1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/dbuf.h> 29 #include <sys/dnode.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_impl.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dmu_objset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/spa.h> 37 #include <sys/zio.h> 38 #include <sys/dmu_zfetch.h> 39 #include <sys/range_tree.h> 40 #include <sys/trace_zfs.h> 41 #include <sys/zfs_project.h> 42 43 dnode_stats_t dnode_stats = { 44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, 45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, 46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, 47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, 48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, 49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, 50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, 51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, 52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, 53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, 54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, 55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, 56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, 57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, 58 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, 59 { "dnode_allocate", KSTAT_DATA_UINT64 }, 60 { "dnode_reallocate", KSTAT_DATA_UINT64 }, 61 { "dnode_buf_evict", KSTAT_DATA_UINT64 }, 62 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, 63 { "dnode_alloc_race", KSTAT_DATA_UINT64 }, 64 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, 65 { "dnode_move_invalid", KSTAT_DATA_UINT64 }, 66 { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, 67 { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, 68 { "dnode_move_special", KSTAT_DATA_UINT64 }, 69 { "dnode_move_handle", KSTAT_DATA_UINT64 }, 70 { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, 71 { "dnode_move_active", KSTAT_DATA_UINT64 }, 72 }; 73 74 static kstat_t *dnode_ksp; 75 static kmem_cache_t *dnode_cache; 76 77 static dnode_phys_t dnode_phys_zero __maybe_unused; 78 79 int zfs_default_bs = SPA_MINBLOCKSHIFT; 80 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 81 82 #ifdef _KERNEL 83 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 84 #endif /* _KERNEL */ 85 86 static int 87 dbuf_compare(const void *x1, const void *x2) 88 { 89 const dmu_buf_impl_t *d1 = x1; 90 const dmu_buf_impl_t *d2 = x2; 91 92 int cmp = TREE_CMP(d1->db_level, d2->db_level); 93 if (likely(cmp)) 94 return (cmp); 95 96 cmp = TREE_CMP(d1->db_blkid, d2->db_blkid); 97 if (likely(cmp)) 98 return (cmp); 99 100 if (d1->db_state == DB_SEARCH) { 101 ASSERT3S(d2->db_state, !=, DB_SEARCH); 102 return (-1); 103 } else if (d2->db_state == DB_SEARCH) { 104 ASSERT3S(d1->db_state, !=, DB_SEARCH); 105 return (1); 106 } 107 108 return (TREE_PCMP(d1, d2)); 109 } 110 111 static int 112 dnode_cons(void *arg, void *unused, int kmflag) 113 { 114 (void) unused, (void) kmflag; 115 dnode_t *dn = arg; 116 117 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL); 118 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 119 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 120 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 121 cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL); 122 123 /* 124 * Every dbuf has a reference, and dropping a tracked reference is 125 * O(number of references), so don't track dn_holds. 126 */ 127 zfs_refcount_create_untracked(&dn->dn_holds); 128 zfs_refcount_create(&dn->dn_tx_holds); 129 list_link_init(&dn->dn_link); 130 131 memset(dn->dn_next_type, 0, sizeof (dn->dn_next_type)); 132 memset(dn->dn_next_nblkptr, 0, sizeof (dn->dn_next_nblkptr)); 133 memset(dn->dn_next_nlevels, 0, sizeof (dn->dn_next_nlevels)); 134 memset(dn->dn_next_indblkshift, 0, sizeof (dn->dn_next_indblkshift)); 135 memset(dn->dn_next_bonustype, 0, sizeof (dn->dn_next_bonustype)); 136 memset(dn->dn_rm_spillblk, 0, sizeof (dn->dn_rm_spillblk)); 137 memset(dn->dn_next_bonuslen, 0, sizeof (dn->dn_next_bonuslen)); 138 memset(dn->dn_next_blksz, 0, sizeof (dn->dn_next_blksz)); 139 memset(dn->dn_next_maxblkid, 0, sizeof (dn->dn_next_maxblkid)); 140 141 for (int i = 0; i < TXG_SIZE; i++) { 142 multilist_link_init(&dn->dn_dirty_link[i]); 143 dn->dn_free_ranges[i] = NULL; 144 list_create(&dn->dn_dirty_records[i], 145 sizeof (dbuf_dirty_record_t), 146 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 147 } 148 149 dn->dn_allocated_txg = 0; 150 dn->dn_free_txg = 0; 151 dn->dn_assigned_txg = 0; 152 dn->dn_dirty_txg = 0; 153 dn->dn_dirtyctx = 0; 154 dn->dn_dirtyctx_firstset = NULL; 155 dn->dn_bonus = NULL; 156 dn->dn_have_spill = B_FALSE; 157 dn->dn_zio = NULL; 158 dn->dn_oldused = 0; 159 dn->dn_oldflags = 0; 160 dn->dn_olduid = 0; 161 dn->dn_oldgid = 0; 162 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 163 dn->dn_newuid = 0; 164 dn->dn_newgid = 0; 165 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 166 dn->dn_id_flags = 0; 167 168 dn->dn_dbufs_count = 0; 169 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 170 offsetof(dmu_buf_impl_t, db_link)); 171 172 dn->dn_moved = 0; 173 return (0); 174 } 175 176 static void 177 dnode_dest(void *arg, void *unused) 178 { 179 (void) unused; 180 dnode_t *dn = arg; 181 182 rw_destroy(&dn->dn_struct_rwlock); 183 mutex_destroy(&dn->dn_mtx); 184 mutex_destroy(&dn->dn_dbufs_mtx); 185 cv_destroy(&dn->dn_notxholds); 186 cv_destroy(&dn->dn_nodnholds); 187 zfs_refcount_destroy(&dn->dn_holds); 188 zfs_refcount_destroy(&dn->dn_tx_holds); 189 ASSERT(!list_link_active(&dn->dn_link)); 190 191 for (int i = 0; i < TXG_SIZE; i++) { 192 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 193 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 194 list_destroy(&dn->dn_dirty_records[i]); 195 ASSERT0(dn->dn_next_nblkptr[i]); 196 ASSERT0(dn->dn_next_nlevels[i]); 197 ASSERT0(dn->dn_next_indblkshift[i]); 198 ASSERT0(dn->dn_next_bonustype[i]); 199 ASSERT0(dn->dn_rm_spillblk[i]); 200 ASSERT0(dn->dn_next_bonuslen[i]); 201 ASSERT0(dn->dn_next_blksz[i]); 202 ASSERT0(dn->dn_next_maxblkid[i]); 203 } 204 205 ASSERT0(dn->dn_allocated_txg); 206 ASSERT0(dn->dn_free_txg); 207 ASSERT0(dn->dn_assigned_txg); 208 ASSERT0(dn->dn_dirty_txg); 209 ASSERT0(dn->dn_dirtyctx); 210 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 211 ASSERT3P(dn->dn_bonus, ==, NULL); 212 ASSERT(!dn->dn_have_spill); 213 ASSERT3P(dn->dn_zio, ==, NULL); 214 ASSERT0(dn->dn_oldused); 215 ASSERT0(dn->dn_oldflags); 216 ASSERT0(dn->dn_olduid); 217 ASSERT0(dn->dn_oldgid); 218 ASSERT0(dn->dn_oldprojid); 219 ASSERT0(dn->dn_newuid); 220 ASSERT0(dn->dn_newgid); 221 ASSERT0(dn->dn_newprojid); 222 ASSERT0(dn->dn_id_flags); 223 224 ASSERT0(dn->dn_dbufs_count); 225 avl_destroy(&dn->dn_dbufs); 226 } 227 228 void 229 dnode_init(void) 230 { 231 ASSERT(dnode_cache == NULL); 232 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t), 233 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 234 kmem_cache_set_move(dnode_cache, dnode_move); 235 236 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", 237 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), 238 KSTAT_FLAG_VIRTUAL); 239 if (dnode_ksp != NULL) { 240 dnode_ksp->ks_data = &dnode_stats; 241 kstat_install(dnode_ksp); 242 } 243 } 244 245 void 246 dnode_fini(void) 247 { 248 if (dnode_ksp != NULL) { 249 kstat_delete(dnode_ksp); 250 dnode_ksp = NULL; 251 } 252 253 kmem_cache_destroy(dnode_cache); 254 dnode_cache = NULL; 255 } 256 257 258 #ifdef ZFS_DEBUG 259 void 260 dnode_verify(dnode_t *dn) 261 { 262 int drop_struct_lock = FALSE; 263 264 ASSERT(dn->dn_phys); 265 ASSERT(dn->dn_objset); 266 ASSERT(dn->dn_handle->dnh_dnode == dn); 267 268 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 269 270 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 271 return; 272 273 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 274 rw_enter(&dn->dn_struct_rwlock, RW_READER); 275 drop_struct_lock = TRUE; 276 } 277 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 278 int i; 279 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 280 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 281 if (dn->dn_datablkshift) { 282 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 283 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 284 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 285 } 286 ASSERT3U(dn->dn_nlevels, <=, 30); 287 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 288 ASSERT3U(dn->dn_nblkptr, >=, 1); 289 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 290 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); 291 ASSERT3U(dn->dn_datablksz, ==, 292 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 293 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 294 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 295 dn->dn_bonuslen, <=, max_bonuslen); 296 for (i = 0; i < TXG_SIZE; i++) { 297 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 298 } 299 } 300 if (dn->dn_phys->dn_type != DMU_OT_NONE) 301 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 302 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 303 if (dn->dn_dbuf != NULL) { 304 ASSERT3P(dn->dn_phys, ==, 305 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 306 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 307 } 308 if (drop_struct_lock) 309 rw_exit(&dn->dn_struct_rwlock); 310 } 311 #endif 312 313 void 314 dnode_byteswap(dnode_phys_t *dnp) 315 { 316 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 317 int i; 318 319 if (dnp->dn_type == DMU_OT_NONE) { 320 memset(dnp, 0, sizeof (dnode_phys_t)); 321 return; 322 } 323 324 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 325 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 326 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); 327 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 328 dnp->dn_used = BSWAP_64(dnp->dn_used); 329 330 /* 331 * dn_nblkptr is only one byte, so it's OK to read it in either 332 * byte order. We can't read dn_bouslen. 333 */ 334 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 335 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 336 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 337 buf64[i] = BSWAP_64(buf64[i]); 338 339 /* 340 * OK to check dn_bonuslen for zero, because it won't matter if 341 * we have the wrong byte order. This is necessary because the 342 * dnode dnode is smaller than a regular dnode. 343 */ 344 if (dnp->dn_bonuslen != 0) { 345 dmu_object_byteswap_t byteswap; 346 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 347 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype); 348 dmu_ot_byteswap[byteswap].ob_func(DN_BONUS(dnp), 349 DN_MAX_BONUS_LEN(dnp)); 350 } 351 352 /* Swap SPILL block if we have one */ 353 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 354 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); 355 } 356 357 void 358 dnode_buf_byteswap(void *vbuf, size_t size) 359 { 360 int i = 0; 361 362 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 363 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 364 365 while (i < size) { 366 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); 367 dnode_byteswap(dnp); 368 369 i += DNODE_MIN_SIZE; 370 if (dnp->dn_type != DMU_OT_NONE) 371 i += dnp->dn_extra_slots * DNODE_MIN_SIZE; 372 } 373 } 374 375 void 376 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 377 { 378 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 379 380 dnode_setdirty(dn, tx); 381 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 382 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 383 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 384 385 if (newsize < dn->dn_bonuslen) { 386 /* clear any data after the end of the new size */ 387 size_t diff = dn->dn_bonuslen - newsize; 388 char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize; 389 memset(data_end, 0, diff); 390 } 391 392 dn->dn_bonuslen = newsize; 393 if (newsize == 0) 394 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 395 else 396 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 397 rw_exit(&dn->dn_struct_rwlock); 398 } 399 400 void 401 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 402 { 403 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 404 dnode_setdirty(dn, tx); 405 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 406 dn->dn_bonustype = newtype; 407 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 408 rw_exit(&dn->dn_struct_rwlock); 409 } 410 411 void 412 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 413 { 414 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 415 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 416 dnode_setdirty(dn, tx); 417 dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK; 418 dn->dn_have_spill = B_FALSE; 419 } 420 421 static void 422 dnode_setdblksz(dnode_t *dn, int size) 423 { 424 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 425 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 426 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 427 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 428 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 429 dn->dn_datablksz = size; 430 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 431 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 432 } 433 434 static dnode_t * 435 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 436 uint64_t object, dnode_handle_t *dnh) 437 { 438 dnode_t *dn; 439 440 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 441 dn->dn_moved = 0; 442 443 /* 444 * Defer setting dn_objset until the dnode is ready to be a candidate 445 * for the dnode_move() callback. 446 */ 447 dn->dn_object = object; 448 dn->dn_dbuf = db; 449 dn->dn_handle = dnh; 450 dn->dn_phys = dnp; 451 452 if (dnp->dn_datablkszsec) { 453 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 454 } else { 455 dn->dn_datablksz = 0; 456 dn->dn_datablkszsec = 0; 457 dn->dn_datablkshift = 0; 458 } 459 dn->dn_indblkshift = dnp->dn_indblkshift; 460 dn->dn_nlevels = dnp->dn_nlevels; 461 dn->dn_type = dnp->dn_type; 462 dn->dn_nblkptr = dnp->dn_nblkptr; 463 dn->dn_checksum = dnp->dn_checksum; 464 dn->dn_compress = dnp->dn_compress; 465 dn->dn_bonustype = dnp->dn_bonustype; 466 dn->dn_bonuslen = dnp->dn_bonuslen; 467 dn->dn_num_slots = dnp->dn_extra_slots + 1; 468 dn->dn_maxblkid = dnp->dn_maxblkid; 469 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 470 dn->dn_id_flags = 0; 471 472 dmu_zfetch_init(&dn->dn_zfetch, dn); 473 474 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 475 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 476 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); 477 478 mutex_enter(&os->os_lock); 479 480 /* 481 * Exclude special dnodes from os_dnodes so an empty os_dnodes 482 * signifies that the special dnodes have no references from 483 * their children (the entries in os_dnodes). This allows 484 * dnode_destroy() to easily determine if the last child has 485 * been removed and then complete eviction of the objset. 486 */ 487 if (!DMU_OBJECT_IS_SPECIAL(object)) 488 list_insert_head(&os->os_dnodes, dn); 489 membar_producer(); 490 491 /* 492 * Everything else must be valid before assigning dn_objset 493 * makes the dnode eligible for dnode_move(). 494 */ 495 dn->dn_objset = os; 496 497 dnh->dnh_dnode = dn; 498 mutex_exit(&os->os_lock); 499 500 arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE); 501 502 return (dn); 503 } 504 505 /* 506 * Caller must be holding the dnode handle, which is released upon return. 507 */ 508 static void 509 dnode_destroy(dnode_t *dn) 510 { 511 objset_t *os = dn->dn_objset; 512 boolean_t complete_os_eviction = B_FALSE; 513 514 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 515 516 mutex_enter(&os->os_lock); 517 POINTER_INVALIDATE(&dn->dn_objset); 518 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 519 list_remove(&os->os_dnodes, dn); 520 complete_os_eviction = 521 list_is_empty(&os->os_dnodes) && 522 list_link_active(&os->os_evicting_node); 523 } 524 mutex_exit(&os->os_lock); 525 526 /* the dnode can no longer move, so we can release the handle */ 527 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) 528 zrl_remove(&dn->dn_handle->dnh_zrlock); 529 530 dn->dn_allocated_txg = 0; 531 dn->dn_free_txg = 0; 532 dn->dn_assigned_txg = 0; 533 dn->dn_dirty_txg = 0; 534 535 dn->dn_dirtyctx = 0; 536 dn->dn_dirtyctx_firstset = NULL; 537 if (dn->dn_bonus != NULL) { 538 mutex_enter(&dn->dn_bonus->db_mtx); 539 dbuf_destroy(dn->dn_bonus); 540 dn->dn_bonus = NULL; 541 } 542 dn->dn_zio = NULL; 543 544 dn->dn_have_spill = B_FALSE; 545 dn->dn_oldused = 0; 546 dn->dn_oldflags = 0; 547 dn->dn_olduid = 0; 548 dn->dn_oldgid = 0; 549 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 550 dn->dn_newuid = 0; 551 dn->dn_newgid = 0; 552 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 553 dn->dn_id_flags = 0; 554 555 dmu_zfetch_fini(&dn->dn_zfetch); 556 kmem_cache_free(dnode_cache, dn); 557 arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE); 558 559 if (complete_os_eviction) 560 dmu_objset_evict_done(os); 561 } 562 563 void 564 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 565 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 566 { 567 int i; 568 569 ASSERT3U(dn_slots, >, 0); 570 ASSERT3U(dn_slots << DNODE_SHIFT, <=, 571 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); 572 ASSERT3U(blocksize, <=, 573 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 574 if (blocksize == 0) 575 blocksize = 1 << zfs_default_bs; 576 else 577 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 578 579 if (ibs == 0) 580 ibs = zfs_default_ibs; 581 582 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 583 584 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n", 585 dn->dn_objset, (u_longlong_t)dn->dn_object, 586 (u_longlong_t)tx->tx_txg, blocksize, ibs, dn_slots); 587 DNODE_STAT_BUMP(dnode_allocate); 588 589 ASSERT(dn->dn_type == DMU_OT_NONE); 590 ASSERT0(memcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t))); 591 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 592 ASSERT(ot != DMU_OT_NONE); 593 ASSERT(DMU_OT_IS_VALID(ot)); 594 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 595 (bonustype == DMU_OT_SA && bonuslen == 0) || 596 (bonustype != DMU_OT_NONE && bonuslen != 0)); 597 ASSERT(DMU_OT_IS_VALID(bonustype)); 598 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); 599 ASSERT(dn->dn_type == DMU_OT_NONE); 600 ASSERT0(dn->dn_maxblkid); 601 ASSERT0(dn->dn_allocated_txg); 602 ASSERT0(dn->dn_assigned_txg); 603 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 604 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); 605 ASSERT(avl_is_empty(&dn->dn_dbufs)); 606 607 for (i = 0; i < TXG_SIZE; i++) { 608 ASSERT0(dn->dn_next_nblkptr[i]); 609 ASSERT0(dn->dn_next_nlevels[i]); 610 ASSERT0(dn->dn_next_indblkshift[i]); 611 ASSERT0(dn->dn_next_bonuslen[i]); 612 ASSERT0(dn->dn_next_bonustype[i]); 613 ASSERT0(dn->dn_rm_spillblk[i]); 614 ASSERT0(dn->dn_next_blksz[i]); 615 ASSERT0(dn->dn_next_maxblkid[i]); 616 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 617 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 618 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 619 } 620 621 dn->dn_type = ot; 622 dnode_setdblksz(dn, blocksize); 623 dn->dn_indblkshift = ibs; 624 dn->dn_nlevels = 1; 625 dn->dn_num_slots = dn_slots; 626 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 627 dn->dn_nblkptr = 1; 628 else { 629 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 630 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 631 SPA_BLKPTRSHIFT)); 632 } 633 634 dn->dn_bonustype = bonustype; 635 dn->dn_bonuslen = bonuslen; 636 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 637 dn->dn_compress = ZIO_COMPRESS_INHERIT; 638 dn->dn_dirtyctx = 0; 639 640 dn->dn_free_txg = 0; 641 dn->dn_dirtyctx_firstset = NULL; 642 dn->dn_dirty_txg = 0; 643 644 dn->dn_allocated_txg = tx->tx_txg; 645 dn->dn_id_flags = 0; 646 647 dnode_setdirty(dn, tx); 648 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 649 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 650 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 651 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 652 } 653 654 void 655 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 656 dmu_object_type_t bonustype, int bonuslen, int dn_slots, 657 boolean_t keep_spill, dmu_tx_t *tx) 658 { 659 int nblkptr; 660 661 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 662 ASSERT3U(blocksize, <=, 663 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 664 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 665 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 666 ASSERT(tx->tx_txg != 0); 667 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 668 (bonustype != DMU_OT_NONE && bonuslen != 0) || 669 (bonustype == DMU_OT_SA && bonuslen == 0)); 670 ASSERT(DMU_OT_IS_VALID(bonustype)); 671 ASSERT3U(bonuslen, <=, 672 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); 673 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); 674 675 dnode_free_interior_slots(dn); 676 DNODE_STAT_BUMP(dnode_reallocate); 677 678 /* clean up any unreferenced dbufs */ 679 dnode_evict_dbufs(dn); 680 681 dn->dn_id_flags = 0; 682 683 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 684 dnode_setdirty(dn, tx); 685 if (dn->dn_datablksz != blocksize) { 686 /* change blocksize */ 687 ASSERT0(dn->dn_maxblkid); 688 ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 689 dnode_block_freed(dn, 0)); 690 691 dnode_setdblksz(dn, blocksize); 692 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize; 693 } 694 if (dn->dn_bonuslen != bonuslen) 695 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen; 696 697 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 698 nblkptr = 1; 699 else 700 nblkptr = MIN(DN_MAX_NBLKPTR, 701 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 702 SPA_BLKPTRSHIFT)); 703 if (dn->dn_bonustype != bonustype) 704 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype; 705 if (dn->dn_nblkptr != nblkptr) 706 dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr; 707 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) { 708 dbuf_rm_spill(dn, tx); 709 dnode_rm_spill(dn, tx); 710 } 711 712 rw_exit(&dn->dn_struct_rwlock); 713 714 /* change type */ 715 dn->dn_type = ot; 716 717 /* change bonus size and type */ 718 mutex_enter(&dn->dn_mtx); 719 dn->dn_bonustype = bonustype; 720 dn->dn_bonuslen = bonuslen; 721 dn->dn_num_slots = dn_slots; 722 dn->dn_nblkptr = nblkptr; 723 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 724 dn->dn_compress = ZIO_COMPRESS_INHERIT; 725 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 726 727 /* fix up the bonus db_size */ 728 if (dn->dn_bonus) { 729 dn->dn_bonus->db.db_size = 730 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 731 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 732 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 733 } 734 735 dn->dn_allocated_txg = tx->tx_txg; 736 mutex_exit(&dn->dn_mtx); 737 } 738 739 #ifdef _KERNEL 740 static void 741 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 742 { 743 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 744 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 745 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 746 747 /* Copy fields. */ 748 ndn->dn_objset = odn->dn_objset; 749 ndn->dn_object = odn->dn_object; 750 ndn->dn_dbuf = odn->dn_dbuf; 751 ndn->dn_handle = odn->dn_handle; 752 ndn->dn_phys = odn->dn_phys; 753 ndn->dn_type = odn->dn_type; 754 ndn->dn_bonuslen = odn->dn_bonuslen; 755 ndn->dn_bonustype = odn->dn_bonustype; 756 ndn->dn_nblkptr = odn->dn_nblkptr; 757 ndn->dn_checksum = odn->dn_checksum; 758 ndn->dn_compress = odn->dn_compress; 759 ndn->dn_nlevels = odn->dn_nlevels; 760 ndn->dn_indblkshift = odn->dn_indblkshift; 761 ndn->dn_datablkshift = odn->dn_datablkshift; 762 ndn->dn_datablkszsec = odn->dn_datablkszsec; 763 ndn->dn_datablksz = odn->dn_datablksz; 764 ndn->dn_maxblkid = odn->dn_maxblkid; 765 ndn->dn_num_slots = odn->dn_num_slots; 766 memcpy(ndn->dn_next_type, odn->dn_next_type, 767 sizeof (odn->dn_next_type)); 768 memcpy(ndn->dn_next_nblkptr, odn->dn_next_nblkptr, 769 sizeof (odn->dn_next_nblkptr)); 770 memcpy(ndn->dn_next_nlevels, odn->dn_next_nlevels, 771 sizeof (odn->dn_next_nlevels)); 772 memcpy(ndn->dn_next_indblkshift, odn->dn_next_indblkshift, 773 sizeof (odn->dn_next_indblkshift)); 774 memcpy(ndn->dn_next_bonustype, odn->dn_next_bonustype, 775 sizeof (odn->dn_next_bonustype)); 776 memcpy(ndn->dn_rm_spillblk, odn->dn_rm_spillblk, 777 sizeof (odn->dn_rm_spillblk)); 778 memcpy(ndn->dn_next_bonuslen, odn->dn_next_bonuslen, 779 sizeof (odn->dn_next_bonuslen)); 780 memcpy(ndn->dn_next_blksz, odn->dn_next_blksz, 781 sizeof (odn->dn_next_blksz)); 782 memcpy(ndn->dn_next_maxblkid, odn->dn_next_maxblkid, 783 sizeof (odn->dn_next_maxblkid)); 784 for (int i = 0; i < TXG_SIZE; i++) { 785 list_move_tail(&ndn->dn_dirty_records[i], 786 &odn->dn_dirty_records[i]); 787 } 788 memcpy(ndn->dn_free_ranges, odn->dn_free_ranges, 789 sizeof (odn->dn_free_ranges)); 790 ndn->dn_allocated_txg = odn->dn_allocated_txg; 791 ndn->dn_free_txg = odn->dn_free_txg; 792 ndn->dn_assigned_txg = odn->dn_assigned_txg; 793 ndn->dn_dirty_txg = odn->dn_dirty_txg; 794 ndn->dn_dirtyctx = odn->dn_dirtyctx; 795 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 796 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); 797 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 798 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 799 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 800 ndn->dn_dbufs_count = odn->dn_dbufs_count; 801 ndn->dn_bonus = odn->dn_bonus; 802 ndn->dn_have_spill = odn->dn_have_spill; 803 ndn->dn_zio = odn->dn_zio; 804 ndn->dn_oldused = odn->dn_oldused; 805 ndn->dn_oldflags = odn->dn_oldflags; 806 ndn->dn_olduid = odn->dn_olduid; 807 ndn->dn_oldgid = odn->dn_oldgid; 808 ndn->dn_oldprojid = odn->dn_oldprojid; 809 ndn->dn_newuid = odn->dn_newuid; 810 ndn->dn_newgid = odn->dn_newgid; 811 ndn->dn_newprojid = odn->dn_newprojid; 812 ndn->dn_id_flags = odn->dn_id_flags; 813 dmu_zfetch_init(&ndn->dn_zfetch, ndn); 814 815 /* 816 * Update back pointers. Updating the handle fixes the back pointer of 817 * every descendant dbuf as well as the bonus dbuf. 818 */ 819 ASSERT(ndn->dn_handle->dnh_dnode == odn); 820 ndn->dn_handle->dnh_dnode = ndn; 821 822 /* 823 * Invalidate the original dnode by clearing all of its back pointers. 824 */ 825 odn->dn_dbuf = NULL; 826 odn->dn_handle = NULL; 827 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 828 offsetof(dmu_buf_impl_t, db_link)); 829 odn->dn_dbufs_count = 0; 830 odn->dn_bonus = NULL; 831 dmu_zfetch_fini(&odn->dn_zfetch); 832 833 /* 834 * Set the low bit of the objset pointer to ensure that dnode_move() 835 * recognizes the dnode as invalid in any subsequent callback. 836 */ 837 POINTER_INVALIDATE(&odn->dn_objset); 838 839 /* 840 * Satisfy the destructor. 841 */ 842 for (int i = 0; i < TXG_SIZE; i++) { 843 list_create(&odn->dn_dirty_records[i], 844 sizeof (dbuf_dirty_record_t), 845 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 846 odn->dn_free_ranges[i] = NULL; 847 odn->dn_next_nlevels[i] = 0; 848 odn->dn_next_indblkshift[i] = 0; 849 odn->dn_next_bonustype[i] = 0; 850 odn->dn_rm_spillblk[i] = 0; 851 odn->dn_next_bonuslen[i] = 0; 852 odn->dn_next_blksz[i] = 0; 853 } 854 odn->dn_allocated_txg = 0; 855 odn->dn_free_txg = 0; 856 odn->dn_assigned_txg = 0; 857 odn->dn_dirty_txg = 0; 858 odn->dn_dirtyctx = 0; 859 odn->dn_dirtyctx_firstset = NULL; 860 odn->dn_have_spill = B_FALSE; 861 odn->dn_zio = NULL; 862 odn->dn_oldused = 0; 863 odn->dn_oldflags = 0; 864 odn->dn_olduid = 0; 865 odn->dn_oldgid = 0; 866 odn->dn_oldprojid = ZFS_DEFAULT_PROJID; 867 odn->dn_newuid = 0; 868 odn->dn_newgid = 0; 869 odn->dn_newprojid = ZFS_DEFAULT_PROJID; 870 odn->dn_id_flags = 0; 871 872 /* 873 * Mark the dnode. 874 */ 875 ndn->dn_moved = 1; 876 odn->dn_moved = (uint8_t)-1; 877 } 878 879 static kmem_cbrc_t 880 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 881 { 882 dnode_t *odn = buf, *ndn = newbuf; 883 objset_t *os; 884 int64_t refcount; 885 uint32_t dbufs; 886 887 /* 888 * The dnode is on the objset's list of known dnodes if the objset 889 * pointer is valid. We set the low bit of the objset pointer when 890 * freeing the dnode to invalidate it, and the memory patterns written 891 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 892 * A newly created dnode sets the objset pointer last of all to indicate 893 * that the dnode is known and in a valid state to be moved by this 894 * function. 895 */ 896 os = odn->dn_objset; 897 if (!POINTER_IS_VALID(os)) { 898 DNODE_STAT_BUMP(dnode_move_invalid); 899 return (KMEM_CBRC_DONT_KNOW); 900 } 901 902 /* 903 * Ensure that the objset does not go away during the move. 904 */ 905 rw_enter(&os_lock, RW_WRITER); 906 if (os != odn->dn_objset) { 907 rw_exit(&os_lock); 908 DNODE_STAT_BUMP(dnode_move_recheck1); 909 return (KMEM_CBRC_DONT_KNOW); 910 } 911 912 /* 913 * If the dnode is still valid, then so is the objset. We know that no 914 * valid objset can be freed while we hold os_lock, so we can safely 915 * ensure that the objset remains in use. 916 */ 917 mutex_enter(&os->os_lock); 918 919 /* 920 * Recheck the objset pointer in case the dnode was removed just before 921 * acquiring the lock. 922 */ 923 if (os != odn->dn_objset) { 924 mutex_exit(&os->os_lock); 925 rw_exit(&os_lock); 926 DNODE_STAT_BUMP(dnode_move_recheck2); 927 return (KMEM_CBRC_DONT_KNOW); 928 } 929 930 /* 931 * At this point we know that as long as we hold os->os_lock, the dnode 932 * cannot be freed and fields within the dnode can be safely accessed. 933 * The objset listing this dnode cannot go away as long as this dnode is 934 * on its list. 935 */ 936 rw_exit(&os_lock); 937 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 938 mutex_exit(&os->os_lock); 939 DNODE_STAT_BUMP(dnode_move_special); 940 return (KMEM_CBRC_NO); 941 } 942 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 943 944 /* 945 * Lock the dnode handle to prevent the dnode from obtaining any new 946 * holds. This also prevents the descendant dbufs and the bonus dbuf 947 * from accessing the dnode, so that we can discount their holds. The 948 * handle is safe to access because we know that while the dnode cannot 949 * go away, neither can its handle. Once we hold dnh_zrlock, we can 950 * safely move any dnode referenced only by dbufs. 951 */ 952 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 953 mutex_exit(&os->os_lock); 954 DNODE_STAT_BUMP(dnode_move_handle); 955 return (KMEM_CBRC_LATER); 956 } 957 958 /* 959 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 960 * We need to guarantee that there is a hold for every dbuf in order to 961 * determine whether the dnode is actively referenced. Falsely matching 962 * a dbuf to an active hold would lead to an unsafe move. It's possible 963 * that a thread already having an active dnode hold is about to add a 964 * dbuf, and we can't compare hold and dbuf counts while the add is in 965 * progress. 966 */ 967 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 968 zrl_exit(&odn->dn_handle->dnh_zrlock); 969 mutex_exit(&os->os_lock); 970 DNODE_STAT_BUMP(dnode_move_rwlock); 971 return (KMEM_CBRC_LATER); 972 } 973 974 /* 975 * A dbuf may be removed (evicted) without an active dnode hold. In that 976 * case, the dbuf count is decremented under the handle lock before the 977 * dbuf's hold is released. This order ensures that if we count the hold 978 * after the dbuf is removed but before its hold is released, we will 979 * treat the unmatched hold as active and exit safely. If we count the 980 * hold before the dbuf is removed, the hold is discounted, and the 981 * removal is blocked until the move completes. 982 */ 983 refcount = zfs_refcount_count(&odn->dn_holds); 984 ASSERT(refcount >= 0); 985 dbufs = DN_DBUFS_COUNT(odn); 986 987 /* We can't have more dbufs than dnode holds. */ 988 ASSERT3U(dbufs, <=, refcount); 989 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 990 uint32_t, dbufs); 991 992 if (refcount > dbufs) { 993 rw_exit(&odn->dn_struct_rwlock); 994 zrl_exit(&odn->dn_handle->dnh_zrlock); 995 mutex_exit(&os->os_lock); 996 DNODE_STAT_BUMP(dnode_move_active); 997 return (KMEM_CBRC_LATER); 998 } 999 1000 rw_exit(&odn->dn_struct_rwlock); 1001 1002 /* 1003 * At this point we know that anyone with a hold on the dnode is not 1004 * actively referencing it. The dnode is known and in a valid state to 1005 * move. We're holding the locks needed to execute the critical section. 1006 */ 1007 dnode_move_impl(odn, ndn); 1008 1009 list_link_replace(&odn->dn_link, &ndn->dn_link); 1010 /* If the dnode was safe to move, the refcount cannot have changed. */ 1011 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); 1012 ASSERT(dbufs == DN_DBUFS_COUNT(ndn)); 1013 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 1014 mutex_exit(&os->os_lock); 1015 1016 return (KMEM_CBRC_YES); 1017 } 1018 #endif /* _KERNEL */ 1019 1020 static void 1021 dnode_slots_hold(dnode_children_t *children, int idx, int slots) 1022 { 1023 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1024 1025 for (int i = idx; i < idx + slots; i++) { 1026 dnode_handle_t *dnh = &children->dnc_children[i]; 1027 zrl_add(&dnh->dnh_zrlock); 1028 } 1029 } 1030 1031 static void 1032 dnode_slots_rele(dnode_children_t *children, int idx, int slots) 1033 { 1034 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1035 1036 for (int i = idx; i < idx + slots; i++) { 1037 dnode_handle_t *dnh = &children->dnc_children[i]; 1038 1039 if (zrl_is_locked(&dnh->dnh_zrlock)) 1040 zrl_exit(&dnh->dnh_zrlock); 1041 else 1042 zrl_remove(&dnh->dnh_zrlock); 1043 } 1044 } 1045 1046 static int 1047 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) 1048 { 1049 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1050 1051 for (int i = idx; i < idx + slots; i++) { 1052 dnode_handle_t *dnh = &children->dnc_children[i]; 1053 1054 if (!zrl_tryenter(&dnh->dnh_zrlock)) { 1055 for (int j = idx; j < i; j++) { 1056 dnh = &children->dnc_children[j]; 1057 zrl_exit(&dnh->dnh_zrlock); 1058 } 1059 1060 return (0); 1061 } 1062 } 1063 1064 return (1); 1065 } 1066 1067 static void 1068 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) 1069 { 1070 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1071 1072 for (int i = idx; i < idx + slots; i++) { 1073 dnode_handle_t *dnh = &children->dnc_children[i]; 1074 dnh->dnh_dnode = ptr; 1075 } 1076 } 1077 1078 static boolean_t 1079 dnode_check_slots_free(dnode_children_t *children, int idx, int slots) 1080 { 1081 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1082 1083 /* 1084 * If all dnode slots are either already free or 1085 * evictable return B_TRUE. 1086 */ 1087 for (int i = idx; i < idx + slots; i++) { 1088 dnode_handle_t *dnh = &children->dnc_children[i]; 1089 dnode_t *dn = dnh->dnh_dnode; 1090 1091 if (dn == DN_SLOT_FREE) { 1092 continue; 1093 } else if (DN_SLOT_IS_PTR(dn)) { 1094 mutex_enter(&dn->dn_mtx); 1095 boolean_t can_free = (dn->dn_type == DMU_OT_NONE && 1096 zfs_refcount_is_zero(&dn->dn_holds) && 1097 !DNODE_IS_DIRTY(dn)); 1098 mutex_exit(&dn->dn_mtx); 1099 1100 if (!can_free) 1101 return (B_FALSE); 1102 else 1103 continue; 1104 } else { 1105 return (B_FALSE); 1106 } 1107 } 1108 1109 return (B_TRUE); 1110 } 1111 1112 static void 1113 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) 1114 { 1115 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1116 1117 for (int i = idx; i < idx + slots; i++) { 1118 dnode_handle_t *dnh = &children->dnc_children[i]; 1119 1120 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 1121 1122 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1123 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); 1124 dnode_destroy(dnh->dnh_dnode); 1125 dnh->dnh_dnode = DN_SLOT_FREE; 1126 } 1127 } 1128 } 1129 1130 void 1131 dnode_free_interior_slots(dnode_t *dn) 1132 { 1133 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); 1134 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; 1135 int idx = (dn->dn_object & (epb - 1)) + 1; 1136 int slots = dn->dn_num_slots - 1; 1137 1138 if (slots == 0) 1139 return; 1140 1141 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1142 1143 while (!dnode_slots_tryenter(children, idx, slots)) { 1144 DNODE_STAT_BUMP(dnode_free_interior_lock_retry); 1145 cond_resched(); 1146 } 1147 1148 dnode_set_slots(children, idx, slots, DN_SLOT_FREE); 1149 dnode_slots_rele(children, idx, slots); 1150 } 1151 1152 void 1153 dnode_special_close(dnode_handle_t *dnh) 1154 { 1155 dnode_t *dn = dnh->dnh_dnode; 1156 1157 /* 1158 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final 1159 * zfs_refcount_remove() 1160 */ 1161 mutex_enter(&dn->dn_mtx); 1162 if (zfs_refcount_count(&dn->dn_holds) > 0) 1163 cv_wait(&dn->dn_nodnholds, &dn->dn_mtx); 1164 mutex_exit(&dn->dn_mtx); 1165 ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0); 1166 1167 ASSERT(dn->dn_dbuf == NULL || 1168 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1169 zrl_add(&dnh->dnh_zrlock); 1170 dnode_destroy(dn); /* implicit zrl_remove() */ 1171 zrl_destroy(&dnh->dnh_zrlock); 1172 dnh->dnh_dnode = NULL; 1173 } 1174 1175 void 1176 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1177 dnode_handle_t *dnh) 1178 { 1179 dnode_t *dn; 1180 1181 zrl_init(&dnh->dnh_zrlock); 1182 VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock)); 1183 1184 dn = dnode_create(os, dnp, NULL, object, dnh); 1185 DNODE_VERIFY(dn); 1186 1187 zrl_exit(&dnh->dnh_zrlock); 1188 } 1189 1190 static void 1191 dnode_buf_evict_async(void *dbu) 1192 { 1193 dnode_children_t *dnc = dbu; 1194 1195 DNODE_STAT_BUMP(dnode_buf_evict); 1196 1197 for (int i = 0; i < dnc->dnc_count; i++) { 1198 dnode_handle_t *dnh = &dnc->dnc_children[i]; 1199 dnode_t *dn; 1200 1201 /* 1202 * The dnode handle lock guards against the dnode moving to 1203 * another valid address, so there is no need here to guard 1204 * against changes to or from NULL. 1205 */ 1206 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1207 zrl_destroy(&dnh->dnh_zrlock); 1208 dnh->dnh_dnode = DN_SLOT_UNINIT; 1209 continue; 1210 } 1211 1212 zrl_add(&dnh->dnh_zrlock); 1213 dn = dnh->dnh_dnode; 1214 /* 1215 * If there are holds on this dnode, then there should 1216 * be holds on the dnode's containing dbuf as well; thus 1217 * it wouldn't be eligible for eviction and this function 1218 * would not have been called. 1219 */ 1220 ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); 1221 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 1222 1223 dnode_destroy(dn); /* implicit zrl_remove() for first slot */ 1224 zrl_destroy(&dnh->dnh_zrlock); 1225 dnh->dnh_dnode = DN_SLOT_UNINIT; 1226 } 1227 kmem_free(dnc, sizeof (dnode_children_t) + 1228 dnc->dnc_count * sizeof (dnode_handle_t)); 1229 } 1230 1231 /* 1232 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used 1233 * to ensure the hole at the specified object offset is large enough to 1234 * hold the dnode being created. The slots parameter is also used to ensure 1235 * a dnode does not span multiple dnode blocks. In both of these cases, if 1236 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases 1237 * are only possible when using DNODE_MUST_BE_FREE. 1238 * 1239 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. 1240 * dnode_hold_impl() will check if the requested dnode is already consumed 1241 * as an extra dnode slot by an large dnode, in which case it returns 1242 * ENOENT. 1243 * 1244 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just 1245 * return whether the hold would succeed or not. tag and dnp should set to 1246 * NULL in this case. 1247 * 1248 * errors: 1249 * EINVAL - Invalid object number or flags. 1250 * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) 1251 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) 1252 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) 1253 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) 1254 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) 1255 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) 1256 * EIO - I/O error when reading the meta dnode dbuf. 1257 * 1258 * succeeds even for free dnodes. 1259 */ 1260 int 1261 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, 1262 const void *tag, dnode_t **dnp) 1263 { 1264 int epb, idx, err; 1265 int drop_struct_lock = FALSE; 1266 int type; 1267 uint64_t blk; 1268 dnode_t *mdn, *dn; 1269 dmu_buf_impl_t *db; 1270 dnode_children_t *dnc; 1271 dnode_phys_t *dn_block; 1272 dnode_handle_t *dnh; 1273 1274 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); 1275 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); 1276 IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL)); 1277 1278 /* 1279 * If you are holding the spa config lock as writer, you shouldn't 1280 * be asking the DMU to do *anything* unless it's the root pool 1281 * which may require us to read from the root filesystem while 1282 * holding some (not all) of the locks as writer. 1283 */ 1284 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1285 (spa_is_root(os->os_spa) && 1286 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1287 1288 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1289 1290 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT || 1291 object == DMU_PROJECTUSED_OBJECT) { 1292 if (object == DMU_USERUSED_OBJECT) 1293 dn = DMU_USERUSED_DNODE(os); 1294 else if (object == DMU_GROUPUSED_OBJECT) 1295 dn = DMU_GROUPUSED_DNODE(os); 1296 else 1297 dn = DMU_PROJECTUSED_DNODE(os); 1298 if (dn == NULL) 1299 return (SET_ERROR(ENOENT)); 1300 type = dn->dn_type; 1301 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1302 return (SET_ERROR(ENOENT)); 1303 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1304 return (SET_ERROR(EEXIST)); 1305 DNODE_VERIFY(dn); 1306 /* Don't actually hold if dry run, just return 0 */ 1307 if (!(flag & DNODE_DRY_RUN)) { 1308 (void) zfs_refcount_add(&dn->dn_holds, tag); 1309 *dnp = dn; 1310 } 1311 return (0); 1312 } 1313 1314 if (object == 0 || object >= DN_MAX_OBJECT) 1315 return (SET_ERROR(EINVAL)); 1316 1317 mdn = DMU_META_DNODE(os); 1318 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1319 1320 DNODE_VERIFY(mdn); 1321 1322 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1323 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1324 drop_struct_lock = TRUE; 1325 } 1326 1327 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1328 db = dbuf_hold(mdn, blk, FTAG); 1329 if (drop_struct_lock) 1330 rw_exit(&mdn->dn_struct_rwlock); 1331 if (db == NULL) { 1332 DNODE_STAT_BUMP(dnode_hold_dbuf_hold); 1333 return (SET_ERROR(EIO)); 1334 } 1335 1336 /* 1337 * We do not need to decrypt to read the dnode so it doesn't matter 1338 * if we get the encrypted or decrypted version. 1339 */ 1340 err = dbuf_read(db, NULL, DB_RF_CANFAIL | 1341 DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH); 1342 if (err) { 1343 DNODE_STAT_BUMP(dnode_hold_dbuf_read); 1344 dbuf_rele(db, FTAG); 1345 return (err); 1346 } 1347 1348 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1349 epb = db->db.db_size >> DNODE_SHIFT; 1350 1351 idx = object & (epb - 1); 1352 dn_block = (dnode_phys_t *)db->db.db_data; 1353 1354 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1355 dnc = dmu_buf_get_user(&db->db); 1356 dnh = NULL; 1357 if (dnc == NULL) { 1358 dnode_children_t *winner; 1359 int skip = 0; 1360 1361 dnc = kmem_zalloc(sizeof (dnode_children_t) + 1362 epb * sizeof (dnode_handle_t), KM_SLEEP); 1363 dnc->dnc_count = epb; 1364 dnh = &dnc->dnc_children[0]; 1365 1366 /* Initialize dnode slot status from dnode_phys_t */ 1367 for (int i = 0; i < epb; i++) { 1368 zrl_init(&dnh[i].dnh_zrlock); 1369 1370 if (skip) { 1371 skip--; 1372 continue; 1373 } 1374 1375 if (dn_block[i].dn_type != DMU_OT_NONE) { 1376 int interior = dn_block[i].dn_extra_slots; 1377 1378 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); 1379 dnode_set_slots(dnc, i + 1, interior, 1380 DN_SLOT_INTERIOR); 1381 skip = interior; 1382 } else { 1383 dnh[i].dnh_dnode = DN_SLOT_FREE; 1384 skip = 0; 1385 } 1386 } 1387 1388 dmu_buf_init_user(&dnc->dnc_dbu, NULL, 1389 dnode_buf_evict_async, NULL); 1390 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); 1391 if (winner != NULL) { 1392 1393 for (int i = 0; i < epb; i++) 1394 zrl_destroy(&dnh[i].dnh_zrlock); 1395 1396 kmem_free(dnc, sizeof (dnode_children_t) + 1397 epb * sizeof (dnode_handle_t)); 1398 dnc = winner; 1399 } 1400 } 1401 1402 ASSERT(dnc->dnc_count == epb); 1403 1404 if (flag & DNODE_MUST_BE_ALLOCATED) { 1405 slots = 1; 1406 1407 dnode_slots_hold(dnc, idx, slots); 1408 dnh = &dnc->dnc_children[idx]; 1409 1410 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1411 dn = dnh->dnh_dnode; 1412 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { 1413 DNODE_STAT_BUMP(dnode_hold_alloc_interior); 1414 dnode_slots_rele(dnc, idx, slots); 1415 dbuf_rele(db, FTAG); 1416 return (SET_ERROR(EEXIST)); 1417 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { 1418 DNODE_STAT_BUMP(dnode_hold_alloc_misses); 1419 dnode_slots_rele(dnc, idx, slots); 1420 dbuf_rele(db, FTAG); 1421 return (SET_ERROR(ENOENT)); 1422 } else { 1423 dnode_slots_rele(dnc, idx, slots); 1424 while (!dnode_slots_tryenter(dnc, idx, slots)) { 1425 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); 1426 cond_resched(); 1427 } 1428 1429 /* 1430 * Someone else won the race and called dnode_create() 1431 * after we checked DN_SLOT_IS_PTR() above but before 1432 * we acquired the lock. 1433 */ 1434 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1435 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); 1436 dn = dnh->dnh_dnode; 1437 } else { 1438 dn = dnode_create(os, dn_block + idx, db, 1439 object, dnh); 1440 } 1441 } 1442 1443 mutex_enter(&dn->dn_mtx); 1444 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { 1445 DNODE_STAT_BUMP(dnode_hold_alloc_type_none); 1446 mutex_exit(&dn->dn_mtx); 1447 dnode_slots_rele(dnc, idx, slots); 1448 dbuf_rele(db, FTAG); 1449 return (SET_ERROR(ENOENT)); 1450 } 1451 1452 /* Don't actually hold if dry run, just return 0 */ 1453 if (flag & DNODE_DRY_RUN) { 1454 mutex_exit(&dn->dn_mtx); 1455 dnode_slots_rele(dnc, idx, slots); 1456 dbuf_rele(db, FTAG); 1457 return (0); 1458 } 1459 1460 DNODE_STAT_BUMP(dnode_hold_alloc_hits); 1461 } else if (flag & DNODE_MUST_BE_FREE) { 1462 1463 if (idx + slots - 1 >= DNODES_PER_BLOCK) { 1464 DNODE_STAT_BUMP(dnode_hold_free_overflow); 1465 dbuf_rele(db, FTAG); 1466 return (SET_ERROR(ENOSPC)); 1467 } 1468 1469 dnode_slots_hold(dnc, idx, slots); 1470 1471 if (!dnode_check_slots_free(dnc, idx, slots)) { 1472 DNODE_STAT_BUMP(dnode_hold_free_misses); 1473 dnode_slots_rele(dnc, idx, slots); 1474 dbuf_rele(db, FTAG); 1475 return (SET_ERROR(ENOSPC)); 1476 } 1477 1478 dnode_slots_rele(dnc, idx, slots); 1479 while (!dnode_slots_tryenter(dnc, idx, slots)) { 1480 DNODE_STAT_BUMP(dnode_hold_free_lock_retry); 1481 cond_resched(); 1482 } 1483 1484 if (!dnode_check_slots_free(dnc, idx, slots)) { 1485 DNODE_STAT_BUMP(dnode_hold_free_lock_misses); 1486 dnode_slots_rele(dnc, idx, slots); 1487 dbuf_rele(db, FTAG); 1488 return (SET_ERROR(ENOSPC)); 1489 } 1490 1491 /* 1492 * Allocated but otherwise free dnodes which would 1493 * be in the interior of a multi-slot dnodes need 1494 * to be freed. Single slot dnodes can be safely 1495 * re-purposed as a performance optimization. 1496 */ 1497 if (slots > 1) 1498 dnode_reclaim_slots(dnc, idx + 1, slots - 1); 1499 1500 dnh = &dnc->dnc_children[idx]; 1501 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1502 dn = dnh->dnh_dnode; 1503 } else { 1504 dn = dnode_create(os, dn_block + idx, db, 1505 object, dnh); 1506 } 1507 1508 mutex_enter(&dn->dn_mtx); 1509 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { 1510 DNODE_STAT_BUMP(dnode_hold_free_refcount); 1511 mutex_exit(&dn->dn_mtx); 1512 dnode_slots_rele(dnc, idx, slots); 1513 dbuf_rele(db, FTAG); 1514 return (SET_ERROR(EEXIST)); 1515 } 1516 1517 /* Don't actually hold if dry run, just return 0 */ 1518 if (flag & DNODE_DRY_RUN) { 1519 mutex_exit(&dn->dn_mtx); 1520 dnode_slots_rele(dnc, idx, slots); 1521 dbuf_rele(db, FTAG); 1522 return (0); 1523 } 1524 1525 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); 1526 DNODE_STAT_BUMP(dnode_hold_free_hits); 1527 } else { 1528 dbuf_rele(db, FTAG); 1529 return (SET_ERROR(EINVAL)); 1530 } 1531 1532 ASSERT0(dn->dn_free_txg); 1533 1534 if (zfs_refcount_add(&dn->dn_holds, tag) == 1) 1535 dbuf_add_ref(db, dnh); 1536 1537 mutex_exit(&dn->dn_mtx); 1538 1539 /* Now we can rely on the hold to prevent the dnode from moving. */ 1540 dnode_slots_rele(dnc, idx, slots); 1541 1542 DNODE_VERIFY(dn); 1543 ASSERT3P(dnp, !=, NULL); 1544 ASSERT3P(dn->dn_dbuf, ==, db); 1545 ASSERT3U(dn->dn_object, ==, object); 1546 dbuf_rele(db, FTAG); 1547 1548 *dnp = dn; 1549 return (0); 1550 } 1551 1552 /* 1553 * Return held dnode if the object is allocated, NULL if not. 1554 */ 1555 int 1556 dnode_hold(objset_t *os, uint64_t object, const void *tag, dnode_t **dnp) 1557 { 1558 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, 1559 dnp)); 1560 } 1561 1562 /* 1563 * Can only add a reference if there is already at least one 1564 * reference on the dnode. Returns FALSE if unable to add a 1565 * new reference. 1566 */ 1567 boolean_t 1568 dnode_add_ref(dnode_t *dn, const void *tag) 1569 { 1570 mutex_enter(&dn->dn_mtx); 1571 if (zfs_refcount_is_zero(&dn->dn_holds)) { 1572 mutex_exit(&dn->dn_mtx); 1573 return (FALSE); 1574 } 1575 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); 1576 mutex_exit(&dn->dn_mtx); 1577 return (TRUE); 1578 } 1579 1580 void 1581 dnode_rele(dnode_t *dn, const void *tag) 1582 { 1583 mutex_enter(&dn->dn_mtx); 1584 dnode_rele_and_unlock(dn, tag, B_FALSE); 1585 } 1586 1587 void 1588 dnode_rele_and_unlock(dnode_t *dn, const void *tag, boolean_t evicting) 1589 { 1590 uint64_t refs; 1591 /* Get while the hold prevents the dnode from moving. */ 1592 dmu_buf_impl_t *db = dn->dn_dbuf; 1593 dnode_handle_t *dnh = dn->dn_handle; 1594 1595 refs = zfs_refcount_remove(&dn->dn_holds, tag); 1596 if (refs == 0) 1597 cv_broadcast(&dn->dn_nodnholds); 1598 mutex_exit(&dn->dn_mtx); 1599 /* dnode could get destroyed at this point, so don't use it anymore */ 1600 1601 /* 1602 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1603 * indirectly by dbuf_rele() while relying on the dnode handle to 1604 * prevent the dnode from moving, since releasing the last hold could 1605 * result in the dnode's parent dbuf evicting its dnode handles. For 1606 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1607 * other direct or indirect hold on the dnode must first drop the dnode 1608 * handle. 1609 */ 1610 #ifdef ZFS_DEBUG 1611 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1612 #endif 1613 1614 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1615 if (refs == 0 && db != NULL) { 1616 /* 1617 * Another thread could add a hold to the dnode handle in 1618 * dnode_hold_impl() while holding the parent dbuf. Since the 1619 * hold on the parent dbuf prevents the handle from being 1620 * destroyed, the hold on the handle is OK. We can't yet assert 1621 * that the handle has zero references, but that will be 1622 * asserted anyway when the handle gets destroyed. 1623 */ 1624 mutex_enter(&db->db_mtx); 1625 dbuf_rele_and_unlock(db, dnh, evicting); 1626 } 1627 } 1628 1629 /* 1630 * Test whether we can create a dnode at the specified location. 1631 */ 1632 int 1633 dnode_try_claim(objset_t *os, uint64_t object, int slots) 1634 { 1635 return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN, 1636 slots, NULL, NULL)); 1637 } 1638 1639 /* 1640 * Checks if the dnode contains any uncommitted dirty records. 1641 */ 1642 boolean_t 1643 dnode_is_dirty(dnode_t *dn) 1644 { 1645 mutex_enter(&dn->dn_mtx); 1646 1647 for (int i = 0; i < TXG_SIZE; i++) { 1648 if (multilist_link_active(&dn->dn_dirty_link[i])) { 1649 mutex_exit(&dn->dn_mtx); 1650 return (B_TRUE); 1651 } 1652 } 1653 1654 mutex_exit(&dn->dn_mtx); 1655 1656 return (B_FALSE); 1657 } 1658 1659 void 1660 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1661 { 1662 objset_t *os = dn->dn_objset; 1663 uint64_t txg = tx->tx_txg; 1664 1665 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1666 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1667 return; 1668 } 1669 1670 DNODE_VERIFY(dn); 1671 1672 #ifdef ZFS_DEBUG 1673 mutex_enter(&dn->dn_mtx); 1674 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1675 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1676 mutex_exit(&dn->dn_mtx); 1677 #endif 1678 1679 /* 1680 * Determine old uid/gid when necessary 1681 */ 1682 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1683 1684 multilist_t *dirtylist = &os->os_dirty_dnodes[txg & TXG_MASK]; 1685 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1686 1687 /* 1688 * If we are already marked dirty, we're done. 1689 */ 1690 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1691 multilist_sublist_unlock(mls); 1692 return; 1693 } 1694 1695 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || 1696 !avl_is_empty(&dn->dn_dbufs)); 1697 ASSERT(dn->dn_datablksz != 0); 1698 ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]); 1699 ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]); 1700 ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]); 1701 1702 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1703 (u_longlong_t)dn->dn_object, (u_longlong_t)txg); 1704 1705 multilist_sublist_insert_head(mls, dn); 1706 1707 multilist_sublist_unlock(mls); 1708 1709 /* 1710 * The dnode maintains a hold on its containing dbuf as 1711 * long as there are holds on it. Each instantiated child 1712 * dbuf maintains a hold on the dnode. When the last child 1713 * drops its hold, the dnode will drop its hold on the 1714 * containing dbuf. We add a "dirty hold" here so that the 1715 * dnode will hang around after we finish processing its 1716 * children. 1717 */ 1718 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1719 1720 (void) dbuf_dirty(dn->dn_dbuf, tx); 1721 1722 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1723 } 1724 1725 void 1726 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1727 { 1728 mutex_enter(&dn->dn_mtx); 1729 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1730 mutex_exit(&dn->dn_mtx); 1731 return; 1732 } 1733 dn->dn_free_txg = tx->tx_txg; 1734 mutex_exit(&dn->dn_mtx); 1735 1736 dnode_setdirty(dn, tx); 1737 } 1738 1739 /* 1740 * Try to change the block size for the indicated dnode. This can only 1741 * succeed if there are no blocks allocated or dirty beyond first block 1742 */ 1743 int 1744 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1745 { 1746 dmu_buf_impl_t *db; 1747 int err; 1748 1749 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1750 if (size == 0) 1751 size = SPA_MINBLOCKSIZE; 1752 else 1753 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1754 1755 if (ibs == dn->dn_indblkshift) 1756 ibs = 0; 1757 1758 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1759 return (0); 1760 1761 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1762 1763 /* Check for any allocated blocks beyond the first */ 1764 if (dn->dn_maxblkid != 0) 1765 goto fail; 1766 1767 mutex_enter(&dn->dn_dbufs_mtx); 1768 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1769 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1770 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1771 db->db_blkid != DMU_SPILL_BLKID) { 1772 mutex_exit(&dn->dn_dbufs_mtx); 1773 goto fail; 1774 } 1775 } 1776 mutex_exit(&dn->dn_dbufs_mtx); 1777 1778 if (ibs && dn->dn_nlevels != 1) 1779 goto fail; 1780 1781 /* resize the old block */ 1782 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1783 if (err == 0) { 1784 dbuf_new_size(db, size, tx); 1785 } else if (err != ENOENT) { 1786 goto fail; 1787 } 1788 1789 dnode_setdblksz(dn, size); 1790 dnode_setdirty(dn, tx); 1791 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1792 if (ibs) { 1793 dn->dn_indblkshift = ibs; 1794 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1795 } 1796 /* release after we have fixed the blocksize in the dnode */ 1797 if (db) 1798 dbuf_rele(db, FTAG); 1799 1800 rw_exit(&dn->dn_struct_rwlock); 1801 return (0); 1802 1803 fail: 1804 rw_exit(&dn->dn_struct_rwlock); 1805 return (SET_ERROR(ENOTSUP)); 1806 } 1807 1808 static void 1809 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx) 1810 { 1811 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1812 int old_nlevels = dn->dn_nlevels; 1813 dmu_buf_impl_t *db; 1814 list_t *list; 1815 dbuf_dirty_record_t *new, *dr, *dr_next; 1816 1817 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1818 1819 ASSERT3U(new_nlevels, >, dn->dn_nlevels); 1820 dn->dn_nlevels = new_nlevels; 1821 1822 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1823 dn->dn_next_nlevels[txgoff] = new_nlevels; 1824 1825 /* dirty the left indirects */ 1826 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1827 ASSERT(db != NULL); 1828 new = dbuf_dirty(db, tx); 1829 dbuf_rele(db, FTAG); 1830 1831 /* transfer the dirty records to the new indirect */ 1832 mutex_enter(&dn->dn_mtx); 1833 mutex_enter(&new->dt.di.dr_mtx); 1834 list = &dn->dn_dirty_records[txgoff]; 1835 for (dr = list_head(list); dr; dr = dr_next) { 1836 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1837 1838 IMPLY(dr->dr_dbuf == NULL, old_nlevels == 1); 1839 if (dr->dr_dbuf == NULL || 1840 (dr->dr_dbuf->db_level == old_nlevels - 1 && 1841 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1842 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID)) { 1843 list_remove(&dn->dn_dirty_records[txgoff], dr); 1844 list_insert_tail(&new->dt.di.dr_children, dr); 1845 dr->dr_parent = new; 1846 } 1847 } 1848 mutex_exit(&new->dt.di.dr_mtx); 1849 mutex_exit(&dn->dn_mtx); 1850 } 1851 1852 int 1853 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx) 1854 { 1855 int ret = 0; 1856 1857 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1858 1859 if (dn->dn_nlevels == nlevels) { 1860 ret = 0; 1861 goto out; 1862 } else if (nlevels < dn->dn_nlevels) { 1863 ret = SET_ERROR(EINVAL); 1864 goto out; 1865 } 1866 1867 dnode_set_nlevels_impl(dn, nlevels, tx); 1868 1869 out: 1870 rw_exit(&dn->dn_struct_rwlock); 1871 return (ret); 1872 } 1873 1874 /* read-holding callers must not rely on the lock being continuously held */ 1875 void 1876 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read, 1877 boolean_t force) 1878 { 1879 int epbs, new_nlevels; 1880 uint64_t sz; 1881 1882 ASSERT(blkid != DMU_BONUS_BLKID); 1883 1884 ASSERT(have_read ? 1885 RW_READ_HELD(&dn->dn_struct_rwlock) : 1886 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1887 1888 /* 1889 * if we have a read-lock, check to see if we need to do any work 1890 * before upgrading to a write-lock. 1891 */ 1892 if (have_read) { 1893 if (blkid <= dn->dn_maxblkid) 1894 return; 1895 1896 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1897 rw_exit(&dn->dn_struct_rwlock); 1898 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1899 } 1900 } 1901 1902 /* 1903 * Raw sends (indicated by the force flag) require that we take the 1904 * given blkid even if the value is lower than the current value. 1905 */ 1906 if (!force && blkid <= dn->dn_maxblkid) 1907 goto out; 1908 1909 /* 1910 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff] 1911 * to indicate that this field is set. This allows us to set the 1912 * maxblkid to 0 on an existing object in dnode_sync(). 1913 */ 1914 dn->dn_maxblkid = blkid; 1915 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = 1916 blkid | DMU_NEXT_MAXBLKID_SET; 1917 1918 /* 1919 * Compute the number of levels necessary to support the new maxblkid. 1920 * Raw sends will ensure nlevels is set correctly for us. 1921 */ 1922 new_nlevels = 1; 1923 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1924 for (sz = dn->dn_nblkptr; 1925 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1926 new_nlevels++; 1927 1928 ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS); 1929 1930 if (!force) { 1931 if (new_nlevels > dn->dn_nlevels) 1932 dnode_set_nlevels_impl(dn, new_nlevels, tx); 1933 } else { 1934 ASSERT3U(dn->dn_nlevels, >=, new_nlevels); 1935 } 1936 1937 out: 1938 if (have_read) 1939 rw_downgrade(&dn->dn_struct_rwlock); 1940 } 1941 1942 static void 1943 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1944 { 1945 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1946 if (db != NULL) { 1947 dmu_buf_will_dirty(&db->db, tx); 1948 dbuf_rele(db, FTAG); 1949 } 1950 } 1951 1952 /* 1953 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 1954 * and end_blkid. 1955 */ 1956 static void 1957 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1958 dmu_tx_t *tx) 1959 { 1960 dmu_buf_impl_t *db_search; 1961 dmu_buf_impl_t *db; 1962 avl_index_t where; 1963 1964 db_search = kmem_zalloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1965 1966 mutex_enter(&dn->dn_dbufs_mtx); 1967 1968 db_search->db_level = 1; 1969 db_search->db_blkid = start_blkid + 1; 1970 db_search->db_state = DB_SEARCH; 1971 for (;;) { 1972 1973 db = avl_find(&dn->dn_dbufs, db_search, &where); 1974 if (db == NULL) 1975 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1976 1977 if (db == NULL || db->db_level != 1 || 1978 db->db_blkid >= end_blkid) { 1979 break; 1980 } 1981 1982 /* 1983 * Setup the next blkid we want to search for. 1984 */ 1985 db_search->db_blkid = db->db_blkid + 1; 1986 ASSERT3U(db->db_blkid, >=, start_blkid); 1987 1988 /* 1989 * If the dbuf transitions to DB_EVICTING while we're trying 1990 * to dirty it, then we will be unable to discover it in 1991 * the dbuf hash table. This will result in a call to 1992 * dbuf_create() which needs to acquire the dn_dbufs_mtx 1993 * lock. To avoid a deadlock, we drop the lock before 1994 * dirtying the level-1 dbuf. 1995 */ 1996 mutex_exit(&dn->dn_dbufs_mtx); 1997 dnode_dirty_l1(dn, db->db_blkid, tx); 1998 mutex_enter(&dn->dn_dbufs_mtx); 1999 } 2000 2001 #ifdef ZFS_DEBUG 2002 /* 2003 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 2004 */ 2005 db_search->db_level = 1; 2006 db_search->db_blkid = start_blkid + 1; 2007 db_search->db_state = DB_SEARCH; 2008 db = avl_find(&dn->dn_dbufs, db_search, &where); 2009 if (db == NULL) 2010 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2011 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 2012 if (db->db_level != 1 || db->db_blkid >= end_blkid) 2013 break; 2014 if (db->db_state != DB_EVICTING) 2015 ASSERT(db->db_dirtycnt > 0); 2016 } 2017 #endif 2018 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2019 mutex_exit(&dn->dn_dbufs_mtx); 2020 } 2021 2022 void 2023 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, const void *tag) 2024 { 2025 /* 2026 * Don't set dirtyctx to SYNC if we're just modifying this as we 2027 * initialize the objset. 2028 */ 2029 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 2030 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2031 2032 if (ds != NULL) { 2033 rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag); 2034 } 2035 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 2036 if (dmu_tx_is_syncing(tx)) 2037 dn->dn_dirtyctx = DN_DIRTY_SYNC; 2038 else 2039 dn->dn_dirtyctx = DN_DIRTY_OPEN; 2040 dn->dn_dirtyctx_firstset = tag; 2041 } 2042 if (ds != NULL) { 2043 rrw_exit(&ds->ds_bp_rwlock, tag); 2044 } 2045 } 2046 } 2047 2048 static void 2049 dnode_partial_zero(dnode_t *dn, uint64_t off, uint64_t blkoff, uint64_t len, 2050 dmu_tx_t *tx) 2051 { 2052 dmu_buf_impl_t *db; 2053 int res; 2054 2055 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2056 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), TRUE, FALSE, 2057 FTAG, &db); 2058 rw_exit(&dn->dn_struct_rwlock); 2059 if (res == 0) { 2060 db_lock_type_t dblt; 2061 boolean_t dirty; 2062 2063 dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2064 /* don't dirty if not on disk and not dirty */ 2065 dirty = !list_is_empty(&db->db_dirty_records) || 2066 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2067 dmu_buf_unlock_parent(db, dblt, FTAG); 2068 if (dirty) { 2069 caddr_t data; 2070 2071 dmu_buf_will_dirty(&db->db, tx); 2072 data = db->db.db_data; 2073 memset(data + blkoff, 0, len); 2074 } 2075 dbuf_rele(db, FTAG); 2076 } 2077 } 2078 2079 void 2080 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 2081 { 2082 uint64_t blkoff, blkid, nblks; 2083 int blksz, blkshift, head, tail; 2084 int trunc = FALSE; 2085 int epbs; 2086 2087 blksz = dn->dn_datablksz; 2088 blkshift = dn->dn_datablkshift; 2089 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2090 2091 if (len == DMU_OBJECT_END) { 2092 len = UINT64_MAX - off; 2093 trunc = TRUE; 2094 } 2095 2096 /* 2097 * First, block align the region to free: 2098 */ 2099 if (ISP2(blksz)) { 2100 head = P2NPHASE(off, blksz); 2101 blkoff = P2PHASE(off, blksz); 2102 if ((off >> blkshift) > dn->dn_maxblkid) 2103 return; 2104 } else { 2105 ASSERT(dn->dn_maxblkid == 0); 2106 if (off == 0 && len >= blksz) { 2107 /* 2108 * Freeing the whole block; fast-track this request. 2109 */ 2110 blkid = 0; 2111 nblks = 1; 2112 if (dn->dn_nlevels > 1) { 2113 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2114 dnode_dirty_l1(dn, 0, tx); 2115 rw_exit(&dn->dn_struct_rwlock); 2116 } 2117 goto done; 2118 } else if (off >= blksz) { 2119 /* Freeing past end-of-data */ 2120 return; 2121 } else { 2122 /* Freeing part of the block. */ 2123 head = blksz - off; 2124 ASSERT3U(head, >, 0); 2125 } 2126 blkoff = off; 2127 } 2128 /* zero out any partial block data at the start of the range */ 2129 if (head) { 2130 ASSERT3U(blkoff + head, ==, blksz); 2131 if (len < head) 2132 head = len; 2133 dnode_partial_zero(dn, off, blkoff, head, tx); 2134 off += head; 2135 len -= head; 2136 } 2137 2138 /* If the range was less than one block, we're done */ 2139 if (len == 0) 2140 return; 2141 2142 /* If the remaining range is past end of file, we're done */ 2143 if ((off >> blkshift) > dn->dn_maxblkid) 2144 return; 2145 2146 ASSERT(ISP2(blksz)); 2147 if (trunc) 2148 tail = 0; 2149 else 2150 tail = P2PHASE(len, blksz); 2151 2152 ASSERT0(P2PHASE(off, blksz)); 2153 /* zero out any partial block data at the end of the range */ 2154 if (tail) { 2155 if (len < tail) 2156 tail = len; 2157 dnode_partial_zero(dn, off + len, 0, tail, tx); 2158 len -= tail; 2159 } 2160 2161 /* If the range did not include a full block, we are done */ 2162 if (len == 0) 2163 return; 2164 2165 ASSERT(IS_P2ALIGNED(off, blksz)); 2166 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 2167 blkid = off >> blkshift; 2168 nblks = len >> blkshift; 2169 if (trunc) 2170 nblks += 1; 2171 2172 /* 2173 * Dirty all the indirect blocks in this range. Note that only 2174 * the first and last indirect blocks can actually be written 2175 * (if they were partially freed) -- they must be dirtied, even if 2176 * they do not exist on disk yet. The interior blocks will 2177 * be freed by free_children(), so they will not actually be written. 2178 * Even though these interior blocks will not be written, we 2179 * dirty them for two reasons: 2180 * 2181 * - It ensures that the indirect blocks remain in memory until 2182 * syncing context. (They have already been prefetched by 2183 * dmu_tx_hold_free(), so we don't have to worry about reading 2184 * them serially here.) 2185 * 2186 * - The dirty space accounting will put pressure on the txg sync 2187 * mechanism to begin syncing, and to delay transactions if there 2188 * is a large amount of freeing. Even though these indirect 2189 * blocks will not be written, we could need to write the same 2190 * amount of space if we copy the freed BPs into deadlists. 2191 */ 2192 if (dn->dn_nlevels > 1) { 2193 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2194 uint64_t first, last; 2195 2196 first = blkid >> epbs; 2197 dnode_dirty_l1(dn, first, tx); 2198 if (trunc) 2199 last = dn->dn_maxblkid >> epbs; 2200 else 2201 last = (blkid + nblks - 1) >> epbs; 2202 if (last != first) 2203 dnode_dirty_l1(dn, last, tx); 2204 2205 dnode_dirty_l1range(dn, first, last, tx); 2206 2207 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 2208 SPA_BLKPTRSHIFT; 2209 for (uint64_t i = first + 1; i < last; i++) { 2210 /* 2211 * Set i to the blockid of the next non-hole 2212 * level-1 indirect block at or after i. Note 2213 * that dnode_next_offset() operates in terms of 2214 * level-0-equivalent bytes. 2215 */ 2216 uint64_t ibyte = i << shift; 2217 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 2218 &ibyte, 2, 1, 0); 2219 i = ibyte >> shift; 2220 if (i >= last) 2221 break; 2222 2223 /* 2224 * Normally we should not see an error, either 2225 * from dnode_next_offset() or dbuf_hold_level() 2226 * (except for ESRCH from dnode_next_offset). 2227 * If there is an i/o error, then when we read 2228 * this block in syncing context, it will use 2229 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 2230 * to the "failmode" property. dnode_next_offset() 2231 * doesn't have a flag to indicate MUSTSUCCEED. 2232 */ 2233 if (err != 0) 2234 break; 2235 2236 dnode_dirty_l1(dn, i, tx); 2237 } 2238 rw_exit(&dn->dn_struct_rwlock); 2239 } 2240 2241 done: 2242 /* 2243 * Add this range to the dnode range list. 2244 * We will finish up this free operation in the syncing phase. 2245 */ 2246 mutex_enter(&dn->dn_mtx); 2247 { 2248 int txgoff = tx->tx_txg & TXG_MASK; 2249 if (dn->dn_free_ranges[txgoff] == NULL) { 2250 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, 2251 RANGE_SEG64, NULL, 0, 0); 2252 } 2253 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 2254 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 2255 } 2256 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 2257 (u_longlong_t)blkid, (u_longlong_t)nblks, 2258 (u_longlong_t)tx->tx_txg); 2259 mutex_exit(&dn->dn_mtx); 2260 2261 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 2262 dnode_setdirty(dn, tx); 2263 } 2264 2265 static boolean_t 2266 dnode_spill_freed(dnode_t *dn) 2267 { 2268 int i; 2269 2270 mutex_enter(&dn->dn_mtx); 2271 for (i = 0; i < TXG_SIZE; i++) { 2272 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 2273 break; 2274 } 2275 mutex_exit(&dn->dn_mtx); 2276 return (i < TXG_SIZE); 2277 } 2278 2279 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 2280 uint64_t 2281 dnode_block_freed(dnode_t *dn, uint64_t blkid) 2282 { 2283 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 2284 int i; 2285 2286 if (blkid == DMU_BONUS_BLKID) 2287 return (FALSE); 2288 2289 /* 2290 * If we're in the process of opening the pool, dp will not be 2291 * set yet, but there shouldn't be anything dirty. 2292 */ 2293 if (dp == NULL) 2294 return (FALSE); 2295 2296 if (dn->dn_free_txg) 2297 return (TRUE); 2298 2299 if (blkid == DMU_SPILL_BLKID) 2300 return (dnode_spill_freed(dn)); 2301 2302 mutex_enter(&dn->dn_mtx); 2303 for (i = 0; i < TXG_SIZE; i++) { 2304 if (dn->dn_free_ranges[i] != NULL && 2305 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 2306 break; 2307 } 2308 mutex_exit(&dn->dn_mtx); 2309 return (i < TXG_SIZE); 2310 } 2311 2312 /* call from syncing context when we actually write/free space for this dnode */ 2313 void 2314 dnode_diduse_space(dnode_t *dn, int64_t delta) 2315 { 2316 uint64_t space; 2317 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 2318 dn, dn->dn_phys, 2319 (u_longlong_t)dn->dn_phys->dn_used, 2320 (longlong_t)delta); 2321 2322 mutex_enter(&dn->dn_mtx); 2323 space = DN_USED_BYTES(dn->dn_phys); 2324 if (delta > 0) { 2325 ASSERT3U(space + delta, >=, space); /* no overflow */ 2326 } else { 2327 ASSERT3U(space, >=, -delta); /* no underflow */ 2328 } 2329 space += delta; 2330 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 2331 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 2332 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 2333 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 2334 } else { 2335 dn->dn_phys->dn_used = space; 2336 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 2337 } 2338 mutex_exit(&dn->dn_mtx); 2339 } 2340 2341 /* 2342 * Scans a block at the indicated "level" looking for a hole or data, 2343 * depending on 'flags'. 2344 * 2345 * If level > 0, then we are scanning an indirect block looking at its 2346 * pointers. If level == 0, then we are looking at a block of dnodes. 2347 * 2348 * If we don't find what we are looking for in the block, we return ESRCH. 2349 * Otherwise, return with *offset pointing to the beginning (if searching 2350 * forwards) or end (if searching backwards) of the range covered by the 2351 * block pointer we matched on (or dnode). 2352 * 2353 * The basic search algorithm used below by dnode_next_offset() is to 2354 * use this function to search up the block tree (widen the search) until 2355 * we find something (i.e., we don't return ESRCH) and then search back 2356 * down the tree (narrow the search) until we reach our original search 2357 * level. 2358 */ 2359 static int 2360 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 2361 int lvl, uint64_t blkfill, uint64_t txg) 2362 { 2363 dmu_buf_impl_t *db = NULL; 2364 void *data = NULL; 2365 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2366 uint64_t epb = 1ULL << epbs; 2367 uint64_t minfill, maxfill; 2368 boolean_t hole; 2369 int i, inc, error, span; 2370 2371 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2372 2373 hole = ((flags & DNODE_FIND_HOLE) != 0); 2374 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 2375 ASSERT(txg == 0 || !hole); 2376 2377 if (lvl == dn->dn_phys->dn_nlevels) { 2378 error = 0; 2379 epb = dn->dn_phys->dn_nblkptr; 2380 data = dn->dn_phys->dn_blkptr; 2381 } else { 2382 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 2383 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 2384 if (error) { 2385 if (error != ENOENT) 2386 return (error); 2387 if (hole) 2388 return (0); 2389 /* 2390 * This can only happen when we are searching up 2391 * the block tree for data. We don't really need to 2392 * adjust the offset, as we will just end up looking 2393 * at the pointer to this block in its parent, and its 2394 * going to be unallocated, so we will skip over it. 2395 */ 2396 return (SET_ERROR(ESRCH)); 2397 } 2398 error = dbuf_read(db, NULL, 2399 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | 2400 DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH); 2401 if (error) { 2402 dbuf_rele(db, FTAG); 2403 return (error); 2404 } 2405 data = db->db.db_data; 2406 rw_enter(&db->db_rwlock, RW_READER); 2407 } 2408 2409 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 2410 db->db_blkptr->blk_birth <= txg || 2411 BP_IS_HOLE(db->db_blkptr))) { 2412 /* 2413 * This can only happen when we are searching up the tree 2414 * and these conditions mean that we need to keep climbing. 2415 */ 2416 error = SET_ERROR(ESRCH); 2417 } else if (lvl == 0) { 2418 dnode_phys_t *dnp = data; 2419 2420 ASSERT(dn->dn_type == DMU_OT_DNODE); 2421 ASSERT(!(flags & DNODE_FIND_BACKWARDS)); 2422 2423 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); 2424 i < blkfill; i += dnp[i].dn_extra_slots + 1) { 2425 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 2426 break; 2427 } 2428 2429 if (i == blkfill) 2430 error = SET_ERROR(ESRCH); 2431 2432 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + 2433 (i << DNODE_SHIFT); 2434 } else { 2435 blkptr_t *bp = data; 2436 uint64_t start = *offset; 2437 span = (lvl - 1) * epbs + dn->dn_datablkshift; 2438 minfill = 0; 2439 maxfill = blkfill << ((lvl - 1) * epbs); 2440 2441 if (hole) 2442 maxfill--; 2443 else 2444 minfill++; 2445 2446 if (span >= 8 * sizeof (*offset)) { 2447 /* This only happens on the highest indirection level */ 2448 ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1); 2449 *offset = 0; 2450 } else { 2451 *offset = *offset >> span; 2452 } 2453 2454 for (i = BF64_GET(*offset, 0, epbs); 2455 i >= 0 && i < epb; i += inc) { 2456 if (BP_GET_FILL(&bp[i]) >= minfill && 2457 BP_GET_FILL(&bp[i]) <= maxfill && 2458 (hole || bp[i].blk_birth > txg)) 2459 break; 2460 if (inc > 0 || *offset > 0) 2461 *offset += inc; 2462 } 2463 2464 if (span >= 8 * sizeof (*offset)) { 2465 *offset = start; 2466 } else { 2467 *offset = *offset << span; 2468 } 2469 2470 if (inc < 0) { 2471 /* traversing backwards; position offset at the end */ 2472 ASSERT3U(*offset, <=, start); 2473 *offset = MIN(*offset + (1ULL << span) - 1, start); 2474 } else if (*offset < start) { 2475 *offset = start; 2476 } 2477 if (i < 0 || i >= epb) 2478 error = SET_ERROR(ESRCH); 2479 } 2480 2481 if (db != NULL) { 2482 rw_exit(&db->db_rwlock); 2483 dbuf_rele(db, FTAG); 2484 } 2485 2486 return (error); 2487 } 2488 2489 /* 2490 * Find the next hole, data, or sparse region at or after *offset. 2491 * The value 'blkfill' tells us how many items we expect to find 2492 * in an L0 data block; this value is 1 for normal objects, 2493 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 2494 * DNODES_PER_BLOCK when searching for sparse regions thereof. 2495 * 2496 * Examples: 2497 * 2498 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2499 * Finds the next/previous hole/data in a file. 2500 * Used in dmu_offset_next(). 2501 * 2502 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2503 * Finds the next free/allocated dnode an objset's meta-dnode. 2504 * Only finds objects that have new contents since txg (ie. 2505 * bonus buffer changes and content removal are ignored). 2506 * Used in dmu_object_next(). 2507 * 2508 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2509 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2510 * Used in dmu_object_alloc(). 2511 */ 2512 int 2513 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2514 int minlvl, uint64_t blkfill, uint64_t txg) 2515 { 2516 uint64_t initial_offset = *offset; 2517 int lvl, maxlvl; 2518 int error = 0; 2519 2520 if (!(flags & DNODE_FIND_HAVELOCK)) 2521 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2522 2523 if (dn->dn_phys->dn_nlevels == 0) { 2524 error = SET_ERROR(ESRCH); 2525 goto out; 2526 } 2527 2528 if (dn->dn_datablkshift == 0) { 2529 if (*offset < dn->dn_datablksz) { 2530 if (flags & DNODE_FIND_HOLE) 2531 *offset = dn->dn_datablksz; 2532 } else { 2533 error = SET_ERROR(ESRCH); 2534 } 2535 goto out; 2536 } 2537 2538 maxlvl = dn->dn_phys->dn_nlevels; 2539 2540 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2541 error = dnode_next_offset_level(dn, 2542 flags, offset, lvl, blkfill, txg); 2543 if (error != ESRCH) 2544 break; 2545 } 2546 2547 while (error == 0 && --lvl >= minlvl) { 2548 error = dnode_next_offset_level(dn, 2549 flags, offset, lvl, blkfill, txg); 2550 } 2551 2552 /* 2553 * There's always a "virtual hole" at the end of the object, even 2554 * if all BP's which physically exist are non-holes. 2555 */ 2556 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2557 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2558 error = 0; 2559 } 2560 2561 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2562 initial_offset < *offset : initial_offset > *offset)) 2563 error = SET_ERROR(ESRCH); 2564 out: 2565 if (!(flags & DNODE_FIND_HAVELOCK)) 2566 rw_exit(&dn->dn_struct_rwlock); 2567 2568 return (error); 2569 } 2570 2571 #if defined(_KERNEL) 2572 EXPORT_SYMBOL(dnode_hold); 2573 EXPORT_SYMBOL(dnode_rele); 2574 EXPORT_SYMBOL(dnode_set_nlevels); 2575 EXPORT_SYMBOL(dnode_set_blksz); 2576 EXPORT_SYMBOL(dnode_free_range); 2577 EXPORT_SYMBOL(dnode_evict_dbufs); 2578 EXPORT_SYMBOL(dnode_evict_bonus); 2579 #endif 2580