1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/dbuf.h> 29 #include <sys/dnode.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_impl.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dmu_objset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/spa.h> 37 #include <sys/zio.h> 38 #include <sys/dmu_zfetch.h> 39 #include <sys/range_tree.h> 40 #include <sys/trace_zfs.h> 41 #include <sys/zfs_project.h> 42 43 dnode_stats_t dnode_stats = { 44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, 45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, 46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, 47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, 48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, 49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, 50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, 51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, 52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, 53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, 54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, 55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, 56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, 57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, 58 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, 59 { "dnode_allocate", KSTAT_DATA_UINT64 }, 60 { "dnode_reallocate", KSTAT_DATA_UINT64 }, 61 { "dnode_buf_evict", KSTAT_DATA_UINT64 }, 62 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, 63 { "dnode_alloc_race", KSTAT_DATA_UINT64 }, 64 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, 65 { "dnode_move_invalid", KSTAT_DATA_UINT64 }, 66 { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, 67 { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, 68 { "dnode_move_special", KSTAT_DATA_UINT64 }, 69 { "dnode_move_handle", KSTAT_DATA_UINT64 }, 70 { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, 71 { "dnode_move_active", KSTAT_DATA_UINT64 }, 72 }; 73 74 static kstat_t *dnode_ksp; 75 static kmem_cache_t *dnode_cache; 76 77 static dnode_phys_t dnode_phys_zero __maybe_unused; 78 79 int zfs_default_bs = SPA_MINBLOCKSHIFT; 80 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 81 82 #ifdef _KERNEL 83 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 84 #endif /* _KERNEL */ 85 86 static int 87 dbuf_compare(const void *x1, const void *x2) 88 { 89 const dmu_buf_impl_t *d1 = x1; 90 const dmu_buf_impl_t *d2 = x2; 91 92 int cmp = TREE_CMP(d1->db_level, d2->db_level); 93 if (likely(cmp)) 94 return (cmp); 95 96 cmp = TREE_CMP(d1->db_blkid, d2->db_blkid); 97 if (likely(cmp)) 98 return (cmp); 99 100 if (d1->db_state == DB_SEARCH) { 101 ASSERT3S(d2->db_state, !=, DB_SEARCH); 102 return (-1); 103 } else if (d2->db_state == DB_SEARCH) { 104 ASSERT3S(d1->db_state, !=, DB_SEARCH); 105 return (1); 106 } 107 108 return (TREE_PCMP(d1, d2)); 109 } 110 111 /* ARGSUSED */ 112 static int 113 dnode_cons(void *arg, void *unused, int kmflag) 114 { 115 dnode_t *dn = arg; 116 int i; 117 118 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL); 119 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 120 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 121 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 122 cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL); 123 124 /* 125 * Every dbuf has a reference, and dropping a tracked reference is 126 * O(number of references), so don't track dn_holds. 127 */ 128 zfs_refcount_create_untracked(&dn->dn_holds); 129 zfs_refcount_create(&dn->dn_tx_holds); 130 list_link_init(&dn->dn_link); 131 132 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 133 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 134 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 135 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 136 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 137 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 138 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 139 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid)); 140 141 for (i = 0; i < TXG_SIZE; i++) { 142 multilist_link_init(&dn->dn_dirty_link[i]); 143 dn->dn_free_ranges[i] = NULL; 144 list_create(&dn->dn_dirty_records[i], 145 sizeof (dbuf_dirty_record_t), 146 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 147 } 148 149 dn->dn_allocated_txg = 0; 150 dn->dn_free_txg = 0; 151 dn->dn_assigned_txg = 0; 152 dn->dn_dirty_txg = 0; 153 dn->dn_dirtyctx = 0; 154 dn->dn_dirtyctx_firstset = NULL; 155 dn->dn_bonus = NULL; 156 dn->dn_have_spill = B_FALSE; 157 dn->dn_zio = NULL; 158 dn->dn_oldused = 0; 159 dn->dn_oldflags = 0; 160 dn->dn_olduid = 0; 161 dn->dn_oldgid = 0; 162 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 163 dn->dn_newuid = 0; 164 dn->dn_newgid = 0; 165 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 166 dn->dn_id_flags = 0; 167 168 dn->dn_dbufs_count = 0; 169 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 170 offsetof(dmu_buf_impl_t, db_link)); 171 172 dn->dn_moved = 0; 173 return (0); 174 } 175 176 /* ARGSUSED */ 177 static void 178 dnode_dest(void *arg, void *unused) 179 { 180 int i; 181 dnode_t *dn = arg; 182 183 rw_destroy(&dn->dn_struct_rwlock); 184 mutex_destroy(&dn->dn_mtx); 185 mutex_destroy(&dn->dn_dbufs_mtx); 186 cv_destroy(&dn->dn_notxholds); 187 cv_destroy(&dn->dn_nodnholds); 188 zfs_refcount_destroy(&dn->dn_holds); 189 zfs_refcount_destroy(&dn->dn_tx_holds); 190 ASSERT(!list_link_active(&dn->dn_link)); 191 192 for (i = 0; i < TXG_SIZE; i++) { 193 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 194 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 195 list_destroy(&dn->dn_dirty_records[i]); 196 ASSERT0(dn->dn_next_nblkptr[i]); 197 ASSERT0(dn->dn_next_nlevels[i]); 198 ASSERT0(dn->dn_next_indblkshift[i]); 199 ASSERT0(dn->dn_next_bonustype[i]); 200 ASSERT0(dn->dn_rm_spillblk[i]); 201 ASSERT0(dn->dn_next_bonuslen[i]); 202 ASSERT0(dn->dn_next_blksz[i]); 203 ASSERT0(dn->dn_next_maxblkid[i]); 204 } 205 206 ASSERT0(dn->dn_allocated_txg); 207 ASSERT0(dn->dn_free_txg); 208 ASSERT0(dn->dn_assigned_txg); 209 ASSERT0(dn->dn_dirty_txg); 210 ASSERT0(dn->dn_dirtyctx); 211 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 212 ASSERT3P(dn->dn_bonus, ==, NULL); 213 ASSERT(!dn->dn_have_spill); 214 ASSERT3P(dn->dn_zio, ==, NULL); 215 ASSERT0(dn->dn_oldused); 216 ASSERT0(dn->dn_oldflags); 217 ASSERT0(dn->dn_olduid); 218 ASSERT0(dn->dn_oldgid); 219 ASSERT0(dn->dn_oldprojid); 220 ASSERT0(dn->dn_newuid); 221 ASSERT0(dn->dn_newgid); 222 ASSERT0(dn->dn_newprojid); 223 ASSERT0(dn->dn_id_flags); 224 225 ASSERT0(dn->dn_dbufs_count); 226 avl_destroy(&dn->dn_dbufs); 227 } 228 229 void 230 dnode_init(void) 231 { 232 ASSERT(dnode_cache == NULL); 233 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t), 234 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 235 kmem_cache_set_move(dnode_cache, dnode_move); 236 237 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", 238 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), 239 KSTAT_FLAG_VIRTUAL); 240 if (dnode_ksp != NULL) { 241 dnode_ksp->ks_data = &dnode_stats; 242 kstat_install(dnode_ksp); 243 } 244 } 245 246 void 247 dnode_fini(void) 248 { 249 if (dnode_ksp != NULL) { 250 kstat_delete(dnode_ksp); 251 dnode_ksp = NULL; 252 } 253 254 kmem_cache_destroy(dnode_cache); 255 dnode_cache = NULL; 256 } 257 258 259 #ifdef ZFS_DEBUG 260 void 261 dnode_verify(dnode_t *dn) 262 { 263 int drop_struct_lock = FALSE; 264 265 ASSERT(dn->dn_phys); 266 ASSERT(dn->dn_objset); 267 ASSERT(dn->dn_handle->dnh_dnode == dn); 268 269 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 270 271 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 272 return; 273 274 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 275 rw_enter(&dn->dn_struct_rwlock, RW_READER); 276 drop_struct_lock = TRUE; 277 } 278 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 279 int i; 280 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 281 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 282 if (dn->dn_datablkshift) { 283 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 284 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 285 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 286 } 287 ASSERT3U(dn->dn_nlevels, <=, 30); 288 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 289 ASSERT3U(dn->dn_nblkptr, >=, 1); 290 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 291 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); 292 ASSERT3U(dn->dn_datablksz, ==, 293 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 294 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 295 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 296 dn->dn_bonuslen, <=, max_bonuslen); 297 for (i = 0; i < TXG_SIZE; i++) { 298 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 299 } 300 } 301 if (dn->dn_phys->dn_type != DMU_OT_NONE) 302 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 303 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 304 if (dn->dn_dbuf != NULL) { 305 ASSERT3P(dn->dn_phys, ==, 306 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 307 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 308 } 309 if (drop_struct_lock) 310 rw_exit(&dn->dn_struct_rwlock); 311 } 312 #endif 313 314 void 315 dnode_byteswap(dnode_phys_t *dnp) 316 { 317 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 318 int i; 319 320 if (dnp->dn_type == DMU_OT_NONE) { 321 bzero(dnp, sizeof (dnode_phys_t)); 322 return; 323 } 324 325 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 326 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 327 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); 328 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 329 dnp->dn_used = BSWAP_64(dnp->dn_used); 330 331 /* 332 * dn_nblkptr is only one byte, so it's OK to read it in either 333 * byte order. We can't read dn_bouslen. 334 */ 335 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 336 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 337 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 338 buf64[i] = BSWAP_64(buf64[i]); 339 340 /* 341 * OK to check dn_bonuslen for zero, because it won't matter if 342 * we have the wrong byte order. This is necessary because the 343 * dnode dnode is smaller than a regular dnode. 344 */ 345 if (dnp->dn_bonuslen != 0) { 346 /* 347 * Note that the bonus length calculated here may be 348 * longer than the actual bonus buffer. This is because 349 * we always put the bonus buffer after the last block 350 * pointer (instead of packing it against the end of the 351 * dnode buffer). 352 */ 353 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 354 int slots = dnp->dn_extra_slots + 1; 355 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off; 356 dmu_object_byteswap_t byteswap; 357 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 358 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype); 359 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 360 } 361 362 /* Swap SPILL block if we have one */ 363 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 364 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); 365 } 366 367 void 368 dnode_buf_byteswap(void *vbuf, size_t size) 369 { 370 int i = 0; 371 372 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 373 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 374 375 while (i < size) { 376 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); 377 dnode_byteswap(dnp); 378 379 i += DNODE_MIN_SIZE; 380 if (dnp->dn_type != DMU_OT_NONE) 381 i += dnp->dn_extra_slots * DNODE_MIN_SIZE; 382 } 383 } 384 385 void 386 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 387 { 388 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 389 390 dnode_setdirty(dn, tx); 391 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 392 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 393 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 394 395 if (newsize < dn->dn_bonuslen) { 396 /* clear any data after the end of the new size */ 397 size_t diff = dn->dn_bonuslen - newsize; 398 char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize; 399 bzero(data_end, diff); 400 } 401 402 dn->dn_bonuslen = newsize; 403 if (newsize == 0) 404 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 405 else 406 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 407 rw_exit(&dn->dn_struct_rwlock); 408 } 409 410 void 411 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 412 { 413 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 414 dnode_setdirty(dn, tx); 415 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 416 dn->dn_bonustype = newtype; 417 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 418 rw_exit(&dn->dn_struct_rwlock); 419 } 420 421 void 422 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 423 { 424 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 425 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 426 dnode_setdirty(dn, tx); 427 dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK; 428 dn->dn_have_spill = B_FALSE; 429 } 430 431 static void 432 dnode_setdblksz(dnode_t *dn, int size) 433 { 434 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 435 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 436 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 437 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 438 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 439 dn->dn_datablksz = size; 440 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 441 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 442 } 443 444 static dnode_t * 445 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 446 uint64_t object, dnode_handle_t *dnh) 447 { 448 dnode_t *dn; 449 450 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 451 dn->dn_moved = 0; 452 453 /* 454 * Defer setting dn_objset until the dnode is ready to be a candidate 455 * for the dnode_move() callback. 456 */ 457 dn->dn_object = object; 458 dn->dn_dbuf = db; 459 dn->dn_handle = dnh; 460 dn->dn_phys = dnp; 461 462 if (dnp->dn_datablkszsec) { 463 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 464 } else { 465 dn->dn_datablksz = 0; 466 dn->dn_datablkszsec = 0; 467 dn->dn_datablkshift = 0; 468 } 469 dn->dn_indblkshift = dnp->dn_indblkshift; 470 dn->dn_nlevels = dnp->dn_nlevels; 471 dn->dn_type = dnp->dn_type; 472 dn->dn_nblkptr = dnp->dn_nblkptr; 473 dn->dn_checksum = dnp->dn_checksum; 474 dn->dn_compress = dnp->dn_compress; 475 dn->dn_bonustype = dnp->dn_bonustype; 476 dn->dn_bonuslen = dnp->dn_bonuslen; 477 dn->dn_num_slots = dnp->dn_extra_slots + 1; 478 dn->dn_maxblkid = dnp->dn_maxblkid; 479 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 480 dn->dn_id_flags = 0; 481 482 dmu_zfetch_init(&dn->dn_zfetch, dn); 483 484 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 485 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 486 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); 487 488 mutex_enter(&os->os_lock); 489 490 /* 491 * Exclude special dnodes from os_dnodes so an empty os_dnodes 492 * signifies that the special dnodes have no references from 493 * their children (the entries in os_dnodes). This allows 494 * dnode_destroy() to easily determine if the last child has 495 * been removed and then complete eviction of the objset. 496 */ 497 if (!DMU_OBJECT_IS_SPECIAL(object)) 498 list_insert_head(&os->os_dnodes, dn); 499 membar_producer(); 500 501 /* 502 * Everything else must be valid before assigning dn_objset 503 * makes the dnode eligible for dnode_move(). 504 */ 505 dn->dn_objset = os; 506 507 dnh->dnh_dnode = dn; 508 mutex_exit(&os->os_lock); 509 510 arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE); 511 512 return (dn); 513 } 514 515 /* 516 * Caller must be holding the dnode handle, which is released upon return. 517 */ 518 static void 519 dnode_destroy(dnode_t *dn) 520 { 521 objset_t *os = dn->dn_objset; 522 boolean_t complete_os_eviction = B_FALSE; 523 524 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 525 526 mutex_enter(&os->os_lock); 527 POINTER_INVALIDATE(&dn->dn_objset); 528 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 529 list_remove(&os->os_dnodes, dn); 530 complete_os_eviction = 531 list_is_empty(&os->os_dnodes) && 532 list_link_active(&os->os_evicting_node); 533 } 534 mutex_exit(&os->os_lock); 535 536 /* the dnode can no longer move, so we can release the handle */ 537 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) 538 zrl_remove(&dn->dn_handle->dnh_zrlock); 539 540 dn->dn_allocated_txg = 0; 541 dn->dn_free_txg = 0; 542 dn->dn_assigned_txg = 0; 543 dn->dn_dirty_txg = 0; 544 545 dn->dn_dirtyctx = 0; 546 dn->dn_dirtyctx_firstset = NULL; 547 if (dn->dn_bonus != NULL) { 548 mutex_enter(&dn->dn_bonus->db_mtx); 549 dbuf_destroy(dn->dn_bonus); 550 dn->dn_bonus = NULL; 551 } 552 dn->dn_zio = NULL; 553 554 dn->dn_have_spill = B_FALSE; 555 dn->dn_oldused = 0; 556 dn->dn_oldflags = 0; 557 dn->dn_olduid = 0; 558 dn->dn_oldgid = 0; 559 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 560 dn->dn_newuid = 0; 561 dn->dn_newgid = 0; 562 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 563 dn->dn_id_flags = 0; 564 565 dmu_zfetch_fini(&dn->dn_zfetch); 566 kmem_cache_free(dnode_cache, dn); 567 arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE); 568 569 if (complete_os_eviction) 570 dmu_objset_evict_done(os); 571 } 572 573 void 574 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 575 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 576 { 577 int i; 578 579 ASSERT3U(dn_slots, >, 0); 580 ASSERT3U(dn_slots << DNODE_SHIFT, <=, 581 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); 582 ASSERT3U(blocksize, <=, 583 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 584 if (blocksize == 0) 585 blocksize = 1 << zfs_default_bs; 586 else 587 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 588 589 if (ibs == 0) 590 ibs = zfs_default_ibs; 591 592 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 593 594 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n", 595 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots); 596 DNODE_STAT_BUMP(dnode_allocate); 597 598 ASSERT(dn->dn_type == DMU_OT_NONE); 599 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 600 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 601 ASSERT(ot != DMU_OT_NONE); 602 ASSERT(DMU_OT_IS_VALID(ot)); 603 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 604 (bonustype == DMU_OT_SA && bonuslen == 0) || 605 (bonustype != DMU_OT_NONE && bonuslen != 0)); 606 ASSERT(DMU_OT_IS_VALID(bonustype)); 607 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); 608 ASSERT(dn->dn_type == DMU_OT_NONE); 609 ASSERT0(dn->dn_maxblkid); 610 ASSERT0(dn->dn_allocated_txg); 611 ASSERT0(dn->dn_assigned_txg); 612 ASSERT0(dn->dn_dirty_txg); 613 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 614 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); 615 ASSERT(avl_is_empty(&dn->dn_dbufs)); 616 617 for (i = 0; i < TXG_SIZE; i++) { 618 ASSERT0(dn->dn_next_nblkptr[i]); 619 ASSERT0(dn->dn_next_nlevels[i]); 620 ASSERT0(dn->dn_next_indblkshift[i]); 621 ASSERT0(dn->dn_next_bonuslen[i]); 622 ASSERT0(dn->dn_next_bonustype[i]); 623 ASSERT0(dn->dn_rm_spillblk[i]); 624 ASSERT0(dn->dn_next_blksz[i]); 625 ASSERT0(dn->dn_next_maxblkid[i]); 626 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 627 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 628 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 629 } 630 631 dn->dn_type = ot; 632 dnode_setdblksz(dn, blocksize); 633 dn->dn_indblkshift = ibs; 634 dn->dn_nlevels = 1; 635 dn->dn_num_slots = dn_slots; 636 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 637 dn->dn_nblkptr = 1; 638 else { 639 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 640 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 641 SPA_BLKPTRSHIFT)); 642 } 643 644 dn->dn_bonustype = bonustype; 645 dn->dn_bonuslen = bonuslen; 646 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 647 dn->dn_compress = ZIO_COMPRESS_INHERIT; 648 dn->dn_dirtyctx = 0; 649 650 dn->dn_free_txg = 0; 651 dn->dn_dirtyctx_firstset = NULL; 652 653 dn->dn_allocated_txg = tx->tx_txg; 654 dn->dn_id_flags = 0; 655 656 dnode_setdirty(dn, tx); 657 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 658 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 659 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 660 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 661 } 662 663 void 664 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 665 dmu_object_type_t bonustype, int bonuslen, int dn_slots, 666 boolean_t keep_spill, dmu_tx_t *tx) 667 { 668 int nblkptr; 669 670 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 671 ASSERT3U(blocksize, <=, 672 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 673 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 674 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 675 ASSERT(tx->tx_txg != 0); 676 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 677 (bonustype != DMU_OT_NONE && bonuslen != 0) || 678 (bonustype == DMU_OT_SA && bonuslen == 0)); 679 ASSERT(DMU_OT_IS_VALID(bonustype)); 680 ASSERT3U(bonuslen, <=, 681 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); 682 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); 683 684 dnode_free_interior_slots(dn); 685 DNODE_STAT_BUMP(dnode_reallocate); 686 687 /* clean up any unreferenced dbufs */ 688 dnode_evict_dbufs(dn); 689 690 dn->dn_id_flags = 0; 691 692 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 693 dnode_setdirty(dn, tx); 694 if (dn->dn_datablksz != blocksize) { 695 /* change blocksize */ 696 ASSERT0(dn->dn_maxblkid); 697 ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 698 dnode_block_freed(dn, 0)); 699 700 dnode_setdblksz(dn, blocksize); 701 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize; 702 } 703 if (dn->dn_bonuslen != bonuslen) 704 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen; 705 706 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 707 nblkptr = 1; 708 else 709 nblkptr = MIN(DN_MAX_NBLKPTR, 710 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 711 SPA_BLKPTRSHIFT)); 712 if (dn->dn_bonustype != bonustype) 713 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype; 714 if (dn->dn_nblkptr != nblkptr) 715 dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr; 716 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) { 717 dbuf_rm_spill(dn, tx); 718 dnode_rm_spill(dn, tx); 719 } 720 721 rw_exit(&dn->dn_struct_rwlock); 722 723 /* change type */ 724 dn->dn_type = ot; 725 726 /* change bonus size and type */ 727 mutex_enter(&dn->dn_mtx); 728 dn->dn_bonustype = bonustype; 729 dn->dn_bonuslen = bonuslen; 730 dn->dn_num_slots = dn_slots; 731 dn->dn_nblkptr = nblkptr; 732 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 733 dn->dn_compress = ZIO_COMPRESS_INHERIT; 734 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 735 736 /* fix up the bonus db_size */ 737 if (dn->dn_bonus) { 738 dn->dn_bonus->db.db_size = 739 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 740 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 741 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 742 } 743 744 dn->dn_allocated_txg = tx->tx_txg; 745 mutex_exit(&dn->dn_mtx); 746 } 747 748 #ifdef _KERNEL 749 static void 750 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 751 { 752 int i; 753 754 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 755 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 756 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 757 ASSERT(!MUTEX_HELD(&odn->dn_zfetch.zf_lock)); 758 759 /* Copy fields. */ 760 ndn->dn_objset = odn->dn_objset; 761 ndn->dn_object = odn->dn_object; 762 ndn->dn_dbuf = odn->dn_dbuf; 763 ndn->dn_handle = odn->dn_handle; 764 ndn->dn_phys = odn->dn_phys; 765 ndn->dn_type = odn->dn_type; 766 ndn->dn_bonuslen = odn->dn_bonuslen; 767 ndn->dn_bonustype = odn->dn_bonustype; 768 ndn->dn_nblkptr = odn->dn_nblkptr; 769 ndn->dn_checksum = odn->dn_checksum; 770 ndn->dn_compress = odn->dn_compress; 771 ndn->dn_nlevels = odn->dn_nlevels; 772 ndn->dn_indblkshift = odn->dn_indblkshift; 773 ndn->dn_datablkshift = odn->dn_datablkshift; 774 ndn->dn_datablkszsec = odn->dn_datablkszsec; 775 ndn->dn_datablksz = odn->dn_datablksz; 776 ndn->dn_maxblkid = odn->dn_maxblkid; 777 ndn->dn_num_slots = odn->dn_num_slots; 778 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], 779 sizeof (odn->dn_next_type)); 780 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 781 sizeof (odn->dn_next_nblkptr)); 782 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 783 sizeof (odn->dn_next_nlevels)); 784 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 785 sizeof (odn->dn_next_indblkshift)); 786 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 787 sizeof (odn->dn_next_bonustype)); 788 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 789 sizeof (odn->dn_rm_spillblk)); 790 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 791 sizeof (odn->dn_next_bonuslen)); 792 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 793 sizeof (odn->dn_next_blksz)); 794 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0], 795 sizeof (odn->dn_next_maxblkid)); 796 for (i = 0; i < TXG_SIZE; i++) { 797 list_move_tail(&ndn->dn_dirty_records[i], 798 &odn->dn_dirty_records[i]); 799 } 800 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 801 sizeof (odn->dn_free_ranges)); 802 ndn->dn_allocated_txg = odn->dn_allocated_txg; 803 ndn->dn_free_txg = odn->dn_free_txg; 804 ndn->dn_assigned_txg = odn->dn_assigned_txg; 805 ndn->dn_dirty_txg = odn->dn_dirty_txg; 806 ndn->dn_dirtyctx = odn->dn_dirtyctx; 807 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 808 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); 809 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 810 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 811 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 812 ndn->dn_dbufs_count = odn->dn_dbufs_count; 813 ndn->dn_bonus = odn->dn_bonus; 814 ndn->dn_have_spill = odn->dn_have_spill; 815 ndn->dn_zio = odn->dn_zio; 816 ndn->dn_oldused = odn->dn_oldused; 817 ndn->dn_oldflags = odn->dn_oldflags; 818 ndn->dn_olduid = odn->dn_olduid; 819 ndn->dn_oldgid = odn->dn_oldgid; 820 ndn->dn_oldprojid = odn->dn_oldprojid; 821 ndn->dn_newuid = odn->dn_newuid; 822 ndn->dn_newgid = odn->dn_newgid; 823 ndn->dn_newprojid = odn->dn_newprojid; 824 ndn->dn_id_flags = odn->dn_id_flags; 825 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 826 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 827 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 828 829 /* 830 * Update back pointers. Updating the handle fixes the back pointer of 831 * every descendant dbuf as well as the bonus dbuf. 832 */ 833 ASSERT(ndn->dn_handle->dnh_dnode == odn); 834 ndn->dn_handle->dnh_dnode = ndn; 835 if (ndn->dn_zfetch.zf_dnode == odn) { 836 ndn->dn_zfetch.zf_dnode = ndn; 837 } 838 839 /* 840 * Invalidate the original dnode by clearing all of its back pointers. 841 */ 842 odn->dn_dbuf = NULL; 843 odn->dn_handle = NULL; 844 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 845 offsetof(dmu_buf_impl_t, db_link)); 846 odn->dn_dbufs_count = 0; 847 odn->dn_bonus = NULL; 848 dmu_zfetch_fini(&odn->dn_zfetch); 849 850 /* 851 * Set the low bit of the objset pointer to ensure that dnode_move() 852 * recognizes the dnode as invalid in any subsequent callback. 853 */ 854 POINTER_INVALIDATE(&odn->dn_objset); 855 856 /* 857 * Satisfy the destructor. 858 */ 859 for (i = 0; i < TXG_SIZE; i++) { 860 list_create(&odn->dn_dirty_records[i], 861 sizeof (dbuf_dirty_record_t), 862 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 863 odn->dn_free_ranges[i] = NULL; 864 odn->dn_next_nlevels[i] = 0; 865 odn->dn_next_indblkshift[i] = 0; 866 odn->dn_next_bonustype[i] = 0; 867 odn->dn_rm_spillblk[i] = 0; 868 odn->dn_next_bonuslen[i] = 0; 869 odn->dn_next_blksz[i] = 0; 870 } 871 odn->dn_allocated_txg = 0; 872 odn->dn_free_txg = 0; 873 odn->dn_assigned_txg = 0; 874 odn->dn_dirty_txg = 0; 875 odn->dn_dirtyctx = 0; 876 odn->dn_dirtyctx_firstset = NULL; 877 odn->dn_have_spill = B_FALSE; 878 odn->dn_zio = NULL; 879 odn->dn_oldused = 0; 880 odn->dn_oldflags = 0; 881 odn->dn_olduid = 0; 882 odn->dn_oldgid = 0; 883 odn->dn_oldprojid = ZFS_DEFAULT_PROJID; 884 odn->dn_newuid = 0; 885 odn->dn_newgid = 0; 886 odn->dn_newprojid = ZFS_DEFAULT_PROJID; 887 odn->dn_id_flags = 0; 888 889 /* 890 * Mark the dnode. 891 */ 892 ndn->dn_moved = 1; 893 odn->dn_moved = (uint8_t)-1; 894 } 895 896 /*ARGSUSED*/ 897 static kmem_cbrc_t 898 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 899 { 900 dnode_t *odn = buf, *ndn = newbuf; 901 objset_t *os; 902 int64_t refcount; 903 uint32_t dbufs; 904 905 /* 906 * The dnode is on the objset's list of known dnodes if the objset 907 * pointer is valid. We set the low bit of the objset pointer when 908 * freeing the dnode to invalidate it, and the memory patterns written 909 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 910 * A newly created dnode sets the objset pointer last of all to indicate 911 * that the dnode is known and in a valid state to be moved by this 912 * function. 913 */ 914 os = odn->dn_objset; 915 if (!POINTER_IS_VALID(os)) { 916 DNODE_STAT_BUMP(dnode_move_invalid); 917 return (KMEM_CBRC_DONT_KNOW); 918 } 919 920 /* 921 * Ensure that the objset does not go away during the move. 922 */ 923 rw_enter(&os_lock, RW_WRITER); 924 if (os != odn->dn_objset) { 925 rw_exit(&os_lock); 926 DNODE_STAT_BUMP(dnode_move_recheck1); 927 return (KMEM_CBRC_DONT_KNOW); 928 } 929 930 /* 931 * If the dnode is still valid, then so is the objset. We know that no 932 * valid objset can be freed while we hold os_lock, so we can safely 933 * ensure that the objset remains in use. 934 */ 935 mutex_enter(&os->os_lock); 936 937 /* 938 * Recheck the objset pointer in case the dnode was removed just before 939 * acquiring the lock. 940 */ 941 if (os != odn->dn_objset) { 942 mutex_exit(&os->os_lock); 943 rw_exit(&os_lock); 944 DNODE_STAT_BUMP(dnode_move_recheck2); 945 return (KMEM_CBRC_DONT_KNOW); 946 } 947 948 /* 949 * At this point we know that as long as we hold os->os_lock, the dnode 950 * cannot be freed and fields within the dnode can be safely accessed. 951 * The objset listing this dnode cannot go away as long as this dnode is 952 * on its list. 953 */ 954 rw_exit(&os_lock); 955 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 956 mutex_exit(&os->os_lock); 957 DNODE_STAT_BUMP(dnode_move_special); 958 return (KMEM_CBRC_NO); 959 } 960 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 961 962 /* 963 * Lock the dnode handle to prevent the dnode from obtaining any new 964 * holds. This also prevents the descendant dbufs and the bonus dbuf 965 * from accessing the dnode, so that we can discount their holds. The 966 * handle is safe to access because we know that while the dnode cannot 967 * go away, neither can its handle. Once we hold dnh_zrlock, we can 968 * safely move any dnode referenced only by dbufs. 969 */ 970 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 971 mutex_exit(&os->os_lock); 972 DNODE_STAT_BUMP(dnode_move_handle); 973 return (KMEM_CBRC_LATER); 974 } 975 976 /* 977 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 978 * We need to guarantee that there is a hold for every dbuf in order to 979 * determine whether the dnode is actively referenced. Falsely matching 980 * a dbuf to an active hold would lead to an unsafe move. It's possible 981 * that a thread already having an active dnode hold is about to add a 982 * dbuf, and we can't compare hold and dbuf counts while the add is in 983 * progress. 984 */ 985 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 986 zrl_exit(&odn->dn_handle->dnh_zrlock); 987 mutex_exit(&os->os_lock); 988 DNODE_STAT_BUMP(dnode_move_rwlock); 989 return (KMEM_CBRC_LATER); 990 } 991 992 /* 993 * A dbuf may be removed (evicted) without an active dnode hold. In that 994 * case, the dbuf count is decremented under the handle lock before the 995 * dbuf's hold is released. This order ensures that if we count the hold 996 * after the dbuf is removed but before its hold is released, we will 997 * treat the unmatched hold as active and exit safely. If we count the 998 * hold before the dbuf is removed, the hold is discounted, and the 999 * removal is blocked until the move completes. 1000 */ 1001 refcount = zfs_refcount_count(&odn->dn_holds); 1002 ASSERT(refcount >= 0); 1003 dbufs = DN_DBUFS_COUNT(odn); 1004 1005 /* We can't have more dbufs than dnode holds. */ 1006 ASSERT3U(dbufs, <=, refcount); 1007 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 1008 uint32_t, dbufs); 1009 1010 if (refcount > dbufs) { 1011 rw_exit(&odn->dn_struct_rwlock); 1012 zrl_exit(&odn->dn_handle->dnh_zrlock); 1013 mutex_exit(&os->os_lock); 1014 DNODE_STAT_BUMP(dnode_move_active); 1015 return (KMEM_CBRC_LATER); 1016 } 1017 1018 rw_exit(&odn->dn_struct_rwlock); 1019 1020 /* 1021 * At this point we know that anyone with a hold on the dnode is not 1022 * actively referencing it. The dnode is known and in a valid state to 1023 * move. We're holding the locks needed to execute the critical section. 1024 */ 1025 dnode_move_impl(odn, ndn); 1026 1027 list_link_replace(&odn->dn_link, &ndn->dn_link); 1028 /* If the dnode was safe to move, the refcount cannot have changed. */ 1029 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); 1030 ASSERT(dbufs == DN_DBUFS_COUNT(ndn)); 1031 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 1032 mutex_exit(&os->os_lock); 1033 1034 return (KMEM_CBRC_YES); 1035 } 1036 #endif /* _KERNEL */ 1037 1038 static void 1039 dnode_slots_hold(dnode_children_t *children, int idx, int slots) 1040 { 1041 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1042 1043 for (int i = idx; i < idx + slots; i++) { 1044 dnode_handle_t *dnh = &children->dnc_children[i]; 1045 zrl_add(&dnh->dnh_zrlock); 1046 } 1047 } 1048 1049 static void 1050 dnode_slots_rele(dnode_children_t *children, int idx, int slots) 1051 { 1052 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1053 1054 for (int i = idx; i < idx + slots; i++) { 1055 dnode_handle_t *dnh = &children->dnc_children[i]; 1056 1057 if (zrl_is_locked(&dnh->dnh_zrlock)) 1058 zrl_exit(&dnh->dnh_zrlock); 1059 else 1060 zrl_remove(&dnh->dnh_zrlock); 1061 } 1062 } 1063 1064 static int 1065 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) 1066 { 1067 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1068 1069 for (int i = idx; i < idx + slots; i++) { 1070 dnode_handle_t *dnh = &children->dnc_children[i]; 1071 1072 if (!zrl_tryenter(&dnh->dnh_zrlock)) { 1073 for (int j = idx; j < i; j++) { 1074 dnh = &children->dnc_children[j]; 1075 zrl_exit(&dnh->dnh_zrlock); 1076 } 1077 1078 return (0); 1079 } 1080 } 1081 1082 return (1); 1083 } 1084 1085 static void 1086 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) 1087 { 1088 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1089 1090 for (int i = idx; i < idx + slots; i++) { 1091 dnode_handle_t *dnh = &children->dnc_children[i]; 1092 dnh->dnh_dnode = ptr; 1093 } 1094 } 1095 1096 static boolean_t 1097 dnode_check_slots_free(dnode_children_t *children, int idx, int slots) 1098 { 1099 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1100 1101 /* 1102 * If all dnode slots are either already free or 1103 * evictable return B_TRUE. 1104 */ 1105 for (int i = idx; i < idx + slots; i++) { 1106 dnode_handle_t *dnh = &children->dnc_children[i]; 1107 dnode_t *dn = dnh->dnh_dnode; 1108 1109 if (dn == DN_SLOT_FREE) { 1110 continue; 1111 } else if (DN_SLOT_IS_PTR(dn)) { 1112 mutex_enter(&dn->dn_mtx); 1113 boolean_t can_free = (dn->dn_type == DMU_OT_NONE && 1114 zfs_refcount_is_zero(&dn->dn_holds) && 1115 !DNODE_IS_DIRTY(dn)); 1116 mutex_exit(&dn->dn_mtx); 1117 1118 if (!can_free) 1119 return (B_FALSE); 1120 else 1121 continue; 1122 } else { 1123 return (B_FALSE); 1124 } 1125 } 1126 1127 return (B_TRUE); 1128 } 1129 1130 static void 1131 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) 1132 { 1133 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1134 1135 for (int i = idx; i < idx + slots; i++) { 1136 dnode_handle_t *dnh = &children->dnc_children[i]; 1137 1138 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 1139 1140 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1141 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); 1142 dnode_destroy(dnh->dnh_dnode); 1143 dnh->dnh_dnode = DN_SLOT_FREE; 1144 } 1145 } 1146 } 1147 1148 void 1149 dnode_free_interior_slots(dnode_t *dn) 1150 { 1151 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); 1152 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; 1153 int idx = (dn->dn_object & (epb - 1)) + 1; 1154 int slots = dn->dn_num_slots - 1; 1155 1156 if (slots == 0) 1157 return; 1158 1159 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1160 1161 while (!dnode_slots_tryenter(children, idx, slots)) { 1162 DNODE_STAT_BUMP(dnode_free_interior_lock_retry); 1163 cond_resched(); 1164 } 1165 1166 dnode_set_slots(children, idx, slots, DN_SLOT_FREE); 1167 dnode_slots_rele(children, idx, slots); 1168 } 1169 1170 void 1171 dnode_special_close(dnode_handle_t *dnh) 1172 { 1173 dnode_t *dn = dnh->dnh_dnode; 1174 1175 /* 1176 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final 1177 * zfs_refcount_remove() 1178 */ 1179 mutex_enter(&dn->dn_mtx); 1180 if (zfs_refcount_count(&dn->dn_holds) > 0) 1181 cv_wait(&dn->dn_nodnholds, &dn->dn_mtx); 1182 mutex_exit(&dn->dn_mtx); 1183 ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0); 1184 1185 ASSERT(dn->dn_dbuf == NULL || 1186 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1187 zrl_add(&dnh->dnh_zrlock); 1188 dnode_destroy(dn); /* implicit zrl_remove() */ 1189 zrl_destroy(&dnh->dnh_zrlock); 1190 dnh->dnh_dnode = NULL; 1191 } 1192 1193 void 1194 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1195 dnode_handle_t *dnh) 1196 { 1197 dnode_t *dn; 1198 1199 zrl_init(&dnh->dnh_zrlock); 1200 zrl_tryenter(&dnh->dnh_zrlock); 1201 1202 dn = dnode_create(os, dnp, NULL, object, dnh); 1203 DNODE_VERIFY(dn); 1204 1205 zrl_exit(&dnh->dnh_zrlock); 1206 } 1207 1208 static void 1209 dnode_buf_evict_async(void *dbu) 1210 { 1211 dnode_children_t *dnc = dbu; 1212 1213 DNODE_STAT_BUMP(dnode_buf_evict); 1214 1215 for (int i = 0; i < dnc->dnc_count; i++) { 1216 dnode_handle_t *dnh = &dnc->dnc_children[i]; 1217 dnode_t *dn; 1218 1219 /* 1220 * The dnode handle lock guards against the dnode moving to 1221 * another valid address, so there is no need here to guard 1222 * against changes to or from NULL. 1223 */ 1224 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1225 zrl_destroy(&dnh->dnh_zrlock); 1226 dnh->dnh_dnode = DN_SLOT_UNINIT; 1227 continue; 1228 } 1229 1230 zrl_add(&dnh->dnh_zrlock); 1231 dn = dnh->dnh_dnode; 1232 /* 1233 * If there are holds on this dnode, then there should 1234 * be holds on the dnode's containing dbuf as well; thus 1235 * it wouldn't be eligible for eviction and this function 1236 * would not have been called. 1237 */ 1238 ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); 1239 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 1240 1241 dnode_destroy(dn); /* implicit zrl_remove() for first slot */ 1242 zrl_destroy(&dnh->dnh_zrlock); 1243 dnh->dnh_dnode = DN_SLOT_UNINIT; 1244 } 1245 kmem_free(dnc, sizeof (dnode_children_t) + 1246 dnc->dnc_count * sizeof (dnode_handle_t)); 1247 } 1248 1249 /* 1250 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used 1251 * to ensure the hole at the specified object offset is large enough to 1252 * hold the dnode being created. The slots parameter is also used to ensure 1253 * a dnode does not span multiple dnode blocks. In both of these cases, if 1254 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases 1255 * are only possible when using DNODE_MUST_BE_FREE. 1256 * 1257 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. 1258 * dnode_hold_impl() will check if the requested dnode is already consumed 1259 * as an extra dnode slot by an large dnode, in which case it returns 1260 * ENOENT. 1261 * 1262 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just 1263 * return whether the hold would succeed or not. tag and dnp should set to 1264 * NULL in this case. 1265 * 1266 * errors: 1267 * EINVAL - Invalid object number or flags. 1268 * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) 1269 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) 1270 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) 1271 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) 1272 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) 1273 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) 1274 * EIO - I/O error when reading the meta dnode dbuf. 1275 * 1276 * succeeds even for free dnodes. 1277 */ 1278 int 1279 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, 1280 void *tag, dnode_t **dnp) 1281 { 1282 int epb, idx, err; 1283 int drop_struct_lock = FALSE; 1284 int type; 1285 uint64_t blk; 1286 dnode_t *mdn, *dn; 1287 dmu_buf_impl_t *db; 1288 dnode_children_t *dnc; 1289 dnode_phys_t *dn_block; 1290 dnode_handle_t *dnh; 1291 1292 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); 1293 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); 1294 IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL)); 1295 1296 /* 1297 * If you are holding the spa config lock as writer, you shouldn't 1298 * be asking the DMU to do *anything* unless it's the root pool 1299 * which may require us to read from the root filesystem while 1300 * holding some (not all) of the locks as writer. 1301 */ 1302 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1303 (spa_is_root(os->os_spa) && 1304 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1305 1306 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1307 1308 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT || 1309 object == DMU_PROJECTUSED_OBJECT) { 1310 if (object == DMU_USERUSED_OBJECT) 1311 dn = DMU_USERUSED_DNODE(os); 1312 else if (object == DMU_GROUPUSED_OBJECT) 1313 dn = DMU_GROUPUSED_DNODE(os); 1314 else 1315 dn = DMU_PROJECTUSED_DNODE(os); 1316 if (dn == NULL) 1317 return (SET_ERROR(ENOENT)); 1318 type = dn->dn_type; 1319 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1320 return (SET_ERROR(ENOENT)); 1321 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1322 return (SET_ERROR(EEXIST)); 1323 DNODE_VERIFY(dn); 1324 /* Don't actually hold if dry run, just return 0 */ 1325 if (!(flag & DNODE_DRY_RUN)) { 1326 (void) zfs_refcount_add(&dn->dn_holds, tag); 1327 *dnp = dn; 1328 } 1329 return (0); 1330 } 1331 1332 if (object == 0 || object >= DN_MAX_OBJECT) 1333 return (SET_ERROR(EINVAL)); 1334 1335 mdn = DMU_META_DNODE(os); 1336 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1337 1338 DNODE_VERIFY(mdn); 1339 1340 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1341 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1342 drop_struct_lock = TRUE; 1343 } 1344 1345 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1346 db = dbuf_hold(mdn, blk, FTAG); 1347 if (drop_struct_lock) 1348 rw_exit(&mdn->dn_struct_rwlock); 1349 if (db == NULL) { 1350 DNODE_STAT_BUMP(dnode_hold_dbuf_hold); 1351 return (SET_ERROR(EIO)); 1352 } 1353 1354 /* 1355 * We do not need to decrypt to read the dnode so it doesn't matter 1356 * if we get the encrypted or decrypted version. 1357 */ 1358 err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT); 1359 if (err) { 1360 DNODE_STAT_BUMP(dnode_hold_dbuf_read); 1361 dbuf_rele(db, FTAG); 1362 return (err); 1363 } 1364 1365 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1366 epb = db->db.db_size >> DNODE_SHIFT; 1367 1368 idx = object & (epb - 1); 1369 dn_block = (dnode_phys_t *)db->db.db_data; 1370 1371 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1372 dnc = dmu_buf_get_user(&db->db); 1373 dnh = NULL; 1374 if (dnc == NULL) { 1375 dnode_children_t *winner; 1376 int skip = 0; 1377 1378 dnc = kmem_zalloc(sizeof (dnode_children_t) + 1379 epb * sizeof (dnode_handle_t), KM_SLEEP); 1380 dnc->dnc_count = epb; 1381 dnh = &dnc->dnc_children[0]; 1382 1383 /* Initialize dnode slot status from dnode_phys_t */ 1384 for (int i = 0; i < epb; i++) { 1385 zrl_init(&dnh[i].dnh_zrlock); 1386 1387 if (skip) { 1388 skip--; 1389 continue; 1390 } 1391 1392 if (dn_block[i].dn_type != DMU_OT_NONE) { 1393 int interior = dn_block[i].dn_extra_slots; 1394 1395 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); 1396 dnode_set_slots(dnc, i + 1, interior, 1397 DN_SLOT_INTERIOR); 1398 skip = interior; 1399 } else { 1400 dnh[i].dnh_dnode = DN_SLOT_FREE; 1401 skip = 0; 1402 } 1403 } 1404 1405 dmu_buf_init_user(&dnc->dnc_dbu, NULL, 1406 dnode_buf_evict_async, NULL); 1407 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); 1408 if (winner != NULL) { 1409 1410 for (int i = 0; i < epb; i++) 1411 zrl_destroy(&dnh[i].dnh_zrlock); 1412 1413 kmem_free(dnc, sizeof (dnode_children_t) + 1414 epb * sizeof (dnode_handle_t)); 1415 dnc = winner; 1416 } 1417 } 1418 1419 ASSERT(dnc->dnc_count == epb); 1420 1421 if (flag & DNODE_MUST_BE_ALLOCATED) { 1422 slots = 1; 1423 1424 dnode_slots_hold(dnc, idx, slots); 1425 dnh = &dnc->dnc_children[idx]; 1426 1427 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1428 dn = dnh->dnh_dnode; 1429 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { 1430 DNODE_STAT_BUMP(dnode_hold_alloc_interior); 1431 dnode_slots_rele(dnc, idx, slots); 1432 dbuf_rele(db, FTAG); 1433 return (SET_ERROR(EEXIST)); 1434 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { 1435 DNODE_STAT_BUMP(dnode_hold_alloc_misses); 1436 dnode_slots_rele(dnc, idx, slots); 1437 dbuf_rele(db, FTAG); 1438 return (SET_ERROR(ENOENT)); 1439 } else { 1440 dnode_slots_rele(dnc, idx, slots); 1441 while (!dnode_slots_tryenter(dnc, idx, slots)) { 1442 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); 1443 cond_resched(); 1444 } 1445 1446 /* 1447 * Someone else won the race and called dnode_create() 1448 * after we checked DN_SLOT_IS_PTR() above but before 1449 * we acquired the lock. 1450 */ 1451 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1452 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); 1453 dn = dnh->dnh_dnode; 1454 } else { 1455 dn = dnode_create(os, dn_block + idx, db, 1456 object, dnh); 1457 } 1458 } 1459 1460 mutex_enter(&dn->dn_mtx); 1461 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { 1462 DNODE_STAT_BUMP(dnode_hold_alloc_type_none); 1463 mutex_exit(&dn->dn_mtx); 1464 dnode_slots_rele(dnc, idx, slots); 1465 dbuf_rele(db, FTAG); 1466 return (SET_ERROR(ENOENT)); 1467 } 1468 1469 /* Don't actually hold if dry run, just return 0 */ 1470 if (flag & DNODE_DRY_RUN) { 1471 mutex_exit(&dn->dn_mtx); 1472 dnode_slots_rele(dnc, idx, slots); 1473 dbuf_rele(db, FTAG); 1474 return (0); 1475 } 1476 1477 DNODE_STAT_BUMP(dnode_hold_alloc_hits); 1478 } else if (flag & DNODE_MUST_BE_FREE) { 1479 1480 if (idx + slots - 1 >= DNODES_PER_BLOCK) { 1481 DNODE_STAT_BUMP(dnode_hold_free_overflow); 1482 dbuf_rele(db, FTAG); 1483 return (SET_ERROR(ENOSPC)); 1484 } 1485 1486 dnode_slots_hold(dnc, idx, slots); 1487 1488 if (!dnode_check_slots_free(dnc, idx, slots)) { 1489 DNODE_STAT_BUMP(dnode_hold_free_misses); 1490 dnode_slots_rele(dnc, idx, slots); 1491 dbuf_rele(db, FTAG); 1492 return (SET_ERROR(ENOSPC)); 1493 } 1494 1495 dnode_slots_rele(dnc, idx, slots); 1496 while (!dnode_slots_tryenter(dnc, idx, slots)) { 1497 DNODE_STAT_BUMP(dnode_hold_free_lock_retry); 1498 cond_resched(); 1499 } 1500 1501 if (!dnode_check_slots_free(dnc, idx, slots)) { 1502 DNODE_STAT_BUMP(dnode_hold_free_lock_misses); 1503 dnode_slots_rele(dnc, idx, slots); 1504 dbuf_rele(db, FTAG); 1505 return (SET_ERROR(ENOSPC)); 1506 } 1507 1508 /* 1509 * Allocated but otherwise free dnodes which would 1510 * be in the interior of a multi-slot dnodes need 1511 * to be freed. Single slot dnodes can be safely 1512 * re-purposed as a performance optimization. 1513 */ 1514 if (slots > 1) 1515 dnode_reclaim_slots(dnc, idx + 1, slots - 1); 1516 1517 dnh = &dnc->dnc_children[idx]; 1518 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1519 dn = dnh->dnh_dnode; 1520 } else { 1521 dn = dnode_create(os, dn_block + idx, db, 1522 object, dnh); 1523 } 1524 1525 mutex_enter(&dn->dn_mtx); 1526 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { 1527 DNODE_STAT_BUMP(dnode_hold_free_refcount); 1528 mutex_exit(&dn->dn_mtx); 1529 dnode_slots_rele(dnc, idx, slots); 1530 dbuf_rele(db, FTAG); 1531 return (SET_ERROR(EEXIST)); 1532 } 1533 1534 /* Don't actually hold if dry run, just return 0 */ 1535 if (flag & DNODE_DRY_RUN) { 1536 mutex_exit(&dn->dn_mtx); 1537 dnode_slots_rele(dnc, idx, slots); 1538 dbuf_rele(db, FTAG); 1539 return (0); 1540 } 1541 1542 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); 1543 DNODE_STAT_BUMP(dnode_hold_free_hits); 1544 } else { 1545 dbuf_rele(db, FTAG); 1546 return (SET_ERROR(EINVAL)); 1547 } 1548 1549 ASSERT0(dn->dn_free_txg); 1550 1551 if (zfs_refcount_add(&dn->dn_holds, tag) == 1) 1552 dbuf_add_ref(db, dnh); 1553 1554 mutex_exit(&dn->dn_mtx); 1555 1556 /* Now we can rely on the hold to prevent the dnode from moving. */ 1557 dnode_slots_rele(dnc, idx, slots); 1558 1559 DNODE_VERIFY(dn); 1560 ASSERT3P(dnp, !=, NULL); 1561 ASSERT3P(dn->dn_dbuf, ==, db); 1562 ASSERT3U(dn->dn_object, ==, object); 1563 dbuf_rele(db, FTAG); 1564 1565 *dnp = dn; 1566 return (0); 1567 } 1568 1569 /* 1570 * Return held dnode if the object is allocated, NULL if not. 1571 */ 1572 int 1573 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1574 { 1575 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, 1576 dnp)); 1577 } 1578 1579 /* 1580 * Can only add a reference if there is already at least one 1581 * reference on the dnode. Returns FALSE if unable to add a 1582 * new reference. 1583 */ 1584 boolean_t 1585 dnode_add_ref(dnode_t *dn, void *tag) 1586 { 1587 mutex_enter(&dn->dn_mtx); 1588 if (zfs_refcount_is_zero(&dn->dn_holds)) { 1589 mutex_exit(&dn->dn_mtx); 1590 return (FALSE); 1591 } 1592 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); 1593 mutex_exit(&dn->dn_mtx); 1594 return (TRUE); 1595 } 1596 1597 void 1598 dnode_rele(dnode_t *dn, void *tag) 1599 { 1600 mutex_enter(&dn->dn_mtx); 1601 dnode_rele_and_unlock(dn, tag, B_FALSE); 1602 } 1603 1604 void 1605 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) 1606 { 1607 uint64_t refs; 1608 /* Get while the hold prevents the dnode from moving. */ 1609 dmu_buf_impl_t *db = dn->dn_dbuf; 1610 dnode_handle_t *dnh = dn->dn_handle; 1611 1612 refs = zfs_refcount_remove(&dn->dn_holds, tag); 1613 if (refs == 0) 1614 cv_broadcast(&dn->dn_nodnholds); 1615 mutex_exit(&dn->dn_mtx); 1616 /* dnode could get destroyed at this point, so don't use it anymore */ 1617 1618 /* 1619 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1620 * indirectly by dbuf_rele() while relying on the dnode handle to 1621 * prevent the dnode from moving, since releasing the last hold could 1622 * result in the dnode's parent dbuf evicting its dnode handles. For 1623 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1624 * other direct or indirect hold on the dnode must first drop the dnode 1625 * handle. 1626 */ 1627 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1628 1629 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1630 if (refs == 0 && db != NULL) { 1631 /* 1632 * Another thread could add a hold to the dnode handle in 1633 * dnode_hold_impl() while holding the parent dbuf. Since the 1634 * hold on the parent dbuf prevents the handle from being 1635 * destroyed, the hold on the handle is OK. We can't yet assert 1636 * that the handle has zero references, but that will be 1637 * asserted anyway when the handle gets destroyed. 1638 */ 1639 mutex_enter(&db->db_mtx); 1640 dbuf_rele_and_unlock(db, dnh, evicting); 1641 } 1642 } 1643 1644 /* 1645 * Test whether we can create a dnode at the specified location. 1646 */ 1647 int 1648 dnode_try_claim(objset_t *os, uint64_t object, int slots) 1649 { 1650 return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN, 1651 slots, NULL, NULL)); 1652 } 1653 1654 void 1655 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1656 { 1657 objset_t *os = dn->dn_objset; 1658 uint64_t txg = tx->tx_txg; 1659 1660 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1661 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1662 return; 1663 } 1664 1665 DNODE_VERIFY(dn); 1666 1667 #ifdef ZFS_DEBUG 1668 mutex_enter(&dn->dn_mtx); 1669 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1670 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1671 mutex_exit(&dn->dn_mtx); 1672 #endif 1673 1674 /* 1675 * Determine old uid/gid when necessary 1676 */ 1677 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1678 1679 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; 1680 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1681 1682 /* 1683 * If we are already marked dirty, we're done. 1684 */ 1685 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1686 multilist_sublist_unlock(mls); 1687 return; 1688 } 1689 1690 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || 1691 !avl_is_empty(&dn->dn_dbufs)); 1692 ASSERT(dn->dn_datablksz != 0); 1693 ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]); 1694 ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]); 1695 ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]); 1696 1697 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1698 dn->dn_object, txg); 1699 1700 multilist_sublist_insert_head(mls, dn); 1701 1702 multilist_sublist_unlock(mls); 1703 1704 /* 1705 * The dnode maintains a hold on its containing dbuf as 1706 * long as there are holds on it. Each instantiated child 1707 * dbuf maintains a hold on the dnode. When the last child 1708 * drops its hold, the dnode will drop its hold on the 1709 * containing dbuf. We add a "dirty hold" here so that the 1710 * dnode will hang around after we finish processing its 1711 * children. 1712 */ 1713 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1714 1715 (void) dbuf_dirty(dn->dn_dbuf, tx); 1716 1717 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1718 } 1719 1720 void 1721 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1722 { 1723 mutex_enter(&dn->dn_mtx); 1724 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1725 mutex_exit(&dn->dn_mtx); 1726 return; 1727 } 1728 dn->dn_free_txg = tx->tx_txg; 1729 mutex_exit(&dn->dn_mtx); 1730 1731 dnode_setdirty(dn, tx); 1732 } 1733 1734 /* 1735 * Try to change the block size for the indicated dnode. This can only 1736 * succeed if there are no blocks allocated or dirty beyond first block 1737 */ 1738 int 1739 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1740 { 1741 dmu_buf_impl_t *db; 1742 int err; 1743 1744 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1745 if (size == 0) 1746 size = SPA_MINBLOCKSIZE; 1747 else 1748 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1749 1750 if (ibs == dn->dn_indblkshift) 1751 ibs = 0; 1752 1753 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1754 return (0); 1755 1756 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1757 1758 /* Check for any allocated blocks beyond the first */ 1759 if (dn->dn_maxblkid != 0) 1760 goto fail; 1761 1762 mutex_enter(&dn->dn_dbufs_mtx); 1763 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1764 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1765 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1766 db->db_blkid != DMU_SPILL_BLKID) { 1767 mutex_exit(&dn->dn_dbufs_mtx); 1768 goto fail; 1769 } 1770 } 1771 mutex_exit(&dn->dn_dbufs_mtx); 1772 1773 if (ibs && dn->dn_nlevels != 1) 1774 goto fail; 1775 1776 /* resize the old block */ 1777 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1778 if (err == 0) { 1779 dbuf_new_size(db, size, tx); 1780 } else if (err != ENOENT) { 1781 goto fail; 1782 } 1783 1784 dnode_setdblksz(dn, size); 1785 dnode_setdirty(dn, tx); 1786 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1787 if (ibs) { 1788 dn->dn_indblkshift = ibs; 1789 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1790 } 1791 /* release after we have fixed the blocksize in the dnode */ 1792 if (db) 1793 dbuf_rele(db, FTAG); 1794 1795 rw_exit(&dn->dn_struct_rwlock); 1796 return (0); 1797 1798 fail: 1799 rw_exit(&dn->dn_struct_rwlock); 1800 return (SET_ERROR(ENOTSUP)); 1801 } 1802 1803 static void 1804 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx) 1805 { 1806 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1807 int old_nlevels = dn->dn_nlevels; 1808 dmu_buf_impl_t *db; 1809 list_t *list; 1810 dbuf_dirty_record_t *new, *dr, *dr_next; 1811 1812 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1813 1814 dn->dn_nlevels = new_nlevels; 1815 1816 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1817 dn->dn_next_nlevels[txgoff] = new_nlevels; 1818 1819 /* dirty the left indirects */ 1820 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1821 ASSERT(db != NULL); 1822 new = dbuf_dirty(db, tx); 1823 dbuf_rele(db, FTAG); 1824 1825 /* transfer the dirty records to the new indirect */ 1826 mutex_enter(&dn->dn_mtx); 1827 mutex_enter(&new->dt.di.dr_mtx); 1828 list = &dn->dn_dirty_records[txgoff]; 1829 for (dr = list_head(list); dr; dr = dr_next) { 1830 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1831 if (dr->dr_dbuf->db_level != new_nlevels-1 && 1832 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1833 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 1834 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 1835 list_remove(&dn->dn_dirty_records[txgoff], dr); 1836 list_insert_tail(&new->dt.di.dr_children, dr); 1837 dr->dr_parent = new; 1838 } 1839 } 1840 mutex_exit(&new->dt.di.dr_mtx); 1841 mutex_exit(&dn->dn_mtx); 1842 } 1843 1844 int 1845 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx) 1846 { 1847 int ret = 0; 1848 1849 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1850 1851 if (dn->dn_nlevels == nlevels) { 1852 ret = 0; 1853 goto out; 1854 } else if (nlevels < dn->dn_nlevels) { 1855 ret = SET_ERROR(EINVAL); 1856 goto out; 1857 } 1858 1859 dnode_set_nlevels_impl(dn, nlevels, tx); 1860 1861 out: 1862 rw_exit(&dn->dn_struct_rwlock); 1863 return (ret); 1864 } 1865 1866 /* read-holding callers must not rely on the lock being continuously held */ 1867 void 1868 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read, 1869 boolean_t force) 1870 { 1871 int epbs, new_nlevels; 1872 uint64_t sz; 1873 1874 ASSERT(blkid != DMU_BONUS_BLKID); 1875 1876 ASSERT(have_read ? 1877 RW_READ_HELD(&dn->dn_struct_rwlock) : 1878 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1879 1880 /* 1881 * if we have a read-lock, check to see if we need to do any work 1882 * before upgrading to a write-lock. 1883 */ 1884 if (have_read) { 1885 if (blkid <= dn->dn_maxblkid) 1886 return; 1887 1888 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1889 rw_exit(&dn->dn_struct_rwlock); 1890 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1891 } 1892 } 1893 1894 /* 1895 * Raw sends (indicated by the force flag) require that we take the 1896 * given blkid even if the value is lower than the current value. 1897 */ 1898 if (!force && blkid <= dn->dn_maxblkid) 1899 goto out; 1900 1901 /* 1902 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff] 1903 * to indicate that this field is set. This allows us to set the 1904 * maxblkid to 0 on an existing object in dnode_sync(). 1905 */ 1906 dn->dn_maxblkid = blkid; 1907 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = 1908 blkid | DMU_NEXT_MAXBLKID_SET; 1909 1910 /* 1911 * Compute the number of levels necessary to support the new maxblkid. 1912 * Raw sends will ensure nlevels is set correctly for us. 1913 */ 1914 new_nlevels = 1; 1915 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1916 for (sz = dn->dn_nblkptr; 1917 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1918 new_nlevels++; 1919 1920 ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS); 1921 1922 if (!force) { 1923 if (new_nlevels > dn->dn_nlevels) 1924 dnode_set_nlevels_impl(dn, new_nlevels, tx); 1925 } else { 1926 ASSERT3U(dn->dn_nlevels, >=, new_nlevels); 1927 } 1928 1929 out: 1930 if (have_read) 1931 rw_downgrade(&dn->dn_struct_rwlock); 1932 } 1933 1934 static void 1935 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1936 { 1937 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1938 if (db != NULL) { 1939 dmu_buf_will_dirty(&db->db, tx); 1940 dbuf_rele(db, FTAG); 1941 } 1942 } 1943 1944 /* 1945 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 1946 * and end_blkid. 1947 */ 1948 static void 1949 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1950 dmu_tx_t *tx) 1951 { 1952 dmu_buf_impl_t db_search; 1953 dmu_buf_impl_t *db; 1954 avl_index_t where; 1955 1956 mutex_enter(&dn->dn_dbufs_mtx); 1957 1958 db_search.db_level = 1; 1959 db_search.db_blkid = start_blkid + 1; 1960 db_search.db_state = DB_SEARCH; 1961 for (;;) { 1962 1963 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1964 if (db == NULL) 1965 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1966 1967 if (db == NULL || db->db_level != 1 || 1968 db->db_blkid >= end_blkid) { 1969 break; 1970 } 1971 1972 /* 1973 * Setup the next blkid we want to search for. 1974 */ 1975 db_search.db_blkid = db->db_blkid + 1; 1976 ASSERT3U(db->db_blkid, >=, start_blkid); 1977 1978 /* 1979 * If the dbuf transitions to DB_EVICTING while we're trying 1980 * to dirty it, then we will be unable to discover it in 1981 * the dbuf hash table. This will result in a call to 1982 * dbuf_create() which needs to acquire the dn_dbufs_mtx 1983 * lock. To avoid a deadlock, we drop the lock before 1984 * dirtying the level-1 dbuf. 1985 */ 1986 mutex_exit(&dn->dn_dbufs_mtx); 1987 dnode_dirty_l1(dn, db->db_blkid, tx); 1988 mutex_enter(&dn->dn_dbufs_mtx); 1989 } 1990 1991 #ifdef ZFS_DEBUG 1992 /* 1993 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 1994 */ 1995 db_search.db_level = 1; 1996 db_search.db_blkid = start_blkid + 1; 1997 db_search.db_state = DB_SEARCH; 1998 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1999 if (db == NULL) 2000 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2001 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 2002 if (db->db_level != 1 || db->db_blkid >= end_blkid) 2003 break; 2004 if (db->db_state != DB_EVICTING) 2005 ASSERT(db->db_dirtycnt > 0); 2006 } 2007 #endif 2008 mutex_exit(&dn->dn_dbufs_mtx); 2009 } 2010 2011 void 2012 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, void *tag) 2013 { 2014 /* 2015 * Don't set dirtyctx to SYNC if we're just modifying this as we 2016 * initialize the objset. 2017 */ 2018 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 2019 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2020 2021 if (ds != NULL) { 2022 rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag); 2023 } 2024 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 2025 if (dmu_tx_is_syncing(tx)) 2026 dn->dn_dirtyctx = DN_DIRTY_SYNC; 2027 else 2028 dn->dn_dirtyctx = DN_DIRTY_OPEN; 2029 dn->dn_dirtyctx_firstset = tag; 2030 } 2031 if (ds != NULL) { 2032 rrw_exit(&ds->ds_bp_rwlock, tag); 2033 } 2034 } 2035 } 2036 2037 void 2038 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 2039 { 2040 dmu_buf_impl_t *db; 2041 uint64_t blkoff, blkid, nblks; 2042 int blksz, blkshift, head, tail; 2043 int trunc = FALSE; 2044 int epbs; 2045 2046 blksz = dn->dn_datablksz; 2047 blkshift = dn->dn_datablkshift; 2048 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2049 2050 if (len == DMU_OBJECT_END) { 2051 len = UINT64_MAX - off; 2052 trunc = TRUE; 2053 } 2054 2055 /* 2056 * First, block align the region to free: 2057 */ 2058 if (ISP2(blksz)) { 2059 head = P2NPHASE(off, blksz); 2060 blkoff = P2PHASE(off, blksz); 2061 if ((off >> blkshift) > dn->dn_maxblkid) 2062 return; 2063 } else { 2064 ASSERT(dn->dn_maxblkid == 0); 2065 if (off == 0 && len >= blksz) { 2066 /* 2067 * Freeing the whole block; fast-track this request. 2068 */ 2069 blkid = 0; 2070 nblks = 1; 2071 if (dn->dn_nlevels > 1) { 2072 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2073 dnode_dirty_l1(dn, 0, tx); 2074 rw_exit(&dn->dn_struct_rwlock); 2075 } 2076 goto done; 2077 } else if (off >= blksz) { 2078 /* Freeing past end-of-data */ 2079 return; 2080 } else { 2081 /* Freeing part of the block. */ 2082 head = blksz - off; 2083 ASSERT3U(head, >, 0); 2084 } 2085 blkoff = off; 2086 } 2087 /* zero out any partial block data at the start of the range */ 2088 if (head) { 2089 int res; 2090 ASSERT3U(blkoff + head, ==, blksz); 2091 if (len < head) 2092 head = len; 2093 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2094 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 2095 TRUE, FALSE, FTAG, &db); 2096 rw_exit(&dn->dn_struct_rwlock); 2097 if (res == 0) { 2098 caddr_t data; 2099 boolean_t dirty; 2100 2101 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, 2102 FTAG); 2103 /* don't dirty if it isn't on disk and isn't dirty */ 2104 dirty = !list_is_empty(&db->db_dirty_records) || 2105 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2106 dmu_buf_unlock_parent(db, dblt, FTAG); 2107 if (dirty) { 2108 dmu_buf_will_dirty(&db->db, tx); 2109 data = db->db.db_data; 2110 bzero(data + blkoff, head); 2111 } 2112 dbuf_rele(db, FTAG); 2113 } 2114 off += head; 2115 len -= head; 2116 } 2117 2118 /* If the range was less than one block, we're done */ 2119 if (len == 0) 2120 return; 2121 2122 /* If the remaining range is past end of file, we're done */ 2123 if ((off >> blkshift) > dn->dn_maxblkid) 2124 return; 2125 2126 ASSERT(ISP2(blksz)); 2127 if (trunc) 2128 tail = 0; 2129 else 2130 tail = P2PHASE(len, blksz); 2131 2132 ASSERT0(P2PHASE(off, blksz)); 2133 /* zero out any partial block data at the end of the range */ 2134 if (tail) { 2135 int res; 2136 if (len < tail) 2137 tail = len; 2138 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2139 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 2140 TRUE, FALSE, FTAG, &db); 2141 rw_exit(&dn->dn_struct_rwlock); 2142 if (res == 0) { 2143 boolean_t dirty; 2144 /* don't dirty if not on disk and not dirty */ 2145 db_lock_type_t type = dmu_buf_lock_parent(db, RW_READER, 2146 FTAG); 2147 dirty = !list_is_empty(&db->db_dirty_records) || 2148 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2149 dmu_buf_unlock_parent(db, type, FTAG); 2150 if (dirty) { 2151 dmu_buf_will_dirty(&db->db, tx); 2152 bzero(db->db.db_data, tail); 2153 } 2154 dbuf_rele(db, FTAG); 2155 } 2156 len -= tail; 2157 } 2158 2159 /* If the range did not include a full block, we are done */ 2160 if (len == 0) 2161 return; 2162 2163 ASSERT(IS_P2ALIGNED(off, blksz)); 2164 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 2165 blkid = off >> blkshift; 2166 nblks = len >> blkshift; 2167 if (trunc) 2168 nblks += 1; 2169 2170 /* 2171 * Dirty all the indirect blocks in this range. Note that only 2172 * the first and last indirect blocks can actually be written 2173 * (if they were partially freed) -- they must be dirtied, even if 2174 * they do not exist on disk yet. The interior blocks will 2175 * be freed by free_children(), so they will not actually be written. 2176 * Even though these interior blocks will not be written, we 2177 * dirty them for two reasons: 2178 * 2179 * - It ensures that the indirect blocks remain in memory until 2180 * syncing context. (They have already been prefetched by 2181 * dmu_tx_hold_free(), so we don't have to worry about reading 2182 * them serially here.) 2183 * 2184 * - The dirty space accounting will put pressure on the txg sync 2185 * mechanism to begin syncing, and to delay transactions if there 2186 * is a large amount of freeing. Even though these indirect 2187 * blocks will not be written, we could need to write the same 2188 * amount of space if we copy the freed BPs into deadlists. 2189 */ 2190 if (dn->dn_nlevels > 1) { 2191 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2192 uint64_t first, last; 2193 2194 first = blkid >> epbs; 2195 dnode_dirty_l1(dn, first, tx); 2196 if (trunc) 2197 last = dn->dn_maxblkid >> epbs; 2198 else 2199 last = (blkid + nblks - 1) >> epbs; 2200 if (last != first) 2201 dnode_dirty_l1(dn, last, tx); 2202 2203 dnode_dirty_l1range(dn, first, last, tx); 2204 2205 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 2206 SPA_BLKPTRSHIFT; 2207 for (uint64_t i = first + 1; i < last; i++) { 2208 /* 2209 * Set i to the blockid of the next non-hole 2210 * level-1 indirect block at or after i. Note 2211 * that dnode_next_offset() operates in terms of 2212 * level-0-equivalent bytes. 2213 */ 2214 uint64_t ibyte = i << shift; 2215 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 2216 &ibyte, 2, 1, 0); 2217 i = ibyte >> shift; 2218 if (i >= last) 2219 break; 2220 2221 /* 2222 * Normally we should not see an error, either 2223 * from dnode_next_offset() or dbuf_hold_level() 2224 * (except for ESRCH from dnode_next_offset). 2225 * If there is an i/o error, then when we read 2226 * this block in syncing context, it will use 2227 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 2228 * to the "failmode" property. dnode_next_offset() 2229 * doesn't have a flag to indicate MUSTSUCCEED. 2230 */ 2231 if (err != 0) 2232 break; 2233 2234 dnode_dirty_l1(dn, i, tx); 2235 } 2236 rw_exit(&dn->dn_struct_rwlock); 2237 } 2238 2239 done: 2240 /* 2241 * Add this range to the dnode range list. 2242 * We will finish up this free operation in the syncing phase. 2243 */ 2244 mutex_enter(&dn->dn_mtx); 2245 { 2246 int txgoff = tx->tx_txg & TXG_MASK; 2247 if (dn->dn_free_ranges[txgoff] == NULL) { 2248 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, 2249 RANGE_SEG64, NULL, 0, 0); 2250 } 2251 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 2252 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 2253 } 2254 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 2255 blkid, nblks, tx->tx_txg); 2256 mutex_exit(&dn->dn_mtx); 2257 2258 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 2259 dnode_setdirty(dn, tx); 2260 } 2261 2262 static boolean_t 2263 dnode_spill_freed(dnode_t *dn) 2264 { 2265 int i; 2266 2267 mutex_enter(&dn->dn_mtx); 2268 for (i = 0; i < TXG_SIZE; i++) { 2269 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 2270 break; 2271 } 2272 mutex_exit(&dn->dn_mtx); 2273 return (i < TXG_SIZE); 2274 } 2275 2276 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 2277 uint64_t 2278 dnode_block_freed(dnode_t *dn, uint64_t blkid) 2279 { 2280 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 2281 int i; 2282 2283 if (blkid == DMU_BONUS_BLKID) 2284 return (FALSE); 2285 2286 /* 2287 * If we're in the process of opening the pool, dp will not be 2288 * set yet, but there shouldn't be anything dirty. 2289 */ 2290 if (dp == NULL) 2291 return (FALSE); 2292 2293 if (dn->dn_free_txg) 2294 return (TRUE); 2295 2296 if (blkid == DMU_SPILL_BLKID) 2297 return (dnode_spill_freed(dn)); 2298 2299 mutex_enter(&dn->dn_mtx); 2300 for (i = 0; i < TXG_SIZE; i++) { 2301 if (dn->dn_free_ranges[i] != NULL && 2302 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 2303 break; 2304 } 2305 mutex_exit(&dn->dn_mtx); 2306 return (i < TXG_SIZE); 2307 } 2308 2309 /* call from syncing context when we actually write/free space for this dnode */ 2310 void 2311 dnode_diduse_space(dnode_t *dn, int64_t delta) 2312 { 2313 uint64_t space; 2314 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 2315 dn, dn->dn_phys, 2316 (u_longlong_t)dn->dn_phys->dn_used, 2317 (longlong_t)delta); 2318 2319 mutex_enter(&dn->dn_mtx); 2320 space = DN_USED_BYTES(dn->dn_phys); 2321 if (delta > 0) { 2322 ASSERT3U(space + delta, >=, space); /* no overflow */ 2323 } else { 2324 ASSERT3U(space, >=, -delta); /* no underflow */ 2325 } 2326 space += delta; 2327 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 2328 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 2329 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 2330 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 2331 } else { 2332 dn->dn_phys->dn_used = space; 2333 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 2334 } 2335 mutex_exit(&dn->dn_mtx); 2336 } 2337 2338 /* 2339 * Scans a block at the indicated "level" looking for a hole or data, 2340 * depending on 'flags'. 2341 * 2342 * If level > 0, then we are scanning an indirect block looking at its 2343 * pointers. If level == 0, then we are looking at a block of dnodes. 2344 * 2345 * If we don't find what we are looking for in the block, we return ESRCH. 2346 * Otherwise, return with *offset pointing to the beginning (if searching 2347 * forwards) or end (if searching backwards) of the range covered by the 2348 * block pointer we matched on (or dnode). 2349 * 2350 * The basic search algorithm used below by dnode_next_offset() is to 2351 * use this function to search up the block tree (widen the search) until 2352 * we find something (i.e., we don't return ESRCH) and then search back 2353 * down the tree (narrow the search) until we reach our original search 2354 * level. 2355 */ 2356 static int 2357 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 2358 int lvl, uint64_t blkfill, uint64_t txg) 2359 { 2360 dmu_buf_impl_t *db = NULL; 2361 void *data = NULL; 2362 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2363 uint64_t epb = 1ULL << epbs; 2364 uint64_t minfill, maxfill; 2365 boolean_t hole; 2366 int i, inc, error, span; 2367 2368 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2369 2370 hole = ((flags & DNODE_FIND_HOLE) != 0); 2371 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 2372 ASSERT(txg == 0 || !hole); 2373 2374 if (lvl == dn->dn_phys->dn_nlevels) { 2375 error = 0; 2376 epb = dn->dn_phys->dn_nblkptr; 2377 data = dn->dn_phys->dn_blkptr; 2378 } else { 2379 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 2380 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 2381 if (error) { 2382 if (error != ENOENT) 2383 return (error); 2384 if (hole) 2385 return (0); 2386 /* 2387 * This can only happen when we are searching up 2388 * the block tree for data. We don't really need to 2389 * adjust the offset, as we will just end up looking 2390 * at the pointer to this block in its parent, and its 2391 * going to be unallocated, so we will skip over it. 2392 */ 2393 return (SET_ERROR(ESRCH)); 2394 } 2395 error = dbuf_read(db, NULL, 2396 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT); 2397 if (error) { 2398 dbuf_rele(db, FTAG); 2399 return (error); 2400 } 2401 data = db->db.db_data; 2402 rw_enter(&db->db_rwlock, RW_READER); 2403 } 2404 2405 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 2406 db->db_blkptr->blk_birth <= txg || 2407 BP_IS_HOLE(db->db_blkptr))) { 2408 /* 2409 * This can only happen when we are searching up the tree 2410 * and these conditions mean that we need to keep climbing. 2411 */ 2412 error = SET_ERROR(ESRCH); 2413 } else if (lvl == 0) { 2414 dnode_phys_t *dnp = data; 2415 2416 ASSERT(dn->dn_type == DMU_OT_DNODE); 2417 ASSERT(!(flags & DNODE_FIND_BACKWARDS)); 2418 2419 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); 2420 i < blkfill; i += dnp[i].dn_extra_slots + 1) { 2421 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 2422 break; 2423 } 2424 2425 if (i == blkfill) 2426 error = SET_ERROR(ESRCH); 2427 2428 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + 2429 (i << DNODE_SHIFT); 2430 } else { 2431 blkptr_t *bp = data; 2432 uint64_t start = *offset; 2433 span = (lvl - 1) * epbs + dn->dn_datablkshift; 2434 minfill = 0; 2435 maxfill = blkfill << ((lvl - 1) * epbs); 2436 2437 if (hole) 2438 maxfill--; 2439 else 2440 minfill++; 2441 2442 if (span >= 8 * sizeof (*offset)) { 2443 /* This only happens on the highest indirection level */ 2444 ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1); 2445 *offset = 0; 2446 } else { 2447 *offset = *offset >> span; 2448 } 2449 2450 for (i = BF64_GET(*offset, 0, epbs); 2451 i >= 0 && i < epb; i += inc) { 2452 if (BP_GET_FILL(&bp[i]) >= minfill && 2453 BP_GET_FILL(&bp[i]) <= maxfill && 2454 (hole || bp[i].blk_birth > txg)) 2455 break; 2456 if (inc > 0 || *offset > 0) 2457 *offset += inc; 2458 } 2459 2460 if (span >= 8 * sizeof (*offset)) { 2461 *offset = start; 2462 } else { 2463 *offset = *offset << span; 2464 } 2465 2466 if (inc < 0) { 2467 /* traversing backwards; position offset at the end */ 2468 ASSERT3U(*offset, <=, start); 2469 *offset = MIN(*offset + (1ULL << span) - 1, start); 2470 } else if (*offset < start) { 2471 *offset = start; 2472 } 2473 if (i < 0 || i >= epb) 2474 error = SET_ERROR(ESRCH); 2475 } 2476 2477 if (db != NULL) { 2478 rw_exit(&db->db_rwlock); 2479 dbuf_rele(db, FTAG); 2480 } 2481 2482 return (error); 2483 } 2484 2485 /* 2486 * Find the next hole, data, or sparse region at or after *offset. 2487 * The value 'blkfill' tells us how many items we expect to find 2488 * in an L0 data block; this value is 1 for normal objects, 2489 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 2490 * DNODES_PER_BLOCK when searching for sparse regions thereof. 2491 * 2492 * Examples: 2493 * 2494 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2495 * Finds the next/previous hole/data in a file. 2496 * Used in dmu_offset_next(). 2497 * 2498 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2499 * Finds the next free/allocated dnode an objset's meta-dnode. 2500 * Only finds objects that have new contents since txg (ie. 2501 * bonus buffer changes and content removal are ignored). 2502 * Used in dmu_object_next(). 2503 * 2504 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2505 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2506 * Used in dmu_object_alloc(). 2507 */ 2508 int 2509 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2510 int minlvl, uint64_t blkfill, uint64_t txg) 2511 { 2512 uint64_t initial_offset = *offset; 2513 int lvl, maxlvl; 2514 int error = 0; 2515 2516 if (!(flags & DNODE_FIND_HAVELOCK)) 2517 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2518 2519 if (dn->dn_phys->dn_nlevels == 0) { 2520 error = SET_ERROR(ESRCH); 2521 goto out; 2522 } 2523 2524 if (dn->dn_datablkshift == 0) { 2525 if (*offset < dn->dn_datablksz) { 2526 if (flags & DNODE_FIND_HOLE) 2527 *offset = dn->dn_datablksz; 2528 } else { 2529 error = SET_ERROR(ESRCH); 2530 } 2531 goto out; 2532 } 2533 2534 maxlvl = dn->dn_phys->dn_nlevels; 2535 2536 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2537 error = dnode_next_offset_level(dn, 2538 flags, offset, lvl, blkfill, txg); 2539 if (error != ESRCH) 2540 break; 2541 } 2542 2543 while (error == 0 && --lvl >= minlvl) { 2544 error = dnode_next_offset_level(dn, 2545 flags, offset, lvl, blkfill, txg); 2546 } 2547 2548 /* 2549 * There's always a "virtual hole" at the end of the object, even 2550 * if all BP's which physically exist are non-holes. 2551 */ 2552 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2553 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2554 error = 0; 2555 } 2556 2557 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2558 initial_offset < *offset : initial_offset > *offset)) 2559 error = SET_ERROR(ESRCH); 2560 out: 2561 if (!(flags & DNODE_FIND_HAVELOCK)) 2562 rw_exit(&dn->dn_struct_rwlock); 2563 2564 return (error); 2565 } 2566 2567 #if defined(_KERNEL) 2568 EXPORT_SYMBOL(dnode_hold); 2569 EXPORT_SYMBOL(dnode_rele); 2570 EXPORT_SYMBOL(dnode_set_nlevels); 2571 EXPORT_SYMBOL(dnode_set_blksz); 2572 EXPORT_SYMBOL(dnode_free_range); 2573 EXPORT_SYMBOL(dnode_evict_dbufs); 2574 EXPORT_SYMBOL(dnode_evict_bonus); 2575 #endif 2576