xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_deadlist.c (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  */
26 
27 #include <sys/dmu.h>
28 #include <sys/zap.h>
29 #include <sys/zfs_context.h>
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 
33 /*
34  * Deadlist concurrency:
35  *
36  * Deadlists can only be modified from the syncing thread.
37  *
38  * Except for dsl_deadlist_insert(), it can only be modified with the
39  * dp_config_rwlock held with RW_WRITER.
40  *
41  * The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
42  * be called concurrently, from open context, with the dl_config_rwlock held
43  * with RW_READER.
44  *
45  * Therefore, we only need to provide locking between dsl_deadlist_insert() and
46  * the accessors, protecting:
47  *     dl_phys->dl_used,comp,uncomp
48  *     and protecting the dl_tree from being loaded.
49  * The locking is provided by dl_lock.  Note that locking on the bpobj_t
50  * provides its own locking, and dl_oldfmt is immutable.
51  */
52 
53 /*
54  * Livelist Overview
55  * ================
56  *
57  * Livelists use the same 'deadlist_t' struct as deadlists and are also used
58  * to track blkptrs over the lifetime of a dataset. Livelists however, belong
59  * to clones and track the blkptrs that are clone-specific (were born after
60  * the clone's creation). The exception is embedded block pointers which are
61  * not included in livelists because they do not need to be freed.
62  *
63  * When it comes time to delete the clone, the livelist provides a quick
64  * reference as to what needs to be freed. For this reason, livelists also track
65  * when clone-specific blkptrs are freed before deletion to prevent double
66  * frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
67  * deletion algorithm iterates backwards over the livelist, matching
68  * FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
69  * are also updated in the case when blkptrs are remapped: the old version
70  * of the blkptr is cancelled out with a FREE and the new version is tracked
71  * with an ALLOC.
72  *
73  * To bound the amount of memory required for deletion, livelists over a
74  * certain size are spread over multiple entries. Entries are grouped by
75  * birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
76  * be in the same entry. This allows us to delete livelists incrementally
77  * over multiple syncs, one entry at a time.
78  *
79  * During the lifetime of the clone, livelists can get extremely large.
80  * Their size is managed by periodic condensing (preemptively cancelling out
81  * FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
82  * the shared space between the clone and its origin is so small that it
83  * doesn't make sense to use livelists anymore.
84  */
85 
86 /*
87  * The threshold sublist size at which we create a new sub-livelist for the
88  * next txg. However, since blkptrs of the same transaction group must be in
89  * the same sub-list, the actual sublist size may exceed this. When picking the
90  * size we had to balance the fact that larger sublists mean fewer sublists
91  * (decreasing the cost of insertion) against the consideration that sublists
92  * will be loaded into memory and shouldn't take up an inordinate amount of
93  * space. We settled on ~500000 entries, corresponding to roughly 128M.
94  */
95 uint64_t zfs_livelist_max_entries = 500000;
96 
97 /*
98  * We can approximate how much of a performance gain a livelist will give us
99  * based on the percentage of blocks shared between the clone and its origin.
100  * 0 percent shared means that the clone has completely diverged and that the
101  * old method is maximally effective: every read from the block tree will
102  * result in lots of frees. Livelists give us gains when they track blocks
103  * scattered across the tree, when one read in the old method might only
104  * result in a few frees. Once the clone has been overwritten enough,
105  * writes are no longer sparse and we'll no longer get much of a benefit from
106  * tracking them with a livelist. We chose a lower limit of 75 percent shared
107  * (25 percent overwritten). This means that 1/4 of all block pointers will be
108  * freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
109  * to make deletion 4x faster. Once the amount of shared space drops below this
110  * threshold, the clone will revert to the old deletion method.
111  */
112 int zfs_livelist_min_percent_shared = 75;
113 
114 static int
115 dsl_deadlist_compare(const void *arg1, const void *arg2)
116 {
117 	const dsl_deadlist_entry_t *dle1 = arg1;
118 	const dsl_deadlist_entry_t *dle2 = arg2;
119 
120 	return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
121 }
122 
123 static int
124 dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
125 {
126 	const dsl_deadlist_cache_entry_t *dlce1 = arg1;
127 	const dsl_deadlist_cache_entry_t *dlce2 = arg2;
128 
129 	return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
130 }
131 
132 static void
133 dsl_deadlist_load_tree(dsl_deadlist_t *dl)
134 {
135 	zap_cursor_t zc;
136 	zap_attribute_t za;
137 	int error;
138 
139 	ASSERT(MUTEX_HELD(&dl->dl_lock));
140 
141 	ASSERT(!dl->dl_oldfmt);
142 	if (dl->dl_havecache) {
143 		/*
144 		 * After loading the tree, the caller may modify the tree,
145 		 * e.g. to add or remove nodes, or to make a node no longer
146 		 * refer to the empty_bpobj.  These changes would make the
147 		 * dl_cache incorrect.  Therefore we discard the cache here,
148 		 * so that it can't become incorrect.
149 		 */
150 		dsl_deadlist_cache_entry_t *dlce;
151 		void *cookie = NULL;
152 		while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
153 		    != NULL) {
154 			kmem_free(dlce, sizeof (*dlce));
155 		}
156 		avl_destroy(&dl->dl_cache);
157 		dl->dl_havecache = B_FALSE;
158 	}
159 	if (dl->dl_havetree)
160 		return;
161 
162 	avl_create(&dl->dl_tree, dsl_deadlist_compare,
163 	    sizeof (dsl_deadlist_entry_t),
164 	    offsetof(dsl_deadlist_entry_t, dle_node));
165 	for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
166 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
167 	    zap_cursor_advance(&zc)) {
168 		dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
169 		dle->dle_mintxg = zfs_strtonum(za.za_name, NULL);
170 
171 		/*
172 		 * Prefetch all the bpobj's so that we do that i/o
173 		 * in parallel.  Then open them all in a second pass.
174 		 */
175 		dle->dle_bpobj.bpo_object = za.za_first_integer;
176 		dmu_prefetch_dnode(dl->dl_os, dle->dle_bpobj.bpo_object,
177 		    ZIO_PRIORITY_SYNC_READ);
178 
179 		avl_add(&dl->dl_tree, dle);
180 	}
181 	VERIFY3U(error, ==, ENOENT);
182 	zap_cursor_fini(&zc);
183 
184 	for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
185 	    dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
186 		VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
187 		    dle->dle_bpobj.bpo_object));
188 	}
189 	dl->dl_havetree = B_TRUE;
190 }
191 
192 /*
193  * Load only the non-empty bpobj's into the dl_cache.  The cache is an analog
194  * of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
195  * is used only for gathering space statistics.  The dl_cache has two
196  * advantages over the dl_tree:
197  *
198  * 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
199  * mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
200  * many times and to inquire about its (zero) space stats many times.
201  *
202  * 2. The dl_cache uses less memory than the dl_tree.  We only need to load
203  * the dl_tree of snapshots when deleting a snapshot, after which we free the
204  * dl_tree with dsl_deadlist_discard_tree
205  */
206 static void
207 dsl_deadlist_load_cache(dsl_deadlist_t *dl)
208 {
209 	zap_cursor_t zc;
210 	zap_attribute_t za;
211 	int error;
212 
213 	ASSERT(MUTEX_HELD(&dl->dl_lock));
214 
215 	ASSERT(!dl->dl_oldfmt);
216 	if (dl->dl_havecache)
217 		return;
218 
219 	uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
220 
221 	avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
222 	    sizeof (dsl_deadlist_cache_entry_t),
223 	    offsetof(dsl_deadlist_cache_entry_t, dlce_node));
224 	for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
225 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
226 	    zap_cursor_advance(&zc)) {
227 		if (za.za_first_integer == empty_bpobj)
228 			continue;
229 		dsl_deadlist_cache_entry_t *dlce =
230 		    kmem_zalloc(sizeof (*dlce), KM_SLEEP);
231 		dlce->dlce_mintxg = zfs_strtonum(za.za_name, NULL);
232 
233 		/*
234 		 * Prefetch all the bpobj's so that we do that i/o
235 		 * in parallel.  Then open them all in a second pass.
236 		 */
237 		dlce->dlce_bpobj = za.za_first_integer;
238 		dmu_prefetch_dnode(dl->dl_os, dlce->dlce_bpobj,
239 		    ZIO_PRIORITY_SYNC_READ);
240 		avl_add(&dl->dl_cache, dlce);
241 	}
242 	VERIFY3U(error, ==, ENOENT);
243 	zap_cursor_fini(&zc);
244 
245 	for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
246 	    dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
247 		bpobj_t bpo;
248 		VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
249 
250 		VERIFY0(bpobj_space(&bpo,
251 		    &dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
252 		bpobj_close(&bpo);
253 	}
254 	dl->dl_havecache = B_TRUE;
255 }
256 
257 /*
258  * Discard the tree to save memory.
259  */
260 void
261 dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
262 {
263 	mutex_enter(&dl->dl_lock);
264 
265 	if (!dl->dl_havetree) {
266 		mutex_exit(&dl->dl_lock);
267 		return;
268 	}
269 	dsl_deadlist_entry_t *dle;
270 	void *cookie = NULL;
271 	while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
272 		bpobj_close(&dle->dle_bpobj);
273 		kmem_free(dle, sizeof (*dle));
274 	}
275 	avl_destroy(&dl->dl_tree);
276 
277 	dl->dl_havetree = B_FALSE;
278 	mutex_exit(&dl->dl_lock);
279 }
280 
281 void
282 dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
283 {
284 	dsl_deadlist_entry_t *dle;
285 
286 	ASSERT(dsl_deadlist_is_open(dl));
287 
288 	mutex_enter(&dl->dl_lock);
289 	dsl_deadlist_load_tree(dl);
290 	mutex_exit(&dl->dl_lock);
291 	for (dle = avl_first(&dl->dl_tree); dle != NULL;
292 	    dle = AVL_NEXT(&dl->dl_tree, dle)) {
293 		if (func(args, dle) != 0)
294 			break;
295 	}
296 }
297 
298 void
299 dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
300 {
301 	dmu_object_info_t doi;
302 
303 	ASSERT(!dsl_deadlist_is_open(dl));
304 
305 	mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
306 	dl->dl_os = os;
307 	dl->dl_object = object;
308 	VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
309 	dmu_object_info_from_db(dl->dl_dbuf, &doi);
310 	if (doi.doi_type == DMU_OT_BPOBJ) {
311 		dmu_buf_rele(dl->dl_dbuf, dl);
312 		dl->dl_dbuf = NULL;
313 		dl->dl_oldfmt = B_TRUE;
314 		VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
315 		return;
316 	}
317 
318 	dl->dl_oldfmt = B_FALSE;
319 	dl->dl_phys = dl->dl_dbuf->db_data;
320 	dl->dl_havetree = B_FALSE;
321 	dl->dl_havecache = B_FALSE;
322 }
323 
324 boolean_t
325 dsl_deadlist_is_open(dsl_deadlist_t *dl)
326 {
327 	return (dl->dl_os != NULL);
328 }
329 
330 void
331 dsl_deadlist_close(dsl_deadlist_t *dl)
332 {
333 	ASSERT(dsl_deadlist_is_open(dl));
334 	mutex_destroy(&dl->dl_lock);
335 
336 	if (dl->dl_oldfmt) {
337 		dl->dl_oldfmt = B_FALSE;
338 		bpobj_close(&dl->dl_bpobj);
339 		dl->dl_os = NULL;
340 		dl->dl_object = 0;
341 		return;
342 	}
343 
344 	if (dl->dl_havetree) {
345 		dsl_deadlist_entry_t *dle;
346 		void *cookie = NULL;
347 		while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
348 		    != NULL) {
349 			bpobj_close(&dle->dle_bpobj);
350 			kmem_free(dle, sizeof (*dle));
351 		}
352 		avl_destroy(&dl->dl_tree);
353 	}
354 	if (dl->dl_havecache) {
355 		dsl_deadlist_cache_entry_t *dlce;
356 		void *cookie = NULL;
357 		while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
358 		    != NULL) {
359 			kmem_free(dlce, sizeof (*dlce));
360 		}
361 		avl_destroy(&dl->dl_cache);
362 	}
363 	dmu_buf_rele(dl->dl_dbuf, dl);
364 	dl->dl_dbuf = NULL;
365 	dl->dl_phys = NULL;
366 	dl->dl_os = NULL;
367 	dl->dl_object = 0;
368 }
369 
370 uint64_t
371 dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
372 {
373 	if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
374 		return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
375 	return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
376 	    sizeof (dsl_deadlist_phys_t), tx));
377 }
378 
379 void
380 dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
381 {
382 	dmu_object_info_t doi;
383 	zap_cursor_t zc;
384 	zap_attribute_t za;
385 	int error;
386 
387 	VERIFY0(dmu_object_info(os, dlobj, &doi));
388 	if (doi.doi_type == DMU_OT_BPOBJ) {
389 		bpobj_free(os, dlobj, tx);
390 		return;
391 	}
392 
393 	for (zap_cursor_init(&zc, os, dlobj);
394 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
395 	    zap_cursor_advance(&zc)) {
396 		uint64_t obj = za.za_first_integer;
397 		if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
398 			bpobj_decr_empty(os, tx);
399 		else
400 			bpobj_free(os, obj, tx);
401 	}
402 	VERIFY3U(error, ==, ENOENT);
403 	zap_cursor_fini(&zc);
404 	VERIFY0(dmu_object_free(os, dlobj, tx));
405 }
406 
407 static void
408 dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
409     const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
410 {
411 	ASSERT(MUTEX_HELD(&dl->dl_lock));
412 	if (dle->dle_bpobj.bpo_object ==
413 	    dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
414 		uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
415 		bpobj_close(&dle->dle_bpobj);
416 		bpobj_decr_empty(dl->dl_os, tx);
417 		VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
418 		VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
419 		    dle->dle_mintxg, obj, tx));
420 	}
421 	bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
422 }
423 
424 static void
425 dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
426     uint64_t obj, dmu_tx_t *tx)
427 {
428 	ASSERT(MUTEX_HELD(&dl->dl_lock));
429 	if (dle->dle_bpobj.bpo_object !=
430 	    dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
431 		bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
432 	} else {
433 		bpobj_close(&dle->dle_bpobj);
434 		bpobj_decr_empty(dl->dl_os, tx);
435 		VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
436 		VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
437 		    dle->dle_mintxg, obj, tx));
438 	}
439 }
440 
441 /*
442  * Prefetch metadata required for dle_enqueue_subobj().
443  */
444 static void
445 dle_prefetch_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
446     uint64_t obj)
447 {
448 	if (dle->dle_bpobj.bpo_object !=
449 	    dmu_objset_pool(dl->dl_os)->dp_empty_bpobj)
450 		bpobj_prefetch_subobj(&dle->dle_bpobj, obj);
451 }
452 
453 void
454 dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
455     dmu_tx_t *tx)
456 {
457 	dsl_deadlist_entry_t dle_tofind;
458 	dsl_deadlist_entry_t *dle;
459 	avl_index_t where;
460 
461 	if (dl->dl_oldfmt) {
462 		bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
463 		return;
464 	}
465 
466 	mutex_enter(&dl->dl_lock);
467 	dsl_deadlist_load_tree(dl);
468 
469 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
470 
471 	int sign = bp_freed ? -1 : +1;
472 	dl->dl_phys->dl_used +=
473 	    sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
474 	dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
475 	dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
476 
477 	dle_tofind.dle_mintxg = bp->blk_birth;
478 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
479 	if (dle == NULL)
480 		dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
481 	else
482 		dle = AVL_PREV(&dl->dl_tree, dle);
483 
484 	if (dle == NULL) {
485 		zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
486 		    bp, (longlong_t)bp->blk_birth);
487 		dle = avl_first(&dl->dl_tree);
488 	}
489 
490 	ASSERT3P(dle, !=, NULL);
491 	dle_enqueue(dl, dle, bp, bp_freed, tx);
492 	mutex_exit(&dl->dl_lock);
493 }
494 
495 int
496 dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
497 {
498 	dsl_deadlist_t *dl = arg;
499 	dsl_deadlist_insert(dl, bp, B_FALSE, tx);
500 	return (0);
501 }
502 
503 int
504 dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
505 {
506 	dsl_deadlist_t *dl = arg;
507 	dsl_deadlist_insert(dl, bp, B_TRUE, tx);
508 	return (0);
509 }
510 
511 /*
512  * Insert new key in deadlist, which must be > all current entries.
513  * mintxg is not inclusive.
514  */
515 void
516 dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
517 {
518 	uint64_t obj;
519 	dsl_deadlist_entry_t *dle;
520 
521 	if (dl->dl_oldfmt)
522 		return;
523 
524 	dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
525 	dle->dle_mintxg = mintxg;
526 
527 	mutex_enter(&dl->dl_lock);
528 	dsl_deadlist_load_tree(dl);
529 
530 	obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
531 	VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
532 	avl_add(&dl->dl_tree, dle);
533 
534 	VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
535 	    mintxg, obj, tx));
536 	mutex_exit(&dl->dl_lock);
537 }
538 
539 /*
540  * Remove this key, merging its entries into the previous key.
541  */
542 void
543 dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
544 {
545 	dsl_deadlist_entry_t dle_tofind;
546 	dsl_deadlist_entry_t *dle, *dle_prev;
547 
548 	if (dl->dl_oldfmt)
549 		return;
550 	mutex_enter(&dl->dl_lock);
551 	dsl_deadlist_load_tree(dl);
552 
553 	dle_tofind.dle_mintxg = mintxg;
554 	dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
555 	ASSERT3P(dle, !=, NULL);
556 	dle_prev = AVL_PREV(&dl->dl_tree, dle);
557 	ASSERT3P(dle_prev, !=, NULL);
558 
559 	dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
560 
561 	avl_remove(&dl->dl_tree, dle);
562 	bpobj_close(&dle->dle_bpobj);
563 	kmem_free(dle, sizeof (*dle));
564 
565 	VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
566 	mutex_exit(&dl->dl_lock);
567 }
568 
569 /*
570  * Remove a deadlist entry and all of its contents by removing the entry from
571  * the deadlist's avl tree, freeing the entry's bpobj and adjusting the
572  * deadlist's space accounting accordingly.
573  */
574 void
575 dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
576 {
577 	uint64_t used, comp, uncomp;
578 	dsl_deadlist_entry_t dle_tofind;
579 	dsl_deadlist_entry_t *dle;
580 	objset_t *os = dl->dl_os;
581 
582 	if (dl->dl_oldfmt)
583 		return;
584 
585 	mutex_enter(&dl->dl_lock);
586 	dsl_deadlist_load_tree(dl);
587 
588 	dle_tofind.dle_mintxg = mintxg;
589 	dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
590 	VERIFY3P(dle, !=, NULL);
591 
592 	avl_remove(&dl->dl_tree, dle);
593 	VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
594 	VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
595 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
596 	dl->dl_phys->dl_used -= used;
597 	dl->dl_phys->dl_comp -= comp;
598 	dl->dl_phys->dl_uncomp -= uncomp;
599 	if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
600 		bpobj_decr_empty(os, tx);
601 	} else {
602 		bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
603 	}
604 	bpobj_close(&dle->dle_bpobj);
605 	kmem_free(dle, sizeof (*dle));
606 	mutex_exit(&dl->dl_lock);
607 }
608 
609 /*
610  * Clear out the contents of a deadlist_entry by freeing its bpobj,
611  * replacing it with an empty bpobj and adjusting the deadlist's
612  * space accounting
613  */
614 void
615 dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
616     dmu_tx_t *tx)
617 {
618 	uint64_t new_obj, used, comp, uncomp;
619 	objset_t *os = dl->dl_os;
620 
621 	mutex_enter(&dl->dl_lock);
622 	VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
623 	VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
624 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
625 	dl->dl_phys->dl_used -= used;
626 	dl->dl_phys->dl_comp -= comp;
627 	dl->dl_phys->dl_uncomp -= uncomp;
628 	if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
629 		bpobj_decr_empty(os, tx);
630 	else
631 		bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
632 	bpobj_close(&dle->dle_bpobj);
633 	new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
634 	VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
635 	VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
636 	    new_obj, tx));
637 	ASSERT(bpobj_is_empty(&dle->dle_bpobj));
638 	mutex_exit(&dl->dl_lock);
639 }
640 
641 /*
642  * Return the first entry in deadlist's avl tree
643  */
644 dsl_deadlist_entry_t *
645 dsl_deadlist_first(dsl_deadlist_t *dl)
646 {
647 	dsl_deadlist_entry_t *dle;
648 
649 	mutex_enter(&dl->dl_lock);
650 	dsl_deadlist_load_tree(dl);
651 	dle = avl_first(&dl->dl_tree);
652 	mutex_exit(&dl->dl_lock);
653 
654 	return (dle);
655 }
656 
657 /*
658  * Return the last entry in deadlist's avl tree
659  */
660 dsl_deadlist_entry_t *
661 dsl_deadlist_last(dsl_deadlist_t *dl)
662 {
663 	dsl_deadlist_entry_t *dle;
664 
665 	mutex_enter(&dl->dl_lock);
666 	dsl_deadlist_load_tree(dl);
667 	dle = avl_last(&dl->dl_tree);
668 	mutex_exit(&dl->dl_lock);
669 
670 	return (dle);
671 }
672 
673 /*
674  * Walk ds's snapshots to regenerate generate ZAP & AVL.
675  */
676 static void
677 dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
678     uint64_t mrs_obj, dmu_tx_t *tx)
679 {
680 	dsl_deadlist_t dl = { 0 };
681 	dsl_pool_t *dp = dmu_objset_pool(os);
682 
683 	dsl_deadlist_open(&dl, os, dlobj);
684 	if (dl.dl_oldfmt) {
685 		dsl_deadlist_close(&dl);
686 		return;
687 	}
688 
689 	while (mrs_obj != 0) {
690 		dsl_dataset_t *ds;
691 		VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
692 		dsl_deadlist_add_key(&dl,
693 		    dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
694 		mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
695 		dsl_dataset_rele(ds, FTAG);
696 	}
697 	dsl_deadlist_close(&dl);
698 }
699 
700 uint64_t
701 dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
702     uint64_t mrs_obj, dmu_tx_t *tx)
703 {
704 	dsl_deadlist_entry_t *dle;
705 	uint64_t newobj;
706 
707 	newobj = dsl_deadlist_alloc(dl->dl_os, tx);
708 
709 	if (dl->dl_oldfmt) {
710 		dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
711 		return (newobj);
712 	}
713 
714 	mutex_enter(&dl->dl_lock);
715 	dsl_deadlist_load_tree(dl);
716 
717 	for (dle = avl_first(&dl->dl_tree); dle;
718 	    dle = AVL_NEXT(&dl->dl_tree, dle)) {
719 		uint64_t obj;
720 
721 		if (dle->dle_mintxg >= maxtxg)
722 			break;
723 
724 		obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
725 		VERIFY0(zap_add_int_key(dl->dl_os, newobj,
726 		    dle->dle_mintxg, obj, tx));
727 	}
728 	mutex_exit(&dl->dl_lock);
729 	return (newobj);
730 }
731 
732 void
733 dsl_deadlist_space(dsl_deadlist_t *dl,
734     uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
735 {
736 	ASSERT(dsl_deadlist_is_open(dl));
737 	if (dl->dl_oldfmt) {
738 		VERIFY0(bpobj_space(&dl->dl_bpobj,
739 		    usedp, compp, uncompp));
740 		return;
741 	}
742 
743 	mutex_enter(&dl->dl_lock);
744 	*usedp = dl->dl_phys->dl_used;
745 	*compp = dl->dl_phys->dl_comp;
746 	*uncompp = dl->dl_phys->dl_uncomp;
747 	mutex_exit(&dl->dl_lock);
748 }
749 
750 /*
751  * return space used in the range (mintxg, maxtxg].
752  * Includes maxtxg, does not include mintxg.
753  * mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
754  * UINT64_MAX).
755  */
756 void
757 dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
758     uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
759 {
760 	dsl_deadlist_cache_entry_t *dlce;
761 	dsl_deadlist_cache_entry_t dlce_tofind;
762 	avl_index_t where;
763 
764 	if (dl->dl_oldfmt) {
765 		VERIFY0(bpobj_space_range(&dl->dl_bpobj,
766 		    mintxg, maxtxg, usedp, compp, uncompp));
767 		return;
768 	}
769 
770 	*usedp = *compp = *uncompp = 0;
771 
772 	mutex_enter(&dl->dl_lock);
773 	dsl_deadlist_load_cache(dl);
774 	dlce_tofind.dlce_mintxg = mintxg;
775 	dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
776 
777 	/*
778 	 * If this mintxg doesn't exist, it may be an empty_bpobj which
779 	 * is omitted from the sparse tree.  Start at the next non-empty
780 	 * entry.
781 	 */
782 	if (dlce == NULL)
783 		dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
784 
785 	for (; dlce && dlce->dlce_mintxg < maxtxg;
786 	    dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
787 		*usedp += dlce->dlce_bytes;
788 		*compp += dlce->dlce_comp;
789 		*uncompp += dlce->dlce_uncomp;
790 	}
791 
792 	mutex_exit(&dl->dl_lock);
793 }
794 
795 static void
796 dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
797     dmu_tx_t *tx)
798 {
799 	dsl_deadlist_entry_t dle_tofind;
800 	dsl_deadlist_entry_t *dle;
801 	avl_index_t where;
802 	uint64_t used, comp, uncomp;
803 	bpobj_t bpo;
804 
805 	ASSERT(MUTEX_HELD(&dl->dl_lock));
806 
807 	VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
808 	VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
809 	bpobj_close(&bpo);
810 
811 	dsl_deadlist_load_tree(dl);
812 
813 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
814 	dl->dl_phys->dl_used += used;
815 	dl->dl_phys->dl_comp += comp;
816 	dl->dl_phys->dl_uncomp += uncomp;
817 
818 	dle_tofind.dle_mintxg = birth;
819 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
820 	if (dle == NULL)
821 		dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
822 	dle_enqueue_subobj(dl, dle, obj, tx);
823 }
824 
825 /*
826  * Prefetch metadata required for dsl_deadlist_insert_bpobj().
827  */
828 static void
829 dsl_deadlist_prefetch_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth)
830 {
831 	dsl_deadlist_entry_t dle_tofind;
832 	dsl_deadlist_entry_t *dle;
833 	avl_index_t where;
834 
835 	ASSERT(MUTEX_HELD(&dl->dl_lock));
836 
837 	dsl_deadlist_load_tree(dl);
838 
839 	dle_tofind.dle_mintxg = birth;
840 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
841 	if (dle == NULL)
842 		dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
843 	dle_prefetch_subobj(dl, dle, obj);
844 }
845 
846 static int
847 dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
848     dmu_tx_t *tx)
849 {
850 	dsl_deadlist_t *dl = arg;
851 	dsl_deadlist_insert(dl, bp, bp_freed, tx);
852 	return (0);
853 }
854 
855 /*
856  * Merge the deadlist pointed to by 'obj' into dl.  obj will be left as
857  * an empty deadlist.
858  */
859 void
860 dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
861 {
862 	zap_cursor_t zc, pzc;
863 	zap_attribute_t *za, *pza;
864 	dmu_buf_t *bonus;
865 	dsl_deadlist_phys_t *dlp;
866 	dmu_object_info_t doi;
867 	int error, perror, i;
868 
869 	VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
870 	if (doi.doi_type == DMU_OT_BPOBJ) {
871 		bpobj_t bpo;
872 		VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
873 		VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
874 		bpobj_close(&bpo);
875 		return;
876 	}
877 
878 	za = kmem_alloc(sizeof (*za), KM_SLEEP);
879 	pza = kmem_alloc(sizeof (*pza), KM_SLEEP);
880 
881 	mutex_enter(&dl->dl_lock);
882 	/*
883 	 * Prefetch up to 128 deadlists first and then more as we progress.
884 	 * The limit is a balance between ARC use and diminishing returns.
885 	 */
886 	for (zap_cursor_init(&pzc, dl->dl_os, obj), i = 0;
887 	    (perror = zap_cursor_retrieve(&pzc, pza)) == 0 && i < 128;
888 	    zap_cursor_advance(&pzc), i++) {
889 		dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
890 		    zfs_strtonum(pza->za_name, NULL));
891 	}
892 	for (zap_cursor_init(&zc, dl->dl_os, obj);
893 	    (error = zap_cursor_retrieve(&zc, za)) == 0;
894 	    zap_cursor_advance(&zc)) {
895 		dsl_deadlist_insert_bpobj(dl, za->za_first_integer,
896 		    zfs_strtonum(za->za_name, NULL), tx);
897 		VERIFY0(zap_remove(dl->dl_os, obj, za->za_name, tx));
898 		if (perror == 0) {
899 			dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
900 			    zfs_strtonum(pza->za_name, NULL));
901 			zap_cursor_advance(&pzc);
902 			perror = zap_cursor_retrieve(&pzc, pza);
903 		}
904 	}
905 	VERIFY3U(error, ==, ENOENT);
906 	zap_cursor_fini(&zc);
907 	zap_cursor_fini(&pzc);
908 
909 	VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
910 	dlp = bonus->db_data;
911 	dmu_buf_will_dirty(bonus, tx);
912 	memset(dlp, 0, sizeof (*dlp));
913 	dmu_buf_rele(bonus, FTAG);
914 	mutex_exit(&dl->dl_lock);
915 
916 	kmem_free(za, sizeof (*za));
917 	kmem_free(pza, sizeof (*pza));
918 }
919 
920 /*
921  * Remove entries on dl that are born > mintxg, and put them on the bpobj.
922  */
923 void
924 dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
925     dmu_tx_t *tx)
926 {
927 	dsl_deadlist_entry_t dle_tofind;
928 	dsl_deadlist_entry_t *dle, *pdle;
929 	avl_index_t where;
930 	int i;
931 
932 	ASSERT(!dl->dl_oldfmt);
933 
934 	mutex_enter(&dl->dl_lock);
935 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
936 	dsl_deadlist_load_tree(dl);
937 
938 	dle_tofind.dle_mintxg = mintxg;
939 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
940 	if (dle == NULL)
941 		dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
942 	/*
943 	 * Prefetch up to 128 deadlists first and then more as we progress.
944 	 * The limit is a balance between ARC use and diminishing returns.
945 	 */
946 	for (pdle = dle, i = 0; pdle && i < 128; i++) {
947 		bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
948 		pdle = AVL_NEXT(&dl->dl_tree, pdle);
949 	}
950 	while (dle) {
951 		uint64_t used, comp, uncomp;
952 		dsl_deadlist_entry_t *dle_next;
953 
954 		bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
955 		if (pdle) {
956 			bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
957 			pdle = AVL_NEXT(&dl->dl_tree, pdle);
958 		}
959 
960 		VERIFY0(bpobj_space(&dle->dle_bpobj,
961 		    &used, &comp, &uncomp));
962 		ASSERT3U(dl->dl_phys->dl_used, >=, used);
963 		ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
964 		ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
965 		dl->dl_phys->dl_used -= used;
966 		dl->dl_phys->dl_comp -= comp;
967 		dl->dl_phys->dl_uncomp -= uncomp;
968 
969 		VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
970 		    dle->dle_mintxg, tx));
971 
972 		dle_next = AVL_NEXT(&dl->dl_tree, dle);
973 		avl_remove(&dl->dl_tree, dle);
974 		bpobj_close(&dle->dle_bpobj);
975 		kmem_free(dle, sizeof (*dle));
976 		dle = dle_next;
977 	}
978 	mutex_exit(&dl->dl_lock);
979 }
980 
981 typedef struct livelist_entry {
982 	blkptr_t le_bp;
983 	uint32_t le_refcnt;
984 	avl_node_t le_node;
985 } livelist_entry_t;
986 
987 static int
988 livelist_compare(const void *larg, const void *rarg)
989 {
990 	const blkptr_t *l = &((livelist_entry_t *)larg)->le_bp;
991 	const blkptr_t *r = &((livelist_entry_t *)rarg)->le_bp;
992 
993 	/* Sort them according to dva[0] */
994 	uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
995 	uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
996 
997 	if (l_dva0_vdev != r_dva0_vdev)
998 		return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
999 
1000 	/* if vdevs are equal, sort by offsets. */
1001 	uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
1002 	uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
1003 	if (l_dva0_offset == r_dva0_offset)
1004 		ASSERT3U(l->blk_birth, ==, r->blk_birth);
1005 	return (TREE_CMP(l_dva0_offset, r_dva0_offset));
1006 }
1007 
1008 struct livelist_iter_arg {
1009 	avl_tree_t *avl;
1010 	bplist_t *to_free;
1011 	zthr_t *t;
1012 };
1013 
1014 /*
1015  * Expects an AVL tree which is incrementally filled will FREE blkptrs
1016  * and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
1017  * corresponding FREE are stored in the supplied bplist.
1018  *
1019  * Note that multiple FREE and ALLOC entries for the same blkptr may
1020  * be encountered when dedup is involved. For this reason we keep a
1021  * refcount for all the FREE entries of each blkptr and ensure that
1022  * each of those FREE entries has a corresponding ALLOC preceding it.
1023  */
1024 static int
1025 dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
1026     dmu_tx_t *tx)
1027 {
1028 	struct livelist_iter_arg *lia = arg;
1029 	avl_tree_t *avl = lia->avl;
1030 	bplist_t *to_free = lia->to_free;
1031 	zthr_t *t = lia->t;
1032 	ASSERT(tx == NULL);
1033 
1034 	if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
1035 		return (SET_ERROR(EINTR));
1036 
1037 	livelist_entry_t node;
1038 	node.le_bp = *bp;
1039 	livelist_entry_t *found = avl_find(avl, &node, NULL);
1040 	if (bp_freed) {
1041 		if (found == NULL) {
1042 			/* first free entry for this blkptr */
1043 			livelist_entry_t *e =
1044 			    kmem_alloc(sizeof (livelist_entry_t), KM_SLEEP);
1045 			e->le_bp = *bp;
1046 			e->le_refcnt = 1;
1047 			avl_add(avl, e);
1048 		} else {
1049 			/* dedup block free */
1050 			ASSERT(BP_GET_DEDUP(bp));
1051 			ASSERT3U(BP_GET_CHECKSUM(bp), ==,
1052 			    BP_GET_CHECKSUM(&found->le_bp));
1053 			ASSERT3U(found->le_refcnt + 1, >, found->le_refcnt);
1054 			found->le_refcnt++;
1055 		}
1056 	} else {
1057 		if (found == NULL) {
1058 			/* block is currently marked as allocated */
1059 			bplist_append(to_free, bp);
1060 		} else {
1061 			/* alloc matches a free entry */
1062 			ASSERT3U(found->le_refcnt, !=, 0);
1063 			found->le_refcnt--;
1064 			if (found->le_refcnt == 0) {
1065 				/* all tracked free pairs have been matched */
1066 				avl_remove(avl, found);
1067 				kmem_free(found, sizeof (livelist_entry_t));
1068 			} else {
1069 				/*
1070 				 * This is definitely a deduped blkptr so
1071 				 * let's validate it.
1072 				 */
1073 				ASSERT(BP_GET_DEDUP(bp));
1074 				ASSERT3U(BP_GET_CHECKSUM(bp), ==,
1075 				    BP_GET_CHECKSUM(&found->le_bp));
1076 			}
1077 		}
1078 	}
1079 	return (0);
1080 }
1081 
1082 /*
1083  * Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
1084  * which have an ALLOC entry but no matching FREE
1085  */
1086 int
1087 dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
1088     uint64_t *size)
1089 {
1090 	avl_tree_t avl;
1091 	avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
1092 	    offsetof(livelist_entry_t, le_node));
1093 
1094 	/* process the sublist */
1095 	struct livelist_iter_arg arg = {
1096 	    .avl = &avl,
1097 	    .to_free = to_free,
1098 	    .t = t
1099 	};
1100 	int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
1101 	VERIFY(err != 0 || avl_numnodes(&avl) == 0);
1102 
1103 	void *cookie = NULL;
1104 	livelist_entry_t *le = NULL;
1105 	while ((le = avl_destroy_nodes(&avl, &cookie)) != NULL) {
1106 		kmem_free(le, sizeof (livelist_entry_t));
1107 	}
1108 	avl_destroy(&avl);
1109 	return (err);
1110 }
1111 
1112 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, U64, ZMOD_RW,
1113 	"Size to start the next sub-livelist in a livelist");
1114 
1115 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
1116 	"Threshold at which livelist is disabled");
1117