1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2020 Oxide Computer Company 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dbuf.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/dmu_recv.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/spa.h> 38 #include <sys/range_tree.h> 39 #include <sys/zfeature.h> 40 41 static void 42 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx) 43 { 44 dmu_buf_impl_t *db; 45 int txgoff = tx->tx_txg & TXG_MASK; 46 int nblkptr = dn->dn_phys->dn_nblkptr; 47 int old_toplvl = dn->dn_phys->dn_nlevels - 1; 48 int new_level = dn->dn_next_nlevels[txgoff]; 49 int i; 50 51 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 52 53 /* this dnode can't be paged out because it's dirty */ 54 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); 55 ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0); 56 57 db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG); 58 ASSERT(db != NULL); 59 60 dn->dn_phys->dn_nlevels = new_level; 61 dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset, 62 dn->dn_object, dn->dn_phys->dn_nlevels); 63 64 /* 65 * Lock ordering requires that we hold the children's db_mutexes (by 66 * calling dbuf_find()) before holding the parent's db_rwlock. The lock 67 * order is imposed by dbuf_read's steps of "grab the lock to protect 68 * db_parent, get db_parent, hold db_parent's db_rwlock". 69 */ 70 dmu_buf_impl_t *children[DN_MAX_NBLKPTR]; 71 ASSERT3U(nblkptr, <=, DN_MAX_NBLKPTR); 72 for (i = 0; i < nblkptr; i++) { 73 children[i] = 74 dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i); 75 } 76 77 /* transfer dnode's block pointers to new indirect block */ 78 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT); 79 if (dn->dn_dbuf != NULL) 80 rw_enter(&dn->dn_dbuf->db_rwlock, RW_WRITER); 81 rw_enter(&db->db_rwlock, RW_WRITER); 82 ASSERT(db->db.db_data); 83 ASSERT(arc_released(db->db_buf)); 84 ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size); 85 bcopy(dn->dn_phys->dn_blkptr, db->db.db_data, 86 sizeof (blkptr_t) * nblkptr); 87 arc_buf_freeze(db->db_buf); 88 89 /* set dbuf's parent pointers to new indirect buf */ 90 for (i = 0; i < nblkptr; i++) { 91 dmu_buf_impl_t *child = children[i]; 92 93 if (child == NULL) 94 continue; 95 #ifdef ZFS_DEBUG 96 DB_DNODE_ENTER(child); 97 ASSERT3P(DB_DNODE(child), ==, dn); 98 DB_DNODE_EXIT(child); 99 #endif /* DEBUG */ 100 if (child->db_parent && child->db_parent != dn->dn_dbuf) { 101 ASSERT(child->db_parent->db_level == db->db_level); 102 ASSERT(child->db_blkptr != 103 &dn->dn_phys->dn_blkptr[child->db_blkid]); 104 mutex_exit(&child->db_mtx); 105 continue; 106 } 107 ASSERT(child->db_parent == NULL || 108 child->db_parent == dn->dn_dbuf); 109 110 child->db_parent = db; 111 dbuf_add_ref(db, child); 112 if (db->db.db_data) 113 child->db_blkptr = (blkptr_t *)db->db.db_data + i; 114 else 115 child->db_blkptr = NULL; 116 dprintf_dbuf_bp(child, child->db_blkptr, 117 "changed db_blkptr to new indirect %s", ""); 118 119 mutex_exit(&child->db_mtx); 120 } 121 122 bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr); 123 124 rw_exit(&db->db_rwlock); 125 if (dn->dn_dbuf != NULL) 126 rw_exit(&dn->dn_dbuf->db_rwlock); 127 128 dbuf_rele(db, FTAG); 129 130 rw_exit(&dn->dn_struct_rwlock); 131 } 132 133 static void 134 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx) 135 { 136 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 137 uint64_t bytesfreed = 0; 138 139 dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num); 140 141 for (int i = 0; i < num; i++, bp++) { 142 if (BP_IS_HOLE(bp)) 143 continue; 144 145 bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE); 146 ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys)); 147 148 /* 149 * Save some useful information on the holes being 150 * punched, including logical size, type, and indirection 151 * level. Retaining birth time enables detection of when 152 * holes are punched for reducing the number of free 153 * records transmitted during a zfs send. 154 */ 155 156 uint64_t lsize = BP_GET_LSIZE(bp); 157 dmu_object_type_t type = BP_GET_TYPE(bp); 158 uint64_t lvl = BP_GET_LEVEL(bp); 159 160 bzero(bp, sizeof (blkptr_t)); 161 162 if (spa_feature_is_active(dn->dn_objset->os_spa, 163 SPA_FEATURE_HOLE_BIRTH)) { 164 BP_SET_LSIZE(bp, lsize); 165 BP_SET_TYPE(bp, type); 166 BP_SET_LEVEL(bp, lvl); 167 BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0); 168 } 169 } 170 dnode_diduse_space(dn, -bytesfreed); 171 } 172 173 #ifdef ZFS_DEBUG 174 static void 175 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx) 176 { 177 int off, num; 178 int i, err, epbs; 179 uint64_t txg = tx->tx_txg; 180 dnode_t *dn; 181 182 DB_DNODE_ENTER(db); 183 dn = DB_DNODE(db); 184 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 185 off = start - (db->db_blkid * 1<<epbs); 186 num = end - start + 1; 187 188 ASSERT3U(off, >=, 0); 189 ASSERT3U(num, >=, 0); 190 ASSERT3U(db->db_level, >, 0); 191 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 192 ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT); 193 ASSERT(db->db_blkptr != NULL); 194 195 for (i = off; i < off+num; i++) { 196 uint64_t *buf; 197 dmu_buf_impl_t *child; 198 dbuf_dirty_record_t *dr; 199 int j; 200 201 ASSERT(db->db_level == 1); 202 203 rw_enter(&dn->dn_struct_rwlock, RW_READER); 204 err = dbuf_hold_impl(dn, db->db_level - 1, 205 (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child); 206 rw_exit(&dn->dn_struct_rwlock); 207 if (err == ENOENT) 208 continue; 209 ASSERT(err == 0); 210 ASSERT(child->db_level == 0); 211 dr = dbuf_find_dirty_eq(child, txg); 212 213 /* data_old better be zeroed */ 214 if (dr) { 215 buf = dr->dt.dl.dr_data->b_data; 216 for (j = 0; j < child->db.db_size >> 3; j++) { 217 if (buf[j] != 0) { 218 panic("freed data not zero: " 219 "child=%p i=%d off=%d num=%d\n", 220 (void *)child, i, off, num); 221 } 222 } 223 } 224 225 /* 226 * db_data better be zeroed unless it's dirty in a 227 * future txg. 228 */ 229 mutex_enter(&child->db_mtx); 230 buf = child->db.db_data; 231 if (buf != NULL && child->db_state != DB_FILL && 232 list_is_empty(&child->db_dirty_records)) { 233 for (j = 0; j < child->db.db_size >> 3; j++) { 234 if (buf[j] != 0) { 235 panic("freed data not zero: " 236 "child=%p i=%d off=%d num=%d\n", 237 (void *)child, i, off, num); 238 } 239 } 240 } 241 mutex_exit(&child->db_mtx); 242 243 dbuf_rele(child, FTAG); 244 } 245 DB_DNODE_EXIT(db); 246 } 247 #endif 248 249 /* 250 * We don't usually free the indirect blocks here. If in one txg we have a 251 * free_range and a write to the same indirect block, it's important that we 252 * preserve the hole's birth times. Therefore, we don't free any any indirect 253 * blocks in free_children(). If an indirect block happens to turn into all 254 * holes, it will be freed by dbuf_write_children_ready, which happens at a 255 * point in the syncing process where we know for certain the contents of the 256 * indirect block. 257 * 258 * However, if we're freeing a dnode, its space accounting must go to zero 259 * before we actually try to free the dnode, or we will trip an assertion. In 260 * addition, we know the case described above cannot occur, because the dnode is 261 * being freed. Therefore, we free the indirect blocks immediately in that 262 * case. 263 */ 264 static void 265 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks, 266 boolean_t free_indirects, dmu_tx_t *tx) 267 { 268 dnode_t *dn; 269 blkptr_t *bp; 270 dmu_buf_impl_t *subdb; 271 uint64_t start, end, dbstart, dbend; 272 unsigned int epbs, shift, i; 273 274 /* 275 * There is a small possibility that this block will not be cached: 276 * 1 - if level > 1 and there are no children with level <= 1 277 * 2 - if this block was evicted since we read it from 278 * dmu_tx_hold_free(). 279 */ 280 if (db->db_state != DB_CACHED) 281 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 282 283 /* 284 * If we modify this indirect block, and we are not freeing the 285 * dnode (!free_indirects), then this indirect block needs to get 286 * written to disk by dbuf_write(). If it is dirty, we know it will 287 * be written (otherwise, we would have incorrect on-disk state 288 * because the space would be freed but still referenced by the BP 289 * in this indirect block). Therefore we VERIFY that it is 290 * dirty. 291 * 292 * Our VERIFY covers some cases that do not actually have to be 293 * dirty, but the open-context code happens to dirty. E.g. if the 294 * blocks we are freeing are all holes, because in that case, we 295 * are only freeing part of this indirect block, so it is an 296 * ancestor of the first or last block to be freed. The first and 297 * last L1 indirect blocks are always dirtied by dnode_free_range(). 298 */ 299 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 300 VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0); 301 dmu_buf_unlock_parent(db, dblt, FTAG); 302 303 dbuf_release_bp(db); 304 bp = db->db.db_data; 305 306 DB_DNODE_ENTER(db); 307 dn = DB_DNODE(db); 308 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 309 ASSERT3U(epbs, <, 31); 310 shift = (db->db_level - 1) * epbs; 311 dbstart = db->db_blkid << epbs; 312 start = blkid >> shift; 313 if (dbstart < start) { 314 bp += start - dbstart; 315 } else { 316 start = dbstart; 317 } 318 dbend = ((db->db_blkid + 1) << epbs) - 1; 319 end = (blkid + nblks - 1) >> shift; 320 if (dbend <= end) 321 end = dbend; 322 323 ASSERT3U(start, <=, end); 324 325 if (db->db_level == 1) { 326 FREE_VERIFY(db, start, end, tx); 327 rw_enter(&db->db_rwlock, RW_WRITER); 328 free_blocks(dn, bp, end - start + 1, tx); 329 rw_exit(&db->db_rwlock); 330 } else { 331 for (uint64_t id = start; id <= end; id++, bp++) { 332 if (BP_IS_HOLE(bp)) 333 continue; 334 rw_enter(&dn->dn_struct_rwlock, RW_READER); 335 VERIFY0(dbuf_hold_impl(dn, db->db_level - 1, 336 id, TRUE, FALSE, FTAG, &subdb)); 337 rw_exit(&dn->dn_struct_rwlock); 338 ASSERT3P(bp, ==, subdb->db_blkptr); 339 340 free_children(subdb, blkid, nblks, free_indirects, tx); 341 dbuf_rele(subdb, FTAG); 342 } 343 } 344 345 if (free_indirects) { 346 rw_enter(&db->db_rwlock, RW_WRITER); 347 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) 348 ASSERT(BP_IS_HOLE(bp)); 349 bzero(db->db.db_data, db->db.db_size); 350 free_blocks(dn, db->db_blkptr, 1, tx); 351 rw_exit(&db->db_rwlock); 352 } 353 354 DB_DNODE_EXIT(db); 355 arc_buf_freeze(db->db_buf); 356 } 357 358 /* 359 * Traverse the indicated range of the provided file 360 * and "free" all the blocks contained there. 361 */ 362 static void 363 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks, 364 boolean_t free_indirects, dmu_tx_t *tx) 365 { 366 blkptr_t *bp = dn->dn_phys->dn_blkptr; 367 int dnlevel = dn->dn_phys->dn_nlevels; 368 boolean_t trunc = B_FALSE; 369 370 if (blkid > dn->dn_phys->dn_maxblkid) 371 return; 372 373 ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX); 374 if (blkid + nblks > dn->dn_phys->dn_maxblkid) { 375 nblks = dn->dn_phys->dn_maxblkid - blkid + 1; 376 trunc = B_TRUE; 377 } 378 379 /* There are no indirect blocks in the object */ 380 if (dnlevel == 1) { 381 if (blkid >= dn->dn_phys->dn_nblkptr) { 382 /* this range was never made persistent */ 383 return; 384 } 385 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr); 386 free_blocks(dn, bp + blkid, nblks, tx); 387 } else { 388 int shift = (dnlevel - 1) * 389 (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT); 390 int start = blkid >> shift; 391 int end = (blkid + nblks - 1) >> shift; 392 dmu_buf_impl_t *db; 393 394 ASSERT(start < dn->dn_phys->dn_nblkptr); 395 bp += start; 396 for (int i = start; i <= end; i++, bp++) { 397 if (BP_IS_HOLE(bp)) 398 continue; 399 rw_enter(&dn->dn_struct_rwlock, RW_READER); 400 VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i, 401 TRUE, FALSE, FTAG, &db)); 402 rw_exit(&dn->dn_struct_rwlock); 403 free_children(db, blkid, nblks, free_indirects, tx); 404 dbuf_rele(db, FTAG); 405 } 406 } 407 408 /* 409 * Do not truncate the maxblkid if we are performing a raw 410 * receive. The raw receive sets the maxblkid manually and 411 * must not be overridden. Usually, the last DRR_FREE record 412 * will be at the maxblkid, because the source system sets 413 * the maxblkid when truncating. However, if the last block 414 * was freed by overwriting with zeros and being compressed 415 * away to a hole, the source system will generate a DRR_FREE 416 * record while leaving the maxblkid after the end of that 417 * record. In this case we need to leave the maxblkid as 418 * indicated in the DRR_OBJECT record, so that it matches the 419 * source system, ensuring that the cryptographic hashes will 420 * match. 421 */ 422 if (trunc && !dn->dn_objset->os_raw_receive) { 423 uint64_t off __maybe_unused; 424 dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1; 425 426 off = (dn->dn_phys->dn_maxblkid + 1) * 427 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT); 428 ASSERT(off < dn->dn_phys->dn_maxblkid || 429 dn->dn_phys->dn_maxblkid == 0 || 430 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0); 431 } 432 } 433 434 typedef struct dnode_sync_free_range_arg { 435 dnode_t *dsfra_dnode; 436 dmu_tx_t *dsfra_tx; 437 boolean_t dsfra_free_indirects; 438 } dnode_sync_free_range_arg_t; 439 440 static void 441 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks) 442 { 443 dnode_sync_free_range_arg_t *dsfra = arg; 444 dnode_t *dn = dsfra->dsfra_dnode; 445 446 mutex_exit(&dn->dn_mtx); 447 dnode_sync_free_range_impl(dn, blkid, nblks, 448 dsfra->dsfra_free_indirects, dsfra->dsfra_tx); 449 mutex_enter(&dn->dn_mtx); 450 } 451 452 /* 453 * Try to kick all the dnode's dbufs out of the cache... 454 */ 455 void 456 dnode_evict_dbufs(dnode_t *dn) 457 { 458 dmu_buf_impl_t *db_marker; 459 dmu_buf_impl_t *db, *db_next; 460 461 db_marker = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 462 463 mutex_enter(&dn->dn_dbufs_mtx); 464 for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) { 465 466 #ifdef ZFS_DEBUG 467 DB_DNODE_ENTER(db); 468 ASSERT3P(DB_DNODE(db), ==, dn); 469 DB_DNODE_EXIT(db); 470 #endif /* DEBUG */ 471 472 mutex_enter(&db->db_mtx); 473 if (db->db_state != DB_EVICTING && 474 zfs_refcount_is_zero(&db->db_holds)) { 475 db_marker->db_level = db->db_level; 476 db_marker->db_blkid = db->db_blkid; 477 db_marker->db_state = DB_SEARCH; 478 avl_insert_here(&dn->dn_dbufs, db_marker, db, 479 AVL_BEFORE); 480 481 /* 482 * We need to use the "marker" dbuf rather than 483 * simply getting the next dbuf, because 484 * dbuf_destroy() may actually remove multiple dbufs. 485 * It can call itself recursively on the parent dbuf, 486 * which may also be removed from dn_dbufs. The code 487 * flow would look like: 488 * 489 * dbuf_destroy(): 490 * dnode_rele_and_unlock(parent_dbuf, evicting=TRUE): 491 * if (!cacheable || pending_evict) 492 * dbuf_destroy() 493 */ 494 dbuf_destroy(db); 495 496 db_next = AVL_NEXT(&dn->dn_dbufs, db_marker); 497 avl_remove(&dn->dn_dbufs, db_marker); 498 } else { 499 db->db_pending_evict = TRUE; 500 mutex_exit(&db->db_mtx); 501 db_next = AVL_NEXT(&dn->dn_dbufs, db); 502 } 503 } 504 mutex_exit(&dn->dn_dbufs_mtx); 505 506 kmem_free(db_marker, sizeof (dmu_buf_impl_t)); 507 508 dnode_evict_bonus(dn); 509 } 510 511 void 512 dnode_evict_bonus(dnode_t *dn) 513 { 514 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 515 if (dn->dn_bonus != NULL) { 516 if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) { 517 mutex_enter(&dn->dn_bonus->db_mtx); 518 dbuf_destroy(dn->dn_bonus); 519 dn->dn_bonus = NULL; 520 } else { 521 dn->dn_bonus->db_pending_evict = TRUE; 522 } 523 } 524 rw_exit(&dn->dn_struct_rwlock); 525 } 526 527 static void 528 dnode_undirty_dbufs(list_t *list) 529 { 530 dbuf_dirty_record_t *dr; 531 532 while ((dr = list_head(list))) { 533 dmu_buf_impl_t *db = dr->dr_dbuf; 534 uint64_t txg = dr->dr_txg; 535 536 if (db->db_level != 0) 537 dnode_undirty_dbufs(&dr->dt.di.dr_children); 538 539 mutex_enter(&db->db_mtx); 540 /* XXX - use dbuf_undirty()? */ 541 list_remove(list, dr); 542 ASSERT(list_head(&db->db_dirty_records) == dr); 543 list_remove_head(&db->db_dirty_records); 544 ASSERT(list_is_empty(&db->db_dirty_records)); 545 db->db_dirtycnt -= 1; 546 if (db->db_level == 0) { 547 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 548 dr->dt.dl.dr_data == db->db_buf); 549 dbuf_unoverride(dr); 550 } else { 551 mutex_destroy(&dr->dt.di.dr_mtx); 552 list_destroy(&dr->dt.di.dr_children); 553 } 554 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 555 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE); 556 } 557 } 558 559 static void 560 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx) 561 { 562 int txgoff = tx->tx_txg & TXG_MASK; 563 564 ASSERT(dmu_tx_is_syncing(tx)); 565 566 /* 567 * Our contents should have been freed in dnode_sync() by the 568 * free range record inserted by the caller of dnode_free(). 569 */ 570 ASSERT0(DN_USED_BYTES(dn->dn_phys)); 571 ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr)); 572 573 dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]); 574 dnode_evict_dbufs(dn); 575 576 /* 577 * XXX - It would be nice to assert this, but we may still 578 * have residual holds from async evictions from the arc... 579 * 580 * zfs_obj_to_path() also depends on this being 581 * commented out. 582 * 583 * ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1); 584 */ 585 586 /* Undirty next bits */ 587 dn->dn_next_nlevels[txgoff] = 0; 588 dn->dn_next_indblkshift[txgoff] = 0; 589 dn->dn_next_blksz[txgoff] = 0; 590 dn->dn_next_maxblkid[txgoff] = 0; 591 592 /* ASSERT(blkptrs are zero); */ 593 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); 594 ASSERT(dn->dn_type != DMU_OT_NONE); 595 596 ASSERT(dn->dn_free_txg > 0); 597 if (dn->dn_allocated_txg != dn->dn_free_txg) 598 dmu_buf_will_dirty(&dn->dn_dbuf->db, tx); 599 bzero(dn->dn_phys, sizeof (dnode_phys_t) * dn->dn_num_slots); 600 dnode_free_interior_slots(dn); 601 602 mutex_enter(&dn->dn_mtx); 603 dn->dn_type = DMU_OT_NONE; 604 dn->dn_maxblkid = 0; 605 dn->dn_allocated_txg = 0; 606 dn->dn_free_txg = 0; 607 dn->dn_have_spill = B_FALSE; 608 dn->dn_num_slots = 1; 609 mutex_exit(&dn->dn_mtx); 610 611 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 612 613 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); 614 /* 615 * Now that we've released our hold, the dnode may 616 * be evicted, so we mustn't access it. 617 */ 618 } 619 620 /* 621 * Write out the dnode's dirty buffers. 622 */ 623 void 624 dnode_sync(dnode_t *dn, dmu_tx_t *tx) 625 { 626 objset_t *os = dn->dn_objset; 627 dnode_phys_t *dnp = dn->dn_phys; 628 int txgoff = tx->tx_txg & TXG_MASK; 629 list_t *list = &dn->dn_dirty_records[txgoff]; 630 static const dnode_phys_t zerodn __maybe_unused = { 0 }; 631 boolean_t kill_spill = B_FALSE; 632 633 ASSERT(dmu_tx_is_syncing(tx)); 634 ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg); 635 ASSERT(dnp->dn_type != DMU_OT_NONE || 636 bcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0); 637 DNODE_VERIFY(dn); 638 639 ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf)); 640 641 /* 642 * Do user accounting if it is enabled and this is not 643 * an encrypted receive. 644 */ 645 if (dmu_objset_userused_enabled(os) && 646 !DMU_OBJECT_IS_SPECIAL(dn->dn_object) && 647 (!os->os_encrypted || !dmu_objset_is_receiving(os))) { 648 mutex_enter(&dn->dn_mtx); 649 dn->dn_oldused = DN_USED_BYTES(dn->dn_phys); 650 dn->dn_oldflags = dn->dn_phys->dn_flags; 651 dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED; 652 if (dmu_objset_userobjused_enabled(dn->dn_objset)) 653 dn->dn_phys->dn_flags |= 654 DNODE_FLAG_USEROBJUSED_ACCOUNTED; 655 mutex_exit(&dn->dn_mtx); 656 dmu_objset_userquota_get_ids(dn, B_FALSE, tx); 657 } else { 658 /* Once we account for it, we should always account for it */ 659 ASSERT(!(dn->dn_phys->dn_flags & 660 DNODE_FLAG_USERUSED_ACCOUNTED)); 661 ASSERT(!(dn->dn_phys->dn_flags & 662 DNODE_FLAG_USEROBJUSED_ACCOUNTED)); 663 } 664 665 mutex_enter(&dn->dn_mtx); 666 if (dn->dn_allocated_txg == tx->tx_txg) { 667 /* The dnode is newly allocated or reallocated */ 668 if (dnp->dn_type == DMU_OT_NONE) { 669 /* this is a first alloc, not a realloc */ 670 dnp->dn_nlevels = 1; 671 dnp->dn_nblkptr = dn->dn_nblkptr; 672 } 673 674 dnp->dn_type = dn->dn_type; 675 dnp->dn_bonustype = dn->dn_bonustype; 676 dnp->dn_bonuslen = dn->dn_bonuslen; 677 } 678 679 dnp->dn_extra_slots = dn->dn_num_slots - 1; 680 681 ASSERT(dnp->dn_nlevels > 1 || 682 BP_IS_HOLE(&dnp->dn_blkptr[0]) || 683 BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) || 684 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 685 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 686 ASSERT(dnp->dn_nlevels < 2 || 687 BP_IS_HOLE(&dnp->dn_blkptr[0]) || 688 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift); 689 690 if (dn->dn_next_type[txgoff] != 0) { 691 dnp->dn_type = dn->dn_type; 692 dn->dn_next_type[txgoff] = 0; 693 } 694 695 if (dn->dn_next_blksz[txgoff] != 0) { 696 ASSERT(P2PHASE(dn->dn_next_blksz[txgoff], 697 SPA_MINBLOCKSIZE) == 0); 698 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) || 699 dn->dn_maxblkid == 0 || list_head(list) != NULL || 700 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT == 701 dnp->dn_datablkszsec || 702 !range_tree_is_empty(dn->dn_free_ranges[txgoff])); 703 dnp->dn_datablkszsec = 704 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT; 705 dn->dn_next_blksz[txgoff] = 0; 706 } 707 708 if (dn->dn_next_bonuslen[txgoff] != 0) { 709 if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN) 710 dnp->dn_bonuslen = 0; 711 else 712 dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff]; 713 ASSERT(dnp->dn_bonuslen <= 714 DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1)); 715 dn->dn_next_bonuslen[txgoff] = 0; 716 } 717 718 if (dn->dn_next_bonustype[txgoff] != 0) { 719 ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff])); 720 dnp->dn_bonustype = dn->dn_next_bonustype[txgoff]; 721 dn->dn_next_bonustype[txgoff] = 0; 722 } 723 724 boolean_t freeing_dnode = dn->dn_free_txg > 0 && 725 dn->dn_free_txg <= tx->tx_txg; 726 727 /* 728 * Remove the spill block if we have been explicitly asked to 729 * remove it, or if the object is being removed. 730 */ 731 if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) { 732 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 733 kill_spill = B_TRUE; 734 dn->dn_rm_spillblk[txgoff] = 0; 735 } 736 737 if (dn->dn_next_indblkshift[txgoff] != 0) { 738 ASSERT(dnp->dn_nlevels == 1); 739 dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff]; 740 dn->dn_next_indblkshift[txgoff] = 0; 741 } 742 743 /* 744 * Just take the live (open-context) values for checksum and compress. 745 * Strictly speaking it's a future leak, but nothing bad happens if we 746 * start using the new checksum or compress algorithm a little early. 747 */ 748 dnp->dn_checksum = dn->dn_checksum; 749 dnp->dn_compress = dn->dn_compress; 750 751 mutex_exit(&dn->dn_mtx); 752 753 if (kill_spill) { 754 free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx); 755 mutex_enter(&dn->dn_mtx); 756 dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR; 757 mutex_exit(&dn->dn_mtx); 758 } 759 760 /* process all the "freed" ranges in the file */ 761 if (dn->dn_free_ranges[txgoff] != NULL) { 762 dnode_sync_free_range_arg_t dsfra; 763 dsfra.dsfra_dnode = dn; 764 dsfra.dsfra_tx = tx; 765 dsfra.dsfra_free_indirects = freeing_dnode; 766 mutex_enter(&dn->dn_mtx); 767 if (freeing_dnode) { 768 ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff], 769 0, dn->dn_maxblkid + 1)); 770 } 771 /* 772 * Because dnode_sync_free_range() must drop dn_mtx during its 773 * processing, using it as a callback to range_tree_vacate() is 774 * not safe. No other operations (besides destroy) are allowed 775 * once range_tree_vacate() has begun, and dropping dn_mtx 776 * would leave a window open for another thread to observe that 777 * invalid (and unsafe) state. 778 */ 779 range_tree_walk(dn->dn_free_ranges[txgoff], 780 dnode_sync_free_range, &dsfra); 781 range_tree_vacate(dn->dn_free_ranges[txgoff], NULL, NULL); 782 range_tree_destroy(dn->dn_free_ranges[txgoff]); 783 dn->dn_free_ranges[txgoff] = NULL; 784 mutex_exit(&dn->dn_mtx); 785 } 786 787 if (freeing_dnode) { 788 dn->dn_objset->os_freed_dnodes++; 789 dnode_sync_free(dn, tx); 790 return; 791 } 792 793 if (dn->dn_num_slots > DNODE_MIN_SLOTS) { 794 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 795 mutex_enter(&ds->ds_lock); 796 ds->ds_feature_activation[SPA_FEATURE_LARGE_DNODE] = 797 (void *)B_TRUE; 798 mutex_exit(&ds->ds_lock); 799 } 800 801 if (dn->dn_next_nlevels[txgoff]) { 802 dnode_increase_indirection(dn, tx); 803 dn->dn_next_nlevels[txgoff] = 0; 804 } 805 806 /* 807 * This must be done after dnode_sync_free_range() 808 * and dnode_increase_indirection(). See dnode_new_blkid() 809 * for an explanation of the high bit being set. 810 */ 811 if (dn->dn_next_maxblkid[txgoff]) { 812 mutex_enter(&dn->dn_mtx); 813 dnp->dn_maxblkid = 814 dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET; 815 dn->dn_next_maxblkid[txgoff] = 0; 816 mutex_exit(&dn->dn_mtx); 817 } 818 819 if (dn->dn_next_nblkptr[txgoff]) { 820 /* this should only happen on a realloc */ 821 ASSERT(dn->dn_allocated_txg == tx->tx_txg); 822 if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) { 823 /* zero the new blkptrs we are gaining */ 824 bzero(dnp->dn_blkptr + dnp->dn_nblkptr, 825 sizeof (blkptr_t) * 826 (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr)); 827 #ifdef ZFS_DEBUG 828 } else { 829 int i; 830 ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr); 831 /* the blkptrs we are losing better be unallocated */ 832 for (i = 0; i < dnp->dn_nblkptr; i++) { 833 if (i >= dn->dn_next_nblkptr[txgoff]) 834 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i])); 835 } 836 #endif 837 } 838 mutex_enter(&dn->dn_mtx); 839 dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff]; 840 dn->dn_next_nblkptr[txgoff] = 0; 841 mutex_exit(&dn->dn_mtx); 842 } 843 844 dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx); 845 846 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 847 ASSERT3P(list_head(list), ==, NULL); 848 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); 849 } 850 851 /* 852 * Although we have dropped our reference to the dnode, it 853 * can't be evicted until its written, and we haven't yet 854 * initiated the IO for the dnode's dbuf. Additionally, the caller 855 * has already added a reference to the dnode because it's on the 856 * os_synced_dnodes list. 857 */ 858 } 859