1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/dbuf.h> 29 #include <sys/dnode.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_impl.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dmu_objset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/spa.h> 37 #include <sys/zio.h> 38 #include <sys/dmu_zfetch.h> 39 #include <sys/range_tree.h> 40 #include <sys/trace_zfs.h> 41 #include <sys/zfs_project.h> 42 43 dnode_stats_t dnode_stats = { 44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, 45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, 46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, 47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, 48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, 49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, 50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, 51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, 52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, 53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, 54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, 55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, 56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, 57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, 58 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, 59 { "dnode_allocate", KSTAT_DATA_UINT64 }, 60 { "dnode_reallocate", KSTAT_DATA_UINT64 }, 61 { "dnode_buf_evict", KSTAT_DATA_UINT64 }, 62 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, 63 { "dnode_alloc_race", KSTAT_DATA_UINT64 }, 64 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, 65 { "dnode_move_invalid", KSTAT_DATA_UINT64 }, 66 { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, 67 { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, 68 { "dnode_move_special", KSTAT_DATA_UINT64 }, 69 { "dnode_move_handle", KSTAT_DATA_UINT64 }, 70 { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, 71 { "dnode_move_active", KSTAT_DATA_UINT64 }, 72 }; 73 74 static kstat_t *dnode_ksp; 75 static kmem_cache_t *dnode_cache; 76 77 static dnode_phys_t dnode_phys_zero __maybe_unused; 78 79 int zfs_default_bs = SPA_MINBLOCKSHIFT; 80 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 81 82 #ifdef _KERNEL 83 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 84 #endif /* _KERNEL */ 85 86 static int 87 dbuf_compare(const void *x1, const void *x2) 88 { 89 const dmu_buf_impl_t *d1 = x1; 90 const dmu_buf_impl_t *d2 = x2; 91 92 int cmp = TREE_CMP(d1->db_level, d2->db_level); 93 if (likely(cmp)) 94 return (cmp); 95 96 cmp = TREE_CMP(d1->db_blkid, d2->db_blkid); 97 if (likely(cmp)) 98 return (cmp); 99 100 if (d1->db_state == DB_SEARCH) { 101 ASSERT3S(d2->db_state, !=, DB_SEARCH); 102 return (-1); 103 } else if (d2->db_state == DB_SEARCH) { 104 ASSERT3S(d1->db_state, !=, DB_SEARCH); 105 return (1); 106 } 107 108 return (TREE_PCMP(d1, d2)); 109 } 110 111 /* ARGSUSED */ 112 static int 113 dnode_cons(void *arg, void *unused, int kmflag) 114 { 115 dnode_t *dn = arg; 116 int i; 117 118 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL); 119 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 120 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 121 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 122 cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL); 123 124 /* 125 * Every dbuf has a reference, and dropping a tracked reference is 126 * O(number of references), so don't track dn_holds. 127 */ 128 zfs_refcount_create_untracked(&dn->dn_holds); 129 zfs_refcount_create(&dn->dn_tx_holds); 130 list_link_init(&dn->dn_link); 131 132 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 133 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 134 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 135 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 136 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 137 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 138 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 139 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid)); 140 141 for (i = 0; i < TXG_SIZE; i++) { 142 multilist_link_init(&dn->dn_dirty_link[i]); 143 dn->dn_free_ranges[i] = NULL; 144 list_create(&dn->dn_dirty_records[i], 145 sizeof (dbuf_dirty_record_t), 146 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 147 } 148 149 dn->dn_allocated_txg = 0; 150 dn->dn_free_txg = 0; 151 dn->dn_assigned_txg = 0; 152 dn->dn_dirty_txg = 0; 153 dn->dn_dirtyctx = 0; 154 dn->dn_dirtyctx_firstset = NULL; 155 dn->dn_bonus = NULL; 156 dn->dn_have_spill = B_FALSE; 157 dn->dn_zio = NULL; 158 dn->dn_oldused = 0; 159 dn->dn_oldflags = 0; 160 dn->dn_olduid = 0; 161 dn->dn_oldgid = 0; 162 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 163 dn->dn_newuid = 0; 164 dn->dn_newgid = 0; 165 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 166 dn->dn_id_flags = 0; 167 168 dn->dn_dbufs_count = 0; 169 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 170 offsetof(dmu_buf_impl_t, db_link)); 171 172 dn->dn_moved = 0; 173 return (0); 174 } 175 176 /* ARGSUSED */ 177 static void 178 dnode_dest(void *arg, void *unused) 179 { 180 int i; 181 dnode_t *dn = arg; 182 183 rw_destroy(&dn->dn_struct_rwlock); 184 mutex_destroy(&dn->dn_mtx); 185 mutex_destroy(&dn->dn_dbufs_mtx); 186 cv_destroy(&dn->dn_notxholds); 187 cv_destroy(&dn->dn_nodnholds); 188 zfs_refcount_destroy(&dn->dn_holds); 189 zfs_refcount_destroy(&dn->dn_tx_holds); 190 ASSERT(!list_link_active(&dn->dn_link)); 191 192 for (i = 0; i < TXG_SIZE; i++) { 193 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 194 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 195 list_destroy(&dn->dn_dirty_records[i]); 196 ASSERT0(dn->dn_next_nblkptr[i]); 197 ASSERT0(dn->dn_next_nlevels[i]); 198 ASSERT0(dn->dn_next_indblkshift[i]); 199 ASSERT0(dn->dn_next_bonustype[i]); 200 ASSERT0(dn->dn_rm_spillblk[i]); 201 ASSERT0(dn->dn_next_bonuslen[i]); 202 ASSERT0(dn->dn_next_blksz[i]); 203 ASSERT0(dn->dn_next_maxblkid[i]); 204 } 205 206 ASSERT0(dn->dn_allocated_txg); 207 ASSERT0(dn->dn_free_txg); 208 ASSERT0(dn->dn_assigned_txg); 209 ASSERT0(dn->dn_dirty_txg); 210 ASSERT0(dn->dn_dirtyctx); 211 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 212 ASSERT3P(dn->dn_bonus, ==, NULL); 213 ASSERT(!dn->dn_have_spill); 214 ASSERT3P(dn->dn_zio, ==, NULL); 215 ASSERT0(dn->dn_oldused); 216 ASSERT0(dn->dn_oldflags); 217 ASSERT0(dn->dn_olduid); 218 ASSERT0(dn->dn_oldgid); 219 ASSERT0(dn->dn_oldprojid); 220 ASSERT0(dn->dn_newuid); 221 ASSERT0(dn->dn_newgid); 222 ASSERT0(dn->dn_newprojid); 223 ASSERT0(dn->dn_id_flags); 224 225 ASSERT0(dn->dn_dbufs_count); 226 avl_destroy(&dn->dn_dbufs); 227 } 228 229 void 230 dnode_init(void) 231 { 232 ASSERT(dnode_cache == NULL); 233 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t), 234 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 235 kmem_cache_set_move(dnode_cache, dnode_move); 236 237 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", 238 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), 239 KSTAT_FLAG_VIRTUAL); 240 if (dnode_ksp != NULL) { 241 dnode_ksp->ks_data = &dnode_stats; 242 kstat_install(dnode_ksp); 243 } 244 } 245 246 void 247 dnode_fini(void) 248 { 249 if (dnode_ksp != NULL) { 250 kstat_delete(dnode_ksp); 251 dnode_ksp = NULL; 252 } 253 254 kmem_cache_destroy(dnode_cache); 255 dnode_cache = NULL; 256 } 257 258 259 #ifdef ZFS_DEBUG 260 void 261 dnode_verify(dnode_t *dn) 262 { 263 int drop_struct_lock = FALSE; 264 265 ASSERT(dn->dn_phys); 266 ASSERT(dn->dn_objset); 267 ASSERT(dn->dn_handle->dnh_dnode == dn); 268 269 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 270 271 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 272 return; 273 274 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 275 rw_enter(&dn->dn_struct_rwlock, RW_READER); 276 drop_struct_lock = TRUE; 277 } 278 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 279 int i; 280 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 281 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 282 if (dn->dn_datablkshift) { 283 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 284 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 285 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 286 } 287 ASSERT3U(dn->dn_nlevels, <=, 30); 288 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 289 ASSERT3U(dn->dn_nblkptr, >=, 1); 290 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 291 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); 292 ASSERT3U(dn->dn_datablksz, ==, 293 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 294 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 295 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 296 dn->dn_bonuslen, <=, max_bonuslen); 297 for (i = 0; i < TXG_SIZE; i++) { 298 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 299 } 300 } 301 if (dn->dn_phys->dn_type != DMU_OT_NONE) 302 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 303 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 304 if (dn->dn_dbuf != NULL) { 305 ASSERT3P(dn->dn_phys, ==, 306 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 307 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 308 } 309 if (drop_struct_lock) 310 rw_exit(&dn->dn_struct_rwlock); 311 } 312 #endif 313 314 void 315 dnode_byteswap(dnode_phys_t *dnp) 316 { 317 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 318 int i; 319 320 if (dnp->dn_type == DMU_OT_NONE) { 321 bzero(dnp, sizeof (dnode_phys_t)); 322 return; 323 } 324 325 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 326 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 327 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); 328 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 329 dnp->dn_used = BSWAP_64(dnp->dn_used); 330 331 /* 332 * dn_nblkptr is only one byte, so it's OK to read it in either 333 * byte order. We can't read dn_bouslen. 334 */ 335 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 336 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 337 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 338 buf64[i] = BSWAP_64(buf64[i]); 339 340 /* 341 * OK to check dn_bonuslen for zero, because it won't matter if 342 * we have the wrong byte order. This is necessary because the 343 * dnode dnode is smaller than a regular dnode. 344 */ 345 if (dnp->dn_bonuslen != 0) { 346 /* 347 * Note that the bonus length calculated here may be 348 * longer than the actual bonus buffer. This is because 349 * we always put the bonus buffer after the last block 350 * pointer (instead of packing it against the end of the 351 * dnode buffer). 352 */ 353 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 354 int slots = dnp->dn_extra_slots + 1; 355 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off; 356 dmu_object_byteswap_t byteswap; 357 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 358 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype); 359 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 360 } 361 362 /* Swap SPILL block if we have one */ 363 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 364 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); 365 } 366 367 void 368 dnode_buf_byteswap(void *vbuf, size_t size) 369 { 370 int i = 0; 371 372 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 373 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 374 375 while (i < size) { 376 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); 377 dnode_byteswap(dnp); 378 379 i += DNODE_MIN_SIZE; 380 if (dnp->dn_type != DMU_OT_NONE) 381 i += dnp->dn_extra_slots * DNODE_MIN_SIZE; 382 } 383 } 384 385 void 386 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 387 { 388 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 389 390 dnode_setdirty(dn, tx); 391 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 392 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 393 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 394 395 if (newsize < dn->dn_bonuslen) { 396 /* clear any data after the end of the new size */ 397 size_t diff = dn->dn_bonuslen - newsize; 398 char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize; 399 bzero(data_end, diff); 400 } 401 402 dn->dn_bonuslen = newsize; 403 if (newsize == 0) 404 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 405 else 406 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 407 rw_exit(&dn->dn_struct_rwlock); 408 } 409 410 void 411 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 412 { 413 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 414 dnode_setdirty(dn, tx); 415 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 416 dn->dn_bonustype = newtype; 417 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 418 rw_exit(&dn->dn_struct_rwlock); 419 } 420 421 void 422 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 423 { 424 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 425 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 426 dnode_setdirty(dn, tx); 427 dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK; 428 dn->dn_have_spill = B_FALSE; 429 } 430 431 static void 432 dnode_setdblksz(dnode_t *dn, int size) 433 { 434 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 435 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 436 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 437 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 438 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 439 dn->dn_datablksz = size; 440 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 441 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 442 } 443 444 static dnode_t * 445 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 446 uint64_t object, dnode_handle_t *dnh) 447 { 448 dnode_t *dn; 449 450 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 451 dn->dn_moved = 0; 452 453 /* 454 * Defer setting dn_objset until the dnode is ready to be a candidate 455 * for the dnode_move() callback. 456 */ 457 dn->dn_object = object; 458 dn->dn_dbuf = db; 459 dn->dn_handle = dnh; 460 dn->dn_phys = dnp; 461 462 if (dnp->dn_datablkszsec) { 463 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 464 } else { 465 dn->dn_datablksz = 0; 466 dn->dn_datablkszsec = 0; 467 dn->dn_datablkshift = 0; 468 } 469 dn->dn_indblkshift = dnp->dn_indblkshift; 470 dn->dn_nlevels = dnp->dn_nlevels; 471 dn->dn_type = dnp->dn_type; 472 dn->dn_nblkptr = dnp->dn_nblkptr; 473 dn->dn_checksum = dnp->dn_checksum; 474 dn->dn_compress = dnp->dn_compress; 475 dn->dn_bonustype = dnp->dn_bonustype; 476 dn->dn_bonuslen = dnp->dn_bonuslen; 477 dn->dn_num_slots = dnp->dn_extra_slots + 1; 478 dn->dn_maxblkid = dnp->dn_maxblkid; 479 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 480 dn->dn_id_flags = 0; 481 482 dmu_zfetch_init(&dn->dn_zfetch, dn); 483 484 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 485 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 486 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); 487 488 mutex_enter(&os->os_lock); 489 490 /* 491 * Exclude special dnodes from os_dnodes so an empty os_dnodes 492 * signifies that the special dnodes have no references from 493 * their children (the entries in os_dnodes). This allows 494 * dnode_destroy() to easily determine if the last child has 495 * been removed and then complete eviction of the objset. 496 */ 497 if (!DMU_OBJECT_IS_SPECIAL(object)) 498 list_insert_head(&os->os_dnodes, dn); 499 membar_producer(); 500 501 /* 502 * Everything else must be valid before assigning dn_objset 503 * makes the dnode eligible for dnode_move(). 504 */ 505 dn->dn_objset = os; 506 507 dnh->dnh_dnode = dn; 508 mutex_exit(&os->os_lock); 509 510 arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE); 511 512 return (dn); 513 } 514 515 /* 516 * Caller must be holding the dnode handle, which is released upon return. 517 */ 518 static void 519 dnode_destroy(dnode_t *dn) 520 { 521 objset_t *os = dn->dn_objset; 522 boolean_t complete_os_eviction = B_FALSE; 523 524 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 525 526 mutex_enter(&os->os_lock); 527 POINTER_INVALIDATE(&dn->dn_objset); 528 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 529 list_remove(&os->os_dnodes, dn); 530 complete_os_eviction = 531 list_is_empty(&os->os_dnodes) && 532 list_link_active(&os->os_evicting_node); 533 } 534 mutex_exit(&os->os_lock); 535 536 /* the dnode can no longer move, so we can release the handle */ 537 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) 538 zrl_remove(&dn->dn_handle->dnh_zrlock); 539 540 dn->dn_allocated_txg = 0; 541 dn->dn_free_txg = 0; 542 dn->dn_assigned_txg = 0; 543 dn->dn_dirty_txg = 0; 544 545 dn->dn_dirtyctx = 0; 546 dn->dn_dirtyctx_firstset = NULL; 547 if (dn->dn_bonus != NULL) { 548 mutex_enter(&dn->dn_bonus->db_mtx); 549 dbuf_destroy(dn->dn_bonus); 550 dn->dn_bonus = NULL; 551 } 552 dn->dn_zio = NULL; 553 554 dn->dn_have_spill = B_FALSE; 555 dn->dn_oldused = 0; 556 dn->dn_oldflags = 0; 557 dn->dn_olduid = 0; 558 dn->dn_oldgid = 0; 559 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 560 dn->dn_newuid = 0; 561 dn->dn_newgid = 0; 562 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 563 dn->dn_id_flags = 0; 564 565 dmu_zfetch_fini(&dn->dn_zfetch); 566 kmem_cache_free(dnode_cache, dn); 567 arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE); 568 569 if (complete_os_eviction) 570 dmu_objset_evict_done(os); 571 } 572 573 void 574 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 575 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 576 { 577 int i; 578 579 ASSERT3U(dn_slots, >, 0); 580 ASSERT3U(dn_slots << DNODE_SHIFT, <=, 581 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); 582 ASSERT3U(blocksize, <=, 583 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 584 if (blocksize == 0) 585 blocksize = 1 << zfs_default_bs; 586 else 587 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 588 589 if (ibs == 0) 590 ibs = zfs_default_ibs; 591 592 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 593 594 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n", 595 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots); 596 DNODE_STAT_BUMP(dnode_allocate); 597 598 ASSERT(dn->dn_type == DMU_OT_NONE); 599 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 600 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 601 ASSERT(ot != DMU_OT_NONE); 602 ASSERT(DMU_OT_IS_VALID(ot)); 603 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 604 (bonustype == DMU_OT_SA && bonuslen == 0) || 605 (bonustype != DMU_OT_NONE && bonuslen != 0)); 606 ASSERT(DMU_OT_IS_VALID(bonustype)); 607 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); 608 ASSERT(dn->dn_type == DMU_OT_NONE); 609 ASSERT0(dn->dn_maxblkid); 610 ASSERT0(dn->dn_allocated_txg); 611 ASSERT0(dn->dn_assigned_txg); 612 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 613 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); 614 ASSERT(avl_is_empty(&dn->dn_dbufs)); 615 616 for (i = 0; i < TXG_SIZE; i++) { 617 ASSERT0(dn->dn_next_nblkptr[i]); 618 ASSERT0(dn->dn_next_nlevels[i]); 619 ASSERT0(dn->dn_next_indblkshift[i]); 620 ASSERT0(dn->dn_next_bonuslen[i]); 621 ASSERT0(dn->dn_next_bonustype[i]); 622 ASSERT0(dn->dn_rm_spillblk[i]); 623 ASSERT0(dn->dn_next_blksz[i]); 624 ASSERT0(dn->dn_next_maxblkid[i]); 625 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 626 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 627 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 628 } 629 630 dn->dn_type = ot; 631 dnode_setdblksz(dn, blocksize); 632 dn->dn_indblkshift = ibs; 633 dn->dn_nlevels = 1; 634 dn->dn_num_slots = dn_slots; 635 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 636 dn->dn_nblkptr = 1; 637 else { 638 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 639 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 640 SPA_BLKPTRSHIFT)); 641 } 642 643 dn->dn_bonustype = bonustype; 644 dn->dn_bonuslen = bonuslen; 645 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 646 dn->dn_compress = ZIO_COMPRESS_INHERIT; 647 dn->dn_dirtyctx = 0; 648 649 dn->dn_free_txg = 0; 650 dn->dn_dirtyctx_firstset = NULL; 651 dn->dn_dirty_txg = 0; 652 653 dn->dn_allocated_txg = tx->tx_txg; 654 dn->dn_id_flags = 0; 655 656 dnode_setdirty(dn, tx); 657 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 658 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 659 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 660 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 661 } 662 663 void 664 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 665 dmu_object_type_t bonustype, int bonuslen, int dn_slots, 666 boolean_t keep_spill, dmu_tx_t *tx) 667 { 668 int nblkptr; 669 670 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 671 ASSERT3U(blocksize, <=, 672 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 673 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 674 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 675 ASSERT(tx->tx_txg != 0); 676 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 677 (bonustype != DMU_OT_NONE && bonuslen != 0) || 678 (bonustype == DMU_OT_SA && bonuslen == 0)); 679 ASSERT(DMU_OT_IS_VALID(bonustype)); 680 ASSERT3U(bonuslen, <=, 681 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); 682 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); 683 684 dnode_free_interior_slots(dn); 685 DNODE_STAT_BUMP(dnode_reallocate); 686 687 /* clean up any unreferenced dbufs */ 688 dnode_evict_dbufs(dn); 689 690 dn->dn_id_flags = 0; 691 692 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 693 dnode_setdirty(dn, tx); 694 if (dn->dn_datablksz != blocksize) { 695 /* change blocksize */ 696 ASSERT0(dn->dn_maxblkid); 697 ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 698 dnode_block_freed(dn, 0)); 699 700 dnode_setdblksz(dn, blocksize); 701 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize; 702 } 703 if (dn->dn_bonuslen != bonuslen) 704 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen; 705 706 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 707 nblkptr = 1; 708 else 709 nblkptr = MIN(DN_MAX_NBLKPTR, 710 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 711 SPA_BLKPTRSHIFT)); 712 if (dn->dn_bonustype != bonustype) 713 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype; 714 if (dn->dn_nblkptr != nblkptr) 715 dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr; 716 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) { 717 dbuf_rm_spill(dn, tx); 718 dnode_rm_spill(dn, tx); 719 } 720 721 rw_exit(&dn->dn_struct_rwlock); 722 723 /* change type */ 724 dn->dn_type = ot; 725 726 /* change bonus size and type */ 727 mutex_enter(&dn->dn_mtx); 728 dn->dn_bonustype = bonustype; 729 dn->dn_bonuslen = bonuslen; 730 dn->dn_num_slots = dn_slots; 731 dn->dn_nblkptr = nblkptr; 732 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 733 dn->dn_compress = ZIO_COMPRESS_INHERIT; 734 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 735 736 /* fix up the bonus db_size */ 737 if (dn->dn_bonus) { 738 dn->dn_bonus->db.db_size = 739 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 740 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 741 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 742 } 743 744 dn->dn_allocated_txg = tx->tx_txg; 745 mutex_exit(&dn->dn_mtx); 746 } 747 748 #ifdef _KERNEL 749 static void 750 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 751 { 752 int i; 753 754 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 755 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 756 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 757 ASSERT(!MUTEX_HELD(&odn->dn_zfetch.zf_lock)); 758 759 /* Copy fields. */ 760 ndn->dn_objset = odn->dn_objset; 761 ndn->dn_object = odn->dn_object; 762 ndn->dn_dbuf = odn->dn_dbuf; 763 ndn->dn_handle = odn->dn_handle; 764 ndn->dn_phys = odn->dn_phys; 765 ndn->dn_type = odn->dn_type; 766 ndn->dn_bonuslen = odn->dn_bonuslen; 767 ndn->dn_bonustype = odn->dn_bonustype; 768 ndn->dn_nblkptr = odn->dn_nblkptr; 769 ndn->dn_checksum = odn->dn_checksum; 770 ndn->dn_compress = odn->dn_compress; 771 ndn->dn_nlevels = odn->dn_nlevels; 772 ndn->dn_indblkshift = odn->dn_indblkshift; 773 ndn->dn_datablkshift = odn->dn_datablkshift; 774 ndn->dn_datablkszsec = odn->dn_datablkszsec; 775 ndn->dn_datablksz = odn->dn_datablksz; 776 ndn->dn_maxblkid = odn->dn_maxblkid; 777 ndn->dn_num_slots = odn->dn_num_slots; 778 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], 779 sizeof (odn->dn_next_type)); 780 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 781 sizeof (odn->dn_next_nblkptr)); 782 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 783 sizeof (odn->dn_next_nlevels)); 784 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 785 sizeof (odn->dn_next_indblkshift)); 786 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 787 sizeof (odn->dn_next_bonustype)); 788 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 789 sizeof (odn->dn_rm_spillblk)); 790 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 791 sizeof (odn->dn_next_bonuslen)); 792 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 793 sizeof (odn->dn_next_blksz)); 794 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0], 795 sizeof (odn->dn_next_maxblkid)); 796 for (i = 0; i < TXG_SIZE; i++) { 797 list_move_tail(&ndn->dn_dirty_records[i], 798 &odn->dn_dirty_records[i]); 799 } 800 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 801 sizeof (odn->dn_free_ranges)); 802 ndn->dn_allocated_txg = odn->dn_allocated_txg; 803 ndn->dn_free_txg = odn->dn_free_txg; 804 ndn->dn_assigned_txg = odn->dn_assigned_txg; 805 ndn->dn_dirty_txg = odn->dn_dirty_txg; 806 ndn->dn_dirtyctx = odn->dn_dirtyctx; 807 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 808 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); 809 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 810 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 811 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 812 ndn->dn_dbufs_count = odn->dn_dbufs_count; 813 ndn->dn_bonus = odn->dn_bonus; 814 ndn->dn_have_spill = odn->dn_have_spill; 815 ndn->dn_zio = odn->dn_zio; 816 ndn->dn_oldused = odn->dn_oldused; 817 ndn->dn_oldflags = odn->dn_oldflags; 818 ndn->dn_olduid = odn->dn_olduid; 819 ndn->dn_oldgid = odn->dn_oldgid; 820 ndn->dn_oldprojid = odn->dn_oldprojid; 821 ndn->dn_newuid = odn->dn_newuid; 822 ndn->dn_newgid = odn->dn_newgid; 823 ndn->dn_newprojid = odn->dn_newprojid; 824 ndn->dn_id_flags = odn->dn_id_flags; 825 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 826 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 827 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 828 829 /* 830 * Update back pointers. Updating the handle fixes the back pointer of 831 * every descendant dbuf as well as the bonus dbuf. 832 */ 833 ASSERT(ndn->dn_handle->dnh_dnode == odn); 834 ndn->dn_handle->dnh_dnode = ndn; 835 if (ndn->dn_zfetch.zf_dnode == odn) { 836 ndn->dn_zfetch.zf_dnode = ndn; 837 } 838 839 /* 840 * Invalidate the original dnode by clearing all of its back pointers. 841 */ 842 odn->dn_dbuf = NULL; 843 odn->dn_handle = NULL; 844 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 845 offsetof(dmu_buf_impl_t, db_link)); 846 odn->dn_dbufs_count = 0; 847 odn->dn_bonus = NULL; 848 dmu_zfetch_fini(&odn->dn_zfetch); 849 850 /* 851 * Set the low bit of the objset pointer to ensure that dnode_move() 852 * recognizes the dnode as invalid in any subsequent callback. 853 */ 854 POINTER_INVALIDATE(&odn->dn_objset); 855 856 /* 857 * Satisfy the destructor. 858 */ 859 for (i = 0; i < TXG_SIZE; i++) { 860 list_create(&odn->dn_dirty_records[i], 861 sizeof (dbuf_dirty_record_t), 862 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 863 odn->dn_free_ranges[i] = NULL; 864 odn->dn_next_nlevels[i] = 0; 865 odn->dn_next_indblkshift[i] = 0; 866 odn->dn_next_bonustype[i] = 0; 867 odn->dn_rm_spillblk[i] = 0; 868 odn->dn_next_bonuslen[i] = 0; 869 odn->dn_next_blksz[i] = 0; 870 } 871 odn->dn_allocated_txg = 0; 872 odn->dn_free_txg = 0; 873 odn->dn_assigned_txg = 0; 874 odn->dn_dirty_txg = 0; 875 odn->dn_dirtyctx = 0; 876 odn->dn_dirtyctx_firstset = NULL; 877 odn->dn_have_spill = B_FALSE; 878 odn->dn_zio = NULL; 879 odn->dn_oldused = 0; 880 odn->dn_oldflags = 0; 881 odn->dn_olduid = 0; 882 odn->dn_oldgid = 0; 883 odn->dn_oldprojid = ZFS_DEFAULT_PROJID; 884 odn->dn_newuid = 0; 885 odn->dn_newgid = 0; 886 odn->dn_newprojid = ZFS_DEFAULT_PROJID; 887 odn->dn_id_flags = 0; 888 889 /* 890 * Mark the dnode. 891 */ 892 ndn->dn_moved = 1; 893 odn->dn_moved = (uint8_t)-1; 894 } 895 896 /*ARGSUSED*/ 897 static kmem_cbrc_t 898 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 899 { 900 dnode_t *odn = buf, *ndn = newbuf; 901 objset_t *os; 902 int64_t refcount; 903 uint32_t dbufs; 904 905 /* 906 * The dnode is on the objset's list of known dnodes if the objset 907 * pointer is valid. We set the low bit of the objset pointer when 908 * freeing the dnode to invalidate it, and the memory patterns written 909 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 910 * A newly created dnode sets the objset pointer last of all to indicate 911 * that the dnode is known and in a valid state to be moved by this 912 * function. 913 */ 914 os = odn->dn_objset; 915 if (!POINTER_IS_VALID(os)) { 916 DNODE_STAT_BUMP(dnode_move_invalid); 917 return (KMEM_CBRC_DONT_KNOW); 918 } 919 920 /* 921 * Ensure that the objset does not go away during the move. 922 */ 923 rw_enter(&os_lock, RW_WRITER); 924 if (os != odn->dn_objset) { 925 rw_exit(&os_lock); 926 DNODE_STAT_BUMP(dnode_move_recheck1); 927 return (KMEM_CBRC_DONT_KNOW); 928 } 929 930 /* 931 * If the dnode is still valid, then so is the objset. We know that no 932 * valid objset can be freed while we hold os_lock, so we can safely 933 * ensure that the objset remains in use. 934 */ 935 mutex_enter(&os->os_lock); 936 937 /* 938 * Recheck the objset pointer in case the dnode was removed just before 939 * acquiring the lock. 940 */ 941 if (os != odn->dn_objset) { 942 mutex_exit(&os->os_lock); 943 rw_exit(&os_lock); 944 DNODE_STAT_BUMP(dnode_move_recheck2); 945 return (KMEM_CBRC_DONT_KNOW); 946 } 947 948 /* 949 * At this point we know that as long as we hold os->os_lock, the dnode 950 * cannot be freed and fields within the dnode can be safely accessed. 951 * The objset listing this dnode cannot go away as long as this dnode is 952 * on its list. 953 */ 954 rw_exit(&os_lock); 955 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 956 mutex_exit(&os->os_lock); 957 DNODE_STAT_BUMP(dnode_move_special); 958 return (KMEM_CBRC_NO); 959 } 960 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 961 962 /* 963 * Lock the dnode handle to prevent the dnode from obtaining any new 964 * holds. This also prevents the descendant dbufs and the bonus dbuf 965 * from accessing the dnode, so that we can discount their holds. The 966 * handle is safe to access because we know that while the dnode cannot 967 * go away, neither can its handle. Once we hold dnh_zrlock, we can 968 * safely move any dnode referenced only by dbufs. 969 */ 970 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 971 mutex_exit(&os->os_lock); 972 DNODE_STAT_BUMP(dnode_move_handle); 973 return (KMEM_CBRC_LATER); 974 } 975 976 /* 977 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 978 * We need to guarantee that there is a hold for every dbuf in order to 979 * determine whether the dnode is actively referenced. Falsely matching 980 * a dbuf to an active hold would lead to an unsafe move. It's possible 981 * that a thread already having an active dnode hold is about to add a 982 * dbuf, and we can't compare hold and dbuf counts while the add is in 983 * progress. 984 */ 985 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 986 zrl_exit(&odn->dn_handle->dnh_zrlock); 987 mutex_exit(&os->os_lock); 988 DNODE_STAT_BUMP(dnode_move_rwlock); 989 return (KMEM_CBRC_LATER); 990 } 991 992 /* 993 * A dbuf may be removed (evicted) without an active dnode hold. In that 994 * case, the dbuf count is decremented under the handle lock before the 995 * dbuf's hold is released. This order ensures that if we count the hold 996 * after the dbuf is removed but before its hold is released, we will 997 * treat the unmatched hold as active and exit safely. If we count the 998 * hold before the dbuf is removed, the hold is discounted, and the 999 * removal is blocked until the move completes. 1000 */ 1001 refcount = zfs_refcount_count(&odn->dn_holds); 1002 ASSERT(refcount >= 0); 1003 dbufs = DN_DBUFS_COUNT(odn); 1004 1005 /* We can't have more dbufs than dnode holds. */ 1006 ASSERT3U(dbufs, <=, refcount); 1007 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 1008 uint32_t, dbufs); 1009 1010 if (refcount > dbufs) { 1011 rw_exit(&odn->dn_struct_rwlock); 1012 zrl_exit(&odn->dn_handle->dnh_zrlock); 1013 mutex_exit(&os->os_lock); 1014 DNODE_STAT_BUMP(dnode_move_active); 1015 return (KMEM_CBRC_LATER); 1016 } 1017 1018 rw_exit(&odn->dn_struct_rwlock); 1019 1020 /* 1021 * At this point we know that anyone with a hold on the dnode is not 1022 * actively referencing it. The dnode is known and in a valid state to 1023 * move. We're holding the locks needed to execute the critical section. 1024 */ 1025 dnode_move_impl(odn, ndn); 1026 1027 list_link_replace(&odn->dn_link, &ndn->dn_link); 1028 /* If the dnode was safe to move, the refcount cannot have changed. */ 1029 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); 1030 ASSERT(dbufs == DN_DBUFS_COUNT(ndn)); 1031 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 1032 mutex_exit(&os->os_lock); 1033 1034 return (KMEM_CBRC_YES); 1035 } 1036 #endif /* _KERNEL */ 1037 1038 static void 1039 dnode_slots_hold(dnode_children_t *children, int idx, int slots) 1040 { 1041 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1042 1043 for (int i = idx; i < idx + slots; i++) { 1044 dnode_handle_t *dnh = &children->dnc_children[i]; 1045 zrl_add(&dnh->dnh_zrlock); 1046 } 1047 } 1048 1049 static void 1050 dnode_slots_rele(dnode_children_t *children, int idx, int slots) 1051 { 1052 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1053 1054 for (int i = idx; i < idx + slots; i++) { 1055 dnode_handle_t *dnh = &children->dnc_children[i]; 1056 1057 if (zrl_is_locked(&dnh->dnh_zrlock)) 1058 zrl_exit(&dnh->dnh_zrlock); 1059 else 1060 zrl_remove(&dnh->dnh_zrlock); 1061 } 1062 } 1063 1064 static int 1065 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) 1066 { 1067 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1068 1069 for (int i = idx; i < idx + slots; i++) { 1070 dnode_handle_t *dnh = &children->dnc_children[i]; 1071 1072 if (!zrl_tryenter(&dnh->dnh_zrlock)) { 1073 for (int j = idx; j < i; j++) { 1074 dnh = &children->dnc_children[j]; 1075 zrl_exit(&dnh->dnh_zrlock); 1076 } 1077 1078 return (0); 1079 } 1080 } 1081 1082 return (1); 1083 } 1084 1085 static void 1086 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) 1087 { 1088 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1089 1090 for (int i = idx; i < idx + slots; i++) { 1091 dnode_handle_t *dnh = &children->dnc_children[i]; 1092 dnh->dnh_dnode = ptr; 1093 } 1094 } 1095 1096 static boolean_t 1097 dnode_check_slots_free(dnode_children_t *children, int idx, int slots) 1098 { 1099 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1100 1101 /* 1102 * If all dnode slots are either already free or 1103 * evictable return B_TRUE. 1104 */ 1105 for (int i = idx; i < idx + slots; i++) { 1106 dnode_handle_t *dnh = &children->dnc_children[i]; 1107 dnode_t *dn = dnh->dnh_dnode; 1108 1109 if (dn == DN_SLOT_FREE) { 1110 continue; 1111 } else if (DN_SLOT_IS_PTR(dn)) { 1112 mutex_enter(&dn->dn_mtx); 1113 boolean_t can_free = (dn->dn_type == DMU_OT_NONE && 1114 zfs_refcount_is_zero(&dn->dn_holds) && 1115 !DNODE_IS_DIRTY(dn)); 1116 mutex_exit(&dn->dn_mtx); 1117 1118 if (!can_free) 1119 return (B_FALSE); 1120 else 1121 continue; 1122 } else { 1123 return (B_FALSE); 1124 } 1125 } 1126 1127 return (B_TRUE); 1128 } 1129 1130 static void 1131 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) 1132 { 1133 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1134 1135 for (int i = idx; i < idx + slots; i++) { 1136 dnode_handle_t *dnh = &children->dnc_children[i]; 1137 1138 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 1139 1140 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1141 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); 1142 dnode_destroy(dnh->dnh_dnode); 1143 dnh->dnh_dnode = DN_SLOT_FREE; 1144 } 1145 } 1146 } 1147 1148 void 1149 dnode_free_interior_slots(dnode_t *dn) 1150 { 1151 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); 1152 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; 1153 int idx = (dn->dn_object & (epb - 1)) + 1; 1154 int slots = dn->dn_num_slots - 1; 1155 1156 if (slots == 0) 1157 return; 1158 1159 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1160 1161 while (!dnode_slots_tryenter(children, idx, slots)) { 1162 DNODE_STAT_BUMP(dnode_free_interior_lock_retry); 1163 cond_resched(); 1164 } 1165 1166 dnode_set_slots(children, idx, slots, DN_SLOT_FREE); 1167 dnode_slots_rele(children, idx, slots); 1168 } 1169 1170 void 1171 dnode_special_close(dnode_handle_t *dnh) 1172 { 1173 dnode_t *dn = dnh->dnh_dnode; 1174 1175 /* 1176 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final 1177 * zfs_refcount_remove() 1178 */ 1179 mutex_enter(&dn->dn_mtx); 1180 if (zfs_refcount_count(&dn->dn_holds) > 0) 1181 cv_wait(&dn->dn_nodnholds, &dn->dn_mtx); 1182 mutex_exit(&dn->dn_mtx); 1183 ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0); 1184 1185 ASSERT(dn->dn_dbuf == NULL || 1186 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1187 zrl_add(&dnh->dnh_zrlock); 1188 dnode_destroy(dn); /* implicit zrl_remove() */ 1189 zrl_destroy(&dnh->dnh_zrlock); 1190 dnh->dnh_dnode = NULL; 1191 } 1192 1193 void 1194 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1195 dnode_handle_t *dnh) 1196 { 1197 dnode_t *dn; 1198 1199 zrl_init(&dnh->dnh_zrlock); 1200 VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock)); 1201 1202 dn = dnode_create(os, dnp, NULL, object, dnh); 1203 DNODE_VERIFY(dn); 1204 1205 zrl_exit(&dnh->dnh_zrlock); 1206 } 1207 1208 static void 1209 dnode_buf_evict_async(void *dbu) 1210 { 1211 dnode_children_t *dnc = dbu; 1212 1213 DNODE_STAT_BUMP(dnode_buf_evict); 1214 1215 for (int i = 0; i < dnc->dnc_count; i++) { 1216 dnode_handle_t *dnh = &dnc->dnc_children[i]; 1217 dnode_t *dn; 1218 1219 /* 1220 * The dnode handle lock guards against the dnode moving to 1221 * another valid address, so there is no need here to guard 1222 * against changes to or from NULL. 1223 */ 1224 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1225 zrl_destroy(&dnh->dnh_zrlock); 1226 dnh->dnh_dnode = DN_SLOT_UNINIT; 1227 continue; 1228 } 1229 1230 zrl_add(&dnh->dnh_zrlock); 1231 dn = dnh->dnh_dnode; 1232 /* 1233 * If there are holds on this dnode, then there should 1234 * be holds on the dnode's containing dbuf as well; thus 1235 * it wouldn't be eligible for eviction and this function 1236 * would not have been called. 1237 */ 1238 ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); 1239 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 1240 1241 dnode_destroy(dn); /* implicit zrl_remove() for first slot */ 1242 zrl_destroy(&dnh->dnh_zrlock); 1243 dnh->dnh_dnode = DN_SLOT_UNINIT; 1244 } 1245 kmem_free(dnc, sizeof (dnode_children_t) + 1246 dnc->dnc_count * sizeof (dnode_handle_t)); 1247 } 1248 1249 /* 1250 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used 1251 * to ensure the hole at the specified object offset is large enough to 1252 * hold the dnode being created. The slots parameter is also used to ensure 1253 * a dnode does not span multiple dnode blocks. In both of these cases, if 1254 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases 1255 * are only possible when using DNODE_MUST_BE_FREE. 1256 * 1257 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. 1258 * dnode_hold_impl() will check if the requested dnode is already consumed 1259 * as an extra dnode slot by an large dnode, in which case it returns 1260 * ENOENT. 1261 * 1262 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just 1263 * return whether the hold would succeed or not. tag and dnp should set to 1264 * NULL in this case. 1265 * 1266 * errors: 1267 * EINVAL - Invalid object number or flags. 1268 * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) 1269 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) 1270 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) 1271 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) 1272 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) 1273 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) 1274 * EIO - I/O error when reading the meta dnode dbuf. 1275 * 1276 * succeeds even for free dnodes. 1277 */ 1278 int 1279 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, 1280 void *tag, dnode_t **dnp) 1281 { 1282 int epb, idx, err; 1283 int drop_struct_lock = FALSE; 1284 int type; 1285 uint64_t blk; 1286 dnode_t *mdn, *dn; 1287 dmu_buf_impl_t *db; 1288 dnode_children_t *dnc; 1289 dnode_phys_t *dn_block; 1290 dnode_handle_t *dnh; 1291 1292 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); 1293 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); 1294 IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL)); 1295 1296 /* 1297 * If you are holding the spa config lock as writer, you shouldn't 1298 * be asking the DMU to do *anything* unless it's the root pool 1299 * which may require us to read from the root filesystem while 1300 * holding some (not all) of the locks as writer. 1301 */ 1302 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1303 (spa_is_root(os->os_spa) && 1304 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1305 1306 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1307 1308 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT || 1309 object == DMU_PROJECTUSED_OBJECT) { 1310 if (object == DMU_USERUSED_OBJECT) 1311 dn = DMU_USERUSED_DNODE(os); 1312 else if (object == DMU_GROUPUSED_OBJECT) 1313 dn = DMU_GROUPUSED_DNODE(os); 1314 else 1315 dn = DMU_PROJECTUSED_DNODE(os); 1316 if (dn == NULL) 1317 return (SET_ERROR(ENOENT)); 1318 type = dn->dn_type; 1319 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1320 return (SET_ERROR(ENOENT)); 1321 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1322 return (SET_ERROR(EEXIST)); 1323 DNODE_VERIFY(dn); 1324 /* Don't actually hold if dry run, just return 0 */ 1325 if (!(flag & DNODE_DRY_RUN)) { 1326 (void) zfs_refcount_add(&dn->dn_holds, tag); 1327 *dnp = dn; 1328 } 1329 return (0); 1330 } 1331 1332 if (object == 0 || object >= DN_MAX_OBJECT) 1333 return (SET_ERROR(EINVAL)); 1334 1335 mdn = DMU_META_DNODE(os); 1336 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1337 1338 DNODE_VERIFY(mdn); 1339 1340 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1341 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1342 drop_struct_lock = TRUE; 1343 } 1344 1345 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1346 db = dbuf_hold(mdn, blk, FTAG); 1347 if (drop_struct_lock) 1348 rw_exit(&mdn->dn_struct_rwlock); 1349 if (db == NULL) { 1350 DNODE_STAT_BUMP(dnode_hold_dbuf_hold); 1351 return (SET_ERROR(EIO)); 1352 } 1353 1354 /* 1355 * We do not need to decrypt to read the dnode so it doesn't matter 1356 * if we get the encrypted or decrypted version. 1357 */ 1358 err = dbuf_read(db, NULL, DB_RF_CANFAIL | 1359 DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH); 1360 if (err) { 1361 DNODE_STAT_BUMP(dnode_hold_dbuf_read); 1362 dbuf_rele(db, FTAG); 1363 return (err); 1364 } 1365 1366 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1367 epb = db->db.db_size >> DNODE_SHIFT; 1368 1369 idx = object & (epb - 1); 1370 dn_block = (dnode_phys_t *)db->db.db_data; 1371 1372 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1373 dnc = dmu_buf_get_user(&db->db); 1374 dnh = NULL; 1375 if (dnc == NULL) { 1376 dnode_children_t *winner; 1377 int skip = 0; 1378 1379 dnc = kmem_zalloc(sizeof (dnode_children_t) + 1380 epb * sizeof (dnode_handle_t), KM_SLEEP); 1381 dnc->dnc_count = epb; 1382 dnh = &dnc->dnc_children[0]; 1383 1384 /* Initialize dnode slot status from dnode_phys_t */ 1385 for (int i = 0; i < epb; i++) { 1386 zrl_init(&dnh[i].dnh_zrlock); 1387 1388 if (skip) { 1389 skip--; 1390 continue; 1391 } 1392 1393 if (dn_block[i].dn_type != DMU_OT_NONE) { 1394 int interior = dn_block[i].dn_extra_slots; 1395 1396 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); 1397 dnode_set_slots(dnc, i + 1, interior, 1398 DN_SLOT_INTERIOR); 1399 skip = interior; 1400 } else { 1401 dnh[i].dnh_dnode = DN_SLOT_FREE; 1402 skip = 0; 1403 } 1404 } 1405 1406 dmu_buf_init_user(&dnc->dnc_dbu, NULL, 1407 dnode_buf_evict_async, NULL); 1408 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); 1409 if (winner != NULL) { 1410 1411 for (int i = 0; i < epb; i++) 1412 zrl_destroy(&dnh[i].dnh_zrlock); 1413 1414 kmem_free(dnc, sizeof (dnode_children_t) + 1415 epb * sizeof (dnode_handle_t)); 1416 dnc = winner; 1417 } 1418 } 1419 1420 ASSERT(dnc->dnc_count == epb); 1421 1422 if (flag & DNODE_MUST_BE_ALLOCATED) { 1423 slots = 1; 1424 1425 dnode_slots_hold(dnc, idx, slots); 1426 dnh = &dnc->dnc_children[idx]; 1427 1428 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1429 dn = dnh->dnh_dnode; 1430 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { 1431 DNODE_STAT_BUMP(dnode_hold_alloc_interior); 1432 dnode_slots_rele(dnc, idx, slots); 1433 dbuf_rele(db, FTAG); 1434 return (SET_ERROR(EEXIST)); 1435 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { 1436 DNODE_STAT_BUMP(dnode_hold_alloc_misses); 1437 dnode_slots_rele(dnc, idx, slots); 1438 dbuf_rele(db, FTAG); 1439 return (SET_ERROR(ENOENT)); 1440 } else { 1441 dnode_slots_rele(dnc, idx, slots); 1442 while (!dnode_slots_tryenter(dnc, idx, slots)) { 1443 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); 1444 cond_resched(); 1445 } 1446 1447 /* 1448 * Someone else won the race and called dnode_create() 1449 * after we checked DN_SLOT_IS_PTR() above but before 1450 * we acquired the lock. 1451 */ 1452 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1453 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); 1454 dn = dnh->dnh_dnode; 1455 } else { 1456 dn = dnode_create(os, dn_block + idx, db, 1457 object, dnh); 1458 } 1459 } 1460 1461 mutex_enter(&dn->dn_mtx); 1462 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { 1463 DNODE_STAT_BUMP(dnode_hold_alloc_type_none); 1464 mutex_exit(&dn->dn_mtx); 1465 dnode_slots_rele(dnc, idx, slots); 1466 dbuf_rele(db, FTAG); 1467 return (SET_ERROR(ENOENT)); 1468 } 1469 1470 /* Don't actually hold if dry run, just return 0 */ 1471 if (flag & DNODE_DRY_RUN) { 1472 mutex_exit(&dn->dn_mtx); 1473 dnode_slots_rele(dnc, idx, slots); 1474 dbuf_rele(db, FTAG); 1475 return (0); 1476 } 1477 1478 DNODE_STAT_BUMP(dnode_hold_alloc_hits); 1479 } else if (flag & DNODE_MUST_BE_FREE) { 1480 1481 if (idx + slots - 1 >= DNODES_PER_BLOCK) { 1482 DNODE_STAT_BUMP(dnode_hold_free_overflow); 1483 dbuf_rele(db, FTAG); 1484 return (SET_ERROR(ENOSPC)); 1485 } 1486 1487 dnode_slots_hold(dnc, idx, slots); 1488 1489 if (!dnode_check_slots_free(dnc, idx, slots)) { 1490 DNODE_STAT_BUMP(dnode_hold_free_misses); 1491 dnode_slots_rele(dnc, idx, slots); 1492 dbuf_rele(db, FTAG); 1493 return (SET_ERROR(ENOSPC)); 1494 } 1495 1496 dnode_slots_rele(dnc, idx, slots); 1497 while (!dnode_slots_tryenter(dnc, idx, slots)) { 1498 DNODE_STAT_BUMP(dnode_hold_free_lock_retry); 1499 cond_resched(); 1500 } 1501 1502 if (!dnode_check_slots_free(dnc, idx, slots)) { 1503 DNODE_STAT_BUMP(dnode_hold_free_lock_misses); 1504 dnode_slots_rele(dnc, idx, slots); 1505 dbuf_rele(db, FTAG); 1506 return (SET_ERROR(ENOSPC)); 1507 } 1508 1509 /* 1510 * Allocated but otherwise free dnodes which would 1511 * be in the interior of a multi-slot dnodes need 1512 * to be freed. Single slot dnodes can be safely 1513 * re-purposed as a performance optimization. 1514 */ 1515 if (slots > 1) 1516 dnode_reclaim_slots(dnc, idx + 1, slots - 1); 1517 1518 dnh = &dnc->dnc_children[idx]; 1519 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1520 dn = dnh->dnh_dnode; 1521 } else { 1522 dn = dnode_create(os, dn_block + idx, db, 1523 object, dnh); 1524 } 1525 1526 mutex_enter(&dn->dn_mtx); 1527 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { 1528 DNODE_STAT_BUMP(dnode_hold_free_refcount); 1529 mutex_exit(&dn->dn_mtx); 1530 dnode_slots_rele(dnc, idx, slots); 1531 dbuf_rele(db, FTAG); 1532 return (SET_ERROR(EEXIST)); 1533 } 1534 1535 /* Don't actually hold if dry run, just return 0 */ 1536 if (flag & DNODE_DRY_RUN) { 1537 mutex_exit(&dn->dn_mtx); 1538 dnode_slots_rele(dnc, idx, slots); 1539 dbuf_rele(db, FTAG); 1540 return (0); 1541 } 1542 1543 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); 1544 DNODE_STAT_BUMP(dnode_hold_free_hits); 1545 } else { 1546 dbuf_rele(db, FTAG); 1547 return (SET_ERROR(EINVAL)); 1548 } 1549 1550 ASSERT0(dn->dn_free_txg); 1551 1552 if (zfs_refcount_add(&dn->dn_holds, tag) == 1) 1553 dbuf_add_ref(db, dnh); 1554 1555 mutex_exit(&dn->dn_mtx); 1556 1557 /* Now we can rely on the hold to prevent the dnode from moving. */ 1558 dnode_slots_rele(dnc, idx, slots); 1559 1560 DNODE_VERIFY(dn); 1561 ASSERT3P(dnp, !=, NULL); 1562 ASSERT3P(dn->dn_dbuf, ==, db); 1563 ASSERT3U(dn->dn_object, ==, object); 1564 dbuf_rele(db, FTAG); 1565 1566 *dnp = dn; 1567 return (0); 1568 } 1569 1570 /* 1571 * Return held dnode if the object is allocated, NULL if not. 1572 */ 1573 int 1574 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1575 { 1576 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, 1577 dnp)); 1578 } 1579 1580 /* 1581 * Can only add a reference if there is already at least one 1582 * reference on the dnode. Returns FALSE if unable to add a 1583 * new reference. 1584 */ 1585 boolean_t 1586 dnode_add_ref(dnode_t *dn, void *tag) 1587 { 1588 mutex_enter(&dn->dn_mtx); 1589 if (zfs_refcount_is_zero(&dn->dn_holds)) { 1590 mutex_exit(&dn->dn_mtx); 1591 return (FALSE); 1592 } 1593 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); 1594 mutex_exit(&dn->dn_mtx); 1595 return (TRUE); 1596 } 1597 1598 void 1599 dnode_rele(dnode_t *dn, void *tag) 1600 { 1601 mutex_enter(&dn->dn_mtx); 1602 dnode_rele_and_unlock(dn, tag, B_FALSE); 1603 } 1604 1605 void 1606 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) 1607 { 1608 uint64_t refs; 1609 /* Get while the hold prevents the dnode from moving. */ 1610 dmu_buf_impl_t *db = dn->dn_dbuf; 1611 dnode_handle_t *dnh = dn->dn_handle; 1612 1613 refs = zfs_refcount_remove(&dn->dn_holds, tag); 1614 if (refs == 0) 1615 cv_broadcast(&dn->dn_nodnholds); 1616 mutex_exit(&dn->dn_mtx); 1617 /* dnode could get destroyed at this point, so don't use it anymore */ 1618 1619 /* 1620 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1621 * indirectly by dbuf_rele() while relying on the dnode handle to 1622 * prevent the dnode from moving, since releasing the last hold could 1623 * result in the dnode's parent dbuf evicting its dnode handles. For 1624 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1625 * other direct or indirect hold on the dnode must first drop the dnode 1626 * handle. 1627 */ 1628 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1629 1630 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1631 if (refs == 0 && db != NULL) { 1632 /* 1633 * Another thread could add a hold to the dnode handle in 1634 * dnode_hold_impl() while holding the parent dbuf. Since the 1635 * hold on the parent dbuf prevents the handle from being 1636 * destroyed, the hold on the handle is OK. We can't yet assert 1637 * that the handle has zero references, but that will be 1638 * asserted anyway when the handle gets destroyed. 1639 */ 1640 mutex_enter(&db->db_mtx); 1641 dbuf_rele_and_unlock(db, dnh, evicting); 1642 } 1643 } 1644 1645 /* 1646 * Test whether we can create a dnode at the specified location. 1647 */ 1648 int 1649 dnode_try_claim(objset_t *os, uint64_t object, int slots) 1650 { 1651 return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN, 1652 slots, NULL, NULL)); 1653 } 1654 1655 void 1656 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1657 { 1658 objset_t *os = dn->dn_objset; 1659 uint64_t txg = tx->tx_txg; 1660 1661 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1662 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1663 return; 1664 } 1665 1666 DNODE_VERIFY(dn); 1667 1668 #ifdef ZFS_DEBUG 1669 mutex_enter(&dn->dn_mtx); 1670 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1671 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1672 mutex_exit(&dn->dn_mtx); 1673 #endif 1674 1675 /* 1676 * Determine old uid/gid when necessary 1677 */ 1678 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1679 1680 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; 1681 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1682 1683 /* 1684 * If we are already marked dirty, we're done. 1685 */ 1686 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1687 multilist_sublist_unlock(mls); 1688 return; 1689 } 1690 1691 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || 1692 !avl_is_empty(&dn->dn_dbufs)); 1693 ASSERT(dn->dn_datablksz != 0); 1694 ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]); 1695 ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]); 1696 ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]); 1697 1698 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1699 dn->dn_object, txg); 1700 1701 multilist_sublist_insert_head(mls, dn); 1702 1703 multilist_sublist_unlock(mls); 1704 1705 /* 1706 * The dnode maintains a hold on its containing dbuf as 1707 * long as there are holds on it. Each instantiated child 1708 * dbuf maintains a hold on the dnode. When the last child 1709 * drops its hold, the dnode will drop its hold on the 1710 * containing dbuf. We add a "dirty hold" here so that the 1711 * dnode will hang around after we finish processing its 1712 * children. 1713 */ 1714 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1715 1716 (void) dbuf_dirty(dn->dn_dbuf, tx); 1717 1718 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1719 } 1720 1721 void 1722 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1723 { 1724 mutex_enter(&dn->dn_mtx); 1725 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1726 mutex_exit(&dn->dn_mtx); 1727 return; 1728 } 1729 dn->dn_free_txg = tx->tx_txg; 1730 mutex_exit(&dn->dn_mtx); 1731 1732 dnode_setdirty(dn, tx); 1733 } 1734 1735 /* 1736 * Try to change the block size for the indicated dnode. This can only 1737 * succeed if there are no blocks allocated or dirty beyond first block 1738 */ 1739 int 1740 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1741 { 1742 dmu_buf_impl_t *db; 1743 int err; 1744 1745 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1746 if (size == 0) 1747 size = SPA_MINBLOCKSIZE; 1748 else 1749 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1750 1751 if (ibs == dn->dn_indblkshift) 1752 ibs = 0; 1753 1754 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1755 return (0); 1756 1757 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1758 1759 /* Check for any allocated blocks beyond the first */ 1760 if (dn->dn_maxblkid != 0) 1761 goto fail; 1762 1763 mutex_enter(&dn->dn_dbufs_mtx); 1764 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1765 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1766 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1767 db->db_blkid != DMU_SPILL_BLKID) { 1768 mutex_exit(&dn->dn_dbufs_mtx); 1769 goto fail; 1770 } 1771 } 1772 mutex_exit(&dn->dn_dbufs_mtx); 1773 1774 if (ibs && dn->dn_nlevels != 1) 1775 goto fail; 1776 1777 /* resize the old block */ 1778 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1779 if (err == 0) { 1780 dbuf_new_size(db, size, tx); 1781 } else if (err != ENOENT) { 1782 goto fail; 1783 } 1784 1785 dnode_setdblksz(dn, size); 1786 dnode_setdirty(dn, tx); 1787 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1788 if (ibs) { 1789 dn->dn_indblkshift = ibs; 1790 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1791 } 1792 /* release after we have fixed the blocksize in the dnode */ 1793 if (db) 1794 dbuf_rele(db, FTAG); 1795 1796 rw_exit(&dn->dn_struct_rwlock); 1797 return (0); 1798 1799 fail: 1800 rw_exit(&dn->dn_struct_rwlock); 1801 return (SET_ERROR(ENOTSUP)); 1802 } 1803 1804 static void 1805 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx) 1806 { 1807 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1808 int old_nlevels = dn->dn_nlevels; 1809 dmu_buf_impl_t *db; 1810 list_t *list; 1811 dbuf_dirty_record_t *new, *dr, *dr_next; 1812 1813 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1814 1815 ASSERT3U(new_nlevels, >, dn->dn_nlevels); 1816 dn->dn_nlevels = new_nlevels; 1817 1818 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1819 dn->dn_next_nlevels[txgoff] = new_nlevels; 1820 1821 /* dirty the left indirects */ 1822 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1823 ASSERT(db != NULL); 1824 new = dbuf_dirty(db, tx); 1825 dbuf_rele(db, FTAG); 1826 1827 /* transfer the dirty records to the new indirect */ 1828 mutex_enter(&dn->dn_mtx); 1829 mutex_enter(&new->dt.di.dr_mtx); 1830 list = &dn->dn_dirty_records[txgoff]; 1831 for (dr = list_head(list); dr; dr = dr_next) { 1832 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1833 1834 IMPLY(dr->dr_dbuf == NULL, old_nlevels == 1); 1835 if (dr->dr_dbuf == NULL || 1836 (dr->dr_dbuf->db_level == old_nlevels - 1 && 1837 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1838 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID)) { 1839 list_remove(&dn->dn_dirty_records[txgoff], dr); 1840 list_insert_tail(&new->dt.di.dr_children, dr); 1841 dr->dr_parent = new; 1842 } 1843 } 1844 mutex_exit(&new->dt.di.dr_mtx); 1845 mutex_exit(&dn->dn_mtx); 1846 } 1847 1848 int 1849 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx) 1850 { 1851 int ret = 0; 1852 1853 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1854 1855 if (dn->dn_nlevels == nlevels) { 1856 ret = 0; 1857 goto out; 1858 } else if (nlevels < dn->dn_nlevels) { 1859 ret = SET_ERROR(EINVAL); 1860 goto out; 1861 } 1862 1863 dnode_set_nlevels_impl(dn, nlevels, tx); 1864 1865 out: 1866 rw_exit(&dn->dn_struct_rwlock); 1867 return (ret); 1868 } 1869 1870 /* read-holding callers must not rely on the lock being continuously held */ 1871 void 1872 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read, 1873 boolean_t force) 1874 { 1875 int epbs, new_nlevels; 1876 uint64_t sz; 1877 1878 ASSERT(blkid != DMU_BONUS_BLKID); 1879 1880 ASSERT(have_read ? 1881 RW_READ_HELD(&dn->dn_struct_rwlock) : 1882 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1883 1884 /* 1885 * if we have a read-lock, check to see if we need to do any work 1886 * before upgrading to a write-lock. 1887 */ 1888 if (have_read) { 1889 if (blkid <= dn->dn_maxblkid) 1890 return; 1891 1892 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1893 rw_exit(&dn->dn_struct_rwlock); 1894 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1895 } 1896 } 1897 1898 /* 1899 * Raw sends (indicated by the force flag) require that we take the 1900 * given blkid even if the value is lower than the current value. 1901 */ 1902 if (!force && blkid <= dn->dn_maxblkid) 1903 goto out; 1904 1905 /* 1906 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff] 1907 * to indicate that this field is set. This allows us to set the 1908 * maxblkid to 0 on an existing object in dnode_sync(). 1909 */ 1910 dn->dn_maxblkid = blkid; 1911 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = 1912 blkid | DMU_NEXT_MAXBLKID_SET; 1913 1914 /* 1915 * Compute the number of levels necessary to support the new maxblkid. 1916 * Raw sends will ensure nlevels is set correctly for us. 1917 */ 1918 new_nlevels = 1; 1919 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1920 for (sz = dn->dn_nblkptr; 1921 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1922 new_nlevels++; 1923 1924 ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS); 1925 1926 if (!force) { 1927 if (new_nlevels > dn->dn_nlevels) 1928 dnode_set_nlevels_impl(dn, new_nlevels, tx); 1929 } else { 1930 ASSERT3U(dn->dn_nlevels, >=, new_nlevels); 1931 } 1932 1933 out: 1934 if (have_read) 1935 rw_downgrade(&dn->dn_struct_rwlock); 1936 } 1937 1938 static void 1939 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1940 { 1941 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1942 if (db != NULL) { 1943 dmu_buf_will_dirty(&db->db, tx); 1944 dbuf_rele(db, FTAG); 1945 } 1946 } 1947 1948 /* 1949 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 1950 * and end_blkid. 1951 */ 1952 static void 1953 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1954 dmu_tx_t *tx) 1955 { 1956 dmu_buf_impl_t *db_search; 1957 dmu_buf_impl_t *db; 1958 avl_index_t where; 1959 1960 db_search = kmem_zalloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1961 1962 mutex_enter(&dn->dn_dbufs_mtx); 1963 1964 db_search->db_level = 1; 1965 db_search->db_blkid = start_blkid + 1; 1966 db_search->db_state = DB_SEARCH; 1967 for (;;) { 1968 1969 db = avl_find(&dn->dn_dbufs, db_search, &where); 1970 if (db == NULL) 1971 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1972 1973 if (db == NULL || db->db_level != 1 || 1974 db->db_blkid >= end_blkid) { 1975 break; 1976 } 1977 1978 /* 1979 * Setup the next blkid we want to search for. 1980 */ 1981 db_search->db_blkid = db->db_blkid + 1; 1982 ASSERT3U(db->db_blkid, >=, start_blkid); 1983 1984 /* 1985 * If the dbuf transitions to DB_EVICTING while we're trying 1986 * to dirty it, then we will be unable to discover it in 1987 * the dbuf hash table. This will result in a call to 1988 * dbuf_create() which needs to acquire the dn_dbufs_mtx 1989 * lock. To avoid a deadlock, we drop the lock before 1990 * dirtying the level-1 dbuf. 1991 */ 1992 mutex_exit(&dn->dn_dbufs_mtx); 1993 dnode_dirty_l1(dn, db->db_blkid, tx); 1994 mutex_enter(&dn->dn_dbufs_mtx); 1995 } 1996 1997 #ifdef ZFS_DEBUG 1998 /* 1999 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 2000 */ 2001 db_search->db_level = 1; 2002 db_search->db_blkid = start_blkid + 1; 2003 db_search->db_state = DB_SEARCH; 2004 db = avl_find(&dn->dn_dbufs, db_search, &where); 2005 if (db == NULL) 2006 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2007 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 2008 if (db->db_level != 1 || db->db_blkid >= end_blkid) 2009 break; 2010 if (db->db_state != DB_EVICTING) 2011 ASSERT(db->db_dirtycnt > 0); 2012 } 2013 #endif 2014 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2015 mutex_exit(&dn->dn_dbufs_mtx); 2016 } 2017 2018 void 2019 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, void *tag) 2020 { 2021 /* 2022 * Don't set dirtyctx to SYNC if we're just modifying this as we 2023 * initialize the objset. 2024 */ 2025 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 2026 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2027 2028 if (ds != NULL) { 2029 rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag); 2030 } 2031 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 2032 if (dmu_tx_is_syncing(tx)) 2033 dn->dn_dirtyctx = DN_DIRTY_SYNC; 2034 else 2035 dn->dn_dirtyctx = DN_DIRTY_OPEN; 2036 dn->dn_dirtyctx_firstset = tag; 2037 } 2038 if (ds != NULL) { 2039 rrw_exit(&ds->ds_bp_rwlock, tag); 2040 } 2041 } 2042 } 2043 2044 void 2045 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 2046 { 2047 dmu_buf_impl_t *db; 2048 uint64_t blkoff, blkid, nblks; 2049 int blksz, blkshift, head, tail; 2050 int trunc = FALSE; 2051 int epbs; 2052 2053 blksz = dn->dn_datablksz; 2054 blkshift = dn->dn_datablkshift; 2055 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2056 2057 if (len == DMU_OBJECT_END) { 2058 len = UINT64_MAX - off; 2059 trunc = TRUE; 2060 } 2061 2062 /* 2063 * First, block align the region to free: 2064 */ 2065 if (ISP2(blksz)) { 2066 head = P2NPHASE(off, blksz); 2067 blkoff = P2PHASE(off, blksz); 2068 if ((off >> blkshift) > dn->dn_maxblkid) 2069 return; 2070 } else { 2071 ASSERT(dn->dn_maxblkid == 0); 2072 if (off == 0 && len >= blksz) { 2073 /* 2074 * Freeing the whole block; fast-track this request. 2075 */ 2076 blkid = 0; 2077 nblks = 1; 2078 if (dn->dn_nlevels > 1) { 2079 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2080 dnode_dirty_l1(dn, 0, tx); 2081 rw_exit(&dn->dn_struct_rwlock); 2082 } 2083 goto done; 2084 } else if (off >= blksz) { 2085 /* Freeing past end-of-data */ 2086 return; 2087 } else { 2088 /* Freeing part of the block. */ 2089 head = blksz - off; 2090 ASSERT3U(head, >, 0); 2091 } 2092 blkoff = off; 2093 } 2094 /* zero out any partial block data at the start of the range */ 2095 if (head) { 2096 int res; 2097 ASSERT3U(blkoff + head, ==, blksz); 2098 if (len < head) 2099 head = len; 2100 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2101 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 2102 TRUE, FALSE, FTAG, &db); 2103 rw_exit(&dn->dn_struct_rwlock); 2104 if (res == 0) { 2105 caddr_t data; 2106 boolean_t dirty; 2107 2108 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, 2109 FTAG); 2110 /* don't dirty if it isn't on disk and isn't dirty */ 2111 dirty = !list_is_empty(&db->db_dirty_records) || 2112 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2113 dmu_buf_unlock_parent(db, dblt, FTAG); 2114 if (dirty) { 2115 dmu_buf_will_dirty(&db->db, tx); 2116 data = db->db.db_data; 2117 bzero(data + blkoff, head); 2118 } 2119 dbuf_rele(db, FTAG); 2120 } 2121 off += head; 2122 len -= head; 2123 } 2124 2125 /* If the range was less than one block, we're done */ 2126 if (len == 0) 2127 return; 2128 2129 /* If the remaining range is past end of file, we're done */ 2130 if ((off >> blkshift) > dn->dn_maxblkid) 2131 return; 2132 2133 ASSERT(ISP2(blksz)); 2134 if (trunc) 2135 tail = 0; 2136 else 2137 tail = P2PHASE(len, blksz); 2138 2139 ASSERT0(P2PHASE(off, blksz)); 2140 /* zero out any partial block data at the end of the range */ 2141 if (tail) { 2142 int res; 2143 if (len < tail) 2144 tail = len; 2145 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2146 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 2147 TRUE, FALSE, FTAG, &db); 2148 rw_exit(&dn->dn_struct_rwlock); 2149 if (res == 0) { 2150 boolean_t dirty; 2151 /* don't dirty if not on disk and not dirty */ 2152 db_lock_type_t type = dmu_buf_lock_parent(db, RW_READER, 2153 FTAG); 2154 dirty = !list_is_empty(&db->db_dirty_records) || 2155 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2156 dmu_buf_unlock_parent(db, type, FTAG); 2157 if (dirty) { 2158 dmu_buf_will_dirty(&db->db, tx); 2159 bzero(db->db.db_data, tail); 2160 } 2161 dbuf_rele(db, FTAG); 2162 } 2163 len -= tail; 2164 } 2165 2166 /* If the range did not include a full block, we are done */ 2167 if (len == 0) 2168 return; 2169 2170 ASSERT(IS_P2ALIGNED(off, blksz)); 2171 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 2172 blkid = off >> blkshift; 2173 nblks = len >> blkshift; 2174 if (trunc) 2175 nblks += 1; 2176 2177 /* 2178 * Dirty all the indirect blocks in this range. Note that only 2179 * the first and last indirect blocks can actually be written 2180 * (if they were partially freed) -- they must be dirtied, even if 2181 * they do not exist on disk yet. The interior blocks will 2182 * be freed by free_children(), so they will not actually be written. 2183 * Even though these interior blocks will not be written, we 2184 * dirty them for two reasons: 2185 * 2186 * - It ensures that the indirect blocks remain in memory until 2187 * syncing context. (They have already been prefetched by 2188 * dmu_tx_hold_free(), so we don't have to worry about reading 2189 * them serially here.) 2190 * 2191 * - The dirty space accounting will put pressure on the txg sync 2192 * mechanism to begin syncing, and to delay transactions if there 2193 * is a large amount of freeing. Even though these indirect 2194 * blocks will not be written, we could need to write the same 2195 * amount of space if we copy the freed BPs into deadlists. 2196 */ 2197 if (dn->dn_nlevels > 1) { 2198 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2199 uint64_t first, last; 2200 2201 first = blkid >> epbs; 2202 dnode_dirty_l1(dn, first, tx); 2203 if (trunc) 2204 last = dn->dn_maxblkid >> epbs; 2205 else 2206 last = (blkid + nblks - 1) >> epbs; 2207 if (last != first) 2208 dnode_dirty_l1(dn, last, tx); 2209 2210 dnode_dirty_l1range(dn, first, last, tx); 2211 2212 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 2213 SPA_BLKPTRSHIFT; 2214 for (uint64_t i = first + 1; i < last; i++) { 2215 /* 2216 * Set i to the blockid of the next non-hole 2217 * level-1 indirect block at or after i. Note 2218 * that dnode_next_offset() operates in terms of 2219 * level-0-equivalent bytes. 2220 */ 2221 uint64_t ibyte = i << shift; 2222 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 2223 &ibyte, 2, 1, 0); 2224 i = ibyte >> shift; 2225 if (i >= last) 2226 break; 2227 2228 /* 2229 * Normally we should not see an error, either 2230 * from dnode_next_offset() or dbuf_hold_level() 2231 * (except for ESRCH from dnode_next_offset). 2232 * If there is an i/o error, then when we read 2233 * this block in syncing context, it will use 2234 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 2235 * to the "failmode" property. dnode_next_offset() 2236 * doesn't have a flag to indicate MUSTSUCCEED. 2237 */ 2238 if (err != 0) 2239 break; 2240 2241 dnode_dirty_l1(dn, i, tx); 2242 } 2243 rw_exit(&dn->dn_struct_rwlock); 2244 } 2245 2246 done: 2247 /* 2248 * Add this range to the dnode range list. 2249 * We will finish up this free operation in the syncing phase. 2250 */ 2251 mutex_enter(&dn->dn_mtx); 2252 { 2253 int txgoff = tx->tx_txg & TXG_MASK; 2254 if (dn->dn_free_ranges[txgoff] == NULL) { 2255 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, 2256 RANGE_SEG64, NULL, 0, 0); 2257 } 2258 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 2259 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 2260 } 2261 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 2262 blkid, nblks, tx->tx_txg); 2263 mutex_exit(&dn->dn_mtx); 2264 2265 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 2266 dnode_setdirty(dn, tx); 2267 } 2268 2269 static boolean_t 2270 dnode_spill_freed(dnode_t *dn) 2271 { 2272 int i; 2273 2274 mutex_enter(&dn->dn_mtx); 2275 for (i = 0; i < TXG_SIZE; i++) { 2276 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 2277 break; 2278 } 2279 mutex_exit(&dn->dn_mtx); 2280 return (i < TXG_SIZE); 2281 } 2282 2283 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 2284 uint64_t 2285 dnode_block_freed(dnode_t *dn, uint64_t blkid) 2286 { 2287 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 2288 int i; 2289 2290 if (blkid == DMU_BONUS_BLKID) 2291 return (FALSE); 2292 2293 /* 2294 * If we're in the process of opening the pool, dp will not be 2295 * set yet, but there shouldn't be anything dirty. 2296 */ 2297 if (dp == NULL) 2298 return (FALSE); 2299 2300 if (dn->dn_free_txg) 2301 return (TRUE); 2302 2303 if (blkid == DMU_SPILL_BLKID) 2304 return (dnode_spill_freed(dn)); 2305 2306 mutex_enter(&dn->dn_mtx); 2307 for (i = 0; i < TXG_SIZE; i++) { 2308 if (dn->dn_free_ranges[i] != NULL && 2309 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 2310 break; 2311 } 2312 mutex_exit(&dn->dn_mtx); 2313 return (i < TXG_SIZE); 2314 } 2315 2316 /* call from syncing context when we actually write/free space for this dnode */ 2317 void 2318 dnode_diduse_space(dnode_t *dn, int64_t delta) 2319 { 2320 uint64_t space; 2321 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 2322 dn, dn->dn_phys, 2323 (u_longlong_t)dn->dn_phys->dn_used, 2324 (longlong_t)delta); 2325 2326 mutex_enter(&dn->dn_mtx); 2327 space = DN_USED_BYTES(dn->dn_phys); 2328 if (delta > 0) { 2329 ASSERT3U(space + delta, >=, space); /* no overflow */ 2330 } else { 2331 ASSERT3U(space, >=, -delta); /* no underflow */ 2332 } 2333 space += delta; 2334 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 2335 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 2336 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 2337 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 2338 } else { 2339 dn->dn_phys->dn_used = space; 2340 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 2341 } 2342 mutex_exit(&dn->dn_mtx); 2343 } 2344 2345 /* 2346 * Scans a block at the indicated "level" looking for a hole or data, 2347 * depending on 'flags'. 2348 * 2349 * If level > 0, then we are scanning an indirect block looking at its 2350 * pointers. If level == 0, then we are looking at a block of dnodes. 2351 * 2352 * If we don't find what we are looking for in the block, we return ESRCH. 2353 * Otherwise, return with *offset pointing to the beginning (if searching 2354 * forwards) or end (if searching backwards) of the range covered by the 2355 * block pointer we matched on (or dnode). 2356 * 2357 * The basic search algorithm used below by dnode_next_offset() is to 2358 * use this function to search up the block tree (widen the search) until 2359 * we find something (i.e., we don't return ESRCH) and then search back 2360 * down the tree (narrow the search) until we reach our original search 2361 * level. 2362 */ 2363 static int 2364 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 2365 int lvl, uint64_t blkfill, uint64_t txg) 2366 { 2367 dmu_buf_impl_t *db = NULL; 2368 void *data = NULL; 2369 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2370 uint64_t epb = 1ULL << epbs; 2371 uint64_t minfill, maxfill; 2372 boolean_t hole; 2373 int i, inc, error, span; 2374 2375 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2376 2377 hole = ((flags & DNODE_FIND_HOLE) != 0); 2378 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 2379 ASSERT(txg == 0 || !hole); 2380 2381 if (lvl == dn->dn_phys->dn_nlevels) { 2382 error = 0; 2383 epb = dn->dn_phys->dn_nblkptr; 2384 data = dn->dn_phys->dn_blkptr; 2385 } else { 2386 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 2387 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 2388 if (error) { 2389 if (error != ENOENT) 2390 return (error); 2391 if (hole) 2392 return (0); 2393 /* 2394 * This can only happen when we are searching up 2395 * the block tree for data. We don't really need to 2396 * adjust the offset, as we will just end up looking 2397 * at the pointer to this block in its parent, and its 2398 * going to be unallocated, so we will skip over it. 2399 */ 2400 return (SET_ERROR(ESRCH)); 2401 } 2402 error = dbuf_read(db, NULL, 2403 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | 2404 DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH); 2405 if (error) { 2406 dbuf_rele(db, FTAG); 2407 return (error); 2408 } 2409 data = db->db.db_data; 2410 rw_enter(&db->db_rwlock, RW_READER); 2411 } 2412 2413 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 2414 db->db_blkptr->blk_birth <= txg || 2415 BP_IS_HOLE(db->db_blkptr))) { 2416 /* 2417 * This can only happen when we are searching up the tree 2418 * and these conditions mean that we need to keep climbing. 2419 */ 2420 error = SET_ERROR(ESRCH); 2421 } else if (lvl == 0) { 2422 dnode_phys_t *dnp = data; 2423 2424 ASSERT(dn->dn_type == DMU_OT_DNODE); 2425 ASSERT(!(flags & DNODE_FIND_BACKWARDS)); 2426 2427 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); 2428 i < blkfill; i += dnp[i].dn_extra_slots + 1) { 2429 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 2430 break; 2431 } 2432 2433 if (i == blkfill) 2434 error = SET_ERROR(ESRCH); 2435 2436 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + 2437 (i << DNODE_SHIFT); 2438 } else { 2439 blkptr_t *bp = data; 2440 uint64_t start = *offset; 2441 span = (lvl - 1) * epbs + dn->dn_datablkshift; 2442 minfill = 0; 2443 maxfill = blkfill << ((lvl - 1) * epbs); 2444 2445 if (hole) 2446 maxfill--; 2447 else 2448 minfill++; 2449 2450 if (span >= 8 * sizeof (*offset)) { 2451 /* This only happens on the highest indirection level */ 2452 ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1); 2453 *offset = 0; 2454 } else { 2455 *offset = *offset >> span; 2456 } 2457 2458 for (i = BF64_GET(*offset, 0, epbs); 2459 i >= 0 && i < epb; i += inc) { 2460 if (BP_GET_FILL(&bp[i]) >= minfill && 2461 BP_GET_FILL(&bp[i]) <= maxfill && 2462 (hole || bp[i].blk_birth > txg)) 2463 break; 2464 if (inc > 0 || *offset > 0) 2465 *offset += inc; 2466 } 2467 2468 if (span >= 8 * sizeof (*offset)) { 2469 *offset = start; 2470 } else { 2471 *offset = *offset << span; 2472 } 2473 2474 if (inc < 0) { 2475 /* traversing backwards; position offset at the end */ 2476 ASSERT3U(*offset, <=, start); 2477 *offset = MIN(*offset + (1ULL << span) - 1, start); 2478 } else if (*offset < start) { 2479 *offset = start; 2480 } 2481 if (i < 0 || i >= epb) 2482 error = SET_ERROR(ESRCH); 2483 } 2484 2485 if (db != NULL) { 2486 rw_exit(&db->db_rwlock); 2487 dbuf_rele(db, FTAG); 2488 } 2489 2490 return (error); 2491 } 2492 2493 /* 2494 * Find the next hole, data, or sparse region at or after *offset. 2495 * The value 'blkfill' tells us how many items we expect to find 2496 * in an L0 data block; this value is 1 for normal objects, 2497 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 2498 * DNODES_PER_BLOCK when searching for sparse regions thereof. 2499 * 2500 * Examples: 2501 * 2502 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2503 * Finds the next/previous hole/data in a file. 2504 * Used in dmu_offset_next(). 2505 * 2506 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2507 * Finds the next free/allocated dnode an objset's meta-dnode. 2508 * Only finds objects that have new contents since txg (ie. 2509 * bonus buffer changes and content removal are ignored). 2510 * Used in dmu_object_next(). 2511 * 2512 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2513 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2514 * Used in dmu_object_alloc(). 2515 */ 2516 int 2517 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2518 int minlvl, uint64_t blkfill, uint64_t txg) 2519 { 2520 uint64_t initial_offset = *offset; 2521 int lvl, maxlvl; 2522 int error = 0; 2523 2524 if (!(flags & DNODE_FIND_HAVELOCK)) 2525 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2526 2527 if (dn->dn_phys->dn_nlevels == 0) { 2528 error = SET_ERROR(ESRCH); 2529 goto out; 2530 } 2531 2532 if (dn->dn_datablkshift == 0) { 2533 if (*offset < dn->dn_datablksz) { 2534 if (flags & DNODE_FIND_HOLE) 2535 *offset = dn->dn_datablksz; 2536 } else { 2537 error = SET_ERROR(ESRCH); 2538 } 2539 goto out; 2540 } 2541 2542 maxlvl = dn->dn_phys->dn_nlevels; 2543 2544 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2545 error = dnode_next_offset_level(dn, 2546 flags, offset, lvl, blkfill, txg); 2547 if (error != ESRCH) 2548 break; 2549 } 2550 2551 while (error == 0 && --lvl >= minlvl) { 2552 error = dnode_next_offset_level(dn, 2553 flags, offset, lvl, blkfill, txg); 2554 } 2555 2556 /* 2557 * There's always a "virtual hole" at the end of the object, even 2558 * if all BP's which physically exist are non-holes. 2559 */ 2560 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2561 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2562 error = 0; 2563 } 2564 2565 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2566 initial_offset < *offset : initial_offset > *offset)) 2567 error = SET_ERROR(ESRCH); 2568 out: 2569 if (!(flags & DNODE_FIND_HAVELOCK)) 2570 rw_exit(&dn->dn_struct_rwlock); 2571 2572 return (error); 2573 } 2574 2575 #if defined(_KERNEL) 2576 EXPORT_SYMBOL(dnode_hold); 2577 EXPORT_SYMBOL(dnode_rele); 2578 EXPORT_SYMBOL(dnode_set_nlevels); 2579 EXPORT_SYMBOL(dnode_set_blksz); 2580 EXPORT_SYMBOL(dnode_free_range); 2581 EXPORT_SYMBOL(dnode_evict_dbufs); 2582 EXPORT_SYMBOL(dnode_evict_bonus); 2583 #endif 2584