1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2020 Oxide Computer Company 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/dbuf.h> 32 #include <sys/dnode.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_recv.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/spa.h> 39 #include <sys/range_tree.h> 40 #include <sys/zfeature.h> 41 42 static void 43 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx) 44 { 45 dmu_buf_impl_t *db; 46 int txgoff = tx->tx_txg & TXG_MASK; 47 int nblkptr = dn->dn_phys->dn_nblkptr; 48 int old_toplvl = dn->dn_phys->dn_nlevels - 1; 49 int new_level = dn->dn_next_nlevels[txgoff]; 50 int i; 51 52 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 53 54 /* this dnode can't be paged out because it's dirty */ 55 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); 56 ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0); 57 58 db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG); 59 ASSERT(db != NULL); 60 61 dn->dn_phys->dn_nlevels = new_level; 62 dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset, 63 (u_longlong_t)dn->dn_object, dn->dn_phys->dn_nlevels); 64 65 /* 66 * Lock ordering requires that we hold the children's db_mutexes (by 67 * calling dbuf_find()) before holding the parent's db_rwlock. The lock 68 * order is imposed by dbuf_read's steps of "grab the lock to protect 69 * db_parent, get db_parent, hold db_parent's db_rwlock". 70 */ 71 dmu_buf_impl_t *children[DN_MAX_NBLKPTR]; 72 ASSERT3U(nblkptr, <=, DN_MAX_NBLKPTR); 73 for (i = 0; i < nblkptr; i++) { 74 children[i] = dbuf_find(dn->dn_objset, dn->dn_object, 75 old_toplvl, i, NULL); 76 } 77 78 /* transfer dnode's block pointers to new indirect block */ 79 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT); 80 if (dn->dn_dbuf != NULL) 81 rw_enter(&dn->dn_dbuf->db_rwlock, RW_WRITER); 82 rw_enter(&db->db_rwlock, RW_WRITER); 83 ASSERT(db->db.db_data); 84 ASSERT(arc_released(db->db_buf)); 85 ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size); 86 memcpy(db->db.db_data, dn->dn_phys->dn_blkptr, 87 sizeof (blkptr_t) * nblkptr); 88 arc_buf_freeze(db->db_buf); 89 90 /* set dbuf's parent pointers to new indirect buf */ 91 for (i = 0; i < nblkptr; i++) { 92 dmu_buf_impl_t *child = children[i]; 93 94 if (child == NULL) 95 continue; 96 #ifdef ZFS_DEBUG 97 DB_DNODE_ENTER(child); 98 ASSERT3P(DB_DNODE(child), ==, dn); 99 DB_DNODE_EXIT(child); 100 #endif /* DEBUG */ 101 if (child->db_parent && child->db_parent != dn->dn_dbuf) { 102 ASSERT(child->db_parent->db_level == db->db_level); 103 ASSERT(child->db_blkptr != 104 &dn->dn_phys->dn_blkptr[child->db_blkid]); 105 mutex_exit(&child->db_mtx); 106 continue; 107 } 108 ASSERT(child->db_parent == NULL || 109 child->db_parent == dn->dn_dbuf); 110 111 child->db_parent = db; 112 dbuf_add_ref(db, child); 113 if (db->db.db_data) 114 child->db_blkptr = (blkptr_t *)db->db.db_data + i; 115 else 116 child->db_blkptr = NULL; 117 dprintf_dbuf_bp(child, child->db_blkptr, 118 "changed db_blkptr to new indirect %s", ""); 119 120 mutex_exit(&child->db_mtx); 121 } 122 123 memset(dn->dn_phys->dn_blkptr, 0, sizeof (blkptr_t) * nblkptr); 124 125 rw_exit(&db->db_rwlock); 126 if (dn->dn_dbuf != NULL) 127 rw_exit(&dn->dn_dbuf->db_rwlock); 128 129 dbuf_rele(db, FTAG); 130 131 rw_exit(&dn->dn_struct_rwlock); 132 } 133 134 static void 135 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx) 136 { 137 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 138 uint64_t bytesfreed = 0; 139 140 dprintf("ds=%p obj=%llx num=%d\n", ds, (u_longlong_t)dn->dn_object, 141 num); 142 143 for (int i = 0; i < num; i++, bp++) { 144 if (BP_IS_HOLE(bp)) 145 continue; 146 147 bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE); 148 ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys)); 149 150 /* 151 * Save some useful information on the holes being 152 * punched, including logical size, type, and indirection 153 * level. Retaining birth time enables detection of when 154 * holes are punched for reducing the number of free 155 * records transmitted during a zfs send. 156 */ 157 158 uint64_t lsize = BP_GET_LSIZE(bp); 159 dmu_object_type_t type = BP_GET_TYPE(bp); 160 uint64_t lvl = BP_GET_LEVEL(bp); 161 162 memset(bp, 0, sizeof (blkptr_t)); 163 164 if (spa_feature_is_active(dn->dn_objset->os_spa, 165 SPA_FEATURE_HOLE_BIRTH)) { 166 BP_SET_LSIZE(bp, lsize); 167 BP_SET_TYPE(bp, type); 168 BP_SET_LEVEL(bp, lvl); 169 BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0); 170 } 171 } 172 dnode_diduse_space(dn, -bytesfreed); 173 } 174 175 #ifdef ZFS_DEBUG 176 static void 177 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx) 178 { 179 uint64_t off, num, i, j; 180 unsigned int epbs; 181 int err; 182 uint64_t txg = tx->tx_txg; 183 dnode_t *dn; 184 185 DB_DNODE_ENTER(db); 186 dn = DB_DNODE(db); 187 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 188 off = start - (db->db_blkid << epbs); 189 num = end - start + 1; 190 191 ASSERT3U(dn->dn_phys->dn_indblkshift, >=, SPA_BLKPTRSHIFT); 192 ASSERT3U(end + 1, >=, start); 193 ASSERT3U(start, >=, (db->db_blkid << epbs)); 194 ASSERT3U(db->db_level, >, 0); 195 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 196 ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT); 197 ASSERT(db->db_blkptr != NULL); 198 199 for (i = off; i < off+num; i++) { 200 uint64_t *buf; 201 dmu_buf_impl_t *child; 202 dbuf_dirty_record_t *dr; 203 204 ASSERT(db->db_level == 1); 205 206 rw_enter(&dn->dn_struct_rwlock, RW_READER); 207 err = dbuf_hold_impl(dn, db->db_level - 1, 208 (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child); 209 rw_exit(&dn->dn_struct_rwlock); 210 if (err == ENOENT) 211 continue; 212 ASSERT(err == 0); 213 ASSERT(child->db_level == 0); 214 dr = dbuf_find_dirty_eq(child, txg); 215 216 /* data_old better be zeroed */ 217 if (dr) { 218 buf = dr->dt.dl.dr_data->b_data; 219 for (j = 0; j < child->db.db_size >> 3; j++) { 220 if (buf[j] != 0) { 221 panic("freed data not zero: " 222 "child=%p i=%llu off=%llu " 223 "num=%llu\n", 224 (void *)child, (u_longlong_t)i, 225 (u_longlong_t)off, 226 (u_longlong_t)num); 227 } 228 } 229 } 230 231 /* 232 * db_data better be zeroed unless it's dirty in a 233 * future txg. 234 */ 235 mutex_enter(&child->db_mtx); 236 buf = child->db.db_data; 237 if (buf != NULL && child->db_state != DB_FILL && 238 list_is_empty(&child->db_dirty_records)) { 239 for (j = 0; j < child->db.db_size >> 3; j++) { 240 if (buf[j] != 0) { 241 panic("freed data not zero: " 242 "child=%p i=%llu off=%llu " 243 "num=%llu\n", 244 (void *)child, (u_longlong_t)i, 245 (u_longlong_t)off, 246 (u_longlong_t)num); 247 } 248 } 249 } 250 mutex_exit(&child->db_mtx); 251 252 dbuf_rele(child, FTAG); 253 } 254 DB_DNODE_EXIT(db); 255 } 256 #endif 257 258 /* 259 * We don't usually free the indirect blocks here. If in one txg we have a 260 * free_range and a write to the same indirect block, it's important that we 261 * preserve the hole's birth times. Therefore, we don't free any any indirect 262 * blocks in free_children(). If an indirect block happens to turn into all 263 * holes, it will be freed by dbuf_write_children_ready, which happens at a 264 * point in the syncing process where we know for certain the contents of the 265 * indirect block. 266 * 267 * However, if we're freeing a dnode, its space accounting must go to zero 268 * before we actually try to free the dnode, or we will trip an assertion. In 269 * addition, we know the case described above cannot occur, because the dnode is 270 * being freed. Therefore, we free the indirect blocks immediately in that 271 * case. 272 */ 273 static void 274 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks, 275 boolean_t free_indirects, dmu_tx_t *tx) 276 { 277 dnode_t *dn; 278 blkptr_t *bp; 279 dmu_buf_impl_t *subdb; 280 uint64_t start, end, dbstart, dbend; 281 unsigned int epbs, shift, i; 282 283 /* 284 * There is a small possibility that this block will not be cached: 285 * 1 - if level > 1 and there are no children with level <= 1 286 * 2 - if this block was evicted since we read it from 287 * dmu_tx_hold_free(). 288 */ 289 if (db->db_state != DB_CACHED) 290 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 291 292 /* 293 * If we modify this indirect block, and we are not freeing the 294 * dnode (!free_indirects), then this indirect block needs to get 295 * written to disk by dbuf_write(). If it is dirty, we know it will 296 * be written (otherwise, we would have incorrect on-disk state 297 * because the space would be freed but still referenced by the BP 298 * in this indirect block). Therefore we VERIFY that it is 299 * dirty. 300 * 301 * Our VERIFY covers some cases that do not actually have to be 302 * dirty, but the open-context code happens to dirty. E.g. if the 303 * blocks we are freeing are all holes, because in that case, we 304 * are only freeing part of this indirect block, so it is an 305 * ancestor of the first or last block to be freed. The first and 306 * last L1 indirect blocks are always dirtied by dnode_free_range(). 307 */ 308 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 309 VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0); 310 dmu_buf_unlock_parent(db, dblt, FTAG); 311 312 dbuf_release_bp(db); 313 bp = db->db.db_data; 314 315 DB_DNODE_ENTER(db); 316 dn = DB_DNODE(db); 317 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 318 ASSERT3U(epbs, <, 31); 319 shift = (db->db_level - 1) * epbs; 320 dbstart = db->db_blkid << epbs; 321 start = blkid >> shift; 322 if (dbstart < start) { 323 bp += start - dbstart; 324 } else { 325 start = dbstart; 326 } 327 dbend = ((db->db_blkid + 1) << epbs) - 1; 328 end = (blkid + nblks - 1) >> shift; 329 if (dbend <= end) 330 end = dbend; 331 332 ASSERT3U(start, <=, end); 333 334 if (db->db_level == 1) { 335 FREE_VERIFY(db, start, end, tx); 336 rw_enter(&db->db_rwlock, RW_WRITER); 337 free_blocks(dn, bp, end - start + 1, tx); 338 rw_exit(&db->db_rwlock); 339 } else { 340 for (uint64_t id = start; id <= end; id++, bp++) { 341 if (BP_IS_HOLE(bp)) 342 continue; 343 rw_enter(&dn->dn_struct_rwlock, RW_READER); 344 VERIFY0(dbuf_hold_impl(dn, db->db_level - 1, 345 id, TRUE, FALSE, FTAG, &subdb)); 346 rw_exit(&dn->dn_struct_rwlock); 347 ASSERT3P(bp, ==, subdb->db_blkptr); 348 349 free_children(subdb, blkid, nblks, free_indirects, tx); 350 dbuf_rele(subdb, FTAG); 351 } 352 } 353 354 if (free_indirects) { 355 rw_enter(&db->db_rwlock, RW_WRITER); 356 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) 357 ASSERT(BP_IS_HOLE(bp)); 358 memset(db->db.db_data, 0, db->db.db_size); 359 free_blocks(dn, db->db_blkptr, 1, tx); 360 rw_exit(&db->db_rwlock); 361 } 362 363 DB_DNODE_EXIT(db); 364 arc_buf_freeze(db->db_buf); 365 } 366 367 /* 368 * Traverse the indicated range of the provided file 369 * and "free" all the blocks contained there. 370 */ 371 static void 372 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks, 373 boolean_t free_indirects, dmu_tx_t *tx) 374 { 375 blkptr_t *bp = dn->dn_phys->dn_blkptr; 376 int dnlevel = dn->dn_phys->dn_nlevels; 377 boolean_t trunc = B_FALSE; 378 379 if (blkid > dn->dn_phys->dn_maxblkid) 380 return; 381 382 ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX); 383 if (blkid + nblks > dn->dn_phys->dn_maxblkid) { 384 nblks = dn->dn_phys->dn_maxblkid - blkid + 1; 385 trunc = B_TRUE; 386 } 387 388 /* There are no indirect blocks in the object */ 389 if (dnlevel == 1) { 390 if (blkid >= dn->dn_phys->dn_nblkptr) { 391 /* this range was never made persistent */ 392 return; 393 } 394 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr); 395 free_blocks(dn, bp + blkid, nblks, tx); 396 } else { 397 int shift = (dnlevel - 1) * 398 (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT); 399 int start = blkid >> shift; 400 int end = (blkid + nblks - 1) >> shift; 401 dmu_buf_impl_t *db; 402 403 ASSERT(start < dn->dn_phys->dn_nblkptr); 404 bp += start; 405 for (int i = start; i <= end; i++, bp++) { 406 if (BP_IS_HOLE(bp)) 407 continue; 408 rw_enter(&dn->dn_struct_rwlock, RW_READER); 409 VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i, 410 TRUE, FALSE, FTAG, &db)); 411 rw_exit(&dn->dn_struct_rwlock); 412 free_children(db, blkid, nblks, free_indirects, tx); 413 dbuf_rele(db, FTAG); 414 } 415 } 416 417 /* 418 * Do not truncate the maxblkid if we are performing a raw 419 * receive. The raw receive sets the maxblkid manually and 420 * must not be overridden. Usually, the last DRR_FREE record 421 * will be at the maxblkid, because the source system sets 422 * the maxblkid when truncating. However, if the last block 423 * was freed by overwriting with zeros and being compressed 424 * away to a hole, the source system will generate a DRR_FREE 425 * record while leaving the maxblkid after the end of that 426 * record. In this case we need to leave the maxblkid as 427 * indicated in the DRR_OBJECT record, so that it matches the 428 * source system, ensuring that the cryptographic hashes will 429 * match. 430 */ 431 if (trunc && !dn->dn_objset->os_raw_receive) { 432 uint64_t off __maybe_unused; 433 dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1; 434 435 off = (dn->dn_phys->dn_maxblkid + 1) * 436 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT); 437 ASSERT(off < dn->dn_phys->dn_maxblkid || 438 dn->dn_phys->dn_maxblkid == 0 || 439 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0); 440 } 441 } 442 443 typedef struct dnode_sync_free_range_arg { 444 dnode_t *dsfra_dnode; 445 dmu_tx_t *dsfra_tx; 446 boolean_t dsfra_free_indirects; 447 } dnode_sync_free_range_arg_t; 448 449 static void 450 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks) 451 { 452 dnode_sync_free_range_arg_t *dsfra = arg; 453 dnode_t *dn = dsfra->dsfra_dnode; 454 455 mutex_exit(&dn->dn_mtx); 456 dnode_sync_free_range_impl(dn, blkid, nblks, 457 dsfra->dsfra_free_indirects, dsfra->dsfra_tx); 458 mutex_enter(&dn->dn_mtx); 459 } 460 461 /* 462 * Try to kick all the dnode's dbufs out of the cache... 463 */ 464 void 465 dnode_evict_dbufs(dnode_t *dn) 466 { 467 dmu_buf_impl_t *db_marker; 468 dmu_buf_impl_t *db, *db_next; 469 470 db_marker = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 471 472 mutex_enter(&dn->dn_dbufs_mtx); 473 for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) { 474 475 #ifdef ZFS_DEBUG 476 DB_DNODE_ENTER(db); 477 ASSERT3P(DB_DNODE(db), ==, dn); 478 DB_DNODE_EXIT(db); 479 #endif /* DEBUG */ 480 481 mutex_enter(&db->db_mtx); 482 if (db->db_state != DB_EVICTING && 483 zfs_refcount_is_zero(&db->db_holds)) { 484 db_marker->db_level = db->db_level; 485 db_marker->db_blkid = db->db_blkid; 486 /* 487 * Insert a MARKER node with the same level and blkid. 488 * And to resolve any ties in dbuf_compare() use the 489 * pointer of the dbuf that we are evicting. Pass the 490 * address in db_parent. 491 */ 492 db_marker->db_state = DB_MARKER; 493 db_marker->db_parent = (void *)((uintptr_t)db - 1); 494 avl_insert_here(&dn->dn_dbufs, db_marker, db, 495 AVL_BEFORE); 496 497 /* 498 * We need to use the "marker" dbuf rather than 499 * simply getting the next dbuf, because 500 * dbuf_destroy() may actually remove multiple dbufs. 501 * It can call itself recursively on the parent dbuf, 502 * which may also be removed from dn_dbufs. The code 503 * flow would look like: 504 * 505 * dbuf_destroy(): 506 * dnode_rele_and_unlock(parent_dbuf, evicting=TRUE): 507 * if (!cacheable || pending_evict) 508 * dbuf_destroy() 509 */ 510 dbuf_destroy(db); 511 512 db_next = AVL_NEXT(&dn->dn_dbufs, db_marker); 513 avl_remove(&dn->dn_dbufs, db_marker); 514 } else { 515 db->db_pending_evict = TRUE; 516 db->db_partial_read = FALSE; 517 mutex_exit(&db->db_mtx); 518 db_next = AVL_NEXT(&dn->dn_dbufs, db); 519 } 520 } 521 mutex_exit(&dn->dn_dbufs_mtx); 522 523 kmem_free(db_marker, sizeof (dmu_buf_impl_t)); 524 525 dnode_evict_bonus(dn); 526 } 527 528 void 529 dnode_evict_bonus(dnode_t *dn) 530 { 531 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 532 if (dn->dn_bonus != NULL) { 533 if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) { 534 mutex_enter(&dn->dn_bonus->db_mtx); 535 dbuf_destroy(dn->dn_bonus); 536 dn->dn_bonus = NULL; 537 } else { 538 dn->dn_bonus->db_pending_evict = TRUE; 539 } 540 } 541 rw_exit(&dn->dn_struct_rwlock); 542 } 543 544 static void 545 dnode_undirty_dbufs(list_t *list) 546 { 547 dbuf_dirty_record_t *dr; 548 549 while ((dr = list_head(list))) { 550 dmu_buf_impl_t *db = dr->dr_dbuf; 551 uint64_t txg = dr->dr_txg; 552 553 if (db->db_level != 0) 554 dnode_undirty_dbufs(&dr->dt.di.dr_children); 555 556 mutex_enter(&db->db_mtx); 557 /* XXX - use dbuf_undirty()? */ 558 list_remove(list, dr); 559 ASSERT(list_head(&db->db_dirty_records) == dr); 560 list_remove_head(&db->db_dirty_records); 561 ASSERT(list_is_empty(&db->db_dirty_records)); 562 db->db_dirtycnt -= 1; 563 if (db->db_level == 0) { 564 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 565 dr->dt.dl.dr_data == db->db_buf); 566 dbuf_unoverride(dr); 567 } else { 568 mutex_destroy(&dr->dt.di.dr_mtx); 569 list_destroy(&dr->dt.di.dr_children); 570 } 571 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 572 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE); 573 } 574 } 575 576 static void 577 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx) 578 { 579 int txgoff = tx->tx_txg & TXG_MASK; 580 581 ASSERT(dmu_tx_is_syncing(tx)); 582 583 /* 584 * Our contents should have been freed in dnode_sync() by the 585 * free range record inserted by the caller of dnode_free(). 586 */ 587 ASSERT0(DN_USED_BYTES(dn->dn_phys)); 588 ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr)); 589 590 dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]); 591 dnode_evict_dbufs(dn); 592 593 /* 594 * XXX - It would be nice to assert this, but we may still 595 * have residual holds from async evictions from the arc... 596 * 597 * zfs_obj_to_path() also depends on this being 598 * commented out. 599 * 600 * ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1); 601 */ 602 603 /* Undirty next bits */ 604 dn->dn_next_nlevels[txgoff] = 0; 605 dn->dn_next_indblkshift[txgoff] = 0; 606 dn->dn_next_blksz[txgoff] = 0; 607 dn->dn_next_maxblkid[txgoff] = 0; 608 609 /* ASSERT(blkptrs are zero); */ 610 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); 611 ASSERT(dn->dn_type != DMU_OT_NONE); 612 613 ASSERT(dn->dn_free_txg > 0); 614 if (dn->dn_allocated_txg != dn->dn_free_txg) 615 dmu_buf_will_dirty(&dn->dn_dbuf->db, tx); 616 memset(dn->dn_phys, 0, sizeof (dnode_phys_t) * dn->dn_num_slots); 617 dnode_free_interior_slots(dn); 618 619 mutex_enter(&dn->dn_mtx); 620 dn->dn_type = DMU_OT_NONE; 621 dn->dn_maxblkid = 0; 622 dn->dn_allocated_txg = 0; 623 dn->dn_free_txg = 0; 624 dn->dn_have_spill = B_FALSE; 625 dn->dn_num_slots = 1; 626 mutex_exit(&dn->dn_mtx); 627 628 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 629 630 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); 631 /* 632 * Now that we've released our hold, the dnode may 633 * be evicted, so we mustn't access it. 634 */ 635 } 636 637 /* 638 * Write out the dnode's dirty buffers. 639 * Does not wait for zio completions. 640 */ 641 void 642 dnode_sync(dnode_t *dn, dmu_tx_t *tx) 643 { 644 objset_t *os = dn->dn_objset; 645 dnode_phys_t *dnp = dn->dn_phys; 646 int txgoff = tx->tx_txg & TXG_MASK; 647 list_t *list = &dn->dn_dirty_records[txgoff]; 648 static const dnode_phys_t zerodn __maybe_unused = { 0 }; 649 boolean_t kill_spill = B_FALSE; 650 651 ASSERT(dmu_tx_is_syncing(tx)); 652 ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg); 653 ASSERT(dnp->dn_type != DMU_OT_NONE || 654 memcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0); 655 DNODE_VERIFY(dn); 656 657 ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf)); 658 659 /* 660 * Do user accounting if it is enabled and this is not 661 * an encrypted receive. 662 */ 663 if (dmu_objset_userused_enabled(os) && 664 !DMU_OBJECT_IS_SPECIAL(dn->dn_object) && 665 (!os->os_encrypted || !dmu_objset_is_receiving(os))) { 666 mutex_enter(&dn->dn_mtx); 667 dn->dn_oldused = DN_USED_BYTES(dn->dn_phys); 668 dn->dn_oldflags = dn->dn_phys->dn_flags; 669 dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED; 670 if (dmu_objset_userobjused_enabled(dn->dn_objset)) 671 dn->dn_phys->dn_flags |= 672 DNODE_FLAG_USEROBJUSED_ACCOUNTED; 673 mutex_exit(&dn->dn_mtx); 674 dmu_objset_userquota_get_ids(dn, B_FALSE, tx); 675 } else if (!(os->os_encrypted && dmu_objset_is_receiving(os))) { 676 /* 677 * Once we account for it, we should always account for it, 678 * except for the case of a raw receive. We will not be able 679 * to account for it until the receiving dataset has been 680 * mounted. 681 */ 682 ASSERT(!(dn->dn_phys->dn_flags & 683 DNODE_FLAG_USERUSED_ACCOUNTED)); 684 ASSERT(!(dn->dn_phys->dn_flags & 685 DNODE_FLAG_USEROBJUSED_ACCOUNTED)); 686 } 687 688 mutex_enter(&dn->dn_mtx); 689 if (dn->dn_allocated_txg == tx->tx_txg) { 690 /* The dnode is newly allocated or reallocated */ 691 if (dnp->dn_type == DMU_OT_NONE) { 692 /* this is a first alloc, not a realloc */ 693 dnp->dn_nlevels = 1; 694 dnp->dn_nblkptr = dn->dn_nblkptr; 695 } 696 697 dnp->dn_type = dn->dn_type; 698 dnp->dn_bonustype = dn->dn_bonustype; 699 dnp->dn_bonuslen = dn->dn_bonuslen; 700 } 701 702 dnp->dn_extra_slots = dn->dn_num_slots - 1; 703 704 ASSERT(dnp->dn_nlevels > 1 || 705 BP_IS_HOLE(&dnp->dn_blkptr[0]) || 706 BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) || 707 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 708 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 709 ASSERT(dnp->dn_nlevels < 2 || 710 BP_IS_HOLE(&dnp->dn_blkptr[0]) || 711 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift); 712 713 if (dn->dn_next_type[txgoff] != 0) { 714 dnp->dn_type = dn->dn_type; 715 dn->dn_next_type[txgoff] = 0; 716 } 717 718 if (dn->dn_next_blksz[txgoff] != 0) { 719 ASSERT(P2PHASE(dn->dn_next_blksz[txgoff], 720 SPA_MINBLOCKSIZE) == 0); 721 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) || 722 dn->dn_maxblkid == 0 || list_head(list) != NULL || 723 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT == 724 dnp->dn_datablkszsec || 725 !zfs_range_tree_is_empty(dn->dn_free_ranges[txgoff])); 726 dnp->dn_datablkszsec = 727 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT; 728 dn->dn_next_blksz[txgoff] = 0; 729 } 730 731 if (dn->dn_next_bonuslen[txgoff] != 0) { 732 if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN) 733 dnp->dn_bonuslen = 0; 734 else 735 dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff]; 736 ASSERT(dnp->dn_bonuslen <= 737 DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1)); 738 dn->dn_next_bonuslen[txgoff] = 0; 739 } 740 741 if (dn->dn_next_bonustype[txgoff] != 0) { 742 ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff])); 743 dnp->dn_bonustype = dn->dn_next_bonustype[txgoff]; 744 dn->dn_next_bonustype[txgoff] = 0; 745 } 746 747 boolean_t freeing_dnode = dn->dn_free_txg > 0 && 748 dn->dn_free_txg <= tx->tx_txg; 749 750 /* 751 * Remove the spill block if we have been explicitly asked to 752 * remove it, or if the object is being removed. 753 */ 754 if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) { 755 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 756 kill_spill = B_TRUE; 757 dn->dn_rm_spillblk[txgoff] = 0; 758 } 759 760 if (dn->dn_next_indblkshift[txgoff] != 0) { 761 ASSERT(dnp->dn_nlevels == 1); 762 dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff]; 763 dn->dn_next_indblkshift[txgoff] = 0; 764 } 765 766 /* 767 * Just take the live (open-context) values for checksum and compress. 768 * Strictly speaking it's a future leak, but nothing bad happens if we 769 * start using the new checksum or compress algorithm a little early. 770 */ 771 dnp->dn_checksum = dn->dn_checksum; 772 dnp->dn_compress = dn->dn_compress; 773 774 mutex_exit(&dn->dn_mtx); 775 776 if (kill_spill) { 777 free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx); 778 mutex_enter(&dn->dn_mtx); 779 dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR; 780 mutex_exit(&dn->dn_mtx); 781 } 782 783 /* process all the "freed" ranges in the file */ 784 if (dn->dn_free_ranges[txgoff] != NULL) { 785 dnode_sync_free_range_arg_t dsfra; 786 dsfra.dsfra_dnode = dn; 787 dsfra.dsfra_tx = tx; 788 dsfra.dsfra_free_indirects = freeing_dnode; 789 mutex_enter(&dn->dn_mtx); 790 if (freeing_dnode) { 791 ASSERT(zfs_range_tree_contains( 792 dn->dn_free_ranges[txgoff], 0, 793 dn->dn_maxblkid + 1)); 794 } 795 /* 796 * Because dnode_sync_free_range() must drop dn_mtx during its 797 * processing, using it as a callback to zfs_range_tree_vacate() 798 * is not safe. No other operations (besides destroy) are 799 * allowed once zfs_range_tree_vacate() has begun, and dropping 800 * dn_mtx would leave a window open for another thread to 801 * observe that invalid (and unsafe) state. 802 */ 803 zfs_range_tree_walk(dn->dn_free_ranges[txgoff], 804 dnode_sync_free_range, &dsfra); 805 zfs_range_tree_vacate(dn->dn_free_ranges[txgoff], NULL, NULL); 806 zfs_range_tree_destroy(dn->dn_free_ranges[txgoff]); 807 dn->dn_free_ranges[txgoff] = NULL; 808 mutex_exit(&dn->dn_mtx); 809 } 810 811 if (freeing_dnode) { 812 dn->dn_objset->os_freed_dnodes++; 813 dnode_sync_free(dn, tx); 814 return; 815 } 816 817 if (dn->dn_num_slots > DNODE_MIN_SLOTS) { 818 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 819 mutex_enter(&ds->ds_lock); 820 ds->ds_feature_activation[SPA_FEATURE_LARGE_DNODE] = 821 (void *)B_TRUE; 822 mutex_exit(&ds->ds_lock); 823 } 824 825 if (dn->dn_next_nlevels[txgoff]) { 826 dnode_increase_indirection(dn, tx); 827 dn->dn_next_nlevels[txgoff] = 0; 828 } 829 830 /* 831 * This must be done after dnode_sync_free_range() 832 * and dnode_increase_indirection(). See dnode_new_blkid() 833 * for an explanation of the high bit being set. 834 */ 835 if (dn->dn_next_maxblkid[txgoff]) { 836 mutex_enter(&dn->dn_mtx); 837 dnp->dn_maxblkid = 838 dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET; 839 dn->dn_next_maxblkid[txgoff] = 0; 840 mutex_exit(&dn->dn_mtx); 841 } 842 843 if (dn->dn_next_nblkptr[txgoff]) { 844 /* this should only happen on a realloc */ 845 ASSERT(dn->dn_allocated_txg == tx->tx_txg); 846 if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) { 847 /* zero the new blkptrs we are gaining */ 848 memset(dnp->dn_blkptr + dnp->dn_nblkptr, 0, 849 sizeof (blkptr_t) * 850 (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr)); 851 #ifdef ZFS_DEBUG 852 } else { 853 int i; 854 ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr); 855 /* the blkptrs we are losing better be unallocated */ 856 for (i = 0; i < dnp->dn_nblkptr; i++) { 857 if (i >= dn->dn_next_nblkptr[txgoff]) 858 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i])); 859 } 860 #endif 861 } 862 mutex_enter(&dn->dn_mtx); 863 dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff]; 864 dn->dn_next_nblkptr[txgoff] = 0; 865 mutex_exit(&dn->dn_mtx); 866 } 867 868 dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx); 869 870 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 871 ASSERT3P(list_head(list), ==, NULL); 872 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); 873 } 874 875 ASSERT3U(dnp->dn_bonuslen, <=, DN_MAX_BONUS_LEN(dnp)); 876 877 /* 878 * Although we have dropped our reference to the dnode, it 879 * can't be evicted until its written, and we haven't yet 880 * initiated the IO for the dnode's dbuf. Additionally, the caller 881 * has already added a reference to the dnode because it's on the 882 * os_synced_dnodes list. 883 */ 884 } 885