xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_deadlist.c (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  */
26 
27 #include <sys/dmu.h>
28 #include <sys/zap.h>
29 #include <sys/zfs_context.h>
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 
33 /*
34  * Deadlist concurrency:
35  *
36  * Deadlists can only be modified from the syncing thread.
37  *
38  * Except for dsl_deadlist_insert(), it can only be modified with the
39  * dp_config_rwlock held with RW_WRITER.
40  *
41  * The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
42  * be called concurrently, from open context, with the dl_config_rwlock held
43  * with RW_READER.
44  *
45  * Therefore, we only need to provide locking between dsl_deadlist_insert() and
46  * the accessors, protecting:
47  *     dl_phys->dl_used,comp,uncomp
48  *     and protecting the dl_tree from being loaded.
49  * The locking is provided by dl_lock.  Note that locking on the bpobj_t
50  * provides its own locking, and dl_oldfmt is immutable.
51  */
52 
53 /*
54  * Livelist Overview
55  * ================
56  *
57  * Livelists use the same 'deadlist_t' struct as deadlists and are also used
58  * to track blkptrs over the lifetime of a dataset. Livelists however, belong
59  * to clones and track the blkptrs that are clone-specific (were born after
60  * the clone's creation). The exception is embedded block pointers which are
61  * not included in livelists because they do not need to be freed.
62  *
63  * When it comes time to delete the clone, the livelist provides a quick
64  * reference as to what needs to be freed. For this reason, livelists also track
65  * when clone-specific blkptrs are freed before deletion to prevent double
66  * frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
67  * deletion algorithm iterates backwards over the livelist, matching
68  * FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
69  * are also updated in the case when blkptrs are remapped: the old version
70  * of the blkptr is cancelled out with a FREE and the new version is tracked
71  * with an ALLOC.
72  *
73  * To bound the amount of memory required for deletion, livelists over a
74  * certain size are spread over multiple entries. Entries are grouped by
75  * birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
76  * be in the same entry. This allows us to delete livelists incrementally
77  * over multiple syncs, one entry at a time.
78  *
79  * During the lifetime of the clone, livelists can get extremely large.
80  * Their size is managed by periodic condensing (preemptively cancelling out
81  * FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
82  * the shared space between the clone and its origin is so small that it
83  * doesn't make sense to use livelists anymore.
84  */
85 
86 /*
87  * The threshold sublist size at which we create a new sub-livelist for the
88  * next txg. However, since blkptrs of the same transaction group must be in
89  * the same sub-list, the actual sublist size may exceed this. When picking the
90  * size we had to balance the fact that larger sublists mean fewer sublists
91  * (decreasing the cost of insertion) against the consideration that sublists
92  * will be loaded into memory and shouldn't take up an inordinate amount of
93  * space. We settled on ~500000 entries, corresponding to roughly 128M.
94  */
95 uint64_t zfs_livelist_max_entries = 500000;
96 
97 /*
98  * We can approximate how much of a performance gain a livelist will give us
99  * based on the percentage of blocks shared between the clone and its origin.
100  * 0 percent shared means that the clone has completely diverged and that the
101  * old method is maximally effective: every read from the block tree will
102  * result in lots of frees. Livelists give us gains when they track blocks
103  * scattered across the tree, when one read in the old method might only
104  * result in a few frees. Once the clone has been overwritten enough,
105  * writes are no longer sparse and we'll no longer get much of a benefit from
106  * tracking them with a livelist. We chose a lower limit of 75 percent shared
107  * (25 percent overwritten). This means that 1/4 of all block pointers will be
108  * freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
109  * to make deletion 4x faster. Once the amount of shared space drops below this
110  * threshold, the clone will revert to the old deletion method.
111  */
112 int zfs_livelist_min_percent_shared = 75;
113 
114 static int
115 dsl_deadlist_compare(const void *arg1, const void *arg2)
116 {
117 	const dsl_deadlist_entry_t *dle1 = arg1;
118 	const dsl_deadlist_entry_t *dle2 = arg2;
119 
120 	return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
121 }
122 
123 static int
124 dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
125 {
126 	const dsl_deadlist_cache_entry_t *dlce1 = arg1;
127 	const dsl_deadlist_cache_entry_t *dlce2 = arg2;
128 
129 	return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
130 }
131 
132 static void
133 dsl_deadlist_load_tree(dsl_deadlist_t *dl)
134 {
135 	zap_cursor_t zc;
136 	zap_attribute_t *za;
137 	int error;
138 
139 	ASSERT(MUTEX_HELD(&dl->dl_lock));
140 
141 	ASSERT(!dl->dl_oldfmt);
142 	if (dl->dl_havecache) {
143 		/*
144 		 * After loading the tree, the caller may modify the tree,
145 		 * e.g. to add or remove nodes, or to make a node no longer
146 		 * refer to the empty_bpobj.  These changes would make the
147 		 * dl_cache incorrect.  Therefore we discard the cache here,
148 		 * so that it can't become incorrect.
149 		 */
150 		dsl_deadlist_cache_entry_t *dlce;
151 		void *cookie = NULL;
152 		while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
153 		    != NULL) {
154 			kmem_free(dlce, sizeof (*dlce));
155 		}
156 		avl_destroy(&dl->dl_cache);
157 		dl->dl_havecache = B_FALSE;
158 	}
159 	if (dl->dl_havetree)
160 		return;
161 
162 	za = zap_attribute_alloc();
163 	avl_create(&dl->dl_tree, dsl_deadlist_compare,
164 	    sizeof (dsl_deadlist_entry_t),
165 	    offsetof(dsl_deadlist_entry_t, dle_node));
166 	for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
167 	    (error = zap_cursor_retrieve(&zc, za)) == 0;
168 	    zap_cursor_advance(&zc)) {
169 		dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
170 		dle->dle_mintxg = zfs_strtonum(za->za_name, NULL);
171 
172 		/*
173 		 * Prefetch all the bpobj's so that we do that i/o
174 		 * in parallel.  Then open them all in a second pass.
175 		 */
176 		dle->dle_bpobj.bpo_object = za->za_first_integer;
177 		dmu_prefetch_dnode(dl->dl_os, dle->dle_bpobj.bpo_object,
178 		    ZIO_PRIORITY_SYNC_READ);
179 
180 		avl_add(&dl->dl_tree, dle);
181 	}
182 	VERIFY3U(error, ==, ENOENT);
183 	zap_cursor_fini(&zc);
184 	zap_attribute_free(za);
185 
186 	for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
187 	    dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
188 		VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
189 		    dle->dle_bpobj.bpo_object));
190 	}
191 	dl->dl_havetree = B_TRUE;
192 }
193 
194 /*
195  * Load only the non-empty bpobj's into the dl_cache.  The cache is an analog
196  * of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
197  * is used only for gathering space statistics.  The dl_cache has two
198  * advantages over the dl_tree:
199  *
200  * 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
201  * mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
202  * many times and to inquire about its (zero) space stats many times.
203  *
204  * 2. The dl_cache uses less memory than the dl_tree.  We only need to load
205  * the dl_tree of snapshots when deleting a snapshot, after which we free the
206  * dl_tree with dsl_deadlist_discard_tree
207  */
208 static void
209 dsl_deadlist_load_cache(dsl_deadlist_t *dl)
210 {
211 	zap_cursor_t zc;
212 	zap_attribute_t *za;
213 	int error;
214 
215 	ASSERT(MUTEX_HELD(&dl->dl_lock));
216 
217 	ASSERT(!dl->dl_oldfmt);
218 	if (dl->dl_havecache)
219 		return;
220 
221 	uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
222 
223 	avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
224 	    sizeof (dsl_deadlist_cache_entry_t),
225 	    offsetof(dsl_deadlist_cache_entry_t, dlce_node));
226 	za = zap_attribute_alloc();
227 	for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
228 	    (error = zap_cursor_retrieve(&zc, za)) == 0;
229 	    zap_cursor_advance(&zc)) {
230 		if (za->za_first_integer == empty_bpobj)
231 			continue;
232 		dsl_deadlist_cache_entry_t *dlce =
233 		    kmem_zalloc(sizeof (*dlce), KM_SLEEP);
234 		dlce->dlce_mintxg = zfs_strtonum(za->za_name, NULL);
235 
236 		/*
237 		 * Prefetch all the bpobj's so that we do that i/o
238 		 * in parallel.  Then open them all in a second pass.
239 		 */
240 		dlce->dlce_bpobj = za->za_first_integer;
241 		dmu_prefetch_dnode(dl->dl_os, dlce->dlce_bpobj,
242 		    ZIO_PRIORITY_SYNC_READ);
243 		avl_add(&dl->dl_cache, dlce);
244 	}
245 	VERIFY3U(error, ==, ENOENT);
246 	zap_cursor_fini(&zc);
247 	zap_attribute_free(za);
248 
249 	for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
250 	    dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
251 		bpobj_t bpo;
252 		VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
253 
254 		VERIFY0(bpobj_space(&bpo,
255 		    &dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
256 		bpobj_close(&bpo);
257 	}
258 	dl->dl_havecache = B_TRUE;
259 }
260 
261 /*
262  * Discard the tree to save memory.
263  */
264 void
265 dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
266 {
267 	mutex_enter(&dl->dl_lock);
268 
269 	if (!dl->dl_havetree) {
270 		mutex_exit(&dl->dl_lock);
271 		return;
272 	}
273 	dsl_deadlist_entry_t *dle;
274 	void *cookie = NULL;
275 	while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
276 		bpobj_close(&dle->dle_bpobj);
277 		kmem_free(dle, sizeof (*dle));
278 	}
279 	avl_destroy(&dl->dl_tree);
280 
281 	dl->dl_havetree = B_FALSE;
282 	mutex_exit(&dl->dl_lock);
283 }
284 
285 void
286 dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
287 {
288 	dsl_deadlist_entry_t *dle;
289 
290 	ASSERT(dsl_deadlist_is_open(dl));
291 
292 	mutex_enter(&dl->dl_lock);
293 	dsl_deadlist_load_tree(dl);
294 	mutex_exit(&dl->dl_lock);
295 	for (dle = avl_first(&dl->dl_tree); dle != NULL;
296 	    dle = AVL_NEXT(&dl->dl_tree, dle)) {
297 		if (func(args, dle) != 0)
298 			break;
299 	}
300 }
301 
302 void
303 dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
304 {
305 	dmu_object_info_t doi;
306 
307 	ASSERT(!dsl_deadlist_is_open(dl));
308 
309 	mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
310 	dl->dl_os = os;
311 	dl->dl_object = object;
312 	VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
313 	dmu_object_info_from_db(dl->dl_dbuf, &doi);
314 	if (doi.doi_type == DMU_OT_BPOBJ) {
315 		dmu_buf_rele(dl->dl_dbuf, dl);
316 		dl->dl_dbuf = NULL;
317 		dl->dl_oldfmt = B_TRUE;
318 		VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
319 		return;
320 	}
321 
322 	dl->dl_oldfmt = B_FALSE;
323 	dl->dl_phys = dl->dl_dbuf->db_data;
324 	dl->dl_havetree = B_FALSE;
325 	dl->dl_havecache = B_FALSE;
326 }
327 
328 boolean_t
329 dsl_deadlist_is_open(dsl_deadlist_t *dl)
330 {
331 	return (dl->dl_os != NULL);
332 }
333 
334 void
335 dsl_deadlist_close(dsl_deadlist_t *dl)
336 {
337 	ASSERT(dsl_deadlist_is_open(dl));
338 	mutex_destroy(&dl->dl_lock);
339 
340 	if (dl->dl_oldfmt) {
341 		dl->dl_oldfmt = B_FALSE;
342 		bpobj_close(&dl->dl_bpobj);
343 		dl->dl_os = NULL;
344 		dl->dl_object = 0;
345 		return;
346 	}
347 
348 	if (dl->dl_havetree) {
349 		dsl_deadlist_entry_t *dle;
350 		void *cookie = NULL;
351 		while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
352 		    != NULL) {
353 			bpobj_close(&dle->dle_bpobj);
354 			kmem_free(dle, sizeof (*dle));
355 		}
356 		avl_destroy(&dl->dl_tree);
357 	}
358 	if (dl->dl_havecache) {
359 		dsl_deadlist_cache_entry_t *dlce;
360 		void *cookie = NULL;
361 		while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
362 		    != NULL) {
363 			kmem_free(dlce, sizeof (*dlce));
364 		}
365 		avl_destroy(&dl->dl_cache);
366 	}
367 	dmu_buf_rele(dl->dl_dbuf, dl);
368 	dl->dl_dbuf = NULL;
369 	dl->dl_phys = NULL;
370 	dl->dl_os = NULL;
371 	dl->dl_object = 0;
372 }
373 
374 uint64_t
375 dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
376 {
377 	if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
378 		return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
379 	return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
380 	    sizeof (dsl_deadlist_phys_t), tx));
381 }
382 
383 void
384 dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
385 {
386 	dmu_object_info_t doi;
387 	zap_cursor_t zc;
388 	zap_attribute_t *za;
389 	int error;
390 
391 	VERIFY0(dmu_object_info(os, dlobj, &doi));
392 	if (doi.doi_type == DMU_OT_BPOBJ) {
393 		bpobj_free(os, dlobj, tx);
394 		return;
395 	}
396 
397 	za = zap_attribute_alloc();
398 	for (zap_cursor_init(&zc, os, dlobj);
399 	    (error = zap_cursor_retrieve(&zc, za)) == 0;
400 	    zap_cursor_advance(&zc)) {
401 		uint64_t obj = za->za_first_integer;
402 		if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
403 			bpobj_decr_empty(os, tx);
404 		else
405 			bpobj_free(os, obj, tx);
406 	}
407 	VERIFY3U(error, ==, ENOENT);
408 	zap_cursor_fini(&zc);
409 	zap_attribute_free(za);
410 	VERIFY0(dmu_object_free(os, dlobj, tx));
411 }
412 
413 static void
414 dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
415     const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
416 {
417 	ASSERT(MUTEX_HELD(&dl->dl_lock));
418 	if (dle->dle_bpobj.bpo_object ==
419 	    dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
420 		uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
421 		bpobj_close(&dle->dle_bpobj);
422 		bpobj_decr_empty(dl->dl_os, tx);
423 		VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
424 		VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
425 		    dle->dle_mintxg, obj, tx));
426 	}
427 	bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
428 }
429 
430 static void
431 dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
432     uint64_t obj, dmu_tx_t *tx)
433 {
434 	ASSERT(MUTEX_HELD(&dl->dl_lock));
435 	if (dle->dle_bpobj.bpo_object !=
436 	    dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
437 		bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
438 	} else {
439 		bpobj_close(&dle->dle_bpobj);
440 		bpobj_decr_empty(dl->dl_os, tx);
441 		VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
442 		VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
443 		    dle->dle_mintxg, obj, tx));
444 	}
445 }
446 
447 /*
448  * Prefetch metadata required for dle_enqueue_subobj().
449  */
450 static void
451 dle_prefetch_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
452     uint64_t obj)
453 {
454 	if (dle->dle_bpobj.bpo_object !=
455 	    dmu_objset_pool(dl->dl_os)->dp_empty_bpobj)
456 		bpobj_prefetch_subobj(&dle->dle_bpobj, obj);
457 }
458 
459 void
460 dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
461     dmu_tx_t *tx)
462 {
463 	dsl_deadlist_entry_t dle_tofind;
464 	dsl_deadlist_entry_t *dle;
465 	avl_index_t where;
466 
467 	if (dl->dl_oldfmt) {
468 		bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
469 		return;
470 	}
471 
472 	mutex_enter(&dl->dl_lock);
473 	dsl_deadlist_load_tree(dl);
474 
475 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
476 
477 	int sign = bp_freed ? -1 : +1;
478 	dl->dl_phys->dl_used +=
479 	    sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
480 	dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
481 	dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
482 
483 	dle_tofind.dle_mintxg = BP_GET_LOGICAL_BIRTH(bp);
484 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
485 	if (dle == NULL)
486 		dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
487 	else
488 		dle = AVL_PREV(&dl->dl_tree, dle);
489 
490 	if (dle == NULL) {
491 		zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
492 		    bp, (longlong_t)BP_GET_LOGICAL_BIRTH(bp));
493 		dle = avl_first(&dl->dl_tree);
494 	}
495 
496 	ASSERT3P(dle, !=, NULL);
497 	dle_enqueue(dl, dle, bp, bp_freed, tx);
498 	mutex_exit(&dl->dl_lock);
499 }
500 
501 int
502 dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
503 {
504 	dsl_deadlist_t *dl = arg;
505 	dsl_deadlist_insert(dl, bp, B_FALSE, tx);
506 	return (0);
507 }
508 
509 int
510 dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
511 {
512 	dsl_deadlist_t *dl = arg;
513 	dsl_deadlist_insert(dl, bp, B_TRUE, tx);
514 	return (0);
515 }
516 
517 /*
518  * Insert new key in deadlist, which must be > all current entries.
519  * mintxg is not inclusive.
520  */
521 void
522 dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
523 {
524 	uint64_t obj;
525 	dsl_deadlist_entry_t *dle;
526 
527 	if (dl->dl_oldfmt)
528 		return;
529 
530 	dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
531 	dle->dle_mintxg = mintxg;
532 
533 	mutex_enter(&dl->dl_lock);
534 	dsl_deadlist_load_tree(dl);
535 
536 	obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
537 	VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
538 	avl_add(&dl->dl_tree, dle);
539 
540 	VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
541 	    mintxg, obj, tx));
542 	mutex_exit(&dl->dl_lock);
543 }
544 
545 /*
546  * Remove this key, merging its entries into the previous key.
547  */
548 void
549 dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
550 {
551 	dsl_deadlist_entry_t dle_tofind;
552 	dsl_deadlist_entry_t *dle, *dle_prev;
553 
554 	if (dl->dl_oldfmt)
555 		return;
556 	mutex_enter(&dl->dl_lock);
557 	dsl_deadlist_load_tree(dl);
558 
559 	dle_tofind.dle_mintxg = mintxg;
560 	dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
561 	ASSERT3P(dle, !=, NULL);
562 	dle_prev = AVL_PREV(&dl->dl_tree, dle);
563 	ASSERT3P(dle_prev, !=, NULL);
564 
565 	dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
566 
567 	avl_remove(&dl->dl_tree, dle);
568 	bpobj_close(&dle->dle_bpobj);
569 	kmem_free(dle, sizeof (*dle));
570 
571 	VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
572 	mutex_exit(&dl->dl_lock);
573 }
574 
575 /*
576  * Remove a deadlist entry and all of its contents by removing the entry from
577  * the deadlist's avl tree, freeing the entry's bpobj and adjusting the
578  * deadlist's space accounting accordingly.
579  */
580 void
581 dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
582 {
583 	uint64_t used, comp, uncomp;
584 	dsl_deadlist_entry_t dle_tofind;
585 	dsl_deadlist_entry_t *dle;
586 	objset_t *os = dl->dl_os;
587 
588 	if (dl->dl_oldfmt)
589 		return;
590 
591 	mutex_enter(&dl->dl_lock);
592 	dsl_deadlist_load_tree(dl);
593 
594 	dle_tofind.dle_mintxg = mintxg;
595 	dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
596 	VERIFY3P(dle, !=, NULL);
597 
598 	avl_remove(&dl->dl_tree, dle);
599 	VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
600 	VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
601 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
602 	dl->dl_phys->dl_used -= used;
603 	dl->dl_phys->dl_comp -= comp;
604 	dl->dl_phys->dl_uncomp -= uncomp;
605 	if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
606 		bpobj_decr_empty(os, tx);
607 	} else {
608 		bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
609 	}
610 	bpobj_close(&dle->dle_bpobj);
611 	kmem_free(dle, sizeof (*dle));
612 	mutex_exit(&dl->dl_lock);
613 }
614 
615 /*
616  * Clear out the contents of a deadlist_entry by freeing its bpobj,
617  * replacing it with an empty bpobj and adjusting the deadlist's
618  * space accounting
619  */
620 void
621 dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
622     dmu_tx_t *tx)
623 {
624 	uint64_t new_obj, used, comp, uncomp;
625 	objset_t *os = dl->dl_os;
626 
627 	mutex_enter(&dl->dl_lock);
628 	VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
629 	VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
630 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
631 	dl->dl_phys->dl_used -= used;
632 	dl->dl_phys->dl_comp -= comp;
633 	dl->dl_phys->dl_uncomp -= uncomp;
634 	if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
635 		bpobj_decr_empty(os, tx);
636 	else
637 		bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
638 	bpobj_close(&dle->dle_bpobj);
639 	new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
640 	VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
641 	VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
642 	    new_obj, tx));
643 	ASSERT(bpobj_is_empty(&dle->dle_bpobj));
644 	mutex_exit(&dl->dl_lock);
645 }
646 
647 /*
648  * Return the first entry in deadlist's avl tree
649  */
650 dsl_deadlist_entry_t *
651 dsl_deadlist_first(dsl_deadlist_t *dl)
652 {
653 	dsl_deadlist_entry_t *dle;
654 
655 	mutex_enter(&dl->dl_lock);
656 	dsl_deadlist_load_tree(dl);
657 	dle = avl_first(&dl->dl_tree);
658 	mutex_exit(&dl->dl_lock);
659 
660 	return (dle);
661 }
662 
663 /*
664  * Return the last entry in deadlist's avl tree
665  */
666 dsl_deadlist_entry_t *
667 dsl_deadlist_last(dsl_deadlist_t *dl)
668 {
669 	dsl_deadlist_entry_t *dle;
670 
671 	mutex_enter(&dl->dl_lock);
672 	dsl_deadlist_load_tree(dl);
673 	dle = avl_last(&dl->dl_tree);
674 	mutex_exit(&dl->dl_lock);
675 
676 	return (dle);
677 }
678 
679 /*
680  * Walk ds's snapshots to regenerate generate ZAP & AVL.
681  */
682 static void
683 dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
684     uint64_t mrs_obj, dmu_tx_t *tx)
685 {
686 	dsl_deadlist_t dl = { 0 };
687 	dsl_pool_t *dp = dmu_objset_pool(os);
688 
689 	dsl_deadlist_open(&dl, os, dlobj);
690 	if (dl.dl_oldfmt) {
691 		dsl_deadlist_close(&dl);
692 		return;
693 	}
694 
695 	while (mrs_obj != 0) {
696 		dsl_dataset_t *ds;
697 		VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
698 		dsl_deadlist_add_key(&dl,
699 		    dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
700 		mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
701 		dsl_dataset_rele(ds, FTAG);
702 	}
703 	dsl_deadlist_close(&dl);
704 }
705 
706 uint64_t
707 dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
708     uint64_t mrs_obj, dmu_tx_t *tx)
709 {
710 	dsl_deadlist_entry_t *dle;
711 	uint64_t newobj;
712 
713 	newobj = dsl_deadlist_alloc(dl->dl_os, tx);
714 
715 	if (dl->dl_oldfmt) {
716 		dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
717 		return (newobj);
718 	}
719 
720 	mutex_enter(&dl->dl_lock);
721 	dsl_deadlist_load_tree(dl);
722 
723 	for (dle = avl_first(&dl->dl_tree); dle;
724 	    dle = AVL_NEXT(&dl->dl_tree, dle)) {
725 		uint64_t obj;
726 
727 		if (dle->dle_mintxg >= maxtxg)
728 			break;
729 
730 		obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
731 		VERIFY0(zap_add_int_key(dl->dl_os, newobj,
732 		    dle->dle_mintxg, obj, tx));
733 	}
734 	mutex_exit(&dl->dl_lock);
735 	return (newobj);
736 }
737 
738 void
739 dsl_deadlist_space(dsl_deadlist_t *dl,
740     uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
741 {
742 	ASSERT(dsl_deadlist_is_open(dl));
743 	if (dl->dl_oldfmt) {
744 		VERIFY0(bpobj_space(&dl->dl_bpobj,
745 		    usedp, compp, uncompp));
746 		return;
747 	}
748 
749 	mutex_enter(&dl->dl_lock);
750 	*usedp = dl->dl_phys->dl_used;
751 	*compp = dl->dl_phys->dl_comp;
752 	*uncompp = dl->dl_phys->dl_uncomp;
753 	mutex_exit(&dl->dl_lock);
754 }
755 
756 /*
757  * return space used in the range (mintxg, maxtxg].
758  * Includes maxtxg, does not include mintxg.
759  * mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
760  * UINT64_MAX).
761  */
762 void
763 dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
764     uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
765 {
766 	dsl_deadlist_cache_entry_t *dlce;
767 	dsl_deadlist_cache_entry_t dlce_tofind;
768 	avl_index_t where;
769 
770 	if (dl->dl_oldfmt) {
771 		VERIFY0(bpobj_space_range(&dl->dl_bpobj,
772 		    mintxg, maxtxg, usedp, compp, uncompp));
773 		return;
774 	}
775 
776 	*usedp = *compp = *uncompp = 0;
777 
778 	mutex_enter(&dl->dl_lock);
779 	dsl_deadlist_load_cache(dl);
780 	dlce_tofind.dlce_mintxg = mintxg;
781 	dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
782 
783 	/*
784 	 * If this mintxg doesn't exist, it may be an empty_bpobj which
785 	 * is omitted from the sparse tree.  Start at the next non-empty
786 	 * entry.
787 	 */
788 	if (dlce == NULL)
789 		dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
790 
791 	for (; dlce && dlce->dlce_mintxg < maxtxg;
792 	    dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
793 		*usedp += dlce->dlce_bytes;
794 		*compp += dlce->dlce_comp;
795 		*uncompp += dlce->dlce_uncomp;
796 	}
797 
798 	mutex_exit(&dl->dl_lock);
799 }
800 
801 static void
802 dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
803     dmu_tx_t *tx)
804 {
805 	dsl_deadlist_entry_t dle_tofind;
806 	dsl_deadlist_entry_t *dle;
807 	avl_index_t where;
808 	uint64_t used, comp, uncomp;
809 	bpobj_t bpo;
810 
811 	ASSERT(MUTEX_HELD(&dl->dl_lock));
812 
813 	VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
814 	VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
815 	bpobj_close(&bpo);
816 
817 	dsl_deadlist_load_tree(dl);
818 
819 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
820 	dl->dl_phys->dl_used += used;
821 	dl->dl_phys->dl_comp += comp;
822 	dl->dl_phys->dl_uncomp += uncomp;
823 
824 	dle_tofind.dle_mintxg = birth;
825 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
826 	if (dle == NULL)
827 		dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
828 	dle_enqueue_subobj(dl, dle, obj, tx);
829 }
830 
831 /*
832  * Prefetch metadata required for dsl_deadlist_insert_bpobj().
833  */
834 static void
835 dsl_deadlist_prefetch_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth)
836 {
837 	dsl_deadlist_entry_t dle_tofind;
838 	dsl_deadlist_entry_t *dle;
839 	avl_index_t where;
840 
841 	ASSERT(MUTEX_HELD(&dl->dl_lock));
842 
843 	dsl_deadlist_load_tree(dl);
844 
845 	dle_tofind.dle_mintxg = birth;
846 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
847 	if (dle == NULL)
848 		dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
849 	dle_prefetch_subobj(dl, dle, obj);
850 }
851 
852 static int
853 dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
854     dmu_tx_t *tx)
855 {
856 	dsl_deadlist_t *dl = arg;
857 	dsl_deadlist_insert(dl, bp, bp_freed, tx);
858 	return (0);
859 }
860 
861 /*
862  * Merge the deadlist pointed to by 'obj' into dl.  obj will be left as
863  * an empty deadlist.
864  */
865 void
866 dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
867 {
868 	zap_cursor_t zc, pzc;
869 	zap_attribute_t *za, *pza;
870 	dmu_buf_t *bonus;
871 	dsl_deadlist_phys_t *dlp;
872 	dmu_object_info_t doi;
873 	int error, perror, i;
874 
875 	VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
876 	if (doi.doi_type == DMU_OT_BPOBJ) {
877 		bpobj_t bpo;
878 		VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
879 		VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
880 		bpobj_close(&bpo);
881 		return;
882 	}
883 
884 	za = zap_attribute_alloc();
885 	pza = zap_attribute_alloc();
886 
887 	mutex_enter(&dl->dl_lock);
888 	/*
889 	 * Prefetch up to 128 deadlists first and then more as we progress.
890 	 * The limit is a balance between ARC use and diminishing returns.
891 	 */
892 	for (zap_cursor_init(&pzc, dl->dl_os, obj), i = 0;
893 	    (perror = zap_cursor_retrieve(&pzc, pza)) == 0 && i < 128;
894 	    zap_cursor_advance(&pzc), i++) {
895 		dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
896 		    zfs_strtonum(pza->za_name, NULL));
897 	}
898 	for (zap_cursor_init(&zc, dl->dl_os, obj);
899 	    (error = zap_cursor_retrieve(&zc, za)) == 0;
900 	    zap_cursor_advance(&zc)) {
901 		dsl_deadlist_insert_bpobj(dl, za->za_first_integer,
902 		    zfs_strtonum(za->za_name, NULL), tx);
903 		VERIFY0(zap_remove(dl->dl_os, obj, za->za_name, tx));
904 		if (perror == 0) {
905 			dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
906 			    zfs_strtonum(pza->za_name, NULL));
907 			zap_cursor_advance(&pzc);
908 			perror = zap_cursor_retrieve(&pzc, pza);
909 		}
910 	}
911 	VERIFY3U(error, ==, ENOENT);
912 	zap_cursor_fini(&zc);
913 	zap_cursor_fini(&pzc);
914 
915 	VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
916 	dlp = bonus->db_data;
917 	dmu_buf_will_dirty(bonus, tx);
918 	memset(dlp, 0, sizeof (*dlp));
919 	dmu_buf_rele(bonus, FTAG);
920 	mutex_exit(&dl->dl_lock);
921 
922 	zap_attribute_free(za);
923 	zap_attribute_free(pza);
924 }
925 
926 /*
927  * Remove entries on dl that are born > mintxg, and put them on the bpobj.
928  */
929 void
930 dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
931     dmu_tx_t *tx)
932 {
933 	dsl_deadlist_entry_t dle_tofind;
934 	dsl_deadlist_entry_t *dle, *pdle;
935 	avl_index_t where;
936 	int i;
937 
938 	ASSERT(!dl->dl_oldfmt);
939 
940 	mutex_enter(&dl->dl_lock);
941 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
942 	dsl_deadlist_load_tree(dl);
943 
944 	dle_tofind.dle_mintxg = mintxg;
945 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
946 	if (dle == NULL)
947 		dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
948 	/*
949 	 * Prefetch up to 128 deadlists first and then more as we progress.
950 	 * The limit is a balance between ARC use and diminishing returns.
951 	 */
952 	for (pdle = dle, i = 0; pdle && i < 128; i++) {
953 		bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
954 		pdle = AVL_NEXT(&dl->dl_tree, pdle);
955 	}
956 	while (dle) {
957 		uint64_t used, comp, uncomp;
958 		dsl_deadlist_entry_t *dle_next;
959 
960 		bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
961 		if (pdle) {
962 			bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
963 			pdle = AVL_NEXT(&dl->dl_tree, pdle);
964 		}
965 
966 		VERIFY0(bpobj_space(&dle->dle_bpobj,
967 		    &used, &comp, &uncomp));
968 		ASSERT3U(dl->dl_phys->dl_used, >=, used);
969 		ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
970 		ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
971 		dl->dl_phys->dl_used -= used;
972 		dl->dl_phys->dl_comp -= comp;
973 		dl->dl_phys->dl_uncomp -= uncomp;
974 
975 		VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
976 		    dle->dle_mintxg, tx));
977 
978 		dle_next = AVL_NEXT(&dl->dl_tree, dle);
979 		avl_remove(&dl->dl_tree, dle);
980 		bpobj_close(&dle->dle_bpobj);
981 		kmem_free(dle, sizeof (*dle));
982 		dle = dle_next;
983 	}
984 	mutex_exit(&dl->dl_lock);
985 }
986 
987 typedef struct livelist_entry {
988 	blkptr_t le_bp;
989 	uint32_t le_refcnt;
990 	avl_node_t le_node;
991 } livelist_entry_t;
992 
993 static int
994 livelist_compare(const void *larg, const void *rarg)
995 {
996 	const blkptr_t *l = &((livelist_entry_t *)larg)->le_bp;
997 	const blkptr_t *r = &((livelist_entry_t *)rarg)->le_bp;
998 
999 	/* Sort them according to dva[0] */
1000 	uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
1001 	uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
1002 
1003 	if (l_dva0_vdev != r_dva0_vdev)
1004 		return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
1005 
1006 	/* if vdevs are equal, sort by offsets. */
1007 	uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
1008 	uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
1009 	return (TREE_CMP(l_dva0_offset, r_dva0_offset));
1010 }
1011 
1012 struct livelist_iter_arg {
1013 	avl_tree_t *avl;
1014 	bplist_t *to_free;
1015 	zthr_t *t;
1016 };
1017 
1018 /*
1019  * Expects an AVL tree which is incrementally filled will FREE blkptrs
1020  * and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
1021  * corresponding FREE are stored in the supplied bplist.
1022  *
1023  * Note that multiple FREE and ALLOC entries for the same blkptr may be
1024  * encountered when dedup or block cloning is involved.  For this reason we
1025  * keep a refcount for all the FREE entries of each blkptr and ensure that
1026  * each of those FREE entries has a corresponding ALLOC preceding it.
1027  */
1028 static int
1029 dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
1030     dmu_tx_t *tx)
1031 {
1032 	struct livelist_iter_arg *lia = arg;
1033 	avl_tree_t *avl = lia->avl;
1034 	bplist_t *to_free = lia->to_free;
1035 	zthr_t *t = lia->t;
1036 	ASSERT(tx == NULL);
1037 
1038 	if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
1039 		return (SET_ERROR(EINTR));
1040 
1041 	livelist_entry_t node;
1042 	node.le_bp = *bp;
1043 	livelist_entry_t *found = avl_find(avl, &node, NULL);
1044 	if (found) {
1045 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(&found->le_bp));
1046 		ASSERT3U(BP_GET_CHECKSUM(bp), ==,
1047 		    BP_GET_CHECKSUM(&found->le_bp));
1048 		ASSERT3U(BP_GET_BIRTH(bp), ==, BP_GET_BIRTH(&found->le_bp));
1049 	}
1050 	if (bp_freed) {
1051 		if (found == NULL) {
1052 			/* first free entry for this blkptr */
1053 			livelist_entry_t *e =
1054 			    kmem_alloc(sizeof (livelist_entry_t), KM_SLEEP);
1055 			e->le_bp = *bp;
1056 			e->le_refcnt = 1;
1057 			avl_add(avl, e);
1058 		} else {
1059 			/*
1060 			 * Deduped or cloned block free.  We could assert D bit
1061 			 * for dedup, but there is no such one for cloning.
1062 			 */
1063 			ASSERT3U(found->le_refcnt + 1, >, found->le_refcnt);
1064 			found->le_refcnt++;
1065 		}
1066 	} else {
1067 		if (found == NULL) {
1068 			/* block is currently marked as allocated */
1069 			bplist_append(to_free, bp);
1070 		} else {
1071 			/* alloc matches a free entry */
1072 			ASSERT3U(found->le_refcnt, !=, 0);
1073 			found->le_refcnt--;
1074 			if (found->le_refcnt == 0) {
1075 				/* all tracked free pairs have been matched */
1076 				avl_remove(avl, found);
1077 				kmem_free(found, sizeof (livelist_entry_t));
1078 			}
1079 		}
1080 	}
1081 	return (0);
1082 }
1083 
1084 /*
1085  * Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
1086  * which have an ALLOC entry but no matching FREE
1087  */
1088 int
1089 dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
1090     uint64_t *size)
1091 {
1092 	avl_tree_t avl;
1093 	avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
1094 	    offsetof(livelist_entry_t, le_node));
1095 
1096 	/* process the sublist */
1097 	struct livelist_iter_arg arg = {
1098 	    .avl = &avl,
1099 	    .to_free = to_free,
1100 	    .t = t
1101 	};
1102 	int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
1103 	VERIFY(err != 0 || avl_numnodes(&avl) == 0);
1104 
1105 	void *cookie = NULL;
1106 	livelist_entry_t *le = NULL;
1107 	while ((le = avl_destroy_nodes(&avl, &cookie)) != NULL) {
1108 		kmem_free(le, sizeof (livelist_entry_t));
1109 	}
1110 	avl_destroy(&avl);
1111 	return (err);
1112 }
1113 
1114 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, U64, ZMOD_RW,
1115 	"Size to start the next sub-livelist in a livelist");
1116 
1117 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
1118 	"Threshold at which livelist is disabled");
1119