1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2020 Oxide Computer Company 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dbuf.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/dmu_recv.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/spa.h> 38 #include <sys/range_tree.h> 39 #include <sys/zfeature.h> 40 41 static void 42 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx) 43 { 44 dmu_buf_impl_t *db; 45 int txgoff = tx->tx_txg & TXG_MASK; 46 int nblkptr = dn->dn_phys->dn_nblkptr; 47 int old_toplvl = dn->dn_phys->dn_nlevels - 1; 48 int new_level = dn->dn_next_nlevels[txgoff]; 49 int i; 50 51 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 52 53 /* this dnode can't be paged out because it's dirty */ 54 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); 55 ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0); 56 57 db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG); 58 ASSERT(db != NULL); 59 60 dn->dn_phys->dn_nlevels = new_level; 61 dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset, 62 (u_longlong_t)dn->dn_object, dn->dn_phys->dn_nlevels); 63 64 /* 65 * Lock ordering requires that we hold the children's db_mutexes (by 66 * calling dbuf_find()) before holding the parent's db_rwlock. The lock 67 * order is imposed by dbuf_read's steps of "grab the lock to protect 68 * db_parent, get db_parent, hold db_parent's db_rwlock". 69 */ 70 dmu_buf_impl_t *children[DN_MAX_NBLKPTR]; 71 ASSERT3U(nblkptr, <=, DN_MAX_NBLKPTR); 72 for (i = 0; i < nblkptr; i++) { 73 children[i] = dbuf_find(dn->dn_objset, dn->dn_object, 74 old_toplvl, i, NULL); 75 } 76 77 /* transfer dnode's block pointers to new indirect block */ 78 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT); 79 if (dn->dn_dbuf != NULL) 80 rw_enter(&dn->dn_dbuf->db_rwlock, RW_WRITER); 81 rw_enter(&db->db_rwlock, RW_WRITER); 82 ASSERT(db->db.db_data); 83 ASSERT(arc_released(db->db_buf)); 84 ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size); 85 memcpy(db->db.db_data, dn->dn_phys->dn_blkptr, 86 sizeof (blkptr_t) * nblkptr); 87 arc_buf_freeze(db->db_buf); 88 89 /* set dbuf's parent pointers to new indirect buf */ 90 for (i = 0; i < nblkptr; i++) { 91 dmu_buf_impl_t *child = children[i]; 92 93 if (child == NULL) 94 continue; 95 #ifdef ZFS_DEBUG 96 DB_DNODE_ENTER(child); 97 ASSERT3P(DB_DNODE(child), ==, dn); 98 DB_DNODE_EXIT(child); 99 #endif /* DEBUG */ 100 if (child->db_parent && child->db_parent != dn->dn_dbuf) { 101 ASSERT(child->db_parent->db_level == db->db_level); 102 ASSERT(child->db_blkptr != 103 &dn->dn_phys->dn_blkptr[child->db_blkid]); 104 mutex_exit(&child->db_mtx); 105 continue; 106 } 107 ASSERT(child->db_parent == NULL || 108 child->db_parent == dn->dn_dbuf); 109 110 child->db_parent = db; 111 dbuf_add_ref(db, child); 112 if (db->db.db_data) 113 child->db_blkptr = (blkptr_t *)db->db.db_data + i; 114 else 115 child->db_blkptr = NULL; 116 dprintf_dbuf_bp(child, child->db_blkptr, 117 "changed db_blkptr to new indirect %s", ""); 118 119 mutex_exit(&child->db_mtx); 120 } 121 122 memset(dn->dn_phys->dn_blkptr, 0, sizeof (blkptr_t) * nblkptr); 123 124 rw_exit(&db->db_rwlock); 125 if (dn->dn_dbuf != NULL) 126 rw_exit(&dn->dn_dbuf->db_rwlock); 127 128 dbuf_rele(db, FTAG); 129 130 rw_exit(&dn->dn_struct_rwlock); 131 } 132 133 static void 134 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx) 135 { 136 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 137 uint64_t bytesfreed = 0; 138 139 dprintf("ds=%p obj=%llx num=%d\n", ds, (u_longlong_t)dn->dn_object, 140 num); 141 142 for (int i = 0; i < num; i++, bp++) { 143 if (BP_IS_HOLE(bp)) 144 continue; 145 146 bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE); 147 ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys)); 148 149 /* 150 * Save some useful information on the holes being 151 * punched, including logical size, type, and indirection 152 * level. Retaining birth time enables detection of when 153 * holes are punched for reducing the number of free 154 * records transmitted during a zfs send. 155 */ 156 157 uint64_t lsize = BP_GET_LSIZE(bp); 158 dmu_object_type_t type = BP_GET_TYPE(bp); 159 uint64_t lvl = BP_GET_LEVEL(bp); 160 161 memset(bp, 0, sizeof (blkptr_t)); 162 163 if (spa_feature_is_active(dn->dn_objset->os_spa, 164 SPA_FEATURE_HOLE_BIRTH)) { 165 BP_SET_LSIZE(bp, lsize); 166 BP_SET_TYPE(bp, type); 167 BP_SET_LEVEL(bp, lvl); 168 BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0); 169 } 170 } 171 dnode_diduse_space(dn, -bytesfreed); 172 } 173 174 #ifdef ZFS_DEBUG 175 static void 176 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx) 177 { 178 uint64_t off, num, i, j; 179 unsigned int epbs; 180 int err; 181 uint64_t txg = tx->tx_txg; 182 dnode_t *dn; 183 184 DB_DNODE_ENTER(db); 185 dn = DB_DNODE(db); 186 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 187 off = start - (db->db_blkid << epbs); 188 num = end - start + 1; 189 190 ASSERT3U(dn->dn_phys->dn_indblkshift, >=, SPA_BLKPTRSHIFT); 191 ASSERT3U(end + 1, >=, start); 192 ASSERT3U(start, >=, (db->db_blkid << epbs)); 193 ASSERT3U(db->db_level, >, 0); 194 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 195 ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT); 196 ASSERT(db->db_blkptr != NULL); 197 198 for (i = off; i < off+num; i++) { 199 uint64_t *buf; 200 dmu_buf_impl_t *child; 201 dbuf_dirty_record_t *dr; 202 203 ASSERT(db->db_level == 1); 204 205 rw_enter(&dn->dn_struct_rwlock, RW_READER); 206 err = dbuf_hold_impl(dn, db->db_level - 1, 207 (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child); 208 rw_exit(&dn->dn_struct_rwlock); 209 if (err == ENOENT) 210 continue; 211 ASSERT(err == 0); 212 ASSERT(child->db_level == 0); 213 dr = dbuf_find_dirty_eq(child, txg); 214 215 /* data_old better be zeroed */ 216 if (dr) { 217 buf = dr->dt.dl.dr_data->b_data; 218 for (j = 0; j < child->db.db_size >> 3; j++) { 219 if (buf[j] != 0) { 220 panic("freed data not zero: " 221 "child=%p i=%llu off=%llu " 222 "num=%llu\n", 223 (void *)child, (u_longlong_t)i, 224 (u_longlong_t)off, 225 (u_longlong_t)num); 226 } 227 } 228 } 229 230 /* 231 * db_data better be zeroed unless it's dirty in a 232 * future txg. 233 */ 234 mutex_enter(&child->db_mtx); 235 buf = child->db.db_data; 236 if (buf != NULL && child->db_state != DB_FILL && 237 list_is_empty(&child->db_dirty_records)) { 238 for (j = 0; j < child->db.db_size >> 3; j++) { 239 if (buf[j] != 0) { 240 panic("freed data not zero: " 241 "child=%p i=%llu off=%llu " 242 "num=%llu\n", 243 (void *)child, (u_longlong_t)i, 244 (u_longlong_t)off, 245 (u_longlong_t)num); 246 } 247 } 248 } 249 mutex_exit(&child->db_mtx); 250 251 dbuf_rele(child, FTAG); 252 } 253 DB_DNODE_EXIT(db); 254 } 255 #endif 256 257 /* 258 * We don't usually free the indirect blocks here. If in one txg we have a 259 * free_range and a write to the same indirect block, it's important that we 260 * preserve the hole's birth times. Therefore, we don't free any any indirect 261 * blocks in free_children(). If an indirect block happens to turn into all 262 * holes, it will be freed by dbuf_write_children_ready, which happens at a 263 * point in the syncing process where we know for certain the contents of the 264 * indirect block. 265 * 266 * However, if we're freeing a dnode, its space accounting must go to zero 267 * before we actually try to free the dnode, or we will trip an assertion. In 268 * addition, we know the case described above cannot occur, because the dnode is 269 * being freed. Therefore, we free the indirect blocks immediately in that 270 * case. 271 */ 272 static void 273 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks, 274 boolean_t free_indirects, dmu_tx_t *tx) 275 { 276 dnode_t *dn; 277 blkptr_t *bp; 278 dmu_buf_impl_t *subdb; 279 uint64_t start, end, dbstart, dbend; 280 unsigned int epbs, shift, i; 281 282 /* 283 * There is a small possibility that this block will not be cached: 284 * 1 - if level > 1 and there are no children with level <= 1 285 * 2 - if this block was evicted since we read it from 286 * dmu_tx_hold_free(). 287 */ 288 if (db->db_state != DB_CACHED) 289 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 290 291 /* 292 * If we modify this indirect block, and we are not freeing the 293 * dnode (!free_indirects), then this indirect block needs to get 294 * written to disk by dbuf_write(). If it is dirty, we know it will 295 * be written (otherwise, we would have incorrect on-disk state 296 * because the space would be freed but still referenced by the BP 297 * in this indirect block). Therefore we VERIFY that it is 298 * dirty. 299 * 300 * Our VERIFY covers some cases that do not actually have to be 301 * dirty, but the open-context code happens to dirty. E.g. if the 302 * blocks we are freeing are all holes, because in that case, we 303 * are only freeing part of this indirect block, so it is an 304 * ancestor of the first or last block to be freed. The first and 305 * last L1 indirect blocks are always dirtied by dnode_free_range(). 306 */ 307 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 308 VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0); 309 dmu_buf_unlock_parent(db, dblt, FTAG); 310 311 dbuf_release_bp(db); 312 bp = db->db.db_data; 313 314 DB_DNODE_ENTER(db); 315 dn = DB_DNODE(db); 316 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 317 ASSERT3U(epbs, <, 31); 318 shift = (db->db_level - 1) * epbs; 319 dbstart = db->db_blkid << epbs; 320 start = blkid >> shift; 321 if (dbstart < start) { 322 bp += start - dbstart; 323 } else { 324 start = dbstart; 325 } 326 dbend = ((db->db_blkid + 1) << epbs) - 1; 327 end = (blkid + nblks - 1) >> shift; 328 if (dbend <= end) 329 end = dbend; 330 331 ASSERT3U(start, <=, end); 332 333 if (db->db_level == 1) { 334 FREE_VERIFY(db, start, end, tx); 335 rw_enter(&db->db_rwlock, RW_WRITER); 336 free_blocks(dn, bp, end - start + 1, tx); 337 rw_exit(&db->db_rwlock); 338 } else { 339 for (uint64_t id = start; id <= end; id++, bp++) { 340 if (BP_IS_HOLE(bp)) 341 continue; 342 rw_enter(&dn->dn_struct_rwlock, RW_READER); 343 VERIFY0(dbuf_hold_impl(dn, db->db_level - 1, 344 id, TRUE, FALSE, FTAG, &subdb)); 345 rw_exit(&dn->dn_struct_rwlock); 346 ASSERT3P(bp, ==, subdb->db_blkptr); 347 348 free_children(subdb, blkid, nblks, free_indirects, tx); 349 dbuf_rele(subdb, FTAG); 350 } 351 } 352 353 if (free_indirects) { 354 rw_enter(&db->db_rwlock, RW_WRITER); 355 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) 356 ASSERT(BP_IS_HOLE(bp)); 357 memset(db->db.db_data, 0, db->db.db_size); 358 free_blocks(dn, db->db_blkptr, 1, tx); 359 rw_exit(&db->db_rwlock); 360 } 361 362 DB_DNODE_EXIT(db); 363 arc_buf_freeze(db->db_buf); 364 } 365 366 /* 367 * Traverse the indicated range of the provided file 368 * and "free" all the blocks contained there. 369 */ 370 static void 371 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks, 372 boolean_t free_indirects, dmu_tx_t *tx) 373 { 374 blkptr_t *bp = dn->dn_phys->dn_blkptr; 375 int dnlevel = dn->dn_phys->dn_nlevels; 376 boolean_t trunc = B_FALSE; 377 378 if (blkid > dn->dn_phys->dn_maxblkid) 379 return; 380 381 ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX); 382 if (blkid + nblks > dn->dn_phys->dn_maxblkid) { 383 nblks = dn->dn_phys->dn_maxblkid - blkid + 1; 384 trunc = B_TRUE; 385 } 386 387 /* There are no indirect blocks in the object */ 388 if (dnlevel == 1) { 389 if (blkid >= dn->dn_phys->dn_nblkptr) { 390 /* this range was never made persistent */ 391 return; 392 } 393 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr); 394 free_blocks(dn, bp + blkid, nblks, tx); 395 } else { 396 int shift = (dnlevel - 1) * 397 (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT); 398 int start = blkid >> shift; 399 int end = (blkid + nblks - 1) >> shift; 400 dmu_buf_impl_t *db; 401 402 ASSERT(start < dn->dn_phys->dn_nblkptr); 403 bp += start; 404 for (int i = start; i <= end; i++, bp++) { 405 if (BP_IS_HOLE(bp)) 406 continue; 407 rw_enter(&dn->dn_struct_rwlock, RW_READER); 408 VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i, 409 TRUE, FALSE, FTAG, &db)); 410 rw_exit(&dn->dn_struct_rwlock); 411 free_children(db, blkid, nblks, free_indirects, tx); 412 dbuf_rele(db, FTAG); 413 } 414 } 415 416 /* 417 * Do not truncate the maxblkid if we are performing a raw 418 * receive. The raw receive sets the maxblkid manually and 419 * must not be overridden. Usually, the last DRR_FREE record 420 * will be at the maxblkid, because the source system sets 421 * the maxblkid when truncating. However, if the last block 422 * was freed by overwriting with zeros and being compressed 423 * away to a hole, the source system will generate a DRR_FREE 424 * record while leaving the maxblkid after the end of that 425 * record. In this case we need to leave the maxblkid as 426 * indicated in the DRR_OBJECT record, so that it matches the 427 * source system, ensuring that the cryptographic hashes will 428 * match. 429 */ 430 if (trunc && !dn->dn_objset->os_raw_receive) { 431 uint64_t off __maybe_unused; 432 dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1; 433 434 off = (dn->dn_phys->dn_maxblkid + 1) * 435 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT); 436 ASSERT(off < dn->dn_phys->dn_maxblkid || 437 dn->dn_phys->dn_maxblkid == 0 || 438 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0); 439 } 440 } 441 442 typedef struct dnode_sync_free_range_arg { 443 dnode_t *dsfra_dnode; 444 dmu_tx_t *dsfra_tx; 445 boolean_t dsfra_free_indirects; 446 } dnode_sync_free_range_arg_t; 447 448 static void 449 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks) 450 { 451 dnode_sync_free_range_arg_t *dsfra = arg; 452 dnode_t *dn = dsfra->dsfra_dnode; 453 454 mutex_exit(&dn->dn_mtx); 455 dnode_sync_free_range_impl(dn, blkid, nblks, 456 dsfra->dsfra_free_indirects, dsfra->dsfra_tx); 457 mutex_enter(&dn->dn_mtx); 458 } 459 460 /* 461 * Try to kick all the dnode's dbufs out of the cache... 462 */ 463 void 464 dnode_evict_dbufs(dnode_t *dn) 465 { 466 dmu_buf_impl_t *db_marker; 467 dmu_buf_impl_t *db, *db_next; 468 469 db_marker = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 470 471 mutex_enter(&dn->dn_dbufs_mtx); 472 for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) { 473 474 #ifdef ZFS_DEBUG 475 DB_DNODE_ENTER(db); 476 ASSERT3P(DB_DNODE(db), ==, dn); 477 DB_DNODE_EXIT(db); 478 #endif /* DEBUG */ 479 480 mutex_enter(&db->db_mtx); 481 if (db->db_state != DB_EVICTING && 482 zfs_refcount_is_zero(&db->db_holds)) { 483 db_marker->db_level = db->db_level; 484 db_marker->db_blkid = db->db_blkid; 485 /* 486 * Insert a MARKER node with the same level and blkid. 487 * And to resolve any ties in dbuf_compare() use the 488 * pointer of the dbuf that we are evicting. Pass the 489 * address in db_parent. 490 */ 491 db_marker->db_state = DB_MARKER; 492 db_marker->db_parent = (void *)((uintptr_t)db - 1); 493 avl_insert_here(&dn->dn_dbufs, db_marker, db, 494 AVL_BEFORE); 495 496 /* 497 * We need to use the "marker" dbuf rather than 498 * simply getting the next dbuf, because 499 * dbuf_destroy() may actually remove multiple dbufs. 500 * It can call itself recursively on the parent dbuf, 501 * which may also be removed from dn_dbufs. The code 502 * flow would look like: 503 * 504 * dbuf_destroy(): 505 * dnode_rele_and_unlock(parent_dbuf, evicting=TRUE): 506 * if (!cacheable || pending_evict) 507 * dbuf_destroy() 508 */ 509 dbuf_destroy(db); 510 511 db_next = AVL_NEXT(&dn->dn_dbufs, db_marker); 512 avl_remove(&dn->dn_dbufs, db_marker); 513 } else { 514 db->db_pending_evict = TRUE; 515 mutex_exit(&db->db_mtx); 516 db_next = AVL_NEXT(&dn->dn_dbufs, db); 517 } 518 } 519 mutex_exit(&dn->dn_dbufs_mtx); 520 521 kmem_free(db_marker, sizeof (dmu_buf_impl_t)); 522 523 dnode_evict_bonus(dn); 524 } 525 526 void 527 dnode_evict_bonus(dnode_t *dn) 528 { 529 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 530 if (dn->dn_bonus != NULL) { 531 if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) { 532 mutex_enter(&dn->dn_bonus->db_mtx); 533 dbuf_destroy(dn->dn_bonus); 534 dn->dn_bonus = NULL; 535 } else { 536 dn->dn_bonus->db_pending_evict = TRUE; 537 } 538 } 539 rw_exit(&dn->dn_struct_rwlock); 540 } 541 542 static void 543 dnode_undirty_dbufs(list_t *list) 544 { 545 dbuf_dirty_record_t *dr; 546 547 while ((dr = list_head(list))) { 548 dmu_buf_impl_t *db = dr->dr_dbuf; 549 uint64_t txg = dr->dr_txg; 550 551 if (db->db_level != 0) 552 dnode_undirty_dbufs(&dr->dt.di.dr_children); 553 554 mutex_enter(&db->db_mtx); 555 /* XXX - use dbuf_undirty()? */ 556 list_remove(list, dr); 557 ASSERT(list_head(&db->db_dirty_records) == dr); 558 list_remove_head(&db->db_dirty_records); 559 ASSERT(list_is_empty(&db->db_dirty_records)); 560 db->db_dirtycnt -= 1; 561 if (db->db_level == 0) { 562 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 563 dr->dt.dl.dr_data == db->db_buf); 564 dbuf_unoverride(dr); 565 } else { 566 mutex_destroy(&dr->dt.di.dr_mtx); 567 list_destroy(&dr->dt.di.dr_children); 568 } 569 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 570 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE); 571 } 572 } 573 574 static void 575 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx) 576 { 577 int txgoff = tx->tx_txg & TXG_MASK; 578 579 ASSERT(dmu_tx_is_syncing(tx)); 580 581 /* 582 * Our contents should have been freed in dnode_sync() by the 583 * free range record inserted by the caller of dnode_free(). 584 */ 585 ASSERT0(DN_USED_BYTES(dn->dn_phys)); 586 ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr)); 587 588 dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]); 589 dnode_evict_dbufs(dn); 590 591 /* 592 * XXX - It would be nice to assert this, but we may still 593 * have residual holds from async evictions from the arc... 594 * 595 * zfs_obj_to_path() also depends on this being 596 * commented out. 597 * 598 * ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1); 599 */ 600 601 /* Undirty next bits */ 602 dn->dn_next_nlevels[txgoff] = 0; 603 dn->dn_next_indblkshift[txgoff] = 0; 604 dn->dn_next_blksz[txgoff] = 0; 605 dn->dn_next_maxblkid[txgoff] = 0; 606 607 /* ASSERT(blkptrs are zero); */ 608 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); 609 ASSERT(dn->dn_type != DMU_OT_NONE); 610 611 ASSERT(dn->dn_free_txg > 0); 612 if (dn->dn_allocated_txg != dn->dn_free_txg) 613 dmu_buf_will_dirty(&dn->dn_dbuf->db, tx); 614 memset(dn->dn_phys, 0, sizeof (dnode_phys_t) * dn->dn_num_slots); 615 dnode_free_interior_slots(dn); 616 617 mutex_enter(&dn->dn_mtx); 618 dn->dn_type = DMU_OT_NONE; 619 dn->dn_maxblkid = 0; 620 dn->dn_allocated_txg = 0; 621 dn->dn_free_txg = 0; 622 dn->dn_have_spill = B_FALSE; 623 dn->dn_num_slots = 1; 624 mutex_exit(&dn->dn_mtx); 625 626 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 627 628 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); 629 /* 630 * Now that we've released our hold, the dnode may 631 * be evicted, so we mustn't access it. 632 */ 633 } 634 635 /* 636 * Write out the dnode's dirty buffers. 637 * Does not wait for zio completions. 638 */ 639 void 640 dnode_sync(dnode_t *dn, dmu_tx_t *tx) 641 { 642 objset_t *os = dn->dn_objset; 643 dnode_phys_t *dnp = dn->dn_phys; 644 int txgoff = tx->tx_txg & TXG_MASK; 645 list_t *list = &dn->dn_dirty_records[txgoff]; 646 static const dnode_phys_t zerodn __maybe_unused = { 0 }; 647 boolean_t kill_spill = B_FALSE; 648 649 ASSERT(dmu_tx_is_syncing(tx)); 650 ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg); 651 ASSERT(dnp->dn_type != DMU_OT_NONE || 652 memcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0); 653 DNODE_VERIFY(dn); 654 655 ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf)); 656 657 /* 658 * Do user accounting if it is enabled and this is not 659 * an encrypted receive. 660 */ 661 if (dmu_objset_userused_enabled(os) && 662 !DMU_OBJECT_IS_SPECIAL(dn->dn_object) && 663 (!os->os_encrypted || !dmu_objset_is_receiving(os))) { 664 mutex_enter(&dn->dn_mtx); 665 dn->dn_oldused = DN_USED_BYTES(dn->dn_phys); 666 dn->dn_oldflags = dn->dn_phys->dn_flags; 667 dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED; 668 if (dmu_objset_userobjused_enabled(dn->dn_objset)) 669 dn->dn_phys->dn_flags |= 670 DNODE_FLAG_USEROBJUSED_ACCOUNTED; 671 mutex_exit(&dn->dn_mtx); 672 dmu_objset_userquota_get_ids(dn, B_FALSE, tx); 673 } else if (!(os->os_encrypted && dmu_objset_is_receiving(os))) { 674 /* 675 * Once we account for it, we should always account for it, 676 * except for the case of a raw receive. We will not be able 677 * to account for it until the receiving dataset has been 678 * mounted. 679 */ 680 ASSERT(!(dn->dn_phys->dn_flags & 681 DNODE_FLAG_USERUSED_ACCOUNTED)); 682 ASSERT(!(dn->dn_phys->dn_flags & 683 DNODE_FLAG_USEROBJUSED_ACCOUNTED)); 684 } 685 686 mutex_enter(&dn->dn_mtx); 687 if (dn->dn_allocated_txg == tx->tx_txg) { 688 /* The dnode is newly allocated or reallocated */ 689 if (dnp->dn_type == DMU_OT_NONE) { 690 /* this is a first alloc, not a realloc */ 691 dnp->dn_nlevels = 1; 692 dnp->dn_nblkptr = dn->dn_nblkptr; 693 } 694 695 dnp->dn_type = dn->dn_type; 696 dnp->dn_bonustype = dn->dn_bonustype; 697 dnp->dn_bonuslen = dn->dn_bonuslen; 698 } 699 700 dnp->dn_extra_slots = dn->dn_num_slots - 1; 701 702 ASSERT(dnp->dn_nlevels > 1 || 703 BP_IS_HOLE(&dnp->dn_blkptr[0]) || 704 BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) || 705 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 706 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 707 ASSERT(dnp->dn_nlevels < 2 || 708 BP_IS_HOLE(&dnp->dn_blkptr[0]) || 709 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift); 710 711 if (dn->dn_next_type[txgoff] != 0) { 712 dnp->dn_type = dn->dn_type; 713 dn->dn_next_type[txgoff] = 0; 714 } 715 716 if (dn->dn_next_blksz[txgoff] != 0) { 717 ASSERT(P2PHASE(dn->dn_next_blksz[txgoff], 718 SPA_MINBLOCKSIZE) == 0); 719 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) || 720 dn->dn_maxblkid == 0 || list_head(list) != NULL || 721 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT == 722 dnp->dn_datablkszsec || 723 !range_tree_is_empty(dn->dn_free_ranges[txgoff])); 724 dnp->dn_datablkszsec = 725 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT; 726 dn->dn_next_blksz[txgoff] = 0; 727 } 728 729 if (dn->dn_next_bonuslen[txgoff] != 0) { 730 if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN) 731 dnp->dn_bonuslen = 0; 732 else 733 dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff]; 734 ASSERT(dnp->dn_bonuslen <= 735 DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1)); 736 dn->dn_next_bonuslen[txgoff] = 0; 737 } 738 739 if (dn->dn_next_bonustype[txgoff] != 0) { 740 ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff])); 741 dnp->dn_bonustype = dn->dn_next_bonustype[txgoff]; 742 dn->dn_next_bonustype[txgoff] = 0; 743 } 744 745 boolean_t freeing_dnode = dn->dn_free_txg > 0 && 746 dn->dn_free_txg <= tx->tx_txg; 747 748 /* 749 * Remove the spill block if we have been explicitly asked to 750 * remove it, or if the object is being removed. 751 */ 752 if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) { 753 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 754 kill_spill = B_TRUE; 755 dn->dn_rm_spillblk[txgoff] = 0; 756 } 757 758 if (dn->dn_next_indblkshift[txgoff] != 0) { 759 ASSERT(dnp->dn_nlevels == 1); 760 dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff]; 761 dn->dn_next_indblkshift[txgoff] = 0; 762 } 763 764 /* 765 * Just take the live (open-context) values for checksum and compress. 766 * Strictly speaking it's a future leak, but nothing bad happens if we 767 * start using the new checksum or compress algorithm a little early. 768 */ 769 dnp->dn_checksum = dn->dn_checksum; 770 dnp->dn_compress = dn->dn_compress; 771 772 mutex_exit(&dn->dn_mtx); 773 774 if (kill_spill) { 775 free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx); 776 mutex_enter(&dn->dn_mtx); 777 dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR; 778 mutex_exit(&dn->dn_mtx); 779 } 780 781 /* process all the "freed" ranges in the file */ 782 if (dn->dn_free_ranges[txgoff] != NULL) { 783 dnode_sync_free_range_arg_t dsfra; 784 dsfra.dsfra_dnode = dn; 785 dsfra.dsfra_tx = tx; 786 dsfra.dsfra_free_indirects = freeing_dnode; 787 mutex_enter(&dn->dn_mtx); 788 if (freeing_dnode) { 789 ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff], 790 0, dn->dn_maxblkid + 1)); 791 } 792 /* 793 * Because dnode_sync_free_range() must drop dn_mtx during its 794 * processing, using it as a callback to range_tree_vacate() is 795 * not safe. No other operations (besides destroy) are allowed 796 * once range_tree_vacate() has begun, and dropping dn_mtx 797 * would leave a window open for another thread to observe that 798 * invalid (and unsafe) state. 799 */ 800 range_tree_walk(dn->dn_free_ranges[txgoff], 801 dnode_sync_free_range, &dsfra); 802 range_tree_vacate(dn->dn_free_ranges[txgoff], NULL, NULL); 803 range_tree_destroy(dn->dn_free_ranges[txgoff]); 804 dn->dn_free_ranges[txgoff] = NULL; 805 mutex_exit(&dn->dn_mtx); 806 } 807 808 if (freeing_dnode) { 809 dn->dn_objset->os_freed_dnodes++; 810 dnode_sync_free(dn, tx); 811 return; 812 } 813 814 if (dn->dn_num_slots > DNODE_MIN_SLOTS) { 815 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 816 mutex_enter(&ds->ds_lock); 817 ds->ds_feature_activation[SPA_FEATURE_LARGE_DNODE] = 818 (void *)B_TRUE; 819 mutex_exit(&ds->ds_lock); 820 } 821 822 if (dn->dn_next_nlevels[txgoff]) { 823 dnode_increase_indirection(dn, tx); 824 dn->dn_next_nlevels[txgoff] = 0; 825 } 826 827 /* 828 * This must be done after dnode_sync_free_range() 829 * and dnode_increase_indirection(). See dnode_new_blkid() 830 * for an explanation of the high bit being set. 831 */ 832 if (dn->dn_next_maxblkid[txgoff]) { 833 mutex_enter(&dn->dn_mtx); 834 dnp->dn_maxblkid = 835 dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET; 836 dn->dn_next_maxblkid[txgoff] = 0; 837 mutex_exit(&dn->dn_mtx); 838 } 839 840 if (dn->dn_next_nblkptr[txgoff]) { 841 /* this should only happen on a realloc */ 842 ASSERT(dn->dn_allocated_txg == tx->tx_txg); 843 if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) { 844 /* zero the new blkptrs we are gaining */ 845 memset(dnp->dn_blkptr + dnp->dn_nblkptr, 0, 846 sizeof (blkptr_t) * 847 (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr)); 848 #ifdef ZFS_DEBUG 849 } else { 850 int i; 851 ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr); 852 /* the blkptrs we are losing better be unallocated */ 853 for (i = 0; i < dnp->dn_nblkptr; i++) { 854 if (i >= dn->dn_next_nblkptr[txgoff]) 855 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i])); 856 } 857 #endif 858 } 859 mutex_enter(&dn->dn_mtx); 860 dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff]; 861 dn->dn_next_nblkptr[txgoff] = 0; 862 mutex_exit(&dn->dn_mtx); 863 } 864 865 dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx); 866 867 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 868 ASSERT3P(list_head(list), ==, NULL); 869 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); 870 } 871 872 ASSERT3U(dnp->dn_bonuslen, <=, DN_MAX_BONUS_LEN(dnp)); 873 874 /* 875 * Although we have dropped our reference to the dnode, it 876 * can't be evicted until its written, and we haven't yet 877 * initiated the IO for the dnode's dbuf. Additionally, the caller 878 * has already added a reference to the dnode because it's on the 879 * os_synced_dnodes list. 880 */ 881 } 882