 1501 * version however it has been adjusted to use an iterative rather than 1502 * recursive algorithm to minimize stack usage. 1503 */ 1504 void 1505 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1506 { 1507 int64_t parent_space; 1508 uint64_t est_used; 1509 1510 do { 1511 mutex_enter(&dd->dd_lock); 1512 if (space > 0) 1513 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1514 1515 est_used = dsl_dir_space_towrite(dd) + 1516 dsl_dir_phys(dd)->dd_used_bytes; 1517 parent_space = parent_delta(dd, est_used, space); 1518 mutex_exit(&dd->dd_lock); 1519 1520 /* Make sure that we clean up dd_space_to* */ 1521 dsl_dir_dirty(dd, tx); 1522 1523 dd = dd->dd_parent; 1524 space = parent_space; 1525 } while (space && dd); 1526 } 1527 1528 /* call from syncing context when we actually write/free space for this dd */ 1529 void 1530 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1531 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1532 { 1533 int64_t accounted_delta; 1534 1535 ASSERT(dmu_tx_is_syncing(tx)); 1536 ASSERT(type < DD_USED_NUM); 1537 1538 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1539 1540 /* 1541 * dsl_dataset_set_refreservation_sync_impl() calls this with 1542 * dd_lock held, so that it can atomically update 1543 * ds->ds_reserved and the dsl_dir accounting, so that 1544 * dsl_dataset_check_quota() can see dataset and dir accounting 1545 * consistently. 1546 */ 1547 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1548 if (needlock) 1549 mutex_enter(&dd->dd_lock); 1550 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1551 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used); 1552 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used); 1553 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed); 1554 ASSERT(uncompressed >= 0 || 1555 ddp->dd_uncompressed_bytes >= -uncompressed); 1556 ddp->dd_used_bytes += used; 1557 ddp->dd_uncompressed_bytes += uncompressed; 1558 ddp->dd_compressed_bytes += compressed; 1559 1560 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1561 ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used); 1562 ddp->dd_used_breakdown[type] += used; 1563 #ifdef ZFS_DEBUG 1564 { 1565 dd_used_t t; 1566 uint64_t u = 0; 1567 for (t = 0; t < DD_USED_NUM; t++) 1568 u += ddp->dd_used_breakdown[t]; 1569 ASSERT3U(u, ==, ddp->dd_used_bytes); 1570 } 1571 #endif 1572 } 1573 if (needlock) 1574 mutex_exit(&dd->dd_lock); 1575 1576 if (dd->dd_parent != NULL) { 1577 dsl_dir_diduse_transfer_space(dd->dd_parent, 1578 accounted_delta, compressed, uncompressed, 1579 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1580 } 1581 } 1582 1583 void 1584 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1585 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1586 { 1587 ASSERT(dmu_tx_is_syncing(tx)); 1588 ASSERT(oldtype < DD_USED_NUM); 1589 ASSERT(newtype < DD_USED_NUM); 1590 1591 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1592 if (delta == 0 || 1593 !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1594 return; 1595 1596 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1597 mutex_enter(&dd->dd_lock); 1598 ASSERT(delta > 0 ? 1599 ddp->dd_used_breakdown[oldtype] >= delta : 1600 ddp->dd_used_breakdown[newtype] >= -delta); 1601 ASSERT(ddp->dd_used_bytes >= ABS(delta)); 1602 ddp->dd_used_breakdown[oldtype] -= delta; 1603 ddp->dd_used_breakdown[newtype] += delta; 1604 mutex_exit(&dd->dd_lock); 1605 } 1606 1607 void 1608 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used, 1609 int64_t compressed, int64_t uncompressed, int64_t tonew, 1610 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1611 { 1612 int64_t accounted_delta; 1613 1614 ASSERT(dmu_tx_is_syncing(tx)); 1615 ASSERT(oldtype < DD_USED_NUM); 1616 ASSERT(newtype < DD_USED_NUM); 1617 1618 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1619 1620 mutex_enter(&dd->dd_lock); 1621 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1622 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used); 1623 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used); 1624 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed); 1625 ASSERT(uncompressed >= 0 || 1626 ddp->dd_uncompressed_bytes >= -uncompressed); 1627 ddp->dd_used_bytes += used; 1628 ddp->dd_uncompressed_bytes += uncompressed; 1629 ddp->dd_compressed_bytes += compressed; 1630 1631 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1632 ASSERT(tonew - used <= 0 || 1633 ddp->dd_used_breakdown[oldtype] >= tonew - used); 1634 ASSERT(tonew >= 0 || 1635 ddp->dd_used_breakdown[newtype] >= -tonew); 1636 ddp->dd_used_breakdown[oldtype] -= tonew - used; 1637 ddp->dd_used_breakdown[newtype] += tonew; 1638 #ifdef ZFS_DEBUG 1639 { 1640 dd_used_t t; 1641 uint64_t u = 0; 1642 for (t = 0; t < DD_USED_NUM; t++) 1643 u += ddp->dd_used_breakdown[t]; 1644 ASSERT3U(u, ==, ddp->dd_used_bytes); 1645 } 1646 #endif 1647 } 1648 mutex_exit(&dd->dd_lock); 1649 1650 if (dd->dd_parent != NULL) { 1651 dsl_dir_diduse_transfer_space(dd->dd_parent, 1652 accounted_delta, compressed, uncompressed, 1653 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1654 } 1655 } 1656 1657 typedef struct dsl_dir_set_qr_arg { 1658 const char *ddsqra_name; 1659 zprop_source_t ddsqra_source; 1660 uint64_t ddsqra_value; 1661 } dsl_dir_set_qr_arg_t; 1662 1663 static int 1664 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1665 { 1666 dsl_dir_set_qr_arg_t *ddsqra = arg; 1667 dsl_pool_t *dp = dmu_tx_pool(tx); 1668 dsl_dataset_t *ds; 1669 int error; 1670 uint64_t towrite, newval; 1671 1672 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1673 if (error != 0) 1674 return (error); 1675 1676 error = dsl_prop_predict(ds->ds_dir, "quota", 1677 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1678 if (error != 0) { 1679 dsl_dataset_rele(ds, FTAG); 1680 return (error); 1681 } 1682 1683 if (newval == 0) { 1684 dsl_dataset_rele(ds, FTAG); 1685 return (0); 1686 } 1687 1688 mutex_enter(&ds->ds_dir->dd_lock); 1689 /* 1690 * If we are doing the preliminary check in open context, and 1691 * there are pending changes, then don't fail it, since the 1692 * pending changes could under-estimate the amount of space to be 1693 * freed up. 1694 */ 1695 towrite = dsl_dir_space_towrite(ds->ds_dir); 1696 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1697 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1698 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1699 error = SET_ERROR(ENOSPC); 1700 } 1701 mutex_exit(&ds->ds_dir->dd_lock); 1702 dsl_dataset_rele(ds, FTAG); 1703 return (error); 1704 } 1705 1706 static void 1707 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1708 { 1709 dsl_dir_set_qr_arg_t *ddsqra = arg; 1710 dsl_pool_t *dp = dmu_tx_pool(tx); 1711 dsl_dataset_t *ds; 1712 uint64_t newval; 1713 1714 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1715 1716 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1717 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1718 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1719 &ddsqra->ddsqra_value, tx); 1720 1721 VERIFY0(dsl_prop_get_int_ds(ds, 1722 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1723 } else { 1724 newval = ddsqra->ddsqra_value; 1725 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1726 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1727 } 1728 1729 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1730 mutex_enter(&ds->ds_dir->dd_lock); 1731 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1732 mutex_exit(&ds->ds_dir->dd_lock); 1733 dsl_dataset_rele(ds, FTAG); 1734 } 1735 1736 int 1737 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1738 { 1739 dsl_dir_set_qr_arg_t ddsqra; 1740 1741 ddsqra.ddsqra_name = ddname; 1742 ddsqra.ddsqra_source = source; 1743 ddsqra.ddsqra_value = quota; 1744 1745 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1746 dsl_dir_set_quota_sync, &ddsqra, 0, 1747 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1748 } 1749 1750 static int 1751 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1752 { 1753 dsl_dir_set_qr_arg_t *ddsqra = arg; 1754 dsl_pool_t *dp = dmu_tx_pool(tx); 1755 dsl_dataset_t *ds; 1756 dsl_dir_t *dd; 1757 uint64_t newval, used, avail; 1758 int error; 1759 1760 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1761 if (error != 0) 1762 return (error); 1763 dd = ds->ds_dir; 1764 1765 /* 1766 * If we are doing the preliminary check in open context, the 1767 * space estimates may be inaccurate. 1768 */ 1769 if (!dmu_tx_is_syncing(tx)) { 1770 dsl_dataset_rele(ds, FTAG); 1771 return (0); 1772 } 1773 1774 error = dsl_prop_predict(ds->ds_dir, 1775 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1776 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1777 if (error != 0) { 1778 dsl_dataset_rele(ds, FTAG); 1779 return (error); 1780 } 1781 1782 mutex_enter(&dd->dd_lock); 1783 used = dsl_dir_phys(dd)->dd_used_bytes; 1784 mutex_exit(&dd->dd_lock); 1785 1786 if (dd->dd_parent) { 1787 avail = dsl_dir_space_available(dd->dd_parent, 1788 NULL, 0, FALSE); 1789 } else { 1790 avail = dsl_pool_adjustedsize(dd->dd_pool, 1791 ZFS_SPACE_CHECK_NORMAL) - used; 1792 } 1793 1794 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1795 uint64_t delta = MAX(used, newval) - 1796 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1797 1798 if (delta > avail || 1799 (dsl_dir_phys(dd)->dd_quota > 0 && 1800 newval > dsl_dir_phys(dd)->dd_quota)) 1801 error = SET_ERROR(ENOSPC); 1802 } 1803 1804 dsl_dataset_rele(ds, FTAG); 1805 return (error); 1806 } 1807 1808 void 1809 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1810 { 1811 uint64_t used; 1812 int64_t delta; 1813 1814 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1815 1816 mutex_enter(&dd->dd_lock); 1817 used = dsl_dir_phys(dd)->dd_used_bytes; 1818 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1819 dsl_dir_phys(dd)->dd_reserved = value; 1820 1821 if (dd->dd_parent != NULL) { 1822 /* Roll up this additional usage into our ancestors */ 1823 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1824 delta, 0, 0, tx); 1825 } 1826 mutex_exit(&dd->dd_lock); 1827 } 1828 1829 static void 1830 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1831 { 1832 dsl_dir_set_qr_arg_t *ddsqra = arg; 1833 dsl_pool_t *dp = dmu_tx_pool(tx); 1834 dsl_dataset_t *ds; 1835 uint64_t newval; 1836 1837 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1838 1839 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1840 dsl_prop_set_sync_impl(ds, 1841 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1842 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1843 &ddsqra->ddsqra_value, tx); 1844 1845 VERIFY0(dsl_prop_get_int_ds(ds, 1846 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1847 } else { 1848 newval = ddsqra->ddsqra_value; 1849 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1850 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1851 (longlong_t)newval); 1852 } 1853 1854 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1855 dsl_dataset_rele(ds, FTAG); 1856 } 1857 1858 int 1859 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1860 uint64_t reservation) 1861 { 1862 dsl_dir_set_qr_arg_t ddsqra; 1863 1864 ddsqra.ddsqra_name = ddname; 1865 ddsqra.ddsqra_source = source; 1866 ddsqra.ddsqra_value = reservation; 1867 1868 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1869 dsl_dir_set_reservation_sync, &ddsqra, 0, 1870 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1871 } 1872 1873 static dsl_dir_t * 1874 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1875 { 1876 for (; ds1; ds1 = ds1->dd_parent) { 1877 dsl_dir_t *dd; 1878 for (dd = ds2; dd; dd = dd->dd_parent) { 1879 if (ds1 == dd) 1880 return (dd); 1881 } 1882 } 1883 return (NULL); 1884 } 1885 1886 /* 1887 * If delta is applied to dd, how much of that delta would be applied to 1888 * ancestor? Syncing context only. 1889 */ 1890 static int64_t 1891 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1892 { 1893 if (dd == ancestor) 1894 return (delta); 1895 1896 mutex_enter(&dd->dd_lock); 1897 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1898 mutex_exit(&dd->dd_lock); 1899 return (would_change(dd->dd_parent, delta, ancestor)); 1900 } 1901 1902 typedef struct dsl_dir_rename_arg { 1903 const char *ddra_oldname; 1904 const char *ddra_newname; 1905 cred_t *ddra_cred; 1906 proc_t *ddra_proc; 1907 } dsl_dir_rename_arg_t; 1908 1909 typedef struct dsl_valid_rename_arg { 1910 int char_delta; 1911 int nest_delta; 1912 } dsl_valid_rename_arg_t; 1913 1914 static int 1915 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1916 { 1917 (void) dp; 1918 dsl_valid_rename_arg_t *dvra = arg; 1919 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1920 1921 dsl_dataset_name(ds, namebuf); 1922 1923 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN), 1924 <, ZFS_MAX_DATASET_NAME_LEN); 1925 int namelen = strlen(namebuf) + dvra->char_delta; 1926 int depth = get_dataset_depth(namebuf) + dvra->nest_delta; 1927 1928 if (namelen >= ZFS_MAX_DATASET_NAME_LEN) 1929 return (SET_ERROR(ENAMETOOLONG)); 1930 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting) 1931 return (SET_ERROR(ENAMETOOLONG)); 1932 return (0); 1933 } 1934 1935 static int 1936 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1937 { 1938 dsl_dir_rename_arg_t *ddra = arg; 1939 dsl_pool_t *dp = dmu_tx_pool(tx); 1940 dsl_dir_t *dd, *newparent; 1941 dsl_valid_rename_arg_t dvra; 1942 dsl_dataset_t *parentds; 1943 objset_t *parentos; 1944 const char *mynewname; 1945 int error; 1946 1947 /* target dir should exist */ 1948 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1949 if (error != 0) 1950 return (error); 1951 1952 /* new parent should exist */ 1953 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1954 &newparent, &mynewname); 1955 if (error != 0) { 1956 dsl_dir_rele(dd, FTAG); 1957 return (error); 1958 } 1959 1960 /* can't rename to different pool */ 1961 if (dd->dd_pool != newparent->dd_pool) { 1962 dsl_dir_rele(newparent, FTAG); 1963 dsl_dir_rele(dd, FTAG); 1964 return (SET_ERROR(EXDEV)); 1965 } 1966 1967 /* new name should not already exist */ 1968 if (mynewname == NULL) { 1969 dsl_dir_rele(newparent, FTAG); 1970 dsl_dir_rele(dd, FTAG); 1971 return (SET_ERROR(EEXIST)); 1972 } 1973 1974 /* can't rename below anything but filesystems (eg. no ZVOLs) */ 1975 error = dsl_dataset_hold_obj(newparent->dd_pool, 1976 dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds); 1977 if (error != 0) { 1978 dsl_dir_rele(newparent, FTAG); 1979 dsl_dir_rele(dd, FTAG); 1980 return (error); 1981 } 1982 error = dmu_objset_from_ds(parentds, &parentos); 1983 if (error != 0) { 1984 dsl_dataset_rele(parentds, FTAG); 1985 dsl_dir_rele(newparent, FTAG); 1986 dsl_dir_rele(dd, FTAG); 1987 return (error); 1988 } 1989 if (dmu_objset_type(parentos) != DMU_OST_ZFS) { 1990 dsl_dataset_rele(parentds, FTAG); 1991 dsl_dir_rele(newparent, FTAG); 1992 dsl_dir_rele(dd, FTAG); 1993 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 1994 } 1995 dsl_dataset_rele(parentds, FTAG); 1996 1997 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN), 1998 <, ZFS_MAX_DATASET_NAME_LEN); 1999 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN), 2000 <, ZFS_MAX_DATASET_NAME_LEN); 2001 dvra.char_delta = strlen(ddra->ddra_newname) 2002 - strlen(ddra->ddra_oldname); 2003 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname) 2004 - get_dataset_depth(ddra->ddra_oldname); 2005 2006 /* if the name length is growing, validate child name lengths */ 2007 if (dvra.char_delta > 0 || dvra.nest_delta > 0) { 2008 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 2009 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 2010 if (error != 0) { 2011 dsl_dir_rele(newparent, FTAG); 2012 dsl_dir_rele(dd, FTAG); 2013 return (error); 2014 } 2015 } 2016 2017 if (dmu_tx_is_syncing(tx)) { 2018 if (spa_feature_is_active(dp->dp_spa, 2019 SPA_FEATURE_FS_SS_LIMIT)) { 2020 /* 2021 * Although this is the check function and we don't 2022 * normally make on-disk changes in check functions, 2023 * we need to do that here. 2024 * 2025 * Ensure this portion of the tree's counts have been 2026 * initialized in case the new parent has limits set. 2027 */ 2028 dsl_dir_init_fs_ss_count(dd, tx); 2029 } 2030 } 2031 2032 if (newparent != dd->dd_parent) { 2033 /* is there enough space? */ 2034 uint64_t myspace = 2035 MAX(dsl_dir_phys(dd)->dd_used_bytes, 2036 dsl_dir_phys(dd)->dd_reserved); 2037 objset_t *os = dd->dd_pool->dp_meta_objset; 2038 uint64_t fs_cnt = 0; 2039 uint64_t ss_cnt = 0; 2040 2041 if (dsl_dir_is_zapified(dd)) { 2042 int err; 2043 2044 err = zap_lookup(os, dd->dd_object, 2045 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2046 &fs_cnt); 2047 if (err != ENOENT && err != 0) { 2048 dsl_dir_rele(newparent, FTAG); 2049 dsl_dir_rele(dd, FTAG); 2050 return (err); 2051 } 2052 2053 /* 2054 * have to add 1 for the filesystem itself that we're 2055 * moving 2056 */ 2057 fs_cnt++; 2058 2059 err = zap_lookup(os, dd->dd_object, 2060 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2061 &ss_cnt); 2062 if (err != ENOENT && err != 0) { 2063 dsl_dir_rele(newparent, FTAG); 2064 dsl_dir_rele(dd, FTAG); 2065 return (err); 2066 } 2067 } 2068 2069 /* check for encryption errors */ 2070 error = dsl_dir_rename_crypt_check(dd, newparent); 2071 if (error != 0) { 2072 dsl_dir_rele(newparent, FTAG); 2073 dsl_dir_rele(dd, FTAG); 2074 return (SET_ERROR(EACCES)); 2075 } 2076 2077 /* no rename into our descendant */ 2078 if (closest_common_ancestor(dd, newparent) == dd) { 2079 dsl_dir_rele(newparent, FTAG); 2080 dsl_dir_rele(dd, FTAG); 2081 return (SET_ERROR(EINVAL)); 2082 } 2083 2084 error = dsl_dir_transfer_possible(dd->dd_parent, 2085 newparent, fs_cnt, ss_cnt, myspace, 2086 ddra->ddra_cred, ddra->ddra_proc); 2087 if (error != 0) { 2088 dsl_dir_rele(newparent, FTAG); 2089 dsl_dir_rele(dd, FTAG); 2090 return (error); 2091 } 2092 } 2093 2094 dsl_dir_rele(newparent, FTAG); 2095 dsl_dir_rele(dd, FTAG); 2096 return (0); 2097 } 2098 2099 static void 2100 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 2101 { 2102 dsl_dir_rename_arg_t *ddra = arg; 2103 dsl_pool_t *dp = dmu_tx_pool(tx); 2104 dsl_dir_t *dd, *newparent; 2105 const char *mynewname; 2106 objset_t *mos = dp->dp_meta_objset; 2107 2108 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 2109 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 2110 &mynewname)); 2111 2112 /* Log this before we change the name. */ 2113 spa_history_log_internal_dd(dd, "rename", tx, 2114 "-> %s", ddra->ddra_newname); 2115 2116 if (newparent != dd->dd_parent) { 2117 objset_t *os = dd->dd_pool->dp_meta_objset; 2118 uint64_t fs_cnt = 0; 2119 uint64_t ss_cnt = 0; 2120 2121 /* 2122 * We already made sure the dd counts were initialized in the 2123 * check function. 2124 */ 2125 if (spa_feature_is_active(dp->dp_spa, 2126 SPA_FEATURE_FS_SS_LIMIT)) { 2127 VERIFY0(zap_lookup(os, dd->dd_object, 2128 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2129 &fs_cnt)); 2130 /* add 1 for the filesystem itself that we're moving */ 2131 fs_cnt++; 2132 2133 VERIFY0(zap_lookup(os, dd->dd_object, 2134 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2135 &ss_cnt)); 2136 } 2137 2138 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 2139 DD_FIELD_FILESYSTEM_COUNT, tx); 2140 dsl_fs_ss_count_adjust(newparent, fs_cnt, 2141 DD_FIELD_FILESYSTEM_COUNT, tx); 2142 2143 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 2144 DD_FIELD_SNAPSHOT_COUNT, tx); 2145 dsl_fs_ss_count_adjust(newparent, ss_cnt, 2146 DD_FIELD_SNAPSHOT_COUNT, tx); 2147 2148 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 2149 -dsl_dir_phys(dd)->dd_used_bytes, 2150 -dsl_dir_phys(dd)->dd_compressed_bytes, 2151 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2152 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 2153 dsl_dir_phys(dd)->dd_used_bytes, 2154 dsl_dir_phys(dd)->dd_compressed_bytes, 2155 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2156 2157 if (dsl_dir_phys(dd)->dd_reserved > 2158 dsl_dir_phys(dd)->dd_used_bytes) { 2159 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 2160 dsl_dir_phys(dd)->dd_used_bytes; 2161 2162 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 2163 -unused_rsrv, 0, 0, tx); 2164 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 2165 unused_rsrv, 0, 0, tx); 2166 } 2167 } 2168 2169 dmu_buf_will_dirty(dd->dd_dbuf, tx); 2170 2171 /* remove from old parent zapobj */ 2172 VERIFY0(zap_remove(mos, 2173 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 2174 dd->dd_myname, tx)); 2175 2176 (void) strlcpy(dd->dd_myname, mynewname, 2177 sizeof (dd->dd_myname)); 2178 dsl_dir_rele(dd->dd_parent, dd); 2179 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 2180 VERIFY0(dsl_dir_hold_obj(dp, 2181 newparent->dd_object, NULL, dd, &dd->dd_parent)); 2182 2183 /* add to new parent zapobj */ 2184 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 2185 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 2186 2187 /* TODO: A rename callback to avoid these layering violations. */ 2188 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname); 2189 zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname, 2190 ddra->ddra_newname, B_TRUE); 2191 2192 dsl_prop_notify_all(dd); 2193 2194 dsl_dir_rele(newparent, FTAG); 2195 dsl_dir_rele(dd, FTAG); 2196 } 2197 2198 int 2199 dsl_dir_rename(const char *oldname, const char *newname) 2200 { 2201 dsl_dir_rename_arg_t ddra; 2202 2203 ddra.ddra_oldname = oldname; 2204 ddra.ddra_newname = newname; 2205 ddra.ddra_cred = CRED(); 2206 ddra.ddra_proc = curproc; 2207 2208 return (dsl_sync_task(oldname, 2209 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 2210 3, ZFS_SPACE_CHECK_RESERVED)); 2211 } 2212 2213 int 2214 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 2215 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, 2216 cred_t *cr, proc_t *proc) 2217 { 2218 dsl_dir_t *ancestor; 2219 int64_t adelta; 2220 uint64_t avail; 2221 int err; 2222 2223 ancestor = closest_common_ancestor(sdd, tdd); 2224 adelta = would_change(sdd, -space, ancestor); 2225 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 2226 if (avail < space) 2227 return (SET_ERROR(ENOSPC)); 2228 2229 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 2230 ancestor, cr, proc); 2231 if (err != 0) 2232 return (err); 2233 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 2234 ancestor, cr, proc); 2235 if (err != 0) 2236 return (err); 2237 2238 return (0); 2239 } 2240 2241 inode_timespec_t 2242 dsl_dir_snap_cmtime(dsl_dir_t *dd) 2243 { 2244 inode_timespec_t t; 2245 2246 mutex_enter(&dd->dd_lock); 2247 t = dd->dd_snap_cmtime; 2248 mutex_exit(&dd->dd_lock); 2249 2250 return (t); 2251 } 2252 2253 void 2254 dsl_dir_snap_cmtime_update(dsl_dir_t *dd, dmu_tx_t *tx) 2255 { 2256 dsl_pool_t *dp = dmu_tx_pool(tx); 2257 inode_timespec_t t; 2258 gethrestime(&t); 2259 2260 mutex_enter(&dd->dd_lock); 2261 dd->dd_snap_cmtime = t; 2262 if (spa_feature_is_enabled(dp->dp_spa, 2263 SPA_FEATURE_EXTENSIBLE_DATASET)) { 2264 objset_t *mos = dd->dd_pool->dp_meta_objset; 2265 uint64_t ddobj = dd->dd_object; 2266 dsl_dir_zapify(dd, tx); 2267 VERIFY0(zap_update(mos, ddobj, 2268 zfs_prop_to_name(ZFS_PROP_SNAPSHOTS_CHANGED), 2269 sizeof (uint64_t), 2270 sizeof (inode_timespec_t) / sizeof (uint64_t), 2271 &t, tx)); 2272 } 2273 mutex_exit(&dd->dd_lock); 2274 } 2275 2276 void 2277 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 2278 { 2279 objset_t *mos = dd->dd_pool->dp_meta_objset; 2280 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 2281 } 2282 2283 boolean_t 2284 dsl_dir_is_zapified(dsl_dir_t *dd) 2285 { 2286 dmu_object_info_t doi; 2287 2288 dmu_object_info_from_db(dd->dd_dbuf, &doi); 2289 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 2290 } 2291 2292 void 2293 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj) 2294 { 2295 objset_t *mos = dd->dd_pool->dp_meta_objset; 2296 ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa, 2297 SPA_FEATURE_LIVELIST)); 2298 dsl_deadlist_open(&dd->dd_livelist, mos, obj); 2299 bplist_create(&dd->dd_pending_allocs); 2300 bplist_create(&dd->dd_pending_frees); 2301 } 2302 2303 void 2304 dsl_dir_livelist_close(dsl_dir_t *dd) 2305 { 2306 dsl_deadlist_close(&dd->dd_livelist); 2307 bplist_destroy(&dd->dd_pending_allocs); 2308 bplist_destroy(&dd->dd_pending_frees); 2309 } 2310 2311 void 2312 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total) 2313 { 2314 uint64_t obj; 2315 dsl_pool_t *dp = dmu_tx_pool(tx); 2316 spa_t *spa = dp->dp_spa; 2317 livelist_condense_entry_t to_condense = spa->spa_to_condense; 2318 2319 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2320 return; 2321 2322 /* 2323 * If the livelist being removed is set to be condensed, stop the 2324 * condense zthr and indicate the cancellation in the spa_to_condense 2325 * struct in case the condense no-wait synctask has already started 2326 */ 2327 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 2328 if (ll_condense_thread != NULL && 2329 (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) { 2330 /* 2331 * We use zthr_wait_cycle_done instead of zthr_cancel 2332 * because we don't want to destroy the zthr, just have 2333 * it skip its current task. 2334 */ 2335 spa->spa_to_condense.cancelled = B_TRUE; 2336 zthr_wait_cycle_done(ll_condense_thread); 2337 /* 2338 * If we've returned from zthr_wait_cycle_done without 2339 * clearing the to_condense data structure it's either 2340 * because the no-wait synctask has started (which is 2341 * indicated by 'syncing' field of to_condense) and we 2342 * can expect it to clear to_condense on its own. 2343 * Otherwise, we returned before the zthr ran. The 2344 * checkfunc will now fail as cancelled == B_TRUE so we 2345 * can safely NULL out ds, allowing a different dir's 2346 * livelist to be condensed. 2347 * 2348 * We can be sure that the to_condense struct will not 2349 * be repopulated at this stage because both this 2350 * function and dsl_livelist_try_condense execute in 2351 * syncing context. 2352 */ 2353 if ((spa->spa_to_condense.ds != NULL) && 2354 !spa->spa_to_condense.syncing) { 2355 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, 2356 spa); 2357 spa->spa_to_condense.ds = NULL; 2358 } 2359 } 2360 2361 dsl_dir_livelist_close(dd); 2362 VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object, 2363 DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj)); 2364 VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object, 2365 DD_FIELD_LIVELIST, tx)); 2366 if (total) { 2367 dsl_deadlist_free(dp->dp_meta_objset, obj, tx); 2368 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2369 } 2370 } 2371 2372 static int 2373 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds, 2374 zfs_wait_activity_t activity, boolean_t *in_progress) 2375 { 2376 int error = 0; 2377 2378 ASSERT(MUTEX_HELD(&dd->dd_activity_lock)); 2379 2380 switch (activity) { 2381 case ZFS_WAIT_DELETEQ: { 2382 #ifdef _KERNEL 2383 objset_t *os; 2384 error = dmu_objset_from_ds(ds, &os); 2385 if (error != 0) 2386 break; 2387 2388 mutex_enter(&os->os_user_ptr_lock); 2389 void *user = dmu_objset_get_user(os); 2390 mutex_exit(&os->os_user_ptr_lock); 2391 if (dmu_objset_type(os) != DMU_OST_ZFS || 2392 user == NULL || zfs_get_vfs_flag_unmounted(os)) { 2393 *in_progress = B_FALSE; 2394 return (0); 2395 } 2396 2397 uint64_t readonly = B_FALSE; 2398 error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly, 2399 NULL); 2400 2401 if (error != 0) 2402 break; 2403 2404 if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) { 2405 *in_progress = B_FALSE; 2406 return (0); 2407 } 2408 2409 uint64_t count, unlinked_obj; 2410 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 2411 &unlinked_obj); 2412 if (error != 0) { 2413 dsl_dataset_rele(ds, FTAG); 2414 break; 2415 } 2416 error = zap_count(os, unlinked_obj, &count); 2417 2418 if (error == 0) 2419 *in_progress = (count != 0); 2420 break; 2421 #else 2422 /* 2423 * The delete queue is ZPL specific, and libzpool doesn't have 2424 * it. It doesn't make sense to wait for it. 2425 */ 2426 (void) ds; 2427 *in_progress = B_FALSE; 2428 break; 2429 #endif 2430 } 2431 default: 2432 panic("unrecognized value for activity %d", activity); 2433 } 2434 2435 return (error); 2436 } 2437 2438 int 2439 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity, 2440 boolean_t *waited) 2441 { 2442 int error = 0; 2443 boolean_t in_progress; 2444 dsl_pool_t *dp = dd->dd_pool; 2445 for (;;) { 2446 dsl_pool_config_enter(dp, FTAG); 2447 error = dsl_dir_activity_in_progress(dd, ds, activity, 2448 &in_progress); 2449 dsl_pool_config_exit(dp, FTAG); 2450 if (error != 0 || !in_progress) 2451 break; 2452 2453 *waited = B_TRUE; 2454 2455 if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) == 2456 0 || dd->dd_activity_cancelled) { 2457 error = SET_ERROR(EINTR); 2458 break; 2459 } 2460 } 2461 return (error); 2462 } 2463 2464 void 2465 dsl_dir_cancel_waiters(dsl_dir_t *dd) 2466 { 2467 mutex_enter(&dd->dd_activity_lock); 2468 dd->dd_activity_cancelled = B_TRUE; 2469 cv_broadcast(&dd->dd_activity_cv); 2470 while (dd->dd_activity_waiters > 0) 2471 cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock); 2472 mutex_exit(&dd->dd_activity_lock); 2473 } 2474 2475 #if defined(_KERNEL) 2476 EXPORT_SYMBOL(dsl_dir_set_quota); 2477 EXPORT_SYMBOL(dsl_dir_set_reservation); 2478 #endif 2479