1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/dbuf.h> 29 #include <sys/dnode.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_impl.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dmu_objset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/spa.h> 37 #include <sys/zio.h> 38 #include <sys/dmu_zfetch.h> 39 #include <sys/range_tree.h> 40 #include <sys/trace_zfs.h> 41 #include <sys/zfs_project.h> 42 43 dnode_stats_t dnode_stats = { 44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, 45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, 46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, 47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, 48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, 49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, 50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, 51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, 52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, 53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, 54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, 55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, 56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, 57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, 58 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, 59 { "dnode_allocate", KSTAT_DATA_UINT64 }, 60 { "dnode_reallocate", KSTAT_DATA_UINT64 }, 61 { "dnode_buf_evict", KSTAT_DATA_UINT64 }, 62 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, 63 { "dnode_alloc_race", KSTAT_DATA_UINT64 }, 64 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, 65 { "dnode_move_invalid", KSTAT_DATA_UINT64 }, 66 { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, 67 { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, 68 { "dnode_move_special", KSTAT_DATA_UINT64 }, 69 { "dnode_move_handle", KSTAT_DATA_UINT64 }, 70 { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, 71 { "dnode_move_active", KSTAT_DATA_UINT64 }, 72 }; 73 74 dnode_sums_t dnode_sums; 75 76 static kstat_t *dnode_ksp; 77 static kmem_cache_t *dnode_cache; 78 79 static dnode_phys_t dnode_phys_zero __maybe_unused; 80 81 int zfs_default_bs = SPA_MINBLOCKSHIFT; 82 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 83 84 #ifdef _KERNEL 85 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 86 #endif /* _KERNEL */ 87 88 static int 89 dbuf_compare(const void *x1, const void *x2) 90 { 91 const dmu_buf_impl_t *d1 = x1; 92 const dmu_buf_impl_t *d2 = x2; 93 94 int cmp = TREE_CMP(d1->db_level, d2->db_level); 95 if (likely(cmp)) 96 return (cmp); 97 98 cmp = TREE_CMP(d1->db_blkid, d2->db_blkid); 99 if (likely(cmp)) 100 return (cmp); 101 102 if (d1->db_state == DB_MARKER) { 103 ASSERT3S(d2->db_state, !=, DB_MARKER); 104 return (TREE_PCMP(d1->db_parent, d2)); 105 } else if (d2->db_state == DB_MARKER) { 106 ASSERT3S(d1->db_state, !=, DB_MARKER); 107 return (TREE_PCMP(d1, d2->db_parent)); 108 } 109 110 if (d1->db_state == DB_SEARCH) { 111 ASSERT3S(d2->db_state, !=, DB_SEARCH); 112 return (-1); 113 } else if (d2->db_state == DB_SEARCH) { 114 ASSERT3S(d1->db_state, !=, DB_SEARCH); 115 return (1); 116 } 117 118 return (TREE_PCMP(d1, d2)); 119 } 120 121 static int 122 dnode_cons(void *arg, void *unused, int kmflag) 123 { 124 (void) unused, (void) kmflag; 125 dnode_t *dn = arg; 126 127 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL); 128 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 129 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 130 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 131 cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL); 132 133 /* 134 * Every dbuf has a reference, and dropping a tracked reference is 135 * O(number of references), so don't track dn_holds. 136 */ 137 zfs_refcount_create_untracked(&dn->dn_holds); 138 zfs_refcount_create(&dn->dn_tx_holds); 139 list_link_init(&dn->dn_link); 140 141 memset(dn->dn_next_type, 0, sizeof (dn->dn_next_type)); 142 memset(dn->dn_next_nblkptr, 0, sizeof (dn->dn_next_nblkptr)); 143 memset(dn->dn_next_nlevels, 0, sizeof (dn->dn_next_nlevels)); 144 memset(dn->dn_next_indblkshift, 0, sizeof (dn->dn_next_indblkshift)); 145 memset(dn->dn_next_bonustype, 0, sizeof (dn->dn_next_bonustype)); 146 memset(dn->dn_rm_spillblk, 0, sizeof (dn->dn_rm_spillblk)); 147 memset(dn->dn_next_bonuslen, 0, sizeof (dn->dn_next_bonuslen)); 148 memset(dn->dn_next_blksz, 0, sizeof (dn->dn_next_blksz)); 149 memset(dn->dn_next_maxblkid, 0, sizeof (dn->dn_next_maxblkid)); 150 151 for (int i = 0; i < TXG_SIZE; i++) { 152 multilist_link_init(&dn->dn_dirty_link[i]); 153 dn->dn_free_ranges[i] = NULL; 154 list_create(&dn->dn_dirty_records[i], 155 sizeof (dbuf_dirty_record_t), 156 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 157 } 158 159 dn->dn_allocated_txg = 0; 160 dn->dn_free_txg = 0; 161 dn->dn_assigned_txg = 0; 162 dn->dn_dirty_txg = 0; 163 dn->dn_dirtyctx = 0; 164 dn->dn_dirtyctx_firstset = NULL; 165 dn->dn_bonus = NULL; 166 dn->dn_have_spill = B_FALSE; 167 dn->dn_zio = NULL; 168 dn->dn_oldused = 0; 169 dn->dn_oldflags = 0; 170 dn->dn_olduid = 0; 171 dn->dn_oldgid = 0; 172 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 173 dn->dn_newuid = 0; 174 dn->dn_newgid = 0; 175 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 176 dn->dn_id_flags = 0; 177 178 dn->dn_dbufs_count = 0; 179 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 180 offsetof(dmu_buf_impl_t, db_link)); 181 182 dn->dn_moved = 0; 183 return (0); 184 } 185 186 static void 187 dnode_dest(void *arg, void *unused) 188 { 189 (void) unused; 190 dnode_t *dn = arg; 191 192 rw_destroy(&dn->dn_struct_rwlock); 193 mutex_destroy(&dn->dn_mtx); 194 mutex_destroy(&dn->dn_dbufs_mtx); 195 cv_destroy(&dn->dn_notxholds); 196 cv_destroy(&dn->dn_nodnholds); 197 zfs_refcount_destroy(&dn->dn_holds); 198 zfs_refcount_destroy(&dn->dn_tx_holds); 199 ASSERT(!list_link_active(&dn->dn_link)); 200 201 for (int i = 0; i < TXG_SIZE; i++) { 202 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 203 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 204 list_destroy(&dn->dn_dirty_records[i]); 205 ASSERT0(dn->dn_next_nblkptr[i]); 206 ASSERT0(dn->dn_next_nlevels[i]); 207 ASSERT0(dn->dn_next_indblkshift[i]); 208 ASSERT0(dn->dn_next_bonustype[i]); 209 ASSERT0(dn->dn_rm_spillblk[i]); 210 ASSERT0(dn->dn_next_bonuslen[i]); 211 ASSERT0(dn->dn_next_blksz[i]); 212 ASSERT0(dn->dn_next_maxblkid[i]); 213 } 214 215 ASSERT0(dn->dn_allocated_txg); 216 ASSERT0(dn->dn_free_txg); 217 ASSERT0(dn->dn_assigned_txg); 218 ASSERT0(dn->dn_dirty_txg); 219 ASSERT0(dn->dn_dirtyctx); 220 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 221 ASSERT3P(dn->dn_bonus, ==, NULL); 222 ASSERT(!dn->dn_have_spill); 223 ASSERT3P(dn->dn_zio, ==, NULL); 224 ASSERT0(dn->dn_oldused); 225 ASSERT0(dn->dn_oldflags); 226 ASSERT0(dn->dn_olduid); 227 ASSERT0(dn->dn_oldgid); 228 ASSERT0(dn->dn_oldprojid); 229 ASSERT0(dn->dn_newuid); 230 ASSERT0(dn->dn_newgid); 231 ASSERT0(dn->dn_newprojid); 232 ASSERT0(dn->dn_id_flags); 233 234 ASSERT0(dn->dn_dbufs_count); 235 avl_destroy(&dn->dn_dbufs); 236 } 237 238 static int 239 dnode_kstats_update(kstat_t *ksp, int rw) 240 { 241 dnode_stats_t *ds = ksp->ks_data; 242 243 if (rw == KSTAT_WRITE) 244 return (EACCES); 245 ds->dnode_hold_dbuf_hold.value.ui64 = 246 wmsum_value(&dnode_sums.dnode_hold_dbuf_hold); 247 ds->dnode_hold_dbuf_read.value.ui64 = 248 wmsum_value(&dnode_sums.dnode_hold_dbuf_read); 249 ds->dnode_hold_alloc_hits.value.ui64 = 250 wmsum_value(&dnode_sums.dnode_hold_alloc_hits); 251 ds->dnode_hold_alloc_misses.value.ui64 = 252 wmsum_value(&dnode_sums.dnode_hold_alloc_misses); 253 ds->dnode_hold_alloc_interior.value.ui64 = 254 wmsum_value(&dnode_sums.dnode_hold_alloc_interior); 255 ds->dnode_hold_alloc_lock_retry.value.ui64 = 256 wmsum_value(&dnode_sums.dnode_hold_alloc_lock_retry); 257 ds->dnode_hold_alloc_lock_misses.value.ui64 = 258 wmsum_value(&dnode_sums.dnode_hold_alloc_lock_misses); 259 ds->dnode_hold_alloc_type_none.value.ui64 = 260 wmsum_value(&dnode_sums.dnode_hold_alloc_type_none); 261 ds->dnode_hold_free_hits.value.ui64 = 262 wmsum_value(&dnode_sums.dnode_hold_free_hits); 263 ds->dnode_hold_free_misses.value.ui64 = 264 wmsum_value(&dnode_sums.dnode_hold_free_misses); 265 ds->dnode_hold_free_lock_misses.value.ui64 = 266 wmsum_value(&dnode_sums.dnode_hold_free_lock_misses); 267 ds->dnode_hold_free_lock_retry.value.ui64 = 268 wmsum_value(&dnode_sums.dnode_hold_free_lock_retry); 269 ds->dnode_hold_free_refcount.value.ui64 = 270 wmsum_value(&dnode_sums.dnode_hold_free_refcount); 271 ds->dnode_hold_free_overflow.value.ui64 = 272 wmsum_value(&dnode_sums.dnode_hold_free_overflow); 273 ds->dnode_free_interior_lock_retry.value.ui64 = 274 wmsum_value(&dnode_sums.dnode_free_interior_lock_retry); 275 ds->dnode_allocate.value.ui64 = 276 wmsum_value(&dnode_sums.dnode_allocate); 277 ds->dnode_reallocate.value.ui64 = 278 wmsum_value(&dnode_sums.dnode_reallocate); 279 ds->dnode_buf_evict.value.ui64 = 280 wmsum_value(&dnode_sums.dnode_buf_evict); 281 ds->dnode_alloc_next_chunk.value.ui64 = 282 wmsum_value(&dnode_sums.dnode_alloc_next_chunk); 283 ds->dnode_alloc_race.value.ui64 = 284 wmsum_value(&dnode_sums.dnode_alloc_race); 285 ds->dnode_alloc_next_block.value.ui64 = 286 wmsum_value(&dnode_sums.dnode_alloc_next_block); 287 ds->dnode_move_invalid.value.ui64 = 288 wmsum_value(&dnode_sums.dnode_move_invalid); 289 ds->dnode_move_recheck1.value.ui64 = 290 wmsum_value(&dnode_sums.dnode_move_recheck1); 291 ds->dnode_move_recheck2.value.ui64 = 292 wmsum_value(&dnode_sums.dnode_move_recheck2); 293 ds->dnode_move_special.value.ui64 = 294 wmsum_value(&dnode_sums.dnode_move_special); 295 ds->dnode_move_handle.value.ui64 = 296 wmsum_value(&dnode_sums.dnode_move_handle); 297 ds->dnode_move_rwlock.value.ui64 = 298 wmsum_value(&dnode_sums.dnode_move_rwlock); 299 ds->dnode_move_active.value.ui64 = 300 wmsum_value(&dnode_sums.dnode_move_active); 301 return (0); 302 } 303 304 void 305 dnode_init(void) 306 { 307 ASSERT(dnode_cache == NULL); 308 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t), 309 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 310 kmem_cache_set_move(dnode_cache, dnode_move); 311 312 wmsum_init(&dnode_sums.dnode_hold_dbuf_hold, 0); 313 wmsum_init(&dnode_sums.dnode_hold_dbuf_read, 0); 314 wmsum_init(&dnode_sums.dnode_hold_alloc_hits, 0); 315 wmsum_init(&dnode_sums.dnode_hold_alloc_misses, 0); 316 wmsum_init(&dnode_sums.dnode_hold_alloc_interior, 0); 317 wmsum_init(&dnode_sums.dnode_hold_alloc_lock_retry, 0); 318 wmsum_init(&dnode_sums.dnode_hold_alloc_lock_misses, 0); 319 wmsum_init(&dnode_sums.dnode_hold_alloc_type_none, 0); 320 wmsum_init(&dnode_sums.dnode_hold_free_hits, 0); 321 wmsum_init(&dnode_sums.dnode_hold_free_misses, 0); 322 wmsum_init(&dnode_sums.dnode_hold_free_lock_misses, 0); 323 wmsum_init(&dnode_sums.dnode_hold_free_lock_retry, 0); 324 wmsum_init(&dnode_sums.dnode_hold_free_refcount, 0); 325 wmsum_init(&dnode_sums.dnode_hold_free_overflow, 0); 326 wmsum_init(&dnode_sums.dnode_free_interior_lock_retry, 0); 327 wmsum_init(&dnode_sums.dnode_allocate, 0); 328 wmsum_init(&dnode_sums.dnode_reallocate, 0); 329 wmsum_init(&dnode_sums.dnode_buf_evict, 0); 330 wmsum_init(&dnode_sums.dnode_alloc_next_chunk, 0); 331 wmsum_init(&dnode_sums.dnode_alloc_race, 0); 332 wmsum_init(&dnode_sums.dnode_alloc_next_block, 0); 333 wmsum_init(&dnode_sums.dnode_move_invalid, 0); 334 wmsum_init(&dnode_sums.dnode_move_recheck1, 0); 335 wmsum_init(&dnode_sums.dnode_move_recheck2, 0); 336 wmsum_init(&dnode_sums.dnode_move_special, 0); 337 wmsum_init(&dnode_sums.dnode_move_handle, 0); 338 wmsum_init(&dnode_sums.dnode_move_rwlock, 0); 339 wmsum_init(&dnode_sums.dnode_move_active, 0); 340 341 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", 342 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), 343 KSTAT_FLAG_VIRTUAL); 344 if (dnode_ksp != NULL) { 345 dnode_ksp->ks_data = &dnode_stats; 346 dnode_ksp->ks_update = dnode_kstats_update; 347 kstat_install(dnode_ksp); 348 } 349 } 350 351 void 352 dnode_fini(void) 353 { 354 if (dnode_ksp != NULL) { 355 kstat_delete(dnode_ksp); 356 dnode_ksp = NULL; 357 } 358 359 wmsum_fini(&dnode_sums.dnode_hold_dbuf_hold); 360 wmsum_fini(&dnode_sums.dnode_hold_dbuf_read); 361 wmsum_fini(&dnode_sums.dnode_hold_alloc_hits); 362 wmsum_fini(&dnode_sums.dnode_hold_alloc_misses); 363 wmsum_fini(&dnode_sums.dnode_hold_alloc_interior); 364 wmsum_fini(&dnode_sums.dnode_hold_alloc_lock_retry); 365 wmsum_fini(&dnode_sums.dnode_hold_alloc_lock_misses); 366 wmsum_fini(&dnode_sums.dnode_hold_alloc_type_none); 367 wmsum_fini(&dnode_sums.dnode_hold_free_hits); 368 wmsum_fini(&dnode_sums.dnode_hold_free_misses); 369 wmsum_fini(&dnode_sums.dnode_hold_free_lock_misses); 370 wmsum_fini(&dnode_sums.dnode_hold_free_lock_retry); 371 wmsum_fini(&dnode_sums.dnode_hold_free_refcount); 372 wmsum_fini(&dnode_sums.dnode_hold_free_overflow); 373 wmsum_fini(&dnode_sums.dnode_free_interior_lock_retry); 374 wmsum_fini(&dnode_sums.dnode_allocate); 375 wmsum_fini(&dnode_sums.dnode_reallocate); 376 wmsum_fini(&dnode_sums.dnode_buf_evict); 377 wmsum_fini(&dnode_sums.dnode_alloc_next_chunk); 378 wmsum_fini(&dnode_sums.dnode_alloc_race); 379 wmsum_fini(&dnode_sums.dnode_alloc_next_block); 380 wmsum_fini(&dnode_sums.dnode_move_invalid); 381 wmsum_fini(&dnode_sums.dnode_move_recheck1); 382 wmsum_fini(&dnode_sums.dnode_move_recheck2); 383 wmsum_fini(&dnode_sums.dnode_move_special); 384 wmsum_fini(&dnode_sums.dnode_move_handle); 385 wmsum_fini(&dnode_sums.dnode_move_rwlock); 386 wmsum_fini(&dnode_sums.dnode_move_active); 387 388 kmem_cache_destroy(dnode_cache); 389 dnode_cache = NULL; 390 } 391 392 393 #ifdef ZFS_DEBUG 394 void 395 dnode_verify(dnode_t *dn) 396 { 397 int drop_struct_lock = FALSE; 398 399 ASSERT(dn->dn_phys); 400 ASSERT(dn->dn_objset); 401 ASSERT(dn->dn_handle->dnh_dnode == dn); 402 403 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 404 405 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 406 return; 407 408 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 409 rw_enter(&dn->dn_struct_rwlock, RW_READER); 410 drop_struct_lock = TRUE; 411 } 412 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 413 int i; 414 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 415 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 416 if (dn->dn_datablkshift) { 417 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 418 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 419 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 420 } 421 ASSERT3U(dn->dn_nlevels, <=, 30); 422 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 423 ASSERT3U(dn->dn_nblkptr, >=, 1); 424 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 425 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); 426 ASSERT3U(dn->dn_datablksz, ==, 427 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 428 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 429 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 430 dn->dn_bonuslen, <=, max_bonuslen); 431 for (i = 0; i < TXG_SIZE; i++) { 432 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 433 } 434 } 435 if (dn->dn_phys->dn_type != DMU_OT_NONE) 436 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 437 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 438 if (dn->dn_dbuf != NULL) { 439 ASSERT3P(dn->dn_phys, ==, 440 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 441 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 442 } 443 if (drop_struct_lock) 444 rw_exit(&dn->dn_struct_rwlock); 445 } 446 #endif 447 448 void 449 dnode_byteswap(dnode_phys_t *dnp) 450 { 451 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 452 int i; 453 454 if (dnp->dn_type == DMU_OT_NONE) { 455 memset(dnp, 0, sizeof (dnode_phys_t)); 456 return; 457 } 458 459 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 460 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 461 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); 462 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 463 dnp->dn_used = BSWAP_64(dnp->dn_used); 464 465 /* 466 * dn_nblkptr is only one byte, so it's OK to read it in either 467 * byte order. We can't read dn_bouslen. 468 */ 469 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 470 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 471 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 472 buf64[i] = BSWAP_64(buf64[i]); 473 474 /* 475 * OK to check dn_bonuslen for zero, because it won't matter if 476 * we have the wrong byte order. This is necessary because the 477 * dnode dnode is smaller than a regular dnode. 478 */ 479 if (dnp->dn_bonuslen != 0) { 480 dmu_object_byteswap_t byteswap; 481 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 482 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype); 483 dmu_ot_byteswap[byteswap].ob_func(DN_BONUS(dnp), 484 DN_MAX_BONUS_LEN(dnp)); 485 } 486 487 /* Swap SPILL block if we have one */ 488 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 489 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); 490 } 491 492 void 493 dnode_buf_byteswap(void *vbuf, size_t size) 494 { 495 int i = 0; 496 497 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 498 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 499 500 while (i < size) { 501 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); 502 dnode_byteswap(dnp); 503 504 i += DNODE_MIN_SIZE; 505 if (dnp->dn_type != DMU_OT_NONE) 506 i += dnp->dn_extra_slots * DNODE_MIN_SIZE; 507 } 508 } 509 510 void 511 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 512 { 513 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 514 515 dnode_setdirty(dn, tx); 516 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 517 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 518 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 519 520 if (newsize < dn->dn_bonuslen) { 521 /* clear any data after the end of the new size */ 522 size_t diff = dn->dn_bonuslen - newsize; 523 char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize; 524 memset(data_end, 0, diff); 525 } 526 527 dn->dn_bonuslen = newsize; 528 if (newsize == 0) 529 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 530 else 531 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 532 rw_exit(&dn->dn_struct_rwlock); 533 } 534 535 void 536 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 537 { 538 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 539 dnode_setdirty(dn, tx); 540 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 541 dn->dn_bonustype = newtype; 542 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 543 rw_exit(&dn->dn_struct_rwlock); 544 } 545 546 void 547 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 548 { 549 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 550 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 551 dnode_setdirty(dn, tx); 552 dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK; 553 dn->dn_have_spill = B_FALSE; 554 } 555 556 static void 557 dnode_setdblksz(dnode_t *dn, int size) 558 { 559 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 560 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 561 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 562 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 563 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 564 dn->dn_datablksz = size; 565 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 566 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 567 } 568 569 static dnode_t * 570 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 571 uint64_t object, dnode_handle_t *dnh) 572 { 573 dnode_t *dn; 574 575 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 576 dn->dn_moved = 0; 577 578 /* 579 * Defer setting dn_objset until the dnode is ready to be a candidate 580 * for the dnode_move() callback. 581 */ 582 dn->dn_object = object; 583 dn->dn_dbuf = db; 584 dn->dn_handle = dnh; 585 dn->dn_phys = dnp; 586 587 if (dnp->dn_datablkszsec) { 588 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 589 } else { 590 dn->dn_datablksz = 0; 591 dn->dn_datablkszsec = 0; 592 dn->dn_datablkshift = 0; 593 } 594 dn->dn_indblkshift = dnp->dn_indblkshift; 595 dn->dn_nlevels = dnp->dn_nlevels; 596 dn->dn_type = dnp->dn_type; 597 dn->dn_nblkptr = dnp->dn_nblkptr; 598 dn->dn_checksum = dnp->dn_checksum; 599 dn->dn_compress = dnp->dn_compress; 600 dn->dn_bonustype = dnp->dn_bonustype; 601 dn->dn_bonuslen = dnp->dn_bonuslen; 602 dn->dn_num_slots = dnp->dn_extra_slots + 1; 603 dn->dn_maxblkid = dnp->dn_maxblkid; 604 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 605 dn->dn_id_flags = 0; 606 607 dmu_zfetch_init(&dn->dn_zfetch, dn); 608 609 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 610 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 611 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); 612 613 mutex_enter(&os->os_lock); 614 615 /* 616 * Exclude special dnodes from os_dnodes so an empty os_dnodes 617 * signifies that the special dnodes have no references from 618 * their children (the entries in os_dnodes). This allows 619 * dnode_destroy() to easily determine if the last child has 620 * been removed and then complete eviction of the objset. 621 */ 622 if (!DMU_OBJECT_IS_SPECIAL(object)) 623 list_insert_head(&os->os_dnodes, dn); 624 membar_producer(); 625 626 /* 627 * Everything else must be valid before assigning dn_objset 628 * makes the dnode eligible for dnode_move(). 629 */ 630 dn->dn_objset = os; 631 632 dnh->dnh_dnode = dn; 633 mutex_exit(&os->os_lock); 634 635 arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE); 636 637 return (dn); 638 } 639 640 /* 641 * Caller must be holding the dnode handle, which is released upon return. 642 */ 643 static void 644 dnode_destroy(dnode_t *dn) 645 { 646 objset_t *os = dn->dn_objset; 647 boolean_t complete_os_eviction = B_FALSE; 648 649 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 650 651 mutex_enter(&os->os_lock); 652 POINTER_INVALIDATE(&dn->dn_objset); 653 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 654 list_remove(&os->os_dnodes, dn); 655 complete_os_eviction = 656 list_is_empty(&os->os_dnodes) && 657 list_link_active(&os->os_evicting_node); 658 } 659 mutex_exit(&os->os_lock); 660 661 /* the dnode can no longer move, so we can release the handle */ 662 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) 663 zrl_remove(&dn->dn_handle->dnh_zrlock); 664 665 dn->dn_allocated_txg = 0; 666 dn->dn_free_txg = 0; 667 dn->dn_assigned_txg = 0; 668 dn->dn_dirty_txg = 0; 669 670 dn->dn_dirtyctx = 0; 671 dn->dn_dirtyctx_firstset = NULL; 672 if (dn->dn_bonus != NULL) { 673 mutex_enter(&dn->dn_bonus->db_mtx); 674 dbuf_destroy(dn->dn_bonus); 675 dn->dn_bonus = NULL; 676 } 677 dn->dn_zio = NULL; 678 679 dn->dn_have_spill = B_FALSE; 680 dn->dn_oldused = 0; 681 dn->dn_oldflags = 0; 682 dn->dn_olduid = 0; 683 dn->dn_oldgid = 0; 684 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 685 dn->dn_newuid = 0; 686 dn->dn_newgid = 0; 687 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 688 dn->dn_id_flags = 0; 689 690 dmu_zfetch_fini(&dn->dn_zfetch); 691 kmem_cache_free(dnode_cache, dn); 692 arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE); 693 694 if (complete_os_eviction) 695 dmu_objset_evict_done(os); 696 } 697 698 void 699 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 700 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 701 { 702 int i; 703 704 ASSERT3U(dn_slots, >, 0); 705 ASSERT3U(dn_slots << DNODE_SHIFT, <=, 706 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); 707 ASSERT3U(blocksize, <=, 708 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 709 if (blocksize == 0) 710 blocksize = 1 << zfs_default_bs; 711 else 712 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 713 714 if (ibs == 0) 715 ibs = zfs_default_ibs; 716 717 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 718 719 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n", 720 dn->dn_objset, (u_longlong_t)dn->dn_object, 721 (u_longlong_t)tx->tx_txg, blocksize, ibs, dn_slots); 722 DNODE_STAT_BUMP(dnode_allocate); 723 724 ASSERT(dn->dn_type == DMU_OT_NONE); 725 ASSERT0(memcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t))); 726 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 727 ASSERT(ot != DMU_OT_NONE); 728 ASSERT(DMU_OT_IS_VALID(ot)); 729 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 730 (bonustype == DMU_OT_SA && bonuslen == 0) || 731 (bonustype == DMU_OTN_UINT64_METADATA && bonuslen == 0) || 732 (bonustype != DMU_OT_NONE && bonuslen != 0)); 733 ASSERT(DMU_OT_IS_VALID(bonustype)); 734 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); 735 ASSERT(dn->dn_type == DMU_OT_NONE); 736 ASSERT0(dn->dn_maxblkid); 737 ASSERT0(dn->dn_allocated_txg); 738 ASSERT0(dn->dn_assigned_txg); 739 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 740 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); 741 ASSERT(avl_is_empty(&dn->dn_dbufs)); 742 743 for (i = 0; i < TXG_SIZE; i++) { 744 ASSERT0(dn->dn_next_nblkptr[i]); 745 ASSERT0(dn->dn_next_nlevels[i]); 746 ASSERT0(dn->dn_next_indblkshift[i]); 747 ASSERT0(dn->dn_next_bonuslen[i]); 748 ASSERT0(dn->dn_next_bonustype[i]); 749 ASSERT0(dn->dn_rm_spillblk[i]); 750 ASSERT0(dn->dn_next_blksz[i]); 751 ASSERT0(dn->dn_next_maxblkid[i]); 752 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 753 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 754 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 755 } 756 757 dn->dn_type = ot; 758 dnode_setdblksz(dn, blocksize); 759 dn->dn_indblkshift = ibs; 760 dn->dn_nlevels = 1; 761 dn->dn_num_slots = dn_slots; 762 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 763 dn->dn_nblkptr = 1; 764 else { 765 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 766 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 767 SPA_BLKPTRSHIFT)); 768 } 769 770 dn->dn_bonustype = bonustype; 771 dn->dn_bonuslen = bonuslen; 772 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 773 dn->dn_compress = ZIO_COMPRESS_INHERIT; 774 dn->dn_dirtyctx = 0; 775 776 dn->dn_free_txg = 0; 777 dn->dn_dirtyctx_firstset = NULL; 778 dn->dn_dirty_txg = 0; 779 780 dn->dn_allocated_txg = tx->tx_txg; 781 dn->dn_id_flags = 0; 782 783 dnode_setdirty(dn, tx); 784 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 785 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 786 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 787 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 788 } 789 790 void 791 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 792 dmu_object_type_t bonustype, int bonuslen, int dn_slots, 793 boolean_t keep_spill, dmu_tx_t *tx) 794 { 795 int nblkptr; 796 797 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 798 ASSERT3U(blocksize, <=, 799 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 800 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 801 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 802 ASSERT(tx->tx_txg != 0); 803 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 804 (bonustype != DMU_OT_NONE && bonuslen != 0) || 805 (bonustype == DMU_OT_SA && bonuslen == 0)); 806 ASSERT(DMU_OT_IS_VALID(bonustype)); 807 ASSERT3U(bonuslen, <=, 808 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); 809 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); 810 811 dnode_free_interior_slots(dn); 812 DNODE_STAT_BUMP(dnode_reallocate); 813 814 /* clean up any unreferenced dbufs */ 815 dnode_evict_dbufs(dn); 816 817 dn->dn_id_flags = 0; 818 819 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 820 dnode_setdirty(dn, tx); 821 if (dn->dn_datablksz != blocksize) { 822 /* change blocksize */ 823 ASSERT0(dn->dn_maxblkid); 824 ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 825 dnode_block_freed(dn, 0)); 826 827 dnode_setdblksz(dn, blocksize); 828 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize; 829 } 830 if (dn->dn_bonuslen != bonuslen) 831 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen; 832 833 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 834 nblkptr = 1; 835 else 836 nblkptr = MIN(DN_MAX_NBLKPTR, 837 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 838 SPA_BLKPTRSHIFT)); 839 if (dn->dn_bonustype != bonustype) 840 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype; 841 if (dn->dn_nblkptr != nblkptr) 842 dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr; 843 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) { 844 dbuf_rm_spill(dn, tx); 845 dnode_rm_spill(dn, tx); 846 } 847 848 rw_exit(&dn->dn_struct_rwlock); 849 850 /* change type */ 851 dn->dn_type = ot; 852 853 /* change bonus size and type */ 854 mutex_enter(&dn->dn_mtx); 855 dn->dn_bonustype = bonustype; 856 dn->dn_bonuslen = bonuslen; 857 dn->dn_num_slots = dn_slots; 858 dn->dn_nblkptr = nblkptr; 859 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 860 dn->dn_compress = ZIO_COMPRESS_INHERIT; 861 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 862 863 /* fix up the bonus db_size */ 864 if (dn->dn_bonus) { 865 dn->dn_bonus->db.db_size = 866 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 867 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 868 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 869 } 870 871 dn->dn_allocated_txg = tx->tx_txg; 872 mutex_exit(&dn->dn_mtx); 873 } 874 875 #ifdef _KERNEL 876 static void 877 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 878 { 879 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 880 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 881 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 882 883 /* Copy fields. */ 884 ndn->dn_objset = odn->dn_objset; 885 ndn->dn_object = odn->dn_object; 886 ndn->dn_dbuf = odn->dn_dbuf; 887 ndn->dn_handle = odn->dn_handle; 888 ndn->dn_phys = odn->dn_phys; 889 ndn->dn_type = odn->dn_type; 890 ndn->dn_bonuslen = odn->dn_bonuslen; 891 ndn->dn_bonustype = odn->dn_bonustype; 892 ndn->dn_nblkptr = odn->dn_nblkptr; 893 ndn->dn_checksum = odn->dn_checksum; 894 ndn->dn_compress = odn->dn_compress; 895 ndn->dn_nlevels = odn->dn_nlevels; 896 ndn->dn_indblkshift = odn->dn_indblkshift; 897 ndn->dn_datablkshift = odn->dn_datablkshift; 898 ndn->dn_datablkszsec = odn->dn_datablkszsec; 899 ndn->dn_datablksz = odn->dn_datablksz; 900 ndn->dn_maxblkid = odn->dn_maxblkid; 901 ndn->dn_num_slots = odn->dn_num_slots; 902 memcpy(ndn->dn_next_type, odn->dn_next_type, 903 sizeof (odn->dn_next_type)); 904 memcpy(ndn->dn_next_nblkptr, odn->dn_next_nblkptr, 905 sizeof (odn->dn_next_nblkptr)); 906 memcpy(ndn->dn_next_nlevels, odn->dn_next_nlevels, 907 sizeof (odn->dn_next_nlevels)); 908 memcpy(ndn->dn_next_indblkshift, odn->dn_next_indblkshift, 909 sizeof (odn->dn_next_indblkshift)); 910 memcpy(ndn->dn_next_bonustype, odn->dn_next_bonustype, 911 sizeof (odn->dn_next_bonustype)); 912 memcpy(ndn->dn_rm_spillblk, odn->dn_rm_spillblk, 913 sizeof (odn->dn_rm_spillblk)); 914 memcpy(ndn->dn_next_bonuslen, odn->dn_next_bonuslen, 915 sizeof (odn->dn_next_bonuslen)); 916 memcpy(ndn->dn_next_blksz, odn->dn_next_blksz, 917 sizeof (odn->dn_next_blksz)); 918 memcpy(ndn->dn_next_maxblkid, odn->dn_next_maxblkid, 919 sizeof (odn->dn_next_maxblkid)); 920 for (int i = 0; i < TXG_SIZE; i++) { 921 list_move_tail(&ndn->dn_dirty_records[i], 922 &odn->dn_dirty_records[i]); 923 } 924 memcpy(ndn->dn_free_ranges, odn->dn_free_ranges, 925 sizeof (odn->dn_free_ranges)); 926 ndn->dn_allocated_txg = odn->dn_allocated_txg; 927 ndn->dn_free_txg = odn->dn_free_txg; 928 ndn->dn_assigned_txg = odn->dn_assigned_txg; 929 ndn->dn_dirty_txg = odn->dn_dirty_txg; 930 ndn->dn_dirtyctx = odn->dn_dirtyctx; 931 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 932 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); 933 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 934 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 935 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 936 ndn->dn_dbufs_count = odn->dn_dbufs_count; 937 ndn->dn_bonus = odn->dn_bonus; 938 ndn->dn_have_spill = odn->dn_have_spill; 939 ndn->dn_zio = odn->dn_zio; 940 ndn->dn_oldused = odn->dn_oldused; 941 ndn->dn_oldflags = odn->dn_oldflags; 942 ndn->dn_olduid = odn->dn_olduid; 943 ndn->dn_oldgid = odn->dn_oldgid; 944 ndn->dn_oldprojid = odn->dn_oldprojid; 945 ndn->dn_newuid = odn->dn_newuid; 946 ndn->dn_newgid = odn->dn_newgid; 947 ndn->dn_newprojid = odn->dn_newprojid; 948 ndn->dn_id_flags = odn->dn_id_flags; 949 dmu_zfetch_init(&ndn->dn_zfetch, ndn); 950 951 /* 952 * Update back pointers. Updating the handle fixes the back pointer of 953 * every descendant dbuf as well as the bonus dbuf. 954 */ 955 ASSERT(ndn->dn_handle->dnh_dnode == odn); 956 ndn->dn_handle->dnh_dnode = ndn; 957 958 /* 959 * Invalidate the original dnode by clearing all of its back pointers. 960 */ 961 odn->dn_dbuf = NULL; 962 odn->dn_handle = NULL; 963 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 964 offsetof(dmu_buf_impl_t, db_link)); 965 odn->dn_dbufs_count = 0; 966 odn->dn_bonus = NULL; 967 dmu_zfetch_fini(&odn->dn_zfetch); 968 969 /* 970 * Set the low bit of the objset pointer to ensure that dnode_move() 971 * recognizes the dnode as invalid in any subsequent callback. 972 */ 973 POINTER_INVALIDATE(&odn->dn_objset); 974 975 /* 976 * Satisfy the destructor. 977 */ 978 for (int i = 0; i < TXG_SIZE; i++) { 979 list_create(&odn->dn_dirty_records[i], 980 sizeof (dbuf_dirty_record_t), 981 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 982 odn->dn_free_ranges[i] = NULL; 983 odn->dn_next_nlevels[i] = 0; 984 odn->dn_next_indblkshift[i] = 0; 985 odn->dn_next_bonustype[i] = 0; 986 odn->dn_rm_spillblk[i] = 0; 987 odn->dn_next_bonuslen[i] = 0; 988 odn->dn_next_blksz[i] = 0; 989 } 990 odn->dn_allocated_txg = 0; 991 odn->dn_free_txg = 0; 992 odn->dn_assigned_txg = 0; 993 odn->dn_dirty_txg = 0; 994 odn->dn_dirtyctx = 0; 995 odn->dn_dirtyctx_firstset = NULL; 996 odn->dn_have_spill = B_FALSE; 997 odn->dn_zio = NULL; 998 odn->dn_oldused = 0; 999 odn->dn_oldflags = 0; 1000 odn->dn_olduid = 0; 1001 odn->dn_oldgid = 0; 1002 odn->dn_oldprojid = ZFS_DEFAULT_PROJID; 1003 odn->dn_newuid = 0; 1004 odn->dn_newgid = 0; 1005 odn->dn_newprojid = ZFS_DEFAULT_PROJID; 1006 odn->dn_id_flags = 0; 1007 1008 /* 1009 * Mark the dnode. 1010 */ 1011 ndn->dn_moved = 1; 1012 odn->dn_moved = (uint8_t)-1; 1013 } 1014 1015 static kmem_cbrc_t 1016 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 1017 { 1018 dnode_t *odn = buf, *ndn = newbuf; 1019 objset_t *os; 1020 int64_t refcount; 1021 uint32_t dbufs; 1022 1023 /* 1024 * The dnode is on the objset's list of known dnodes if the objset 1025 * pointer is valid. We set the low bit of the objset pointer when 1026 * freeing the dnode to invalidate it, and the memory patterns written 1027 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 1028 * A newly created dnode sets the objset pointer last of all to indicate 1029 * that the dnode is known and in a valid state to be moved by this 1030 * function. 1031 */ 1032 os = odn->dn_objset; 1033 if (!POINTER_IS_VALID(os)) { 1034 DNODE_STAT_BUMP(dnode_move_invalid); 1035 return (KMEM_CBRC_DONT_KNOW); 1036 } 1037 1038 /* 1039 * Ensure that the objset does not go away during the move. 1040 */ 1041 rw_enter(&os_lock, RW_WRITER); 1042 if (os != odn->dn_objset) { 1043 rw_exit(&os_lock); 1044 DNODE_STAT_BUMP(dnode_move_recheck1); 1045 return (KMEM_CBRC_DONT_KNOW); 1046 } 1047 1048 /* 1049 * If the dnode is still valid, then so is the objset. We know that no 1050 * valid objset can be freed while we hold os_lock, so we can safely 1051 * ensure that the objset remains in use. 1052 */ 1053 mutex_enter(&os->os_lock); 1054 1055 /* 1056 * Recheck the objset pointer in case the dnode was removed just before 1057 * acquiring the lock. 1058 */ 1059 if (os != odn->dn_objset) { 1060 mutex_exit(&os->os_lock); 1061 rw_exit(&os_lock); 1062 DNODE_STAT_BUMP(dnode_move_recheck2); 1063 return (KMEM_CBRC_DONT_KNOW); 1064 } 1065 1066 /* 1067 * At this point we know that as long as we hold os->os_lock, the dnode 1068 * cannot be freed and fields within the dnode can be safely accessed. 1069 * The objset listing this dnode cannot go away as long as this dnode is 1070 * on its list. 1071 */ 1072 rw_exit(&os_lock); 1073 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 1074 mutex_exit(&os->os_lock); 1075 DNODE_STAT_BUMP(dnode_move_special); 1076 return (KMEM_CBRC_NO); 1077 } 1078 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 1079 1080 /* 1081 * Lock the dnode handle to prevent the dnode from obtaining any new 1082 * holds. This also prevents the descendant dbufs and the bonus dbuf 1083 * from accessing the dnode, so that we can discount their holds. The 1084 * handle is safe to access because we know that while the dnode cannot 1085 * go away, neither can its handle. Once we hold dnh_zrlock, we can 1086 * safely move any dnode referenced only by dbufs. 1087 */ 1088 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 1089 mutex_exit(&os->os_lock); 1090 DNODE_STAT_BUMP(dnode_move_handle); 1091 return (KMEM_CBRC_LATER); 1092 } 1093 1094 /* 1095 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 1096 * We need to guarantee that there is a hold for every dbuf in order to 1097 * determine whether the dnode is actively referenced. Falsely matching 1098 * a dbuf to an active hold would lead to an unsafe move. It's possible 1099 * that a thread already having an active dnode hold is about to add a 1100 * dbuf, and we can't compare hold and dbuf counts while the add is in 1101 * progress. 1102 */ 1103 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 1104 zrl_exit(&odn->dn_handle->dnh_zrlock); 1105 mutex_exit(&os->os_lock); 1106 DNODE_STAT_BUMP(dnode_move_rwlock); 1107 return (KMEM_CBRC_LATER); 1108 } 1109 1110 /* 1111 * A dbuf may be removed (evicted) without an active dnode hold. In that 1112 * case, the dbuf count is decremented under the handle lock before the 1113 * dbuf's hold is released. This order ensures that if we count the hold 1114 * after the dbuf is removed but before its hold is released, we will 1115 * treat the unmatched hold as active and exit safely. If we count the 1116 * hold before the dbuf is removed, the hold is discounted, and the 1117 * removal is blocked until the move completes. 1118 */ 1119 refcount = zfs_refcount_count(&odn->dn_holds); 1120 ASSERT(refcount >= 0); 1121 dbufs = DN_DBUFS_COUNT(odn); 1122 1123 /* We can't have more dbufs than dnode holds. */ 1124 ASSERT3U(dbufs, <=, refcount); 1125 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 1126 uint32_t, dbufs); 1127 1128 if (refcount > dbufs) { 1129 rw_exit(&odn->dn_struct_rwlock); 1130 zrl_exit(&odn->dn_handle->dnh_zrlock); 1131 mutex_exit(&os->os_lock); 1132 DNODE_STAT_BUMP(dnode_move_active); 1133 return (KMEM_CBRC_LATER); 1134 } 1135 1136 rw_exit(&odn->dn_struct_rwlock); 1137 1138 /* 1139 * At this point we know that anyone with a hold on the dnode is not 1140 * actively referencing it. The dnode is known and in a valid state to 1141 * move. We're holding the locks needed to execute the critical section. 1142 */ 1143 dnode_move_impl(odn, ndn); 1144 1145 list_link_replace(&odn->dn_link, &ndn->dn_link); 1146 /* If the dnode was safe to move, the refcount cannot have changed. */ 1147 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); 1148 ASSERT(dbufs == DN_DBUFS_COUNT(ndn)); 1149 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 1150 mutex_exit(&os->os_lock); 1151 1152 return (KMEM_CBRC_YES); 1153 } 1154 #endif /* _KERNEL */ 1155 1156 static void 1157 dnode_slots_hold(dnode_children_t *children, int idx, int slots) 1158 { 1159 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1160 1161 for (int i = idx; i < idx + slots; i++) { 1162 dnode_handle_t *dnh = &children->dnc_children[i]; 1163 zrl_add(&dnh->dnh_zrlock); 1164 } 1165 } 1166 1167 static void 1168 dnode_slots_rele(dnode_children_t *children, int idx, int slots) 1169 { 1170 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1171 1172 for (int i = idx; i < idx + slots; i++) { 1173 dnode_handle_t *dnh = &children->dnc_children[i]; 1174 1175 if (zrl_is_locked(&dnh->dnh_zrlock)) 1176 zrl_exit(&dnh->dnh_zrlock); 1177 else 1178 zrl_remove(&dnh->dnh_zrlock); 1179 } 1180 } 1181 1182 static int 1183 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) 1184 { 1185 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1186 1187 for (int i = idx; i < idx + slots; i++) { 1188 dnode_handle_t *dnh = &children->dnc_children[i]; 1189 1190 if (!zrl_tryenter(&dnh->dnh_zrlock)) { 1191 for (int j = idx; j < i; j++) { 1192 dnh = &children->dnc_children[j]; 1193 zrl_exit(&dnh->dnh_zrlock); 1194 } 1195 1196 return (0); 1197 } 1198 } 1199 1200 return (1); 1201 } 1202 1203 static void 1204 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) 1205 { 1206 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1207 1208 for (int i = idx; i < idx + slots; i++) { 1209 dnode_handle_t *dnh = &children->dnc_children[i]; 1210 dnh->dnh_dnode = ptr; 1211 } 1212 } 1213 1214 static boolean_t 1215 dnode_check_slots_free(dnode_children_t *children, int idx, int slots) 1216 { 1217 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1218 1219 /* 1220 * If all dnode slots are either already free or 1221 * evictable return B_TRUE. 1222 */ 1223 for (int i = idx; i < idx + slots; i++) { 1224 dnode_handle_t *dnh = &children->dnc_children[i]; 1225 dnode_t *dn = dnh->dnh_dnode; 1226 1227 if (dn == DN_SLOT_FREE) { 1228 continue; 1229 } else if (DN_SLOT_IS_PTR(dn)) { 1230 mutex_enter(&dn->dn_mtx); 1231 boolean_t can_free = (dn->dn_type == DMU_OT_NONE && 1232 zfs_refcount_is_zero(&dn->dn_holds) && 1233 !DNODE_IS_DIRTY(dn)); 1234 mutex_exit(&dn->dn_mtx); 1235 1236 if (!can_free) 1237 return (B_FALSE); 1238 else 1239 continue; 1240 } else { 1241 return (B_FALSE); 1242 } 1243 } 1244 1245 return (B_TRUE); 1246 } 1247 1248 static uint_t 1249 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) 1250 { 1251 uint_t reclaimed = 0; 1252 1253 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1254 1255 for (int i = idx; i < idx + slots; i++) { 1256 dnode_handle_t *dnh = &children->dnc_children[i]; 1257 1258 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 1259 1260 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1261 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); 1262 dnode_destroy(dnh->dnh_dnode); 1263 dnh->dnh_dnode = DN_SLOT_FREE; 1264 reclaimed++; 1265 } 1266 } 1267 1268 return (reclaimed); 1269 } 1270 1271 void 1272 dnode_free_interior_slots(dnode_t *dn) 1273 { 1274 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); 1275 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; 1276 int idx = (dn->dn_object & (epb - 1)) + 1; 1277 int slots = dn->dn_num_slots - 1; 1278 1279 if (slots == 0) 1280 return; 1281 1282 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1283 1284 while (!dnode_slots_tryenter(children, idx, slots)) { 1285 DNODE_STAT_BUMP(dnode_free_interior_lock_retry); 1286 kpreempt(KPREEMPT_SYNC); 1287 } 1288 1289 dnode_set_slots(children, idx, slots, DN_SLOT_FREE); 1290 dnode_slots_rele(children, idx, slots); 1291 } 1292 1293 void 1294 dnode_special_close(dnode_handle_t *dnh) 1295 { 1296 dnode_t *dn = dnh->dnh_dnode; 1297 1298 /* 1299 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final 1300 * zfs_refcount_remove() 1301 */ 1302 mutex_enter(&dn->dn_mtx); 1303 if (zfs_refcount_count(&dn->dn_holds) > 0) 1304 cv_wait(&dn->dn_nodnholds, &dn->dn_mtx); 1305 mutex_exit(&dn->dn_mtx); 1306 ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0); 1307 1308 ASSERT(dn->dn_dbuf == NULL || 1309 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1310 zrl_add(&dnh->dnh_zrlock); 1311 dnode_destroy(dn); /* implicit zrl_remove() */ 1312 zrl_destroy(&dnh->dnh_zrlock); 1313 dnh->dnh_dnode = NULL; 1314 } 1315 1316 void 1317 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1318 dnode_handle_t *dnh) 1319 { 1320 dnode_t *dn; 1321 1322 zrl_init(&dnh->dnh_zrlock); 1323 VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock)); 1324 1325 dn = dnode_create(os, dnp, NULL, object, dnh); 1326 DNODE_VERIFY(dn); 1327 1328 zrl_exit(&dnh->dnh_zrlock); 1329 } 1330 1331 static void 1332 dnode_buf_evict_async(void *dbu) 1333 { 1334 dnode_children_t *dnc = dbu; 1335 1336 DNODE_STAT_BUMP(dnode_buf_evict); 1337 1338 for (int i = 0; i < dnc->dnc_count; i++) { 1339 dnode_handle_t *dnh = &dnc->dnc_children[i]; 1340 dnode_t *dn; 1341 1342 /* 1343 * The dnode handle lock guards against the dnode moving to 1344 * another valid address, so there is no need here to guard 1345 * against changes to or from NULL. 1346 */ 1347 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1348 zrl_destroy(&dnh->dnh_zrlock); 1349 dnh->dnh_dnode = DN_SLOT_UNINIT; 1350 continue; 1351 } 1352 1353 zrl_add(&dnh->dnh_zrlock); 1354 dn = dnh->dnh_dnode; 1355 /* 1356 * If there are holds on this dnode, then there should 1357 * be holds on the dnode's containing dbuf as well; thus 1358 * it wouldn't be eligible for eviction and this function 1359 * would not have been called. 1360 */ 1361 ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); 1362 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 1363 1364 dnode_destroy(dn); /* implicit zrl_remove() for first slot */ 1365 zrl_destroy(&dnh->dnh_zrlock); 1366 dnh->dnh_dnode = DN_SLOT_UNINIT; 1367 } 1368 kmem_free(dnc, sizeof (dnode_children_t) + 1369 dnc->dnc_count * sizeof (dnode_handle_t)); 1370 } 1371 1372 /* 1373 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used 1374 * to ensure the hole at the specified object offset is large enough to 1375 * hold the dnode being created. The slots parameter is also used to ensure 1376 * a dnode does not span multiple dnode blocks. In both of these cases, if 1377 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases 1378 * are only possible when using DNODE_MUST_BE_FREE. 1379 * 1380 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. 1381 * dnode_hold_impl() will check if the requested dnode is already consumed 1382 * as an extra dnode slot by an large dnode, in which case it returns 1383 * ENOENT. 1384 * 1385 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just 1386 * return whether the hold would succeed or not. tag and dnp should set to 1387 * NULL in this case. 1388 * 1389 * errors: 1390 * EINVAL - Invalid object number or flags. 1391 * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) 1392 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) 1393 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) 1394 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) 1395 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) 1396 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) 1397 * EIO - I/O error when reading the meta dnode dbuf. 1398 * 1399 * succeeds even for free dnodes. 1400 */ 1401 int 1402 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, 1403 const void *tag, dnode_t **dnp) 1404 { 1405 int epb, idx, err; 1406 int drop_struct_lock = FALSE; 1407 int type; 1408 uint64_t blk; 1409 dnode_t *mdn, *dn; 1410 dmu_buf_impl_t *db; 1411 dnode_children_t *dnc; 1412 dnode_phys_t *dn_block; 1413 dnode_handle_t *dnh; 1414 1415 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); 1416 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); 1417 IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL)); 1418 1419 /* 1420 * If you are holding the spa config lock as writer, you shouldn't 1421 * be asking the DMU to do *anything* unless it's the root pool 1422 * which may require us to read from the root filesystem while 1423 * holding some (not all) of the locks as writer. 1424 */ 1425 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1426 (spa_is_root(os->os_spa) && 1427 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1428 1429 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1430 1431 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT || 1432 object == DMU_PROJECTUSED_OBJECT) { 1433 if (object == DMU_USERUSED_OBJECT) 1434 dn = DMU_USERUSED_DNODE(os); 1435 else if (object == DMU_GROUPUSED_OBJECT) 1436 dn = DMU_GROUPUSED_DNODE(os); 1437 else 1438 dn = DMU_PROJECTUSED_DNODE(os); 1439 if (dn == NULL) 1440 return (SET_ERROR(ENOENT)); 1441 type = dn->dn_type; 1442 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1443 return (SET_ERROR(ENOENT)); 1444 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1445 return (SET_ERROR(EEXIST)); 1446 DNODE_VERIFY(dn); 1447 /* Don't actually hold if dry run, just return 0 */ 1448 if (!(flag & DNODE_DRY_RUN)) { 1449 (void) zfs_refcount_add(&dn->dn_holds, tag); 1450 *dnp = dn; 1451 } 1452 return (0); 1453 } 1454 1455 if (object == 0 || object >= DN_MAX_OBJECT) 1456 return (SET_ERROR(EINVAL)); 1457 1458 mdn = DMU_META_DNODE(os); 1459 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1460 1461 DNODE_VERIFY(mdn); 1462 1463 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1464 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1465 drop_struct_lock = TRUE; 1466 } 1467 1468 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1469 db = dbuf_hold(mdn, blk, FTAG); 1470 if (drop_struct_lock) 1471 rw_exit(&mdn->dn_struct_rwlock); 1472 if (db == NULL) { 1473 DNODE_STAT_BUMP(dnode_hold_dbuf_hold); 1474 return (SET_ERROR(EIO)); 1475 } 1476 1477 /* 1478 * We do not need to decrypt to read the dnode so it doesn't matter 1479 * if we get the encrypted or decrypted version. 1480 */ 1481 err = dbuf_read(db, NULL, DB_RF_CANFAIL | 1482 DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH); 1483 if (err) { 1484 DNODE_STAT_BUMP(dnode_hold_dbuf_read); 1485 dbuf_rele(db, FTAG); 1486 return (err); 1487 } 1488 1489 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1490 epb = db->db.db_size >> DNODE_SHIFT; 1491 1492 idx = object & (epb - 1); 1493 dn_block = (dnode_phys_t *)db->db.db_data; 1494 1495 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1496 dnc = dmu_buf_get_user(&db->db); 1497 dnh = NULL; 1498 if (dnc == NULL) { 1499 dnode_children_t *winner; 1500 int skip = 0; 1501 1502 dnc = kmem_zalloc(sizeof (dnode_children_t) + 1503 epb * sizeof (dnode_handle_t), KM_SLEEP); 1504 dnc->dnc_count = epb; 1505 dnh = &dnc->dnc_children[0]; 1506 1507 /* Initialize dnode slot status from dnode_phys_t */ 1508 for (int i = 0; i < epb; i++) { 1509 zrl_init(&dnh[i].dnh_zrlock); 1510 1511 if (skip) { 1512 skip--; 1513 continue; 1514 } 1515 1516 if (dn_block[i].dn_type != DMU_OT_NONE) { 1517 int interior = dn_block[i].dn_extra_slots; 1518 1519 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); 1520 dnode_set_slots(dnc, i + 1, interior, 1521 DN_SLOT_INTERIOR); 1522 skip = interior; 1523 } else { 1524 dnh[i].dnh_dnode = DN_SLOT_FREE; 1525 skip = 0; 1526 } 1527 } 1528 1529 dmu_buf_init_user(&dnc->dnc_dbu, NULL, 1530 dnode_buf_evict_async, NULL); 1531 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); 1532 if (winner != NULL) { 1533 1534 for (int i = 0; i < epb; i++) 1535 zrl_destroy(&dnh[i].dnh_zrlock); 1536 1537 kmem_free(dnc, sizeof (dnode_children_t) + 1538 epb * sizeof (dnode_handle_t)); 1539 dnc = winner; 1540 } 1541 } 1542 1543 ASSERT(dnc->dnc_count == epb); 1544 1545 if (flag & DNODE_MUST_BE_ALLOCATED) { 1546 slots = 1; 1547 1548 dnode_slots_hold(dnc, idx, slots); 1549 dnh = &dnc->dnc_children[idx]; 1550 1551 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1552 dn = dnh->dnh_dnode; 1553 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { 1554 DNODE_STAT_BUMP(dnode_hold_alloc_interior); 1555 dnode_slots_rele(dnc, idx, slots); 1556 dbuf_rele(db, FTAG); 1557 return (SET_ERROR(EEXIST)); 1558 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { 1559 DNODE_STAT_BUMP(dnode_hold_alloc_misses); 1560 dnode_slots_rele(dnc, idx, slots); 1561 dbuf_rele(db, FTAG); 1562 return (SET_ERROR(ENOENT)); 1563 } else { 1564 dnode_slots_rele(dnc, idx, slots); 1565 while (!dnode_slots_tryenter(dnc, idx, slots)) { 1566 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); 1567 kpreempt(KPREEMPT_SYNC); 1568 } 1569 1570 /* 1571 * Someone else won the race and called dnode_create() 1572 * after we checked DN_SLOT_IS_PTR() above but before 1573 * we acquired the lock. 1574 */ 1575 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1576 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); 1577 dn = dnh->dnh_dnode; 1578 } else { 1579 dn = dnode_create(os, dn_block + idx, db, 1580 object, dnh); 1581 dmu_buf_add_user_size(&db->db, 1582 sizeof (dnode_t)); 1583 } 1584 } 1585 1586 mutex_enter(&dn->dn_mtx); 1587 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { 1588 DNODE_STAT_BUMP(dnode_hold_alloc_type_none); 1589 mutex_exit(&dn->dn_mtx); 1590 dnode_slots_rele(dnc, idx, slots); 1591 dbuf_rele(db, FTAG); 1592 return (SET_ERROR(ENOENT)); 1593 } 1594 1595 /* Don't actually hold if dry run, just return 0 */ 1596 if (flag & DNODE_DRY_RUN) { 1597 mutex_exit(&dn->dn_mtx); 1598 dnode_slots_rele(dnc, idx, slots); 1599 dbuf_rele(db, FTAG); 1600 return (0); 1601 } 1602 1603 DNODE_STAT_BUMP(dnode_hold_alloc_hits); 1604 } else if (flag & DNODE_MUST_BE_FREE) { 1605 1606 if (idx + slots - 1 >= DNODES_PER_BLOCK) { 1607 DNODE_STAT_BUMP(dnode_hold_free_overflow); 1608 dbuf_rele(db, FTAG); 1609 return (SET_ERROR(ENOSPC)); 1610 } 1611 1612 dnode_slots_hold(dnc, idx, slots); 1613 1614 if (!dnode_check_slots_free(dnc, idx, slots)) { 1615 DNODE_STAT_BUMP(dnode_hold_free_misses); 1616 dnode_slots_rele(dnc, idx, slots); 1617 dbuf_rele(db, FTAG); 1618 return (SET_ERROR(ENOSPC)); 1619 } 1620 1621 dnode_slots_rele(dnc, idx, slots); 1622 while (!dnode_slots_tryenter(dnc, idx, slots)) { 1623 DNODE_STAT_BUMP(dnode_hold_free_lock_retry); 1624 kpreempt(KPREEMPT_SYNC); 1625 } 1626 1627 if (!dnode_check_slots_free(dnc, idx, slots)) { 1628 DNODE_STAT_BUMP(dnode_hold_free_lock_misses); 1629 dnode_slots_rele(dnc, idx, slots); 1630 dbuf_rele(db, FTAG); 1631 return (SET_ERROR(ENOSPC)); 1632 } 1633 1634 /* 1635 * Allocated but otherwise free dnodes which would 1636 * be in the interior of a multi-slot dnodes need 1637 * to be freed. Single slot dnodes can be safely 1638 * re-purposed as a performance optimization. 1639 */ 1640 if (slots > 1) { 1641 uint_t reclaimed = 1642 dnode_reclaim_slots(dnc, idx + 1, slots - 1); 1643 if (reclaimed > 0) 1644 dmu_buf_sub_user_size(&db->db, 1645 reclaimed * sizeof (dnode_t)); 1646 } 1647 1648 dnh = &dnc->dnc_children[idx]; 1649 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1650 dn = dnh->dnh_dnode; 1651 } else { 1652 dn = dnode_create(os, dn_block + idx, db, 1653 object, dnh); 1654 dmu_buf_add_user_size(&db->db, sizeof (dnode_t)); 1655 } 1656 1657 mutex_enter(&dn->dn_mtx); 1658 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { 1659 DNODE_STAT_BUMP(dnode_hold_free_refcount); 1660 mutex_exit(&dn->dn_mtx); 1661 dnode_slots_rele(dnc, idx, slots); 1662 dbuf_rele(db, FTAG); 1663 return (SET_ERROR(EEXIST)); 1664 } 1665 1666 /* Don't actually hold if dry run, just return 0 */ 1667 if (flag & DNODE_DRY_RUN) { 1668 mutex_exit(&dn->dn_mtx); 1669 dnode_slots_rele(dnc, idx, slots); 1670 dbuf_rele(db, FTAG); 1671 return (0); 1672 } 1673 1674 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); 1675 DNODE_STAT_BUMP(dnode_hold_free_hits); 1676 } else { 1677 dbuf_rele(db, FTAG); 1678 return (SET_ERROR(EINVAL)); 1679 } 1680 1681 ASSERT0(dn->dn_free_txg); 1682 1683 if (zfs_refcount_add(&dn->dn_holds, tag) == 1) 1684 dbuf_add_ref(db, dnh); 1685 1686 mutex_exit(&dn->dn_mtx); 1687 1688 /* Now we can rely on the hold to prevent the dnode from moving. */ 1689 dnode_slots_rele(dnc, idx, slots); 1690 1691 DNODE_VERIFY(dn); 1692 ASSERT3P(dnp, !=, NULL); 1693 ASSERT3P(dn->dn_dbuf, ==, db); 1694 ASSERT3U(dn->dn_object, ==, object); 1695 dbuf_rele(db, FTAG); 1696 1697 *dnp = dn; 1698 return (0); 1699 } 1700 1701 /* 1702 * Return held dnode if the object is allocated, NULL if not. 1703 */ 1704 int 1705 dnode_hold(objset_t *os, uint64_t object, const void *tag, dnode_t **dnp) 1706 { 1707 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, 1708 dnp)); 1709 } 1710 1711 /* 1712 * Can only add a reference if there is already at least one 1713 * reference on the dnode. Returns FALSE if unable to add a 1714 * new reference. 1715 */ 1716 boolean_t 1717 dnode_add_ref(dnode_t *dn, const void *tag) 1718 { 1719 mutex_enter(&dn->dn_mtx); 1720 if (zfs_refcount_is_zero(&dn->dn_holds)) { 1721 mutex_exit(&dn->dn_mtx); 1722 return (FALSE); 1723 } 1724 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); 1725 mutex_exit(&dn->dn_mtx); 1726 return (TRUE); 1727 } 1728 1729 void 1730 dnode_rele(dnode_t *dn, const void *tag) 1731 { 1732 mutex_enter(&dn->dn_mtx); 1733 dnode_rele_and_unlock(dn, tag, B_FALSE); 1734 } 1735 1736 void 1737 dnode_rele_and_unlock(dnode_t *dn, const void *tag, boolean_t evicting) 1738 { 1739 uint64_t refs; 1740 /* Get while the hold prevents the dnode from moving. */ 1741 dmu_buf_impl_t *db = dn->dn_dbuf; 1742 dnode_handle_t *dnh = dn->dn_handle; 1743 1744 refs = zfs_refcount_remove(&dn->dn_holds, tag); 1745 if (refs == 0) 1746 cv_broadcast(&dn->dn_nodnholds); 1747 mutex_exit(&dn->dn_mtx); 1748 /* dnode could get destroyed at this point, so don't use it anymore */ 1749 1750 /* 1751 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1752 * indirectly by dbuf_rele() while relying on the dnode handle to 1753 * prevent the dnode from moving, since releasing the last hold could 1754 * result in the dnode's parent dbuf evicting its dnode handles. For 1755 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1756 * other direct or indirect hold on the dnode must first drop the dnode 1757 * handle. 1758 */ 1759 #ifdef ZFS_DEBUG 1760 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1761 #endif 1762 1763 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1764 if (refs == 0 && db != NULL) { 1765 /* 1766 * Another thread could add a hold to the dnode handle in 1767 * dnode_hold_impl() while holding the parent dbuf. Since the 1768 * hold on the parent dbuf prevents the handle from being 1769 * destroyed, the hold on the handle is OK. We can't yet assert 1770 * that the handle has zero references, but that will be 1771 * asserted anyway when the handle gets destroyed. 1772 */ 1773 mutex_enter(&db->db_mtx); 1774 dbuf_rele_and_unlock(db, dnh, evicting); 1775 } 1776 } 1777 1778 /* 1779 * Test whether we can create a dnode at the specified location. 1780 */ 1781 int 1782 dnode_try_claim(objset_t *os, uint64_t object, int slots) 1783 { 1784 return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN, 1785 slots, NULL, NULL)); 1786 } 1787 1788 /* 1789 * Checks if the dnode itself is dirty, or is carrying any uncommitted records. 1790 * It is important to check both conditions, as some operations (eg appending 1791 * to a file) can dirty both as a single logical unit, but they are not synced 1792 * out atomically, so checking one and not the other can result in an object 1793 * appearing to be clean mid-way through a commit. 1794 * 1795 * Do not change this lightly! If you get it wrong, dmu_offset_next() can 1796 * detect a hole where there is really data, leading to silent corruption. 1797 */ 1798 boolean_t 1799 dnode_is_dirty(dnode_t *dn) 1800 { 1801 mutex_enter(&dn->dn_mtx); 1802 1803 for (int i = 0; i < TXG_SIZE; i++) { 1804 if (multilist_link_active(&dn->dn_dirty_link[i]) || 1805 !list_is_empty(&dn->dn_dirty_records[i])) { 1806 mutex_exit(&dn->dn_mtx); 1807 return (B_TRUE); 1808 } 1809 } 1810 1811 mutex_exit(&dn->dn_mtx); 1812 1813 return (B_FALSE); 1814 } 1815 1816 void 1817 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1818 { 1819 objset_t *os = dn->dn_objset; 1820 uint64_t txg = tx->tx_txg; 1821 1822 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1823 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1824 return; 1825 } 1826 1827 DNODE_VERIFY(dn); 1828 1829 #ifdef ZFS_DEBUG 1830 mutex_enter(&dn->dn_mtx); 1831 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1832 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1833 mutex_exit(&dn->dn_mtx); 1834 #endif 1835 1836 /* 1837 * Determine old uid/gid when necessary 1838 */ 1839 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1840 1841 multilist_t *dirtylist = &os->os_dirty_dnodes[txg & TXG_MASK]; 1842 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1843 1844 /* 1845 * If we are already marked dirty, we're done. 1846 */ 1847 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1848 multilist_sublist_unlock(mls); 1849 return; 1850 } 1851 1852 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || 1853 !avl_is_empty(&dn->dn_dbufs)); 1854 ASSERT(dn->dn_datablksz != 0); 1855 ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]); 1856 ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]); 1857 ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]); 1858 1859 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1860 (u_longlong_t)dn->dn_object, (u_longlong_t)txg); 1861 1862 multilist_sublist_insert_head(mls, dn); 1863 1864 multilist_sublist_unlock(mls); 1865 1866 /* 1867 * The dnode maintains a hold on its containing dbuf as 1868 * long as there are holds on it. Each instantiated child 1869 * dbuf maintains a hold on the dnode. When the last child 1870 * drops its hold, the dnode will drop its hold on the 1871 * containing dbuf. We add a "dirty hold" here so that the 1872 * dnode will hang around after we finish processing its 1873 * children. 1874 */ 1875 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1876 1877 (void) dbuf_dirty(dn->dn_dbuf, tx); 1878 1879 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1880 } 1881 1882 void 1883 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1884 { 1885 mutex_enter(&dn->dn_mtx); 1886 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1887 mutex_exit(&dn->dn_mtx); 1888 return; 1889 } 1890 dn->dn_free_txg = tx->tx_txg; 1891 mutex_exit(&dn->dn_mtx); 1892 1893 dnode_setdirty(dn, tx); 1894 } 1895 1896 /* 1897 * Try to change the block size for the indicated dnode. This can only 1898 * succeed if there are no blocks allocated or dirty beyond first block 1899 */ 1900 int 1901 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1902 { 1903 dmu_buf_impl_t *db; 1904 int err; 1905 1906 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1907 if (size == 0) 1908 size = SPA_MINBLOCKSIZE; 1909 else 1910 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1911 1912 if (ibs == dn->dn_indblkshift) 1913 ibs = 0; 1914 1915 if (size == dn->dn_datablksz && ibs == 0) 1916 return (0); 1917 1918 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1919 1920 /* Check for any allocated blocks beyond the first */ 1921 if (dn->dn_maxblkid != 0) 1922 goto fail; 1923 1924 mutex_enter(&dn->dn_dbufs_mtx); 1925 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1926 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1927 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1928 db->db_blkid != DMU_SPILL_BLKID) { 1929 mutex_exit(&dn->dn_dbufs_mtx); 1930 goto fail; 1931 } 1932 } 1933 mutex_exit(&dn->dn_dbufs_mtx); 1934 1935 if (ibs && dn->dn_nlevels != 1) 1936 goto fail; 1937 1938 dnode_setdirty(dn, tx); 1939 if (size != dn->dn_datablksz) { 1940 /* resize the old block */ 1941 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1942 if (err == 0) { 1943 dbuf_new_size(db, size, tx); 1944 } else if (err != ENOENT) { 1945 goto fail; 1946 } 1947 1948 dnode_setdblksz(dn, size); 1949 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = size; 1950 if (db) 1951 dbuf_rele(db, FTAG); 1952 } 1953 if (ibs) { 1954 dn->dn_indblkshift = ibs; 1955 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 1956 } 1957 1958 rw_exit(&dn->dn_struct_rwlock); 1959 return (0); 1960 1961 fail: 1962 rw_exit(&dn->dn_struct_rwlock); 1963 return (SET_ERROR(ENOTSUP)); 1964 } 1965 1966 static void 1967 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx) 1968 { 1969 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1970 int old_nlevels = dn->dn_nlevels; 1971 dmu_buf_impl_t *db; 1972 list_t *list; 1973 dbuf_dirty_record_t *new, *dr, *dr_next; 1974 1975 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1976 1977 ASSERT3U(new_nlevels, >, dn->dn_nlevels); 1978 dn->dn_nlevels = new_nlevels; 1979 1980 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1981 dn->dn_next_nlevels[txgoff] = new_nlevels; 1982 1983 /* dirty the left indirects */ 1984 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1985 ASSERT(db != NULL); 1986 new = dbuf_dirty(db, tx); 1987 dbuf_rele(db, FTAG); 1988 1989 /* transfer the dirty records to the new indirect */ 1990 mutex_enter(&dn->dn_mtx); 1991 mutex_enter(&new->dt.di.dr_mtx); 1992 list = &dn->dn_dirty_records[txgoff]; 1993 for (dr = list_head(list); dr; dr = dr_next) { 1994 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1995 1996 IMPLY(dr->dr_dbuf == NULL, old_nlevels == 1); 1997 if (dr->dr_dbuf == NULL || 1998 (dr->dr_dbuf->db_level == old_nlevels - 1 && 1999 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 2000 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID)) { 2001 list_remove(&dn->dn_dirty_records[txgoff], dr); 2002 list_insert_tail(&new->dt.di.dr_children, dr); 2003 dr->dr_parent = new; 2004 } 2005 } 2006 mutex_exit(&new->dt.di.dr_mtx); 2007 mutex_exit(&dn->dn_mtx); 2008 } 2009 2010 int 2011 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx) 2012 { 2013 int ret = 0; 2014 2015 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2016 2017 if (dn->dn_nlevels == nlevels) { 2018 ret = 0; 2019 goto out; 2020 } else if (nlevels < dn->dn_nlevels) { 2021 ret = SET_ERROR(EINVAL); 2022 goto out; 2023 } 2024 2025 dnode_set_nlevels_impl(dn, nlevels, tx); 2026 2027 out: 2028 rw_exit(&dn->dn_struct_rwlock); 2029 return (ret); 2030 } 2031 2032 /* read-holding callers must not rely on the lock being continuously held */ 2033 void 2034 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read, 2035 boolean_t force) 2036 { 2037 int epbs, new_nlevels; 2038 uint64_t sz; 2039 2040 ASSERT(blkid != DMU_BONUS_BLKID); 2041 2042 ASSERT(have_read ? 2043 RW_READ_HELD(&dn->dn_struct_rwlock) : 2044 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2045 2046 /* 2047 * if we have a read-lock, check to see if we need to do any work 2048 * before upgrading to a write-lock. 2049 */ 2050 if (have_read) { 2051 if (blkid <= dn->dn_maxblkid) 2052 return; 2053 2054 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 2055 rw_exit(&dn->dn_struct_rwlock); 2056 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2057 } 2058 } 2059 2060 /* 2061 * Raw sends (indicated by the force flag) require that we take the 2062 * given blkid even if the value is lower than the current value. 2063 */ 2064 if (!force && blkid <= dn->dn_maxblkid) 2065 goto out; 2066 2067 /* 2068 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff] 2069 * to indicate that this field is set. This allows us to set the 2070 * maxblkid to 0 on an existing object in dnode_sync(). 2071 */ 2072 dn->dn_maxblkid = blkid; 2073 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = 2074 blkid | DMU_NEXT_MAXBLKID_SET; 2075 2076 /* 2077 * Compute the number of levels necessary to support the new maxblkid. 2078 * Raw sends will ensure nlevels is set correctly for us. 2079 */ 2080 new_nlevels = 1; 2081 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2082 for (sz = dn->dn_nblkptr; 2083 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 2084 new_nlevels++; 2085 2086 ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS); 2087 2088 if (!force) { 2089 if (new_nlevels > dn->dn_nlevels) 2090 dnode_set_nlevels_impl(dn, new_nlevels, tx); 2091 } else { 2092 ASSERT3U(dn->dn_nlevels, >=, new_nlevels); 2093 } 2094 2095 out: 2096 if (have_read) 2097 rw_downgrade(&dn->dn_struct_rwlock); 2098 } 2099 2100 static void 2101 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 2102 { 2103 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 2104 if (db != NULL) { 2105 dmu_buf_will_dirty(&db->db, tx); 2106 dbuf_rele(db, FTAG); 2107 } 2108 } 2109 2110 /* 2111 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 2112 * and end_blkid. 2113 */ 2114 static void 2115 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 2116 dmu_tx_t *tx) 2117 { 2118 dmu_buf_impl_t *db_search; 2119 dmu_buf_impl_t *db; 2120 avl_index_t where; 2121 2122 db_search = kmem_zalloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 2123 2124 mutex_enter(&dn->dn_dbufs_mtx); 2125 2126 db_search->db_level = 1; 2127 db_search->db_blkid = start_blkid + 1; 2128 db_search->db_state = DB_SEARCH; 2129 for (;;) { 2130 2131 db = avl_find(&dn->dn_dbufs, db_search, &where); 2132 if (db == NULL) 2133 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2134 2135 if (db == NULL || db->db_level != 1 || 2136 db->db_blkid >= end_blkid) { 2137 break; 2138 } 2139 2140 /* 2141 * Setup the next blkid we want to search for. 2142 */ 2143 db_search->db_blkid = db->db_blkid + 1; 2144 ASSERT3U(db->db_blkid, >=, start_blkid); 2145 2146 /* 2147 * If the dbuf transitions to DB_EVICTING while we're trying 2148 * to dirty it, then we will be unable to discover it in 2149 * the dbuf hash table. This will result in a call to 2150 * dbuf_create() which needs to acquire the dn_dbufs_mtx 2151 * lock. To avoid a deadlock, we drop the lock before 2152 * dirtying the level-1 dbuf. 2153 */ 2154 mutex_exit(&dn->dn_dbufs_mtx); 2155 dnode_dirty_l1(dn, db->db_blkid, tx); 2156 mutex_enter(&dn->dn_dbufs_mtx); 2157 } 2158 2159 #ifdef ZFS_DEBUG 2160 /* 2161 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 2162 */ 2163 db_search->db_level = 1; 2164 db_search->db_blkid = start_blkid + 1; 2165 db_search->db_state = DB_SEARCH; 2166 db = avl_find(&dn->dn_dbufs, db_search, &where); 2167 if (db == NULL) 2168 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2169 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 2170 if (db->db_level != 1 || db->db_blkid >= end_blkid) 2171 break; 2172 if (db->db_state != DB_EVICTING) 2173 ASSERT(db->db_dirtycnt > 0); 2174 } 2175 #endif 2176 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2177 mutex_exit(&dn->dn_dbufs_mtx); 2178 } 2179 2180 void 2181 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, const void *tag) 2182 { 2183 /* 2184 * Don't set dirtyctx to SYNC if we're just modifying this as we 2185 * initialize the objset. 2186 */ 2187 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 2188 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2189 2190 if (ds != NULL) { 2191 rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag); 2192 } 2193 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 2194 if (dmu_tx_is_syncing(tx)) 2195 dn->dn_dirtyctx = DN_DIRTY_SYNC; 2196 else 2197 dn->dn_dirtyctx = DN_DIRTY_OPEN; 2198 dn->dn_dirtyctx_firstset = tag; 2199 } 2200 if (ds != NULL) { 2201 rrw_exit(&ds->ds_bp_rwlock, tag); 2202 } 2203 } 2204 } 2205 2206 static void 2207 dnode_partial_zero(dnode_t *dn, uint64_t off, uint64_t blkoff, uint64_t len, 2208 dmu_tx_t *tx) 2209 { 2210 dmu_buf_impl_t *db; 2211 int res; 2212 2213 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2214 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), TRUE, FALSE, 2215 FTAG, &db); 2216 rw_exit(&dn->dn_struct_rwlock); 2217 if (res == 0) { 2218 db_lock_type_t dblt; 2219 boolean_t dirty; 2220 2221 dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2222 /* don't dirty if not on disk and not dirty */ 2223 dirty = !list_is_empty(&db->db_dirty_records) || 2224 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2225 dmu_buf_unlock_parent(db, dblt, FTAG); 2226 if (dirty) { 2227 caddr_t data; 2228 2229 dmu_buf_will_dirty(&db->db, tx); 2230 data = db->db.db_data; 2231 memset(data + blkoff, 0, len); 2232 } 2233 dbuf_rele(db, FTAG); 2234 } 2235 } 2236 2237 void 2238 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 2239 { 2240 uint64_t blkoff, blkid, nblks; 2241 int blksz, blkshift, head, tail; 2242 int trunc = FALSE; 2243 int epbs; 2244 2245 blksz = dn->dn_datablksz; 2246 blkshift = dn->dn_datablkshift; 2247 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2248 2249 if (len == DMU_OBJECT_END) { 2250 len = UINT64_MAX - off; 2251 trunc = TRUE; 2252 } 2253 2254 /* 2255 * First, block align the region to free: 2256 */ 2257 if (ISP2(blksz)) { 2258 head = P2NPHASE(off, blksz); 2259 blkoff = P2PHASE(off, blksz); 2260 if ((off >> blkshift) > dn->dn_maxblkid) 2261 return; 2262 } else { 2263 ASSERT(dn->dn_maxblkid == 0); 2264 if (off == 0 && len >= blksz) { 2265 /* 2266 * Freeing the whole block; fast-track this request. 2267 */ 2268 blkid = 0; 2269 nblks = 1; 2270 if (dn->dn_nlevels > 1) { 2271 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2272 dnode_dirty_l1(dn, 0, tx); 2273 rw_exit(&dn->dn_struct_rwlock); 2274 } 2275 goto done; 2276 } else if (off >= blksz) { 2277 /* Freeing past end-of-data */ 2278 return; 2279 } else { 2280 /* Freeing part of the block. */ 2281 head = blksz - off; 2282 ASSERT3U(head, >, 0); 2283 } 2284 blkoff = off; 2285 } 2286 /* zero out any partial block data at the start of the range */ 2287 if (head) { 2288 ASSERT3U(blkoff + head, ==, blksz); 2289 if (len < head) 2290 head = len; 2291 dnode_partial_zero(dn, off, blkoff, head, tx); 2292 off += head; 2293 len -= head; 2294 } 2295 2296 /* If the range was less than one block, we're done */ 2297 if (len == 0) 2298 return; 2299 2300 /* If the remaining range is past end of file, we're done */ 2301 if ((off >> blkshift) > dn->dn_maxblkid) 2302 return; 2303 2304 ASSERT(ISP2(blksz)); 2305 if (trunc) 2306 tail = 0; 2307 else 2308 tail = P2PHASE(len, blksz); 2309 2310 ASSERT0(P2PHASE(off, blksz)); 2311 /* zero out any partial block data at the end of the range */ 2312 if (tail) { 2313 if (len < tail) 2314 tail = len; 2315 dnode_partial_zero(dn, off + len, 0, tail, tx); 2316 len -= tail; 2317 } 2318 2319 /* If the range did not include a full block, we are done */ 2320 if (len == 0) 2321 return; 2322 2323 ASSERT(IS_P2ALIGNED(off, blksz)); 2324 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 2325 blkid = off >> blkshift; 2326 nblks = len >> blkshift; 2327 if (trunc) 2328 nblks += 1; 2329 2330 /* 2331 * Dirty all the indirect blocks in this range. Note that only 2332 * the first and last indirect blocks can actually be written 2333 * (if they were partially freed) -- they must be dirtied, even if 2334 * they do not exist on disk yet. The interior blocks will 2335 * be freed by free_children(), so they will not actually be written. 2336 * Even though these interior blocks will not be written, we 2337 * dirty them for two reasons: 2338 * 2339 * - It ensures that the indirect blocks remain in memory until 2340 * syncing context. (They have already been prefetched by 2341 * dmu_tx_hold_free(), so we don't have to worry about reading 2342 * them serially here.) 2343 * 2344 * - The dirty space accounting will put pressure on the txg sync 2345 * mechanism to begin syncing, and to delay transactions if there 2346 * is a large amount of freeing. Even though these indirect 2347 * blocks will not be written, we could need to write the same 2348 * amount of space if we copy the freed BPs into deadlists. 2349 */ 2350 if (dn->dn_nlevels > 1) { 2351 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2352 uint64_t first, last; 2353 2354 first = blkid >> epbs; 2355 dnode_dirty_l1(dn, first, tx); 2356 if (trunc) 2357 last = dn->dn_maxblkid >> epbs; 2358 else 2359 last = (blkid + nblks - 1) >> epbs; 2360 if (last != first) 2361 dnode_dirty_l1(dn, last, tx); 2362 2363 dnode_dirty_l1range(dn, first, last, tx); 2364 2365 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 2366 SPA_BLKPTRSHIFT; 2367 for (uint64_t i = first + 1; i < last; i++) { 2368 /* 2369 * Set i to the blockid of the next non-hole 2370 * level-1 indirect block at or after i. Note 2371 * that dnode_next_offset() operates in terms of 2372 * level-0-equivalent bytes. 2373 */ 2374 uint64_t ibyte = i << shift; 2375 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 2376 &ibyte, 2, 1, 0); 2377 i = ibyte >> shift; 2378 if (i >= last) 2379 break; 2380 2381 /* 2382 * Normally we should not see an error, either 2383 * from dnode_next_offset() or dbuf_hold_level() 2384 * (except for ESRCH from dnode_next_offset). 2385 * If there is an i/o error, then when we read 2386 * this block in syncing context, it will use 2387 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 2388 * to the "failmode" property. dnode_next_offset() 2389 * doesn't have a flag to indicate MUSTSUCCEED. 2390 */ 2391 if (err != 0) 2392 break; 2393 2394 dnode_dirty_l1(dn, i, tx); 2395 } 2396 rw_exit(&dn->dn_struct_rwlock); 2397 } 2398 2399 done: 2400 /* 2401 * Add this range to the dnode range list. 2402 * We will finish up this free operation in the syncing phase. 2403 */ 2404 mutex_enter(&dn->dn_mtx); 2405 { 2406 int txgoff = tx->tx_txg & TXG_MASK; 2407 if (dn->dn_free_ranges[txgoff] == NULL) { 2408 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, 2409 RANGE_SEG64, NULL, 0, 0); 2410 } 2411 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 2412 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 2413 } 2414 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 2415 (u_longlong_t)blkid, (u_longlong_t)nblks, 2416 (u_longlong_t)tx->tx_txg); 2417 mutex_exit(&dn->dn_mtx); 2418 2419 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 2420 dnode_setdirty(dn, tx); 2421 } 2422 2423 static boolean_t 2424 dnode_spill_freed(dnode_t *dn) 2425 { 2426 int i; 2427 2428 mutex_enter(&dn->dn_mtx); 2429 for (i = 0; i < TXG_SIZE; i++) { 2430 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 2431 break; 2432 } 2433 mutex_exit(&dn->dn_mtx); 2434 return (i < TXG_SIZE); 2435 } 2436 2437 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 2438 uint64_t 2439 dnode_block_freed(dnode_t *dn, uint64_t blkid) 2440 { 2441 int i; 2442 2443 if (blkid == DMU_BONUS_BLKID) 2444 return (FALSE); 2445 2446 if (dn->dn_free_txg) 2447 return (TRUE); 2448 2449 if (blkid == DMU_SPILL_BLKID) 2450 return (dnode_spill_freed(dn)); 2451 2452 mutex_enter(&dn->dn_mtx); 2453 for (i = 0; i < TXG_SIZE; i++) { 2454 if (dn->dn_free_ranges[i] != NULL && 2455 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 2456 break; 2457 } 2458 mutex_exit(&dn->dn_mtx); 2459 return (i < TXG_SIZE); 2460 } 2461 2462 /* call from syncing context when we actually write/free space for this dnode */ 2463 void 2464 dnode_diduse_space(dnode_t *dn, int64_t delta) 2465 { 2466 uint64_t space; 2467 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 2468 dn, dn->dn_phys, 2469 (u_longlong_t)dn->dn_phys->dn_used, 2470 (longlong_t)delta); 2471 2472 mutex_enter(&dn->dn_mtx); 2473 space = DN_USED_BYTES(dn->dn_phys); 2474 if (delta > 0) { 2475 ASSERT3U(space + delta, >=, space); /* no overflow */ 2476 } else { 2477 ASSERT3U(space, >=, -delta); /* no underflow */ 2478 } 2479 space += delta; 2480 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 2481 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 2482 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 2483 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 2484 } else { 2485 dn->dn_phys->dn_used = space; 2486 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 2487 } 2488 mutex_exit(&dn->dn_mtx); 2489 } 2490 2491 /* 2492 * Scans a block at the indicated "level" looking for a hole or data, 2493 * depending on 'flags'. 2494 * 2495 * If level > 0, then we are scanning an indirect block looking at its 2496 * pointers. If level == 0, then we are looking at a block of dnodes. 2497 * 2498 * If we don't find what we are looking for in the block, we return ESRCH. 2499 * Otherwise, return with *offset pointing to the beginning (if searching 2500 * forwards) or end (if searching backwards) of the range covered by the 2501 * block pointer we matched on (or dnode). 2502 * 2503 * The basic search algorithm used below by dnode_next_offset() is to 2504 * use this function to search up the block tree (widen the search) until 2505 * we find something (i.e., we don't return ESRCH) and then search back 2506 * down the tree (narrow the search) until we reach our original search 2507 * level. 2508 */ 2509 static int 2510 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 2511 int lvl, uint64_t blkfill, uint64_t txg) 2512 { 2513 dmu_buf_impl_t *db = NULL; 2514 void *data = NULL; 2515 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2516 uint64_t epb = 1ULL << epbs; 2517 uint64_t minfill, maxfill; 2518 boolean_t hole; 2519 int i, inc, error, span; 2520 2521 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2522 2523 hole = ((flags & DNODE_FIND_HOLE) != 0); 2524 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 2525 ASSERT(txg == 0 || !hole); 2526 2527 if (lvl == dn->dn_phys->dn_nlevels) { 2528 error = 0; 2529 epb = dn->dn_phys->dn_nblkptr; 2530 data = dn->dn_phys->dn_blkptr; 2531 } else { 2532 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 2533 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 2534 if (error) { 2535 if (error != ENOENT) 2536 return (error); 2537 if (hole) 2538 return (0); 2539 /* 2540 * This can only happen when we are searching up 2541 * the block tree for data. We don't really need to 2542 * adjust the offset, as we will just end up looking 2543 * at the pointer to this block in its parent, and its 2544 * going to be unallocated, so we will skip over it. 2545 */ 2546 return (SET_ERROR(ESRCH)); 2547 } 2548 error = dbuf_read(db, NULL, 2549 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | 2550 DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH); 2551 if (error) { 2552 dbuf_rele(db, FTAG); 2553 return (error); 2554 } 2555 data = db->db.db_data; 2556 rw_enter(&db->db_rwlock, RW_READER); 2557 } 2558 2559 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 2560 db->db_blkptr->blk_birth <= txg || 2561 BP_IS_HOLE(db->db_blkptr))) { 2562 /* 2563 * This can only happen when we are searching up the tree 2564 * and these conditions mean that we need to keep climbing. 2565 */ 2566 error = SET_ERROR(ESRCH); 2567 } else if (lvl == 0) { 2568 dnode_phys_t *dnp = data; 2569 2570 ASSERT(dn->dn_type == DMU_OT_DNODE); 2571 ASSERT(!(flags & DNODE_FIND_BACKWARDS)); 2572 2573 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); 2574 i < blkfill; i += dnp[i].dn_extra_slots + 1) { 2575 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 2576 break; 2577 } 2578 2579 if (i == blkfill) 2580 error = SET_ERROR(ESRCH); 2581 2582 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + 2583 (i << DNODE_SHIFT); 2584 } else { 2585 blkptr_t *bp = data; 2586 uint64_t start = *offset; 2587 span = (lvl - 1) * epbs + dn->dn_datablkshift; 2588 minfill = 0; 2589 maxfill = blkfill << ((lvl - 1) * epbs); 2590 2591 if (hole) 2592 maxfill--; 2593 else 2594 minfill++; 2595 2596 if (span >= 8 * sizeof (*offset)) { 2597 /* This only happens on the highest indirection level */ 2598 ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1); 2599 *offset = 0; 2600 } else { 2601 *offset = *offset >> span; 2602 } 2603 2604 for (i = BF64_GET(*offset, 0, epbs); 2605 i >= 0 && i < epb; i += inc) { 2606 if (BP_GET_FILL(&bp[i]) >= minfill && 2607 BP_GET_FILL(&bp[i]) <= maxfill && 2608 (hole || bp[i].blk_birth > txg)) 2609 break; 2610 if (inc > 0 || *offset > 0) 2611 *offset += inc; 2612 } 2613 2614 if (span >= 8 * sizeof (*offset)) { 2615 *offset = start; 2616 } else { 2617 *offset = *offset << span; 2618 } 2619 2620 if (inc < 0) { 2621 /* traversing backwards; position offset at the end */ 2622 if (span < 8 * sizeof (*offset)) 2623 *offset = MIN(*offset + (1ULL << span) - 1, 2624 start); 2625 } else if (*offset < start) { 2626 *offset = start; 2627 } 2628 if (i < 0 || i >= epb) 2629 error = SET_ERROR(ESRCH); 2630 } 2631 2632 if (db != NULL) { 2633 rw_exit(&db->db_rwlock); 2634 dbuf_rele(db, FTAG); 2635 } 2636 2637 return (error); 2638 } 2639 2640 /* 2641 * Find the next hole, data, or sparse region at or after *offset. 2642 * The value 'blkfill' tells us how many items we expect to find 2643 * in an L0 data block; this value is 1 for normal objects, 2644 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 2645 * DNODES_PER_BLOCK when searching for sparse regions thereof. 2646 * 2647 * Examples: 2648 * 2649 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2650 * Finds the next/previous hole/data in a file. 2651 * Used in dmu_offset_next(). 2652 * 2653 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2654 * Finds the next free/allocated dnode an objset's meta-dnode. 2655 * Only finds objects that have new contents since txg (ie. 2656 * bonus buffer changes and content removal are ignored). 2657 * Used in dmu_object_next(). 2658 * 2659 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2660 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2661 * Used in dmu_object_alloc(). 2662 */ 2663 int 2664 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2665 int minlvl, uint64_t blkfill, uint64_t txg) 2666 { 2667 uint64_t initial_offset = *offset; 2668 int lvl, maxlvl; 2669 int error = 0; 2670 2671 if (!(flags & DNODE_FIND_HAVELOCK)) 2672 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2673 2674 if (dn->dn_phys->dn_nlevels == 0) { 2675 error = SET_ERROR(ESRCH); 2676 goto out; 2677 } 2678 2679 if (dn->dn_datablkshift == 0) { 2680 if (*offset < dn->dn_datablksz) { 2681 if (flags & DNODE_FIND_HOLE) 2682 *offset = dn->dn_datablksz; 2683 } else { 2684 error = SET_ERROR(ESRCH); 2685 } 2686 goto out; 2687 } 2688 2689 maxlvl = dn->dn_phys->dn_nlevels; 2690 2691 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2692 error = dnode_next_offset_level(dn, 2693 flags, offset, lvl, blkfill, txg); 2694 if (error != ESRCH) 2695 break; 2696 } 2697 2698 while (error == 0 && --lvl >= minlvl) { 2699 error = dnode_next_offset_level(dn, 2700 flags, offset, lvl, blkfill, txg); 2701 } 2702 2703 /* 2704 * There's always a "virtual hole" at the end of the object, even 2705 * if all BP's which physically exist are non-holes. 2706 */ 2707 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2708 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2709 error = 0; 2710 } 2711 2712 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2713 initial_offset < *offset : initial_offset > *offset)) 2714 error = SET_ERROR(ESRCH); 2715 out: 2716 if (!(flags & DNODE_FIND_HAVELOCK)) 2717 rw_exit(&dn->dn_struct_rwlock); 2718 2719 return (error); 2720 } 2721 2722 #if defined(_KERNEL) 2723 EXPORT_SYMBOL(dnode_hold); 2724 EXPORT_SYMBOL(dnode_rele); 2725 EXPORT_SYMBOL(dnode_set_nlevels); 2726 EXPORT_SYMBOL(dnode_set_blksz); 2727 EXPORT_SYMBOL(dnode_free_range); 2728 EXPORT_SYMBOL(dnode_evict_dbufs); 2729 EXPORT_SYMBOL(dnode_evict_bonus); 2730 #endif 2731 2732 ZFS_MODULE_PARAM(zfs, zfs_, default_bs, INT, ZMOD_RW, 2733 "Default dnode block shift"); 2734 ZFS_MODULE_PARAM(zfs, zfs_, default_ibs, INT, ZMOD_RW, 2735 "Default dnode indirect block shift"); 2736