xref: /freebsd/sys/contrib/openzfs/module/zfs/dnode.c (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/dbuf.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/zio.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/range_tree.h>
40 #include <sys/trace_zfs.h>
41 #include <sys/zfs_project.h>
42 
43 dnode_stats_t dnode_stats = {
44 	{ "dnode_hold_dbuf_hold",		KSTAT_DATA_UINT64 },
45 	{ "dnode_hold_dbuf_read",		KSTAT_DATA_UINT64 },
46 	{ "dnode_hold_alloc_hits",		KSTAT_DATA_UINT64 },
47 	{ "dnode_hold_alloc_misses",		KSTAT_DATA_UINT64 },
48 	{ "dnode_hold_alloc_interior",		KSTAT_DATA_UINT64 },
49 	{ "dnode_hold_alloc_lock_retry",	KSTAT_DATA_UINT64 },
50 	{ "dnode_hold_alloc_lock_misses",	KSTAT_DATA_UINT64 },
51 	{ "dnode_hold_alloc_type_none",		KSTAT_DATA_UINT64 },
52 	{ "dnode_hold_free_hits",		KSTAT_DATA_UINT64 },
53 	{ "dnode_hold_free_misses",		KSTAT_DATA_UINT64 },
54 	{ "dnode_hold_free_lock_misses",	KSTAT_DATA_UINT64 },
55 	{ "dnode_hold_free_lock_retry",		KSTAT_DATA_UINT64 },
56 	{ "dnode_hold_free_overflow",		KSTAT_DATA_UINT64 },
57 	{ "dnode_hold_free_refcount",		KSTAT_DATA_UINT64 },
58 	{ "dnode_free_interior_lock_retry",	KSTAT_DATA_UINT64 },
59 	{ "dnode_allocate",			KSTAT_DATA_UINT64 },
60 	{ "dnode_reallocate",			KSTAT_DATA_UINT64 },
61 	{ "dnode_buf_evict",			KSTAT_DATA_UINT64 },
62 	{ "dnode_alloc_next_chunk",		KSTAT_DATA_UINT64 },
63 	{ "dnode_alloc_race",			KSTAT_DATA_UINT64 },
64 	{ "dnode_alloc_next_block",		KSTAT_DATA_UINT64 },
65 	{ "dnode_move_invalid",			KSTAT_DATA_UINT64 },
66 	{ "dnode_move_recheck1",		KSTAT_DATA_UINT64 },
67 	{ "dnode_move_recheck2",		KSTAT_DATA_UINT64 },
68 	{ "dnode_move_special",			KSTAT_DATA_UINT64 },
69 	{ "dnode_move_handle",			KSTAT_DATA_UINT64 },
70 	{ "dnode_move_rwlock",			KSTAT_DATA_UINT64 },
71 	{ "dnode_move_active",			KSTAT_DATA_UINT64 },
72 };
73 
74 static kstat_t *dnode_ksp;
75 static kmem_cache_t *dnode_cache;
76 
77 static dnode_phys_t dnode_phys_zero __maybe_unused;
78 
79 int zfs_default_bs = SPA_MINBLOCKSHIFT;
80 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
81 
82 #ifdef	_KERNEL
83 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
84 #endif /* _KERNEL */
85 
86 static int
87 dbuf_compare(const void *x1, const void *x2)
88 {
89 	const dmu_buf_impl_t *d1 = x1;
90 	const dmu_buf_impl_t *d2 = x2;
91 
92 	int cmp = TREE_CMP(d1->db_level, d2->db_level);
93 	if (likely(cmp))
94 		return (cmp);
95 
96 	cmp = TREE_CMP(d1->db_blkid, d2->db_blkid);
97 	if (likely(cmp))
98 		return (cmp);
99 
100 	if (d1->db_state == DB_SEARCH) {
101 		ASSERT3S(d2->db_state, !=, DB_SEARCH);
102 		return (-1);
103 	} else if (d2->db_state == DB_SEARCH) {
104 		ASSERT3S(d1->db_state, !=, DB_SEARCH);
105 		return (1);
106 	}
107 
108 	return (TREE_PCMP(d1, d2));
109 }
110 
111 /* ARGSUSED */
112 static int
113 dnode_cons(void *arg, void *unused, int kmflag)
114 {
115 	dnode_t *dn = arg;
116 	int i;
117 
118 	rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
119 	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
120 	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
121 	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
122 	cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL);
123 
124 	/*
125 	 * Every dbuf has a reference, and dropping a tracked reference is
126 	 * O(number of references), so don't track dn_holds.
127 	 */
128 	zfs_refcount_create_untracked(&dn->dn_holds);
129 	zfs_refcount_create(&dn->dn_tx_holds);
130 	list_link_init(&dn->dn_link);
131 
132 	bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
133 	bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
134 	bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
135 	bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
136 	bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
137 	bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
138 	bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
139 	bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid));
140 
141 	for (i = 0; i < TXG_SIZE; i++) {
142 		multilist_link_init(&dn->dn_dirty_link[i]);
143 		dn->dn_free_ranges[i] = NULL;
144 		list_create(&dn->dn_dirty_records[i],
145 		    sizeof (dbuf_dirty_record_t),
146 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
147 	}
148 
149 	dn->dn_allocated_txg = 0;
150 	dn->dn_free_txg = 0;
151 	dn->dn_assigned_txg = 0;
152 	dn->dn_dirty_txg = 0;
153 	dn->dn_dirtyctx = 0;
154 	dn->dn_dirtyctx_firstset = NULL;
155 	dn->dn_bonus = NULL;
156 	dn->dn_have_spill = B_FALSE;
157 	dn->dn_zio = NULL;
158 	dn->dn_oldused = 0;
159 	dn->dn_oldflags = 0;
160 	dn->dn_olduid = 0;
161 	dn->dn_oldgid = 0;
162 	dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
163 	dn->dn_newuid = 0;
164 	dn->dn_newgid = 0;
165 	dn->dn_newprojid = ZFS_DEFAULT_PROJID;
166 	dn->dn_id_flags = 0;
167 
168 	dn->dn_dbufs_count = 0;
169 	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
170 	    offsetof(dmu_buf_impl_t, db_link));
171 
172 	dn->dn_moved = 0;
173 	return (0);
174 }
175 
176 /* ARGSUSED */
177 static void
178 dnode_dest(void *arg, void *unused)
179 {
180 	int i;
181 	dnode_t *dn = arg;
182 
183 	rw_destroy(&dn->dn_struct_rwlock);
184 	mutex_destroy(&dn->dn_mtx);
185 	mutex_destroy(&dn->dn_dbufs_mtx);
186 	cv_destroy(&dn->dn_notxholds);
187 	cv_destroy(&dn->dn_nodnholds);
188 	zfs_refcount_destroy(&dn->dn_holds);
189 	zfs_refcount_destroy(&dn->dn_tx_holds);
190 	ASSERT(!list_link_active(&dn->dn_link));
191 
192 	for (i = 0; i < TXG_SIZE; i++) {
193 		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
194 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
195 		list_destroy(&dn->dn_dirty_records[i]);
196 		ASSERT0(dn->dn_next_nblkptr[i]);
197 		ASSERT0(dn->dn_next_nlevels[i]);
198 		ASSERT0(dn->dn_next_indblkshift[i]);
199 		ASSERT0(dn->dn_next_bonustype[i]);
200 		ASSERT0(dn->dn_rm_spillblk[i]);
201 		ASSERT0(dn->dn_next_bonuslen[i]);
202 		ASSERT0(dn->dn_next_blksz[i]);
203 		ASSERT0(dn->dn_next_maxblkid[i]);
204 	}
205 
206 	ASSERT0(dn->dn_allocated_txg);
207 	ASSERT0(dn->dn_free_txg);
208 	ASSERT0(dn->dn_assigned_txg);
209 	ASSERT0(dn->dn_dirty_txg);
210 	ASSERT0(dn->dn_dirtyctx);
211 	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
212 	ASSERT3P(dn->dn_bonus, ==, NULL);
213 	ASSERT(!dn->dn_have_spill);
214 	ASSERT3P(dn->dn_zio, ==, NULL);
215 	ASSERT0(dn->dn_oldused);
216 	ASSERT0(dn->dn_oldflags);
217 	ASSERT0(dn->dn_olduid);
218 	ASSERT0(dn->dn_oldgid);
219 	ASSERT0(dn->dn_oldprojid);
220 	ASSERT0(dn->dn_newuid);
221 	ASSERT0(dn->dn_newgid);
222 	ASSERT0(dn->dn_newprojid);
223 	ASSERT0(dn->dn_id_flags);
224 
225 	ASSERT0(dn->dn_dbufs_count);
226 	avl_destroy(&dn->dn_dbufs);
227 }
228 
229 void
230 dnode_init(void)
231 {
232 	ASSERT(dnode_cache == NULL);
233 	dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
234 	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
235 	kmem_cache_set_move(dnode_cache, dnode_move);
236 
237 	dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
238 	    KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
239 	    KSTAT_FLAG_VIRTUAL);
240 	if (dnode_ksp != NULL) {
241 		dnode_ksp->ks_data = &dnode_stats;
242 		kstat_install(dnode_ksp);
243 	}
244 }
245 
246 void
247 dnode_fini(void)
248 {
249 	if (dnode_ksp != NULL) {
250 		kstat_delete(dnode_ksp);
251 		dnode_ksp = NULL;
252 	}
253 
254 	kmem_cache_destroy(dnode_cache);
255 	dnode_cache = NULL;
256 }
257 
258 
259 #ifdef ZFS_DEBUG
260 void
261 dnode_verify(dnode_t *dn)
262 {
263 	int drop_struct_lock = FALSE;
264 
265 	ASSERT(dn->dn_phys);
266 	ASSERT(dn->dn_objset);
267 	ASSERT(dn->dn_handle->dnh_dnode == dn);
268 
269 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
270 
271 	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
272 		return;
273 
274 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
275 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
276 		drop_struct_lock = TRUE;
277 	}
278 	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
279 		int i;
280 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
281 		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
282 		if (dn->dn_datablkshift) {
283 			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
284 			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
285 			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
286 		}
287 		ASSERT3U(dn->dn_nlevels, <=, 30);
288 		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
289 		ASSERT3U(dn->dn_nblkptr, >=, 1);
290 		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
291 		ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
292 		ASSERT3U(dn->dn_datablksz, ==,
293 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
294 		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
295 		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
296 		    dn->dn_bonuslen, <=, max_bonuslen);
297 		for (i = 0; i < TXG_SIZE; i++) {
298 			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
299 		}
300 	}
301 	if (dn->dn_phys->dn_type != DMU_OT_NONE)
302 		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
303 	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
304 	if (dn->dn_dbuf != NULL) {
305 		ASSERT3P(dn->dn_phys, ==,
306 		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
307 		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
308 	}
309 	if (drop_struct_lock)
310 		rw_exit(&dn->dn_struct_rwlock);
311 }
312 #endif
313 
314 void
315 dnode_byteswap(dnode_phys_t *dnp)
316 {
317 	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
318 	int i;
319 
320 	if (dnp->dn_type == DMU_OT_NONE) {
321 		bzero(dnp, sizeof (dnode_phys_t));
322 		return;
323 	}
324 
325 	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
326 	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
327 	dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
328 	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
329 	dnp->dn_used = BSWAP_64(dnp->dn_used);
330 
331 	/*
332 	 * dn_nblkptr is only one byte, so it's OK to read it in either
333 	 * byte order.  We can't read dn_bouslen.
334 	 */
335 	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
336 	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
337 	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
338 		buf64[i] = BSWAP_64(buf64[i]);
339 
340 	/*
341 	 * OK to check dn_bonuslen for zero, because it won't matter if
342 	 * we have the wrong byte order.  This is necessary because the
343 	 * dnode dnode is smaller than a regular dnode.
344 	 */
345 	if (dnp->dn_bonuslen != 0) {
346 		/*
347 		 * Note that the bonus length calculated here may be
348 		 * longer than the actual bonus buffer.  This is because
349 		 * we always put the bonus buffer after the last block
350 		 * pointer (instead of packing it against the end of the
351 		 * dnode buffer).
352 		 */
353 		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
354 		int slots = dnp->dn_extra_slots + 1;
355 		size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
356 		dmu_object_byteswap_t byteswap;
357 		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
358 		byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
359 		dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
360 	}
361 
362 	/* Swap SPILL block if we have one */
363 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
364 		byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
365 }
366 
367 void
368 dnode_buf_byteswap(void *vbuf, size_t size)
369 {
370 	int i = 0;
371 
372 	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
373 	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
374 
375 	while (i < size) {
376 		dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
377 		dnode_byteswap(dnp);
378 
379 		i += DNODE_MIN_SIZE;
380 		if (dnp->dn_type != DMU_OT_NONE)
381 			i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
382 	}
383 }
384 
385 void
386 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
387 {
388 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
389 
390 	dnode_setdirty(dn, tx);
391 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
392 	ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
393 	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
394 
395 	if (newsize < dn->dn_bonuslen) {
396 		/* clear any data after the end of the new size */
397 		size_t diff = dn->dn_bonuslen - newsize;
398 		char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize;
399 		bzero(data_end, diff);
400 	}
401 
402 	dn->dn_bonuslen = newsize;
403 	if (newsize == 0)
404 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
405 	else
406 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
407 	rw_exit(&dn->dn_struct_rwlock);
408 }
409 
410 void
411 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
412 {
413 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
414 	dnode_setdirty(dn, tx);
415 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
416 	dn->dn_bonustype = newtype;
417 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
418 	rw_exit(&dn->dn_struct_rwlock);
419 }
420 
421 void
422 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
423 {
424 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
425 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
426 	dnode_setdirty(dn, tx);
427 	dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK;
428 	dn->dn_have_spill = B_FALSE;
429 }
430 
431 static void
432 dnode_setdblksz(dnode_t *dn, int size)
433 {
434 	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
435 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
436 	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
437 	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
438 	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
439 	dn->dn_datablksz = size;
440 	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
441 	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
442 }
443 
444 static dnode_t *
445 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
446     uint64_t object, dnode_handle_t *dnh)
447 {
448 	dnode_t *dn;
449 
450 	dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
451 	dn->dn_moved = 0;
452 
453 	/*
454 	 * Defer setting dn_objset until the dnode is ready to be a candidate
455 	 * for the dnode_move() callback.
456 	 */
457 	dn->dn_object = object;
458 	dn->dn_dbuf = db;
459 	dn->dn_handle = dnh;
460 	dn->dn_phys = dnp;
461 
462 	if (dnp->dn_datablkszsec) {
463 		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
464 	} else {
465 		dn->dn_datablksz = 0;
466 		dn->dn_datablkszsec = 0;
467 		dn->dn_datablkshift = 0;
468 	}
469 	dn->dn_indblkshift = dnp->dn_indblkshift;
470 	dn->dn_nlevels = dnp->dn_nlevels;
471 	dn->dn_type = dnp->dn_type;
472 	dn->dn_nblkptr = dnp->dn_nblkptr;
473 	dn->dn_checksum = dnp->dn_checksum;
474 	dn->dn_compress = dnp->dn_compress;
475 	dn->dn_bonustype = dnp->dn_bonustype;
476 	dn->dn_bonuslen = dnp->dn_bonuslen;
477 	dn->dn_num_slots = dnp->dn_extra_slots + 1;
478 	dn->dn_maxblkid = dnp->dn_maxblkid;
479 	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
480 	dn->dn_id_flags = 0;
481 
482 	dmu_zfetch_init(&dn->dn_zfetch, dn);
483 
484 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
485 	ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
486 	ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
487 
488 	mutex_enter(&os->os_lock);
489 
490 	/*
491 	 * Exclude special dnodes from os_dnodes so an empty os_dnodes
492 	 * signifies that the special dnodes have no references from
493 	 * their children (the entries in os_dnodes).  This allows
494 	 * dnode_destroy() to easily determine if the last child has
495 	 * been removed and then complete eviction of the objset.
496 	 */
497 	if (!DMU_OBJECT_IS_SPECIAL(object))
498 		list_insert_head(&os->os_dnodes, dn);
499 	membar_producer();
500 
501 	/*
502 	 * Everything else must be valid before assigning dn_objset
503 	 * makes the dnode eligible for dnode_move().
504 	 */
505 	dn->dn_objset = os;
506 
507 	dnh->dnh_dnode = dn;
508 	mutex_exit(&os->os_lock);
509 
510 	arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
511 
512 	return (dn);
513 }
514 
515 /*
516  * Caller must be holding the dnode handle, which is released upon return.
517  */
518 static void
519 dnode_destroy(dnode_t *dn)
520 {
521 	objset_t *os = dn->dn_objset;
522 	boolean_t complete_os_eviction = B_FALSE;
523 
524 	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
525 
526 	mutex_enter(&os->os_lock);
527 	POINTER_INVALIDATE(&dn->dn_objset);
528 	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
529 		list_remove(&os->os_dnodes, dn);
530 		complete_os_eviction =
531 		    list_is_empty(&os->os_dnodes) &&
532 		    list_link_active(&os->os_evicting_node);
533 	}
534 	mutex_exit(&os->os_lock);
535 
536 	/* the dnode can no longer move, so we can release the handle */
537 	if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
538 		zrl_remove(&dn->dn_handle->dnh_zrlock);
539 
540 	dn->dn_allocated_txg = 0;
541 	dn->dn_free_txg = 0;
542 	dn->dn_assigned_txg = 0;
543 	dn->dn_dirty_txg = 0;
544 
545 	dn->dn_dirtyctx = 0;
546 	dn->dn_dirtyctx_firstset = NULL;
547 	if (dn->dn_bonus != NULL) {
548 		mutex_enter(&dn->dn_bonus->db_mtx);
549 		dbuf_destroy(dn->dn_bonus);
550 		dn->dn_bonus = NULL;
551 	}
552 	dn->dn_zio = NULL;
553 
554 	dn->dn_have_spill = B_FALSE;
555 	dn->dn_oldused = 0;
556 	dn->dn_oldflags = 0;
557 	dn->dn_olduid = 0;
558 	dn->dn_oldgid = 0;
559 	dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
560 	dn->dn_newuid = 0;
561 	dn->dn_newgid = 0;
562 	dn->dn_newprojid = ZFS_DEFAULT_PROJID;
563 	dn->dn_id_flags = 0;
564 
565 	dmu_zfetch_fini(&dn->dn_zfetch);
566 	kmem_cache_free(dnode_cache, dn);
567 	arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
568 
569 	if (complete_os_eviction)
570 		dmu_objset_evict_done(os);
571 }
572 
573 void
574 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
575     dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
576 {
577 	int i;
578 
579 	ASSERT3U(dn_slots, >, 0);
580 	ASSERT3U(dn_slots << DNODE_SHIFT, <=,
581 	    spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
582 	ASSERT3U(blocksize, <=,
583 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
584 	if (blocksize == 0)
585 		blocksize = 1 << zfs_default_bs;
586 	else
587 		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
588 
589 	if (ibs == 0)
590 		ibs = zfs_default_ibs;
591 
592 	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
593 
594 	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
595 	    dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots);
596 	DNODE_STAT_BUMP(dnode_allocate);
597 
598 	ASSERT(dn->dn_type == DMU_OT_NONE);
599 	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
600 	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
601 	ASSERT(ot != DMU_OT_NONE);
602 	ASSERT(DMU_OT_IS_VALID(ot));
603 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
604 	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
605 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
606 	ASSERT(DMU_OT_IS_VALID(bonustype));
607 	ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
608 	ASSERT(dn->dn_type == DMU_OT_NONE);
609 	ASSERT0(dn->dn_maxblkid);
610 	ASSERT0(dn->dn_allocated_txg);
611 	ASSERT0(dn->dn_assigned_txg);
612 	ASSERT0(dn->dn_dirty_txg);
613 	ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
614 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
615 	ASSERT(avl_is_empty(&dn->dn_dbufs));
616 
617 	for (i = 0; i < TXG_SIZE; i++) {
618 		ASSERT0(dn->dn_next_nblkptr[i]);
619 		ASSERT0(dn->dn_next_nlevels[i]);
620 		ASSERT0(dn->dn_next_indblkshift[i]);
621 		ASSERT0(dn->dn_next_bonuslen[i]);
622 		ASSERT0(dn->dn_next_bonustype[i]);
623 		ASSERT0(dn->dn_rm_spillblk[i]);
624 		ASSERT0(dn->dn_next_blksz[i]);
625 		ASSERT0(dn->dn_next_maxblkid[i]);
626 		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
627 		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
628 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
629 	}
630 
631 	dn->dn_type = ot;
632 	dnode_setdblksz(dn, blocksize);
633 	dn->dn_indblkshift = ibs;
634 	dn->dn_nlevels = 1;
635 	dn->dn_num_slots = dn_slots;
636 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
637 		dn->dn_nblkptr = 1;
638 	else {
639 		dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
640 		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
641 		    SPA_BLKPTRSHIFT));
642 	}
643 
644 	dn->dn_bonustype = bonustype;
645 	dn->dn_bonuslen = bonuslen;
646 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
647 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
648 	dn->dn_dirtyctx = 0;
649 
650 	dn->dn_free_txg = 0;
651 	dn->dn_dirtyctx_firstset = NULL;
652 
653 	dn->dn_allocated_txg = tx->tx_txg;
654 	dn->dn_id_flags = 0;
655 
656 	dnode_setdirty(dn, tx);
657 	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
658 	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
659 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
660 	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
661 }
662 
663 void
664 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
665     dmu_object_type_t bonustype, int bonuslen, int dn_slots,
666     boolean_t keep_spill, dmu_tx_t *tx)
667 {
668 	int nblkptr;
669 
670 	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
671 	ASSERT3U(blocksize, <=,
672 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
673 	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
674 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
675 	ASSERT(tx->tx_txg != 0);
676 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
677 	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
678 	    (bonustype == DMU_OT_SA && bonuslen == 0));
679 	ASSERT(DMU_OT_IS_VALID(bonustype));
680 	ASSERT3U(bonuslen, <=,
681 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
682 	ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
683 
684 	dnode_free_interior_slots(dn);
685 	DNODE_STAT_BUMP(dnode_reallocate);
686 
687 	/* clean up any unreferenced dbufs */
688 	dnode_evict_dbufs(dn);
689 
690 	dn->dn_id_flags = 0;
691 
692 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
693 	dnode_setdirty(dn, tx);
694 	if (dn->dn_datablksz != blocksize) {
695 		/* change blocksize */
696 		ASSERT0(dn->dn_maxblkid);
697 		ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
698 		    dnode_block_freed(dn, 0));
699 
700 		dnode_setdblksz(dn, blocksize);
701 		dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize;
702 	}
703 	if (dn->dn_bonuslen != bonuslen)
704 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen;
705 
706 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
707 		nblkptr = 1;
708 	else
709 		nblkptr = MIN(DN_MAX_NBLKPTR,
710 		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
711 		    SPA_BLKPTRSHIFT));
712 	if (dn->dn_bonustype != bonustype)
713 		dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype;
714 	if (dn->dn_nblkptr != nblkptr)
715 		dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr;
716 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) {
717 		dbuf_rm_spill(dn, tx);
718 		dnode_rm_spill(dn, tx);
719 	}
720 
721 	rw_exit(&dn->dn_struct_rwlock);
722 
723 	/* change type */
724 	dn->dn_type = ot;
725 
726 	/* change bonus size and type */
727 	mutex_enter(&dn->dn_mtx);
728 	dn->dn_bonustype = bonustype;
729 	dn->dn_bonuslen = bonuslen;
730 	dn->dn_num_slots = dn_slots;
731 	dn->dn_nblkptr = nblkptr;
732 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
733 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
734 	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
735 
736 	/* fix up the bonus db_size */
737 	if (dn->dn_bonus) {
738 		dn->dn_bonus->db.db_size =
739 		    DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
740 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
741 		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
742 	}
743 
744 	dn->dn_allocated_txg = tx->tx_txg;
745 	mutex_exit(&dn->dn_mtx);
746 }
747 
748 #ifdef	_KERNEL
749 static void
750 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
751 {
752 	int i;
753 
754 	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
755 	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
756 	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
757 	ASSERT(!MUTEX_HELD(&odn->dn_zfetch.zf_lock));
758 
759 	/* Copy fields. */
760 	ndn->dn_objset = odn->dn_objset;
761 	ndn->dn_object = odn->dn_object;
762 	ndn->dn_dbuf = odn->dn_dbuf;
763 	ndn->dn_handle = odn->dn_handle;
764 	ndn->dn_phys = odn->dn_phys;
765 	ndn->dn_type = odn->dn_type;
766 	ndn->dn_bonuslen = odn->dn_bonuslen;
767 	ndn->dn_bonustype = odn->dn_bonustype;
768 	ndn->dn_nblkptr = odn->dn_nblkptr;
769 	ndn->dn_checksum = odn->dn_checksum;
770 	ndn->dn_compress = odn->dn_compress;
771 	ndn->dn_nlevels = odn->dn_nlevels;
772 	ndn->dn_indblkshift = odn->dn_indblkshift;
773 	ndn->dn_datablkshift = odn->dn_datablkshift;
774 	ndn->dn_datablkszsec = odn->dn_datablkszsec;
775 	ndn->dn_datablksz = odn->dn_datablksz;
776 	ndn->dn_maxblkid = odn->dn_maxblkid;
777 	ndn->dn_num_slots = odn->dn_num_slots;
778 	bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0],
779 	    sizeof (odn->dn_next_type));
780 	bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
781 	    sizeof (odn->dn_next_nblkptr));
782 	bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
783 	    sizeof (odn->dn_next_nlevels));
784 	bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
785 	    sizeof (odn->dn_next_indblkshift));
786 	bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
787 	    sizeof (odn->dn_next_bonustype));
788 	bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
789 	    sizeof (odn->dn_rm_spillblk));
790 	bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
791 	    sizeof (odn->dn_next_bonuslen));
792 	bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
793 	    sizeof (odn->dn_next_blksz));
794 	bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0],
795 	    sizeof (odn->dn_next_maxblkid));
796 	for (i = 0; i < TXG_SIZE; i++) {
797 		list_move_tail(&ndn->dn_dirty_records[i],
798 		    &odn->dn_dirty_records[i]);
799 	}
800 	bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
801 	    sizeof (odn->dn_free_ranges));
802 	ndn->dn_allocated_txg = odn->dn_allocated_txg;
803 	ndn->dn_free_txg = odn->dn_free_txg;
804 	ndn->dn_assigned_txg = odn->dn_assigned_txg;
805 	ndn->dn_dirty_txg = odn->dn_dirty_txg;
806 	ndn->dn_dirtyctx = odn->dn_dirtyctx;
807 	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
808 	ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
809 	zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
810 	ASSERT(avl_is_empty(&ndn->dn_dbufs));
811 	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
812 	ndn->dn_dbufs_count = odn->dn_dbufs_count;
813 	ndn->dn_bonus = odn->dn_bonus;
814 	ndn->dn_have_spill = odn->dn_have_spill;
815 	ndn->dn_zio = odn->dn_zio;
816 	ndn->dn_oldused = odn->dn_oldused;
817 	ndn->dn_oldflags = odn->dn_oldflags;
818 	ndn->dn_olduid = odn->dn_olduid;
819 	ndn->dn_oldgid = odn->dn_oldgid;
820 	ndn->dn_oldprojid = odn->dn_oldprojid;
821 	ndn->dn_newuid = odn->dn_newuid;
822 	ndn->dn_newgid = odn->dn_newgid;
823 	ndn->dn_newprojid = odn->dn_newprojid;
824 	ndn->dn_id_flags = odn->dn_id_flags;
825 	dmu_zfetch_init(&ndn->dn_zfetch, NULL);
826 	list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
827 	ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
828 
829 	/*
830 	 * Update back pointers. Updating the handle fixes the back pointer of
831 	 * every descendant dbuf as well as the bonus dbuf.
832 	 */
833 	ASSERT(ndn->dn_handle->dnh_dnode == odn);
834 	ndn->dn_handle->dnh_dnode = ndn;
835 	if (ndn->dn_zfetch.zf_dnode == odn) {
836 		ndn->dn_zfetch.zf_dnode = ndn;
837 	}
838 
839 	/*
840 	 * Invalidate the original dnode by clearing all of its back pointers.
841 	 */
842 	odn->dn_dbuf = NULL;
843 	odn->dn_handle = NULL;
844 	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
845 	    offsetof(dmu_buf_impl_t, db_link));
846 	odn->dn_dbufs_count = 0;
847 	odn->dn_bonus = NULL;
848 	dmu_zfetch_fini(&odn->dn_zfetch);
849 
850 	/*
851 	 * Set the low bit of the objset pointer to ensure that dnode_move()
852 	 * recognizes the dnode as invalid in any subsequent callback.
853 	 */
854 	POINTER_INVALIDATE(&odn->dn_objset);
855 
856 	/*
857 	 * Satisfy the destructor.
858 	 */
859 	for (i = 0; i < TXG_SIZE; i++) {
860 		list_create(&odn->dn_dirty_records[i],
861 		    sizeof (dbuf_dirty_record_t),
862 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
863 		odn->dn_free_ranges[i] = NULL;
864 		odn->dn_next_nlevels[i] = 0;
865 		odn->dn_next_indblkshift[i] = 0;
866 		odn->dn_next_bonustype[i] = 0;
867 		odn->dn_rm_spillblk[i] = 0;
868 		odn->dn_next_bonuslen[i] = 0;
869 		odn->dn_next_blksz[i] = 0;
870 	}
871 	odn->dn_allocated_txg = 0;
872 	odn->dn_free_txg = 0;
873 	odn->dn_assigned_txg = 0;
874 	odn->dn_dirty_txg = 0;
875 	odn->dn_dirtyctx = 0;
876 	odn->dn_dirtyctx_firstset = NULL;
877 	odn->dn_have_spill = B_FALSE;
878 	odn->dn_zio = NULL;
879 	odn->dn_oldused = 0;
880 	odn->dn_oldflags = 0;
881 	odn->dn_olduid = 0;
882 	odn->dn_oldgid = 0;
883 	odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
884 	odn->dn_newuid = 0;
885 	odn->dn_newgid = 0;
886 	odn->dn_newprojid = ZFS_DEFAULT_PROJID;
887 	odn->dn_id_flags = 0;
888 
889 	/*
890 	 * Mark the dnode.
891 	 */
892 	ndn->dn_moved = 1;
893 	odn->dn_moved = (uint8_t)-1;
894 }
895 
896 /*ARGSUSED*/
897 static kmem_cbrc_t
898 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
899 {
900 	dnode_t *odn = buf, *ndn = newbuf;
901 	objset_t *os;
902 	int64_t refcount;
903 	uint32_t dbufs;
904 
905 	/*
906 	 * The dnode is on the objset's list of known dnodes if the objset
907 	 * pointer is valid. We set the low bit of the objset pointer when
908 	 * freeing the dnode to invalidate it, and the memory patterns written
909 	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
910 	 * A newly created dnode sets the objset pointer last of all to indicate
911 	 * that the dnode is known and in a valid state to be moved by this
912 	 * function.
913 	 */
914 	os = odn->dn_objset;
915 	if (!POINTER_IS_VALID(os)) {
916 		DNODE_STAT_BUMP(dnode_move_invalid);
917 		return (KMEM_CBRC_DONT_KNOW);
918 	}
919 
920 	/*
921 	 * Ensure that the objset does not go away during the move.
922 	 */
923 	rw_enter(&os_lock, RW_WRITER);
924 	if (os != odn->dn_objset) {
925 		rw_exit(&os_lock);
926 		DNODE_STAT_BUMP(dnode_move_recheck1);
927 		return (KMEM_CBRC_DONT_KNOW);
928 	}
929 
930 	/*
931 	 * If the dnode is still valid, then so is the objset. We know that no
932 	 * valid objset can be freed while we hold os_lock, so we can safely
933 	 * ensure that the objset remains in use.
934 	 */
935 	mutex_enter(&os->os_lock);
936 
937 	/*
938 	 * Recheck the objset pointer in case the dnode was removed just before
939 	 * acquiring the lock.
940 	 */
941 	if (os != odn->dn_objset) {
942 		mutex_exit(&os->os_lock);
943 		rw_exit(&os_lock);
944 		DNODE_STAT_BUMP(dnode_move_recheck2);
945 		return (KMEM_CBRC_DONT_KNOW);
946 	}
947 
948 	/*
949 	 * At this point we know that as long as we hold os->os_lock, the dnode
950 	 * cannot be freed and fields within the dnode can be safely accessed.
951 	 * The objset listing this dnode cannot go away as long as this dnode is
952 	 * on its list.
953 	 */
954 	rw_exit(&os_lock);
955 	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
956 		mutex_exit(&os->os_lock);
957 		DNODE_STAT_BUMP(dnode_move_special);
958 		return (KMEM_CBRC_NO);
959 	}
960 	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
961 
962 	/*
963 	 * Lock the dnode handle to prevent the dnode from obtaining any new
964 	 * holds. This also prevents the descendant dbufs and the bonus dbuf
965 	 * from accessing the dnode, so that we can discount their holds. The
966 	 * handle is safe to access because we know that while the dnode cannot
967 	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
968 	 * safely move any dnode referenced only by dbufs.
969 	 */
970 	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
971 		mutex_exit(&os->os_lock);
972 		DNODE_STAT_BUMP(dnode_move_handle);
973 		return (KMEM_CBRC_LATER);
974 	}
975 
976 	/*
977 	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
978 	 * We need to guarantee that there is a hold for every dbuf in order to
979 	 * determine whether the dnode is actively referenced. Falsely matching
980 	 * a dbuf to an active hold would lead to an unsafe move. It's possible
981 	 * that a thread already having an active dnode hold is about to add a
982 	 * dbuf, and we can't compare hold and dbuf counts while the add is in
983 	 * progress.
984 	 */
985 	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
986 		zrl_exit(&odn->dn_handle->dnh_zrlock);
987 		mutex_exit(&os->os_lock);
988 		DNODE_STAT_BUMP(dnode_move_rwlock);
989 		return (KMEM_CBRC_LATER);
990 	}
991 
992 	/*
993 	 * A dbuf may be removed (evicted) without an active dnode hold. In that
994 	 * case, the dbuf count is decremented under the handle lock before the
995 	 * dbuf's hold is released. This order ensures that if we count the hold
996 	 * after the dbuf is removed but before its hold is released, we will
997 	 * treat the unmatched hold as active and exit safely. If we count the
998 	 * hold before the dbuf is removed, the hold is discounted, and the
999 	 * removal is blocked until the move completes.
1000 	 */
1001 	refcount = zfs_refcount_count(&odn->dn_holds);
1002 	ASSERT(refcount >= 0);
1003 	dbufs = DN_DBUFS_COUNT(odn);
1004 
1005 	/* We can't have more dbufs than dnode holds. */
1006 	ASSERT3U(dbufs, <=, refcount);
1007 	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1008 	    uint32_t, dbufs);
1009 
1010 	if (refcount > dbufs) {
1011 		rw_exit(&odn->dn_struct_rwlock);
1012 		zrl_exit(&odn->dn_handle->dnh_zrlock);
1013 		mutex_exit(&os->os_lock);
1014 		DNODE_STAT_BUMP(dnode_move_active);
1015 		return (KMEM_CBRC_LATER);
1016 	}
1017 
1018 	rw_exit(&odn->dn_struct_rwlock);
1019 
1020 	/*
1021 	 * At this point we know that anyone with a hold on the dnode is not
1022 	 * actively referencing it. The dnode is known and in a valid state to
1023 	 * move. We're holding the locks needed to execute the critical section.
1024 	 */
1025 	dnode_move_impl(odn, ndn);
1026 
1027 	list_link_replace(&odn->dn_link, &ndn->dn_link);
1028 	/* If the dnode was safe to move, the refcount cannot have changed. */
1029 	ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
1030 	ASSERT(dbufs == DN_DBUFS_COUNT(ndn));
1031 	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1032 	mutex_exit(&os->os_lock);
1033 
1034 	return (KMEM_CBRC_YES);
1035 }
1036 #endif	/* _KERNEL */
1037 
1038 static void
1039 dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1040 {
1041 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1042 
1043 	for (int i = idx; i < idx + slots; i++) {
1044 		dnode_handle_t *dnh = &children->dnc_children[i];
1045 		zrl_add(&dnh->dnh_zrlock);
1046 	}
1047 }
1048 
1049 static void
1050 dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1051 {
1052 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1053 
1054 	for (int i = idx; i < idx + slots; i++) {
1055 		dnode_handle_t *dnh = &children->dnc_children[i];
1056 
1057 		if (zrl_is_locked(&dnh->dnh_zrlock))
1058 			zrl_exit(&dnh->dnh_zrlock);
1059 		else
1060 			zrl_remove(&dnh->dnh_zrlock);
1061 	}
1062 }
1063 
1064 static int
1065 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1066 {
1067 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1068 
1069 	for (int i = idx; i < idx + slots; i++) {
1070 		dnode_handle_t *dnh = &children->dnc_children[i];
1071 
1072 		if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1073 			for (int j = idx; j < i; j++) {
1074 				dnh = &children->dnc_children[j];
1075 				zrl_exit(&dnh->dnh_zrlock);
1076 			}
1077 
1078 			return (0);
1079 		}
1080 	}
1081 
1082 	return (1);
1083 }
1084 
1085 static void
1086 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1087 {
1088 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1089 
1090 	for (int i = idx; i < idx + slots; i++) {
1091 		dnode_handle_t *dnh = &children->dnc_children[i];
1092 		dnh->dnh_dnode = ptr;
1093 	}
1094 }
1095 
1096 static boolean_t
1097 dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1098 {
1099 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1100 
1101 	/*
1102 	 * If all dnode slots are either already free or
1103 	 * evictable return B_TRUE.
1104 	 */
1105 	for (int i = idx; i < idx + slots; i++) {
1106 		dnode_handle_t *dnh = &children->dnc_children[i];
1107 		dnode_t *dn = dnh->dnh_dnode;
1108 
1109 		if (dn == DN_SLOT_FREE) {
1110 			continue;
1111 		} else if (DN_SLOT_IS_PTR(dn)) {
1112 			mutex_enter(&dn->dn_mtx);
1113 			boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1114 			    zfs_refcount_is_zero(&dn->dn_holds) &&
1115 			    !DNODE_IS_DIRTY(dn));
1116 			mutex_exit(&dn->dn_mtx);
1117 
1118 			if (!can_free)
1119 				return (B_FALSE);
1120 			else
1121 				continue;
1122 		} else {
1123 			return (B_FALSE);
1124 		}
1125 	}
1126 
1127 	return (B_TRUE);
1128 }
1129 
1130 static void
1131 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1132 {
1133 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1134 
1135 	for (int i = idx; i < idx + slots; i++) {
1136 		dnode_handle_t *dnh = &children->dnc_children[i];
1137 
1138 		ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1139 
1140 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1141 			ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1142 			dnode_destroy(dnh->dnh_dnode);
1143 			dnh->dnh_dnode = DN_SLOT_FREE;
1144 		}
1145 	}
1146 }
1147 
1148 void
1149 dnode_free_interior_slots(dnode_t *dn)
1150 {
1151 	dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1152 	int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1153 	int idx = (dn->dn_object & (epb - 1)) + 1;
1154 	int slots = dn->dn_num_slots - 1;
1155 
1156 	if (slots == 0)
1157 		return;
1158 
1159 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1160 
1161 	while (!dnode_slots_tryenter(children, idx, slots)) {
1162 		DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1163 		cond_resched();
1164 	}
1165 
1166 	dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1167 	dnode_slots_rele(children, idx, slots);
1168 }
1169 
1170 void
1171 dnode_special_close(dnode_handle_t *dnh)
1172 {
1173 	dnode_t *dn = dnh->dnh_dnode;
1174 
1175 	/*
1176 	 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final
1177 	 * zfs_refcount_remove()
1178 	 */
1179 	mutex_enter(&dn->dn_mtx);
1180 	if (zfs_refcount_count(&dn->dn_holds) > 0)
1181 		cv_wait(&dn->dn_nodnholds, &dn->dn_mtx);
1182 	mutex_exit(&dn->dn_mtx);
1183 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0);
1184 
1185 	ASSERT(dn->dn_dbuf == NULL ||
1186 	    dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1187 	zrl_add(&dnh->dnh_zrlock);
1188 	dnode_destroy(dn); /* implicit zrl_remove() */
1189 	zrl_destroy(&dnh->dnh_zrlock);
1190 	dnh->dnh_dnode = NULL;
1191 }
1192 
1193 void
1194 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1195     dnode_handle_t *dnh)
1196 {
1197 	dnode_t *dn;
1198 
1199 	zrl_init(&dnh->dnh_zrlock);
1200 	zrl_tryenter(&dnh->dnh_zrlock);
1201 
1202 	dn = dnode_create(os, dnp, NULL, object, dnh);
1203 	DNODE_VERIFY(dn);
1204 
1205 	zrl_exit(&dnh->dnh_zrlock);
1206 }
1207 
1208 static void
1209 dnode_buf_evict_async(void *dbu)
1210 {
1211 	dnode_children_t *dnc = dbu;
1212 
1213 	DNODE_STAT_BUMP(dnode_buf_evict);
1214 
1215 	for (int i = 0; i < dnc->dnc_count; i++) {
1216 		dnode_handle_t *dnh = &dnc->dnc_children[i];
1217 		dnode_t *dn;
1218 
1219 		/*
1220 		 * The dnode handle lock guards against the dnode moving to
1221 		 * another valid address, so there is no need here to guard
1222 		 * against changes to or from NULL.
1223 		 */
1224 		if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1225 			zrl_destroy(&dnh->dnh_zrlock);
1226 			dnh->dnh_dnode = DN_SLOT_UNINIT;
1227 			continue;
1228 		}
1229 
1230 		zrl_add(&dnh->dnh_zrlock);
1231 		dn = dnh->dnh_dnode;
1232 		/*
1233 		 * If there are holds on this dnode, then there should
1234 		 * be holds on the dnode's containing dbuf as well; thus
1235 		 * it wouldn't be eligible for eviction and this function
1236 		 * would not have been called.
1237 		 */
1238 		ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
1239 		ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
1240 
1241 		dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1242 		zrl_destroy(&dnh->dnh_zrlock);
1243 		dnh->dnh_dnode = DN_SLOT_UNINIT;
1244 	}
1245 	kmem_free(dnc, sizeof (dnode_children_t) +
1246 	    dnc->dnc_count * sizeof (dnode_handle_t));
1247 }
1248 
1249 /*
1250  * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1251  * to ensure the hole at the specified object offset is large enough to
1252  * hold the dnode being created. The slots parameter is also used to ensure
1253  * a dnode does not span multiple dnode blocks. In both of these cases, if
1254  * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1255  * are only possible when using DNODE_MUST_BE_FREE.
1256  *
1257  * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1258  * dnode_hold_impl() will check if the requested dnode is already consumed
1259  * as an extra dnode slot by an large dnode, in which case it returns
1260  * ENOENT.
1261  *
1262  * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just
1263  * return whether the hold would succeed or not. tag and dnp should set to
1264  * NULL in this case.
1265  *
1266  * errors:
1267  * EINVAL - Invalid object number or flags.
1268  * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1269  * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1270  *        - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1271  *        - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1272  * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1273  *        - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1274  * EIO    - I/O error when reading the meta dnode dbuf.
1275  *
1276  * succeeds even for free dnodes.
1277  */
1278 int
1279 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1280     void *tag, dnode_t **dnp)
1281 {
1282 	int epb, idx, err;
1283 	int drop_struct_lock = FALSE;
1284 	int type;
1285 	uint64_t blk;
1286 	dnode_t *mdn, *dn;
1287 	dmu_buf_impl_t *db;
1288 	dnode_children_t *dnc;
1289 	dnode_phys_t *dn_block;
1290 	dnode_handle_t *dnh;
1291 
1292 	ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1293 	ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1294 	IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL));
1295 
1296 	/*
1297 	 * If you are holding the spa config lock as writer, you shouldn't
1298 	 * be asking the DMU to do *anything* unless it's the root pool
1299 	 * which may require us to read from the root filesystem while
1300 	 * holding some (not all) of the locks as writer.
1301 	 */
1302 	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1303 	    (spa_is_root(os->os_spa) &&
1304 	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1305 
1306 	ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1307 
1308 	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
1309 	    object == DMU_PROJECTUSED_OBJECT) {
1310 		if (object == DMU_USERUSED_OBJECT)
1311 			dn = DMU_USERUSED_DNODE(os);
1312 		else if (object == DMU_GROUPUSED_OBJECT)
1313 			dn = DMU_GROUPUSED_DNODE(os);
1314 		else
1315 			dn = DMU_PROJECTUSED_DNODE(os);
1316 		if (dn == NULL)
1317 			return (SET_ERROR(ENOENT));
1318 		type = dn->dn_type;
1319 		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1320 			return (SET_ERROR(ENOENT));
1321 		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1322 			return (SET_ERROR(EEXIST));
1323 		DNODE_VERIFY(dn);
1324 		/* Don't actually hold if dry run, just return 0 */
1325 		if (!(flag & DNODE_DRY_RUN)) {
1326 			(void) zfs_refcount_add(&dn->dn_holds, tag);
1327 			*dnp = dn;
1328 		}
1329 		return (0);
1330 	}
1331 
1332 	if (object == 0 || object >= DN_MAX_OBJECT)
1333 		return (SET_ERROR(EINVAL));
1334 
1335 	mdn = DMU_META_DNODE(os);
1336 	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1337 
1338 	DNODE_VERIFY(mdn);
1339 
1340 	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1341 		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1342 		drop_struct_lock = TRUE;
1343 	}
1344 
1345 	blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1346 	db = dbuf_hold(mdn, blk, FTAG);
1347 	if (drop_struct_lock)
1348 		rw_exit(&mdn->dn_struct_rwlock);
1349 	if (db == NULL) {
1350 		DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1351 		return (SET_ERROR(EIO));
1352 	}
1353 
1354 	/*
1355 	 * We do not need to decrypt to read the dnode so it doesn't matter
1356 	 * if we get the encrypted or decrypted version.
1357 	 */
1358 	err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT);
1359 	if (err) {
1360 		DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1361 		dbuf_rele(db, FTAG);
1362 		return (err);
1363 	}
1364 
1365 	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1366 	epb = db->db.db_size >> DNODE_SHIFT;
1367 
1368 	idx = object & (epb - 1);
1369 	dn_block = (dnode_phys_t *)db->db.db_data;
1370 
1371 	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1372 	dnc = dmu_buf_get_user(&db->db);
1373 	dnh = NULL;
1374 	if (dnc == NULL) {
1375 		dnode_children_t *winner;
1376 		int skip = 0;
1377 
1378 		dnc = kmem_zalloc(sizeof (dnode_children_t) +
1379 		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1380 		dnc->dnc_count = epb;
1381 		dnh = &dnc->dnc_children[0];
1382 
1383 		/* Initialize dnode slot status from dnode_phys_t */
1384 		for (int i = 0; i < epb; i++) {
1385 			zrl_init(&dnh[i].dnh_zrlock);
1386 
1387 			if (skip) {
1388 				skip--;
1389 				continue;
1390 			}
1391 
1392 			if (dn_block[i].dn_type != DMU_OT_NONE) {
1393 				int interior = dn_block[i].dn_extra_slots;
1394 
1395 				dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1396 				dnode_set_slots(dnc, i + 1, interior,
1397 				    DN_SLOT_INTERIOR);
1398 				skip = interior;
1399 			} else {
1400 				dnh[i].dnh_dnode = DN_SLOT_FREE;
1401 				skip = 0;
1402 			}
1403 		}
1404 
1405 		dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1406 		    dnode_buf_evict_async, NULL);
1407 		winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1408 		if (winner != NULL) {
1409 
1410 			for (int i = 0; i < epb; i++)
1411 				zrl_destroy(&dnh[i].dnh_zrlock);
1412 
1413 			kmem_free(dnc, sizeof (dnode_children_t) +
1414 			    epb * sizeof (dnode_handle_t));
1415 			dnc = winner;
1416 		}
1417 	}
1418 
1419 	ASSERT(dnc->dnc_count == epb);
1420 
1421 	if (flag & DNODE_MUST_BE_ALLOCATED) {
1422 		slots = 1;
1423 
1424 		dnode_slots_hold(dnc, idx, slots);
1425 		dnh = &dnc->dnc_children[idx];
1426 
1427 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1428 			dn = dnh->dnh_dnode;
1429 		} else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1430 			DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1431 			dnode_slots_rele(dnc, idx, slots);
1432 			dbuf_rele(db, FTAG);
1433 			return (SET_ERROR(EEXIST));
1434 		} else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1435 			DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1436 			dnode_slots_rele(dnc, idx, slots);
1437 			dbuf_rele(db, FTAG);
1438 			return (SET_ERROR(ENOENT));
1439 		} else {
1440 			dnode_slots_rele(dnc, idx, slots);
1441 			while (!dnode_slots_tryenter(dnc, idx, slots)) {
1442 				DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1443 				cond_resched();
1444 			}
1445 
1446 			/*
1447 			 * Someone else won the race and called dnode_create()
1448 			 * after we checked DN_SLOT_IS_PTR() above but before
1449 			 * we acquired the lock.
1450 			 */
1451 			if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1452 				DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1453 				dn = dnh->dnh_dnode;
1454 			} else {
1455 				dn = dnode_create(os, dn_block + idx, db,
1456 				    object, dnh);
1457 			}
1458 		}
1459 
1460 		mutex_enter(&dn->dn_mtx);
1461 		if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
1462 			DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1463 			mutex_exit(&dn->dn_mtx);
1464 			dnode_slots_rele(dnc, idx, slots);
1465 			dbuf_rele(db, FTAG);
1466 			return (SET_ERROR(ENOENT));
1467 		}
1468 
1469 		/* Don't actually hold if dry run, just return 0 */
1470 		if (flag & DNODE_DRY_RUN) {
1471 			mutex_exit(&dn->dn_mtx);
1472 			dnode_slots_rele(dnc, idx, slots);
1473 			dbuf_rele(db, FTAG);
1474 			return (0);
1475 		}
1476 
1477 		DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1478 	} else if (flag & DNODE_MUST_BE_FREE) {
1479 
1480 		if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1481 			DNODE_STAT_BUMP(dnode_hold_free_overflow);
1482 			dbuf_rele(db, FTAG);
1483 			return (SET_ERROR(ENOSPC));
1484 		}
1485 
1486 		dnode_slots_hold(dnc, idx, slots);
1487 
1488 		if (!dnode_check_slots_free(dnc, idx, slots)) {
1489 			DNODE_STAT_BUMP(dnode_hold_free_misses);
1490 			dnode_slots_rele(dnc, idx, slots);
1491 			dbuf_rele(db, FTAG);
1492 			return (SET_ERROR(ENOSPC));
1493 		}
1494 
1495 		dnode_slots_rele(dnc, idx, slots);
1496 		while (!dnode_slots_tryenter(dnc, idx, slots)) {
1497 			DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1498 			cond_resched();
1499 		}
1500 
1501 		if (!dnode_check_slots_free(dnc, idx, slots)) {
1502 			DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1503 			dnode_slots_rele(dnc, idx, slots);
1504 			dbuf_rele(db, FTAG);
1505 			return (SET_ERROR(ENOSPC));
1506 		}
1507 
1508 		/*
1509 		 * Allocated but otherwise free dnodes which would
1510 		 * be in the interior of a multi-slot dnodes need
1511 		 * to be freed.  Single slot dnodes can be safely
1512 		 * re-purposed as a performance optimization.
1513 		 */
1514 		if (slots > 1)
1515 			dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1516 
1517 		dnh = &dnc->dnc_children[idx];
1518 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1519 			dn = dnh->dnh_dnode;
1520 		} else {
1521 			dn = dnode_create(os, dn_block + idx, db,
1522 			    object, dnh);
1523 		}
1524 
1525 		mutex_enter(&dn->dn_mtx);
1526 		if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
1527 			DNODE_STAT_BUMP(dnode_hold_free_refcount);
1528 			mutex_exit(&dn->dn_mtx);
1529 			dnode_slots_rele(dnc, idx, slots);
1530 			dbuf_rele(db, FTAG);
1531 			return (SET_ERROR(EEXIST));
1532 		}
1533 
1534 		/* Don't actually hold if dry run, just return 0 */
1535 		if (flag & DNODE_DRY_RUN) {
1536 			mutex_exit(&dn->dn_mtx);
1537 			dnode_slots_rele(dnc, idx, slots);
1538 			dbuf_rele(db, FTAG);
1539 			return (0);
1540 		}
1541 
1542 		dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1543 		DNODE_STAT_BUMP(dnode_hold_free_hits);
1544 	} else {
1545 		dbuf_rele(db, FTAG);
1546 		return (SET_ERROR(EINVAL));
1547 	}
1548 
1549 	ASSERT0(dn->dn_free_txg);
1550 
1551 	if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
1552 		dbuf_add_ref(db, dnh);
1553 
1554 	mutex_exit(&dn->dn_mtx);
1555 
1556 	/* Now we can rely on the hold to prevent the dnode from moving. */
1557 	dnode_slots_rele(dnc, idx, slots);
1558 
1559 	DNODE_VERIFY(dn);
1560 	ASSERT3P(dnp, !=, NULL);
1561 	ASSERT3P(dn->dn_dbuf, ==, db);
1562 	ASSERT3U(dn->dn_object, ==, object);
1563 	dbuf_rele(db, FTAG);
1564 
1565 	*dnp = dn;
1566 	return (0);
1567 }
1568 
1569 /*
1570  * Return held dnode if the object is allocated, NULL if not.
1571  */
1572 int
1573 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1574 {
1575 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1576 	    dnp));
1577 }
1578 
1579 /*
1580  * Can only add a reference if there is already at least one
1581  * reference on the dnode.  Returns FALSE if unable to add a
1582  * new reference.
1583  */
1584 boolean_t
1585 dnode_add_ref(dnode_t *dn, void *tag)
1586 {
1587 	mutex_enter(&dn->dn_mtx);
1588 	if (zfs_refcount_is_zero(&dn->dn_holds)) {
1589 		mutex_exit(&dn->dn_mtx);
1590 		return (FALSE);
1591 	}
1592 	VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
1593 	mutex_exit(&dn->dn_mtx);
1594 	return (TRUE);
1595 }
1596 
1597 void
1598 dnode_rele(dnode_t *dn, void *tag)
1599 {
1600 	mutex_enter(&dn->dn_mtx);
1601 	dnode_rele_and_unlock(dn, tag, B_FALSE);
1602 }
1603 
1604 void
1605 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting)
1606 {
1607 	uint64_t refs;
1608 	/* Get while the hold prevents the dnode from moving. */
1609 	dmu_buf_impl_t *db = dn->dn_dbuf;
1610 	dnode_handle_t *dnh = dn->dn_handle;
1611 
1612 	refs = zfs_refcount_remove(&dn->dn_holds, tag);
1613 	if (refs == 0)
1614 		cv_broadcast(&dn->dn_nodnholds);
1615 	mutex_exit(&dn->dn_mtx);
1616 	/* dnode could get destroyed at this point, so don't use it anymore */
1617 
1618 	/*
1619 	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1620 	 * indirectly by dbuf_rele() while relying on the dnode handle to
1621 	 * prevent the dnode from moving, since releasing the last hold could
1622 	 * result in the dnode's parent dbuf evicting its dnode handles. For
1623 	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1624 	 * other direct or indirect hold on the dnode must first drop the dnode
1625 	 * handle.
1626 	 */
1627 	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1628 
1629 	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1630 	if (refs == 0 && db != NULL) {
1631 		/*
1632 		 * Another thread could add a hold to the dnode handle in
1633 		 * dnode_hold_impl() while holding the parent dbuf. Since the
1634 		 * hold on the parent dbuf prevents the handle from being
1635 		 * destroyed, the hold on the handle is OK. We can't yet assert
1636 		 * that the handle has zero references, but that will be
1637 		 * asserted anyway when the handle gets destroyed.
1638 		 */
1639 		mutex_enter(&db->db_mtx);
1640 		dbuf_rele_and_unlock(db, dnh, evicting);
1641 	}
1642 }
1643 
1644 /*
1645  * Test whether we can create a dnode at the specified location.
1646  */
1647 int
1648 dnode_try_claim(objset_t *os, uint64_t object, int slots)
1649 {
1650 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN,
1651 	    slots, NULL, NULL));
1652 }
1653 
1654 void
1655 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1656 {
1657 	objset_t *os = dn->dn_objset;
1658 	uint64_t txg = tx->tx_txg;
1659 
1660 	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1661 		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1662 		return;
1663 	}
1664 
1665 	DNODE_VERIFY(dn);
1666 
1667 #ifdef ZFS_DEBUG
1668 	mutex_enter(&dn->dn_mtx);
1669 	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1670 	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1671 	mutex_exit(&dn->dn_mtx);
1672 #endif
1673 
1674 	/*
1675 	 * Determine old uid/gid when necessary
1676 	 */
1677 	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1678 
1679 	multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK];
1680 	multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1681 
1682 	/*
1683 	 * If we are already marked dirty, we're done.
1684 	 */
1685 	if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1686 		multilist_sublist_unlock(mls);
1687 		return;
1688 	}
1689 
1690 	ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
1691 	    !avl_is_empty(&dn->dn_dbufs));
1692 	ASSERT(dn->dn_datablksz != 0);
1693 	ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]);
1694 	ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]);
1695 	ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]);
1696 
1697 	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1698 	    dn->dn_object, txg);
1699 
1700 	multilist_sublist_insert_head(mls, dn);
1701 
1702 	multilist_sublist_unlock(mls);
1703 
1704 	/*
1705 	 * The dnode maintains a hold on its containing dbuf as
1706 	 * long as there are holds on it.  Each instantiated child
1707 	 * dbuf maintains a hold on the dnode.  When the last child
1708 	 * drops its hold, the dnode will drop its hold on the
1709 	 * containing dbuf. We add a "dirty hold" here so that the
1710 	 * dnode will hang around after we finish processing its
1711 	 * children.
1712 	 */
1713 	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1714 
1715 	(void) dbuf_dirty(dn->dn_dbuf, tx);
1716 
1717 	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1718 }
1719 
1720 void
1721 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1722 {
1723 	mutex_enter(&dn->dn_mtx);
1724 	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1725 		mutex_exit(&dn->dn_mtx);
1726 		return;
1727 	}
1728 	dn->dn_free_txg = tx->tx_txg;
1729 	mutex_exit(&dn->dn_mtx);
1730 
1731 	dnode_setdirty(dn, tx);
1732 }
1733 
1734 /*
1735  * Try to change the block size for the indicated dnode.  This can only
1736  * succeed if there are no blocks allocated or dirty beyond first block
1737  */
1738 int
1739 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1740 {
1741 	dmu_buf_impl_t *db;
1742 	int err;
1743 
1744 	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1745 	if (size == 0)
1746 		size = SPA_MINBLOCKSIZE;
1747 	else
1748 		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1749 
1750 	if (ibs == dn->dn_indblkshift)
1751 		ibs = 0;
1752 
1753 	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1754 		return (0);
1755 
1756 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1757 
1758 	/* Check for any allocated blocks beyond the first */
1759 	if (dn->dn_maxblkid != 0)
1760 		goto fail;
1761 
1762 	mutex_enter(&dn->dn_dbufs_mtx);
1763 	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1764 	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1765 		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1766 		    db->db_blkid != DMU_SPILL_BLKID) {
1767 			mutex_exit(&dn->dn_dbufs_mtx);
1768 			goto fail;
1769 		}
1770 	}
1771 	mutex_exit(&dn->dn_dbufs_mtx);
1772 
1773 	if (ibs && dn->dn_nlevels != 1)
1774 		goto fail;
1775 
1776 	/* resize the old block */
1777 	err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1778 	if (err == 0) {
1779 		dbuf_new_size(db, size, tx);
1780 	} else if (err != ENOENT) {
1781 		goto fail;
1782 	}
1783 
1784 	dnode_setdblksz(dn, size);
1785 	dnode_setdirty(dn, tx);
1786 	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1787 	if (ibs) {
1788 		dn->dn_indblkshift = ibs;
1789 		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1790 	}
1791 	/* release after we have fixed the blocksize in the dnode */
1792 	if (db)
1793 		dbuf_rele(db, FTAG);
1794 
1795 	rw_exit(&dn->dn_struct_rwlock);
1796 	return (0);
1797 
1798 fail:
1799 	rw_exit(&dn->dn_struct_rwlock);
1800 	return (SET_ERROR(ENOTSUP));
1801 }
1802 
1803 static void
1804 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
1805 {
1806 	uint64_t txgoff = tx->tx_txg & TXG_MASK;
1807 	int old_nlevels = dn->dn_nlevels;
1808 	dmu_buf_impl_t *db;
1809 	list_t *list;
1810 	dbuf_dirty_record_t *new, *dr, *dr_next;
1811 
1812 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1813 
1814 	dn->dn_nlevels = new_nlevels;
1815 
1816 	ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1817 	dn->dn_next_nlevels[txgoff] = new_nlevels;
1818 
1819 	/* dirty the left indirects */
1820 	db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1821 	ASSERT(db != NULL);
1822 	new = dbuf_dirty(db, tx);
1823 	dbuf_rele(db, FTAG);
1824 
1825 	/* transfer the dirty records to the new indirect */
1826 	mutex_enter(&dn->dn_mtx);
1827 	mutex_enter(&new->dt.di.dr_mtx);
1828 	list = &dn->dn_dirty_records[txgoff];
1829 	for (dr = list_head(list); dr; dr = dr_next) {
1830 		dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1831 		if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1832 		    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1833 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1834 			ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1835 			list_remove(&dn->dn_dirty_records[txgoff], dr);
1836 			list_insert_tail(&new->dt.di.dr_children, dr);
1837 			dr->dr_parent = new;
1838 		}
1839 	}
1840 	mutex_exit(&new->dt.di.dr_mtx);
1841 	mutex_exit(&dn->dn_mtx);
1842 }
1843 
1844 int
1845 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
1846 {
1847 	int ret = 0;
1848 
1849 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1850 
1851 	if (dn->dn_nlevels == nlevels) {
1852 		ret = 0;
1853 		goto out;
1854 	} else if (nlevels < dn->dn_nlevels) {
1855 		ret = SET_ERROR(EINVAL);
1856 		goto out;
1857 	}
1858 
1859 	dnode_set_nlevels_impl(dn, nlevels, tx);
1860 
1861 out:
1862 	rw_exit(&dn->dn_struct_rwlock);
1863 	return (ret);
1864 }
1865 
1866 /* read-holding callers must not rely on the lock being continuously held */
1867 void
1868 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read,
1869     boolean_t force)
1870 {
1871 	int epbs, new_nlevels;
1872 	uint64_t sz;
1873 
1874 	ASSERT(blkid != DMU_BONUS_BLKID);
1875 
1876 	ASSERT(have_read ?
1877 	    RW_READ_HELD(&dn->dn_struct_rwlock) :
1878 	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
1879 
1880 	/*
1881 	 * if we have a read-lock, check to see if we need to do any work
1882 	 * before upgrading to a write-lock.
1883 	 */
1884 	if (have_read) {
1885 		if (blkid <= dn->dn_maxblkid)
1886 			return;
1887 
1888 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1889 			rw_exit(&dn->dn_struct_rwlock);
1890 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1891 		}
1892 	}
1893 
1894 	/*
1895 	 * Raw sends (indicated by the force flag) require that we take the
1896 	 * given blkid even if the value is lower than the current value.
1897 	 */
1898 	if (!force && blkid <= dn->dn_maxblkid)
1899 		goto out;
1900 
1901 	/*
1902 	 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
1903 	 * to indicate that this field is set. This allows us to set the
1904 	 * maxblkid to 0 on an existing object in dnode_sync().
1905 	 */
1906 	dn->dn_maxblkid = blkid;
1907 	dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] =
1908 	    blkid | DMU_NEXT_MAXBLKID_SET;
1909 
1910 	/*
1911 	 * Compute the number of levels necessary to support the new maxblkid.
1912 	 * Raw sends will ensure nlevels is set correctly for us.
1913 	 */
1914 	new_nlevels = 1;
1915 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1916 	for (sz = dn->dn_nblkptr;
1917 	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1918 		new_nlevels++;
1919 
1920 	ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
1921 
1922 	if (!force) {
1923 		if (new_nlevels > dn->dn_nlevels)
1924 			dnode_set_nlevels_impl(dn, new_nlevels, tx);
1925 	} else {
1926 		ASSERT3U(dn->dn_nlevels, >=, new_nlevels);
1927 	}
1928 
1929 out:
1930 	if (have_read)
1931 		rw_downgrade(&dn->dn_struct_rwlock);
1932 }
1933 
1934 static void
1935 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1936 {
1937 	dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1938 	if (db != NULL) {
1939 		dmu_buf_will_dirty(&db->db, tx);
1940 		dbuf_rele(db, FTAG);
1941 	}
1942 }
1943 
1944 /*
1945  * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
1946  * and end_blkid.
1947  */
1948 static void
1949 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1950     dmu_tx_t *tx)
1951 {
1952 	dmu_buf_impl_t db_search;
1953 	dmu_buf_impl_t *db;
1954 	avl_index_t where;
1955 
1956 	mutex_enter(&dn->dn_dbufs_mtx);
1957 
1958 	db_search.db_level = 1;
1959 	db_search.db_blkid = start_blkid + 1;
1960 	db_search.db_state = DB_SEARCH;
1961 	for (;;) {
1962 
1963 		db = avl_find(&dn->dn_dbufs, &db_search, &where);
1964 		if (db == NULL)
1965 			db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1966 
1967 		if (db == NULL || db->db_level != 1 ||
1968 		    db->db_blkid >= end_blkid) {
1969 			break;
1970 		}
1971 
1972 		/*
1973 		 * Setup the next blkid we want to search for.
1974 		 */
1975 		db_search.db_blkid = db->db_blkid + 1;
1976 		ASSERT3U(db->db_blkid, >=, start_blkid);
1977 
1978 		/*
1979 		 * If the dbuf transitions to DB_EVICTING while we're trying
1980 		 * to dirty it, then we will be unable to discover it in
1981 		 * the dbuf hash table. This will result in a call to
1982 		 * dbuf_create() which needs to acquire the dn_dbufs_mtx
1983 		 * lock. To avoid a deadlock, we drop the lock before
1984 		 * dirtying the level-1 dbuf.
1985 		 */
1986 		mutex_exit(&dn->dn_dbufs_mtx);
1987 		dnode_dirty_l1(dn, db->db_blkid, tx);
1988 		mutex_enter(&dn->dn_dbufs_mtx);
1989 	}
1990 
1991 #ifdef ZFS_DEBUG
1992 	/*
1993 	 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
1994 	 */
1995 	db_search.db_level = 1;
1996 	db_search.db_blkid = start_blkid + 1;
1997 	db_search.db_state = DB_SEARCH;
1998 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1999 	if (db == NULL)
2000 		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2001 	for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
2002 		if (db->db_level != 1 || db->db_blkid >= end_blkid)
2003 			break;
2004 		if (db->db_state != DB_EVICTING)
2005 			ASSERT(db->db_dirtycnt > 0);
2006 	}
2007 #endif
2008 	mutex_exit(&dn->dn_dbufs_mtx);
2009 }
2010 
2011 void
2012 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, void *tag)
2013 {
2014 	/*
2015 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
2016 	 * initialize the objset.
2017 	 */
2018 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
2019 		dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2020 
2021 		if (ds != NULL) {
2022 			rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag);
2023 		}
2024 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
2025 			if (dmu_tx_is_syncing(tx))
2026 				dn->dn_dirtyctx = DN_DIRTY_SYNC;
2027 			else
2028 				dn->dn_dirtyctx = DN_DIRTY_OPEN;
2029 			dn->dn_dirtyctx_firstset = tag;
2030 		}
2031 		if (ds != NULL) {
2032 			rrw_exit(&ds->ds_bp_rwlock, tag);
2033 		}
2034 	}
2035 }
2036 
2037 void
2038 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
2039 {
2040 	dmu_buf_impl_t *db;
2041 	uint64_t blkoff, blkid, nblks;
2042 	int blksz, blkshift, head, tail;
2043 	int trunc = FALSE;
2044 	int epbs;
2045 
2046 	blksz = dn->dn_datablksz;
2047 	blkshift = dn->dn_datablkshift;
2048 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2049 
2050 	if (len == DMU_OBJECT_END) {
2051 		len = UINT64_MAX - off;
2052 		trunc = TRUE;
2053 	}
2054 
2055 	/*
2056 	 * First, block align the region to free:
2057 	 */
2058 	if (ISP2(blksz)) {
2059 		head = P2NPHASE(off, blksz);
2060 		blkoff = P2PHASE(off, blksz);
2061 		if ((off >> blkshift) > dn->dn_maxblkid)
2062 			return;
2063 	} else {
2064 		ASSERT(dn->dn_maxblkid == 0);
2065 		if (off == 0 && len >= blksz) {
2066 			/*
2067 			 * Freeing the whole block; fast-track this request.
2068 			 */
2069 			blkid = 0;
2070 			nblks = 1;
2071 			if (dn->dn_nlevels > 1) {
2072 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2073 				dnode_dirty_l1(dn, 0, tx);
2074 				rw_exit(&dn->dn_struct_rwlock);
2075 			}
2076 			goto done;
2077 		} else if (off >= blksz) {
2078 			/* Freeing past end-of-data */
2079 			return;
2080 		} else {
2081 			/* Freeing part of the block. */
2082 			head = blksz - off;
2083 			ASSERT3U(head, >, 0);
2084 		}
2085 		blkoff = off;
2086 	}
2087 	/* zero out any partial block data at the start of the range */
2088 	if (head) {
2089 		int res;
2090 		ASSERT3U(blkoff + head, ==, blksz);
2091 		if (len < head)
2092 			head = len;
2093 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2094 		res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
2095 		    TRUE, FALSE, FTAG, &db);
2096 		rw_exit(&dn->dn_struct_rwlock);
2097 		if (res == 0) {
2098 			caddr_t data;
2099 			boolean_t dirty;
2100 
2101 			db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER,
2102 			    FTAG);
2103 			/* don't dirty if it isn't on disk and isn't dirty */
2104 			dirty = !list_is_empty(&db->db_dirty_records) ||
2105 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
2106 			dmu_buf_unlock_parent(db, dblt, FTAG);
2107 			if (dirty) {
2108 				dmu_buf_will_dirty(&db->db, tx);
2109 				data = db->db.db_data;
2110 				bzero(data + blkoff, head);
2111 			}
2112 			dbuf_rele(db, FTAG);
2113 		}
2114 		off += head;
2115 		len -= head;
2116 	}
2117 
2118 	/* If the range was less than one block, we're done */
2119 	if (len == 0)
2120 		return;
2121 
2122 	/* If the remaining range is past end of file, we're done */
2123 	if ((off >> blkshift) > dn->dn_maxblkid)
2124 		return;
2125 
2126 	ASSERT(ISP2(blksz));
2127 	if (trunc)
2128 		tail = 0;
2129 	else
2130 		tail = P2PHASE(len, blksz);
2131 
2132 	ASSERT0(P2PHASE(off, blksz));
2133 	/* zero out any partial block data at the end of the range */
2134 	if (tail) {
2135 		int res;
2136 		if (len < tail)
2137 			tail = len;
2138 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2139 		res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
2140 		    TRUE, FALSE, FTAG, &db);
2141 		rw_exit(&dn->dn_struct_rwlock);
2142 		if (res == 0) {
2143 			boolean_t dirty;
2144 			/* don't dirty if not on disk and not dirty */
2145 			db_lock_type_t type = dmu_buf_lock_parent(db, RW_READER,
2146 			    FTAG);
2147 			dirty = !list_is_empty(&db->db_dirty_records) ||
2148 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
2149 			dmu_buf_unlock_parent(db, type, FTAG);
2150 			if (dirty) {
2151 				dmu_buf_will_dirty(&db->db, tx);
2152 				bzero(db->db.db_data, tail);
2153 			}
2154 			dbuf_rele(db, FTAG);
2155 		}
2156 		len -= tail;
2157 	}
2158 
2159 	/* If the range did not include a full block, we are done */
2160 	if (len == 0)
2161 		return;
2162 
2163 	ASSERT(IS_P2ALIGNED(off, blksz));
2164 	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2165 	blkid = off >> blkshift;
2166 	nblks = len >> blkshift;
2167 	if (trunc)
2168 		nblks += 1;
2169 
2170 	/*
2171 	 * Dirty all the indirect blocks in this range.  Note that only
2172 	 * the first and last indirect blocks can actually be written
2173 	 * (if they were partially freed) -- they must be dirtied, even if
2174 	 * they do not exist on disk yet.  The interior blocks will
2175 	 * be freed by free_children(), so they will not actually be written.
2176 	 * Even though these interior blocks will not be written, we
2177 	 * dirty them for two reasons:
2178 	 *
2179 	 *  - It ensures that the indirect blocks remain in memory until
2180 	 *    syncing context.  (They have already been prefetched by
2181 	 *    dmu_tx_hold_free(), so we don't have to worry about reading
2182 	 *    them serially here.)
2183 	 *
2184 	 *  - The dirty space accounting will put pressure on the txg sync
2185 	 *    mechanism to begin syncing, and to delay transactions if there
2186 	 *    is a large amount of freeing.  Even though these indirect
2187 	 *    blocks will not be written, we could need to write the same
2188 	 *    amount of space if we copy the freed BPs into deadlists.
2189 	 */
2190 	if (dn->dn_nlevels > 1) {
2191 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2192 		uint64_t first, last;
2193 
2194 		first = blkid >> epbs;
2195 		dnode_dirty_l1(dn, first, tx);
2196 		if (trunc)
2197 			last = dn->dn_maxblkid >> epbs;
2198 		else
2199 			last = (blkid + nblks - 1) >> epbs;
2200 		if (last != first)
2201 			dnode_dirty_l1(dn, last, tx);
2202 
2203 		dnode_dirty_l1range(dn, first, last, tx);
2204 
2205 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2206 		    SPA_BLKPTRSHIFT;
2207 		for (uint64_t i = first + 1; i < last; i++) {
2208 			/*
2209 			 * Set i to the blockid of the next non-hole
2210 			 * level-1 indirect block at or after i.  Note
2211 			 * that dnode_next_offset() operates in terms of
2212 			 * level-0-equivalent bytes.
2213 			 */
2214 			uint64_t ibyte = i << shift;
2215 			int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2216 			    &ibyte, 2, 1, 0);
2217 			i = ibyte >> shift;
2218 			if (i >= last)
2219 				break;
2220 
2221 			/*
2222 			 * Normally we should not see an error, either
2223 			 * from dnode_next_offset() or dbuf_hold_level()
2224 			 * (except for ESRCH from dnode_next_offset).
2225 			 * If there is an i/o error, then when we read
2226 			 * this block in syncing context, it will use
2227 			 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2228 			 * to the "failmode" property.  dnode_next_offset()
2229 			 * doesn't have a flag to indicate MUSTSUCCEED.
2230 			 */
2231 			if (err != 0)
2232 				break;
2233 
2234 			dnode_dirty_l1(dn, i, tx);
2235 		}
2236 		rw_exit(&dn->dn_struct_rwlock);
2237 	}
2238 
2239 done:
2240 	/*
2241 	 * Add this range to the dnode range list.
2242 	 * We will finish up this free operation in the syncing phase.
2243 	 */
2244 	mutex_enter(&dn->dn_mtx);
2245 	{
2246 		int txgoff = tx->tx_txg & TXG_MASK;
2247 		if (dn->dn_free_ranges[txgoff] == NULL) {
2248 			dn->dn_free_ranges[txgoff] = range_tree_create(NULL,
2249 			    RANGE_SEG64, NULL, 0, 0);
2250 		}
2251 		range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2252 		range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2253 	}
2254 	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2255 	    blkid, nblks, tx->tx_txg);
2256 	mutex_exit(&dn->dn_mtx);
2257 
2258 	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2259 	dnode_setdirty(dn, tx);
2260 }
2261 
2262 static boolean_t
2263 dnode_spill_freed(dnode_t *dn)
2264 {
2265 	int i;
2266 
2267 	mutex_enter(&dn->dn_mtx);
2268 	for (i = 0; i < TXG_SIZE; i++) {
2269 		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2270 			break;
2271 	}
2272 	mutex_exit(&dn->dn_mtx);
2273 	return (i < TXG_SIZE);
2274 }
2275 
2276 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2277 uint64_t
2278 dnode_block_freed(dnode_t *dn, uint64_t blkid)
2279 {
2280 	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
2281 	int i;
2282 
2283 	if (blkid == DMU_BONUS_BLKID)
2284 		return (FALSE);
2285 
2286 	/*
2287 	 * If we're in the process of opening the pool, dp will not be
2288 	 * set yet, but there shouldn't be anything dirty.
2289 	 */
2290 	if (dp == NULL)
2291 		return (FALSE);
2292 
2293 	if (dn->dn_free_txg)
2294 		return (TRUE);
2295 
2296 	if (blkid == DMU_SPILL_BLKID)
2297 		return (dnode_spill_freed(dn));
2298 
2299 	mutex_enter(&dn->dn_mtx);
2300 	for (i = 0; i < TXG_SIZE; i++) {
2301 		if (dn->dn_free_ranges[i] != NULL &&
2302 		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2303 			break;
2304 	}
2305 	mutex_exit(&dn->dn_mtx);
2306 	return (i < TXG_SIZE);
2307 }
2308 
2309 /* call from syncing context when we actually write/free space for this dnode */
2310 void
2311 dnode_diduse_space(dnode_t *dn, int64_t delta)
2312 {
2313 	uint64_t space;
2314 	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2315 	    dn, dn->dn_phys,
2316 	    (u_longlong_t)dn->dn_phys->dn_used,
2317 	    (longlong_t)delta);
2318 
2319 	mutex_enter(&dn->dn_mtx);
2320 	space = DN_USED_BYTES(dn->dn_phys);
2321 	if (delta > 0) {
2322 		ASSERT3U(space + delta, >=, space); /* no overflow */
2323 	} else {
2324 		ASSERT3U(space, >=, -delta); /* no underflow */
2325 	}
2326 	space += delta;
2327 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2328 		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2329 		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2330 		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2331 	} else {
2332 		dn->dn_phys->dn_used = space;
2333 		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2334 	}
2335 	mutex_exit(&dn->dn_mtx);
2336 }
2337 
2338 /*
2339  * Scans a block at the indicated "level" looking for a hole or data,
2340  * depending on 'flags'.
2341  *
2342  * If level > 0, then we are scanning an indirect block looking at its
2343  * pointers.  If level == 0, then we are looking at a block of dnodes.
2344  *
2345  * If we don't find what we are looking for in the block, we return ESRCH.
2346  * Otherwise, return with *offset pointing to the beginning (if searching
2347  * forwards) or end (if searching backwards) of the range covered by the
2348  * block pointer we matched on (or dnode).
2349  *
2350  * The basic search algorithm used below by dnode_next_offset() is to
2351  * use this function to search up the block tree (widen the search) until
2352  * we find something (i.e., we don't return ESRCH) and then search back
2353  * down the tree (narrow the search) until we reach our original search
2354  * level.
2355  */
2356 static int
2357 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2358     int lvl, uint64_t blkfill, uint64_t txg)
2359 {
2360 	dmu_buf_impl_t *db = NULL;
2361 	void *data = NULL;
2362 	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2363 	uint64_t epb = 1ULL << epbs;
2364 	uint64_t minfill, maxfill;
2365 	boolean_t hole;
2366 	int i, inc, error, span;
2367 
2368 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2369 
2370 	hole = ((flags & DNODE_FIND_HOLE) != 0);
2371 	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2372 	ASSERT(txg == 0 || !hole);
2373 
2374 	if (lvl == dn->dn_phys->dn_nlevels) {
2375 		error = 0;
2376 		epb = dn->dn_phys->dn_nblkptr;
2377 		data = dn->dn_phys->dn_blkptr;
2378 	} else {
2379 		uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2380 		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2381 		if (error) {
2382 			if (error != ENOENT)
2383 				return (error);
2384 			if (hole)
2385 				return (0);
2386 			/*
2387 			 * This can only happen when we are searching up
2388 			 * the block tree for data.  We don't really need to
2389 			 * adjust the offset, as we will just end up looking
2390 			 * at the pointer to this block in its parent, and its
2391 			 * going to be unallocated, so we will skip over it.
2392 			 */
2393 			return (SET_ERROR(ESRCH));
2394 		}
2395 		error = dbuf_read(db, NULL,
2396 		    DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT);
2397 		if (error) {
2398 			dbuf_rele(db, FTAG);
2399 			return (error);
2400 		}
2401 		data = db->db.db_data;
2402 		rw_enter(&db->db_rwlock, RW_READER);
2403 	}
2404 
2405 	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2406 	    db->db_blkptr->blk_birth <= txg ||
2407 	    BP_IS_HOLE(db->db_blkptr))) {
2408 		/*
2409 		 * This can only happen when we are searching up the tree
2410 		 * and these conditions mean that we need to keep climbing.
2411 		 */
2412 		error = SET_ERROR(ESRCH);
2413 	} else if (lvl == 0) {
2414 		dnode_phys_t *dnp = data;
2415 
2416 		ASSERT(dn->dn_type == DMU_OT_DNODE);
2417 		ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2418 
2419 		for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2420 		    i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2421 			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2422 				break;
2423 		}
2424 
2425 		if (i == blkfill)
2426 			error = SET_ERROR(ESRCH);
2427 
2428 		*offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2429 		    (i << DNODE_SHIFT);
2430 	} else {
2431 		blkptr_t *bp = data;
2432 		uint64_t start = *offset;
2433 		span = (lvl - 1) * epbs + dn->dn_datablkshift;
2434 		minfill = 0;
2435 		maxfill = blkfill << ((lvl - 1) * epbs);
2436 
2437 		if (hole)
2438 			maxfill--;
2439 		else
2440 			minfill++;
2441 
2442 		if (span >= 8 * sizeof (*offset)) {
2443 			/* This only happens on the highest indirection level */
2444 			ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
2445 			*offset = 0;
2446 		} else {
2447 			*offset = *offset >> span;
2448 		}
2449 
2450 		for (i = BF64_GET(*offset, 0, epbs);
2451 		    i >= 0 && i < epb; i += inc) {
2452 			if (BP_GET_FILL(&bp[i]) >= minfill &&
2453 			    BP_GET_FILL(&bp[i]) <= maxfill &&
2454 			    (hole || bp[i].blk_birth > txg))
2455 				break;
2456 			if (inc > 0 || *offset > 0)
2457 				*offset += inc;
2458 		}
2459 
2460 		if (span >= 8 * sizeof (*offset)) {
2461 			*offset = start;
2462 		} else {
2463 			*offset = *offset << span;
2464 		}
2465 
2466 		if (inc < 0) {
2467 			/* traversing backwards; position offset at the end */
2468 			ASSERT3U(*offset, <=, start);
2469 			*offset = MIN(*offset + (1ULL << span) - 1, start);
2470 		} else if (*offset < start) {
2471 			*offset = start;
2472 		}
2473 		if (i < 0 || i >= epb)
2474 			error = SET_ERROR(ESRCH);
2475 	}
2476 
2477 	if (db != NULL) {
2478 		rw_exit(&db->db_rwlock);
2479 		dbuf_rele(db, FTAG);
2480 	}
2481 
2482 	return (error);
2483 }
2484 
2485 /*
2486  * Find the next hole, data, or sparse region at or after *offset.
2487  * The value 'blkfill' tells us how many items we expect to find
2488  * in an L0 data block; this value is 1 for normal objects,
2489  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2490  * DNODES_PER_BLOCK when searching for sparse regions thereof.
2491  *
2492  * Examples:
2493  *
2494  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2495  *	Finds the next/previous hole/data in a file.
2496  *	Used in dmu_offset_next().
2497  *
2498  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2499  *	Finds the next free/allocated dnode an objset's meta-dnode.
2500  *	Only finds objects that have new contents since txg (ie.
2501  *	bonus buffer changes and content removal are ignored).
2502  *	Used in dmu_object_next().
2503  *
2504  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2505  *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
2506  *	Used in dmu_object_alloc().
2507  */
2508 int
2509 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2510     int minlvl, uint64_t blkfill, uint64_t txg)
2511 {
2512 	uint64_t initial_offset = *offset;
2513 	int lvl, maxlvl;
2514 	int error = 0;
2515 
2516 	if (!(flags & DNODE_FIND_HAVELOCK))
2517 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2518 
2519 	if (dn->dn_phys->dn_nlevels == 0) {
2520 		error = SET_ERROR(ESRCH);
2521 		goto out;
2522 	}
2523 
2524 	if (dn->dn_datablkshift == 0) {
2525 		if (*offset < dn->dn_datablksz) {
2526 			if (flags & DNODE_FIND_HOLE)
2527 				*offset = dn->dn_datablksz;
2528 		} else {
2529 			error = SET_ERROR(ESRCH);
2530 		}
2531 		goto out;
2532 	}
2533 
2534 	maxlvl = dn->dn_phys->dn_nlevels;
2535 
2536 	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2537 		error = dnode_next_offset_level(dn,
2538 		    flags, offset, lvl, blkfill, txg);
2539 		if (error != ESRCH)
2540 			break;
2541 	}
2542 
2543 	while (error == 0 && --lvl >= minlvl) {
2544 		error = dnode_next_offset_level(dn,
2545 		    flags, offset, lvl, blkfill, txg);
2546 	}
2547 
2548 	/*
2549 	 * There's always a "virtual hole" at the end of the object, even
2550 	 * if all BP's which physically exist are non-holes.
2551 	 */
2552 	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2553 	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2554 		error = 0;
2555 	}
2556 
2557 	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2558 	    initial_offset < *offset : initial_offset > *offset))
2559 		error = SET_ERROR(ESRCH);
2560 out:
2561 	if (!(flags & DNODE_FIND_HAVELOCK))
2562 		rw_exit(&dn->dn_struct_rwlock);
2563 
2564 	return (error);
2565 }
2566 
2567 #if defined(_KERNEL)
2568 EXPORT_SYMBOL(dnode_hold);
2569 EXPORT_SYMBOL(dnode_rele);
2570 EXPORT_SYMBOL(dnode_set_nlevels);
2571 EXPORT_SYMBOL(dnode_set_blksz);
2572 EXPORT_SYMBOL(dnode_free_range);
2573 EXPORT_SYMBOL(dnode_evict_dbufs);
2574 EXPORT_SYMBOL(dnode_evict_bonus);
2575 #endif
2576