xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_dir.c (revision 87b759f0fa1f7554d50ce640c40138512bbded44)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Martin Matuska. All rights reserved.
25  * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
30  */
31 
32 #include <sys/dmu.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dsl_prop.h>
38 #include <sys/dsl_synctask.h>
39 #include <sys/dsl_deleg.h>
40 #include <sys/dmu_impl.h>
41 #include <sys/spa.h>
42 #include <sys/spa_impl.h>
43 #include <sys/metaslab.h>
44 #include <sys/zap.h>
45 #include <sys/zio.h>
46 #include <sys/arc.h>
47 #include <sys/sunddi.h>
48 #include <sys/zfeature.h>
49 #include <sys/policy.h>
50 #include <sys/zfs_vfsops.h>
51 #include <sys/zfs_znode.h>
52 #include <sys/zvol.h>
53 #include <sys/zthr.h>
54 #include "zfs_namecheck.h"
55 #include "zfs_prop.h"
56 
57 /*
58  * This controls if we verify the ZVOL quota or not.
59  * Currently, quotas are not implemented for ZVOLs.
60  * The quota size is the size of the ZVOL.
61  * The size of the volume already implies the ZVOL size quota.
62  * The quota mechanism can introduce a significant performance drop.
63  */
64 static int zvol_enforce_quotas = B_TRUE;
65 
66 /*
67  * Filesystem and Snapshot Limits
68  * ------------------------------
69  *
70  * These limits are used to restrict the number of filesystems and/or snapshots
71  * that can be created at a given level in the tree or below. A typical
72  * use-case is with a delegated dataset where the administrator wants to ensure
73  * that a user within the zone is not creating too many additional filesystems
74  * or snapshots, even though they're not exceeding their space quota.
75  *
76  * The filesystem and snapshot counts are stored as extensible properties. This
77  * capability is controlled by a feature flag and must be enabled to be used.
78  * Once enabled, the feature is not active until the first limit is set. At
79  * that point, future operations to create/destroy filesystems or snapshots
80  * will validate and update the counts.
81  *
82  * Because the count properties will not exist before the feature is active,
83  * the counts are updated when a limit is first set on an uninitialized
84  * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
85  * all of the nested filesystems/snapshots. Thus, a new leaf node has a
86  * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
87  * snapshot count properties on a node indicate uninitialized counts on that
88  * node.) When first setting a limit on an uninitialized node, the code starts
89  * at the filesystem with the new limit and descends into all sub-filesystems
90  * to add the count properties.
91  *
92  * In practice this is lightweight since a limit is typically set when the
93  * filesystem is created and thus has no children. Once valid, changing the
94  * limit value won't require a re-traversal since the counts are already valid.
95  * When recursively fixing the counts, if a node with a limit is encountered
96  * during the descent, the counts are known to be valid and there is no need to
97  * descend into that filesystem's children. The counts on filesystems above the
98  * one with the new limit will still be uninitialized, unless a limit is
99  * eventually set on one of those filesystems. The counts are always recursively
100  * updated when a limit is set on a dataset, unless there is already a limit.
101  * When a new limit value is set on a filesystem with an existing limit, it is
102  * possible for the new limit to be less than the current count at that level
103  * since a user who can change the limit is also allowed to exceed the limit.
104  *
105  * Once the feature is active, then whenever a filesystem or snapshot is
106  * created, the code recurses up the tree, validating the new count against the
107  * limit at each initialized level. In practice, most levels will not have a
108  * limit set. If there is a limit at any initialized level up the tree, the
109  * check must pass or the creation will fail. Likewise, when a filesystem or
110  * snapshot is destroyed, the counts are recursively adjusted all the way up
111  * the initialized nodes in the tree. Renaming a filesystem into different point
112  * in the tree will first validate, then update the counts on each branch up to
113  * the common ancestor. A receive will also validate the counts and then update
114  * them.
115  *
116  * An exception to the above behavior is that the limit is not enforced if the
117  * user has permission to modify the limit. This is primarily so that
118  * recursive snapshots in the global zone always work. We want to prevent a
119  * denial-of-service in which a lower level delegated dataset could max out its
120  * limit and thus block recursive snapshots from being taken in the global zone.
121  * Because of this, it is possible for the snapshot count to be over the limit
122  * and snapshots taken in the global zone could cause a lower level dataset to
123  * hit or exceed its limit. The administrator taking the global zone recursive
124  * snapshot should be aware of this side-effect and behave accordingly.
125  * For consistency, the filesystem limit is also not enforced if the user can
126  * modify the limit.
127  *
128  * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
129  * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
130  * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
131  * dsl_dir_init_fs_ss_count().
132  */
133 
134 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
135 
136 typedef struct ddulrt_arg {
137 	dsl_dir_t	*ddulrta_dd;
138 	uint64_t	ddlrta_txg;
139 } ddulrt_arg_t;
140 
141 static void
142 dsl_dir_evict_async(void *dbu)
143 {
144 	dsl_dir_t *dd = dbu;
145 	int t;
146 	dsl_pool_t *dp __maybe_unused = dd->dd_pool;
147 
148 	dd->dd_dbuf = NULL;
149 
150 	for (t = 0; t < TXG_SIZE; t++) {
151 		ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
152 		ASSERT(dd->dd_tempreserved[t] == 0);
153 		ASSERT(dd->dd_space_towrite[t] == 0);
154 	}
155 
156 	if (dd->dd_parent)
157 		dsl_dir_async_rele(dd->dd_parent, dd);
158 
159 	spa_async_close(dd->dd_pool->dp_spa, dd);
160 
161 	if (dsl_deadlist_is_open(&dd->dd_livelist))
162 		dsl_dir_livelist_close(dd);
163 
164 	dsl_prop_fini(dd);
165 	cv_destroy(&dd->dd_activity_cv);
166 	mutex_destroy(&dd->dd_activity_lock);
167 	mutex_destroy(&dd->dd_lock);
168 	kmem_free(dd, sizeof (dsl_dir_t));
169 }
170 
171 int
172 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
173     const char *tail, const void *tag, dsl_dir_t **ddp)
174 {
175 	dmu_buf_t *dbuf;
176 	dsl_dir_t *dd;
177 	dmu_object_info_t doi;
178 	int err;
179 
180 	ASSERT(dsl_pool_config_held(dp));
181 
182 	err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
183 	if (err != 0)
184 		return (err);
185 	dd = dmu_buf_get_user(dbuf);
186 
187 	dmu_object_info_from_db(dbuf, &doi);
188 	ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
189 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
190 
191 	if (dd == NULL) {
192 		dsl_dir_t *winner;
193 
194 		dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
195 		dd->dd_object = ddobj;
196 		dd->dd_dbuf = dbuf;
197 		dd->dd_pool = dp;
198 
199 		mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
200 		mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
201 		cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
202 		dsl_prop_init(dd);
203 
204 		if (dsl_dir_is_zapified(dd)) {
205 			err = zap_lookup(dp->dp_meta_objset,
206 			    ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
207 			    sizeof (uint64_t), 1, &dd->dd_crypto_obj);
208 			if (err == 0) {
209 				/* check for on-disk format errata */
210 				if (dsl_dir_incompatible_encryption_version(
211 				    dd)) {
212 					dp->dp_spa->spa_errata =
213 					    ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
214 				}
215 			} else if (err != ENOENT) {
216 				goto errout;
217 			}
218 		}
219 
220 		if (dsl_dir_phys(dd)->dd_parent_obj) {
221 			err = dsl_dir_hold_obj(dp,
222 			    dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
223 			    &dd->dd_parent);
224 			if (err != 0)
225 				goto errout;
226 			if (tail) {
227 #ifdef ZFS_DEBUG
228 				uint64_t foundobj;
229 
230 				err = zap_lookup(dp->dp_meta_objset,
231 				    dsl_dir_phys(dd->dd_parent)->
232 				    dd_child_dir_zapobj, tail,
233 				    sizeof (foundobj), 1, &foundobj);
234 				ASSERT(err || foundobj == ddobj);
235 #endif
236 				(void) strlcpy(dd->dd_myname, tail,
237 				    sizeof (dd->dd_myname));
238 			} else {
239 				err = zap_value_search(dp->dp_meta_objset,
240 				    dsl_dir_phys(dd->dd_parent)->
241 				    dd_child_dir_zapobj,
242 				    ddobj, 0, dd->dd_myname,
243 				    sizeof (dd->dd_myname));
244 			}
245 			if (err != 0)
246 				goto errout;
247 		} else {
248 			(void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
249 			    sizeof (dd->dd_myname));
250 		}
251 
252 		if (dsl_dir_is_clone(dd)) {
253 			dmu_buf_t *origin_bonus;
254 			dsl_dataset_phys_t *origin_phys;
255 
256 			/*
257 			 * We can't open the origin dataset, because
258 			 * that would require opening this dsl_dir.
259 			 * Just look at its phys directly instead.
260 			 */
261 			err = dmu_bonus_hold(dp->dp_meta_objset,
262 			    dsl_dir_phys(dd)->dd_origin_obj, FTAG,
263 			    &origin_bonus);
264 			if (err != 0)
265 				goto errout;
266 			origin_phys = origin_bonus->db_data;
267 			dd->dd_origin_txg =
268 			    origin_phys->ds_creation_txg;
269 			dmu_buf_rele(origin_bonus, FTAG);
270 			if (dsl_dir_is_zapified(dd)) {
271 				uint64_t obj;
272 				err = zap_lookup(dp->dp_meta_objset,
273 				    dd->dd_object, DD_FIELD_LIVELIST,
274 				    sizeof (uint64_t), 1, &obj);
275 				if (err == 0)
276 					dsl_dir_livelist_open(dd, obj);
277 				else if (err != ENOENT)
278 					goto errout;
279 			}
280 		}
281 
282 		if (dsl_dir_is_zapified(dd)) {
283 			inode_timespec_t t = {0};
284 			(void) zap_lookup(dp->dp_meta_objset, ddobj,
285 			    DD_FIELD_SNAPSHOTS_CHANGED,
286 			    sizeof (uint64_t),
287 			    sizeof (inode_timespec_t) / sizeof (uint64_t),
288 			    &t);
289 			dd->dd_snap_cmtime = t;
290 		}
291 
292 		dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
293 		    &dd->dd_dbuf);
294 		winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
295 		if (winner != NULL) {
296 			if (dd->dd_parent)
297 				dsl_dir_rele(dd->dd_parent, dd);
298 			if (dsl_deadlist_is_open(&dd->dd_livelist))
299 				dsl_dir_livelist_close(dd);
300 			dsl_prop_fini(dd);
301 			cv_destroy(&dd->dd_activity_cv);
302 			mutex_destroy(&dd->dd_activity_lock);
303 			mutex_destroy(&dd->dd_lock);
304 			kmem_free(dd, sizeof (dsl_dir_t));
305 			dd = winner;
306 		} else {
307 			spa_open_ref(dp->dp_spa, dd);
308 		}
309 	}
310 
311 	/*
312 	 * The dsl_dir_t has both open-to-close and instantiate-to-evict
313 	 * holds on the spa.  We need the open-to-close holds because
314 	 * otherwise the spa_refcnt wouldn't change when we open a
315 	 * dir which the spa also has open, so we could incorrectly
316 	 * think it was OK to unload/export/destroy the pool.  We need
317 	 * the instantiate-to-evict hold because the dsl_dir_t has a
318 	 * pointer to the dd_pool, which has a pointer to the spa_t.
319 	 */
320 	spa_open_ref(dp->dp_spa, tag);
321 	ASSERT3P(dd->dd_pool, ==, dp);
322 	ASSERT3U(dd->dd_object, ==, ddobj);
323 	ASSERT3P(dd->dd_dbuf, ==, dbuf);
324 	*ddp = dd;
325 	return (0);
326 
327 errout:
328 	if (dd->dd_parent)
329 		dsl_dir_rele(dd->dd_parent, dd);
330 	if (dsl_deadlist_is_open(&dd->dd_livelist))
331 		dsl_dir_livelist_close(dd);
332 	dsl_prop_fini(dd);
333 	cv_destroy(&dd->dd_activity_cv);
334 	mutex_destroy(&dd->dd_activity_lock);
335 	mutex_destroy(&dd->dd_lock);
336 	kmem_free(dd, sizeof (dsl_dir_t));
337 	dmu_buf_rele(dbuf, tag);
338 	return (err);
339 }
340 
341 void
342 dsl_dir_rele(dsl_dir_t *dd, const void *tag)
343 {
344 	dprintf_dd(dd, "%s\n", "");
345 	spa_close(dd->dd_pool->dp_spa, tag);
346 	dmu_buf_rele(dd->dd_dbuf, tag);
347 }
348 
349 /*
350  * Remove a reference to the given dsl dir that is being asynchronously
351  * released.  Async releases occur from a taskq performing eviction of
352  * dsl datasets and dirs.  This process is identical to a normal release
353  * with the exception of using the async API for releasing the reference on
354  * the spa.
355  */
356 void
357 dsl_dir_async_rele(dsl_dir_t *dd, const void *tag)
358 {
359 	dprintf_dd(dd, "%s\n", "");
360 	spa_async_close(dd->dd_pool->dp_spa, tag);
361 	dmu_buf_rele(dd->dd_dbuf, tag);
362 }
363 
364 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
365 void
366 dsl_dir_name(dsl_dir_t *dd, char *buf)
367 {
368 	if (dd->dd_parent) {
369 		dsl_dir_name(dd->dd_parent, buf);
370 		VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
371 		    ZFS_MAX_DATASET_NAME_LEN);
372 	} else {
373 		buf[0] = '\0';
374 	}
375 	if (!MUTEX_HELD(&dd->dd_lock)) {
376 		/*
377 		 * recursive mutex so that we can use
378 		 * dprintf_dd() with dd_lock held
379 		 */
380 		mutex_enter(&dd->dd_lock);
381 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
382 		    <, ZFS_MAX_DATASET_NAME_LEN);
383 		mutex_exit(&dd->dd_lock);
384 	} else {
385 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
386 		    <, ZFS_MAX_DATASET_NAME_LEN);
387 	}
388 }
389 
390 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
391 int
392 dsl_dir_namelen(dsl_dir_t *dd)
393 {
394 	int result = 0;
395 
396 	if (dd->dd_parent) {
397 		/* parent's name + 1 for the "/" */
398 		result = dsl_dir_namelen(dd->dd_parent) + 1;
399 	}
400 
401 	if (!MUTEX_HELD(&dd->dd_lock)) {
402 		/* see dsl_dir_name */
403 		mutex_enter(&dd->dd_lock);
404 		result += strlen(dd->dd_myname);
405 		mutex_exit(&dd->dd_lock);
406 	} else {
407 		result += strlen(dd->dd_myname);
408 	}
409 
410 	return (result);
411 }
412 
413 static int
414 getcomponent(const char *path, char *component, const char **nextp)
415 {
416 	char *p;
417 
418 	if ((path == NULL) || (path[0] == '\0'))
419 		return (SET_ERROR(ENOENT));
420 	/* This would be a good place to reserve some namespace... */
421 	p = strpbrk(path, "/@");
422 	if (p && (p[1] == '/' || p[1] == '@')) {
423 		/* two separators in a row */
424 		return (SET_ERROR(EINVAL));
425 	}
426 	if (p == NULL || p == path) {
427 		/*
428 		 * if the first thing is an @ or /, it had better be an
429 		 * @ and it had better not have any more ats or slashes,
430 		 * and it had better have something after the @.
431 		 */
432 		if (p != NULL &&
433 		    (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
434 			return (SET_ERROR(EINVAL));
435 		if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
436 			return (SET_ERROR(ENAMETOOLONG));
437 		(void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
438 		p = NULL;
439 	} else if (p[0] == '/') {
440 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
441 			return (SET_ERROR(ENAMETOOLONG));
442 		(void) strlcpy(component, path, p - path + 1);
443 		p++;
444 	} else if (p[0] == '@') {
445 		/*
446 		 * if the next separator is an @, there better not be
447 		 * any more slashes.
448 		 */
449 		if (strchr(path, '/'))
450 			return (SET_ERROR(EINVAL));
451 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
452 			return (SET_ERROR(ENAMETOOLONG));
453 		(void) strlcpy(component, path, p - path + 1);
454 	} else {
455 		panic("invalid p=%p", (void *)p);
456 	}
457 	*nextp = p;
458 	return (0);
459 }
460 
461 /*
462  * Return the dsl_dir_t, and possibly the last component which couldn't
463  * be found in *tail.  The name must be in the specified dsl_pool_t.  This
464  * thread must hold the dp_config_rwlock for the pool.  Returns NULL if the
465  * path is bogus, or if tail==NULL and we couldn't parse the whole name.
466  * (*tail)[0] == '@' means that the last component is a snapshot.
467  */
468 int
469 dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag,
470     dsl_dir_t **ddp, const char **tailp)
471 {
472 	char *buf;
473 	const char *spaname, *next, *nextnext = NULL;
474 	int err;
475 	dsl_dir_t *dd;
476 	uint64_t ddobj;
477 
478 	buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
479 	err = getcomponent(name, buf, &next);
480 	if (err != 0)
481 		goto error;
482 
483 	/* Make sure the name is in the specified pool. */
484 	spaname = spa_name(dp->dp_spa);
485 	if (strcmp(buf, spaname) != 0) {
486 		err = SET_ERROR(EXDEV);
487 		goto error;
488 	}
489 
490 	ASSERT(dsl_pool_config_held(dp));
491 
492 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
493 	if (err != 0) {
494 		goto error;
495 	}
496 
497 	while (next != NULL) {
498 		dsl_dir_t *child_dd;
499 		err = getcomponent(next, buf, &nextnext);
500 		if (err != 0)
501 			break;
502 		ASSERT(next[0] != '\0');
503 		if (next[0] == '@')
504 			break;
505 		dprintf("looking up %s in obj%lld\n",
506 		    buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj);
507 
508 		err = zap_lookup(dp->dp_meta_objset,
509 		    dsl_dir_phys(dd)->dd_child_dir_zapobj,
510 		    buf, sizeof (ddobj), 1, &ddobj);
511 		if (err != 0) {
512 			if (err == ENOENT)
513 				err = 0;
514 			break;
515 		}
516 
517 		err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
518 		if (err != 0)
519 			break;
520 		dsl_dir_rele(dd, tag);
521 		dd = child_dd;
522 		next = nextnext;
523 	}
524 
525 	if (err != 0) {
526 		dsl_dir_rele(dd, tag);
527 		goto error;
528 	}
529 
530 	/*
531 	 * It's an error if there's more than one component left, or
532 	 * tailp==NULL and there's any component left.
533 	 */
534 	if (next != NULL &&
535 	    (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
536 		/* bad path name */
537 		dsl_dir_rele(dd, tag);
538 		dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
539 		err = SET_ERROR(ENOENT);
540 	}
541 	if (tailp != NULL)
542 		*tailp = next;
543 	if (err == 0)
544 		*ddp = dd;
545 error:
546 	kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
547 	return (err);
548 }
549 
550 /*
551  * If the counts are already initialized for this filesystem and its
552  * descendants then do nothing, otherwise initialize the counts.
553  *
554  * The counts on this filesystem, and those below, may be uninitialized due to
555  * either the use of a pre-existing pool which did not support the
556  * filesystem/snapshot limit feature, or one in which the feature had not yet
557  * been enabled.
558  *
559  * Recursively descend the filesystem tree and update the filesystem/snapshot
560  * counts on each filesystem below, then update the cumulative count on the
561  * current filesystem. If the filesystem already has a count set on it,
562  * then we know that its counts, and the counts on the filesystems below it,
563  * are already correct, so we don't have to update this filesystem.
564  */
565 static void
566 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
567 {
568 	uint64_t my_fs_cnt = 0;
569 	uint64_t my_ss_cnt = 0;
570 	dsl_pool_t *dp = dd->dd_pool;
571 	objset_t *os = dp->dp_meta_objset;
572 	zap_cursor_t *zc;
573 	zap_attribute_t *za;
574 	dsl_dataset_t *ds;
575 
576 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
577 	ASSERT(dsl_pool_config_held(dp));
578 	ASSERT(dmu_tx_is_syncing(tx));
579 
580 	dsl_dir_zapify(dd, tx);
581 
582 	/*
583 	 * If the filesystem count has already been initialized then we
584 	 * don't need to recurse down any further.
585 	 */
586 	if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
587 		return;
588 
589 	zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
590 	za = zap_attribute_alloc();
591 
592 	/* Iterate my child dirs */
593 	for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
594 	    zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
595 		dsl_dir_t *chld_dd;
596 		uint64_t count;
597 
598 		VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
599 		    &chld_dd));
600 
601 		/*
602 		 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
603 		 */
604 		if (chld_dd->dd_myname[0] == '$') {
605 			dsl_dir_rele(chld_dd, FTAG);
606 			continue;
607 		}
608 
609 		my_fs_cnt++;	/* count this child */
610 
611 		dsl_dir_init_fs_ss_count(chld_dd, tx);
612 
613 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
614 		    DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
615 		my_fs_cnt += count;
616 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
617 		    DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
618 		my_ss_cnt += count;
619 
620 		dsl_dir_rele(chld_dd, FTAG);
621 	}
622 	zap_cursor_fini(zc);
623 	/* Count my snapshots (we counted children's snapshots above) */
624 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
625 	    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
626 
627 	for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
628 	    zap_cursor_retrieve(zc, za) == 0;
629 	    zap_cursor_advance(zc)) {
630 		/* Don't count temporary snapshots */
631 		if (za->za_name[0] != '%')
632 			my_ss_cnt++;
633 	}
634 	zap_cursor_fini(zc);
635 
636 	dsl_dataset_rele(ds, FTAG);
637 
638 	kmem_free(zc, sizeof (zap_cursor_t));
639 	zap_attribute_free(za);
640 
641 	/* we're in a sync task, update counts */
642 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
643 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
644 	    sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
645 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
646 	    sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
647 }
648 
649 static int
650 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
651 {
652 	char *ddname = (char *)arg;
653 	dsl_pool_t *dp = dmu_tx_pool(tx);
654 	dsl_dataset_t *ds;
655 	dsl_dir_t *dd;
656 	int error;
657 
658 	error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
659 	if (error != 0)
660 		return (error);
661 
662 	if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
663 		dsl_dataset_rele(ds, FTAG);
664 		return (SET_ERROR(ENOTSUP));
665 	}
666 
667 	dd = ds->ds_dir;
668 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
669 	    dsl_dir_is_zapified(dd) &&
670 	    zap_contains(dp->dp_meta_objset, dd->dd_object,
671 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
672 		dsl_dataset_rele(ds, FTAG);
673 		return (SET_ERROR(EALREADY));
674 	}
675 
676 	dsl_dataset_rele(ds, FTAG);
677 	return (0);
678 }
679 
680 static void
681 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
682 {
683 	char *ddname = (char *)arg;
684 	dsl_pool_t *dp = dmu_tx_pool(tx);
685 	dsl_dataset_t *ds;
686 	spa_t *spa;
687 
688 	VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
689 
690 	spa = dsl_dataset_get_spa(ds);
691 
692 	if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
693 		/*
694 		 * Since the feature was not active and we're now setting a
695 		 * limit, increment the feature-active counter so that the
696 		 * feature becomes active for the first time.
697 		 *
698 		 * We are already in a sync task so we can update the MOS.
699 		 */
700 		spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
701 	}
702 
703 	/*
704 	 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
705 	 * we need to ensure the counts are correct. Descend down the tree from
706 	 * this point and update all of the counts to be accurate.
707 	 */
708 	dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
709 
710 	dsl_dataset_rele(ds, FTAG);
711 }
712 
713 /*
714  * Make sure the feature is enabled and activate it if necessary.
715  * Since we're setting a limit, ensure the on-disk counts are valid.
716  * This is only called by the ioctl path when setting a limit value.
717  *
718  * We do not need to validate the new limit, since users who can change the
719  * limit are also allowed to exceed the limit.
720  */
721 int
722 dsl_dir_activate_fs_ss_limit(const char *ddname)
723 {
724 	int error;
725 
726 	error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
727 	    dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
728 	    ZFS_SPACE_CHECK_RESERVED);
729 
730 	if (error == EALREADY)
731 		error = 0;
732 
733 	return (error);
734 }
735 
736 /*
737  * Used to determine if the filesystem_limit or snapshot_limit should be
738  * enforced. We allow the limit to be exceeded if the user has permission to
739  * write the property value. We pass in the creds that we got in the open
740  * context since we will always be the GZ root in syncing context. We also have
741  * to handle the case where we are allowed to change the limit on the current
742  * dataset, but there may be another limit in the tree above.
743  *
744  * We can never modify these two properties within a non-global zone. In
745  * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
746  * can't use that function since we are already holding the dp_config_rwlock.
747  * In addition, we already have the dd and dealing with snapshots is simplified
748  * in this code.
749  */
750 
751 typedef enum {
752 	ENFORCE_ALWAYS,
753 	ENFORCE_NEVER,
754 	ENFORCE_ABOVE
755 } enforce_res_t;
756 
757 static enforce_res_t
758 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
759     cred_t *cr, proc_t *proc)
760 {
761 	enforce_res_t enforce = ENFORCE_ALWAYS;
762 	uint64_t obj;
763 	dsl_dataset_t *ds;
764 	uint64_t zoned;
765 	const char *zonedstr;
766 
767 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
768 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
769 
770 #ifdef _KERNEL
771 	if (crgetzoneid(cr) != GLOBAL_ZONEID)
772 		return (ENFORCE_ALWAYS);
773 
774 	/*
775 	 * We are checking the saved credentials of the user process, which is
776 	 * not the current process.  Note that we can't use secpolicy_zfs(),
777 	 * because it only works if the cred is that of the current process (on
778 	 * Linux).
779 	 */
780 	if (secpolicy_zfs_proc(cr, proc) == 0)
781 		return (ENFORCE_NEVER);
782 #else
783 	(void) proc;
784 #endif
785 
786 	if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
787 		return (ENFORCE_ALWAYS);
788 
789 	ASSERT(dsl_pool_config_held(dd->dd_pool));
790 
791 	if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
792 		return (ENFORCE_ALWAYS);
793 
794 	zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
795 	if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
796 		/* Only root can access zoned fs's from the GZ */
797 		enforce = ENFORCE_ALWAYS;
798 	} else {
799 		if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
800 			enforce = ENFORCE_ABOVE;
801 	}
802 
803 	dsl_dataset_rele(ds, FTAG);
804 	return (enforce);
805 }
806 
807 /*
808  * Check if adding additional child filesystem(s) would exceed any filesystem
809  * limits or adding additional snapshot(s) would exceed any snapshot limits.
810  * The prop argument indicates which limit to check.
811  *
812  * Note that all filesystem limits up to the root (or the highest
813  * initialized) filesystem or the given ancestor must be satisfied.
814  */
815 int
816 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
817     dsl_dir_t *ancestor, cred_t *cr, proc_t *proc)
818 {
819 	objset_t *os = dd->dd_pool->dp_meta_objset;
820 	uint64_t limit, count;
821 	const char *count_prop;
822 	enforce_res_t enforce;
823 	int err = 0;
824 
825 	ASSERT(dsl_pool_config_held(dd->dd_pool));
826 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
827 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
828 
829 	if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
830 		/*
831 		 * We don't enforce the limit for temporary snapshots. This is
832 		 * indicated by a NULL cred_t argument.
833 		 */
834 		if (cr == NULL)
835 			return (0);
836 
837 		count_prop = DD_FIELD_SNAPSHOT_COUNT;
838 	} else {
839 		count_prop = DD_FIELD_FILESYSTEM_COUNT;
840 	}
841 	/*
842 	 * If we're allowed to change the limit, don't enforce the limit
843 	 * e.g. this can happen if a snapshot is taken by an administrative
844 	 * user in the global zone (i.e. a recursive snapshot by root).
845 	 * However, we must handle the case of delegated permissions where we
846 	 * are allowed to change the limit on the current dataset, but there
847 	 * is another limit in the tree above.
848 	 */
849 	enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc);
850 	if (enforce == ENFORCE_NEVER)
851 		return (0);
852 
853 	/*
854 	 * e.g. if renaming a dataset with no snapshots, count adjustment
855 	 * is 0.
856 	 */
857 	if (delta == 0)
858 		return (0);
859 
860 	/*
861 	 * If an ancestor has been provided, stop checking the limit once we
862 	 * hit that dir. We need this during rename so that we don't overcount
863 	 * the check once we recurse up to the common ancestor.
864 	 */
865 	if (ancestor == dd)
866 		return (0);
867 
868 	/*
869 	 * If we hit an uninitialized node while recursing up the tree, we can
870 	 * stop since we know there is no limit here (or above). The counts are
871 	 * not valid on this node and we know we won't touch this node's counts.
872 	 */
873 	if (!dsl_dir_is_zapified(dd))
874 		return (0);
875 	err = zap_lookup(os, dd->dd_object,
876 	    count_prop, sizeof (count), 1, &count);
877 	if (err == ENOENT)
878 		return (0);
879 	if (err != 0)
880 		return (err);
881 
882 	err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
883 	    B_FALSE);
884 	if (err != 0)
885 		return (err);
886 
887 	/* Is there a limit which we've hit? */
888 	if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
889 		return (SET_ERROR(EDQUOT));
890 
891 	if (dd->dd_parent != NULL)
892 		err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
893 		    ancestor, cr, proc);
894 
895 	return (err);
896 }
897 
898 /*
899  * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
900  * parents. When a new filesystem/snapshot is created, increment the count on
901  * all parents, and when a filesystem/snapshot is destroyed, decrement the
902  * count.
903  */
904 void
905 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
906     dmu_tx_t *tx)
907 {
908 	int err;
909 	objset_t *os = dd->dd_pool->dp_meta_objset;
910 	uint64_t count;
911 
912 	ASSERT(dsl_pool_config_held(dd->dd_pool));
913 	ASSERT(dmu_tx_is_syncing(tx));
914 	ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
915 	    strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
916 
917 	/*
918 	 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
919 	 */
920 	if (dd->dd_myname[0] == '$' && strcmp(prop,
921 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
922 		return;
923 	}
924 
925 	/*
926 	 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
927 	 */
928 	if (delta == 0)
929 		return;
930 
931 	/*
932 	 * If we hit an uninitialized node while recursing up the tree, we can
933 	 * stop since we know the counts are not valid on this node and we
934 	 * know we shouldn't touch this node's counts. An uninitialized count
935 	 * on the node indicates that either the feature has not yet been
936 	 * activated or there are no limits on this part of the tree.
937 	 */
938 	if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
939 	    prop, sizeof (count), 1, &count)) == ENOENT)
940 		return;
941 	VERIFY0(err);
942 
943 	count += delta;
944 	/* Use a signed verify to make sure we're not neg. */
945 	VERIFY3S(count, >=, 0);
946 
947 	VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
948 	    tx));
949 
950 	/* Roll up this additional count into our ancestors */
951 	if (dd->dd_parent != NULL)
952 		dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
953 }
954 
955 uint64_t
956 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
957     dmu_tx_t *tx)
958 {
959 	objset_t *mos = dp->dp_meta_objset;
960 	uint64_t ddobj;
961 	dsl_dir_phys_t *ddphys;
962 	dmu_buf_t *dbuf;
963 
964 	ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
965 	    DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
966 	if (pds) {
967 		VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
968 		    name, sizeof (uint64_t), 1, &ddobj, tx));
969 	} else {
970 		/* it's the root dir */
971 		VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
972 		    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
973 	}
974 	VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
975 	dmu_buf_will_dirty(dbuf, tx);
976 	ddphys = dbuf->db_data;
977 
978 	ddphys->dd_creation_time = gethrestime_sec();
979 	if (pds) {
980 		ddphys->dd_parent_obj = pds->dd_object;
981 
982 		/* update the filesystem counts */
983 		dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
984 	}
985 	ddphys->dd_props_zapobj = zap_create(mos,
986 	    DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
987 	ddphys->dd_child_dir_zapobj = zap_create(mos,
988 	    DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
989 	if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
990 		ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
991 
992 	dmu_buf_rele(dbuf, FTAG);
993 
994 	return (ddobj);
995 }
996 
997 boolean_t
998 dsl_dir_is_clone(dsl_dir_t *dd)
999 {
1000 	return (dsl_dir_phys(dd)->dd_origin_obj &&
1001 	    (dd->dd_pool->dp_origin_snap == NULL ||
1002 	    dsl_dir_phys(dd)->dd_origin_obj !=
1003 	    dd->dd_pool->dp_origin_snap->ds_object));
1004 }
1005 
1006 uint64_t
1007 dsl_dir_get_used(dsl_dir_t *dd)
1008 {
1009 	return (dsl_dir_phys(dd)->dd_used_bytes);
1010 }
1011 
1012 uint64_t
1013 dsl_dir_get_compressed(dsl_dir_t *dd)
1014 {
1015 	return (dsl_dir_phys(dd)->dd_compressed_bytes);
1016 }
1017 
1018 uint64_t
1019 dsl_dir_get_quota(dsl_dir_t *dd)
1020 {
1021 	return (dsl_dir_phys(dd)->dd_quota);
1022 }
1023 
1024 uint64_t
1025 dsl_dir_get_reservation(dsl_dir_t *dd)
1026 {
1027 	return (dsl_dir_phys(dd)->dd_reserved);
1028 }
1029 
1030 uint64_t
1031 dsl_dir_get_compressratio(dsl_dir_t *dd)
1032 {
1033 	/* a fixed point number, 100x the ratio */
1034 	return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1035 	    (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1036 	    dsl_dir_phys(dd)->dd_compressed_bytes));
1037 }
1038 
1039 uint64_t
1040 dsl_dir_get_logicalused(dsl_dir_t *dd)
1041 {
1042 	return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1043 }
1044 
1045 uint64_t
1046 dsl_dir_get_usedsnap(dsl_dir_t *dd)
1047 {
1048 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1049 }
1050 
1051 uint64_t
1052 dsl_dir_get_usedds(dsl_dir_t *dd)
1053 {
1054 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1055 }
1056 
1057 uint64_t
1058 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1059 {
1060 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1061 }
1062 
1063 uint64_t
1064 dsl_dir_get_usedchild(dsl_dir_t *dd)
1065 {
1066 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1067 	    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1068 }
1069 
1070 void
1071 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1072 {
1073 	dsl_dataset_t *ds;
1074 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1075 	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1076 
1077 	dsl_dataset_name(ds, buf);
1078 
1079 	dsl_dataset_rele(ds, FTAG);
1080 }
1081 
1082 int
1083 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1084 {
1085 	if (dsl_dir_is_zapified(dd)) {
1086 		objset_t *os = dd->dd_pool->dp_meta_objset;
1087 		return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1088 		    sizeof (*count), 1, count));
1089 	} else {
1090 		return (SET_ERROR(ENOENT));
1091 	}
1092 }
1093 
1094 int
1095 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1096 {
1097 	if (dsl_dir_is_zapified(dd)) {
1098 		objset_t *os = dd->dd_pool->dp_meta_objset;
1099 		return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1100 		    sizeof (*count), 1, count));
1101 	} else {
1102 		return (SET_ERROR(ENOENT));
1103 	}
1104 }
1105 
1106 void
1107 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1108 {
1109 	mutex_enter(&dd->dd_lock);
1110 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1111 	    dsl_dir_get_quota(dd));
1112 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1113 	    dsl_dir_get_reservation(dd));
1114 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1115 	    dsl_dir_get_logicalused(dd));
1116 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1117 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1118 		    dsl_dir_get_usedsnap(dd));
1119 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1120 		    dsl_dir_get_usedds(dd));
1121 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1122 		    dsl_dir_get_usedrefreserv(dd));
1123 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1124 		    dsl_dir_get_usedchild(dd));
1125 	}
1126 	mutex_exit(&dd->dd_lock);
1127 
1128 	uint64_t count;
1129 	if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1130 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1131 		    count);
1132 	}
1133 	if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1134 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1135 		    count);
1136 	}
1137 
1138 	if (dsl_dir_is_clone(dd)) {
1139 		char buf[ZFS_MAX_DATASET_NAME_LEN];
1140 		dsl_dir_get_origin(dd, buf);
1141 		dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1142 	}
1143 
1144 }
1145 
1146 void
1147 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1148 {
1149 	dsl_pool_t *dp = dd->dd_pool;
1150 
1151 	ASSERT(dsl_dir_phys(dd));
1152 
1153 	if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1154 		/* up the hold count until we can be written out */
1155 		dmu_buf_add_ref(dd->dd_dbuf, dd);
1156 	}
1157 }
1158 
1159 static int64_t
1160 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1161 {
1162 	uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1163 	uint64_t new_accounted =
1164 	    MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1165 	return (new_accounted - old_accounted);
1166 }
1167 
1168 void
1169 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1170 {
1171 	ASSERT(dmu_tx_is_syncing(tx));
1172 
1173 	mutex_enter(&dd->dd_lock);
1174 	ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
1175 	dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg,
1176 	    (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
1177 	dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
1178 	mutex_exit(&dd->dd_lock);
1179 
1180 	/* release the hold from dsl_dir_dirty */
1181 	dmu_buf_rele(dd->dd_dbuf, dd);
1182 }
1183 
1184 static uint64_t
1185 dsl_dir_space_towrite(dsl_dir_t *dd)
1186 {
1187 	uint64_t space = 0;
1188 
1189 	ASSERT(MUTEX_HELD(&dd->dd_lock));
1190 
1191 	for (int i = 0; i < TXG_SIZE; i++)
1192 		space += dd->dd_space_towrite[i & TXG_MASK];
1193 
1194 	return (space);
1195 }
1196 
1197 /*
1198  * How much space would dd have available if ancestor had delta applied
1199  * to it?  If ondiskonly is set, we're only interested in what's
1200  * on-disk, not estimated pending changes.
1201  */
1202 uint64_t
1203 dsl_dir_space_available(dsl_dir_t *dd,
1204     dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1205 {
1206 	uint64_t parentspace, myspace, quota, used;
1207 
1208 	/*
1209 	 * If there are no restrictions otherwise, assume we have
1210 	 * unlimited space available.
1211 	 */
1212 	quota = UINT64_MAX;
1213 	parentspace = UINT64_MAX;
1214 
1215 	if (dd->dd_parent != NULL) {
1216 		parentspace = dsl_dir_space_available(dd->dd_parent,
1217 		    ancestor, delta, ondiskonly);
1218 	}
1219 
1220 	mutex_enter(&dd->dd_lock);
1221 	if (dsl_dir_phys(dd)->dd_quota != 0)
1222 		quota = dsl_dir_phys(dd)->dd_quota;
1223 	used = dsl_dir_phys(dd)->dd_used_bytes;
1224 	if (!ondiskonly)
1225 		used += dsl_dir_space_towrite(dd);
1226 
1227 	if (dd->dd_parent == NULL) {
1228 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1229 		    ZFS_SPACE_CHECK_NORMAL);
1230 		quota = MIN(quota, poolsize);
1231 	}
1232 
1233 	if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1234 		/*
1235 		 * We have some space reserved, in addition to what our
1236 		 * parent gave us.
1237 		 */
1238 		parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1239 	}
1240 
1241 	if (dd == ancestor) {
1242 		ASSERT(delta <= 0);
1243 		ASSERT(used >= -delta);
1244 		used += delta;
1245 		if (parentspace != UINT64_MAX)
1246 			parentspace -= delta;
1247 	}
1248 
1249 	if (used > quota) {
1250 		/* over quota */
1251 		myspace = 0;
1252 	} else {
1253 		/*
1254 		 * the lesser of the space provided by our parent and
1255 		 * the space left in our quota
1256 		 */
1257 		myspace = MIN(parentspace, quota - used);
1258 	}
1259 
1260 	mutex_exit(&dd->dd_lock);
1261 
1262 	return (myspace);
1263 }
1264 
1265 struct tempreserve {
1266 	list_node_t tr_node;
1267 	dsl_dir_t *tr_ds;
1268 	uint64_t tr_size;
1269 };
1270 
1271 static int
1272 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1273     boolean_t ignorequota, list_t *tr_list,
1274     dmu_tx_t *tx, boolean_t first)
1275 {
1276 	uint64_t txg;
1277 	uint64_t quota;
1278 	struct tempreserve *tr;
1279 	int retval;
1280 	uint64_t ext_quota;
1281 	uint64_t ref_rsrv;
1282 
1283 top_of_function:
1284 	txg = tx->tx_txg;
1285 	retval = EDQUOT;
1286 	ref_rsrv = 0;
1287 
1288 	ASSERT3U(txg, !=, 0);
1289 	ASSERT3S(asize, >, 0);
1290 
1291 	mutex_enter(&dd->dd_lock);
1292 
1293 	/*
1294 	 * Check against the dsl_dir's quota.  We don't add in the delta
1295 	 * when checking for over-quota because they get one free hit.
1296 	 */
1297 	uint64_t est_inflight = dsl_dir_space_towrite(dd);
1298 	for (int i = 0; i < TXG_SIZE; i++)
1299 		est_inflight += dd->dd_tempreserved[i];
1300 	uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1301 
1302 	/*
1303 	 * On the first iteration, fetch the dataset's used-on-disk and
1304 	 * refreservation values. Also, if checkrefquota is set, test if
1305 	 * allocating this space would exceed the dataset's refquota.
1306 	 */
1307 	if (first && tx->tx_objset) {
1308 		int error;
1309 		dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1310 
1311 		error = dsl_dataset_check_quota(ds, !netfree,
1312 		    asize, est_inflight, &used_on_disk, &ref_rsrv);
1313 		if (error != 0) {
1314 			mutex_exit(&dd->dd_lock);
1315 			DMU_TX_STAT_BUMP(dmu_tx_quota);
1316 			return (error);
1317 		}
1318 	}
1319 
1320 	/*
1321 	 * If this transaction will result in a net free of space,
1322 	 * we want to let it through.
1323 	 */
1324 	if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0 ||
1325 	    (tx->tx_objset && dmu_objset_type(tx->tx_objset) == DMU_OST_ZVOL &&
1326 	    zvol_enforce_quotas == B_FALSE))
1327 		quota = UINT64_MAX;
1328 	else
1329 		quota = dsl_dir_phys(dd)->dd_quota;
1330 
1331 	/*
1332 	 * Adjust the quota against the actual pool size at the root
1333 	 * minus any outstanding deferred frees.
1334 	 * To ensure that it's possible to remove files from a full
1335 	 * pool without inducing transient overcommits, we throttle
1336 	 * netfree transactions against a quota that is slightly larger,
1337 	 * but still within the pool's allocation slop.  In cases where
1338 	 * we're very close to full, this will allow a steady trickle of
1339 	 * removes to get through.
1340 	 */
1341 	if (dd->dd_parent == NULL) {
1342 		uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1343 		    (netfree) ?
1344 		    ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1345 
1346 		if (avail < quota) {
1347 			quota = avail;
1348 			retval = SET_ERROR(ENOSPC);
1349 		}
1350 	}
1351 
1352 	/*
1353 	 * If they are requesting more space, and our current estimate
1354 	 * is over quota, they get to try again unless the actual
1355 	 * on-disk is over quota and there are no pending changes
1356 	 * or deferred frees (which may free up space for us).
1357 	 */
1358 	ext_quota = quota >> 5;
1359 	if (quota == UINT64_MAX)
1360 		ext_quota = 0;
1361 
1362 	if (used_on_disk >= quota) {
1363 		if (retval == ENOSPC && (used_on_disk - quota) <
1364 		    dsl_pool_deferred_space(dd->dd_pool)) {
1365 			retval = SET_ERROR(ERESTART);
1366 		}
1367 		/* Quota exceeded */
1368 		mutex_exit(&dd->dd_lock);
1369 		DMU_TX_STAT_BUMP(dmu_tx_quota);
1370 		return (retval);
1371 	} else if (used_on_disk + est_inflight >= quota + ext_quota) {
1372 		dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1373 		    "quota=%lluK tr=%lluK\n",
1374 		    (u_longlong_t)used_on_disk>>10,
1375 		    (u_longlong_t)est_inflight>>10,
1376 		    (u_longlong_t)quota>>10, (u_longlong_t)asize>>10);
1377 		mutex_exit(&dd->dd_lock);
1378 		DMU_TX_STAT_BUMP(dmu_tx_quota);
1379 		return (SET_ERROR(ERESTART));
1380 	}
1381 
1382 	/* We need to up our estimated delta before dropping dd_lock */
1383 	dd->dd_tempreserved[txg & TXG_MASK] += asize;
1384 
1385 	uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1386 	    asize - ref_rsrv);
1387 	mutex_exit(&dd->dd_lock);
1388 
1389 	tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1390 	tr->tr_ds = dd;
1391 	tr->tr_size = asize;
1392 	list_insert_tail(tr_list, tr);
1393 
1394 	/* see if it's OK with our parent */
1395 	if (dd->dd_parent != NULL && parent_rsrv != 0) {
1396 		/*
1397 		 * Recurse on our parent without recursion. This has been
1398 		 * observed to be potentially large stack usage even within
1399 		 * the test suite. Largest seen stack was 7632 bytes on linux.
1400 		 */
1401 
1402 		dd = dd->dd_parent;
1403 		asize = parent_rsrv;
1404 		ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1405 		first = B_FALSE;
1406 		goto top_of_function;
1407 	}
1408 
1409 	return (0);
1410 }
1411 
1412 /*
1413  * Reserve space in this dsl_dir, to be used in this tx's txg.
1414  * After the space has been dirtied (and dsl_dir_willuse_space()
1415  * has been called), the reservation should be canceled, using
1416  * dsl_dir_tempreserve_clear().
1417  */
1418 int
1419 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1420     boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1421 {
1422 	int err;
1423 	list_t *tr_list;
1424 
1425 	if (asize == 0) {
1426 		*tr_cookiep = NULL;
1427 		return (0);
1428 	}
1429 
1430 	tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1431 	list_create(tr_list, sizeof (struct tempreserve),
1432 	    offsetof(struct tempreserve, tr_node));
1433 	ASSERT3S(asize, >, 0);
1434 
1435 	err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1436 	if (err == 0) {
1437 		struct tempreserve *tr;
1438 
1439 		tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1440 		tr->tr_size = lsize;
1441 		list_insert_tail(tr_list, tr);
1442 	} else {
1443 		if (err == EAGAIN) {
1444 			/*
1445 			 * If arc_memory_throttle() detected that pageout
1446 			 * is running and we are low on memory, we delay new
1447 			 * non-pageout transactions to give pageout an
1448 			 * advantage.
1449 			 *
1450 			 * It is unfortunate to be delaying while the caller's
1451 			 * locks are held.
1452 			 */
1453 			txg_delay(dd->dd_pool, tx->tx_txg,
1454 			    MSEC2NSEC(10), MSEC2NSEC(10));
1455 			err = SET_ERROR(ERESTART);
1456 		}
1457 	}
1458 
1459 	if (err == 0) {
1460 		err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1461 		    B_FALSE, tr_list, tx, B_TRUE);
1462 	}
1463 
1464 	if (err != 0)
1465 		dsl_dir_tempreserve_clear(tr_list, tx);
1466 	else
1467 		*tr_cookiep = tr_list;
1468 
1469 	return (err);
1470 }
1471 
1472 /*
1473  * Clear a temporary reservation that we previously made with
1474  * dsl_dir_tempreserve_space().
1475  */
1476 void
1477 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1478 {
1479 	int txgidx = tx->tx_txg & TXG_MASK;
1480 	list_t *tr_list = tr_cookie;
1481 	struct tempreserve *tr;
1482 
1483 	ASSERT3U(tx->tx_txg, !=, 0);
1484 
1485 	if (tr_cookie == NULL)
1486 		return;
1487 
1488 	while ((tr = list_remove_head(tr_list)) != NULL) {
1489 		if (tr->tr_ds) {
1490 			mutex_enter(&tr->tr_ds->dd_lock);
1491 			ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1492 			    tr->tr_size);
1493 			tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1494 			mutex_exit(&tr->tr_ds->dd_lock);
1495 		} else {
1496 			arc_tempreserve_clear(tr->tr_size);
1497 		}
1498 		kmem_free(tr, sizeof (struct tempreserve));
1499 	}
1500 
1501 	kmem_free(tr_list, sizeof (list_t));
1502 }
1503 
1504 /*
1505  * This should be called from open context when we think we're going to write
1506  * or free space, for example when dirtying data. Be conservative; it's okay
1507  * to write less space or free more, but we don't want to write more or free
1508  * less than the amount specified.
1509  *
1510  * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1511  * version however it has been adjusted to use an iterative rather than
1512  * recursive algorithm to minimize stack usage.
1513  */
1514 void
1515 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1516 {
1517 	int64_t parent_space;
1518 	uint64_t est_used;
1519 
1520 	do {
1521 		mutex_enter(&dd->dd_lock);
1522 		if (space > 0)
1523 			dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1524 
1525 		est_used = dsl_dir_space_towrite(dd) +
1526 		    dsl_dir_phys(dd)->dd_used_bytes;
1527 		parent_space = parent_delta(dd, est_used, space);
1528 		mutex_exit(&dd->dd_lock);
1529 
1530 		/* Make sure that we clean up dd_space_to* */
1531 		dsl_dir_dirty(dd, tx);
1532 
1533 		dd = dd->dd_parent;
1534 		space = parent_space;
1535 	} while (space && dd);
1536 }
1537 
1538 /* call from syncing context when we actually write/free space for this dd */
1539 void
1540 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1541     int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1542 {
1543 	int64_t accounted_delta;
1544 
1545 	ASSERT(dmu_tx_is_syncing(tx));
1546 	ASSERT(type < DD_USED_NUM);
1547 
1548 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1549 
1550 	/*
1551 	 * dsl_dataset_set_refreservation_sync_impl() calls this with
1552 	 * dd_lock held, so that it can atomically update
1553 	 * ds->ds_reserved and the dsl_dir accounting, so that
1554 	 * dsl_dataset_check_quota() can see dataset and dir accounting
1555 	 * consistently.
1556 	 */
1557 	boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1558 	if (needlock)
1559 		mutex_enter(&dd->dd_lock);
1560 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1561 	accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1562 	ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1563 	ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1564 	ASSERT(uncompressed >= 0 ||
1565 	    ddp->dd_uncompressed_bytes >= -uncompressed);
1566 	ddp->dd_used_bytes += used;
1567 	ddp->dd_uncompressed_bytes += uncompressed;
1568 	ddp->dd_compressed_bytes += compressed;
1569 
1570 	if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1571 		ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used);
1572 		ddp->dd_used_breakdown[type] += used;
1573 #ifdef ZFS_DEBUG
1574 		{
1575 			dd_used_t t;
1576 			uint64_t u = 0;
1577 			for (t = 0; t < DD_USED_NUM; t++)
1578 				u += ddp->dd_used_breakdown[t];
1579 			ASSERT3U(u, ==, ddp->dd_used_bytes);
1580 		}
1581 #endif
1582 	}
1583 	if (needlock)
1584 		mutex_exit(&dd->dd_lock);
1585 
1586 	if (dd->dd_parent != NULL) {
1587 		dsl_dir_diduse_transfer_space(dd->dd_parent,
1588 		    accounted_delta, compressed, uncompressed,
1589 		    used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1590 	}
1591 }
1592 
1593 void
1594 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1595     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1596 {
1597 	ASSERT(dmu_tx_is_syncing(tx));
1598 	ASSERT(oldtype < DD_USED_NUM);
1599 	ASSERT(newtype < DD_USED_NUM);
1600 
1601 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1602 	if (delta == 0 ||
1603 	    !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN))
1604 		return;
1605 
1606 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1607 	mutex_enter(&dd->dd_lock);
1608 	ASSERT(delta > 0 ?
1609 	    ddp->dd_used_breakdown[oldtype] >= delta :
1610 	    ddp->dd_used_breakdown[newtype] >= -delta);
1611 	ASSERT(ddp->dd_used_bytes >= ABS(delta));
1612 	ddp->dd_used_breakdown[oldtype] -= delta;
1613 	ddp->dd_used_breakdown[newtype] += delta;
1614 	mutex_exit(&dd->dd_lock);
1615 }
1616 
1617 void
1618 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used,
1619     int64_t compressed, int64_t uncompressed, int64_t tonew,
1620     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1621 {
1622 	int64_t accounted_delta;
1623 
1624 	ASSERT(dmu_tx_is_syncing(tx));
1625 	ASSERT(oldtype < DD_USED_NUM);
1626 	ASSERT(newtype < DD_USED_NUM);
1627 
1628 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1629 
1630 	mutex_enter(&dd->dd_lock);
1631 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1632 	accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1633 	ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1634 	ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1635 	ASSERT(uncompressed >= 0 ||
1636 	    ddp->dd_uncompressed_bytes >= -uncompressed);
1637 	ddp->dd_used_bytes += used;
1638 	ddp->dd_uncompressed_bytes += uncompressed;
1639 	ddp->dd_compressed_bytes += compressed;
1640 
1641 	if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1642 		ASSERT(tonew - used <= 0 ||
1643 		    ddp->dd_used_breakdown[oldtype] >= tonew - used);
1644 		ASSERT(tonew >= 0 ||
1645 		    ddp->dd_used_breakdown[newtype] >= -tonew);
1646 		ddp->dd_used_breakdown[oldtype] -= tonew - used;
1647 		ddp->dd_used_breakdown[newtype] += tonew;
1648 #ifdef ZFS_DEBUG
1649 		{
1650 			dd_used_t t;
1651 			uint64_t u = 0;
1652 			for (t = 0; t < DD_USED_NUM; t++)
1653 				u += ddp->dd_used_breakdown[t];
1654 			ASSERT3U(u, ==, ddp->dd_used_bytes);
1655 		}
1656 #endif
1657 	}
1658 	mutex_exit(&dd->dd_lock);
1659 
1660 	if (dd->dd_parent != NULL) {
1661 		dsl_dir_diduse_transfer_space(dd->dd_parent,
1662 		    accounted_delta, compressed, uncompressed,
1663 		    used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1664 	}
1665 }
1666 
1667 typedef struct dsl_dir_set_qr_arg {
1668 	const char *ddsqra_name;
1669 	zprop_source_t ddsqra_source;
1670 	uint64_t ddsqra_value;
1671 } dsl_dir_set_qr_arg_t;
1672 
1673 static int
1674 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1675 {
1676 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1677 	dsl_pool_t *dp = dmu_tx_pool(tx);
1678 	dsl_dataset_t *ds;
1679 	int error;
1680 	uint64_t towrite, newval;
1681 
1682 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1683 	if (error != 0)
1684 		return (error);
1685 
1686 	error = dsl_prop_predict(ds->ds_dir, "quota",
1687 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1688 	if (error != 0) {
1689 		dsl_dataset_rele(ds, FTAG);
1690 		return (error);
1691 	}
1692 
1693 	if (newval == 0) {
1694 		dsl_dataset_rele(ds, FTAG);
1695 		return (0);
1696 	}
1697 
1698 	mutex_enter(&ds->ds_dir->dd_lock);
1699 	/*
1700 	 * If we are doing the preliminary check in open context, and
1701 	 * there are pending changes, then don't fail it, since the
1702 	 * pending changes could under-estimate the amount of space to be
1703 	 * freed up.
1704 	 */
1705 	towrite = dsl_dir_space_towrite(ds->ds_dir);
1706 	if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1707 	    (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1708 	    newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1709 		error = SET_ERROR(ENOSPC);
1710 	}
1711 	mutex_exit(&ds->ds_dir->dd_lock);
1712 	dsl_dataset_rele(ds, FTAG);
1713 	return (error);
1714 }
1715 
1716 static void
1717 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1718 {
1719 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1720 	dsl_pool_t *dp = dmu_tx_pool(tx);
1721 	dsl_dataset_t *ds;
1722 	uint64_t newval;
1723 
1724 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1725 
1726 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1727 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1728 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1729 		    &ddsqra->ddsqra_value, tx);
1730 
1731 		VERIFY0(dsl_prop_get_int_ds(ds,
1732 		    zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1733 	} else {
1734 		newval = ddsqra->ddsqra_value;
1735 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1736 		    zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1737 	}
1738 
1739 	dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1740 	mutex_enter(&ds->ds_dir->dd_lock);
1741 	dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1742 	mutex_exit(&ds->ds_dir->dd_lock);
1743 	dsl_dataset_rele(ds, FTAG);
1744 }
1745 
1746 int
1747 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1748 {
1749 	dsl_dir_set_qr_arg_t ddsqra;
1750 
1751 	ddsqra.ddsqra_name = ddname;
1752 	ddsqra.ddsqra_source = source;
1753 	ddsqra.ddsqra_value = quota;
1754 
1755 	return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1756 	    dsl_dir_set_quota_sync, &ddsqra, 0,
1757 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
1758 }
1759 
1760 static int
1761 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1762 {
1763 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1764 	dsl_pool_t *dp = dmu_tx_pool(tx);
1765 	dsl_dataset_t *ds;
1766 	dsl_dir_t *dd;
1767 	uint64_t newval, used, avail;
1768 	int error;
1769 
1770 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1771 	if (error != 0)
1772 		return (error);
1773 	dd = ds->ds_dir;
1774 
1775 	/*
1776 	 * If we are doing the preliminary check in open context, the
1777 	 * space estimates may be inaccurate.
1778 	 */
1779 	if (!dmu_tx_is_syncing(tx)) {
1780 		dsl_dataset_rele(ds, FTAG);
1781 		return (0);
1782 	}
1783 
1784 	error = dsl_prop_predict(ds->ds_dir,
1785 	    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1786 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1787 	if (error != 0) {
1788 		dsl_dataset_rele(ds, FTAG);
1789 		return (error);
1790 	}
1791 
1792 	mutex_enter(&dd->dd_lock);
1793 	used = dsl_dir_phys(dd)->dd_used_bytes;
1794 	mutex_exit(&dd->dd_lock);
1795 
1796 	if (dd->dd_parent) {
1797 		avail = dsl_dir_space_available(dd->dd_parent,
1798 		    NULL, 0, FALSE);
1799 	} else {
1800 		avail = dsl_pool_adjustedsize(dd->dd_pool,
1801 		    ZFS_SPACE_CHECK_NORMAL) - used;
1802 	}
1803 
1804 	if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1805 		uint64_t delta = MAX(used, newval) -
1806 		    MAX(used, dsl_dir_phys(dd)->dd_reserved);
1807 
1808 		if (delta > avail ||
1809 		    (dsl_dir_phys(dd)->dd_quota > 0 &&
1810 		    newval > dsl_dir_phys(dd)->dd_quota))
1811 			error = SET_ERROR(ENOSPC);
1812 	}
1813 
1814 	dsl_dataset_rele(ds, FTAG);
1815 	return (error);
1816 }
1817 
1818 void
1819 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1820 {
1821 	uint64_t used;
1822 	int64_t delta;
1823 
1824 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1825 
1826 	mutex_enter(&dd->dd_lock);
1827 	used = dsl_dir_phys(dd)->dd_used_bytes;
1828 	delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1829 	dsl_dir_phys(dd)->dd_reserved = value;
1830 
1831 	if (dd->dd_parent != NULL) {
1832 		/* Roll up this additional usage into our ancestors */
1833 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1834 		    delta, 0, 0, tx);
1835 	}
1836 	mutex_exit(&dd->dd_lock);
1837 }
1838 
1839 static void
1840 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1841 {
1842 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1843 	dsl_pool_t *dp = dmu_tx_pool(tx);
1844 	dsl_dataset_t *ds;
1845 	uint64_t newval;
1846 
1847 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1848 
1849 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1850 		dsl_prop_set_sync_impl(ds,
1851 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1852 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1853 		    &ddsqra->ddsqra_value, tx);
1854 
1855 		VERIFY0(dsl_prop_get_int_ds(ds,
1856 		    zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1857 	} else {
1858 		newval = ddsqra->ddsqra_value;
1859 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1860 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1861 		    (longlong_t)newval);
1862 	}
1863 
1864 	dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1865 	dsl_dataset_rele(ds, FTAG);
1866 }
1867 
1868 int
1869 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1870     uint64_t reservation)
1871 {
1872 	dsl_dir_set_qr_arg_t ddsqra;
1873 
1874 	ddsqra.ddsqra_name = ddname;
1875 	ddsqra.ddsqra_source = source;
1876 	ddsqra.ddsqra_value = reservation;
1877 
1878 	return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1879 	    dsl_dir_set_reservation_sync, &ddsqra, 0,
1880 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
1881 }
1882 
1883 static dsl_dir_t *
1884 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1885 {
1886 	for (; ds1; ds1 = ds1->dd_parent) {
1887 		dsl_dir_t *dd;
1888 		for (dd = ds2; dd; dd = dd->dd_parent) {
1889 			if (ds1 == dd)
1890 				return (dd);
1891 		}
1892 	}
1893 	return (NULL);
1894 }
1895 
1896 /*
1897  * If delta is applied to dd, how much of that delta would be applied to
1898  * ancestor?  Syncing context only.
1899  */
1900 static int64_t
1901 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1902 {
1903 	if (dd == ancestor)
1904 		return (delta);
1905 
1906 	mutex_enter(&dd->dd_lock);
1907 	delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1908 	mutex_exit(&dd->dd_lock);
1909 	return (would_change(dd->dd_parent, delta, ancestor));
1910 }
1911 
1912 typedef struct dsl_dir_rename_arg {
1913 	const char *ddra_oldname;
1914 	const char *ddra_newname;
1915 	cred_t *ddra_cred;
1916 	proc_t *ddra_proc;
1917 } dsl_dir_rename_arg_t;
1918 
1919 typedef struct dsl_valid_rename_arg {
1920 	int char_delta;
1921 	int nest_delta;
1922 } dsl_valid_rename_arg_t;
1923 
1924 static int
1925 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1926 {
1927 	(void) dp;
1928 	dsl_valid_rename_arg_t *dvra = arg;
1929 	char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1930 
1931 	dsl_dataset_name(ds, namebuf);
1932 
1933 	ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1934 	    <, ZFS_MAX_DATASET_NAME_LEN);
1935 	int namelen = strlen(namebuf) + dvra->char_delta;
1936 	int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1937 
1938 	if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1939 		return (SET_ERROR(ENAMETOOLONG));
1940 	if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1941 		return (SET_ERROR(ENAMETOOLONG));
1942 	return (0);
1943 }
1944 
1945 static int
1946 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1947 {
1948 	dsl_dir_rename_arg_t *ddra = arg;
1949 	dsl_pool_t *dp = dmu_tx_pool(tx);
1950 	dsl_dir_t *dd, *newparent;
1951 	dsl_valid_rename_arg_t dvra;
1952 	dsl_dataset_t *parentds;
1953 	objset_t *parentos;
1954 	const char *mynewname;
1955 	int error;
1956 
1957 	/* target dir should exist */
1958 	error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1959 	if (error != 0)
1960 		return (error);
1961 
1962 	/* new parent should exist */
1963 	error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1964 	    &newparent, &mynewname);
1965 	if (error != 0) {
1966 		dsl_dir_rele(dd, FTAG);
1967 		return (error);
1968 	}
1969 
1970 	/* can't rename to different pool */
1971 	if (dd->dd_pool != newparent->dd_pool) {
1972 		dsl_dir_rele(newparent, FTAG);
1973 		dsl_dir_rele(dd, FTAG);
1974 		return (SET_ERROR(EXDEV));
1975 	}
1976 
1977 	/* new name should not already exist */
1978 	if (mynewname == NULL) {
1979 		dsl_dir_rele(newparent, FTAG);
1980 		dsl_dir_rele(dd, FTAG);
1981 		return (SET_ERROR(EEXIST));
1982 	}
1983 
1984 	/* can't rename below anything but filesystems (eg. no ZVOLs) */
1985 	error = dsl_dataset_hold_obj(newparent->dd_pool,
1986 	    dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
1987 	if (error != 0) {
1988 		dsl_dir_rele(newparent, FTAG);
1989 		dsl_dir_rele(dd, FTAG);
1990 		return (error);
1991 	}
1992 	error = dmu_objset_from_ds(parentds, &parentos);
1993 	if (error != 0) {
1994 		dsl_dataset_rele(parentds, FTAG);
1995 		dsl_dir_rele(newparent, FTAG);
1996 		dsl_dir_rele(dd, FTAG);
1997 		return (error);
1998 	}
1999 	if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
2000 		dsl_dataset_rele(parentds, FTAG);
2001 		dsl_dir_rele(newparent, FTAG);
2002 		dsl_dir_rele(dd, FTAG);
2003 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
2004 	}
2005 	dsl_dataset_rele(parentds, FTAG);
2006 
2007 	ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
2008 	    <, ZFS_MAX_DATASET_NAME_LEN);
2009 	ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
2010 	    <, ZFS_MAX_DATASET_NAME_LEN);
2011 	dvra.char_delta = strlen(ddra->ddra_newname)
2012 	    - strlen(ddra->ddra_oldname);
2013 	dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
2014 	    - get_dataset_depth(ddra->ddra_oldname);
2015 
2016 	/* if the name length is growing, validate child name lengths */
2017 	if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
2018 		error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
2019 		    &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
2020 		if (error != 0) {
2021 			dsl_dir_rele(newparent, FTAG);
2022 			dsl_dir_rele(dd, FTAG);
2023 			return (error);
2024 		}
2025 	}
2026 
2027 	if (dmu_tx_is_syncing(tx)) {
2028 		if (spa_feature_is_active(dp->dp_spa,
2029 		    SPA_FEATURE_FS_SS_LIMIT)) {
2030 			/*
2031 			 * Although this is the check function and we don't
2032 			 * normally make on-disk changes in check functions,
2033 			 * we need to do that here.
2034 			 *
2035 			 * Ensure this portion of the tree's counts have been
2036 			 * initialized in case the new parent has limits set.
2037 			 */
2038 			dsl_dir_init_fs_ss_count(dd, tx);
2039 		}
2040 	}
2041 
2042 	if (newparent != dd->dd_parent) {
2043 		/* is there enough space? */
2044 		uint64_t myspace =
2045 		    MAX(dsl_dir_phys(dd)->dd_used_bytes,
2046 		    dsl_dir_phys(dd)->dd_reserved);
2047 		objset_t *os = dd->dd_pool->dp_meta_objset;
2048 		uint64_t fs_cnt = 0;
2049 		uint64_t ss_cnt = 0;
2050 
2051 		if (dsl_dir_is_zapified(dd)) {
2052 			int err;
2053 
2054 			err = zap_lookup(os, dd->dd_object,
2055 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2056 			    &fs_cnt);
2057 			if (err != ENOENT && err != 0) {
2058 				dsl_dir_rele(newparent, FTAG);
2059 				dsl_dir_rele(dd, FTAG);
2060 				return (err);
2061 			}
2062 
2063 			/*
2064 			 * have to add 1 for the filesystem itself that we're
2065 			 * moving
2066 			 */
2067 			fs_cnt++;
2068 
2069 			err = zap_lookup(os, dd->dd_object,
2070 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2071 			    &ss_cnt);
2072 			if (err != ENOENT && err != 0) {
2073 				dsl_dir_rele(newparent, FTAG);
2074 				dsl_dir_rele(dd, FTAG);
2075 				return (err);
2076 			}
2077 		}
2078 
2079 		/* check for encryption errors */
2080 		error = dsl_dir_rename_crypt_check(dd, newparent);
2081 		if (error != 0) {
2082 			dsl_dir_rele(newparent, FTAG);
2083 			dsl_dir_rele(dd, FTAG);
2084 			return (SET_ERROR(EACCES));
2085 		}
2086 
2087 		/* no rename into our descendant */
2088 		if (closest_common_ancestor(dd, newparent) == dd) {
2089 			dsl_dir_rele(newparent, FTAG);
2090 			dsl_dir_rele(dd, FTAG);
2091 			return (SET_ERROR(EINVAL));
2092 		}
2093 
2094 		error = dsl_dir_transfer_possible(dd->dd_parent,
2095 		    newparent, fs_cnt, ss_cnt, myspace,
2096 		    ddra->ddra_cred, ddra->ddra_proc);
2097 		if (error != 0) {
2098 			dsl_dir_rele(newparent, FTAG);
2099 			dsl_dir_rele(dd, FTAG);
2100 			return (error);
2101 		}
2102 	}
2103 
2104 	dsl_dir_rele(newparent, FTAG);
2105 	dsl_dir_rele(dd, FTAG);
2106 	return (0);
2107 }
2108 
2109 static void
2110 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
2111 {
2112 	dsl_dir_rename_arg_t *ddra = arg;
2113 	dsl_pool_t *dp = dmu_tx_pool(tx);
2114 	dsl_dir_t *dd, *newparent;
2115 	const char *mynewname;
2116 	objset_t *mos = dp->dp_meta_objset;
2117 
2118 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2119 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2120 	    &mynewname));
2121 
2122 	ASSERT3P(mynewname, !=, NULL);
2123 
2124 	/* Log this before we change the name. */
2125 	spa_history_log_internal_dd(dd, "rename", tx,
2126 	    "-> %s", ddra->ddra_newname);
2127 
2128 	if (newparent != dd->dd_parent) {
2129 		objset_t *os = dd->dd_pool->dp_meta_objset;
2130 		uint64_t fs_cnt = 0;
2131 		uint64_t ss_cnt = 0;
2132 
2133 		/*
2134 		 * We already made sure the dd counts were initialized in the
2135 		 * check function.
2136 		 */
2137 		if (spa_feature_is_active(dp->dp_spa,
2138 		    SPA_FEATURE_FS_SS_LIMIT)) {
2139 			VERIFY0(zap_lookup(os, dd->dd_object,
2140 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2141 			    &fs_cnt));
2142 			/* add 1 for the filesystem itself that we're moving */
2143 			fs_cnt++;
2144 
2145 			VERIFY0(zap_lookup(os, dd->dd_object,
2146 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2147 			    &ss_cnt));
2148 		}
2149 
2150 		dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2151 		    DD_FIELD_FILESYSTEM_COUNT, tx);
2152 		dsl_fs_ss_count_adjust(newparent, fs_cnt,
2153 		    DD_FIELD_FILESYSTEM_COUNT, tx);
2154 
2155 		dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2156 		    DD_FIELD_SNAPSHOT_COUNT, tx);
2157 		dsl_fs_ss_count_adjust(newparent, ss_cnt,
2158 		    DD_FIELD_SNAPSHOT_COUNT, tx);
2159 
2160 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2161 		    -dsl_dir_phys(dd)->dd_used_bytes,
2162 		    -dsl_dir_phys(dd)->dd_compressed_bytes,
2163 		    -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2164 		dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2165 		    dsl_dir_phys(dd)->dd_used_bytes,
2166 		    dsl_dir_phys(dd)->dd_compressed_bytes,
2167 		    dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2168 
2169 		if (dsl_dir_phys(dd)->dd_reserved >
2170 		    dsl_dir_phys(dd)->dd_used_bytes) {
2171 			uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2172 			    dsl_dir_phys(dd)->dd_used_bytes;
2173 
2174 			dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2175 			    -unused_rsrv, 0, 0, tx);
2176 			dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2177 			    unused_rsrv, 0, 0, tx);
2178 		}
2179 	}
2180 
2181 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
2182 
2183 	/* remove from old parent zapobj */
2184 	VERIFY0(zap_remove(mos,
2185 	    dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2186 	    dd->dd_myname, tx));
2187 
2188 	(void) strlcpy(dd->dd_myname, mynewname,
2189 	    sizeof (dd->dd_myname));
2190 	dsl_dir_rele(dd->dd_parent, dd);
2191 	dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2192 	VERIFY0(dsl_dir_hold_obj(dp,
2193 	    newparent->dd_object, NULL, dd, &dd->dd_parent));
2194 
2195 	/* add to new parent zapobj */
2196 	VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2197 	    dd->dd_myname, 8, 1, &dd->dd_object, tx));
2198 
2199 	/* TODO: A rename callback to avoid these layering violations. */
2200 	zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
2201 	zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
2202 	    ddra->ddra_newname, B_TRUE);
2203 
2204 	dsl_prop_notify_all(dd);
2205 
2206 	dsl_dir_rele(newparent, FTAG);
2207 	dsl_dir_rele(dd, FTAG);
2208 }
2209 
2210 int
2211 dsl_dir_rename(const char *oldname, const char *newname)
2212 {
2213 	dsl_dir_rename_arg_t ddra;
2214 
2215 	ddra.ddra_oldname = oldname;
2216 	ddra.ddra_newname = newname;
2217 	ddra.ddra_cred = CRED();
2218 	ddra.ddra_proc = curproc;
2219 
2220 	return (dsl_sync_task(oldname,
2221 	    dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2222 	    3, ZFS_SPACE_CHECK_RESERVED));
2223 }
2224 
2225 int
2226 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2227     uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
2228     cred_t *cr, proc_t *proc)
2229 {
2230 	dsl_dir_t *ancestor;
2231 	int64_t adelta;
2232 	uint64_t avail;
2233 	int err;
2234 
2235 	ancestor = closest_common_ancestor(sdd, tdd);
2236 	adelta = would_change(sdd, -space, ancestor);
2237 	avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2238 	if (avail < space)
2239 		return (SET_ERROR(ENOSPC));
2240 
2241 	err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2242 	    ancestor, cr, proc);
2243 	if (err != 0)
2244 		return (err);
2245 	err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2246 	    ancestor, cr, proc);
2247 	if (err != 0)
2248 		return (err);
2249 
2250 	return (0);
2251 }
2252 
2253 inode_timespec_t
2254 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2255 {
2256 	inode_timespec_t t;
2257 
2258 	mutex_enter(&dd->dd_lock);
2259 	t = dd->dd_snap_cmtime;
2260 	mutex_exit(&dd->dd_lock);
2261 
2262 	return (t);
2263 }
2264 
2265 void
2266 dsl_dir_snap_cmtime_update(dsl_dir_t *dd, dmu_tx_t *tx)
2267 {
2268 	dsl_pool_t *dp = dmu_tx_pool(tx);
2269 	inode_timespec_t t;
2270 	gethrestime(&t);
2271 
2272 	mutex_enter(&dd->dd_lock);
2273 	dd->dd_snap_cmtime = t;
2274 	if (spa_feature_is_enabled(dp->dp_spa,
2275 	    SPA_FEATURE_EXTENSIBLE_DATASET)) {
2276 		objset_t *mos = dd->dd_pool->dp_meta_objset;
2277 		uint64_t ddobj = dd->dd_object;
2278 		dsl_dir_zapify(dd, tx);
2279 		VERIFY0(zap_update(mos, ddobj,
2280 		    DD_FIELD_SNAPSHOTS_CHANGED,
2281 		    sizeof (uint64_t),
2282 		    sizeof (inode_timespec_t) / sizeof (uint64_t),
2283 		    &t, tx));
2284 	}
2285 	mutex_exit(&dd->dd_lock);
2286 }
2287 
2288 void
2289 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2290 {
2291 	objset_t *mos = dd->dd_pool->dp_meta_objset;
2292 	dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2293 }
2294 
2295 boolean_t
2296 dsl_dir_is_zapified(dsl_dir_t *dd)
2297 {
2298 	dmu_object_info_t doi;
2299 
2300 	dmu_object_info_from_db(dd->dd_dbuf, &doi);
2301 	return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2302 }
2303 
2304 void
2305 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
2306 {
2307 	objset_t *mos = dd->dd_pool->dp_meta_objset;
2308 	ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
2309 	    SPA_FEATURE_LIVELIST));
2310 	dsl_deadlist_open(&dd->dd_livelist, mos, obj);
2311 	bplist_create(&dd->dd_pending_allocs);
2312 	bplist_create(&dd->dd_pending_frees);
2313 }
2314 
2315 void
2316 dsl_dir_livelist_close(dsl_dir_t *dd)
2317 {
2318 	dsl_deadlist_close(&dd->dd_livelist);
2319 	bplist_destroy(&dd->dd_pending_allocs);
2320 	bplist_destroy(&dd->dd_pending_frees);
2321 }
2322 
2323 void
2324 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
2325 {
2326 	uint64_t obj;
2327 	dsl_pool_t *dp = dmu_tx_pool(tx);
2328 	spa_t *spa = dp->dp_spa;
2329 	livelist_condense_entry_t to_condense = spa->spa_to_condense;
2330 
2331 	if (!dsl_deadlist_is_open(&dd->dd_livelist))
2332 		return;
2333 
2334 	/*
2335 	 * If the livelist being removed is set to be condensed, stop the
2336 	 * condense zthr and indicate the cancellation in the spa_to_condense
2337 	 * struct in case the condense no-wait synctask has already started
2338 	 */
2339 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
2340 	if (ll_condense_thread != NULL &&
2341 	    (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
2342 		/*
2343 		 * We use zthr_wait_cycle_done instead of zthr_cancel
2344 		 * because we don't want to destroy the zthr, just have
2345 		 * it skip its current task.
2346 		 */
2347 		spa->spa_to_condense.cancelled = B_TRUE;
2348 		zthr_wait_cycle_done(ll_condense_thread);
2349 		/*
2350 		 * If we've returned from zthr_wait_cycle_done without
2351 		 * clearing the to_condense data structure it's either
2352 		 * because the no-wait synctask has started (which is
2353 		 * indicated by 'syncing' field of to_condense) and we
2354 		 * can expect it to clear to_condense on its own.
2355 		 * Otherwise, we returned before the zthr ran. The
2356 		 * checkfunc will now fail as cancelled == B_TRUE so we
2357 		 * can safely NULL out ds, allowing a different dir's
2358 		 * livelist to be condensed.
2359 		 *
2360 		 * We can be sure that the to_condense struct will not
2361 		 * be repopulated at this stage because both this
2362 		 * function and dsl_livelist_try_condense execute in
2363 		 * syncing context.
2364 		 */
2365 		if ((spa->spa_to_condense.ds != NULL) &&
2366 		    !spa->spa_to_condense.syncing) {
2367 			dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
2368 			    spa);
2369 			spa->spa_to_condense.ds = NULL;
2370 		}
2371 	}
2372 
2373 	dsl_dir_livelist_close(dd);
2374 	VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
2375 	    DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
2376 	VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
2377 	    DD_FIELD_LIVELIST, tx));
2378 	if (total) {
2379 		dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
2380 		spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2381 	}
2382 }
2383 
2384 static int
2385 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
2386     zfs_wait_activity_t activity, boolean_t *in_progress)
2387 {
2388 	int error = 0;
2389 
2390 	ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
2391 
2392 	switch (activity) {
2393 	case ZFS_WAIT_DELETEQ: {
2394 #ifdef _KERNEL
2395 		objset_t *os;
2396 		error = dmu_objset_from_ds(ds, &os);
2397 		if (error != 0)
2398 			break;
2399 
2400 		mutex_enter(&os->os_user_ptr_lock);
2401 		void *user = dmu_objset_get_user(os);
2402 		mutex_exit(&os->os_user_ptr_lock);
2403 		if (dmu_objset_type(os) != DMU_OST_ZFS ||
2404 		    user == NULL || zfs_get_vfs_flag_unmounted(os)) {
2405 			*in_progress = B_FALSE;
2406 			return (0);
2407 		}
2408 
2409 		uint64_t readonly = B_FALSE;
2410 		error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
2411 		    NULL);
2412 
2413 		if (error != 0)
2414 			break;
2415 
2416 		if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
2417 			*in_progress = B_FALSE;
2418 			return (0);
2419 		}
2420 
2421 		uint64_t count, unlinked_obj;
2422 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
2423 		    &unlinked_obj);
2424 		if (error != 0) {
2425 			dsl_dataset_rele(ds, FTAG);
2426 			break;
2427 		}
2428 		error = zap_count(os, unlinked_obj, &count);
2429 
2430 		if (error == 0)
2431 			*in_progress = (count != 0);
2432 		break;
2433 #else
2434 		/*
2435 		 * The delete queue is ZPL specific, and libzpool doesn't have
2436 		 * it. It doesn't make sense to wait for it.
2437 		 */
2438 		(void) ds;
2439 		*in_progress = B_FALSE;
2440 		break;
2441 #endif
2442 	}
2443 	default:
2444 		panic("unrecognized value for activity %d", activity);
2445 	}
2446 
2447 	return (error);
2448 }
2449 
2450 int
2451 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
2452     boolean_t *waited)
2453 {
2454 	int error = 0;
2455 	boolean_t in_progress;
2456 	dsl_pool_t *dp = dd->dd_pool;
2457 	for (;;) {
2458 		dsl_pool_config_enter(dp, FTAG);
2459 		error = dsl_dir_activity_in_progress(dd, ds, activity,
2460 		    &in_progress);
2461 		dsl_pool_config_exit(dp, FTAG);
2462 		if (error != 0 || !in_progress)
2463 			break;
2464 
2465 		*waited = B_TRUE;
2466 
2467 		if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
2468 		    0 || dd->dd_activity_cancelled) {
2469 			error = SET_ERROR(EINTR);
2470 			break;
2471 		}
2472 	}
2473 	return (error);
2474 }
2475 
2476 void
2477 dsl_dir_cancel_waiters(dsl_dir_t *dd)
2478 {
2479 	mutex_enter(&dd->dd_activity_lock);
2480 	dd->dd_activity_cancelled = B_TRUE;
2481 	cv_broadcast(&dd->dd_activity_cv);
2482 	while (dd->dd_activity_waiters > 0)
2483 		cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
2484 	mutex_exit(&dd->dd_activity_lock);
2485 }
2486 
2487 #if defined(_KERNEL)
2488 EXPORT_SYMBOL(dsl_dir_set_quota);
2489 EXPORT_SYMBOL(dsl_dir_set_reservation);
2490 #endif
2491 
2492 /* CSTYLED */
2493 ZFS_MODULE_PARAM(zfs, , zvol_enforce_quotas, INT, ZMOD_RW,
2494 	"Enable strict ZVOL quota enforcment");
2495