xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_deadlist.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  */
26 
27 #include <sys/dmu.h>
28 #include <sys/zap.h>
29 #include <sys/zfs_context.h>
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 
33 /*
34  * Deadlist concurrency:
35  *
36  * Deadlists can only be modified from the syncing thread.
37  *
38  * Except for dsl_deadlist_insert(), it can only be modified with the
39  * dp_config_rwlock held with RW_WRITER.
40  *
41  * The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
42  * be called concurrently, from open context, with the dl_config_rwlock held
43  * with RW_READER.
44  *
45  * Therefore, we only need to provide locking between dsl_deadlist_insert() and
46  * the accessors, protecting:
47  *     dl_phys->dl_used,comp,uncomp
48  *     and protecting the dl_tree from being loaded.
49  * The locking is provided by dl_lock.  Note that locking on the bpobj_t
50  * provides its own locking, and dl_oldfmt is immutable.
51  */
52 
53 /*
54  * Livelist Overview
55  * ================
56  *
57  * Livelists use the same 'deadlist_t' struct as deadlists and are also used
58  * to track blkptrs over the lifetime of a dataset. Livelists however, belong
59  * to clones and track the blkptrs that are clone-specific (were born after
60  * the clone's creation). The exception is embedded block pointers which are
61  * not included in livelists because they do not need to be freed.
62  *
63  * When it comes time to delete the clone, the livelist provides a quick
64  * reference as to what needs to be freed. For this reason, livelists also track
65  * when clone-specific blkptrs are freed before deletion to prevent double
66  * frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
67  * deletion algorithm iterates backwards over the livelist, matching
68  * FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
69  * are also updated in the case when blkptrs are remapped: the old version
70  * of the blkptr is cancelled out with a FREE and the new version is tracked
71  * with an ALLOC.
72  *
73  * To bound the amount of memory required for deletion, livelists over a
74  * certain size are spread over multiple entries. Entries are grouped by
75  * birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
76  * be in the same entry. This allows us to delete livelists incrementally
77  * over multiple syncs, one entry at a time.
78  *
79  * During the lifetime of the clone, livelists can get extremely large.
80  * Their size is managed by periodic condensing (preemptively cancelling out
81  * FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
82  * the shared space between the clone and its origin is so small that it
83  * doesn't make sense to use livelists anymore.
84  */
85 
86 /*
87  * The threshold sublist size at which we create a new sub-livelist for the
88  * next txg. However, since blkptrs of the same transaction group must be in
89  * the same sub-list, the actual sublist size may exceed this. When picking the
90  * size we had to balance the fact that larger sublists mean fewer sublists
91  * (decreasing the cost of insertion) against the consideration that sublists
92  * will be loaded into memory and shouldn't take up an inordinate amount of
93  * space. We settled on ~500000 entries, corresponding to roughly 128M.
94  */
95 uint64_t zfs_livelist_max_entries = 500000;
96 
97 /*
98  * We can approximate how much of a performance gain a livelist will give us
99  * based on the percentage of blocks shared between the clone and its origin.
100  * 0 percent shared means that the clone has completely diverged and that the
101  * old method is maximally effective: every read from the block tree will
102  * result in lots of frees. Livelists give us gains when they track blocks
103  * scattered across the tree, when one read in the old method might only
104  * result in a few frees. Once the clone has been overwritten enough,
105  * writes are no longer sparse and we'll no longer get much of a benefit from
106  * tracking them with a livelist. We chose a lower limit of 75 percent shared
107  * (25 percent overwritten). This means that 1/4 of all block pointers will be
108  * freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
109  * to make deletion 4x faster. Once the amount of shared space drops below this
110  * threshold, the clone will revert to the old deletion method.
111  */
112 int zfs_livelist_min_percent_shared = 75;
113 
114 static int
115 dsl_deadlist_compare(const void *arg1, const void *arg2)
116 {
117 	const dsl_deadlist_entry_t *dle1 = arg1;
118 	const dsl_deadlist_entry_t *dle2 = arg2;
119 
120 	return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
121 }
122 
123 static int
124 dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
125 {
126 	const dsl_deadlist_cache_entry_t *dlce1 = arg1;
127 	const dsl_deadlist_cache_entry_t *dlce2 = arg2;
128 
129 	return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
130 }
131 
132 static void
133 dsl_deadlist_load_tree(dsl_deadlist_t *dl)
134 {
135 	zap_cursor_t zc;
136 	zap_attribute_t *za;
137 	int error;
138 
139 	ASSERT(MUTEX_HELD(&dl->dl_lock));
140 
141 	ASSERT(!dl->dl_oldfmt);
142 	if (dl->dl_havecache) {
143 		/*
144 		 * After loading the tree, the caller may modify the tree,
145 		 * e.g. to add or remove nodes, or to make a node no longer
146 		 * refer to the empty_bpobj.  These changes would make the
147 		 * dl_cache incorrect.  Therefore we discard the cache here,
148 		 * so that it can't become incorrect.
149 		 */
150 		dsl_deadlist_cache_entry_t *dlce;
151 		void *cookie = NULL;
152 		while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
153 		    != NULL) {
154 			kmem_free(dlce, sizeof (*dlce));
155 		}
156 		avl_destroy(&dl->dl_cache);
157 		dl->dl_havecache = B_FALSE;
158 	}
159 	if (dl->dl_havetree)
160 		return;
161 
162 	za = zap_attribute_alloc();
163 	avl_create(&dl->dl_tree, dsl_deadlist_compare,
164 	    sizeof (dsl_deadlist_entry_t),
165 	    offsetof(dsl_deadlist_entry_t, dle_node));
166 	for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
167 	    (error = zap_cursor_retrieve(&zc, za)) == 0;
168 	    zap_cursor_advance(&zc)) {
169 		dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
170 		dle->dle_mintxg = zfs_strtonum(za->za_name, NULL);
171 
172 		/*
173 		 * Prefetch all the bpobj's so that we do that i/o
174 		 * in parallel.  Then open them all in a second pass.
175 		 */
176 		dle->dle_bpobj.bpo_object = za->za_first_integer;
177 		dmu_prefetch_dnode(dl->dl_os, dle->dle_bpobj.bpo_object,
178 		    ZIO_PRIORITY_SYNC_READ);
179 
180 		avl_add(&dl->dl_tree, dle);
181 	}
182 	VERIFY3U(error, ==, ENOENT);
183 	zap_cursor_fini(&zc);
184 	zap_attribute_free(za);
185 
186 	for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
187 	    dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
188 		VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
189 		    dle->dle_bpobj.bpo_object));
190 	}
191 	dl->dl_havetree = B_TRUE;
192 }
193 
194 /*
195  * Load only the non-empty bpobj's into the dl_cache.  The cache is an analog
196  * of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
197  * is used only for gathering space statistics.  The dl_cache has two
198  * advantages over the dl_tree:
199  *
200  * 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
201  * mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
202  * many times and to inquire about its (zero) space stats many times.
203  *
204  * 2. The dl_cache uses less memory than the dl_tree.  We only need to load
205  * the dl_tree of snapshots when deleting a snapshot, after which we free the
206  * dl_tree with dsl_deadlist_discard_tree
207  */
208 static void
209 dsl_deadlist_load_cache(dsl_deadlist_t *dl)
210 {
211 	zap_cursor_t zc;
212 	zap_attribute_t *za;
213 	int error;
214 
215 	ASSERT(MUTEX_HELD(&dl->dl_lock));
216 
217 	ASSERT(!dl->dl_oldfmt);
218 	if (dl->dl_havecache)
219 		return;
220 
221 	uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
222 
223 	avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
224 	    sizeof (dsl_deadlist_cache_entry_t),
225 	    offsetof(dsl_deadlist_cache_entry_t, dlce_node));
226 	za = zap_attribute_alloc();
227 	for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
228 	    (error = zap_cursor_retrieve(&zc, za)) == 0;
229 	    zap_cursor_advance(&zc)) {
230 		if (za->za_first_integer == empty_bpobj)
231 			continue;
232 		dsl_deadlist_cache_entry_t *dlce =
233 		    kmem_zalloc(sizeof (*dlce), KM_SLEEP);
234 		dlce->dlce_mintxg = zfs_strtonum(za->za_name, NULL);
235 
236 		/*
237 		 * Prefetch all the bpobj's so that we do that i/o
238 		 * in parallel.  Then open them all in a second pass.
239 		 */
240 		dlce->dlce_bpobj = za->za_first_integer;
241 		dmu_prefetch_dnode(dl->dl_os, dlce->dlce_bpobj,
242 		    ZIO_PRIORITY_SYNC_READ);
243 		avl_add(&dl->dl_cache, dlce);
244 	}
245 	VERIFY3U(error, ==, ENOENT);
246 	zap_cursor_fini(&zc);
247 	zap_attribute_free(za);
248 
249 	for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
250 	    dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
251 		bpobj_t bpo;
252 		VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
253 
254 		VERIFY0(bpobj_space(&bpo,
255 		    &dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
256 		bpobj_close(&bpo);
257 	}
258 	dl->dl_havecache = B_TRUE;
259 }
260 
261 /*
262  * Discard the tree to save memory.
263  */
264 void
265 dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
266 {
267 	mutex_enter(&dl->dl_lock);
268 
269 	if (!dl->dl_havetree) {
270 		mutex_exit(&dl->dl_lock);
271 		return;
272 	}
273 	dsl_deadlist_entry_t *dle;
274 	void *cookie = NULL;
275 	while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
276 		bpobj_close(&dle->dle_bpobj);
277 		kmem_free(dle, sizeof (*dle));
278 	}
279 	avl_destroy(&dl->dl_tree);
280 
281 	dl->dl_havetree = B_FALSE;
282 	mutex_exit(&dl->dl_lock);
283 }
284 
285 void
286 dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
287 {
288 	dsl_deadlist_entry_t *dle;
289 
290 	ASSERT(dsl_deadlist_is_open(dl));
291 
292 	mutex_enter(&dl->dl_lock);
293 	dsl_deadlist_load_tree(dl);
294 	mutex_exit(&dl->dl_lock);
295 	for (dle = avl_first(&dl->dl_tree); dle != NULL;
296 	    dle = AVL_NEXT(&dl->dl_tree, dle)) {
297 		if (func(args, dle) != 0)
298 			break;
299 	}
300 }
301 
302 int
303 dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
304 {
305 	dmu_object_info_t doi;
306 	int err;
307 
308 	ASSERT(!dsl_deadlist_is_open(dl));
309 
310 	mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
311 	dl->dl_os = os;
312 	dl->dl_object = object;
313 	err = dmu_bonus_hold(os, object, dl, &dl->dl_dbuf);
314 	if (err != 0)
315 		return (err);
316 	dmu_object_info_from_db(dl->dl_dbuf, &doi);
317 	if (doi.doi_type == DMU_OT_BPOBJ) {
318 		dmu_buf_rele(dl->dl_dbuf, dl);
319 		dl->dl_dbuf = NULL;
320 		dl->dl_oldfmt = B_TRUE;
321 		return (bpobj_open(&dl->dl_bpobj, os, object));
322 	}
323 
324 	dl->dl_oldfmt = B_FALSE;
325 	dl->dl_phys = dl->dl_dbuf->db_data;
326 	dl->dl_havetree = B_FALSE;
327 	dl->dl_havecache = B_FALSE;
328 	return (0);
329 }
330 
331 boolean_t
332 dsl_deadlist_is_open(dsl_deadlist_t *dl)
333 {
334 	return (dl->dl_os != NULL);
335 }
336 
337 void
338 dsl_deadlist_close(dsl_deadlist_t *dl)
339 {
340 	ASSERT(dsl_deadlist_is_open(dl));
341 	mutex_destroy(&dl->dl_lock);
342 
343 	if (dl->dl_oldfmt) {
344 		dl->dl_oldfmt = B_FALSE;
345 		bpobj_close(&dl->dl_bpobj);
346 		dl->dl_os = NULL;
347 		dl->dl_object = 0;
348 		return;
349 	}
350 
351 	if (dl->dl_havetree) {
352 		dsl_deadlist_entry_t *dle;
353 		void *cookie = NULL;
354 		while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
355 		    != NULL) {
356 			bpobj_close(&dle->dle_bpobj);
357 			kmem_free(dle, sizeof (*dle));
358 		}
359 		avl_destroy(&dl->dl_tree);
360 	}
361 	if (dl->dl_havecache) {
362 		dsl_deadlist_cache_entry_t *dlce;
363 		void *cookie = NULL;
364 		while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
365 		    != NULL) {
366 			kmem_free(dlce, sizeof (*dlce));
367 		}
368 		avl_destroy(&dl->dl_cache);
369 	}
370 	dmu_buf_rele(dl->dl_dbuf, dl);
371 	dl->dl_dbuf = NULL;
372 	dl->dl_phys = NULL;
373 	dl->dl_os = NULL;
374 	dl->dl_object = 0;
375 }
376 
377 uint64_t
378 dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
379 {
380 	if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
381 		return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
382 	return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
383 	    sizeof (dsl_deadlist_phys_t), tx));
384 }
385 
386 void
387 dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
388 {
389 	dmu_object_info_t doi;
390 	zap_cursor_t zc;
391 	zap_attribute_t *za;
392 	int error;
393 
394 	VERIFY0(dmu_object_info(os, dlobj, &doi));
395 	if (doi.doi_type == DMU_OT_BPOBJ) {
396 		bpobj_free(os, dlobj, tx);
397 		return;
398 	}
399 
400 	za = zap_attribute_alloc();
401 	for (zap_cursor_init(&zc, os, dlobj);
402 	    (error = zap_cursor_retrieve(&zc, za)) == 0;
403 	    zap_cursor_advance(&zc)) {
404 		uint64_t obj = za->za_first_integer;
405 		if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
406 			bpobj_decr_empty(os, tx);
407 		else
408 			bpobj_free(os, obj, tx);
409 	}
410 	VERIFY3U(error, ==, ENOENT);
411 	zap_cursor_fini(&zc);
412 	zap_attribute_free(za);
413 	VERIFY0(dmu_object_free(os, dlobj, tx));
414 }
415 
416 static void
417 dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
418     const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
419 {
420 	ASSERT(MUTEX_HELD(&dl->dl_lock));
421 	if (dle->dle_bpobj.bpo_object ==
422 	    dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
423 		uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
424 		bpobj_close(&dle->dle_bpobj);
425 		bpobj_decr_empty(dl->dl_os, tx);
426 		VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
427 		VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
428 		    dle->dle_mintxg, obj, tx));
429 	}
430 	bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
431 }
432 
433 static void
434 dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
435     uint64_t obj, dmu_tx_t *tx)
436 {
437 	ASSERT(MUTEX_HELD(&dl->dl_lock));
438 	if (dle->dle_bpobj.bpo_object !=
439 	    dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
440 		bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
441 	} else {
442 		bpobj_close(&dle->dle_bpobj);
443 		bpobj_decr_empty(dl->dl_os, tx);
444 		VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
445 		VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
446 		    dle->dle_mintxg, obj, tx));
447 	}
448 }
449 
450 /*
451  * Prefetch metadata required for dle_enqueue_subobj().
452  */
453 static void
454 dle_prefetch_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
455     uint64_t obj)
456 {
457 	if (dle->dle_bpobj.bpo_object !=
458 	    dmu_objset_pool(dl->dl_os)->dp_empty_bpobj)
459 		bpobj_prefetch_subobj(&dle->dle_bpobj, obj);
460 }
461 
462 void
463 dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
464     dmu_tx_t *tx)
465 {
466 	dsl_deadlist_entry_t dle_tofind;
467 	dsl_deadlist_entry_t *dle;
468 	avl_index_t where;
469 
470 	if (dl->dl_oldfmt) {
471 		bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
472 		return;
473 	}
474 
475 	mutex_enter(&dl->dl_lock);
476 	dsl_deadlist_load_tree(dl);
477 
478 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
479 
480 	int sign = bp_freed ? -1 : +1;
481 	dl->dl_phys->dl_used +=
482 	    sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
483 	dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
484 	dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
485 
486 	dle_tofind.dle_mintxg = BP_GET_LOGICAL_BIRTH(bp);
487 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
488 	if (dle == NULL)
489 		dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
490 	else
491 		dle = AVL_PREV(&dl->dl_tree, dle);
492 
493 	if (dle == NULL) {
494 		zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
495 		    bp, (longlong_t)BP_GET_LOGICAL_BIRTH(bp));
496 		dle = avl_first(&dl->dl_tree);
497 	}
498 
499 	ASSERT3P(dle, !=, NULL);
500 	dle_enqueue(dl, dle, bp, bp_freed, tx);
501 	mutex_exit(&dl->dl_lock);
502 }
503 
504 int
505 dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
506 {
507 	dsl_deadlist_t *dl = arg;
508 	dsl_deadlist_insert(dl, bp, B_FALSE, tx);
509 	return (0);
510 }
511 
512 int
513 dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
514 {
515 	dsl_deadlist_t *dl = arg;
516 	dsl_deadlist_insert(dl, bp, B_TRUE, tx);
517 	return (0);
518 }
519 
520 /*
521  * Insert new key in deadlist, which must be > all current entries.
522  * mintxg is not inclusive.
523  */
524 void
525 dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
526 {
527 	uint64_t obj;
528 	dsl_deadlist_entry_t *dle;
529 
530 	if (dl->dl_oldfmt)
531 		return;
532 
533 	dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
534 	dle->dle_mintxg = mintxg;
535 
536 	mutex_enter(&dl->dl_lock);
537 	dsl_deadlist_load_tree(dl);
538 
539 	obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
540 	VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
541 	avl_add(&dl->dl_tree, dle);
542 
543 	VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
544 	    mintxg, obj, tx));
545 	mutex_exit(&dl->dl_lock);
546 }
547 
548 /*
549  * Remove this key, merging its entries into the previous key.
550  */
551 void
552 dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
553 {
554 	dsl_deadlist_entry_t dle_tofind;
555 	dsl_deadlist_entry_t *dle, *dle_prev;
556 
557 	if (dl->dl_oldfmt)
558 		return;
559 	mutex_enter(&dl->dl_lock);
560 	dsl_deadlist_load_tree(dl);
561 
562 	dle_tofind.dle_mintxg = mintxg;
563 	dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
564 	ASSERT3P(dle, !=, NULL);
565 	dle_prev = AVL_PREV(&dl->dl_tree, dle);
566 	ASSERT3P(dle_prev, !=, NULL);
567 
568 	dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
569 
570 	avl_remove(&dl->dl_tree, dle);
571 	bpobj_close(&dle->dle_bpobj);
572 	kmem_free(dle, sizeof (*dle));
573 
574 	VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
575 	mutex_exit(&dl->dl_lock);
576 }
577 
578 /*
579  * Remove a deadlist entry and all of its contents by removing the entry from
580  * the deadlist's avl tree, freeing the entry's bpobj and adjusting the
581  * deadlist's space accounting accordingly.
582  */
583 void
584 dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
585 {
586 	uint64_t used, comp, uncomp;
587 	dsl_deadlist_entry_t dle_tofind;
588 	dsl_deadlist_entry_t *dle;
589 	objset_t *os = dl->dl_os;
590 
591 	if (dl->dl_oldfmt)
592 		return;
593 
594 	mutex_enter(&dl->dl_lock);
595 	dsl_deadlist_load_tree(dl);
596 
597 	dle_tofind.dle_mintxg = mintxg;
598 	dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
599 	VERIFY3P(dle, !=, NULL);
600 
601 	avl_remove(&dl->dl_tree, dle);
602 	VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
603 	VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
604 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
605 	dl->dl_phys->dl_used -= used;
606 	dl->dl_phys->dl_comp -= comp;
607 	dl->dl_phys->dl_uncomp -= uncomp;
608 	if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
609 		bpobj_decr_empty(os, tx);
610 	} else {
611 		bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
612 	}
613 	bpobj_close(&dle->dle_bpobj);
614 	kmem_free(dle, sizeof (*dle));
615 	mutex_exit(&dl->dl_lock);
616 }
617 
618 /*
619  * Clear out the contents of a deadlist_entry by freeing its bpobj,
620  * replacing it with an empty bpobj and adjusting the deadlist's
621  * space accounting
622  */
623 void
624 dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
625     dmu_tx_t *tx)
626 {
627 	uint64_t new_obj, used, comp, uncomp;
628 	objset_t *os = dl->dl_os;
629 
630 	mutex_enter(&dl->dl_lock);
631 	VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
632 	VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
633 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
634 	dl->dl_phys->dl_used -= used;
635 	dl->dl_phys->dl_comp -= comp;
636 	dl->dl_phys->dl_uncomp -= uncomp;
637 	if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
638 		bpobj_decr_empty(os, tx);
639 	else
640 		bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
641 	bpobj_close(&dle->dle_bpobj);
642 	new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
643 	VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
644 	VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
645 	    new_obj, tx));
646 	ASSERT(bpobj_is_empty(&dle->dle_bpobj));
647 	mutex_exit(&dl->dl_lock);
648 }
649 
650 /*
651  * Return the first entry in deadlist's avl tree
652  */
653 dsl_deadlist_entry_t *
654 dsl_deadlist_first(dsl_deadlist_t *dl)
655 {
656 	dsl_deadlist_entry_t *dle;
657 
658 	mutex_enter(&dl->dl_lock);
659 	dsl_deadlist_load_tree(dl);
660 	dle = avl_first(&dl->dl_tree);
661 	mutex_exit(&dl->dl_lock);
662 
663 	return (dle);
664 }
665 
666 /*
667  * Return the last entry in deadlist's avl tree
668  */
669 dsl_deadlist_entry_t *
670 dsl_deadlist_last(dsl_deadlist_t *dl)
671 {
672 	dsl_deadlist_entry_t *dle;
673 
674 	mutex_enter(&dl->dl_lock);
675 	dsl_deadlist_load_tree(dl);
676 	dle = avl_last(&dl->dl_tree);
677 	mutex_exit(&dl->dl_lock);
678 
679 	return (dle);
680 }
681 
682 /*
683  * Walk ds's snapshots to regenerate generate ZAP & AVL.
684  */
685 static void
686 dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
687     uint64_t mrs_obj, dmu_tx_t *tx)
688 {
689 	dsl_deadlist_t dl = { 0 };
690 	dsl_pool_t *dp = dmu_objset_pool(os);
691 
692 	VERIFY0(dsl_deadlist_open(&dl, os, dlobj));
693 	if (dl.dl_oldfmt) {
694 		dsl_deadlist_close(&dl);
695 		return;
696 	}
697 
698 	while (mrs_obj != 0) {
699 		dsl_dataset_t *ds;
700 		VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
701 		dsl_deadlist_add_key(&dl,
702 		    dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
703 		mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
704 		dsl_dataset_rele(ds, FTAG);
705 	}
706 	dsl_deadlist_close(&dl);
707 }
708 
709 uint64_t
710 dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
711     uint64_t mrs_obj, dmu_tx_t *tx)
712 {
713 	dsl_deadlist_entry_t *dle;
714 	uint64_t newobj;
715 
716 	newobj = dsl_deadlist_alloc(dl->dl_os, tx);
717 
718 	if (dl->dl_oldfmt) {
719 		dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
720 		return (newobj);
721 	}
722 
723 	mutex_enter(&dl->dl_lock);
724 	dsl_deadlist_load_tree(dl);
725 
726 	for (dle = avl_first(&dl->dl_tree); dle;
727 	    dle = AVL_NEXT(&dl->dl_tree, dle)) {
728 		uint64_t obj;
729 
730 		if (dle->dle_mintxg >= maxtxg)
731 			break;
732 
733 		obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
734 		VERIFY0(zap_add_int_key(dl->dl_os, newobj,
735 		    dle->dle_mintxg, obj, tx));
736 	}
737 	mutex_exit(&dl->dl_lock);
738 	return (newobj);
739 }
740 
741 void
742 dsl_deadlist_space(dsl_deadlist_t *dl,
743     uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
744 {
745 	ASSERT(dsl_deadlist_is_open(dl));
746 	if (dl->dl_oldfmt) {
747 		VERIFY0(bpobj_space(&dl->dl_bpobj,
748 		    usedp, compp, uncompp));
749 		return;
750 	}
751 
752 	mutex_enter(&dl->dl_lock);
753 	*usedp = dl->dl_phys->dl_used;
754 	*compp = dl->dl_phys->dl_comp;
755 	*uncompp = dl->dl_phys->dl_uncomp;
756 	mutex_exit(&dl->dl_lock);
757 }
758 
759 /*
760  * return space used in the range (mintxg, maxtxg].
761  * Includes maxtxg, does not include mintxg.
762  * mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
763  * UINT64_MAX).
764  */
765 void
766 dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
767     uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
768 {
769 	dsl_deadlist_cache_entry_t *dlce;
770 	dsl_deadlist_cache_entry_t dlce_tofind;
771 	avl_index_t where;
772 
773 	if (dl->dl_oldfmt) {
774 		VERIFY0(bpobj_space_range(&dl->dl_bpobj,
775 		    mintxg, maxtxg, usedp, compp, uncompp));
776 		return;
777 	}
778 
779 	*usedp = *compp = *uncompp = 0;
780 
781 	mutex_enter(&dl->dl_lock);
782 	dsl_deadlist_load_cache(dl);
783 	dlce_tofind.dlce_mintxg = mintxg;
784 	dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
785 
786 	/*
787 	 * If this mintxg doesn't exist, it may be an empty_bpobj which
788 	 * is omitted from the sparse tree.  Start at the next non-empty
789 	 * entry.
790 	 */
791 	if (dlce == NULL)
792 		dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
793 
794 	for (; dlce && dlce->dlce_mintxg < maxtxg;
795 	    dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
796 		*usedp += dlce->dlce_bytes;
797 		*compp += dlce->dlce_comp;
798 		*uncompp += dlce->dlce_uncomp;
799 	}
800 
801 	mutex_exit(&dl->dl_lock);
802 }
803 
804 static void
805 dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
806     dmu_tx_t *tx)
807 {
808 	dsl_deadlist_entry_t dle_tofind;
809 	dsl_deadlist_entry_t *dle;
810 	avl_index_t where;
811 	uint64_t used, comp, uncomp;
812 	bpobj_t bpo;
813 
814 	ASSERT(MUTEX_HELD(&dl->dl_lock));
815 
816 	VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
817 	VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
818 	bpobj_close(&bpo);
819 
820 	dsl_deadlist_load_tree(dl);
821 
822 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
823 	dl->dl_phys->dl_used += used;
824 	dl->dl_phys->dl_comp += comp;
825 	dl->dl_phys->dl_uncomp += uncomp;
826 
827 	dle_tofind.dle_mintxg = birth;
828 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
829 	if (dle == NULL)
830 		dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
831 	dle_enqueue_subobj(dl, dle, obj, tx);
832 }
833 
834 /*
835  * Prefetch metadata required for dsl_deadlist_insert_bpobj().
836  */
837 static void
838 dsl_deadlist_prefetch_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth)
839 {
840 	dsl_deadlist_entry_t dle_tofind;
841 	dsl_deadlist_entry_t *dle;
842 	avl_index_t where;
843 
844 	ASSERT(MUTEX_HELD(&dl->dl_lock));
845 
846 	dsl_deadlist_load_tree(dl);
847 
848 	dle_tofind.dle_mintxg = birth;
849 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
850 	if (dle == NULL)
851 		dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
852 	dle_prefetch_subobj(dl, dle, obj);
853 }
854 
855 static int
856 dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
857     dmu_tx_t *tx)
858 {
859 	dsl_deadlist_t *dl = arg;
860 	dsl_deadlist_insert(dl, bp, bp_freed, tx);
861 	return (0);
862 }
863 
864 /*
865  * Merge the deadlist pointed to by 'obj' into dl.  obj will be left as
866  * an empty deadlist.
867  */
868 void
869 dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
870 {
871 	zap_cursor_t zc, pzc;
872 	zap_attribute_t *za, *pza;
873 	dmu_buf_t *bonus;
874 	dsl_deadlist_phys_t *dlp;
875 	dmu_object_info_t doi;
876 	int error, perror, i;
877 
878 	VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
879 	if (doi.doi_type == DMU_OT_BPOBJ) {
880 		bpobj_t bpo;
881 		VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
882 		VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
883 		bpobj_close(&bpo);
884 		return;
885 	}
886 
887 	za = zap_attribute_alloc();
888 	pza = zap_attribute_alloc();
889 
890 	mutex_enter(&dl->dl_lock);
891 	/*
892 	 * Prefetch up to 128 deadlists first and then more as we progress.
893 	 * The limit is a balance between ARC use and diminishing returns.
894 	 */
895 	for (zap_cursor_init(&pzc, dl->dl_os, obj), i = 0;
896 	    (perror = zap_cursor_retrieve(&pzc, pza)) == 0 && i < 128;
897 	    zap_cursor_advance(&pzc), i++) {
898 		dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
899 		    zfs_strtonum(pza->za_name, NULL));
900 	}
901 	for (zap_cursor_init(&zc, dl->dl_os, obj);
902 	    (error = zap_cursor_retrieve(&zc, za)) == 0;
903 	    zap_cursor_advance(&zc)) {
904 		dsl_deadlist_insert_bpobj(dl, za->za_first_integer,
905 		    zfs_strtonum(za->za_name, NULL), tx);
906 		VERIFY0(zap_remove(dl->dl_os, obj, za->za_name, tx));
907 		if (perror == 0) {
908 			dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
909 			    zfs_strtonum(pza->za_name, NULL));
910 			zap_cursor_advance(&pzc);
911 			perror = zap_cursor_retrieve(&pzc, pza);
912 		}
913 	}
914 	VERIFY3U(error, ==, ENOENT);
915 	zap_cursor_fini(&zc);
916 	zap_cursor_fini(&pzc);
917 
918 	VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
919 	dlp = bonus->db_data;
920 	dmu_buf_will_dirty(bonus, tx);
921 	memset(dlp, 0, sizeof (*dlp));
922 	dmu_buf_rele(bonus, FTAG);
923 	mutex_exit(&dl->dl_lock);
924 
925 	zap_attribute_free(za);
926 	zap_attribute_free(pza);
927 }
928 
929 /*
930  * Remove entries on dl that are born > mintxg, and put them on the bpobj.
931  */
932 void
933 dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
934     dmu_tx_t *tx)
935 {
936 	dsl_deadlist_entry_t dle_tofind;
937 	dsl_deadlist_entry_t *dle, *pdle;
938 	avl_index_t where;
939 	int i;
940 
941 	ASSERT(!dl->dl_oldfmt);
942 
943 	mutex_enter(&dl->dl_lock);
944 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
945 	dsl_deadlist_load_tree(dl);
946 
947 	dle_tofind.dle_mintxg = mintxg;
948 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
949 	if (dle == NULL)
950 		dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
951 	/*
952 	 * Prefetch up to 128 deadlists first and then more as we progress.
953 	 * The limit is a balance between ARC use and diminishing returns.
954 	 */
955 	for (pdle = dle, i = 0; pdle && i < 128; i++) {
956 		bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
957 		pdle = AVL_NEXT(&dl->dl_tree, pdle);
958 	}
959 	while (dle) {
960 		uint64_t used, comp, uncomp;
961 		dsl_deadlist_entry_t *dle_next;
962 
963 		bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
964 		if (pdle) {
965 			bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
966 			pdle = AVL_NEXT(&dl->dl_tree, pdle);
967 		}
968 
969 		VERIFY0(bpobj_space(&dle->dle_bpobj,
970 		    &used, &comp, &uncomp));
971 		ASSERT3U(dl->dl_phys->dl_used, >=, used);
972 		ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
973 		ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
974 		dl->dl_phys->dl_used -= used;
975 		dl->dl_phys->dl_comp -= comp;
976 		dl->dl_phys->dl_uncomp -= uncomp;
977 
978 		VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
979 		    dle->dle_mintxg, tx));
980 
981 		dle_next = AVL_NEXT(&dl->dl_tree, dle);
982 		avl_remove(&dl->dl_tree, dle);
983 		bpobj_close(&dle->dle_bpobj);
984 		kmem_free(dle, sizeof (*dle));
985 		dle = dle_next;
986 	}
987 	mutex_exit(&dl->dl_lock);
988 }
989 
990 typedef struct livelist_entry {
991 	blkptr_t le_bp;
992 	uint32_t le_refcnt;
993 	avl_node_t le_node;
994 } livelist_entry_t;
995 
996 static int
997 livelist_compare(const void *larg, const void *rarg)
998 {
999 	const blkptr_t *l = &((livelist_entry_t *)larg)->le_bp;
1000 	const blkptr_t *r = &((livelist_entry_t *)rarg)->le_bp;
1001 
1002 	/* Sort them according to dva[0] */
1003 	uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
1004 	uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
1005 
1006 	if (l_dva0_vdev != r_dva0_vdev)
1007 		return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
1008 
1009 	/* if vdevs are equal, sort by offsets. */
1010 	uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
1011 	uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
1012 	return (TREE_CMP(l_dva0_offset, r_dva0_offset));
1013 }
1014 
1015 struct livelist_iter_arg {
1016 	avl_tree_t *avl;
1017 	bplist_t *to_free;
1018 	zthr_t *t;
1019 };
1020 
1021 /*
1022  * Expects an AVL tree which is incrementally filled will FREE blkptrs
1023  * and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
1024  * corresponding FREE are stored in the supplied bplist.
1025  *
1026  * Note that multiple FREE and ALLOC entries for the same blkptr may be
1027  * encountered when dedup or block cloning is involved.  For this reason we
1028  * keep a refcount for all the FREE entries of each blkptr and ensure that
1029  * each of those FREE entries has a corresponding ALLOC preceding it.
1030  */
1031 static int
1032 dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
1033     dmu_tx_t *tx)
1034 {
1035 	struct livelist_iter_arg *lia = arg;
1036 	avl_tree_t *avl = lia->avl;
1037 	bplist_t *to_free = lia->to_free;
1038 	zthr_t *t = lia->t;
1039 	ASSERT(tx == NULL);
1040 
1041 	if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
1042 		return (SET_ERROR(EINTR));
1043 
1044 	livelist_entry_t node;
1045 	node.le_bp = *bp;
1046 	livelist_entry_t *found = avl_find(avl, &node, NULL);
1047 	if (found) {
1048 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(&found->le_bp));
1049 		ASSERT3U(BP_GET_CHECKSUM(bp), ==,
1050 		    BP_GET_CHECKSUM(&found->le_bp));
1051 		ASSERT3U(BP_GET_BIRTH(bp), ==, BP_GET_BIRTH(&found->le_bp));
1052 	}
1053 	if (bp_freed) {
1054 		if (found == NULL) {
1055 			/* first free entry for this blkptr */
1056 			livelist_entry_t *e =
1057 			    kmem_alloc(sizeof (livelist_entry_t), KM_SLEEP);
1058 			e->le_bp = *bp;
1059 			e->le_refcnt = 1;
1060 			avl_add(avl, e);
1061 		} else {
1062 			/*
1063 			 * Deduped or cloned block free.  We could assert D bit
1064 			 * for dedup, but there is no such one for cloning.
1065 			 */
1066 			ASSERT3U(found->le_refcnt + 1, >, found->le_refcnt);
1067 			found->le_refcnt++;
1068 		}
1069 	} else {
1070 		if (found == NULL) {
1071 			/* block is currently marked as allocated */
1072 			bplist_append(to_free, bp);
1073 		} else {
1074 			/* alloc matches a free entry */
1075 			ASSERT3U(found->le_refcnt, !=, 0);
1076 			found->le_refcnt--;
1077 			if (found->le_refcnt == 0) {
1078 				/* all tracked free pairs have been matched */
1079 				avl_remove(avl, found);
1080 				kmem_free(found, sizeof (livelist_entry_t));
1081 			}
1082 		}
1083 	}
1084 	return (0);
1085 }
1086 
1087 /*
1088  * Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
1089  * which have an ALLOC entry but no matching FREE
1090  */
1091 int
1092 dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
1093     uint64_t *size)
1094 {
1095 	avl_tree_t avl;
1096 	avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
1097 	    offsetof(livelist_entry_t, le_node));
1098 
1099 	/* process the sublist */
1100 	struct livelist_iter_arg arg = {
1101 	    .avl = &avl,
1102 	    .to_free = to_free,
1103 	    .t = t
1104 	};
1105 	int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
1106 	VERIFY(err != 0 || avl_numnodes(&avl) == 0);
1107 
1108 	void *cookie = NULL;
1109 	livelist_entry_t *le = NULL;
1110 	while ((le = avl_destroy_nodes(&avl, &cookie)) != NULL) {
1111 		kmem_free(le, sizeof (livelist_entry_t));
1112 	}
1113 	avl_destroy(&avl);
1114 	return (err);
1115 }
1116 
1117 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, U64, ZMOD_RW,
1118 	"Size to start the next sub-livelist in a livelist");
1119 
1120 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
1121 	"Threshold at which livelist is disabled");
1122