1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2013 Martin Matuska. All rights reserved. 26 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 29 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 30 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP. 31 */ 32 33 #include <sys/dmu.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/dsl_dir.h> 38 #include <sys/dsl_prop.h> 39 #include <sys/dsl_synctask.h> 40 #include <sys/dsl_deleg.h> 41 #include <sys/dmu_impl.h> 42 #include <sys/spa.h> 43 #include <sys/spa_impl.h> 44 #include <sys/metaslab.h> 45 #include <sys/zap.h> 46 #include <sys/zio.h> 47 #include <sys/arc.h> 48 #include <sys/sunddi.h> 49 #include <sys/zfeature.h> 50 #include <sys/policy.h> 51 #include <sys/zfs_vfsops.h> 52 #include <sys/zfs_znode.h> 53 #include <sys/zvol.h> 54 #include <sys/zthr.h> 55 #include "zfs_namecheck.h" 56 #include "zfs_prop.h" 57 58 /* 59 * This controls if we verify the ZVOL quota or not. 60 * Currently, quotas are not implemented for ZVOLs. 61 * The quota size is the size of the ZVOL. 62 * The size of the volume already implies the ZVOL size quota. 63 * The quota mechanism can introduce a significant performance drop. 64 */ 65 static int zvol_enforce_quotas = B_TRUE; 66 67 /* 68 * Filesystem and Snapshot Limits 69 * ------------------------------ 70 * 71 * These limits are used to restrict the number of filesystems and/or snapshots 72 * that can be created at a given level in the tree or below. A typical 73 * use-case is with a delegated dataset where the administrator wants to ensure 74 * that a user within the zone is not creating too many additional filesystems 75 * or snapshots, even though they're not exceeding their space quota. 76 * 77 * The filesystem and snapshot counts are stored as extensible properties. This 78 * capability is controlled by a feature flag and must be enabled to be used. 79 * Once enabled, the feature is not active until the first limit is set. At 80 * that point, future operations to create/destroy filesystems or snapshots 81 * will validate and update the counts. 82 * 83 * Because the count properties will not exist before the feature is active, 84 * the counts are updated when a limit is first set on an uninitialized 85 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 86 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 87 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 88 * snapshot count properties on a node indicate uninitialized counts on that 89 * node.) When first setting a limit on an uninitialized node, the code starts 90 * at the filesystem with the new limit and descends into all sub-filesystems 91 * to add the count properties. 92 * 93 * In practice this is lightweight since a limit is typically set when the 94 * filesystem is created and thus has no children. Once valid, changing the 95 * limit value won't require a re-traversal since the counts are already valid. 96 * When recursively fixing the counts, if a node with a limit is encountered 97 * during the descent, the counts are known to be valid and there is no need to 98 * descend into that filesystem's children. The counts on filesystems above the 99 * one with the new limit will still be uninitialized, unless a limit is 100 * eventually set on one of those filesystems. The counts are always recursively 101 * updated when a limit is set on a dataset, unless there is already a limit. 102 * When a new limit value is set on a filesystem with an existing limit, it is 103 * possible for the new limit to be less than the current count at that level 104 * since a user who can change the limit is also allowed to exceed the limit. 105 * 106 * Once the feature is active, then whenever a filesystem or snapshot is 107 * created, the code recurses up the tree, validating the new count against the 108 * limit at each initialized level. In practice, most levels will not have a 109 * limit set. If there is a limit at any initialized level up the tree, the 110 * check must pass or the creation will fail. Likewise, when a filesystem or 111 * snapshot is destroyed, the counts are recursively adjusted all the way up 112 * the initialized nodes in the tree. Renaming a filesystem into different point 113 * in the tree will first validate, then update the counts on each branch up to 114 * the common ancestor. A receive will also validate the counts and then update 115 * them. 116 * 117 * An exception to the above behavior is that the limit is not enforced if the 118 * user has permission to modify the limit. This is primarily so that 119 * recursive snapshots in the global zone always work. We want to prevent a 120 * denial-of-service in which a lower level delegated dataset could max out its 121 * limit and thus block recursive snapshots from being taken in the global zone. 122 * Because of this, it is possible for the snapshot count to be over the limit 123 * and snapshots taken in the global zone could cause a lower level dataset to 124 * hit or exceed its limit. The administrator taking the global zone recursive 125 * snapshot should be aware of this side-effect and behave accordingly. 126 * For consistency, the filesystem limit is also not enforced if the user can 127 * modify the limit. 128 * 129 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 130 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 131 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 132 * dsl_dir_init_fs_ss_count(). 133 */ 134 135 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 136 137 typedef struct ddulrt_arg { 138 dsl_dir_t *ddulrta_dd; 139 uint64_t ddlrta_txg; 140 } ddulrt_arg_t; 141 142 static void 143 dsl_dir_evict_async(void *dbu) 144 { 145 dsl_dir_t *dd = dbu; 146 int t; 147 dsl_pool_t *dp __maybe_unused = dd->dd_pool; 148 149 dd->dd_dbuf = NULL; 150 151 for (t = 0; t < TXG_SIZE; t++) { 152 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 153 ASSERT(dd->dd_tempreserved[t] == 0); 154 ASSERT(dd->dd_space_towrite[t] == 0); 155 } 156 157 if (dd->dd_parent) 158 dsl_dir_async_rele(dd->dd_parent, dd); 159 160 spa_async_close(dd->dd_pool->dp_spa, dd); 161 162 if (dsl_deadlist_is_open(&dd->dd_livelist)) 163 dsl_dir_livelist_close(dd); 164 165 dsl_prop_fini(dd); 166 cv_destroy(&dd->dd_activity_cv); 167 mutex_destroy(&dd->dd_activity_lock); 168 mutex_destroy(&dd->dd_lock); 169 kmem_free(dd, sizeof (dsl_dir_t)); 170 } 171 172 int 173 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 174 const char *tail, const void *tag, dsl_dir_t **ddp) 175 { 176 dmu_buf_t *dbuf; 177 dsl_dir_t *dd; 178 dmu_object_info_t doi; 179 int err; 180 181 ASSERT(dsl_pool_config_held(dp)); 182 183 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 184 if (err != 0) 185 return (err); 186 dd = dmu_buf_get_user(dbuf); 187 188 dmu_object_info_from_db(dbuf, &doi); 189 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 190 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 191 192 if (dd == NULL) { 193 dsl_dir_t *winner; 194 195 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 196 dd->dd_object = ddobj; 197 dd->dd_dbuf = dbuf; 198 dd->dd_pool = dp; 199 200 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 201 mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL); 202 cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL); 203 dsl_prop_init(dd); 204 205 if (dsl_dir_is_zapified(dd)) { 206 err = zap_lookup(dp->dp_meta_objset, 207 ddobj, DD_FIELD_CRYPTO_KEY_OBJ, 208 sizeof (uint64_t), 1, &dd->dd_crypto_obj); 209 if (err == 0) { 210 /* check for on-disk format errata */ 211 if (dsl_dir_incompatible_encryption_version( 212 dd)) { 213 dp->dp_spa->spa_errata = 214 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION; 215 } 216 } else if (err != ENOENT) { 217 goto errout; 218 } 219 } 220 221 if (dsl_dir_phys(dd)->dd_parent_obj) { 222 err = dsl_dir_hold_obj(dp, 223 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 224 &dd->dd_parent); 225 if (err != 0) 226 goto errout; 227 if (tail) { 228 #ifdef ZFS_DEBUG 229 uint64_t foundobj; 230 231 err = zap_lookup(dp->dp_meta_objset, 232 dsl_dir_phys(dd->dd_parent)-> 233 dd_child_dir_zapobj, tail, 234 sizeof (foundobj), 1, &foundobj); 235 ASSERT(err || foundobj == ddobj); 236 #endif 237 (void) strlcpy(dd->dd_myname, tail, 238 sizeof (dd->dd_myname)); 239 } else { 240 err = zap_value_search(dp->dp_meta_objset, 241 dsl_dir_phys(dd->dd_parent)-> 242 dd_child_dir_zapobj, 243 ddobj, 0, dd->dd_myname, 244 sizeof (dd->dd_myname)); 245 } 246 if (err != 0) 247 goto errout; 248 } else { 249 (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa), 250 sizeof (dd->dd_myname)); 251 } 252 253 if (dsl_dir_is_clone(dd)) { 254 dmu_buf_t *origin_bonus; 255 dsl_dataset_phys_t *origin_phys; 256 257 /* 258 * We can't open the origin dataset, because 259 * that would require opening this dsl_dir. 260 * Just look at its phys directly instead. 261 */ 262 err = dmu_bonus_hold(dp->dp_meta_objset, 263 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 264 &origin_bonus); 265 if (err != 0) 266 goto errout; 267 origin_phys = origin_bonus->db_data; 268 dd->dd_origin_txg = 269 origin_phys->ds_creation_txg; 270 dmu_buf_rele(origin_bonus, FTAG); 271 if (dsl_dir_is_zapified(dd)) { 272 uint64_t obj; 273 err = zap_lookup(dp->dp_meta_objset, 274 dd->dd_object, DD_FIELD_LIVELIST, 275 sizeof (uint64_t), 1, &obj); 276 if (err == 0) { 277 err = dsl_dir_livelist_open(dd, obj); 278 if (err != 0) 279 goto errout; 280 } else if (err != ENOENT) 281 goto errout; 282 } 283 } 284 285 if (dsl_dir_is_zapified(dd)) { 286 inode_timespec_t t = {0}; 287 (void) zap_lookup(dp->dp_meta_objset, ddobj, 288 DD_FIELD_SNAPSHOTS_CHANGED, 289 sizeof (uint64_t), 290 sizeof (inode_timespec_t) / sizeof (uint64_t), 291 &t); 292 dd->dd_snap_cmtime = t; 293 } 294 295 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 296 &dd->dd_dbuf); 297 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 298 if (winner != NULL) { 299 if (dd->dd_parent) 300 dsl_dir_rele(dd->dd_parent, dd); 301 if (dsl_deadlist_is_open(&dd->dd_livelist)) 302 dsl_dir_livelist_close(dd); 303 dsl_prop_fini(dd); 304 cv_destroy(&dd->dd_activity_cv); 305 mutex_destroy(&dd->dd_activity_lock); 306 mutex_destroy(&dd->dd_lock); 307 kmem_free(dd, sizeof (dsl_dir_t)); 308 dd = winner; 309 } else { 310 spa_open_ref(dp->dp_spa, dd); 311 } 312 } 313 314 /* 315 * The dsl_dir_t has both open-to-close and instantiate-to-evict 316 * holds on the spa. We need the open-to-close holds because 317 * otherwise the spa_refcnt wouldn't change when we open a 318 * dir which the spa also has open, so we could incorrectly 319 * think it was OK to unload/export/destroy the pool. We need 320 * the instantiate-to-evict hold because the dsl_dir_t has a 321 * pointer to the dd_pool, which has a pointer to the spa_t. 322 */ 323 spa_open_ref(dp->dp_spa, tag); 324 ASSERT3P(dd->dd_pool, ==, dp); 325 ASSERT3U(dd->dd_object, ==, ddobj); 326 ASSERT3P(dd->dd_dbuf, ==, dbuf); 327 *ddp = dd; 328 return (0); 329 330 errout: 331 if (dd->dd_parent) 332 dsl_dir_rele(dd->dd_parent, dd); 333 if (dsl_deadlist_is_open(&dd->dd_livelist)) 334 dsl_dir_livelist_close(dd); 335 dsl_prop_fini(dd); 336 cv_destroy(&dd->dd_activity_cv); 337 mutex_destroy(&dd->dd_activity_lock); 338 mutex_destroy(&dd->dd_lock); 339 kmem_free(dd, sizeof (dsl_dir_t)); 340 dmu_buf_rele(dbuf, tag); 341 return (err); 342 } 343 344 void 345 dsl_dir_rele(dsl_dir_t *dd, const void *tag) 346 { 347 dprintf_dd(dd, "%s\n", ""); 348 spa_close(dd->dd_pool->dp_spa, tag); 349 dmu_buf_rele(dd->dd_dbuf, tag); 350 } 351 352 /* 353 * Remove a reference to the given dsl dir that is being asynchronously 354 * released. Async releases occur from a taskq performing eviction of 355 * dsl datasets and dirs. This process is identical to a normal release 356 * with the exception of using the async API for releasing the reference on 357 * the spa. 358 */ 359 void 360 dsl_dir_async_rele(dsl_dir_t *dd, const void *tag) 361 { 362 dprintf_dd(dd, "%s\n", ""); 363 spa_async_close(dd->dd_pool->dp_spa, tag); 364 dmu_buf_rele(dd->dd_dbuf, tag); 365 } 366 367 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 368 void 369 dsl_dir_name(dsl_dir_t *dd, char *buf) 370 { 371 if (dd->dd_parent) { 372 dsl_dir_name(dd->dd_parent, buf); 373 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 374 ZFS_MAX_DATASET_NAME_LEN); 375 } else { 376 buf[0] = '\0'; 377 } 378 if (!MUTEX_HELD(&dd->dd_lock)) { 379 /* 380 * recursive mutex so that we can use 381 * dprintf_dd() with dd_lock held 382 */ 383 mutex_enter(&dd->dd_lock); 384 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 385 <, ZFS_MAX_DATASET_NAME_LEN); 386 mutex_exit(&dd->dd_lock); 387 } else { 388 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 389 <, ZFS_MAX_DATASET_NAME_LEN); 390 } 391 } 392 393 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 394 int 395 dsl_dir_namelen(dsl_dir_t *dd) 396 { 397 int result = 0; 398 399 if (dd->dd_parent) { 400 /* parent's name + 1 for the "/" */ 401 result = dsl_dir_namelen(dd->dd_parent) + 1; 402 } 403 404 if (!MUTEX_HELD(&dd->dd_lock)) { 405 /* see dsl_dir_name */ 406 mutex_enter(&dd->dd_lock); 407 result += strlen(dd->dd_myname); 408 mutex_exit(&dd->dd_lock); 409 } else { 410 result += strlen(dd->dd_myname); 411 } 412 413 return (result); 414 } 415 416 static int 417 getcomponent(const char *path, char *component, const char **nextp) 418 { 419 char *p; 420 421 if ((path == NULL) || (path[0] == '\0')) 422 return (SET_ERROR(ENOENT)); 423 /* This would be a good place to reserve some namespace... */ 424 p = strpbrk(path, "/@"); 425 if (p && (p[1] == '/' || p[1] == '@')) { 426 /* two separators in a row */ 427 return (SET_ERROR(EINVAL)); 428 } 429 if (p == NULL || p == path) { 430 /* 431 * if the first thing is an @ or /, it had better be an 432 * @ and it had better not have any more ats or slashes, 433 * and it had better have something after the @. 434 */ 435 if (p != NULL && 436 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 437 return (SET_ERROR(EINVAL)); 438 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 439 return (SET_ERROR(ENAMETOOLONG)); 440 (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN); 441 p = NULL; 442 } else if (p[0] == '/') { 443 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 444 return (SET_ERROR(ENAMETOOLONG)); 445 (void) strlcpy(component, path, p - path + 1); 446 p++; 447 } else if (p[0] == '@') { 448 /* 449 * if the next separator is an @, there better not be 450 * any more slashes. 451 */ 452 if (strchr(path, '/')) 453 return (SET_ERROR(EINVAL)); 454 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 455 return (SET_ERROR(ENAMETOOLONG)); 456 (void) strlcpy(component, path, p - path + 1); 457 } else { 458 panic("invalid p=%p", (void *)p); 459 } 460 *nextp = p; 461 return (0); 462 } 463 464 /* 465 * Return the dsl_dir_t, and possibly the last component which couldn't 466 * be found in *tail. The name must be in the specified dsl_pool_t. This 467 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 468 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 469 * (*tail)[0] == '@' means that the last component is a snapshot. 470 */ 471 int 472 dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag, 473 dsl_dir_t **ddp, const char **tailp) 474 { 475 char *buf; 476 const char *spaname, *next, *nextnext = NULL; 477 int err; 478 dsl_dir_t *dd; 479 uint64_t ddobj; 480 481 buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 482 err = getcomponent(name, buf, &next); 483 if (err != 0) 484 goto error; 485 486 /* Make sure the name is in the specified pool. */ 487 spaname = spa_name(dp->dp_spa); 488 if (strcmp(buf, spaname) != 0) { 489 err = SET_ERROR(EXDEV); 490 goto error; 491 } 492 493 ASSERT(dsl_pool_config_held(dp)); 494 495 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 496 if (err != 0) { 497 goto error; 498 } 499 500 while (next != NULL) { 501 dsl_dir_t *child_dd; 502 err = getcomponent(next, buf, &nextnext); 503 if (err != 0) 504 break; 505 ASSERT(next[0] != '\0'); 506 if (next[0] == '@') 507 break; 508 dprintf("looking up %s in obj%lld\n", 509 buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj); 510 511 err = zap_lookup(dp->dp_meta_objset, 512 dsl_dir_phys(dd)->dd_child_dir_zapobj, 513 buf, sizeof (ddobj), 1, &ddobj); 514 if (err != 0) { 515 if (err == ENOENT) 516 err = 0; 517 break; 518 } 519 520 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 521 if (err != 0) 522 break; 523 dsl_dir_rele(dd, tag); 524 dd = child_dd; 525 next = nextnext; 526 } 527 528 if (err != 0) { 529 dsl_dir_rele(dd, tag); 530 goto error; 531 } 532 533 /* 534 * It's an error if there's more than one component left, or 535 * tailp==NULL and there's any component left. 536 */ 537 if (next != NULL && 538 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 539 /* bad path name */ 540 dsl_dir_rele(dd, tag); 541 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 542 err = SET_ERROR(ENOENT); 543 } 544 if (tailp != NULL) 545 *tailp = next; 546 if (err == 0) 547 *ddp = dd; 548 error: 549 kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN); 550 return (err); 551 } 552 553 /* 554 * If the counts are already initialized for this filesystem and its 555 * descendants then do nothing, otherwise initialize the counts. 556 * 557 * The counts on this filesystem, and those below, may be uninitialized due to 558 * either the use of a pre-existing pool which did not support the 559 * filesystem/snapshot limit feature, or one in which the feature had not yet 560 * been enabled. 561 * 562 * Recursively descend the filesystem tree and update the filesystem/snapshot 563 * counts on each filesystem below, then update the cumulative count on the 564 * current filesystem. If the filesystem already has a count set on it, 565 * then we know that its counts, and the counts on the filesystems below it, 566 * are already correct, so we don't have to update this filesystem. 567 */ 568 static void 569 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 570 { 571 uint64_t my_fs_cnt = 0; 572 uint64_t my_ss_cnt = 0; 573 dsl_pool_t *dp = dd->dd_pool; 574 objset_t *os = dp->dp_meta_objset; 575 zap_cursor_t *zc; 576 zap_attribute_t *za; 577 dsl_dataset_t *ds; 578 579 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 580 ASSERT(dsl_pool_config_held(dp)); 581 ASSERT(dmu_tx_is_syncing(tx)); 582 583 dsl_dir_zapify(dd, tx); 584 585 /* 586 * If the filesystem count has already been initialized then we 587 * don't need to recurse down any further. 588 */ 589 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 590 return; 591 592 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 593 za = zap_attribute_alloc(); 594 595 /* Iterate my child dirs */ 596 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 597 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 598 dsl_dir_t *chld_dd; 599 uint64_t count; 600 601 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 602 &chld_dd)); 603 604 /* 605 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets. 606 */ 607 if (chld_dd->dd_myname[0] == '$') { 608 dsl_dir_rele(chld_dd, FTAG); 609 continue; 610 } 611 612 my_fs_cnt++; /* count this child */ 613 614 dsl_dir_init_fs_ss_count(chld_dd, tx); 615 616 VERIFY0(zap_lookup(os, chld_dd->dd_object, 617 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 618 my_fs_cnt += count; 619 VERIFY0(zap_lookup(os, chld_dd->dd_object, 620 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 621 my_ss_cnt += count; 622 623 dsl_dir_rele(chld_dd, FTAG); 624 } 625 zap_cursor_fini(zc); 626 /* Count my snapshots (we counted children's snapshots above) */ 627 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 628 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 629 630 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 631 zap_cursor_retrieve(zc, za) == 0; 632 zap_cursor_advance(zc)) { 633 /* Don't count temporary snapshots */ 634 if (za->za_name[0] != '%') 635 my_ss_cnt++; 636 } 637 zap_cursor_fini(zc); 638 639 dsl_dataset_rele(ds, FTAG); 640 641 kmem_free(zc, sizeof (zap_cursor_t)); 642 zap_attribute_free(za); 643 644 /* we're in a sync task, update counts */ 645 dmu_buf_will_dirty(dd->dd_dbuf, tx); 646 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 647 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 648 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 649 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 650 } 651 652 static int 653 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 654 { 655 char *ddname = (char *)arg; 656 dsl_pool_t *dp = dmu_tx_pool(tx); 657 dsl_dataset_t *ds; 658 dsl_dir_t *dd; 659 int error; 660 661 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 662 if (error != 0) 663 return (error); 664 665 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 666 dsl_dataset_rele(ds, FTAG); 667 return (SET_ERROR(ENOTSUP)); 668 } 669 670 dd = ds->ds_dir; 671 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 672 dsl_dir_is_zapified(dd) && 673 zap_contains(dp->dp_meta_objset, dd->dd_object, 674 DD_FIELD_FILESYSTEM_COUNT) == 0) { 675 dsl_dataset_rele(ds, FTAG); 676 return (SET_ERROR(EALREADY)); 677 } 678 679 dsl_dataset_rele(ds, FTAG); 680 return (0); 681 } 682 683 static void 684 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 685 { 686 char *ddname = (char *)arg; 687 dsl_pool_t *dp = dmu_tx_pool(tx); 688 dsl_dataset_t *ds; 689 spa_t *spa; 690 691 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 692 693 spa = dsl_dataset_get_spa(ds); 694 695 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 696 /* 697 * Since the feature was not active and we're now setting a 698 * limit, increment the feature-active counter so that the 699 * feature becomes active for the first time. 700 * 701 * We are already in a sync task so we can update the MOS. 702 */ 703 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 704 } 705 706 /* 707 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 708 * we need to ensure the counts are correct. Descend down the tree from 709 * this point and update all of the counts to be accurate. 710 */ 711 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 712 713 dsl_dataset_rele(ds, FTAG); 714 } 715 716 /* 717 * Make sure the feature is enabled and activate it if necessary. 718 * Since we're setting a limit, ensure the on-disk counts are valid. 719 * This is only called by the ioctl path when setting a limit value. 720 * 721 * We do not need to validate the new limit, since users who can change the 722 * limit are also allowed to exceed the limit. 723 */ 724 int 725 dsl_dir_activate_fs_ss_limit(const char *ddname) 726 { 727 int error; 728 729 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 730 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 731 ZFS_SPACE_CHECK_RESERVED); 732 733 if (error == EALREADY) 734 error = 0; 735 736 return (error); 737 } 738 739 /* 740 * Used to determine if the filesystem_limit or snapshot_limit should be 741 * enforced. We allow the limit to be exceeded if the user has permission to 742 * write the property value. We pass in the creds that we got in the open 743 * context since we will always be the GZ root in syncing context. We also have 744 * to handle the case where we are allowed to change the limit on the current 745 * dataset, but there may be another limit in the tree above. 746 * 747 * We can never modify these two properties within a non-global zone. In 748 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 749 * can't use that function since we are already holding the dp_config_rwlock. 750 * In addition, we already have the dd and dealing with snapshots is simplified 751 * in this code. 752 */ 753 754 typedef enum { 755 ENFORCE_ALWAYS, 756 ENFORCE_NEVER, 757 ENFORCE_ABOVE 758 } enforce_res_t; 759 760 static enforce_res_t 761 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, 762 cred_t *cr, proc_t *proc) 763 { 764 enforce_res_t enforce = ENFORCE_ALWAYS; 765 uint64_t obj; 766 dsl_dataset_t *ds; 767 uint64_t zoned; 768 const char *zonedstr; 769 770 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 771 prop == ZFS_PROP_SNAPSHOT_LIMIT); 772 773 #ifdef _KERNEL 774 if (crgetzoneid(cr) != GLOBAL_ZONEID) 775 return (ENFORCE_ALWAYS); 776 777 /* 778 * We are checking the saved credentials of the user process, which is 779 * not the current process. Note that we can't use secpolicy_zfs(), 780 * because it only works if the cred is that of the current process (on 781 * Linux). 782 */ 783 if (secpolicy_zfs_proc(cr, proc) == 0) 784 return (ENFORCE_NEVER); 785 #else 786 (void) proc; 787 #endif 788 789 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 790 return (ENFORCE_ALWAYS); 791 792 ASSERT(dsl_pool_config_held(dd->dd_pool)); 793 794 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 795 return (ENFORCE_ALWAYS); 796 797 zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED); 798 if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) { 799 /* Only root can access zoned fs's from the GZ */ 800 enforce = ENFORCE_ALWAYS; 801 } else { 802 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 803 enforce = ENFORCE_ABOVE; 804 } 805 806 dsl_dataset_rele(ds, FTAG); 807 return (enforce); 808 } 809 810 /* 811 * Check if adding additional child filesystem(s) would exceed any filesystem 812 * limits or adding additional snapshot(s) would exceed any snapshot limits. 813 * The prop argument indicates which limit to check. 814 * 815 * Note that all filesystem limits up to the root (or the highest 816 * initialized) filesystem or the given ancestor must be satisfied. 817 */ 818 int 819 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 820 dsl_dir_t *ancestor, cred_t *cr, proc_t *proc) 821 { 822 objset_t *os = dd->dd_pool->dp_meta_objset; 823 uint64_t limit, count; 824 const char *count_prop; 825 enforce_res_t enforce; 826 int err = 0; 827 828 ASSERT(dsl_pool_config_held(dd->dd_pool)); 829 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 830 prop == ZFS_PROP_SNAPSHOT_LIMIT); 831 832 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 833 /* 834 * We don't enforce the limit for temporary snapshots. This is 835 * indicated by a NULL cred_t argument. 836 */ 837 if (cr == NULL) 838 return (0); 839 840 count_prop = DD_FIELD_SNAPSHOT_COUNT; 841 } else { 842 count_prop = DD_FIELD_FILESYSTEM_COUNT; 843 } 844 /* 845 * If we're allowed to change the limit, don't enforce the limit 846 * e.g. this can happen if a snapshot is taken by an administrative 847 * user in the global zone (i.e. a recursive snapshot by root). 848 * However, we must handle the case of delegated permissions where we 849 * are allowed to change the limit on the current dataset, but there 850 * is another limit in the tree above. 851 */ 852 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc); 853 if (enforce == ENFORCE_NEVER) 854 return (0); 855 856 /* 857 * e.g. if renaming a dataset with no snapshots, count adjustment 858 * is 0. 859 */ 860 if (delta == 0) 861 return (0); 862 863 /* 864 * If an ancestor has been provided, stop checking the limit once we 865 * hit that dir. We need this during rename so that we don't overcount 866 * the check once we recurse up to the common ancestor. 867 */ 868 if (ancestor == dd) 869 return (0); 870 871 /* 872 * If we hit an uninitialized node while recursing up the tree, we can 873 * stop since we know there is no limit here (or above). The counts are 874 * not valid on this node and we know we won't touch this node's counts. 875 */ 876 if (!dsl_dir_is_zapified(dd)) 877 return (0); 878 err = zap_lookup(os, dd->dd_object, 879 count_prop, sizeof (count), 1, &count); 880 if (err == ENOENT) 881 return (0); 882 if (err != 0) 883 return (err); 884 885 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 886 B_FALSE); 887 if (err != 0) 888 return (err); 889 890 /* Is there a limit which we've hit? */ 891 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 892 return (SET_ERROR(EDQUOT)); 893 894 if (dd->dd_parent != NULL) 895 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 896 ancestor, cr, proc); 897 898 return (err); 899 } 900 901 /* 902 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 903 * parents. When a new filesystem/snapshot is created, increment the count on 904 * all parents, and when a filesystem/snapshot is destroyed, decrement the 905 * count. 906 */ 907 void 908 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 909 dmu_tx_t *tx) 910 { 911 int err; 912 objset_t *os = dd->dd_pool->dp_meta_objset; 913 uint64_t count; 914 915 ASSERT(dsl_pool_config_held(dd->dd_pool)); 916 ASSERT(dmu_tx_is_syncing(tx)); 917 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 918 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 919 920 /* 921 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets. 922 */ 923 if (dd->dd_myname[0] == '$' && strcmp(prop, 924 DD_FIELD_FILESYSTEM_COUNT) == 0) { 925 return; 926 } 927 928 /* 929 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 930 */ 931 if (delta == 0) 932 return; 933 934 /* 935 * If we hit an uninitialized node while recursing up the tree, we can 936 * stop since we know the counts are not valid on this node and we 937 * know we shouldn't touch this node's counts. An uninitialized count 938 * on the node indicates that either the feature has not yet been 939 * activated or there are no limits on this part of the tree. 940 */ 941 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 942 prop, sizeof (count), 1, &count)) == ENOENT) 943 return; 944 VERIFY0(err); 945 946 count += delta; 947 /* Use a signed verify to make sure we're not neg. */ 948 VERIFY3S(count, >=, 0); 949 950 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 951 tx)); 952 953 /* Roll up this additional count into our ancestors */ 954 if (dd->dd_parent != NULL) 955 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 956 } 957 958 uint64_t 959 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 960 dmu_tx_t *tx) 961 { 962 objset_t *mos = dp->dp_meta_objset; 963 uint64_t ddobj; 964 dsl_dir_phys_t *ddphys; 965 dmu_buf_t *dbuf; 966 967 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 968 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 969 if (pds) { 970 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 971 name, sizeof (uint64_t), 1, &ddobj, tx)); 972 } else { 973 /* it's the root dir */ 974 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 975 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 976 } 977 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 978 dmu_buf_will_dirty(dbuf, tx); 979 ddphys = dbuf->db_data; 980 981 ddphys->dd_creation_time = gethrestime_sec(); 982 if (pds) { 983 ddphys->dd_parent_obj = pds->dd_object; 984 985 /* update the filesystem counts */ 986 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 987 } 988 ddphys->dd_props_zapobj = zap_create(mos, 989 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 990 ddphys->dd_child_dir_zapobj = zap_create(mos, 991 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 992 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 993 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 994 995 dmu_buf_rele(dbuf, FTAG); 996 997 return (ddobj); 998 } 999 1000 boolean_t 1001 dsl_dir_is_clone(dsl_dir_t *dd) 1002 { 1003 return (dsl_dir_phys(dd)->dd_origin_obj && 1004 (dd->dd_pool->dp_origin_snap == NULL || 1005 dsl_dir_phys(dd)->dd_origin_obj != 1006 dd->dd_pool->dp_origin_snap->ds_object)); 1007 } 1008 1009 uint64_t 1010 dsl_dir_get_used(dsl_dir_t *dd) 1011 { 1012 return (dsl_dir_phys(dd)->dd_used_bytes); 1013 } 1014 1015 uint64_t 1016 dsl_dir_get_compressed(dsl_dir_t *dd) 1017 { 1018 return (dsl_dir_phys(dd)->dd_compressed_bytes); 1019 } 1020 1021 uint64_t 1022 dsl_dir_get_quota(dsl_dir_t *dd) 1023 { 1024 return (dsl_dir_phys(dd)->dd_quota); 1025 } 1026 1027 uint64_t 1028 dsl_dir_get_reservation(dsl_dir_t *dd) 1029 { 1030 return (dsl_dir_phys(dd)->dd_reserved); 1031 } 1032 1033 uint64_t 1034 dsl_dir_get_compressratio(dsl_dir_t *dd) 1035 { 1036 /* a fixed point number, 100x the ratio */ 1037 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 1038 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 1039 dsl_dir_phys(dd)->dd_compressed_bytes)); 1040 } 1041 1042 uint64_t 1043 dsl_dir_get_logicalused(dsl_dir_t *dd) 1044 { 1045 return (dsl_dir_phys(dd)->dd_uncompressed_bytes); 1046 } 1047 1048 uint64_t 1049 dsl_dir_get_usedsnap(dsl_dir_t *dd) 1050 { 1051 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 1052 } 1053 1054 uint64_t 1055 dsl_dir_get_usedds(dsl_dir_t *dd) 1056 { 1057 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 1058 } 1059 1060 uint64_t 1061 dsl_dir_get_usedrefreserv(dsl_dir_t *dd) 1062 { 1063 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 1064 } 1065 1066 uint64_t 1067 dsl_dir_get_usedchild(dsl_dir_t *dd) 1068 { 1069 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 1070 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 1071 } 1072 1073 void 1074 dsl_dir_get_origin(dsl_dir_t *dd, char *buf) 1075 { 1076 dsl_dataset_t *ds; 1077 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 1078 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 1079 1080 dsl_dataset_name(ds, buf); 1081 1082 dsl_dataset_rele(ds, FTAG); 1083 } 1084 1085 int 1086 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count) 1087 { 1088 if (dsl_dir_is_zapified(dd)) { 1089 objset_t *os = dd->dd_pool->dp_meta_objset; 1090 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 1091 sizeof (*count), 1, count)); 1092 } else { 1093 return (SET_ERROR(ENOENT)); 1094 } 1095 } 1096 1097 int 1098 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count) 1099 { 1100 if (dsl_dir_is_zapified(dd)) { 1101 objset_t *os = dd->dd_pool->dp_meta_objset; 1102 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 1103 sizeof (*count), 1, count)); 1104 } else { 1105 return (SET_ERROR(ENOENT)); 1106 } 1107 } 1108 1109 void 1110 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 1111 { 1112 mutex_enter(&dd->dd_lock); 1113 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 1114 dsl_dir_get_quota(dd)); 1115 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 1116 dsl_dir_get_reservation(dd)); 1117 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 1118 dsl_dir_get_logicalused(dd)); 1119 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1120 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 1121 dsl_dir_get_usedsnap(dd)); 1122 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 1123 dsl_dir_get_usedds(dd)); 1124 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 1125 dsl_dir_get_usedrefreserv(dd)); 1126 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 1127 dsl_dir_get_usedchild(dd)); 1128 } 1129 mutex_exit(&dd->dd_lock); 1130 1131 uint64_t count; 1132 if (dsl_dir_get_filesystem_count(dd, &count) == 0) { 1133 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT, 1134 count); 1135 } 1136 if (dsl_dir_get_snapshot_count(dd, &count) == 0) { 1137 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT, 1138 count); 1139 } 1140 1141 if (dsl_dir_is_clone(dd)) { 1142 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1143 dsl_dir_get_origin(dd, buf); 1144 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 1145 } 1146 1147 } 1148 1149 void 1150 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 1151 { 1152 dsl_pool_t *dp = dd->dd_pool; 1153 1154 ASSERT(dsl_dir_phys(dd)); 1155 1156 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 1157 /* up the hold count until we can be written out */ 1158 dmu_buf_add_ref(dd->dd_dbuf, dd); 1159 } 1160 } 1161 1162 static int64_t 1163 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1164 { 1165 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1166 uint64_t new_accounted = 1167 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1168 return (new_accounted - old_accounted); 1169 } 1170 1171 void 1172 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1173 { 1174 ASSERT(dmu_tx_is_syncing(tx)); 1175 1176 mutex_enter(&dd->dd_lock); 1177 ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]); 1178 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg, 1179 (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024); 1180 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0; 1181 mutex_exit(&dd->dd_lock); 1182 1183 /* release the hold from dsl_dir_dirty */ 1184 dmu_buf_rele(dd->dd_dbuf, dd); 1185 } 1186 1187 static uint64_t 1188 dsl_dir_space_towrite(dsl_dir_t *dd) 1189 { 1190 uint64_t space = 0; 1191 1192 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1193 1194 for (int i = 0; i < TXG_SIZE; i++) 1195 space += dd->dd_space_towrite[i & TXG_MASK]; 1196 1197 return (space); 1198 } 1199 1200 /* 1201 * How much space would dd have available if ancestor had delta applied 1202 * to it? If ondiskonly is set, we're only interested in what's 1203 * on-disk, not estimated pending changes. 1204 */ 1205 uint64_t 1206 dsl_dir_space_available(dsl_dir_t *dd, 1207 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1208 { 1209 uint64_t parentspace, myspace, quota, used; 1210 1211 /* 1212 * If there are no restrictions otherwise, assume we have 1213 * unlimited space available. 1214 */ 1215 quota = UINT64_MAX; 1216 parentspace = UINT64_MAX; 1217 1218 if (dd->dd_parent != NULL) { 1219 parentspace = dsl_dir_space_available(dd->dd_parent, 1220 ancestor, delta, ondiskonly); 1221 } 1222 1223 mutex_enter(&dd->dd_lock); 1224 if (dsl_dir_phys(dd)->dd_quota != 0) 1225 quota = dsl_dir_phys(dd)->dd_quota; 1226 used = dsl_dir_phys(dd)->dd_used_bytes; 1227 if (!ondiskonly) 1228 used += dsl_dir_space_towrite(dd); 1229 1230 if (dd->dd_parent == NULL) { 1231 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, 1232 ZFS_SPACE_CHECK_NORMAL); 1233 quota = MIN(quota, poolsize); 1234 } 1235 1236 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1237 /* 1238 * We have some space reserved, in addition to what our 1239 * parent gave us. 1240 */ 1241 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1242 } 1243 1244 if (dd == ancestor) { 1245 ASSERT(delta <= 0); 1246 ASSERT(used >= -delta); 1247 used += delta; 1248 if (parentspace != UINT64_MAX) 1249 parentspace -= delta; 1250 } 1251 1252 if (used > quota) { 1253 /* over quota */ 1254 myspace = 0; 1255 } else { 1256 /* 1257 * the lesser of the space provided by our parent and 1258 * the space left in our quota 1259 */ 1260 myspace = MIN(parentspace, quota - used); 1261 } 1262 1263 mutex_exit(&dd->dd_lock); 1264 1265 return (myspace); 1266 } 1267 1268 struct tempreserve { 1269 list_node_t tr_node; 1270 dsl_dir_t *tr_ds; 1271 uint64_t tr_size; 1272 }; 1273 1274 static int 1275 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1276 boolean_t ignorequota, list_t *tr_list, 1277 dmu_tx_t *tx, boolean_t first) 1278 { 1279 uint64_t txg; 1280 uint64_t quota; 1281 struct tempreserve *tr; 1282 int retval; 1283 uint64_t ext_quota; 1284 uint64_t ref_rsrv; 1285 1286 top_of_function: 1287 txg = tx->tx_txg; 1288 retval = EDQUOT; 1289 ref_rsrv = 0; 1290 1291 ASSERT3U(txg, !=, 0); 1292 ASSERT3S(asize, >, 0); 1293 1294 mutex_enter(&dd->dd_lock); 1295 1296 /* 1297 * Check against the dsl_dir's quota. We don't add in the delta 1298 * when checking for over-quota because they get one free hit. 1299 */ 1300 uint64_t est_inflight = dsl_dir_space_towrite(dd); 1301 for (int i = 0; i < TXG_SIZE; i++) 1302 est_inflight += dd->dd_tempreserved[i]; 1303 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1304 1305 /* 1306 * On the first iteration, fetch the dataset's used-on-disk and 1307 * refreservation values. Also, if checkrefquota is set, test if 1308 * allocating this space would exceed the dataset's refquota. 1309 */ 1310 if (first && tx->tx_objset) { 1311 int error; 1312 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1313 1314 error = dsl_dataset_check_quota(ds, !netfree, 1315 asize, est_inflight, &used_on_disk, &ref_rsrv); 1316 if (error != 0) { 1317 mutex_exit(&dd->dd_lock); 1318 DMU_TX_STAT_BUMP(dmu_tx_quota); 1319 return (error); 1320 } 1321 } 1322 1323 /* 1324 * If this transaction will result in a net free of space, 1325 * we want to let it through. 1326 */ 1327 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0 || 1328 (tx->tx_objset && dmu_objset_type(tx->tx_objset) == DMU_OST_ZVOL && 1329 zvol_enforce_quotas == B_FALSE)) 1330 quota = UINT64_MAX; 1331 else 1332 quota = dsl_dir_phys(dd)->dd_quota; 1333 1334 /* 1335 * Adjust the quota against the actual pool size at the root 1336 * minus any outstanding deferred frees. 1337 * To ensure that it's possible to remove files from a full 1338 * pool without inducing transient overcommits, we throttle 1339 * netfree transactions against a quota that is slightly larger, 1340 * but still within the pool's allocation slop. In cases where 1341 * we're very close to full, this will allow a steady trickle of 1342 * removes to get through. 1343 */ 1344 if (dd->dd_parent == NULL) { 1345 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool, 1346 (netfree) ? 1347 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL); 1348 1349 if (avail < quota) { 1350 quota = avail; 1351 retval = SET_ERROR(ENOSPC); 1352 } 1353 } 1354 1355 /* 1356 * If they are requesting more space, and our current estimate 1357 * is over quota, they get to try again unless the actual 1358 * on-disk is over quota and there are no pending changes 1359 * or deferred frees (which may free up space for us). 1360 */ 1361 ext_quota = quota >> 5; 1362 if (quota == UINT64_MAX) 1363 ext_quota = 0; 1364 1365 if (used_on_disk >= quota) { 1366 if (retval == ENOSPC && (used_on_disk - quota) < 1367 dsl_pool_deferred_space(dd->dd_pool)) { 1368 retval = SET_ERROR(ERESTART); 1369 } 1370 /* Quota exceeded */ 1371 mutex_exit(&dd->dd_lock); 1372 DMU_TX_STAT_BUMP(dmu_tx_quota); 1373 return (retval); 1374 } else if (used_on_disk + est_inflight >= quota + ext_quota) { 1375 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1376 "quota=%lluK tr=%lluK\n", 1377 (u_longlong_t)used_on_disk>>10, 1378 (u_longlong_t)est_inflight>>10, 1379 (u_longlong_t)quota>>10, (u_longlong_t)asize>>10); 1380 mutex_exit(&dd->dd_lock); 1381 DMU_TX_STAT_BUMP(dmu_tx_quota); 1382 return (SET_ERROR(ERESTART)); 1383 } 1384 1385 /* We need to up our estimated delta before dropping dd_lock */ 1386 dd->dd_tempreserved[txg & TXG_MASK] += asize; 1387 1388 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1389 asize - ref_rsrv); 1390 mutex_exit(&dd->dd_lock); 1391 1392 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1393 tr->tr_ds = dd; 1394 tr->tr_size = asize; 1395 list_insert_tail(tr_list, tr); 1396 1397 /* see if it's OK with our parent */ 1398 if (dd->dd_parent != NULL && parent_rsrv != 0) { 1399 /* 1400 * Recurse on our parent without recursion. This has been 1401 * observed to be potentially large stack usage even within 1402 * the test suite. Largest seen stack was 7632 bytes on linux. 1403 */ 1404 1405 dd = dd->dd_parent; 1406 asize = parent_rsrv; 1407 ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1408 first = B_FALSE; 1409 goto top_of_function; 1410 } 1411 1412 return (0); 1413 } 1414 1415 /* 1416 * Reserve space in this dsl_dir, to be used in this tx's txg. 1417 * After the space has been dirtied (and dsl_dir_willuse_space() 1418 * has been called), the reservation should be canceled, using 1419 * dsl_dir_tempreserve_clear(). 1420 */ 1421 int 1422 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1423 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx) 1424 { 1425 int err; 1426 list_t *tr_list; 1427 1428 if (asize == 0) { 1429 *tr_cookiep = NULL; 1430 return (0); 1431 } 1432 1433 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1434 list_create(tr_list, sizeof (struct tempreserve), 1435 offsetof(struct tempreserve, tr_node)); 1436 ASSERT3S(asize, >, 0); 1437 1438 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg); 1439 if (err == 0) { 1440 struct tempreserve *tr; 1441 1442 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1443 tr->tr_size = lsize; 1444 list_insert_tail(tr_list, tr); 1445 } else { 1446 if (err == EAGAIN) { 1447 /* 1448 * If arc_memory_throttle() detected that pageout 1449 * is running and we are low on memory, we delay new 1450 * non-pageout transactions to give pageout an 1451 * advantage. 1452 * 1453 * It is unfortunate to be delaying while the caller's 1454 * locks are held. 1455 */ 1456 txg_delay(dd->dd_pool, tx->tx_txg, 1457 MSEC2NSEC(10), MSEC2NSEC(10)); 1458 err = SET_ERROR(ERESTART); 1459 } 1460 } 1461 1462 if (err == 0) { 1463 err = dsl_dir_tempreserve_impl(dd, asize, netfree, 1464 B_FALSE, tr_list, tx, B_TRUE); 1465 } 1466 1467 if (err != 0) 1468 dsl_dir_tempreserve_clear(tr_list, tx); 1469 else 1470 *tr_cookiep = tr_list; 1471 1472 return (err); 1473 } 1474 1475 /* 1476 * Clear a temporary reservation that we previously made with 1477 * dsl_dir_tempreserve_space(). 1478 */ 1479 void 1480 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1481 { 1482 int txgidx = tx->tx_txg & TXG_MASK; 1483 list_t *tr_list = tr_cookie; 1484 struct tempreserve *tr; 1485 1486 ASSERT3U(tx->tx_txg, !=, 0); 1487 1488 if (tr_cookie == NULL) 1489 return; 1490 1491 while ((tr = list_remove_head(tr_list)) != NULL) { 1492 if (tr->tr_ds) { 1493 mutex_enter(&tr->tr_ds->dd_lock); 1494 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1495 tr->tr_size); 1496 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1497 mutex_exit(&tr->tr_ds->dd_lock); 1498 } else { 1499 arc_tempreserve_clear(tr->tr_size); 1500 } 1501 kmem_free(tr, sizeof (struct tempreserve)); 1502 } 1503 1504 kmem_free(tr_list, sizeof (list_t)); 1505 } 1506 1507 /* 1508 * This should be called from open context when we think we're going to write 1509 * or free space, for example when dirtying data. Be conservative; it's okay 1510 * to write less space or free more, but we don't want to write more or free 1511 * less than the amount specified. 1512 * 1513 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD 1514 * version however it has been adjusted to use an iterative rather than 1515 * recursive algorithm to minimize stack usage. 1516 */ 1517 void 1518 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1519 { 1520 int64_t parent_space; 1521 uint64_t est_used; 1522 1523 do { 1524 mutex_enter(&dd->dd_lock); 1525 if (space > 0) 1526 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1527 1528 est_used = dsl_dir_space_towrite(dd) + 1529 dsl_dir_phys(dd)->dd_used_bytes; 1530 parent_space = parent_delta(dd, est_used, space); 1531 mutex_exit(&dd->dd_lock); 1532 1533 /* Make sure that we clean up dd_space_to* */ 1534 dsl_dir_dirty(dd, tx); 1535 1536 dd = dd->dd_parent; 1537 space = parent_space; 1538 } while (space && dd); 1539 } 1540 1541 /* call from syncing context when we actually write/free space for this dd */ 1542 void 1543 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1544 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1545 { 1546 int64_t accounted_delta; 1547 1548 ASSERT(dmu_tx_is_syncing(tx)); 1549 ASSERT(type < DD_USED_NUM); 1550 1551 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1552 1553 /* 1554 * dsl_dataset_set_refreservation_sync_impl() calls this with 1555 * dd_lock held, so that it can atomically update 1556 * ds->ds_reserved and the dsl_dir accounting, so that 1557 * dsl_dataset_check_quota() can see dataset and dir accounting 1558 * consistently. 1559 */ 1560 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1561 if (needlock) 1562 mutex_enter(&dd->dd_lock); 1563 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1564 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used); 1565 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used); 1566 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed); 1567 ASSERT(uncompressed >= 0 || 1568 ddp->dd_uncompressed_bytes >= -uncompressed); 1569 ddp->dd_used_bytes += used; 1570 ddp->dd_uncompressed_bytes += uncompressed; 1571 ddp->dd_compressed_bytes += compressed; 1572 1573 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1574 ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used); 1575 ddp->dd_used_breakdown[type] += used; 1576 #ifdef ZFS_DEBUG 1577 { 1578 dd_used_t t; 1579 uint64_t u = 0; 1580 for (t = 0; t < DD_USED_NUM; t++) 1581 u += ddp->dd_used_breakdown[t]; 1582 ASSERT3U(u, ==, ddp->dd_used_bytes); 1583 } 1584 #endif 1585 } 1586 if (needlock) 1587 mutex_exit(&dd->dd_lock); 1588 1589 if (dd->dd_parent != NULL) { 1590 dsl_dir_diduse_transfer_space(dd->dd_parent, 1591 accounted_delta, compressed, uncompressed, 1592 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1593 } 1594 } 1595 1596 void 1597 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1598 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1599 { 1600 ASSERT(dmu_tx_is_syncing(tx)); 1601 ASSERT(oldtype < DD_USED_NUM); 1602 ASSERT(newtype < DD_USED_NUM); 1603 1604 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1605 if (delta == 0 || 1606 !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1607 return; 1608 1609 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1610 mutex_enter(&dd->dd_lock); 1611 ASSERT(delta > 0 ? 1612 ddp->dd_used_breakdown[oldtype] >= delta : 1613 ddp->dd_used_breakdown[newtype] >= -delta); 1614 ASSERT(ddp->dd_used_bytes >= ABS(delta)); 1615 ddp->dd_used_breakdown[oldtype] -= delta; 1616 ddp->dd_used_breakdown[newtype] += delta; 1617 mutex_exit(&dd->dd_lock); 1618 } 1619 1620 void 1621 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used, 1622 int64_t compressed, int64_t uncompressed, int64_t tonew, 1623 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1624 { 1625 int64_t accounted_delta; 1626 1627 ASSERT(dmu_tx_is_syncing(tx)); 1628 ASSERT(oldtype < DD_USED_NUM); 1629 ASSERT(newtype < DD_USED_NUM); 1630 1631 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1632 1633 mutex_enter(&dd->dd_lock); 1634 dsl_dir_phys_t *ddp = dsl_dir_phys(dd); 1635 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used); 1636 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used); 1637 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed); 1638 ASSERT(uncompressed >= 0 || 1639 ddp->dd_uncompressed_bytes >= -uncompressed); 1640 ddp->dd_used_bytes += used; 1641 ddp->dd_uncompressed_bytes += uncompressed; 1642 ddp->dd_compressed_bytes += compressed; 1643 1644 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1645 ASSERT(tonew - used <= 0 || 1646 ddp->dd_used_breakdown[oldtype] >= tonew - used); 1647 ASSERT(tonew >= 0 || 1648 ddp->dd_used_breakdown[newtype] >= -tonew); 1649 ddp->dd_used_breakdown[oldtype] -= tonew - used; 1650 ddp->dd_used_breakdown[newtype] += tonew; 1651 #ifdef ZFS_DEBUG 1652 { 1653 dd_used_t t; 1654 uint64_t u = 0; 1655 for (t = 0; t < DD_USED_NUM; t++) 1656 u += ddp->dd_used_breakdown[t]; 1657 ASSERT3U(u, ==, ddp->dd_used_bytes); 1658 } 1659 #endif 1660 } 1661 mutex_exit(&dd->dd_lock); 1662 1663 if (dd->dd_parent != NULL) { 1664 dsl_dir_diduse_transfer_space(dd->dd_parent, 1665 accounted_delta, compressed, uncompressed, 1666 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1667 } 1668 } 1669 1670 typedef struct dsl_dir_set_qr_arg { 1671 const char *ddsqra_name; 1672 zprop_source_t ddsqra_source; 1673 uint64_t ddsqra_value; 1674 } dsl_dir_set_qr_arg_t; 1675 1676 static int 1677 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1678 { 1679 dsl_dir_set_qr_arg_t *ddsqra = arg; 1680 dsl_pool_t *dp = dmu_tx_pool(tx); 1681 dsl_dataset_t *ds; 1682 int error; 1683 uint64_t towrite, newval; 1684 1685 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1686 if (error != 0) 1687 return (error); 1688 1689 error = dsl_prop_predict(ds->ds_dir, "quota", 1690 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1691 if (error != 0) { 1692 dsl_dataset_rele(ds, FTAG); 1693 return (error); 1694 } 1695 1696 if (newval == 0) { 1697 dsl_dataset_rele(ds, FTAG); 1698 return (0); 1699 } 1700 1701 mutex_enter(&ds->ds_dir->dd_lock); 1702 /* 1703 * If we are doing the preliminary check in open context, and 1704 * there are pending changes, then don't fail it, since the 1705 * pending changes could under-estimate the amount of space to be 1706 * freed up. 1707 */ 1708 towrite = dsl_dir_space_towrite(ds->ds_dir); 1709 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1710 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1711 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1712 error = SET_ERROR(ENOSPC); 1713 } 1714 mutex_exit(&ds->ds_dir->dd_lock); 1715 dsl_dataset_rele(ds, FTAG); 1716 return (error); 1717 } 1718 1719 static void 1720 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1721 { 1722 dsl_dir_set_qr_arg_t *ddsqra = arg; 1723 dsl_pool_t *dp = dmu_tx_pool(tx); 1724 dsl_dataset_t *ds; 1725 uint64_t newval; 1726 1727 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1728 1729 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1730 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1731 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1732 &ddsqra->ddsqra_value, tx); 1733 1734 VERIFY0(dsl_prop_get_int_ds(ds, 1735 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1736 } else { 1737 newval = ddsqra->ddsqra_value; 1738 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1739 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1740 } 1741 1742 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1743 mutex_enter(&ds->ds_dir->dd_lock); 1744 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1745 mutex_exit(&ds->ds_dir->dd_lock); 1746 dsl_dataset_rele(ds, FTAG); 1747 } 1748 1749 int 1750 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1751 { 1752 dsl_dir_set_qr_arg_t ddsqra; 1753 1754 ddsqra.ddsqra_name = ddname; 1755 ddsqra.ddsqra_source = source; 1756 ddsqra.ddsqra_value = quota; 1757 1758 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1759 dsl_dir_set_quota_sync, &ddsqra, 0, 1760 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1761 } 1762 1763 static int 1764 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1765 { 1766 dsl_dir_set_qr_arg_t *ddsqra = arg; 1767 dsl_pool_t *dp = dmu_tx_pool(tx); 1768 dsl_dataset_t *ds; 1769 dsl_dir_t *dd; 1770 uint64_t newval, used, avail; 1771 int error; 1772 1773 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1774 if (error != 0) 1775 return (error); 1776 dd = ds->ds_dir; 1777 1778 /* 1779 * If we are doing the preliminary check in open context, the 1780 * space estimates may be inaccurate. 1781 */ 1782 if (!dmu_tx_is_syncing(tx)) { 1783 dsl_dataset_rele(ds, FTAG); 1784 return (0); 1785 } 1786 1787 error = dsl_prop_predict(ds->ds_dir, 1788 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1789 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1790 if (error != 0) { 1791 dsl_dataset_rele(ds, FTAG); 1792 return (error); 1793 } 1794 1795 mutex_enter(&dd->dd_lock); 1796 used = dsl_dir_phys(dd)->dd_used_bytes; 1797 mutex_exit(&dd->dd_lock); 1798 1799 if (dd->dd_parent) { 1800 avail = dsl_dir_space_available(dd->dd_parent, 1801 NULL, 0, FALSE); 1802 } else { 1803 avail = dsl_pool_adjustedsize(dd->dd_pool, 1804 ZFS_SPACE_CHECK_NORMAL) - used; 1805 } 1806 1807 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1808 uint64_t delta = MAX(used, newval) - 1809 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1810 1811 if (delta > avail || 1812 (dsl_dir_phys(dd)->dd_quota > 0 && 1813 newval > dsl_dir_phys(dd)->dd_quota)) 1814 error = SET_ERROR(ENOSPC); 1815 } 1816 1817 dsl_dataset_rele(ds, FTAG); 1818 return (error); 1819 } 1820 1821 void 1822 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1823 { 1824 uint64_t used; 1825 int64_t delta; 1826 1827 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1828 1829 mutex_enter(&dd->dd_lock); 1830 used = dsl_dir_phys(dd)->dd_used_bytes; 1831 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1832 dsl_dir_phys(dd)->dd_reserved = value; 1833 1834 if (dd->dd_parent != NULL) { 1835 /* Roll up this additional usage into our ancestors */ 1836 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1837 delta, 0, 0, tx); 1838 } 1839 mutex_exit(&dd->dd_lock); 1840 } 1841 1842 static void 1843 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1844 { 1845 dsl_dir_set_qr_arg_t *ddsqra = arg; 1846 dsl_pool_t *dp = dmu_tx_pool(tx); 1847 dsl_dataset_t *ds; 1848 uint64_t newval; 1849 1850 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1851 1852 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1853 dsl_prop_set_sync_impl(ds, 1854 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1855 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1856 &ddsqra->ddsqra_value, tx); 1857 1858 VERIFY0(dsl_prop_get_int_ds(ds, 1859 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1860 } else { 1861 newval = ddsqra->ddsqra_value; 1862 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1863 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1864 (longlong_t)newval); 1865 } 1866 1867 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1868 dsl_dataset_rele(ds, FTAG); 1869 } 1870 1871 int 1872 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1873 uint64_t reservation) 1874 { 1875 dsl_dir_set_qr_arg_t ddsqra; 1876 1877 ddsqra.ddsqra_name = ddname; 1878 ddsqra.ddsqra_source = source; 1879 ddsqra.ddsqra_value = reservation; 1880 1881 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1882 dsl_dir_set_reservation_sync, &ddsqra, 0, 1883 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1884 } 1885 1886 static dsl_dir_t * 1887 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1888 { 1889 for (; ds1; ds1 = ds1->dd_parent) { 1890 dsl_dir_t *dd; 1891 for (dd = ds2; dd; dd = dd->dd_parent) { 1892 if (ds1 == dd) 1893 return (dd); 1894 } 1895 } 1896 return (NULL); 1897 } 1898 1899 /* 1900 * If delta is applied to dd, how much of that delta would be applied to 1901 * ancestor? Syncing context only. 1902 */ 1903 static int64_t 1904 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1905 { 1906 if (dd == ancestor) 1907 return (delta); 1908 1909 mutex_enter(&dd->dd_lock); 1910 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1911 mutex_exit(&dd->dd_lock); 1912 return (would_change(dd->dd_parent, delta, ancestor)); 1913 } 1914 1915 typedef struct dsl_dir_rename_arg { 1916 const char *ddra_oldname; 1917 const char *ddra_newname; 1918 cred_t *ddra_cred; 1919 proc_t *ddra_proc; 1920 } dsl_dir_rename_arg_t; 1921 1922 typedef struct dsl_valid_rename_arg { 1923 int char_delta; 1924 int nest_delta; 1925 } dsl_valid_rename_arg_t; 1926 1927 static int 1928 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1929 { 1930 (void) dp; 1931 dsl_valid_rename_arg_t *dvra = arg; 1932 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1933 1934 dsl_dataset_name(ds, namebuf); 1935 1936 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN), 1937 <, ZFS_MAX_DATASET_NAME_LEN); 1938 int namelen = strlen(namebuf) + dvra->char_delta; 1939 int depth = get_dataset_depth(namebuf) + dvra->nest_delta; 1940 1941 if (namelen >= ZFS_MAX_DATASET_NAME_LEN) 1942 return (SET_ERROR(ENAMETOOLONG)); 1943 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting) 1944 return (SET_ERROR(ENAMETOOLONG)); 1945 return (0); 1946 } 1947 1948 static int 1949 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1950 { 1951 dsl_dir_rename_arg_t *ddra = arg; 1952 dsl_pool_t *dp = dmu_tx_pool(tx); 1953 dsl_dir_t *dd, *newparent; 1954 dsl_valid_rename_arg_t dvra; 1955 dsl_dataset_t *parentds; 1956 objset_t *parentos; 1957 const char *mynewname; 1958 int error; 1959 1960 /* target dir should exist */ 1961 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1962 if (error != 0) 1963 return (error); 1964 1965 /* new parent should exist */ 1966 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1967 &newparent, &mynewname); 1968 if (error != 0) { 1969 dsl_dir_rele(dd, FTAG); 1970 return (error); 1971 } 1972 1973 /* can't rename to different pool */ 1974 if (dd->dd_pool != newparent->dd_pool) { 1975 dsl_dir_rele(newparent, FTAG); 1976 dsl_dir_rele(dd, FTAG); 1977 return (SET_ERROR(EXDEV)); 1978 } 1979 1980 /* new name should not already exist */ 1981 if (mynewname == NULL) { 1982 dsl_dir_rele(newparent, FTAG); 1983 dsl_dir_rele(dd, FTAG); 1984 return (SET_ERROR(EEXIST)); 1985 } 1986 1987 /* can't rename below anything but filesystems (eg. no ZVOLs) */ 1988 error = dsl_dataset_hold_obj(newparent->dd_pool, 1989 dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds); 1990 if (error != 0) { 1991 dsl_dir_rele(newparent, FTAG); 1992 dsl_dir_rele(dd, FTAG); 1993 return (error); 1994 } 1995 error = dmu_objset_from_ds(parentds, &parentos); 1996 if (error != 0) { 1997 dsl_dataset_rele(parentds, FTAG); 1998 dsl_dir_rele(newparent, FTAG); 1999 dsl_dir_rele(dd, FTAG); 2000 return (error); 2001 } 2002 if (dmu_objset_type(parentos) != DMU_OST_ZFS) { 2003 dsl_dataset_rele(parentds, FTAG); 2004 dsl_dir_rele(newparent, FTAG); 2005 dsl_dir_rele(dd, FTAG); 2006 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 2007 } 2008 dsl_dataset_rele(parentds, FTAG); 2009 2010 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN), 2011 <, ZFS_MAX_DATASET_NAME_LEN); 2012 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN), 2013 <, ZFS_MAX_DATASET_NAME_LEN); 2014 dvra.char_delta = strlen(ddra->ddra_newname) 2015 - strlen(ddra->ddra_oldname); 2016 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname) 2017 - get_dataset_depth(ddra->ddra_oldname); 2018 2019 /* if the name length is growing, validate child name lengths */ 2020 if (dvra.char_delta > 0 || dvra.nest_delta > 0) { 2021 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 2022 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 2023 if (error != 0) { 2024 dsl_dir_rele(newparent, FTAG); 2025 dsl_dir_rele(dd, FTAG); 2026 return (error); 2027 } 2028 } 2029 2030 if (dmu_tx_is_syncing(tx)) { 2031 if (spa_feature_is_active(dp->dp_spa, 2032 SPA_FEATURE_FS_SS_LIMIT)) { 2033 /* 2034 * Although this is the check function and we don't 2035 * normally make on-disk changes in check functions, 2036 * we need to do that here. 2037 * 2038 * Ensure this portion of the tree's counts have been 2039 * initialized in case the new parent has limits set. 2040 */ 2041 dsl_dir_init_fs_ss_count(dd, tx); 2042 } 2043 } 2044 2045 if (newparent != dd->dd_parent) { 2046 /* is there enough space? */ 2047 uint64_t myspace = 2048 MAX(dsl_dir_phys(dd)->dd_used_bytes, 2049 dsl_dir_phys(dd)->dd_reserved); 2050 objset_t *os = dd->dd_pool->dp_meta_objset; 2051 uint64_t fs_cnt = 0; 2052 uint64_t ss_cnt = 0; 2053 2054 if (dsl_dir_is_zapified(dd)) { 2055 int err; 2056 2057 err = zap_lookup(os, dd->dd_object, 2058 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2059 &fs_cnt); 2060 if (err != ENOENT && err != 0) { 2061 dsl_dir_rele(newparent, FTAG); 2062 dsl_dir_rele(dd, FTAG); 2063 return (err); 2064 } 2065 2066 /* 2067 * have to add 1 for the filesystem itself that we're 2068 * moving 2069 */ 2070 fs_cnt++; 2071 2072 err = zap_lookup(os, dd->dd_object, 2073 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2074 &ss_cnt); 2075 if (err != ENOENT && err != 0) { 2076 dsl_dir_rele(newparent, FTAG); 2077 dsl_dir_rele(dd, FTAG); 2078 return (err); 2079 } 2080 } 2081 2082 /* check for encryption errors */ 2083 error = dsl_dir_rename_crypt_check(dd, newparent); 2084 if (error != 0) { 2085 dsl_dir_rele(newparent, FTAG); 2086 dsl_dir_rele(dd, FTAG); 2087 return (SET_ERROR(EACCES)); 2088 } 2089 2090 /* no rename into our descendant */ 2091 if (closest_common_ancestor(dd, newparent) == dd) { 2092 dsl_dir_rele(newparent, FTAG); 2093 dsl_dir_rele(dd, FTAG); 2094 return (SET_ERROR(EINVAL)); 2095 } 2096 2097 error = dsl_dir_transfer_possible(dd->dd_parent, 2098 newparent, fs_cnt, ss_cnt, myspace, 2099 ddra->ddra_cred, ddra->ddra_proc); 2100 if (error != 0) { 2101 dsl_dir_rele(newparent, FTAG); 2102 dsl_dir_rele(dd, FTAG); 2103 return (error); 2104 } 2105 } 2106 2107 dsl_dir_rele(newparent, FTAG); 2108 dsl_dir_rele(dd, FTAG); 2109 return (0); 2110 } 2111 2112 static void 2113 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 2114 { 2115 dsl_dir_rename_arg_t *ddra = arg; 2116 dsl_pool_t *dp = dmu_tx_pool(tx); 2117 dsl_dir_t *dd, *newparent; 2118 const char *mynewname; 2119 objset_t *mos = dp->dp_meta_objset; 2120 2121 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 2122 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 2123 &mynewname)); 2124 2125 ASSERT3P(mynewname, !=, NULL); 2126 2127 /* Log this before we change the name. */ 2128 spa_history_log_internal_dd(dd, "rename", tx, 2129 "-> %s", ddra->ddra_newname); 2130 2131 if (newparent != dd->dd_parent) { 2132 objset_t *os = dd->dd_pool->dp_meta_objset; 2133 uint64_t fs_cnt = 0; 2134 uint64_t ss_cnt = 0; 2135 2136 /* 2137 * We already made sure the dd counts were initialized in the 2138 * check function. 2139 */ 2140 if (spa_feature_is_active(dp->dp_spa, 2141 SPA_FEATURE_FS_SS_LIMIT)) { 2142 VERIFY0(zap_lookup(os, dd->dd_object, 2143 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2144 &fs_cnt)); 2145 /* add 1 for the filesystem itself that we're moving */ 2146 fs_cnt++; 2147 2148 VERIFY0(zap_lookup(os, dd->dd_object, 2149 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2150 &ss_cnt)); 2151 } 2152 2153 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 2154 DD_FIELD_FILESYSTEM_COUNT, tx); 2155 dsl_fs_ss_count_adjust(newparent, fs_cnt, 2156 DD_FIELD_FILESYSTEM_COUNT, tx); 2157 2158 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 2159 DD_FIELD_SNAPSHOT_COUNT, tx); 2160 dsl_fs_ss_count_adjust(newparent, ss_cnt, 2161 DD_FIELD_SNAPSHOT_COUNT, tx); 2162 2163 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 2164 -dsl_dir_phys(dd)->dd_used_bytes, 2165 -dsl_dir_phys(dd)->dd_compressed_bytes, 2166 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2167 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 2168 dsl_dir_phys(dd)->dd_used_bytes, 2169 dsl_dir_phys(dd)->dd_compressed_bytes, 2170 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2171 2172 if (dsl_dir_phys(dd)->dd_reserved > 2173 dsl_dir_phys(dd)->dd_used_bytes) { 2174 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 2175 dsl_dir_phys(dd)->dd_used_bytes; 2176 2177 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 2178 -unused_rsrv, 0, 0, tx); 2179 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 2180 unused_rsrv, 0, 0, tx); 2181 } 2182 } 2183 2184 dmu_buf_will_dirty(dd->dd_dbuf, tx); 2185 2186 /* remove from old parent zapobj */ 2187 VERIFY0(zap_remove(mos, 2188 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 2189 dd->dd_myname, tx)); 2190 2191 (void) strlcpy(dd->dd_myname, mynewname, 2192 sizeof (dd->dd_myname)); 2193 dsl_dir_rele(dd->dd_parent, dd); 2194 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 2195 VERIFY0(dsl_dir_hold_obj(dp, 2196 newparent->dd_object, NULL, dd, &dd->dd_parent)); 2197 2198 /* add to new parent zapobj */ 2199 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 2200 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 2201 2202 /* TODO: A rename callback to avoid these layering violations. */ 2203 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname); 2204 zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname, 2205 ddra->ddra_newname, B_TRUE); 2206 2207 dsl_prop_notify_all(dd); 2208 2209 dsl_dir_rele(newparent, FTAG); 2210 dsl_dir_rele(dd, FTAG); 2211 } 2212 2213 int 2214 dsl_dir_rename(const char *oldname, const char *newname) 2215 { 2216 dsl_dir_rename_arg_t ddra; 2217 2218 ddra.ddra_oldname = oldname; 2219 ddra.ddra_newname = newname; 2220 ddra.ddra_cred = CRED(); 2221 ddra.ddra_proc = curproc; 2222 2223 return (dsl_sync_task(oldname, 2224 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 2225 3, ZFS_SPACE_CHECK_RESERVED)); 2226 } 2227 2228 int 2229 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 2230 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, 2231 cred_t *cr, proc_t *proc) 2232 { 2233 dsl_dir_t *ancestor; 2234 int64_t adelta; 2235 uint64_t avail; 2236 int err; 2237 2238 ancestor = closest_common_ancestor(sdd, tdd); 2239 adelta = would_change(sdd, -space, ancestor); 2240 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 2241 if (avail < space) 2242 return (SET_ERROR(ENOSPC)); 2243 2244 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 2245 ancestor, cr, proc); 2246 if (err != 0) 2247 return (err); 2248 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 2249 ancestor, cr, proc); 2250 if (err != 0) 2251 return (err); 2252 2253 return (0); 2254 } 2255 2256 inode_timespec_t 2257 dsl_dir_snap_cmtime(dsl_dir_t *dd) 2258 { 2259 inode_timespec_t t; 2260 2261 mutex_enter(&dd->dd_lock); 2262 t = dd->dd_snap_cmtime; 2263 mutex_exit(&dd->dd_lock); 2264 2265 return (t); 2266 } 2267 2268 void 2269 dsl_dir_snap_cmtime_update(dsl_dir_t *dd, dmu_tx_t *tx) 2270 { 2271 dsl_pool_t *dp = dmu_tx_pool(tx); 2272 inode_timespec_t t; 2273 gethrestime(&t); 2274 2275 mutex_enter(&dd->dd_lock); 2276 dd->dd_snap_cmtime = t; 2277 if (spa_feature_is_enabled(dp->dp_spa, 2278 SPA_FEATURE_EXTENSIBLE_DATASET)) { 2279 objset_t *mos = dd->dd_pool->dp_meta_objset; 2280 uint64_t ddobj = dd->dd_object; 2281 dsl_dir_zapify(dd, tx); 2282 VERIFY0(zap_update(mos, ddobj, 2283 DD_FIELD_SNAPSHOTS_CHANGED, 2284 sizeof (uint64_t), 2285 sizeof (inode_timespec_t) / sizeof (uint64_t), 2286 &t, tx)); 2287 } 2288 mutex_exit(&dd->dd_lock); 2289 } 2290 2291 void 2292 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 2293 { 2294 objset_t *mos = dd->dd_pool->dp_meta_objset; 2295 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 2296 } 2297 2298 boolean_t 2299 dsl_dir_is_zapified(dsl_dir_t *dd) 2300 { 2301 dmu_object_info_t doi; 2302 2303 dmu_object_info_from_db(dd->dd_dbuf, &doi); 2304 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 2305 } 2306 2307 int 2308 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj) 2309 { 2310 objset_t *mos = dd->dd_pool->dp_meta_objset; 2311 ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa, 2312 SPA_FEATURE_LIVELIST)); 2313 int err = dsl_deadlist_open(&dd->dd_livelist, mos, obj); 2314 if (err != 0) 2315 return (err); 2316 bplist_create(&dd->dd_pending_allocs); 2317 bplist_create(&dd->dd_pending_frees); 2318 return (0); 2319 } 2320 2321 void 2322 dsl_dir_livelist_close(dsl_dir_t *dd) 2323 { 2324 dsl_deadlist_close(&dd->dd_livelist); 2325 bplist_destroy(&dd->dd_pending_allocs); 2326 bplist_destroy(&dd->dd_pending_frees); 2327 } 2328 2329 void 2330 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total) 2331 { 2332 uint64_t obj; 2333 dsl_pool_t *dp = dmu_tx_pool(tx); 2334 spa_t *spa = dp->dp_spa; 2335 livelist_condense_entry_t to_condense = spa->spa_to_condense; 2336 2337 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2338 return; 2339 2340 /* 2341 * If the livelist being removed is set to be condensed, stop the 2342 * condense zthr and indicate the cancellation in the spa_to_condense 2343 * struct in case the condense no-wait synctask has already started 2344 */ 2345 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 2346 if (ll_condense_thread != NULL && 2347 (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) { 2348 /* 2349 * We use zthr_wait_cycle_done instead of zthr_cancel 2350 * because we don't want to destroy the zthr, just have 2351 * it skip its current task. 2352 */ 2353 spa->spa_to_condense.cancelled = B_TRUE; 2354 zthr_wait_cycle_done(ll_condense_thread); 2355 /* 2356 * If we've returned from zthr_wait_cycle_done without 2357 * clearing the to_condense data structure it's either 2358 * because the no-wait synctask has started (which is 2359 * indicated by 'syncing' field of to_condense) and we 2360 * can expect it to clear to_condense on its own. 2361 * Otherwise, we returned before the zthr ran. The 2362 * checkfunc will now fail as cancelled == B_TRUE so we 2363 * can safely NULL out ds, allowing a different dir's 2364 * livelist to be condensed. 2365 * 2366 * We can be sure that the to_condense struct will not 2367 * be repopulated at this stage because both this 2368 * function and dsl_livelist_try_condense execute in 2369 * syncing context. 2370 */ 2371 if ((spa->spa_to_condense.ds != NULL) && 2372 !spa->spa_to_condense.syncing) { 2373 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, 2374 spa); 2375 spa->spa_to_condense.ds = NULL; 2376 } 2377 } 2378 2379 dsl_dir_livelist_close(dd); 2380 VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object, 2381 DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj)); 2382 VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object, 2383 DD_FIELD_LIVELIST, tx)); 2384 if (total) { 2385 dsl_deadlist_free(dp->dp_meta_objset, obj, tx); 2386 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2387 } 2388 } 2389 2390 static int 2391 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds, 2392 zfs_wait_activity_t activity, boolean_t *in_progress) 2393 { 2394 int error = 0; 2395 2396 ASSERT(MUTEX_HELD(&dd->dd_activity_lock)); 2397 2398 switch (activity) { 2399 case ZFS_WAIT_DELETEQ: { 2400 #ifdef _KERNEL 2401 objset_t *os; 2402 error = dmu_objset_from_ds(ds, &os); 2403 if (error != 0) 2404 break; 2405 2406 mutex_enter(&os->os_user_ptr_lock); 2407 void *user = dmu_objset_get_user(os); 2408 mutex_exit(&os->os_user_ptr_lock); 2409 if (dmu_objset_type(os) != DMU_OST_ZFS || 2410 user == NULL || zfs_get_vfs_flag_unmounted(os)) { 2411 *in_progress = B_FALSE; 2412 return (0); 2413 } 2414 2415 uint64_t readonly = B_FALSE; 2416 error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly, 2417 NULL); 2418 2419 if (error != 0) 2420 break; 2421 2422 if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) { 2423 *in_progress = B_FALSE; 2424 return (0); 2425 } 2426 2427 uint64_t count, unlinked_obj; 2428 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 2429 &unlinked_obj); 2430 if (error != 0) { 2431 dsl_dataset_rele(ds, FTAG); 2432 break; 2433 } 2434 error = zap_count(os, unlinked_obj, &count); 2435 2436 if (error == 0) 2437 *in_progress = (count != 0); 2438 break; 2439 #else 2440 /* 2441 * The delete queue is ZPL specific, and libzpool doesn't have 2442 * it. It doesn't make sense to wait for it. 2443 */ 2444 (void) ds; 2445 *in_progress = B_FALSE; 2446 break; 2447 #endif 2448 } 2449 default: 2450 panic("unrecognized value for activity %d", activity); 2451 } 2452 2453 return (error); 2454 } 2455 2456 int 2457 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity, 2458 boolean_t *waited) 2459 { 2460 int error = 0; 2461 boolean_t in_progress; 2462 dsl_pool_t *dp = dd->dd_pool; 2463 for (;;) { 2464 dsl_pool_config_enter(dp, FTAG); 2465 error = dsl_dir_activity_in_progress(dd, ds, activity, 2466 &in_progress); 2467 dsl_pool_config_exit(dp, FTAG); 2468 if (error != 0 || !in_progress) 2469 break; 2470 2471 *waited = B_TRUE; 2472 2473 if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) == 2474 0 || dd->dd_activity_cancelled) { 2475 error = SET_ERROR(EINTR); 2476 break; 2477 } 2478 } 2479 return (error); 2480 } 2481 2482 void 2483 dsl_dir_cancel_waiters(dsl_dir_t *dd) 2484 { 2485 mutex_enter(&dd->dd_activity_lock); 2486 dd->dd_activity_cancelled = B_TRUE; 2487 cv_broadcast(&dd->dd_activity_cv); 2488 while (dd->dd_activity_waiters > 0) 2489 cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock); 2490 mutex_exit(&dd->dd_activity_lock); 2491 } 2492 2493 #if defined(_KERNEL) 2494 EXPORT_SYMBOL(dsl_dir_set_quota); 2495 EXPORT_SYMBOL(dsl_dir_set_reservation); 2496 #endif 2497 2498 ZFS_MODULE_PARAM(zfs, , zvol_enforce_quotas, INT, ZMOD_RW, 2499 "Enable strict ZVOL quota enforcment"); 2500