1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 28 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_prop.h> 37 #include <sys/dsl_synctask.h> 38 #include <sys/dsl_deleg.h> 39 #include <sys/dmu_impl.h> 40 #include <sys/spa.h> 41 #include <sys/spa_impl.h> 42 #include <sys/metaslab.h> 43 #include <sys/zap.h> 44 #include <sys/zio.h> 45 #include <sys/arc.h> 46 #include <sys/sunddi.h> 47 #include <sys/zfeature.h> 48 #include <sys/policy.h> 49 #include <sys/zfs_vfsops.h> 50 #include <sys/zfs_znode.h> 51 #include <sys/zvol.h> 52 #include <sys/zthr.h> 53 #include "zfs_namecheck.h" 54 #include "zfs_prop.h" 55 56 /* 57 * Filesystem and Snapshot Limits 58 * ------------------------------ 59 * 60 * These limits are used to restrict the number of filesystems and/or snapshots 61 * that can be created at a given level in the tree or below. A typical 62 * use-case is with a delegated dataset where the administrator wants to ensure 63 * that a user within the zone is not creating too many additional filesystems 64 * or snapshots, even though they're not exceeding their space quota. 65 * 66 * The filesystem and snapshot counts are stored as extensible properties. This 67 * capability is controlled by a feature flag and must be enabled to be used. 68 * Once enabled, the feature is not active until the first limit is set. At 69 * that point, future operations to create/destroy filesystems or snapshots 70 * will validate and update the counts. 71 * 72 * Because the count properties will not exist before the feature is active, 73 * the counts are updated when a limit is first set on an uninitialized 74 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 75 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 76 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 77 * snapshot count properties on a node indicate uninitialized counts on that 78 * node.) When first setting a limit on an uninitialized node, the code starts 79 * at the filesystem with the new limit and descends into all sub-filesystems 80 * to add the count properties. 81 * 82 * In practice this is lightweight since a limit is typically set when the 83 * filesystem is created and thus has no children. Once valid, changing the 84 * limit value won't require a re-traversal since the counts are already valid. 85 * When recursively fixing the counts, if a node with a limit is encountered 86 * during the descent, the counts are known to be valid and there is no need to 87 * descend into that filesystem's children. The counts on filesystems above the 88 * one with the new limit will still be uninitialized, unless a limit is 89 * eventually set on one of those filesystems. The counts are always recursively 90 * updated when a limit is set on a dataset, unless there is already a limit. 91 * When a new limit value is set on a filesystem with an existing limit, it is 92 * possible for the new limit to be less than the current count at that level 93 * since a user who can change the limit is also allowed to exceed the limit. 94 * 95 * Once the feature is active, then whenever a filesystem or snapshot is 96 * created, the code recurses up the tree, validating the new count against the 97 * limit at each initialized level. In practice, most levels will not have a 98 * limit set. If there is a limit at any initialized level up the tree, the 99 * check must pass or the creation will fail. Likewise, when a filesystem or 100 * snapshot is destroyed, the counts are recursively adjusted all the way up 101 * the initialized nodes in the tree. Renaming a filesystem into different point 102 * in the tree will first validate, then update the counts on each branch up to 103 * the common ancestor. A receive will also validate the counts and then update 104 * them. 105 * 106 * An exception to the above behavior is that the limit is not enforced if the 107 * user has permission to modify the limit. This is primarily so that 108 * recursive snapshots in the global zone always work. We want to prevent a 109 * denial-of-service in which a lower level delegated dataset could max out its 110 * limit and thus block recursive snapshots from being taken in the global zone. 111 * Because of this, it is possible for the snapshot count to be over the limit 112 * and snapshots taken in the global zone could cause a lower level dataset to 113 * hit or exceed its limit. The administrator taking the global zone recursive 114 * snapshot should be aware of this side-effect and behave accordingly. 115 * For consistency, the filesystem limit is also not enforced if the user can 116 * modify the limit. 117 * 118 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 119 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 120 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 121 * dsl_dir_init_fs_ss_count(). 122 */ 123 124 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd); 125 126 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 127 128 typedef struct ddulrt_arg { 129 dsl_dir_t *ddulrta_dd; 130 uint64_t ddlrta_txg; 131 } ddulrt_arg_t; 132 133 static void 134 dsl_dir_evict_async(void *dbu) 135 { 136 dsl_dir_t *dd = dbu; 137 int t; 138 dsl_pool_t *dp __maybe_unused = dd->dd_pool; 139 140 dd->dd_dbuf = NULL; 141 142 for (t = 0; t < TXG_SIZE; t++) { 143 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 144 ASSERT(dd->dd_tempreserved[t] == 0); 145 ASSERT(dd->dd_space_towrite[t] == 0); 146 } 147 148 if (dd->dd_parent) 149 dsl_dir_async_rele(dd->dd_parent, dd); 150 151 spa_async_close(dd->dd_pool->dp_spa, dd); 152 153 if (dsl_deadlist_is_open(&dd->dd_livelist)) 154 dsl_dir_livelist_close(dd); 155 156 dsl_prop_fini(dd); 157 cv_destroy(&dd->dd_activity_cv); 158 mutex_destroy(&dd->dd_activity_lock); 159 mutex_destroy(&dd->dd_lock); 160 kmem_free(dd, sizeof (dsl_dir_t)); 161 } 162 163 int 164 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 165 const char *tail, void *tag, dsl_dir_t **ddp) 166 { 167 dmu_buf_t *dbuf; 168 dsl_dir_t *dd; 169 dmu_object_info_t doi; 170 int err; 171 172 ASSERT(dsl_pool_config_held(dp)); 173 174 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 175 if (err != 0) 176 return (err); 177 dd = dmu_buf_get_user(dbuf); 178 179 dmu_object_info_from_db(dbuf, &doi); 180 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 181 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 182 183 if (dd == NULL) { 184 dsl_dir_t *winner; 185 186 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 187 dd->dd_object = ddobj; 188 dd->dd_dbuf = dbuf; 189 dd->dd_pool = dp; 190 191 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 192 mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL); 193 cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL); 194 dsl_prop_init(dd); 195 196 if (dsl_dir_is_zapified(dd)) { 197 err = zap_lookup(dp->dp_meta_objset, 198 ddobj, DD_FIELD_CRYPTO_KEY_OBJ, 199 sizeof (uint64_t), 1, &dd->dd_crypto_obj); 200 if (err == 0) { 201 /* check for on-disk format errata */ 202 if (dsl_dir_incompatible_encryption_version( 203 dd)) { 204 dp->dp_spa->spa_errata = 205 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION; 206 } 207 } else if (err != ENOENT) { 208 goto errout; 209 } 210 } 211 212 dsl_dir_snap_cmtime_update(dd); 213 214 if (dsl_dir_phys(dd)->dd_parent_obj) { 215 err = dsl_dir_hold_obj(dp, 216 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 217 &dd->dd_parent); 218 if (err != 0) 219 goto errout; 220 if (tail) { 221 #ifdef ZFS_DEBUG 222 uint64_t foundobj; 223 224 err = zap_lookup(dp->dp_meta_objset, 225 dsl_dir_phys(dd->dd_parent)-> 226 dd_child_dir_zapobj, tail, 227 sizeof (foundobj), 1, &foundobj); 228 ASSERT(err || foundobj == ddobj); 229 #endif 230 (void) strlcpy(dd->dd_myname, tail, 231 sizeof (dd->dd_myname)); 232 } else { 233 err = zap_value_search(dp->dp_meta_objset, 234 dsl_dir_phys(dd->dd_parent)-> 235 dd_child_dir_zapobj, 236 ddobj, 0, dd->dd_myname); 237 } 238 if (err != 0) 239 goto errout; 240 } else { 241 (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa), 242 sizeof (dd->dd_myname)); 243 } 244 245 if (dsl_dir_is_clone(dd)) { 246 dmu_buf_t *origin_bonus; 247 dsl_dataset_phys_t *origin_phys; 248 249 /* 250 * We can't open the origin dataset, because 251 * that would require opening this dsl_dir. 252 * Just look at its phys directly instead. 253 */ 254 err = dmu_bonus_hold(dp->dp_meta_objset, 255 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 256 &origin_bonus); 257 if (err != 0) 258 goto errout; 259 origin_phys = origin_bonus->db_data; 260 dd->dd_origin_txg = 261 origin_phys->ds_creation_txg; 262 dmu_buf_rele(origin_bonus, FTAG); 263 if (dsl_dir_is_zapified(dd)) { 264 uint64_t obj; 265 err = zap_lookup(dp->dp_meta_objset, 266 dd->dd_object, DD_FIELD_LIVELIST, 267 sizeof (uint64_t), 1, &obj); 268 if (err == 0) 269 dsl_dir_livelist_open(dd, obj); 270 else if (err != ENOENT) 271 goto errout; 272 } 273 } 274 275 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 276 &dd->dd_dbuf); 277 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 278 if (winner != NULL) { 279 if (dd->dd_parent) 280 dsl_dir_rele(dd->dd_parent, dd); 281 if (dsl_deadlist_is_open(&dd->dd_livelist)) 282 dsl_dir_livelist_close(dd); 283 dsl_prop_fini(dd); 284 cv_destroy(&dd->dd_activity_cv); 285 mutex_destroy(&dd->dd_activity_lock); 286 mutex_destroy(&dd->dd_lock); 287 kmem_free(dd, sizeof (dsl_dir_t)); 288 dd = winner; 289 } else { 290 spa_open_ref(dp->dp_spa, dd); 291 } 292 } 293 294 /* 295 * The dsl_dir_t has both open-to-close and instantiate-to-evict 296 * holds on the spa. We need the open-to-close holds because 297 * otherwise the spa_refcnt wouldn't change when we open a 298 * dir which the spa also has open, so we could incorrectly 299 * think it was OK to unload/export/destroy the pool. We need 300 * the instantiate-to-evict hold because the dsl_dir_t has a 301 * pointer to the dd_pool, which has a pointer to the spa_t. 302 */ 303 spa_open_ref(dp->dp_spa, tag); 304 ASSERT3P(dd->dd_pool, ==, dp); 305 ASSERT3U(dd->dd_object, ==, ddobj); 306 ASSERT3P(dd->dd_dbuf, ==, dbuf); 307 *ddp = dd; 308 return (0); 309 310 errout: 311 if (dd->dd_parent) 312 dsl_dir_rele(dd->dd_parent, dd); 313 if (dsl_deadlist_is_open(&dd->dd_livelist)) 314 dsl_dir_livelist_close(dd); 315 dsl_prop_fini(dd); 316 cv_destroy(&dd->dd_activity_cv); 317 mutex_destroy(&dd->dd_activity_lock); 318 mutex_destroy(&dd->dd_lock); 319 kmem_free(dd, sizeof (dsl_dir_t)); 320 dmu_buf_rele(dbuf, tag); 321 return (err); 322 } 323 324 void 325 dsl_dir_rele(dsl_dir_t *dd, void *tag) 326 { 327 dprintf_dd(dd, "%s\n", ""); 328 spa_close(dd->dd_pool->dp_spa, tag); 329 dmu_buf_rele(dd->dd_dbuf, tag); 330 } 331 332 /* 333 * Remove a reference to the given dsl dir that is being asynchronously 334 * released. Async releases occur from a taskq performing eviction of 335 * dsl datasets and dirs. This process is identical to a normal release 336 * with the exception of using the async API for releasing the reference on 337 * the spa. 338 */ 339 void 340 dsl_dir_async_rele(dsl_dir_t *dd, void *tag) 341 { 342 dprintf_dd(dd, "%s\n", ""); 343 spa_async_close(dd->dd_pool->dp_spa, tag); 344 dmu_buf_rele(dd->dd_dbuf, tag); 345 } 346 347 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 348 void 349 dsl_dir_name(dsl_dir_t *dd, char *buf) 350 { 351 if (dd->dd_parent) { 352 dsl_dir_name(dd->dd_parent, buf); 353 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 354 ZFS_MAX_DATASET_NAME_LEN); 355 } else { 356 buf[0] = '\0'; 357 } 358 if (!MUTEX_HELD(&dd->dd_lock)) { 359 /* 360 * recursive mutex so that we can use 361 * dprintf_dd() with dd_lock held 362 */ 363 mutex_enter(&dd->dd_lock); 364 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 365 <, ZFS_MAX_DATASET_NAME_LEN); 366 mutex_exit(&dd->dd_lock); 367 } else { 368 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 369 <, ZFS_MAX_DATASET_NAME_LEN); 370 } 371 } 372 373 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 374 int 375 dsl_dir_namelen(dsl_dir_t *dd) 376 { 377 int result = 0; 378 379 if (dd->dd_parent) { 380 /* parent's name + 1 for the "/" */ 381 result = dsl_dir_namelen(dd->dd_parent) + 1; 382 } 383 384 if (!MUTEX_HELD(&dd->dd_lock)) { 385 /* see dsl_dir_name */ 386 mutex_enter(&dd->dd_lock); 387 result += strlen(dd->dd_myname); 388 mutex_exit(&dd->dd_lock); 389 } else { 390 result += strlen(dd->dd_myname); 391 } 392 393 return (result); 394 } 395 396 static int 397 getcomponent(const char *path, char *component, const char **nextp) 398 { 399 char *p; 400 401 if ((path == NULL) || (path[0] == '\0')) 402 return (SET_ERROR(ENOENT)); 403 /* This would be a good place to reserve some namespace... */ 404 p = strpbrk(path, "/@"); 405 if (p && (p[1] == '/' || p[1] == '@')) { 406 /* two separators in a row */ 407 return (SET_ERROR(EINVAL)); 408 } 409 if (p == NULL || p == path) { 410 /* 411 * if the first thing is an @ or /, it had better be an 412 * @ and it had better not have any more ats or slashes, 413 * and it had better have something after the @. 414 */ 415 if (p != NULL && 416 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 417 return (SET_ERROR(EINVAL)); 418 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 419 return (SET_ERROR(ENAMETOOLONG)); 420 (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN); 421 p = NULL; 422 } else if (p[0] == '/') { 423 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 424 return (SET_ERROR(ENAMETOOLONG)); 425 (void) strncpy(component, path, p - path); 426 component[p - path] = '\0'; 427 p++; 428 } else if (p[0] == '@') { 429 /* 430 * if the next separator is an @, there better not be 431 * any more slashes. 432 */ 433 if (strchr(path, '/')) 434 return (SET_ERROR(EINVAL)); 435 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 436 return (SET_ERROR(ENAMETOOLONG)); 437 (void) strncpy(component, path, p - path); 438 component[p - path] = '\0'; 439 } else { 440 panic("invalid p=%p", (void *)p); 441 } 442 *nextp = p; 443 return (0); 444 } 445 446 /* 447 * Return the dsl_dir_t, and possibly the last component which couldn't 448 * be found in *tail. The name must be in the specified dsl_pool_t. This 449 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 450 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 451 * (*tail)[0] == '@' means that the last component is a snapshot. 452 */ 453 int 454 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag, 455 dsl_dir_t **ddp, const char **tailp) 456 { 457 char *buf; 458 const char *spaname, *next, *nextnext = NULL; 459 int err; 460 dsl_dir_t *dd; 461 uint64_t ddobj; 462 463 buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 464 err = getcomponent(name, buf, &next); 465 if (err != 0) 466 goto error; 467 468 /* Make sure the name is in the specified pool. */ 469 spaname = spa_name(dp->dp_spa); 470 if (strcmp(buf, spaname) != 0) { 471 err = SET_ERROR(EXDEV); 472 goto error; 473 } 474 475 ASSERT(dsl_pool_config_held(dp)); 476 477 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 478 if (err != 0) { 479 goto error; 480 } 481 482 while (next != NULL) { 483 dsl_dir_t *child_dd; 484 err = getcomponent(next, buf, &nextnext); 485 if (err != 0) 486 break; 487 ASSERT(next[0] != '\0'); 488 if (next[0] == '@') 489 break; 490 dprintf("looking up %s in obj%lld\n", 491 buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj); 492 493 err = zap_lookup(dp->dp_meta_objset, 494 dsl_dir_phys(dd)->dd_child_dir_zapobj, 495 buf, sizeof (ddobj), 1, &ddobj); 496 if (err != 0) { 497 if (err == ENOENT) 498 err = 0; 499 break; 500 } 501 502 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 503 if (err != 0) 504 break; 505 dsl_dir_rele(dd, tag); 506 dd = child_dd; 507 next = nextnext; 508 } 509 510 if (err != 0) { 511 dsl_dir_rele(dd, tag); 512 goto error; 513 } 514 515 /* 516 * It's an error if there's more than one component left, or 517 * tailp==NULL and there's any component left. 518 */ 519 if (next != NULL && 520 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 521 /* bad path name */ 522 dsl_dir_rele(dd, tag); 523 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 524 err = SET_ERROR(ENOENT); 525 } 526 if (tailp != NULL) 527 *tailp = next; 528 if (err == 0) 529 *ddp = dd; 530 error: 531 kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN); 532 return (err); 533 } 534 535 /* 536 * If the counts are already initialized for this filesystem and its 537 * descendants then do nothing, otherwise initialize the counts. 538 * 539 * The counts on this filesystem, and those below, may be uninitialized due to 540 * either the use of a pre-existing pool which did not support the 541 * filesystem/snapshot limit feature, or one in which the feature had not yet 542 * been enabled. 543 * 544 * Recursively descend the filesystem tree and update the filesystem/snapshot 545 * counts on each filesystem below, then update the cumulative count on the 546 * current filesystem. If the filesystem already has a count set on it, 547 * then we know that its counts, and the counts on the filesystems below it, 548 * are already correct, so we don't have to update this filesystem. 549 */ 550 static void 551 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 552 { 553 uint64_t my_fs_cnt = 0; 554 uint64_t my_ss_cnt = 0; 555 dsl_pool_t *dp = dd->dd_pool; 556 objset_t *os = dp->dp_meta_objset; 557 zap_cursor_t *zc; 558 zap_attribute_t *za; 559 dsl_dataset_t *ds; 560 561 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 562 ASSERT(dsl_pool_config_held(dp)); 563 ASSERT(dmu_tx_is_syncing(tx)); 564 565 dsl_dir_zapify(dd, tx); 566 567 /* 568 * If the filesystem count has already been initialized then we 569 * don't need to recurse down any further. 570 */ 571 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 572 return; 573 574 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 575 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 576 577 /* Iterate my child dirs */ 578 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 579 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 580 dsl_dir_t *chld_dd; 581 uint64_t count; 582 583 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 584 &chld_dd)); 585 586 /* 587 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets. 588 */ 589 if (chld_dd->dd_myname[0] == '$') { 590 dsl_dir_rele(chld_dd, FTAG); 591 continue; 592 } 593 594 my_fs_cnt++; /* count this child */ 595 596 dsl_dir_init_fs_ss_count(chld_dd, tx); 597 598 VERIFY0(zap_lookup(os, chld_dd->dd_object, 599 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 600 my_fs_cnt += count; 601 VERIFY0(zap_lookup(os, chld_dd->dd_object, 602 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 603 my_ss_cnt += count; 604 605 dsl_dir_rele(chld_dd, FTAG); 606 } 607 zap_cursor_fini(zc); 608 /* Count my snapshots (we counted children's snapshots above) */ 609 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 610 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 611 612 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 613 zap_cursor_retrieve(zc, za) == 0; 614 zap_cursor_advance(zc)) { 615 /* Don't count temporary snapshots */ 616 if (za->za_name[0] != '%') 617 my_ss_cnt++; 618 } 619 zap_cursor_fini(zc); 620 621 dsl_dataset_rele(ds, FTAG); 622 623 kmem_free(zc, sizeof (zap_cursor_t)); 624 kmem_free(za, sizeof (zap_attribute_t)); 625 626 /* we're in a sync task, update counts */ 627 dmu_buf_will_dirty(dd->dd_dbuf, tx); 628 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 629 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 630 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 631 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 632 } 633 634 static int 635 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 636 { 637 char *ddname = (char *)arg; 638 dsl_pool_t *dp = dmu_tx_pool(tx); 639 dsl_dataset_t *ds; 640 dsl_dir_t *dd; 641 int error; 642 643 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 644 if (error != 0) 645 return (error); 646 647 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 648 dsl_dataset_rele(ds, FTAG); 649 return (SET_ERROR(ENOTSUP)); 650 } 651 652 dd = ds->ds_dir; 653 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 654 dsl_dir_is_zapified(dd) && 655 zap_contains(dp->dp_meta_objset, dd->dd_object, 656 DD_FIELD_FILESYSTEM_COUNT) == 0) { 657 dsl_dataset_rele(ds, FTAG); 658 return (SET_ERROR(EALREADY)); 659 } 660 661 dsl_dataset_rele(ds, FTAG); 662 return (0); 663 } 664 665 static void 666 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 667 { 668 char *ddname = (char *)arg; 669 dsl_pool_t *dp = dmu_tx_pool(tx); 670 dsl_dataset_t *ds; 671 spa_t *spa; 672 673 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 674 675 spa = dsl_dataset_get_spa(ds); 676 677 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 678 /* 679 * Since the feature was not active and we're now setting a 680 * limit, increment the feature-active counter so that the 681 * feature becomes active for the first time. 682 * 683 * We are already in a sync task so we can update the MOS. 684 */ 685 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 686 } 687 688 /* 689 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 690 * we need to ensure the counts are correct. Descend down the tree from 691 * this point and update all of the counts to be accurate. 692 */ 693 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 694 695 dsl_dataset_rele(ds, FTAG); 696 } 697 698 /* 699 * Make sure the feature is enabled and activate it if necessary. 700 * Since we're setting a limit, ensure the on-disk counts are valid. 701 * This is only called by the ioctl path when setting a limit value. 702 * 703 * We do not need to validate the new limit, since users who can change the 704 * limit are also allowed to exceed the limit. 705 */ 706 int 707 dsl_dir_activate_fs_ss_limit(const char *ddname) 708 { 709 int error; 710 711 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 712 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 713 ZFS_SPACE_CHECK_RESERVED); 714 715 if (error == EALREADY) 716 error = 0; 717 718 return (error); 719 } 720 721 /* 722 * Used to determine if the filesystem_limit or snapshot_limit should be 723 * enforced. We allow the limit to be exceeded if the user has permission to 724 * write the property value. We pass in the creds that we got in the open 725 * context since we will always be the GZ root in syncing context. We also have 726 * to handle the case where we are allowed to change the limit on the current 727 * dataset, but there may be another limit in the tree above. 728 * 729 * We can never modify these two properties within a non-global zone. In 730 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 731 * can't use that function since we are already holding the dp_config_rwlock. 732 * In addition, we already have the dd and dealing with snapshots is simplified 733 * in this code. 734 */ 735 736 typedef enum { 737 ENFORCE_ALWAYS, 738 ENFORCE_NEVER, 739 ENFORCE_ABOVE 740 } enforce_res_t; 741 742 static enforce_res_t 743 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, 744 cred_t *cr, proc_t *proc) 745 { 746 enforce_res_t enforce = ENFORCE_ALWAYS; 747 uint64_t obj; 748 dsl_dataset_t *ds; 749 uint64_t zoned; 750 const char *zonedstr; 751 752 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 753 prop == ZFS_PROP_SNAPSHOT_LIMIT); 754 755 #ifdef _KERNEL 756 if (crgetzoneid(cr) != GLOBAL_ZONEID) 757 return (ENFORCE_ALWAYS); 758 759 /* 760 * We are checking the saved credentials of the user process, which is 761 * not the current process. Note that we can't use secpolicy_zfs(), 762 * because it only works if the cred is that of the current process (on 763 * Linux). 764 */ 765 if (secpolicy_zfs_proc(cr, proc) == 0) 766 return (ENFORCE_NEVER); 767 #endif 768 769 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 770 return (ENFORCE_ALWAYS); 771 772 ASSERT(dsl_pool_config_held(dd->dd_pool)); 773 774 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 775 return (ENFORCE_ALWAYS); 776 777 zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED); 778 if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) { 779 /* Only root can access zoned fs's from the GZ */ 780 enforce = ENFORCE_ALWAYS; 781 } else { 782 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 783 enforce = ENFORCE_ABOVE; 784 } 785 786 dsl_dataset_rele(ds, FTAG); 787 return (enforce); 788 } 789 790 /* 791 * Check if adding additional child filesystem(s) would exceed any filesystem 792 * limits or adding additional snapshot(s) would exceed any snapshot limits. 793 * The prop argument indicates which limit to check. 794 * 795 * Note that all filesystem limits up to the root (or the highest 796 * initialized) filesystem or the given ancestor must be satisfied. 797 */ 798 int 799 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 800 dsl_dir_t *ancestor, cred_t *cr, proc_t *proc) 801 { 802 objset_t *os = dd->dd_pool->dp_meta_objset; 803 uint64_t limit, count; 804 char *count_prop; 805 enforce_res_t enforce; 806 int err = 0; 807 808 ASSERT(dsl_pool_config_held(dd->dd_pool)); 809 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 810 prop == ZFS_PROP_SNAPSHOT_LIMIT); 811 812 /* 813 * If we're allowed to change the limit, don't enforce the limit 814 * e.g. this can happen if a snapshot is taken by an administrative 815 * user in the global zone (i.e. a recursive snapshot by root). 816 * However, we must handle the case of delegated permissions where we 817 * are allowed to change the limit on the current dataset, but there 818 * is another limit in the tree above. 819 */ 820 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc); 821 if (enforce == ENFORCE_NEVER) 822 return (0); 823 824 /* 825 * e.g. if renaming a dataset with no snapshots, count adjustment 826 * is 0. 827 */ 828 if (delta == 0) 829 return (0); 830 831 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 832 /* 833 * We don't enforce the limit for temporary snapshots. This is 834 * indicated by a NULL cred_t argument. 835 */ 836 if (cr == NULL) 837 return (0); 838 839 count_prop = DD_FIELD_SNAPSHOT_COUNT; 840 } else { 841 count_prop = DD_FIELD_FILESYSTEM_COUNT; 842 } 843 844 /* 845 * If an ancestor has been provided, stop checking the limit once we 846 * hit that dir. We need this during rename so that we don't overcount 847 * the check once we recurse up to the common ancestor. 848 */ 849 if (ancestor == dd) 850 return (0); 851 852 /* 853 * If we hit an uninitialized node while recursing up the tree, we can 854 * stop since we know there is no limit here (or above). The counts are 855 * not valid on this node and we know we won't touch this node's counts. 856 */ 857 if (!dsl_dir_is_zapified(dd)) 858 return (0); 859 err = zap_lookup(os, dd->dd_object, 860 count_prop, sizeof (count), 1, &count); 861 if (err == ENOENT) 862 return (0); 863 if (err != 0) 864 return (err); 865 866 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 867 B_FALSE); 868 if (err != 0) 869 return (err); 870 871 /* Is there a limit which we've hit? */ 872 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 873 return (SET_ERROR(EDQUOT)); 874 875 if (dd->dd_parent != NULL) 876 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 877 ancestor, cr, proc); 878 879 return (err); 880 } 881 882 /* 883 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 884 * parents. When a new filesystem/snapshot is created, increment the count on 885 * all parents, and when a filesystem/snapshot is destroyed, decrement the 886 * count. 887 */ 888 void 889 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 890 dmu_tx_t *tx) 891 { 892 int err; 893 objset_t *os = dd->dd_pool->dp_meta_objset; 894 uint64_t count; 895 896 ASSERT(dsl_pool_config_held(dd->dd_pool)); 897 ASSERT(dmu_tx_is_syncing(tx)); 898 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 899 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 900 901 /* 902 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets. 903 */ 904 if (dd->dd_myname[0] == '$' && strcmp(prop, 905 DD_FIELD_FILESYSTEM_COUNT) == 0) { 906 return; 907 } 908 909 /* 910 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 911 */ 912 if (delta == 0) 913 return; 914 915 /* 916 * If we hit an uninitialized node while recursing up the tree, we can 917 * stop since we know the counts are not valid on this node and we 918 * know we shouldn't touch this node's counts. An uninitialized count 919 * on the node indicates that either the feature has not yet been 920 * activated or there are no limits on this part of the tree. 921 */ 922 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 923 prop, sizeof (count), 1, &count)) == ENOENT) 924 return; 925 VERIFY0(err); 926 927 count += delta; 928 /* Use a signed verify to make sure we're not neg. */ 929 VERIFY3S(count, >=, 0); 930 931 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 932 tx)); 933 934 /* Roll up this additional count into our ancestors */ 935 if (dd->dd_parent != NULL) 936 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 937 } 938 939 uint64_t 940 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 941 dmu_tx_t *tx) 942 { 943 objset_t *mos = dp->dp_meta_objset; 944 uint64_t ddobj; 945 dsl_dir_phys_t *ddphys; 946 dmu_buf_t *dbuf; 947 948 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 949 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 950 if (pds) { 951 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 952 name, sizeof (uint64_t), 1, &ddobj, tx)); 953 } else { 954 /* it's the root dir */ 955 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 956 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 957 } 958 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 959 dmu_buf_will_dirty(dbuf, tx); 960 ddphys = dbuf->db_data; 961 962 ddphys->dd_creation_time = gethrestime_sec(); 963 if (pds) { 964 ddphys->dd_parent_obj = pds->dd_object; 965 966 /* update the filesystem counts */ 967 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 968 } 969 ddphys->dd_props_zapobj = zap_create(mos, 970 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 971 ddphys->dd_child_dir_zapobj = zap_create(mos, 972 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 973 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 974 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 975 976 dmu_buf_rele(dbuf, FTAG); 977 978 return (ddobj); 979 } 980 981 boolean_t 982 dsl_dir_is_clone(dsl_dir_t *dd) 983 { 984 return (dsl_dir_phys(dd)->dd_origin_obj && 985 (dd->dd_pool->dp_origin_snap == NULL || 986 dsl_dir_phys(dd)->dd_origin_obj != 987 dd->dd_pool->dp_origin_snap->ds_object)); 988 } 989 990 uint64_t 991 dsl_dir_get_used(dsl_dir_t *dd) 992 { 993 return (dsl_dir_phys(dd)->dd_used_bytes); 994 } 995 996 uint64_t 997 dsl_dir_get_compressed(dsl_dir_t *dd) 998 { 999 return (dsl_dir_phys(dd)->dd_compressed_bytes); 1000 } 1001 1002 uint64_t 1003 dsl_dir_get_quota(dsl_dir_t *dd) 1004 { 1005 return (dsl_dir_phys(dd)->dd_quota); 1006 } 1007 1008 uint64_t 1009 dsl_dir_get_reservation(dsl_dir_t *dd) 1010 { 1011 return (dsl_dir_phys(dd)->dd_reserved); 1012 } 1013 1014 uint64_t 1015 dsl_dir_get_compressratio(dsl_dir_t *dd) 1016 { 1017 /* a fixed point number, 100x the ratio */ 1018 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 1019 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 1020 dsl_dir_phys(dd)->dd_compressed_bytes)); 1021 } 1022 1023 uint64_t 1024 dsl_dir_get_logicalused(dsl_dir_t *dd) 1025 { 1026 return (dsl_dir_phys(dd)->dd_uncompressed_bytes); 1027 } 1028 1029 uint64_t 1030 dsl_dir_get_usedsnap(dsl_dir_t *dd) 1031 { 1032 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 1033 } 1034 1035 uint64_t 1036 dsl_dir_get_usedds(dsl_dir_t *dd) 1037 { 1038 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 1039 } 1040 1041 uint64_t 1042 dsl_dir_get_usedrefreserv(dsl_dir_t *dd) 1043 { 1044 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 1045 } 1046 1047 uint64_t 1048 dsl_dir_get_usedchild(dsl_dir_t *dd) 1049 { 1050 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 1051 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 1052 } 1053 1054 void 1055 dsl_dir_get_origin(dsl_dir_t *dd, char *buf) 1056 { 1057 dsl_dataset_t *ds; 1058 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 1059 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 1060 1061 dsl_dataset_name(ds, buf); 1062 1063 dsl_dataset_rele(ds, FTAG); 1064 } 1065 1066 int 1067 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count) 1068 { 1069 if (dsl_dir_is_zapified(dd)) { 1070 objset_t *os = dd->dd_pool->dp_meta_objset; 1071 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 1072 sizeof (*count), 1, count)); 1073 } else { 1074 return (SET_ERROR(ENOENT)); 1075 } 1076 } 1077 1078 int 1079 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count) 1080 { 1081 if (dsl_dir_is_zapified(dd)) { 1082 objset_t *os = dd->dd_pool->dp_meta_objset; 1083 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 1084 sizeof (*count), 1, count)); 1085 } else { 1086 return (SET_ERROR(ENOENT)); 1087 } 1088 } 1089 1090 void 1091 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 1092 { 1093 mutex_enter(&dd->dd_lock); 1094 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 1095 dsl_dir_get_quota(dd)); 1096 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 1097 dsl_dir_get_reservation(dd)); 1098 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 1099 dsl_dir_get_logicalused(dd)); 1100 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1101 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 1102 dsl_dir_get_usedsnap(dd)); 1103 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 1104 dsl_dir_get_usedds(dd)); 1105 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 1106 dsl_dir_get_usedrefreserv(dd)); 1107 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 1108 dsl_dir_get_usedchild(dd)); 1109 } 1110 mutex_exit(&dd->dd_lock); 1111 1112 uint64_t count; 1113 if (dsl_dir_get_filesystem_count(dd, &count) == 0) { 1114 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT, 1115 count); 1116 } 1117 if (dsl_dir_get_snapshot_count(dd, &count) == 0) { 1118 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT, 1119 count); 1120 } 1121 1122 if (dsl_dir_is_clone(dd)) { 1123 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1124 dsl_dir_get_origin(dd, buf); 1125 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 1126 } 1127 1128 } 1129 1130 void 1131 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 1132 { 1133 dsl_pool_t *dp = dd->dd_pool; 1134 1135 ASSERT(dsl_dir_phys(dd)); 1136 1137 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 1138 /* up the hold count until we can be written out */ 1139 dmu_buf_add_ref(dd->dd_dbuf, dd); 1140 } 1141 } 1142 1143 static int64_t 1144 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1145 { 1146 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1147 uint64_t new_accounted = 1148 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1149 return (new_accounted - old_accounted); 1150 } 1151 1152 void 1153 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1154 { 1155 ASSERT(dmu_tx_is_syncing(tx)); 1156 1157 mutex_enter(&dd->dd_lock); 1158 ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]); 1159 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg, 1160 (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024); 1161 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0; 1162 mutex_exit(&dd->dd_lock); 1163 1164 /* release the hold from dsl_dir_dirty */ 1165 dmu_buf_rele(dd->dd_dbuf, dd); 1166 } 1167 1168 static uint64_t 1169 dsl_dir_space_towrite(dsl_dir_t *dd) 1170 { 1171 uint64_t space = 0; 1172 1173 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1174 1175 for (int i = 0; i < TXG_SIZE; i++) { 1176 space += dd->dd_space_towrite[i & TXG_MASK]; 1177 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0); 1178 } 1179 return (space); 1180 } 1181 1182 /* 1183 * How much space would dd have available if ancestor had delta applied 1184 * to it? If ondiskonly is set, we're only interested in what's 1185 * on-disk, not estimated pending changes. 1186 */ 1187 uint64_t 1188 dsl_dir_space_available(dsl_dir_t *dd, 1189 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1190 { 1191 uint64_t parentspace, myspace, quota, used; 1192 1193 /* 1194 * If there are no restrictions otherwise, assume we have 1195 * unlimited space available. 1196 */ 1197 quota = UINT64_MAX; 1198 parentspace = UINT64_MAX; 1199 1200 if (dd->dd_parent != NULL) { 1201 parentspace = dsl_dir_space_available(dd->dd_parent, 1202 ancestor, delta, ondiskonly); 1203 } 1204 1205 mutex_enter(&dd->dd_lock); 1206 if (dsl_dir_phys(dd)->dd_quota != 0) 1207 quota = dsl_dir_phys(dd)->dd_quota; 1208 used = dsl_dir_phys(dd)->dd_used_bytes; 1209 if (!ondiskonly) 1210 used += dsl_dir_space_towrite(dd); 1211 1212 if (dd->dd_parent == NULL) { 1213 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, 1214 ZFS_SPACE_CHECK_NORMAL); 1215 quota = MIN(quota, poolsize); 1216 } 1217 1218 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1219 /* 1220 * We have some space reserved, in addition to what our 1221 * parent gave us. 1222 */ 1223 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1224 } 1225 1226 if (dd == ancestor) { 1227 ASSERT(delta <= 0); 1228 ASSERT(used >= -delta); 1229 used += delta; 1230 if (parentspace != UINT64_MAX) 1231 parentspace -= delta; 1232 } 1233 1234 if (used > quota) { 1235 /* over quota */ 1236 myspace = 0; 1237 } else { 1238 /* 1239 * the lesser of the space provided by our parent and 1240 * the space left in our quota 1241 */ 1242 myspace = MIN(parentspace, quota - used); 1243 } 1244 1245 mutex_exit(&dd->dd_lock); 1246 1247 return (myspace); 1248 } 1249 1250 struct tempreserve { 1251 list_node_t tr_node; 1252 dsl_dir_t *tr_ds; 1253 uint64_t tr_size; 1254 }; 1255 1256 static int 1257 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1258 boolean_t ignorequota, list_t *tr_list, 1259 dmu_tx_t *tx, boolean_t first) 1260 { 1261 uint64_t txg; 1262 uint64_t quota; 1263 struct tempreserve *tr; 1264 int retval; 1265 uint64_t ref_rsrv; 1266 1267 top_of_function: 1268 txg = tx->tx_txg; 1269 retval = EDQUOT; 1270 ref_rsrv = 0; 1271 1272 ASSERT3U(txg, !=, 0); 1273 ASSERT3S(asize, >, 0); 1274 1275 mutex_enter(&dd->dd_lock); 1276 1277 /* 1278 * Check against the dsl_dir's quota. We don't add in the delta 1279 * when checking for over-quota because they get one free hit. 1280 */ 1281 uint64_t est_inflight = dsl_dir_space_towrite(dd); 1282 for (int i = 0; i < TXG_SIZE; i++) 1283 est_inflight += dd->dd_tempreserved[i]; 1284 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1285 1286 /* 1287 * On the first iteration, fetch the dataset's used-on-disk and 1288 * refreservation values. Also, if checkrefquota is set, test if 1289 * allocating this space would exceed the dataset's refquota. 1290 */ 1291 if (first && tx->tx_objset) { 1292 int error; 1293 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1294 1295 error = dsl_dataset_check_quota(ds, !netfree, 1296 asize, est_inflight, &used_on_disk, &ref_rsrv); 1297 if (error != 0) { 1298 mutex_exit(&dd->dd_lock); 1299 DMU_TX_STAT_BUMP(dmu_tx_quota); 1300 return (error); 1301 } 1302 } 1303 1304 /* 1305 * If this transaction will result in a net free of space, 1306 * we want to let it through. 1307 */ 1308 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1309 quota = UINT64_MAX; 1310 else 1311 quota = dsl_dir_phys(dd)->dd_quota; 1312 1313 /* 1314 * Adjust the quota against the actual pool size at the root 1315 * minus any outstanding deferred frees. 1316 * To ensure that it's possible to remove files from a full 1317 * pool without inducing transient overcommits, we throttle 1318 * netfree transactions against a quota that is slightly larger, 1319 * but still within the pool's allocation slop. In cases where 1320 * we're very close to full, this will allow a steady trickle of 1321 * removes to get through. 1322 */ 1323 uint64_t deferred = 0; 1324 if (dd->dd_parent == NULL) { 1325 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool, 1326 (netfree) ? 1327 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL); 1328 1329 if (avail < quota) { 1330 quota = avail; 1331 retval = SET_ERROR(ENOSPC); 1332 } 1333 } 1334 1335 /* 1336 * If they are requesting more space, and our current estimate 1337 * is over quota, they get to try again unless the actual 1338 * on-disk is over quota and there are no pending changes (which 1339 * may free up space for us). 1340 */ 1341 if (used_on_disk + est_inflight >= quota) { 1342 if (est_inflight > 0 || used_on_disk < quota || 1343 (retval == ENOSPC && used_on_disk < quota + deferred)) 1344 retval = ERESTART; 1345 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1346 "quota=%lluK tr=%lluK err=%d\n", 1347 (u_longlong_t)used_on_disk>>10, 1348 (u_longlong_t)est_inflight>>10, 1349 (u_longlong_t)quota>>10, (u_longlong_t)asize>>10, retval); 1350 mutex_exit(&dd->dd_lock); 1351 DMU_TX_STAT_BUMP(dmu_tx_quota); 1352 return (SET_ERROR(retval)); 1353 } 1354 1355 /* We need to up our estimated delta before dropping dd_lock */ 1356 dd->dd_tempreserved[txg & TXG_MASK] += asize; 1357 1358 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1359 asize - ref_rsrv); 1360 mutex_exit(&dd->dd_lock); 1361 1362 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1363 tr->tr_ds = dd; 1364 tr->tr_size = asize; 1365 list_insert_tail(tr_list, tr); 1366 1367 /* see if it's OK with our parent */ 1368 if (dd->dd_parent != NULL && parent_rsrv != 0) { 1369 /* 1370 * Recurse on our parent without recursion. This has been 1371 * observed to be potentially large stack usage even within 1372 * the test suite. Largest seen stack was 7632 bytes on linux. 1373 */ 1374 1375 dd = dd->dd_parent; 1376 asize = parent_rsrv; 1377 ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1378 first = B_FALSE; 1379 goto top_of_function; 1380 1381 } else { 1382 return (0); 1383 } 1384 } 1385 1386 /* 1387 * Reserve space in this dsl_dir, to be used in this tx's txg. 1388 * After the space has been dirtied (and dsl_dir_willuse_space() 1389 * has been called), the reservation should be canceled, using 1390 * dsl_dir_tempreserve_clear(). 1391 */ 1392 int 1393 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1394 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx) 1395 { 1396 int err; 1397 list_t *tr_list; 1398 1399 if (asize == 0) { 1400 *tr_cookiep = NULL; 1401 return (0); 1402 } 1403 1404 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1405 list_create(tr_list, sizeof (struct tempreserve), 1406 offsetof(struct tempreserve, tr_node)); 1407 ASSERT3S(asize, >, 0); 1408 1409 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg); 1410 if (err == 0) { 1411 struct tempreserve *tr; 1412 1413 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1414 tr->tr_size = lsize; 1415 list_insert_tail(tr_list, tr); 1416 } else { 1417 if (err == EAGAIN) { 1418 /* 1419 * If arc_memory_throttle() detected that pageout 1420 * is running and we are low on memory, we delay new 1421 * non-pageout transactions to give pageout an 1422 * advantage. 1423 * 1424 * It is unfortunate to be delaying while the caller's 1425 * locks are held. 1426 */ 1427 txg_delay(dd->dd_pool, tx->tx_txg, 1428 MSEC2NSEC(10), MSEC2NSEC(10)); 1429 err = SET_ERROR(ERESTART); 1430 } 1431 } 1432 1433 if (err == 0) { 1434 err = dsl_dir_tempreserve_impl(dd, asize, netfree, 1435 B_FALSE, tr_list, tx, B_TRUE); 1436 } 1437 1438 if (err != 0) 1439 dsl_dir_tempreserve_clear(tr_list, tx); 1440 else 1441 *tr_cookiep = tr_list; 1442 1443 return (err); 1444 } 1445 1446 /* 1447 * Clear a temporary reservation that we previously made with 1448 * dsl_dir_tempreserve_space(). 1449 */ 1450 void 1451 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1452 { 1453 int txgidx = tx->tx_txg & TXG_MASK; 1454 list_t *tr_list = tr_cookie; 1455 struct tempreserve *tr; 1456 1457 ASSERT3U(tx->tx_txg, !=, 0); 1458 1459 if (tr_cookie == NULL) 1460 return; 1461 1462 while ((tr = list_head(tr_list)) != NULL) { 1463 if (tr->tr_ds) { 1464 mutex_enter(&tr->tr_ds->dd_lock); 1465 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1466 tr->tr_size); 1467 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1468 mutex_exit(&tr->tr_ds->dd_lock); 1469 } else { 1470 arc_tempreserve_clear(tr->tr_size); 1471 } 1472 list_remove(tr_list, tr); 1473 kmem_free(tr, sizeof (struct tempreserve)); 1474 } 1475 1476 kmem_free(tr_list, sizeof (list_t)); 1477 } 1478 1479 /* 1480 * This should be called from open context when we think we're going to write 1481 * or free space, for example when dirtying data. Be conservative; it's okay 1482 * to write less space or free more, but we don't want to write more or free 1483 * less than the amount specified. 1484 * 1485 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD 1486 * version however it has been adjusted to use an iterative rather than 1487 * recursive algorithm to minimize stack usage. 1488 */ 1489 void 1490 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1491 { 1492 int64_t parent_space; 1493 uint64_t est_used; 1494 1495 do { 1496 mutex_enter(&dd->dd_lock); 1497 if (space > 0) 1498 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1499 1500 est_used = dsl_dir_space_towrite(dd) + 1501 dsl_dir_phys(dd)->dd_used_bytes; 1502 parent_space = parent_delta(dd, est_used, space); 1503 mutex_exit(&dd->dd_lock); 1504 1505 /* Make sure that we clean up dd_space_to* */ 1506 dsl_dir_dirty(dd, tx); 1507 1508 dd = dd->dd_parent; 1509 space = parent_space; 1510 } while (space && dd); 1511 } 1512 1513 /* call from syncing context when we actually write/free space for this dd */ 1514 void 1515 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1516 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1517 { 1518 int64_t accounted_delta; 1519 1520 ASSERT(dmu_tx_is_syncing(tx)); 1521 ASSERT(type < DD_USED_NUM); 1522 1523 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1524 1525 /* 1526 * dsl_dataset_set_refreservation_sync_impl() calls this with 1527 * dd_lock held, so that it can atomically update 1528 * ds->ds_reserved and the dsl_dir accounting, so that 1529 * dsl_dataset_check_quota() can see dataset and dir accounting 1530 * consistently. 1531 */ 1532 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1533 if (needlock) 1534 mutex_enter(&dd->dd_lock); 1535 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1536 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used); 1537 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used); 1538 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed); 1539 ASSERT(uncompressed >= 0 || 1540 ddp->dd_uncompressed_bytes >= -uncompressed); 1541 ddp->dd_used_bytes += used; 1542 ddp->dd_uncompressed_bytes += uncompressed; 1543 ddp->dd_compressed_bytes += compressed; 1544 1545 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1546 ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used); 1547 ddp->dd_used_breakdown[type] += used; 1548 #ifdef ZFS_DEBUG 1549 { 1550 dd_used_t t; 1551 uint64_t u = 0; 1552 for (t = 0; t < DD_USED_NUM; t++) 1553 u += ddp->dd_used_breakdown[t]; 1554 ASSERT3U(u, ==, ddp->dd_used_bytes); 1555 } 1556 #endif 1557 } 1558 if (needlock) 1559 mutex_exit(&dd->dd_lock); 1560 1561 if (dd->dd_parent != NULL) { 1562 dsl_dir_diduse_transfer_space(dd->dd_parent, 1563 accounted_delta, compressed, uncompressed, 1564 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1565 } 1566 } 1567 1568 void 1569 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1570 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1571 { 1572 ASSERT(dmu_tx_is_syncing(tx)); 1573 ASSERT(oldtype < DD_USED_NUM); 1574 ASSERT(newtype < DD_USED_NUM); 1575 1576 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1577 if (delta == 0 || 1578 !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1579 return; 1580 1581 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1582 mutex_enter(&dd->dd_lock); 1583 ASSERT(delta > 0 ? 1584 ddp->dd_used_breakdown[oldtype] >= delta : 1585 ddp->dd_used_breakdown[newtype] >= -delta); 1586 ASSERT(ddp->dd_used_bytes >= ABS(delta)); 1587 ddp->dd_used_breakdown[oldtype] -= delta; 1588 ddp->dd_used_breakdown[newtype] += delta; 1589 mutex_exit(&dd->dd_lock); 1590 } 1591 1592 void 1593 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used, 1594 int64_t compressed, int64_t uncompressed, int64_t tonew, 1595 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1596 { 1597 int64_t accounted_delta; 1598 1599 ASSERT(dmu_tx_is_syncing(tx)); 1600 ASSERT(oldtype < DD_USED_NUM); 1601 ASSERT(newtype < DD_USED_NUM); 1602 1603 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1604 1605 mutex_enter(&dd->dd_lock); 1606 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1607 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used); 1608 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used); 1609 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed); 1610 ASSERT(uncompressed >= 0 || 1611 ddp->dd_uncompressed_bytes >= -uncompressed); 1612 ddp->dd_used_bytes += used; 1613 ddp->dd_uncompressed_bytes += uncompressed; 1614 ddp->dd_compressed_bytes += compressed; 1615 1616 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1617 ASSERT(tonew - used <= 0 || 1618 ddp->dd_used_breakdown[oldtype] >= tonew - used); 1619 ASSERT(tonew >= 0 || 1620 ddp->dd_used_breakdown[newtype] >= -tonew); 1621 ddp->dd_used_breakdown[oldtype] -= tonew - used; 1622 ddp->dd_used_breakdown[newtype] += tonew; 1623 #ifdef ZFS_DEBUG 1624 { 1625 dd_used_t t; 1626 uint64_t u = 0; 1627 for (t = 0; t < DD_USED_NUM; t++) 1628 u += ddp->dd_used_breakdown[t]; 1629 ASSERT3U(u, ==, ddp->dd_used_bytes); 1630 } 1631 #endif 1632 } 1633 mutex_exit(&dd->dd_lock); 1634 1635 if (dd->dd_parent != NULL) { 1636 dsl_dir_diduse_transfer_space(dd->dd_parent, 1637 accounted_delta, compressed, uncompressed, 1638 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1639 } 1640 } 1641 1642 typedef struct dsl_dir_set_qr_arg { 1643 const char *ddsqra_name; 1644 zprop_source_t ddsqra_source; 1645 uint64_t ddsqra_value; 1646 } dsl_dir_set_qr_arg_t; 1647 1648 static int 1649 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1650 { 1651 dsl_dir_set_qr_arg_t *ddsqra = arg; 1652 dsl_pool_t *dp = dmu_tx_pool(tx); 1653 dsl_dataset_t *ds; 1654 int error; 1655 uint64_t towrite, newval; 1656 1657 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1658 if (error != 0) 1659 return (error); 1660 1661 error = dsl_prop_predict(ds->ds_dir, "quota", 1662 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1663 if (error != 0) { 1664 dsl_dataset_rele(ds, FTAG); 1665 return (error); 1666 } 1667 1668 if (newval == 0) { 1669 dsl_dataset_rele(ds, FTAG); 1670 return (0); 1671 } 1672 1673 mutex_enter(&ds->ds_dir->dd_lock); 1674 /* 1675 * If we are doing the preliminary check in open context, and 1676 * there are pending changes, then don't fail it, since the 1677 * pending changes could under-estimate the amount of space to be 1678 * freed up. 1679 */ 1680 towrite = dsl_dir_space_towrite(ds->ds_dir); 1681 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1682 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1683 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1684 error = SET_ERROR(ENOSPC); 1685 } 1686 mutex_exit(&ds->ds_dir->dd_lock); 1687 dsl_dataset_rele(ds, FTAG); 1688 return (error); 1689 } 1690 1691 static void 1692 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1693 { 1694 dsl_dir_set_qr_arg_t *ddsqra = arg; 1695 dsl_pool_t *dp = dmu_tx_pool(tx); 1696 dsl_dataset_t *ds; 1697 uint64_t newval; 1698 1699 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1700 1701 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1702 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1703 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1704 &ddsqra->ddsqra_value, tx); 1705 1706 VERIFY0(dsl_prop_get_int_ds(ds, 1707 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1708 } else { 1709 newval = ddsqra->ddsqra_value; 1710 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1711 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1712 } 1713 1714 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1715 mutex_enter(&ds->ds_dir->dd_lock); 1716 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1717 mutex_exit(&ds->ds_dir->dd_lock); 1718 dsl_dataset_rele(ds, FTAG); 1719 } 1720 1721 int 1722 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1723 { 1724 dsl_dir_set_qr_arg_t ddsqra; 1725 1726 ddsqra.ddsqra_name = ddname; 1727 ddsqra.ddsqra_source = source; 1728 ddsqra.ddsqra_value = quota; 1729 1730 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1731 dsl_dir_set_quota_sync, &ddsqra, 0, 1732 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1733 } 1734 1735 static int 1736 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1737 { 1738 dsl_dir_set_qr_arg_t *ddsqra = arg; 1739 dsl_pool_t *dp = dmu_tx_pool(tx); 1740 dsl_dataset_t *ds; 1741 dsl_dir_t *dd; 1742 uint64_t newval, used, avail; 1743 int error; 1744 1745 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1746 if (error != 0) 1747 return (error); 1748 dd = ds->ds_dir; 1749 1750 /* 1751 * If we are doing the preliminary check in open context, the 1752 * space estimates may be inaccurate. 1753 */ 1754 if (!dmu_tx_is_syncing(tx)) { 1755 dsl_dataset_rele(ds, FTAG); 1756 return (0); 1757 } 1758 1759 error = dsl_prop_predict(ds->ds_dir, 1760 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1761 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1762 if (error != 0) { 1763 dsl_dataset_rele(ds, FTAG); 1764 return (error); 1765 } 1766 1767 mutex_enter(&dd->dd_lock); 1768 used = dsl_dir_phys(dd)->dd_used_bytes; 1769 mutex_exit(&dd->dd_lock); 1770 1771 if (dd->dd_parent) { 1772 avail = dsl_dir_space_available(dd->dd_parent, 1773 NULL, 0, FALSE); 1774 } else { 1775 avail = dsl_pool_adjustedsize(dd->dd_pool, 1776 ZFS_SPACE_CHECK_NORMAL) - used; 1777 } 1778 1779 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1780 uint64_t delta = MAX(used, newval) - 1781 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1782 1783 if (delta > avail || 1784 (dsl_dir_phys(dd)->dd_quota > 0 && 1785 newval > dsl_dir_phys(dd)->dd_quota)) 1786 error = SET_ERROR(ENOSPC); 1787 } 1788 1789 dsl_dataset_rele(ds, FTAG); 1790 return (error); 1791 } 1792 1793 void 1794 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1795 { 1796 uint64_t used; 1797 int64_t delta; 1798 1799 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1800 1801 mutex_enter(&dd->dd_lock); 1802 used = dsl_dir_phys(dd)->dd_used_bytes; 1803 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1804 dsl_dir_phys(dd)->dd_reserved = value; 1805 1806 if (dd->dd_parent != NULL) { 1807 /* Roll up this additional usage into our ancestors */ 1808 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1809 delta, 0, 0, tx); 1810 } 1811 mutex_exit(&dd->dd_lock); 1812 } 1813 1814 static void 1815 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1816 { 1817 dsl_dir_set_qr_arg_t *ddsqra = arg; 1818 dsl_pool_t *dp = dmu_tx_pool(tx); 1819 dsl_dataset_t *ds; 1820 uint64_t newval; 1821 1822 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1823 1824 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1825 dsl_prop_set_sync_impl(ds, 1826 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1827 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1828 &ddsqra->ddsqra_value, tx); 1829 1830 VERIFY0(dsl_prop_get_int_ds(ds, 1831 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1832 } else { 1833 newval = ddsqra->ddsqra_value; 1834 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1835 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1836 (longlong_t)newval); 1837 } 1838 1839 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1840 dsl_dataset_rele(ds, FTAG); 1841 } 1842 1843 int 1844 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1845 uint64_t reservation) 1846 { 1847 dsl_dir_set_qr_arg_t ddsqra; 1848 1849 ddsqra.ddsqra_name = ddname; 1850 ddsqra.ddsqra_source = source; 1851 ddsqra.ddsqra_value = reservation; 1852 1853 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1854 dsl_dir_set_reservation_sync, &ddsqra, 0, 1855 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1856 } 1857 1858 static dsl_dir_t * 1859 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1860 { 1861 for (; ds1; ds1 = ds1->dd_parent) { 1862 dsl_dir_t *dd; 1863 for (dd = ds2; dd; dd = dd->dd_parent) { 1864 if (ds1 == dd) 1865 return (dd); 1866 } 1867 } 1868 return (NULL); 1869 } 1870 1871 /* 1872 * If delta is applied to dd, how much of that delta would be applied to 1873 * ancestor? Syncing context only. 1874 */ 1875 static int64_t 1876 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1877 { 1878 if (dd == ancestor) 1879 return (delta); 1880 1881 mutex_enter(&dd->dd_lock); 1882 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1883 mutex_exit(&dd->dd_lock); 1884 return (would_change(dd->dd_parent, delta, ancestor)); 1885 } 1886 1887 typedef struct dsl_dir_rename_arg { 1888 const char *ddra_oldname; 1889 const char *ddra_newname; 1890 cred_t *ddra_cred; 1891 proc_t *ddra_proc; 1892 } dsl_dir_rename_arg_t; 1893 1894 typedef struct dsl_valid_rename_arg { 1895 int char_delta; 1896 int nest_delta; 1897 } dsl_valid_rename_arg_t; 1898 1899 /* ARGSUSED */ 1900 static int 1901 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1902 { 1903 dsl_valid_rename_arg_t *dvra = arg; 1904 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1905 1906 dsl_dataset_name(ds, namebuf); 1907 1908 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN), 1909 <, ZFS_MAX_DATASET_NAME_LEN); 1910 int namelen = strlen(namebuf) + dvra->char_delta; 1911 int depth = get_dataset_depth(namebuf) + dvra->nest_delta; 1912 1913 if (namelen >= ZFS_MAX_DATASET_NAME_LEN) 1914 return (SET_ERROR(ENAMETOOLONG)); 1915 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting) 1916 return (SET_ERROR(ENAMETOOLONG)); 1917 return (0); 1918 } 1919 1920 static int 1921 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1922 { 1923 dsl_dir_rename_arg_t *ddra = arg; 1924 dsl_pool_t *dp = dmu_tx_pool(tx); 1925 dsl_dir_t *dd, *newparent; 1926 dsl_valid_rename_arg_t dvra; 1927 dsl_dataset_t *parentds; 1928 objset_t *parentos; 1929 const char *mynewname; 1930 int error; 1931 1932 /* target dir should exist */ 1933 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1934 if (error != 0) 1935 return (error); 1936 1937 /* new parent should exist */ 1938 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1939 &newparent, &mynewname); 1940 if (error != 0) { 1941 dsl_dir_rele(dd, FTAG); 1942 return (error); 1943 } 1944 1945 /* can't rename to different pool */ 1946 if (dd->dd_pool != newparent->dd_pool) { 1947 dsl_dir_rele(newparent, FTAG); 1948 dsl_dir_rele(dd, FTAG); 1949 return (SET_ERROR(EXDEV)); 1950 } 1951 1952 /* new name should not already exist */ 1953 if (mynewname == NULL) { 1954 dsl_dir_rele(newparent, FTAG); 1955 dsl_dir_rele(dd, FTAG); 1956 return (SET_ERROR(EEXIST)); 1957 } 1958 1959 /* can't rename below anything but filesystems (eg. no ZVOLs) */ 1960 error = dsl_dataset_hold_obj(newparent->dd_pool, 1961 dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds); 1962 if (error != 0) { 1963 dsl_dir_rele(newparent, FTAG); 1964 dsl_dir_rele(dd, FTAG); 1965 return (error); 1966 } 1967 error = dmu_objset_from_ds(parentds, &parentos); 1968 if (error != 0) { 1969 dsl_dataset_rele(parentds, FTAG); 1970 dsl_dir_rele(newparent, FTAG); 1971 dsl_dir_rele(dd, FTAG); 1972 return (error); 1973 } 1974 if (dmu_objset_type(parentos) != DMU_OST_ZFS) { 1975 dsl_dataset_rele(parentds, FTAG); 1976 dsl_dir_rele(newparent, FTAG); 1977 dsl_dir_rele(dd, FTAG); 1978 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 1979 } 1980 dsl_dataset_rele(parentds, FTAG); 1981 1982 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN), 1983 <, ZFS_MAX_DATASET_NAME_LEN); 1984 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN), 1985 <, ZFS_MAX_DATASET_NAME_LEN); 1986 dvra.char_delta = strlen(ddra->ddra_newname) 1987 - strlen(ddra->ddra_oldname); 1988 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname) 1989 - get_dataset_depth(ddra->ddra_oldname); 1990 1991 /* if the name length is growing, validate child name lengths */ 1992 if (dvra.char_delta > 0 || dvra.nest_delta > 0) { 1993 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 1994 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1995 if (error != 0) { 1996 dsl_dir_rele(newparent, FTAG); 1997 dsl_dir_rele(dd, FTAG); 1998 return (error); 1999 } 2000 } 2001 2002 if (dmu_tx_is_syncing(tx)) { 2003 if (spa_feature_is_active(dp->dp_spa, 2004 SPA_FEATURE_FS_SS_LIMIT)) { 2005 /* 2006 * Although this is the check function and we don't 2007 * normally make on-disk changes in check functions, 2008 * we need to do that here. 2009 * 2010 * Ensure this portion of the tree's counts have been 2011 * initialized in case the new parent has limits set. 2012 */ 2013 dsl_dir_init_fs_ss_count(dd, tx); 2014 } 2015 } 2016 2017 if (newparent != dd->dd_parent) { 2018 /* is there enough space? */ 2019 uint64_t myspace = 2020 MAX(dsl_dir_phys(dd)->dd_used_bytes, 2021 dsl_dir_phys(dd)->dd_reserved); 2022 objset_t *os = dd->dd_pool->dp_meta_objset; 2023 uint64_t fs_cnt = 0; 2024 uint64_t ss_cnt = 0; 2025 2026 if (dsl_dir_is_zapified(dd)) { 2027 int err; 2028 2029 err = zap_lookup(os, dd->dd_object, 2030 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2031 &fs_cnt); 2032 if (err != ENOENT && err != 0) { 2033 dsl_dir_rele(newparent, FTAG); 2034 dsl_dir_rele(dd, FTAG); 2035 return (err); 2036 } 2037 2038 /* 2039 * have to add 1 for the filesystem itself that we're 2040 * moving 2041 */ 2042 fs_cnt++; 2043 2044 err = zap_lookup(os, dd->dd_object, 2045 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2046 &ss_cnt); 2047 if (err != ENOENT && err != 0) { 2048 dsl_dir_rele(newparent, FTAG); 2049 dsl_dir_rele(dd, FTAG); 2050 return (err); 2051 } 2052 } 2053 2054 /* check for encryption errors */ 2055 error = dsl_dir_rename_crypt_check(dd, newparent); 2056 if (error != 0) { 2057 dsl_dir_rele(newparent, FTAG); 2058 dsl_dir_rele(dd, FTAG); 2059 return (SET_ERROR(EACCES)); 2060 } 2061 2062 /* no rename into our descendant */ 2063 if (closest_common_ancestor(dd, newparent) == dd) { 2064 dsl_dir_rele(newparent, FTAG); 2065 dsl_dir_rele(dd, FTAG); 2066 return (SET_ERROR(EINVAL)); 2067 } 2068 2069 error = dsl_dir_transfer_possible(dd->dd_parent, 2070 newparent, fs_cnt, ss_cnt, myspace, 2071 ddra->ddra_cred, ddra->ddra_proc); 2072 if (error != 0) { 2073 dsl_dir_rele(newparent, FTAG); 2074 dsl_dir_rele(dd, FTAG); 2075 return (error); 2076 } 2077 } 2078 2079 dsl_dir_rele(newparent, FTAG); 2080 dsl_dir_rele(dd, FTAG); 2081 return (0); 2082 } 2083 2084 static void 2085 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 2086 { 2087 dsl_dir_rename_arg_t *ddra = arg; 2088 dsl_pool_t *dp = dmu_tx_pool(tx); 2089 dsl_dir_t *dd, *newparent; 2090 const char *mynewname; 2091 objset_t *mos = dp->dp_meta_objset; 2092 2093 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 2094 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 2095 &mynewname)); 2096 2097 /* Log this before we change the name. */ 2098 spa_history_log_internal_dd(dd, "rename", tx, 2099 "-> %s", ddra->ddra_newname); 2100 2101 if (newparent != dd->dd_parent) { 2102 objset_t *os = dd->dd_pool->dp_meta_objset; 2103 uint64_t fs_cnt = 0; 2104 uint64_t ss_cnt = 0; 2105 2106 /* 2107 * We already made sure the dd counts were initialized in the 2108 * check function. 2109 */ 2110 if (spa_feature_is_active(dp->dp_spa, 2111 SPA_FEATURE_FS_SS_LIMIT)) { 2112 VERIFY0(zap_lookup(os, dd->dd_object, 2113 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2114 &fs_cnt)); 2115 /* add 1 for the filesystem itself that we're moving */ 2116 fs_cnt++; 2117 2118 VERIFY0(zap_lookup(os, dd->dd_object, 2119 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2120 &ss_cnt)); 2121 } 2122 2123 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 2124 DD_FIELD_FILESYSTEM_COUNT, tx); 2125 dsl_fs_ss_count_adjust(newparent, fs_cnt, 2126 DD_FIELD_FILESYSTEM_COUNT, tx); 2127 2128 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 2129 DD_FIELD_SNAPSHOT_COUNT, tx); 2130 dsl_fs_ss_count_adjust(newparent, ss_cnt, 2131 DD_FIELD_SNAPSHOT_COUNT, tx); 2132 2133 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 2134 -dsl_dir_phys(dd)->dd_used_bytes, 2135 -dsl_dir_phys(dd)->dd_compressed_bytes, 2136 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2137 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 2138 dsl_dir_phys(dd)->dd_used_bytes, 2139 dsl_dir_phys(dd)->dd_compressed_bytes, 2140 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2141 2142 if (dsl_dir_phys(dd)->dd_reserved > 2143 dsl_dir_phys(dd)->dd_used_bytes) { 2144 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 2145 dsl_dir_phys(dd)->dd_used_bytes; 2146 2147 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 2148 -unused_rsrv, 0, 0, tx); 2149 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 2150 unused_rsrv, 0, 0, tx); 2151 } 2152 } 2153 2154 dmu_buf_will_dirty(dd->dd_dbuf, tx); 2155 2156 /* remove from old parent zapobj */ 2157 VERIFY0(zap_remove(mos, 2158 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 2159 dd->dd_myname, tx)); 2160 2161 (void) strlcpy(dd->dd_myname, mynewname, 2162 sizeof (dd->dd_myname)); 2163 dsl_dir_rele(dd->dd_parent, dd); 2164 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 2165 VERIFY0(dsl_dir_hold_obj(dp, 2166 newparent->dd_object, NULL, dd, &dd->dd_parent)); 2167 2168 /* add to new parent zapobj */ 2169 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 2170 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 2171 2172 /* TODO: A rename callback to avoid these layering violations. */ 2173 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname); 2174 zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname, 2175 ddra->ddra_newname, B_TRUE); 2176 2177 dsl_prop_notify_all(dd); 2178 2179 dsl_dir_rele(newparent, FTAG); 2180 dsl_dir_rele(dd, FTAG); 2181 } 2182 2183 int 2184 dsl_dir_rename(const char *oldname, const char *newname) 2185 { 2186 dsl_dir_rename_arg_t ddra; 2187 2188 ddra.ddra_oldname = oldname; 2189 ddra.ddra_newname = newname; 2190 ddra.ddra_cred = CRED(); 2191 ddra.ddra_proc = curproc; 2192 2193 return (dsl_sync_task(oldname, 2194 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 2195 3, ZFS_SPACE_CHECK_RESERVED)); 2196 } 2197 2198 int 2199 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 2200 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, 2201 cred_t *cr, proc_t *proc) 2202 { 2203 dsl_dir_t *ancestor; 2204 int64_t adelta; 2205 uint64_t avail; 2206 int err; 2207 2208 ancestor = closest_common_ancestor(sdd, tdd); 2209 adelta = would_change(sdd, -space, ancestor); 2210 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 2211 if (avail < space) 2212 return (SET_ERROR(ENOSPC)); 2213 2214 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 2215 ancestor, cr, proc); 2216 if (err != 0) 2217 return (err); 2218 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 2219 ancestor, cr, proc); 2220 if (err != 0) 2221 return (err); 2222 2223 return (0); 2224 } 2225 2226 inode_timespec_t 2227 dsl_dir_snap_cmtime(dsl_dir_t *dd) 2228 { 2229 inode_timespec_t t; 2230 2231 mutex_enter(&dd->dd_lock); 2232 t = dd->dd_snap_cmtime; 2233 mutex_exit(&dd->dd_lock); 2234 2235 return (t); 2236 } 2237 2238 void 2239 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 2240 { 2241 inode_timespec_t t; 2242 2243 gethrestime(&t); 2244 mutex_enter(&dd->dd_lock); 2245 dd->dd_snap_cmtime = t; 2246 mutex_exit(&dd->dd_lock); 2247 } 2248 2249 void 2250 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 2251 { 2252 objset_t *mos = dd->dd_pool->dp_meta_objset; 2253 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 2254 } 2255 2256 boolean_t 2257 dsl_dir_is_zapified(dsl_dir_t *dd) 2258 { 2259 dmu_object_info_t doi; 2260 2261 dmu_object_info_from_db(dd->dd_dbuf, &doi); 2262 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 2263 } 2264 2265 void 2266 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj) 2267 { 2268 objset_t *mos = dd->dd_pool->dp_meta_objset; 2269 ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa, 2270 SPA_FEATURE_LIVELIST)); 2271 dsl_deadlist_open(&dd->dd_livelist, mos, obj); 2272 bplist_create(&dd->dd_pending_allocs); 2273 bplist_create(&dd->dd_pending_frees); 2274 } 2275 2276 void 2277 dsl_dir_livelist_close(dsl_dir_t *dd) 2278 { 2279 dsl_deadlist_close(&dd->dd_livelist); 2280 bplist_destroy(&dd->dd_pending_allocs); 2281 bplist_destroy(&dd->dd_pending_frees); 2282 } 2283 2284 void 2285 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total) 2286 { 2287 uint64_t obj; 2288 dsl_pool_t *dp = dmu_tx_pool(tx); 2289 spa_t *spa = dp->dp_spa; 2290 livelist_condense_entry_t to_condense = spa->spa_to_condense; 2291 2292 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2293 return; 2294 2295 /* 2296 * If the livelist being removed is set to be condensed, stop the 2297 * condense zthr and indicate the cancellation in the spa_to_condense 2298 * struct in case the condense no-wait synctask has already started 2299 */ 2300 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 2301 if (ll_condense_thread != NULL && 2302 (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) { 2303 /* 2304 * We use zthr_wait_cycle_done instead of zthr_cancel 2305 * because we don't want to destroy the zthr, just have 2306 * it skip its current task. 2307 */ 2308 spa->spa_to_condense.cancelled = B_TRUE; 2309 zthr_wait_cycle_done(ll_condense_thread); 2310 /* 2311 * If we've returned from zthr_wait_cycle_done without 2312 * clearing the to_condense data structure it's either 2313 * because the no-wait synctask has started (which is 2314 * indicated by 'syncing' field of to_condense) and we 2315 * can expect it to clear to_condense on its own. 2316 * Otherwise, we returned before the zthr ran. The 2317 * checkfunc will now fail as cancelled == B_TRUE so we 2318 * can safely NULL out ds, allowing a different dir's 2319 * livelist to be condensed. 2320 * 2321 * We can be sure that the to_condense struct will not 2322 * be repopulated at this stage because both this 2323 * function and dsl_livelist_try_condense execute in 2324 * syncing context. 2325 */ 2326 if ((spa->spa_to_condense.ds != NULL) && 2327 !spa->spa_to_condense.syncing) { 2328 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, 2329 spa); 2330 spa->spa_to_condense.ds = NULL; 2331 } 2332 } 2333 2334 dsl_dir_livelist_close(dd); 2335 VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object, 2336 DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj)); 2337 VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object, 2338 DD_FIELD_LIVELIST, tx)); 2339 if (total) { 2340 dsl_deadlist_free(dp->dp_meta_objset, obj, tx); 2341 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2342 } 2343 } 2344 2345 static int 2346 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds, 2347 zfs_wait_activity_t activity, boolean_t *in_progress) 2348 { 2349 int error = 0; 2350 2351 ASSERT(MUTEX_HELD(&dd->dd_activity_lock)); 2352 2353 switch (activity) { 2354 case ZFS_WAIT_DELETEQ: { 2355 #ifdef _KERNEL 2356 objset_t *os; 2357 error = dmu_objset_from_ds(ds, &os); 2358 if (error != 0) 2359 break; 2360 2361 mutex_enter(&os->os_user_ptr_lock); 2362 void *user = dmu_objset_get_user(os); 2363 mutex_exit(&os->os_user_ptr_lock); 2364 if (dmu_objset_type(os) != DMU_OST_ZFS || 2365 user == NULL || zfs_get_vfs_flag_unmounted(os)) { 2366 *in_progress = B_FALSE; 2367 return (0); 2368 } 2369 2370 uint64_t readonly = B_FALSE; 2371 error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly, 2372 NULL); 2373 2374 if (error != 0) 2375 break; 2376 2377 if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) { 2378 *in_progress = B_FALSE; 2379 return (0); 2380 } 2381 2382 uint64_t count, unlinked_obj; 2383 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 2384 &unlinked_obj); 2385 if (error != 0) { 2386 dsl_dataset_rele(ds, FTAG); 2387 break; 2388 } 2389 error = zap_count(os, unlinked_obj, &count); 2390 2391 if (error == 0) 2392 *in_progress = (count != 0); 2393 break; 2394 #else 2395 /* 2396 * The delete queue is ZPL specific, and libzpool doesn't have 2397 * it. It doesn't make sense to wait for it. 2398 */ 2399 *in_progress = B_FALSE; 2400 break; 2401 #endif 2402 } 2403 default: 2404 panic("unrecognized value for activity %d", activity); 2405 } 2406 2407 return (error); 2408 } 2409 2410 int 2411 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity, 2412 boolean_t *waited) 2413 { 2414 int error = 0; 2415 boolean_t in_progress; 2416 dsl_pool_t *dp = dd->dd_pool; 2417 for (;;) { 2418 dsl_pool_config_enter(dp, FTAG); 2419 error = dsl_dir_activity_in_progress(dd, ds, activity, 2420 &in_progress); 2421 dsl_pool_config_exit(dp, FTAG); 2422 if (error != 0 || !in_progress) 2423 break; 2424 2425 *waited = B_TRUE; 2426 2427 if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) == 2428 0 || dd->dd_activity_cancelled) { 2429 error = SET_ERROR(EINTR); 2430 break; 2431 } 2432 } 2433 return (error); 2434 } 2435 2436 void 2437 dsl_dir_cancel_waiters(dsl_dir_t *dd) 2438 { 2439 mutex_enter(&dd->dd_activity_lock); 2440 dd->dd_activity_cancelled = B_TRUE; 2441 cv_broadcast(&dd->dd_activity_cv); 2442 while (dd->dd_activity_waiters > 0) 2443 cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock); 2444 mutex_exit(&dd->dd_activity_lock); 2445 } 2446 2447 #if defined(_KERNEL) 2448 EXPORT_SYMBOL(dsl_dir_set_quota); 2449 EXPORT_SYMBOL(dsl_dir_set_reservation); 2450 #endif 2451