1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 */ 26 27 #include <sys/dmu.h> 28 #include <sys/zap.h> 29 #include <sys/zfs_context.h> 30 #include <sys/dsl_pool.h> 31 #include <sys/dsl_dataset.h> 32 33 /* 34 * Deadlist concurrency: 35 * 36 * Deadlists can only be modified from the syncing thread. 37 * 38 * Except for dsl_deadlist_insert(), it can only be modified with the 39 * dp_config_rwlock held with RW_WRITER. 40 * 41 * The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can 42 * be called concurrently, from open context, with the dl_config_rwlock held 43 * with RW_READER. 44 * 45 * Therefore, we only need to provide locking between dsl_deadlist_insert() and 46 * the accessors, protecting: 47 * dl_phys->dl_used,comp,uncomp 48 * and protecting the dl_tree from being loaded. 49 * The locking is provided by dl_lock. Note that locking on the bpobj_t 50 * provides its own locking, and dl_oldfmt is immutable. 51 */ 52 53 /* 54 * Livelist Overview 55 * ================ 56 * 57 * Livelists use the same 'deadlist_t' struct as deadlists and are also used 58 * to track blkptrs over the lifetime of a dataset. Livelists however, belong 59 * to clones and track the blkptrs that are clone-specific (were born after 60 * the clone's creation). The exception is embedded block pointers which are 61 * not included in livelists because they do not need to be freed. 62 * 63 * When it comes time to delete the clone, the livelist provides a quick 64 * reference as to what needs to be freed. For this reason, livelists also track 65 * when clone-specific blkptrs are freed before deletion to prevent double 66 * frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the 67 * deletion algorithm iterates backwards over the livelist, matching 68 * FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists 69 * are also updated in the case when blkptrs are remapped: the old version 70 * of the blkptr is cancelled out with a FREE and the new version is tracked 71 * with an ALLOC. 72 * 73 * To bound the amount of memory required for deletion, livelists over a 74 * certain size are spread over multiple entries. Entries are grouped by 75 * birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will 76 * be in the same entry. This allows us to delete livelists incrementally 77 * over multiple syncs, one entry at a time. 78 * 79 * During the lifetime of the clone, livelists can get extremely large. 80 * Their size is managed by periodic condensing (preemptively cancelling out 81 * FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when 82 * the shared space between the clone and its origin is so small that it 83 * doesn't make sense to use livelists anymore. 84 */ 85 86 /* 87 * The threshold sublist size at which we create a new sub-livelist for the 88 * next txg. However, since blkptrs of the same transaction group must be in 89 * the same sub-list, the actual sublist size may exceed this. When picking the 90 * size we had to balance the fact that larger sublists mean fewer sublists 91 * (decreasing the cost of insertion) against the consideration that sublists 92 * will be loaded into memory and shouldn't take up an inordinate amount of 93 * space. We settled on ~500000 entries, corresponding to roughly 128M. 94 */ 95 unsigned long zfs_livelist_max_entries = 500000; 96 97 /* 98 * We can approximate how much of a performance gain a livelist will give us 99 * based on the percentage of blocks shared between the clone and its origin. 100 * 0 percent shared means that the clone has completely diverged and that the 101 * old method is maximally effective: every read from the block tree will 102 * result in lots of frees. Livelists give us gains when they track blocks 103 * scattered across the tree, when one read in the old method might only 104 * result in a few frees. Once the clone has been overwritten enough, 105 * writes are no longer sparse and we'll no longer get much of a benefit from 106 * tracking them with a livelist. We chose a lower limit of 75 percent shared 107 * (25 percent overwritten). This means that 1/4 of all block pointers will be 108 * freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists 109 * to make deletion 4x faster. Once the amount of shared space drops below this 110 * threshold, the clone will revert to the old deletion method. 111 */ 112 int zfs_livelist_min_percent_shared = 75; 113 114 static int 115 dsl_deadlist_compare(const void *arg1, const void *arg2) 116 { 117 const dsl_deadlist_entry_t *dle1 = arg1; 118 const dsl_deadlist_entry_t *dle2 = arg2; 119 120 return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg)); 121 } 122 123 static int 124 dsl_deadlist_cache_compare(const void *arg1, const void *arg2) 125 { 126 const dsl_deadlist_cache_entry_t *dlce1 = arg1; 127 const dsl_deadlist_cache_entry_t *dlce2 = arg2; 128 129 return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg)); 130 } 131 132 static void 133 dsl_deadlist_load_tree(dsl_deadlist_t *dl) 134 { 135 zap_cursor_t zc; 136 zap_attribute_t za; 137 int error; 138 139 ASSERT(MUTEX_HELD(&dl->dl_lock)); 140 141 ASSERT(!dl->dl_oldfmt); 142 if (dl->dl_havecache) { 143 /* 144 * After loading the tree, the caller may modify the tree, 145 * e.g. to add or remove nodes, or to make a node no longer 146 * refer to the empty_bpobj. These changes would make the 147 * dl_cache incorrect. Therefore we discard the cache here, 148 * so that it can't become incorrect. 149 */ 150 dsl_deadlist_cache_entry_t *dlce; 151 void *cookie = NULL; 152 while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie)) 153 != NULL) { 154 kmem_free(dlce, sizeof (*dlce)); 155 } 156 avl_destroy(&dl->dl_cache); 157 dl->dl_havecache = B_FALSE; 158 } 159 if (dl->dl_havetree) 160 return; 161 162 avl_create(&dl->dl_tree, dsl_deadlist_compare, 163 sizeof (dsl_deadlist_entry_t), 164 offsetof(dsl_deadlist_entry_t, dle_node)); 165 for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object); 166 (error = zap_cursor_retrieve(&zc, &za)) == 0; 167 zap_cursor_advance(&zc)) { 168 dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP); 169 dle->dle_mintxg = zfs_strtonum(za.za_name, NULL); 170 171 /* 172 * Prefetch all the bpobj's so that we do that i/o 173 * in parallel. Then open them all in a second pass. 174 */ 175 dle->dle_bpobj.bpo_object = za.za_first_integer; 176 dmu_prefetch(dl->dl_os, dle->dle_bpobj.bpo_object, 177 0, 0, 0, ZIO_PRIORITY_SYNC_READ); 178 179 avl_add(&dl->dl_tree, dle); 180 } 181 VERIFY3U(error, ==, ENOENT); 182 zap_cursor_fini(&zc); 183 184 for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree); 185 dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) { 186 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, 187 dle->dle_bpobj.bpo_object)); 188 } 189 dl->dl_havetree = B_TRUE; 190 } 191 192 /* 193 * Load only the non-empty bpobj's into the dl_cache. The cache is an analog 194 * of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It 195 * is used only for gathering space statistics. The dl_cache has two 196 * advantages over the dl_tree: 197 * 198 * 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's 199 * mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj 200 * many times and to inquire about its (zero) space stats many times. 201 * 202 * 2. The dl_cache uses less memory than the dl_tree. We only need to load 203 * the dl_tree of snapshots when deleting a snapshot, after which we free the 204 * dl_tree with dsl_deadlist_discard_tree 205 */ 206 static void 207 dsl_deadlist_load_cache(dsl_deadlist_t *dl) 208 { 209 zap_cursor_t zc; 210 zap_attribute_t za; 211 int error; 212 213 ASSERT(MUTEX_HELD(&dl->dl_lock)); 214 215 ASSERT(!dl->dl_oldfmt); 216 if (dl->dl_havecache) 217 return; 218 219 uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj; 220 221 avl_create(&dl->dl_cache, dsl_deadlist_cache_compare, 222 sizeof (dsl_deadlist_cache_entry_t), 223 offsetof(dsl_deadlist_cache_entry_t, dlce_node)); 224 for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object); 225 (error = zap_cursor_retrieve(&zc, &za)) == 0; 226 zap_cursor_advance(&zc)) { 227 if (za.za_first_integer == empty_bpobj) 228 continue; 229 dsl_deadlist_cache_entry_t *dlce = 230 kmem_zalloc(sizeof (*dlce), KM_SLEEP); 231 dlce->dlce_mintxg = zfs_strtonum(za.za_name, NULL); 232 233 /* 234 * Prefetch all the bpobj's so that we do that i/o 235 * in parallel. Then open them all in a second pass. 236 */ 237 dlce->dlce_bpobj = za.za_first_integer; 238 dmu_prefetch(dl->dl_os, dlce->dlce_bpobj, 239 0, 0, 0, ZIO_PRIORITY_SYNC_READ); 240 avl_add(&dl->dl_cache, dlce); 241 } 242 VERIFY3U(error, ==, ENOENT); 243 zap_cursor_fini(&zc); 244 245 for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache); 246 dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) { 247 bpobj_t bpo; 248 VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj)); 249 250 VERIFY0(bpobj_space(&bpo, 251 &dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp)); 252 bpobj_close(&bpo); 253 } 254 dl->dl_havecache = B_TRUE; 255 } 256 257 /* 258 * Discard the tree to save memory. 259 */ 260 void 261 dsl_deadlist_discard_tree(dsl_deadlist_t *dl) 262 { 263 mutex_enter(&dl->dl_lock); 264 265 if (!dl->dl_havetree) { 266 mutex_exit(&dl->dl_lock); 267 return; 268 } 269 dsl_deadlist_entry_t *dle; 270 void *cookie = NULL; 271 while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) { 272 bpobj_close(&dle->dle_bpobj); 273 kmem_free(dle, sizeof (*dle)); 274 } 275 avl_destroy(&dl->dl_tree); 276 277 dl->dl_havetree = B_FALSE; 278 mutex_exit(&dl->dl_lock); 279 } 280 281 void 282 dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args) 283 { 284 dsl_deadlist_entry_t *dle; 285 286 ASSERT(dsl_deadlist_is_open(dl)); 287 288 mutex_enter(&dl->dl_lock); 289 dsl_deadlist_load_tree(dl); 290 mutex_exit(&dl->dl_lock); 291 for (dle = avl_first(&dl->dl_tree); dle != NULL; 292 dle = AVL_NEXT(&dl->dl_tree, dle)) { 293 if (func(args, dle) != 0) 294 break; 295 } 296 } 297 298 void 299 dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object) 300 { 301 dmu_object_info_t doi; 302 303 ASSERT(!dsl_deadlist_is_open(dl)); 304 305 mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL); 306 dl->dl_os = os; 307 dl->dl_object = object; 308 VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf)); 309 dmu_object_info_from_db(dl->dl_dbuf, &doi); 310 if (doi.doi_type == DMU_OT_BPOBJ) { 311 dmu_buf_rele(dl->dl_dbuf, dl); 312 dl->dl_dbuf = NULL; 313 dl->dl_oldfmt = B_TRUE; 314 VERIFY0(bpobj_open(&dl->dl_bpobj, os, object)); 315 return; 316 } 317 318 dl->dl_oldfmt = B_FALSE; 319 dl->dl_phys = dl->dl_dbuf->db_data; 320 dl->dl_havetree = B_FALSE; 321 dl->dl_havecache = B_FALSE; 322 } 323 324 boolean_t 325 dsl_deadlist_is_open(dsl_deadlist_t *dl) 326 { 327 return (dl->dl_os != NULL); 328 } 329 330 void 331 dsl_deadlist_close(dsl_deadlist_t *dl) 332 { 333 ASSERT(dsl_deadlist_is_open(dl)); 334 mutex_destroy(&dl->dl_lock); 335 336 if (dl->dl_oldfmt) { 337 dl->dl_oldfmt = B_FALSE; 338 bpobj_close(&dl->dl_bpobj); 339 dl->dl_os = NULL; 340 dl->dl_object = 0; 341 return; 342 } 343 344 if (dl->dl_havetree) { 345 dsl_deadlist_entry_t *dle; 346 void *cookie = NULL; 347 while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) 348 != NULL) { 349 bpobj_close(&dle->dle_bpobj); 350 kmem_free(dle, sizeof (*dle)); 351 } 352 avl_destroy(&dl->dl_tree); 353 } 354 if (dl->dl_havecache) { 355 dsl_deadlist_cache_entry_t *dlce; 356 void *cookie = NULL; 357 while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie)) 358 != NULL) { 359 kmem_free(dlce, sizeof (*dlce)); 360 } 361 avl_destroy(&dl->dl_cache); 362 } 363 dmu_buf_rele(dl->dl_dbuf, dl); 364 dl->dl_dbuf = NULL; 365 dl->dl_phys = NULL; 366 dl->dl_os = NULL; 367 dl->dl_object = 0; 368 } 369 370 uint64_t 371 dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx) 372 { 373 if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS) 374 return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx)); 375 return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR, 376 sizeof (dsl_deadlist_phys_t), tx)); 377 } 378 379 void 380 dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx) 381 { 382 dmu_object_info_t doi; 383 zap_cursor_t zc; 384 zap_attribute_t za; 385 int error; 386 387 VERIFY0(dmu_object_info(os, dlobj, &doi)); 388 if (doi.doi_type == DMU_OT_BPOBJ) { 389 bpobj_free(os, dlobj, tx); 390 return; 391 } 392 393 for (zap_cursor_init(&zc, os, dlobj); 394 (error = zap_cursor_retrieve(&zc, &za)) == 0; 395 zap_cursor_advance(&zc)) { 396 uint64_t obj = za.za_first_integer; 397 if (obj == dmu_objset_pool(os)->dp_empty_bpobj) 398 bpobj_decr_empty(os, tx); 399 else 400 bpobj_free(os, obj, tx); 401 } 402 VERIFY3U(error, ==, ENOENT); 403 zap_cursor_fini(&zc); 404 VERIFY0(dmu_object_free(os, dlobj, tx)); 405 } 406 407 static void 408 dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle, 409 const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 410 { 411 ASSERT(MUTEX_HELD(&dl->dl_lock)); 412 if (dle->dle_bpobj.bpo_object == 413 dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) { 414 uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx); 415 bpobj_close(&dle->dle_bpobj); 416 bpobj_decr_empty(dl->dl_os, tx); 417 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj)); 418 VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object, 419 dle->dle_mintxg, obj, tx)); 420 } 421 bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx); 422 } 423 424 static void 425 dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle, 426 uint64_t obj, dmu_tx_t *tx) 427 { 428 ASSERT(MUTEX_HELD(&dl->dl_lock)); 429 if (dle->dle_bpobj.bpo_object != 430 dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) { 431 bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx); 432 } else { 433 bpobj_close(&dle->dle_bpobj); 434 bpobj_decr_empty(dl->dl_os, tx); 435 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj)); 436 VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object, 437 dle->dle_mintxg, obj, tx)); 438 } 439 } 440 441 void 442 dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed, 443 dmu_tx_t *tx) 444 { 445 dsl_deadlist_entry_t dle_tofind; 446 dsl_deadlist_entry_t *dle; 447 avl_index_t where; 448 449 if (dl->dl_oldfmt) { 450 bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx); 451 return; 452 } 453 454 mutex_enter(&dl->dl_lock); 455 dsl_deadlist_load_tree(dl); 456 457 dmu_buf_will_dirty(dl->dl_dbuf, tx); 458 459 int sign = bp_freed ? -1 : +1; 460 dl->dl_phys->dl_used += 461 sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp); 462 dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp); 463 dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp); 464 465 dle_tofind.dle_mintxg = bp->blk_birth; 466 dle = avl_find(&dl->dl_tree, &dle_tofind, &where); 467 if (dle == NULL) 468 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE); 469 else 470 dle = AVL_PREV(&dl->dl_tree, dle); 471 472 if (dle == NULL) { 473 zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu", 474 bp, (longlong_t)bp->blk_birth); 475 dle = avl_first(&dl->dl_tree); 476 } 477 478 ASSERT3P(dle, !=, NULL); 479 dle_enqueue(dl, dle, bp, bp_freed, tx); 480 mutex_exit(&dl->dl_lock); 481 } 482 483 int 484 dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 485 { 486 dsl_deadlist_t *dl = arg; 487 dsl_deadlist_insert(dl, bp, B_FALSE, tx); 488 return (0); 489 } 490 491 int 492 dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 493 { 494 dsl_deadlist_t *dl = arg; 495 dsl_deadlist_insert(dl, bp, B_TRUE, tx); 496 return (0); 497 } 498 499 /* 500 * Insert new key in deadlist, which must be > all current entries. 501 * mintxg is not inclusive. 502 */ 503 void 504 dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx) 505 { 506 uint64_t obj; 507 dsl_deadlist_entry_t *dle; 508 509 if (dl->dl_oldfmt) 510 return; 511 512 dle = kmem_alloc(sizeof (*dle), KM_SLEEP); 513 dle->dle_mintxg = mintxg; 514 515 mutex_enter(&dl->dl_lock); 516 dsl_deadlist_load_tree(dl); 517 518 obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx); 519 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj)); 520 avl_add(&dl->dl_tree, dle); 521 522 VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object, 523 mintxg, obj, tx)); 524 mutex_exit(&dl->dl_lock); 525 } 526 527 /* 528 * Remove this key, merging its entries into the previous key. 529 */ 530 void 531 dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx) 532 { 533 dsl_deadlist_entry_t dle_tofind; 534 dsl_deadlist_entry_t *dle, *dle_prev; 535 536 if (dl->dl_oldfmt) 537 return; 538 mutex_enter(&dl->dl_lock); 539 dsl_deadlist_load_tree(dl); 540 541 dle_tofind.dle_mintxg = mintxg; 542 dle = avl_find(&dl->dl_tree, &dle_tofind, NULL); 543 ASSERT3P(dle, !=, NULL); 544 dle_prev = AVL_PREV(&dl->dl_tree, dle); 545 546 dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx); 547 548 avl_remove(&dl->dl_tree, dle); 549 bpobj_close(&dle->dle_bpobj); 550 kmem_free(dle, sizeof (*dle)); 551 552 VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx)); 553 mutex_exit(&dl->dl_lock); 554 } 555 556 /* 557 * Remove a deadlist entry and all of its contents by removing the entry from 558 * the deadlist's avl tree, freeing the entry's bpobj and adjusting the 559 * deadlist's space accounting accordingly. 560 */ 561 void 562 dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx) 563 { 564 uint64_t used, comp, uncomp; 565 dsl_deadlist_entry_t dle_tofind; 566 dsl_deadlist_entry_t *dle; 567 objset_t *os = dl->dl_os; 568 569 if (dl->dl_oldfmt) 570 return; 571 572 mutex_enter(&dl->dl_lock); 573 dsl_deadlist_load_tree(dl); 574 575 dle_tofind.dle_mintxg = mintxg; 576 dle = avl_find(&dl->dl_tree, &dle_tofind, NULL); 577 VERIFY3P(dle, !=, NULL); 578 579 avl_remove(&dl->dl_tree, dle); 580 VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx)); 581 VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp)); 582 dmu_buf_will_dirty(dl->dl_dbuf, tx); 583 dl->dl_phys->dl_used -= used; 584 dl->dl_phys->dl_comp -= comp; 585 dl->dl_phys->dl_uncomp -= uncomp; 586 if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) { 587 bpobj_decr_empty(os, tx); 588 } else { 589 bpobj_free(os, dle->dle_bpobj.bpo_object, tx); 590 } 591 bpobj_close(&dle->dle_bpobj); 592 kmem_free(dle, sizeof (*dle)); 593 mutex_exit(&dl->dl_lock); 594 } 595 596 /* 597 * Clear out the contents of a deadlist_entry by freeing its bpobj, 598 * replacing it with an empty bpobj and adjusting the deadlist's 599 * space accounting 600 */ 601 void 602 dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl, 603 dmu_tx_t *tx) 604 { 605 uint64_t new_obj, used, comp, uncomp; 606 objset_t *os = dl->dl_os; 607 608 mutex_enter(&dl->dl_lock); 609 VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx)); 610 VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp)); 611 dmu_buf_will_dirty(dl->dl_dbuf, tx); 612 dl->dl_phys->dl_used -= used; 613 dl->dl_phys->dl_comp -= comp; 614 dl->dl_phys->dl_uncomp -= uncomp; 615 if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) 616 bpobj_decr_empty(os, tx); 617 else 618 bpobj_free(os, dle->dle_bpobj.bpo_object, tx); 619 bpobj_close(&dle->dle_bpobj); 620 new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx); 621 VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj)); 622 VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg, 623 new_obj, tx)); 624 ASSERT(bpobj_is_empty(&dle->dle_bpobj)); 625 mutex_exit(&dl->dl_lock); 626 } 627 628 /* 629 * Return the first entry in deadlist's avl tree 630 */ 631 dsl_deadlist_entry_t * 632 dsl_deadlist_first(dsl_deadlist_t *dl) 633 { 634 dsl_deadlist_entry_t *dle; 635 636 mutex_enter(&dl->dl_lock); 637 dsl_deadlist_load_tree(dl); 638 dle = avl_first(&dl->dl_tree); 639 mutex_exit(&dl->dl_lock); 640 641 return (dle); 642 } 643 644 /* 645 * Return the last entry in deadlist's avl tree 646 */ 647 dsl_deadlist_entry_t * 648 dsl_deadlist_last(dsl_deadlist_t *dl) 649 { 650 dsl_deadlist_entry_t *dle; 651 652 mutex_enter(&dl->dl_lock); 653 dsl_deadlist_load_tree(dl); 654 dle = avl_last(&dl->dl_tree); 655 mutex_exit(&dl->dl_lock); 656 657 return (dle); 658 } 659 660 /* 661 * Walk ds's snapshots to regenerate generate ZAP & AVL. 662 */ 663 static void 664 dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj, 665 uint64_t mrs_obj, dmu_tx_t *tx) 666 { 667 dsl_deadlist_t dl = { 0 }; 668 dsl_pool_t *dp = dmu_objset_pool(os); 669 670 dsl_deadlist_open(&dl, os, dlobj); 671 if (dl.dl_oldfmt) { 672 dsl_deadlist_close(&dl); 673 return; 674 } 675 676 while (mrs_obj != 0) { 677 dsl_dataset_t *ds; 678 VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds)); 679 dsl_deadlist_add_key(&dl, 680 dsl_dataset_phys(ds)->ds_prev_snap_txg, tx); 681 mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 682 dsl_dataset_rele(ds, FTAG); 683 } 684 dsl_deadlist_close(&dl); 685 } 686 687 uint64_t 688 dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg, 689 uint64_t mrs_obj, dmu_tx_t *tx) 690 { 691 dsl_deadlist_entry_t *dle; 692 uint64_t newobj; 693 694 newobj = dsl_deadlist_alloc(dl->dl_os, tx); 695 696 if (dl->dl_oldfmt) { 697 dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx); 698 return (newobj); 699 } 700 701 mutex_enter(&dl->dl_lock); 702 dsl_deadlist_load_tree(dl); 703 704 for (dle = avl_first(&dl->dl_tree); dle; 705 dle = AVL_NEXT(&dl->dl_tree, dle)) { 706 uint64_t obj; 707 708 if (dle->dle_mintxg >= maxtxg) 709 break; 710 711 obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx); 712 VERIFY0(zap_add_int_key(dl->dl_os, newobj, 713 dle->dle_mintxg, obj, tx)); 714 } 715 mutex_exit(&dl->dl_lock); 716 return (newobj); 717 } 718 719 void 720 dsl_deadlist_space(dsl_deadlist_t *dl, 721 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) 722 { 723 ASSERT(dsl_deadlist_is_open(dl)); 724 if (dl->dl_oldfmt) { 725 VERIFY0(bpobj_space(&dl->dl_bpobj, 726 usedp, compp, uncompp)); 727 return; 728 } 729 730 mutex_enter(&dl->dl_lock); 731 *usedp = dl->dl_phys->dl_used; 732 *compp = dl->dl_phys->dl_comp; 733 *uncompp = dl->dl_phys->dl_uncomp; 734 mutex_exit(&dl->dl_lock); 735 } 736 737 /* 738 * return space used in the range (mintxg, maxtxg]. 739 * Includes maxtxg, does not include mintxg. 740 * mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is 741 * UINT64_MAX). 742 */ 743 void 744 dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg, 745 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) 746 { 747 dsl_deadlist_cache_entry_t *dlce; 748 dsl_deadlist_cache_entry_t dlce_tofind; 749 avl_index_t where; 750 751 if (dl->dl_oldfmt) { 752 VERIFY0(bpobj_space_range(&dl->dl_bpobj, 753 mintxg, maxtxg, usedp, compp, uncompp)); 754 return; 755 } 756 757 *usedp = *compp = *uncompp = 0; 758 759 mutex_enter(&dl->dl_lock); 760 dsl_deadlist_load_cache(dl); 761 dlce_tofind.dlce_mintxg = mintxg; 762 dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where); 763 764 /* 765 * If this mintxg doesn't exist, it may be an empty_bpobj which 766 * is omitted from the sparse tree. Start at the next non-empty 767 * entry. 768 */ 769 if (dlce == NULL) 770 dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER); 771 772 for (; dlce && dlce->dlce_mintxg < maxtxg; 773 dlce = AVL_NEXT(&dl->dl_tree, dlce)) { 774 *usedp += dlce->dlce_bytes; 775 *compp += dlce->dlce_comp; 776 *uncompp += dlce->dlce_uncomp; 777 } 778 779 mutex_exit(&dl->dl_lock); 780 } 781 782 static void 783 dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth, 784 dmu_tx_t *tx) 785 { 786 dsl_deadlist_entry_t dle_tofind; 787 dsl_deadlist_entry_t *dle; 788 avl_index_t where; 789 uint64_t used, comp, uncomp; 790 bpobj_t bpo; 791 792 ASSERT(MUTEX_HELD(&dl->dl_lock)); 793 794 VERIFY0(bpobj_open(&bpo, dl->dl_os, obj)); 795 VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp)); 796 bpobj_close(&bpo); 797 798 dsl_deadlist_load_tree(dl); 799 800 dmu_buf_will_dirty(dl->dl_dbuf, tx); 801 dl->dl_phys->dl_used += used; 802 dl->dl_phys->dl_comp += comp; 803 dl->dl_phys->dl_uncomp += uncomp; 804 805 dle_tofind.dle_mintxg = birth; 806 dle = avl_find(&dl->dl_tree, &dle_tofind, &where); 807 if (dle == NULL) 808 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE); 809 dle_enqueue_subobj(dl, dle, obj, tx); 810 } 811 812 static int 813 dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 814 dmu_tx_t *tx) 815 { 816 dsl_deadlist_t *dl = arg; 817 dsl_deadlist_insert(dl, bp, bp_freed, tx); 818 return (0); 819 } 820 821 /* 822 * Merge the deadlist pointed to by 'obj' into dl. obj will be left as 823 * an empty deadlist. 824 */ 825 void 826 dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx) 827 { 828 zap_cursor_t zc; 829 zap_attribute_t za; 830 dmu_buf_t *bonus; 831 dsl_deadlist_phys_t *dlp; 832 dmu_object_info_t doi; 833 int error; 834 835 VERIFY0(dmu_object_info(dl->dl_os, obj, &doi)); 836 if (doi.doi_type == DMU_OT_BPOBJ) { 837 bpobj_t bpo; 838 VERIFY0(bpobj_open(&bpo, dl->dl_os, obj)); 839 VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx)); 840 bpobj_close(&bpo); 841 return; 842 } 843 844 mutex_enter(&dl->dl_lock); 845 for (zap_cursor_init(&zc, dl->dl_os, obj); 846 (error = zap_cursor_retrieve(&zc, &za)) == 0; 847 zap_cursor_advance(&zc)) { 848 uint64_t mintxg = zfs_strtonum(za.za_name, NULL); 849 dsl_deadlist_insert_bpobj(dl, za.za_first_integer, mintxg, tx); 850 VERIFY0(zap_remove_int(dl->dl_os, obj, mintxg, tx)); 851 } 852 VERIFY3U(error, ==, ENOENT); 853 zap_cursor_fini(&zc); 854 855 VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus)); 856 dlp = bonus->db_data; 857 dmu_buf_will_dirty(bonus, tx); 858 memset(dlp, 0, sizeof (*dlp)); 859 dmu_buf_rele(bonus, FTAG); 860 mutex_exit(&dl->dl_lock); 861 } 862 863 /* 864 * Remove entries on dl that are born > mintxg, and put them on the bpobj. 865 */ 866 void 867 dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg, 868 dmu_tx_t *tx) 869 { 870 dsl_deadlist_entry_t dle_tofind; 871 dsl_deadlist_entry_t *dle; 872 avl_index_t where; 873 874 ASSERT(!dl->dl_oldfmt); 875 876 mutex_enter(&dl->dl_lock); 877 dmu_buf_will_dirty(dl->dl_dbuf, tx); 878 dsl_deadlist_load_tree(dl); 879 880 dle_tofind.dle_mintxg = mintxg; 881 dle = avl_find(&dl->dl_tree, &dle_tofind, &where); 882 if (dle == NULL) 883 dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER); 884 while (dle) { 885 uint64_t used, comp, uncomp; 886 dsl_deadlist_entry_t *dle_next; 887 888 bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx); 889 890 VERIFY0(bpobj_space(&dle->dle_bpobj, 891 &used, &comp, &uncomp)); 892 ASSERT3U(dl->dl_phys->dl_used, >=, used); 893 ASSERT3U(dl->dl_phys->dl_comp, >=, comp); 894 ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp); 895 dl->dl_phys->dl_used -= used; 896 dl->dl_phys->dl_comp -= comp; 897 dl->dl_phys->dl_uncomp -= uncomp; 898 899 VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, 900 dle->dle_mintxg, tx)); 901 902 dle_next = AVL_NEXT(&dl->dl_tree, dle); 903 avl_remove(&dl->dl_tree, dle); 904 bpobj_close(&dle->dle_bpobj); 905 kmem_free(dle, sizeof (*dle)); 906 dle = dle_next; 907 } 908 mutex_exit(&dl->dl_lock); 909 } 910 911 typedef struct livelist_entry { 912 blkptr_t le_bp; 913 uint32_t le_refcnt; 914 avl_node_t le_node; 915 } livelist_entry_t; 916 917 static int 918 livelist_compare(const void *larg, const void *rarg) 919 { 920 const blkptr_t *l = &((livelist_entry_t *)larg)->le_bp; 921 const blkptr_t *r = &((livelist_entry_t *)rarg)->le_bp; 922 923 /* Sort them according to dva[0] */ 924 uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]); 925 uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]); 926 927 if (l_dva0_vdev != r_dva0_vdev) 928 return (TREE_CMP(l_dva0_vdev, r_dva0_vdev)); 929 930 /* if vdevs are equal, sort by offsets. */ 931 uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]); 932 uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]); 933 if (l_dva0_offset == r_dva0_offset) 934 ASSERT3U(l->blk_birth, ==, r->blk_birth); 935 return (TREE_CMP(l_dva0_offset, r_dva0_offset)); 936 } 937 938 struct livelist_iter_arg { 939 avl_tree_t *avl; 940 bplist_t *to_free; 941 zthr_t *t; 942 }; 943 944 /* 945 * Expects an AVL tree which is incrementally filled will FREE blkptrs 946 * and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a 947 * corresponding FREE are stored in the supplied bplist. 948 * 949 * Note that multiple FREE and ALLOC entries for the same blkptr may 950 * be encountered when dedup is involved. For this reason we keep a 951 * refcount for all the FREE entries of each blkptr and ensure that 952 * each of those FREE entries has a corresponding ALLOC preceding it. 953 */ 954 static int 955 dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed, 956 dmu_tx_t *tx) 957 { 958 struct livelist_iter_arg *lia = arg; 959 avl_tree_t *avl = lia->avl; 960 bplist_t *to_free = lia->to_free; 961 zthr_t *t = lia->t; 962 ASSERT(tx == NULL); 963 964 if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t))) 965 return (SET_ERROR(EINTR)); 966 967 livelist_entry_t node; 968 node.le_bp = *bp; 969 livelist_entry_t *found = avl_find(avl, &node, NULL); 970 if (bp_freed) { 971 if (found == NULL) { 972 /* first free entry for this blkptr */ 973 livelist_entry_t *e = 974 kmem_alloc(sizeof (livelist_entry_t), KM_SLEEP); 975 e->le_bp = *bp; 976 e->le_refcnt = 1; 977 avl_add(avl, e); 978 } else { 979 /* dedup block free */ 980 ASSERT(BP_GET_DEDUP(bp)); 981 ASSERT3U(BP_GET_CHECKSUM(bp), ==, 982 BP_GET_CHECKSUM(&found->le_bp)); 983 ASSERT3U(found->le_refcnt + 1, >, found->le_refcnt); 984 found->le_refcnt++; 985 } 986 } else { 987 if (found == NULL) { 988 /* block is currently marked as allocated */ 989 bplist_append(to_free, bp); 990 } else { 991 /* alloc matches a free entry */ 992 ASSERT3U(found->le_refcnt, !=, 0); 993 found->le_refcnt--; 994 if (found->le_refcnt == 0) { 995 /* all tracked free pairs have been matched */ 996 avl_remove(avl, found); 997 kmem_free(found, sizeof (livelist_entry_t)); 998 } else { 999 /* 1000 * This is definitely a deduped blkptr so 1001 * let's validate it. 1002 */ 1003 ASSERT(BP_GET_DEDUP(bp)); 1004 ASSERT3U(BP_GET_CHECKSUM(bp), ==, 1005 BP_GET_CHECKSUM(&found->le_bp)); 1006 } 1007 } 1008 } 1009 return (0); 1010 } 1011 1012 /* 1013 * Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs 1014 * which have an ALLOC entry but no matching FREE 1015 */ 1016 int 1017 dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t, 1018 uint64_t *size) 1019 { 1020 avl_tree_t avl; 1021 avl_create(&avl, livelist_compare, sizeof (livelist_entry_t), 1022 offsetof(livelist_entry_t, le_node)); 1023 1024 /* process the sublist */ 1025 struct livelist_iter_arg arg = { 1026 .avl = &avl, 1027 .to_free = to_free, 1028 .t = t 1029 }; 1030 int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size); 1031 1032 VERIFY0(avl_numnodes(&avl)); 1033 avl_destroy(&avl); 1034 return (err); 1035 } 1036 1037 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, ULONG, ZMOD_RW, 1038 "Size to start the next sub-livelist in a livelist"); 1039 1040 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW, 1041 "Threshold at which livelist is disabled"); 1042