xref: /freebsd/sys/contrib/openzfs/module/zfs/dnode.c (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/dbuf.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/zio.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/range_tree.h>
40 #include <sys/trace_zfs.h>
41 #include <sys/zfs_project.h>
42 
43 dnode_stats_t dnode_stats = {
44 	{ "dnode_hold_dbuf_hold",		KSTAT_DATA_UINT64 },
45 	{ "dnode_hold_dbuf_read",		KSTAT_DATA_UINT64 },
46 	{ "dnode_hold_alloc_hits",		KSTAT_DATA_UINT64 },
47 	{ "dnode_hold_alloc_misses",		KSTAT_DATA_UINT64 },
48 	{ "dnode_hold_alloc_interior",		KSTAT_DATA_UINT64 },
49 	{ "dnode_hold_alloc_lock_retry",	KSTAT_DATA_UINT64 },
50 	{ "dnode_hold_alloc_lock_misses",	KSTAT_DATA_UINT64 },
51 	{ "dnode_hold_alloc_type_none",		KSTAT_DATA_UINT64 },
52 	{ "dnode_hold_free_hits",		KSTAT_DATA_UINT64 },
53 	{ "dnode_hold_free_misses",		KSTAT_DATA_UINT64 },
54 	{ "dnode_hold_free_lock_misses",	KSTAT_DATA_UINT64 },
55 	{ "dnode_hold_free_lock_retry",		KSTAT_DATA_UINT64 },
56 	{ "dnode_hold_free_overflow",		KSTAT_DATA_UINT64 },
57 	{ "dnode_hold_free_refcount",		KSTAT_DATA_UINT64 },
58 	{ "dnode_free_interior_lock_retry",	KSTAT_DATA_UINT64 },
59 	{ "dnode_allocate",			KSTAT_DATA_UINT64 },
60 	{ "dnode_reallocate",			KSTAT_DATA_UINT64 },
61 	{ "dnode_buf_evict",			KSTAT_DATA_UINT64 },
62 	{ "dnode_alloc_next_chunk",		KSTAT_DATA_UINT64 },
63 	{ "dnode_alloc_race",			KSTAT_DATA_UINT64 },
64 	{ "dnode_alloc_next_block",		KSTAT_DATA_UINT64 },
65 	{ "dnode_move_invalid",			KSTAT_DATA_UINT64 },
66 	{ "dnode_move_recheck1",		KSTAT_DATA_UINT64 },
67 	{ "dnode_move_recheck2",		KSTAT_DATA_UINT64 },
68 	{ "dnode_move_special",			KSTAT_DATA_UINT64 },
69 	{ "dnode_move_handle",			KSTAT_DATA_UINT64 },
70 	{ "dnode_move_rwlock",			KSTAT_DATA_UINT64 },
71 	{ "dnode_move_active",			KSTAT_DATA_UINT64 },
72 };
73 
74 dnode_sums_t dnode_sums;
75 
76 static kstat_t *dnode_ksp;
77 static kmem_cache_t *dnode_cache;
78 
79 static dnode_phys_t dnode_phys_zero __maybe_unused;
80 
81 int zfs_default_bs = SPA_MINBLOCKSHIFT;
82 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
83 
84 #ifdef	_KERNEL
85 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
86 #endif /* _KERNEL */
87 
88 static int
89 dbuf_compare(const void *x1, const void *x2)
90 {
91 	const dmu_buf_impl_t *d1 = x1;
92 	const dmu_buf_impl_t *d2 = x2;
93 
94 	int cmp = TREE_CMP(d1->db_level, d2->db_level);
95 	if (likely(cmp))
96 		return (cmp);
97 
98 	cmp = TREE_CMP(d1->db_blkid, d2->db_blkid);
99 	if (likely(cmp))
100 		return (cmp);
101 
102 	if (d1->db_state == DB_MARKER) {
103 		ASSERT3S(d2->db_state, !=, DB_MARKER);
104 		return (TREE_PCMP(d1->db_parent, d2));
105 	} else if (d2->db_state == DB_MARKER) {
106 		ASSERT3S(d1->db_state, !=, DB_MARKER);
107 		return (TREE_PCMP(d1, d2->db_parent));
108 	}
109 
110 	if (d1->db_state == DB_SEARCH) {
111 		ASSERT3S(d2->db_state, !=, DB_SEARCH);
112 		return (-1);
113 	} else if (d2->db_state == DB_SEARCH) {
114 		ASSERT3S(d1->db_state, !=, DB_SEARCH);
115 		return (1);
116 	}
117 
118 	return (TREE_PCMP(d1, d2));
119 }
120 
121 static int
122 dnode_cons(void *arg, void *unused, int kmflag)
123 {
124 	(void) unused, (void) kmflag;
125 	dnode_t *dn = arg;
126 
127 	rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
128 	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
129 	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
130 	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
131 	cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL);
132 
133 	/*
134 	 * Every dbuf has a reference, and dropping a tracked reference is
135 	 * O(number of references), so don't track dn_holds.
136 	 */
137 	zfs_refcount_create_untracked(&dn->dn_holds);
138 	zfs_refcount_create(&dn->dn_tx_holds);
139 	list_link_init(&dn->dn_link);
140 
141 	memset(dn->dn_next_type, 0, sizeof (dn->dn_next_type));
142 	memset(dn->dn_next_nblkptr, 0, sizeof (dn->dn_next_nblkptr));
143 	memset(dn->dn_next_nlevels, 0, sizeof (dn->dn_next_nlevels));
144 	memset(dn->dn_next_indblkshift, 0, sizeof (dn->dn_next_indblkshift));
145 	memset(dn->dn_next_bonustype, 0, sizeof (dn->dn_next_bonustype));
146 	memset(dn->dn_rm_spillblk, 0, sizeof (dn->dn_rm_spillblk));
147 	memset(dn->dn_next_bonuslen, 0, sizeof (dn->dn_next_bonuslen));
148 	memset(dn->dn_next_blksz, 0, sizeof (dn->dn_next_blksz));
149 	memset(dn->dn_next_maxblkid, 0, sizeof (dn->dn_next_maxblkid));
150 
151 	for (int i = 0; i < TXG_SIZE; i++) {
152 		multilist_link_init(&dn->dn_dirty_link[i]);
153 		dn->dn_free_ranges[i] = NULL;
154 		list_create(&dn->dn_dirty_records[i],
155 		    sizeof (dbuf_dirty_record_t),
156 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
157 	}
158 
159 	dn->dn_allocated_txg = 0;
160 	dn->dn_free_txg = 0;
161 	dn->dn_assigned_txg = 0;
162 	dn->dn_dirty_txg = 0;
163 	dn->dn_dirtyctx = 0;
164 	dn->dn_dirtyctx_firstset = NULL;
165 	dn->dn_bonus = NULL;
166 	dn->dn_have_spill = B_FALSE;
167 	dn->dn_zio = NULL;
168 	dn->dn_oldused = 0;
169 	dn->dn_oldflags = 0;
170 	dn->dn_olduid = 0;
171 	dn->dn_oldgid = 0;
172 	dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
173 	dn->dn_newuid = 0;
174 	dn->dn_newgid = 0;
175 	dn->dn_newprojid = ZFS_DEFAULT_PROJID;
176 	dn->dn_id_flags = 0;
177 
178 	dn->dn_dbufs_count = 0;
179 	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
180 	    offsetof(dmu_buf_impl_t, db_link));
181 
182 	dn->dn_moved = 0;
183 	return (0);
184 }
185 
186 static void
187 dnode_dest(void *arg, void *unused)
188 {
189 	(void) unused;
190 	dnode_t *dn = arg;
191 
192 	rw_destroy(&dn->dn_struct_rwlock);
193 	mutex_destroy(&dn->dn_mtx);
194 	mutex_destroy(&dn->dn_dbufs_mtx);
195 	cv_destroy(&dn->dn_notxholds);
196 	cv_destroy(&dn->dn_nodnholds);
197 	zfs_refcount_destroy(&dn->dn_holds);
198 	zfs_refcount_destroy(&dn->dn_tx_holds);
199 	ASSERT(!list_link_active(&dn->dn_link));
200 
201 	for (int i = 0; i < TXG_SIZE; i++) {
202 		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
203 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
204 		list_destroy(&dn->dn_dirty_records[i]);
205 		ASSERT0(dn->dn_next_nblkptr[i]);
206 		ASSERT0(dn->dn_next_nlevels[i]);
207 		ASSERT0(dn->dn_next_indblkshift[i]);
208 		ASSERT0(dn->dn_next_bonustype[i]);
209 		ASSERT0(dn->dn_rm_spillblk[i]);
210 		ASSERT0(dn->dn_next_bonuslen[i]);
211 		ASSERT0(dn->dn_next_blksz[i]);
212 		ASSERT0(dn->dn_next_maxblkid[i]);
213 	}
214 
215 	ASSERT0(dn->dn_allocated_txg);
216 	ASSERT0(dn->dn_free_txg);
217 	ASSERT0(dn->dn_assigned_txg);
218 	ASSERT0(dn->dn_dirty_txg);
219 	ASSERT0(dn->dn_dirtyctx);
220 	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
221 	ASSERT3P(dn->dn_bonus, ==, NULL);
222 	ASSERT(!dn->dn_have_spill);
223 	ASSERT3P(dn->dn_zio, ==, NULL);
224 	ASSERT0(dn->dn_oldused);
225 	ASSERT0(dn->dn_oldflags);
226 	ASSERT0(dn->dn_olduid);
227 	ASSERT0(dn->dn_oldgid);
228 	ASSERT0(dn->dn_oldprojid);
229 	ASSERT0(dn->dn_newuid);
230 	ASSERT0(dn->dn_newgid);
231 	ASSERT0(dn->dn_newprojid);
232 	ASSERT0(dn->dn_id_flags);
233 
234 	ASSERT0(dn->dn_dbufs_count);
235 	avl_destroy(&dn->dn_dbufs);
236 }
237 
238 static int
239 dnode_kstats_update(kstat_t *ksp, int rw)
240 {
241 	dnode_stats_t *ds = ksp->ks_data;
242 
243 	if (rw == KSTAT_WRITE)
244 		return (EACCES);
245 	ds->dnode_hold_dbuf_hold.value.ui64 =
246 	    wmsum_value(&dnode_sums.dnode_hold_dbuf_hold);
247 	ds->dnode_hold_dbuf_read.value.ui64 =
248 	    wmsum_value(&dnode_sums.dnode_hold_dbuf_read);
249 	ds->dnode_hold_alloc_hits.value.ui64 =
250 	    wmsum_value(&dnode_sums.dnode_hold_alloc_hits);
251 	ds->dnode_hold_alloc_misses.value.ui64 =
252 	    wmsum_value(&dnode_sums.dnode_hold_alloc_misses);
253 	ds->dnode_hold_alloc_interior.value.ui64 =
254 	    wmsum_value(&dnode_sums.dnode_hold_alloc_interior);
255 	ds->dnode_hold_alloc_lock_retry.value.ui64 =
256 	    wmsum_value(&dnode_sums.dnode_hold_alloc_lock_retry);
257 	ds->dnode_hold_alloc_lock_misses.value.ui64 =
258 	    wmsum_value(&dnode_sums.dnode_hold_alloc_lock_misses);
259 	ds->dnode_hold_alloc_type_none.value.ui64 =
260 	    wmsum_value(&dnode_sums.dnode_hold_alloc_type_none);
261 	ds->dnode_hold_free_hits.value.ui64 =
262 	    wmsum_value(&dnode_sums.dnode_hold_free_hits);
263 	ds->dnode_hold_free_misses.value.ui64 =
264 	    wmsum_value(&dnode_sums.dnode_hold_free_misses);
265 	ds->dnode_hold_free_lock_misses.value.ui64 =
266 	    wmsum_value(&dnode_sums.dnode_hold_free_lock_misses);
267 	ds->dnode_hold_free_lock_retry.value.ui64 =
268 	    wmsum_value(&dnode_sums.dnode_hold_free_lock_retry);
269 	ds->dnode_hold_free_refcount.value.ui64 =
270 	    wmsum_value(&dnode_sums.dnode_hold_free_refcount);
271 	ds->dnode_hold_free_overflow.value.ui64 =
272 	    wmsum_value(&dnode_sums.dnode_hold_free_overflow);
273 	ds->dnode_free_interior_lock_retry.value.ui64 =
274 	    wmsum_value(&dnode_sums.dnode_free_interior_lock_retry);
275 	ds->dnode_allocate.value.ui64 =
276 	    wmsum_value(&dnode_sums.dnode_allocate);
277 	ds->dnode_reallocate.value.ui64 =
278 	    wmsum_value(&dnode_sums.dnode_reallocate);
279 	ds->dnode_buf_evict.value.ui64 =
280 	    wmsum_value(&dnode_sums.dnode_buf_evict);
281 	ds->dnode_alloc_next_chunk.value.ui64 =
282 	    wmsum_value(&dnode_sums.dnode_alloc_next_chunk);
283 	ds->dnode_alloc_race.value.ui64 =
284 	    wmsum_value(&dnode_sums.dnode_alloc_race);
285 	ds->dnode_alloc_next_block.value.ui64 =
286 	    wmsum_value(&dnode_sums.dnode_alloc_next_block);
287 	ds->dnode_move_invalid.value.ui64 =
288 	    wmsum_value(&dnode_sums.dnode_move_invalid);
289 	ds->dnode_move_recheck1.value.ui64 =
290 	    wmsum_value(&dnode_sums.dnode_move_recheck1);
291 	ds->dnode_move_recheck2.value.ui64 =
292 	    wmsum_value(&dnode_sums.dnode_move_recheck2);
293 	ds->dnode_move_special.value.ui64 =
294 	    wmsum_value(&dnode_sums.dnode_move_special);
295 	ds->dnode_move_handle.value.ui64 =
296 	    wmsum_value(&dnode_sums.dnode_move_handle);
297 	ds->dnode_move_rwlock.value.ui64 =
298 	    wmsum_value(&dnode_sums.dnode_move_rwlock);
299 	ds->dnode_move_active.value.ui64 =
300 	    wmsum_value(&dnode_sums.dnode_move_active);
301 	return (0);
302 }
303 
304 void
305 dnode_init(void)
306 {
307 	ASSERT(dnode_cache == NULL);
308 	dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
309 	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, KMC_RECLAIMABLE);
310 	kmem_cache_set_move(dnode_cache, dnode_move);
311 
312 	wmsum_init(&dnode_sums.dnode_hold_dbuf_hold, 0);
313 	wmsum_init(&dnode_sums.dnode_hold_dbuf_read, 0);
314 	wmsum_init(&dnode_sums.dnode_hold_alloc_hits, 0);
315 	wmsum_init(&dnode_sums.dnode_hold_alloc_misses, 0);
316 	wmsum_init(&dnode_sums.dnode_hold_alloc_interior, 0);
317 	wmsum_init(&dnode_sums.dnode_hold_alloc_lock_retry, 0);
318 	wmsum_init(&dnode_sums.dnode_hold_alloc_lock_misses, 0);
319 	wmsum_init(&dnode_sums.dnode_hold_alloc_type_none, 0);
320 	wmsum_init(&dnode_sums.dnode_hold_free_hits, 0);
321 	wmsum_init(&dnode_sums.dnode_hold_free_misses, 0);
322 	wmsum_init(&dnode_sums.dnode_hold_free_lock_misses, 0);
323 	wmsum_init(&dnode_sums.dnode_hold_free_lock_retry, 0);
324 	wmsum_init(&dnode_sums.dnode_hold_free_refcount, 0);
325 	wmsum_init(&dnode_sums.dnode_hold_free_overflow, 0);
326 	wmsum_init(&dnode_sums.dnode_free_interior_lock_retry, 0);
327 	wmsum_init(&dnode_sums.dnode_allocate, 0);
328 	wmsum_init(&dnode_sums.dnode_reallocate, 0);
329 	wmsum_init(&dnode_sums.dnode_buf_evict, 0);
330 	wmsum_init(&dnode_sums.dnode_alloc_next_chunk, 0);
331 	wmsum_init(&dnode_sums.dnode_alloc_race, 0);
332 	wmsum_init(&dnode_sums.dnode_alloc_next_block, 0);
333 	wmsum_init(&dnode_sums.dnode_move_invalid, 0);
334 	wmsum_init(&dnode_sums.dnode_move_recheck1, 0);
335 	wmsum_init(&dnode_sums.dnode_move_recheck2, 0);
336 	wmsum_init(&dnode_sums.dnode_move_special, 0);
337 	wmsum_init(&dnode_sums.dnode_move_handle, 0);
338 	wmsum_init(&dnode_sums.dnode_move_rwlock, 0);
339 	wmsum_init(&dnode_sums.dnode_move_active, 0);
340 
341 	dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
342 	    KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
343 	    KSTAT_FLAG_VIRTUAL);
344 	if (dnode_ksp != NULL) {
345 		dnode_ksp->ks_data = &dnode_stats;
346 		dnode_ksp->ks_update = dnode_kstats_update;
347 		kstat_install(dnode_ksp);
348 	}
349 }
350 
351 void
352 dnode_fini(void)
353 {
354 	if (dnode_ksp != NULL) {
355 		kstat_delete(dnode_ksp);
356 		dnode_ksp = NULL;
357 	}
358 
359 	wmsum_fini(&dnode_sums.dnode_hold_dbuf_hold);
360 	wmsum_fini(&dnode_sums.dnode_hold_dbuf_read);
361 	wmsum_fini(&dnode_sums.dnode_hold_alloc_hits);
362 	wmsum_fini(&dnode_sums.dnode_hold_alloc_misses);
363 	wmsum_fini(&dnode_sums.dnode_hold_alloc_interior);
364 	wmsum_fini(&dnode_sums.dnode_hold_alloc_lock_retry);
365 	wmsum_fini(&dnode_sums.dnode_hold_alloc_lock_misses);
366 	wmsum_fini(&dnode_sums.dnode_hold_alloc_type_none);
367 	wmsum_fini(&dnode_sums.dnode_hold_free_hits);
368 	wmsum_fini(&dnode_sums.dnode_hold_free_misses);
369 	wmsum_fini(&dnode_sums.dnode_hold_free_lock_misses);
370 	wmsum_fini(&dnode_sums.dnode_hold_free_lock_retry);
371 	wmsum_fini(&dnode_sums.dnode_hold_free_refcount);
372 	wmsum_fini(&dnode_sums.dnode_hold_free_overflow);
373 	wmsum_fini(&dnode_sums.dnode_free_interior_lock_retry);
374 	wmsum_fini(&dnode_sums.dnode_allocate);
375 	wmsum_fini(&dnode_sums.dnode_reallocate);
376 	wmsum_fini(&dnode_sums.dnode_buf_evict);
377 	wmsum_fini(&dnode_sums.dnode_alloc_next_chunk);
378 	wmsum_fini(&dnode_sums.dnode_alloc_race);
379 	wmsum_fini(&dnode_sums.dnode_alloc_next_block);
380 	wmsum_fini(&dnode_sums.dnode_move_invalid);
381 	wmsum_fini(&dnode_sums.dnode_move_recheck1);
382 	wmsum_fini(&dnode_sums.dnode_move_recheck2);
383 	wmsum_fini(&dnode_sums.dnode_move_special);
384 	wmsum_fini(&dnode_sums.dnode_move_handle);
385 	wmsum_fini(&dnode_sums.dnode_move_rwlock);
386 	wmsum_fini(&dnode_sums.dnode_move_active);
387 
388 	kmem_cache_destroy(dnode_cache);
389 	dnode_cache = NULL;
390 }
391 
392 
393 #ifdef ZFS_DEBUG
394 void
395 dnode_verify(dnode_t *dn)
396 {
397 	int drop_struct_lock = FALSE;
398 
399 	ASSERT(dn->dn_phys);
400 	ASSERT(dn->dn_objset);
401 	ASSERT(dn->dn_handle->dnh_dnode == dn);
402 
403 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
404 
405 	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
406 		return;
407 
408 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
409 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
410 		drop_struct_lock = TRUE;
411 	}
412 	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
413 		int i;
414 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
415 		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
416 		if (dn->dn_datablkshift) {
417 			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
418 			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
419 			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
420 		}
421 		ASSERT3U(dn->dn_nlevels, <=, 30);
422 		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
423 		ASSERT3U(dn->dn_nblkptr, >=, 1);
424 		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
425 		ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
426 		ASSERT3U(dn->dn_datablksz, ==,
427 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
428 		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
429 		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
430 		    dn->dn_bonuslen, <=, max_bonuslen);
431 		for (i = 0; i < TXG_SIZE; i++) {
432 			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
433 		}
434 	}
435 	if (dn->dn_phys->dn_type != DMU_OT_NONE)
436 		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
437 	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
438 	if (dn->dn_dbuf != NULL) {
439 		ASSERT3P(dn->dn_phys, ==,
440 		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
441 		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
442 	}
443 	if (drop_struct_lock)
444 		rw_exit(&dn->dn_struct_rwlock);
445 }
446 #endif
447 
448 void
449 dnode_byteswap(dnode_phys_t *dnp)
450 {
451 	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
452 	int i;
453 
454 	if (dnp->dn_type == DMU_OT_NONE) {
455 		memset(dnp, 0, sizeof (dnode_phys_t));
456 		return;
457 	}
458 
459 	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
460 	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
461 	dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
462 	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
463 	dnp->dn_used = BSWAP_64(dnp->dn_used);
464 
465 	/*
466 	 * dn_nblkptr is only one byte, so it's OK to read it in either
467 	 * byte order.  We can't read dn_bouslen.
468 	 */
469 	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
470 	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
471 	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
472 		buf64[i] = BSWAP_64(buf64[i]);
473 
474 	/*
475 	 * OK to check dn_bonuslen for zero, because it won't matter if
476 	 * we have the wrong byte order.  This is necessary because the
477 	 * dnode dnode is smaller than a regular dnode.
478 	 */
479 	if (dnp->dn_bonuslen != 0) {
480 		dmu_object_byteswap_t byteswap;
481 		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
482 		byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
483 		dmu_ot_byteswap[byteswap].ob_func(DN_BONUS(dnp),
484 		    DN_MAX_BONUS_LEN(dnp));
485 	}
486 
487 	/* Swap SPILL block if we have one */
488 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
489 		byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
490 }
491 
492 void
493 dnode_buf_byteswap(void *vbuf, size_t size)
494 {
495 	int i = 0;
496 
497 	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
498 	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
499 
500 	while (i < size) {
501 		dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
502 		dnode_byteswap(dnp);
503 
504 		i += DNODE_MIN_SIZE;
505 		if (dnp->dn_type != DMU_OT_NONE)
506 			i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
507 	}
508 }
509 
510 void
511 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
512 {
513 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
514 
515 	dnode_setdirty(dn, tx);
516 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
517 	ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
518 	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
519 
520 	if (newsize < dn->dn_bonuslen) {
521 		/* clear any data after the end of the new size */
522 		size_t diff = dn->dn_bonuslen - newsize;
523 		char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize;
524 		memset(data_end, 0, diff);
525 	}
526 
527 	dn->dn_bonuslen = newsize;
528 	if (newsize == 0)
529 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
530 	else
531 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
532 	rw_exit(&dn->dn_struct_rwlock);
533 }
534 
535 void
536 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
537 {
538 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
539 	dnode_setdirty(dn, tx);
540 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
541 	dn->dn_bonustype = newtype;
542 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
543 	rw_exit(&dn->dn_struct_rwlock);
544 }
545 
546 void
547 dnode_set_storage_type(dnode_t *dn, dmu_object_type_t newtype)
548 {
549 	/*
550 	 * This is not in the dnode_phys, but it should be, and perhaps one day
551 	 * will. For now we require it be set after taking a hold.
552 	 */
553 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
554 	dn->dn_storage_type = newtype;
555 }
556 
557 void
558 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
559 {
560 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
561 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
562 	dnode_setdirty(dn, tx);
563 	dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK;
564 	dn->dn_have_spill = B_FALSE;
565 }
566 
567 static void
568 dnode_setdblksz(dnode_t *dn, int size)
569 {
570 	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
571 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
572 	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
573 	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
574 	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
575 	dn->dn_datablksz = size;
576 	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
577 	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
578 }
579 
580 static dnode_t *
581 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
582     uint64_t object, dnode_handle_t *dnh)
583 {
584 	dnode_t *dn;
585 
586 	dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
587 	dn->dn_moved = 0;
588 
589 	/*
590 	 * Defer setting dn_objset until the dnode is ready to be a candidate
591 	 * for the dnode_move() callback.
592 	 */
593 	dn->dn_object = object;
594 	dn->dn_dbuf = db;
595 	dn->dn_handle = dnh;
596 	dn->dn_phys = dnp;
597 
598 	if (dnp->dn_datablkszsec) {
599 		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
600 	} else {
601 		dn->dn_datablksz = 0;
602 		dn->dn_datablkszsec = 0;
603 		dn->dn_datablkshift = 0;
604 	}
605 	dn->dn_indblkshift = dnp->dn_indblkshift;
606 	dn->dn_nlevels = dnp->dn_nlevels;
607 	dn->dn_type = dnp->dn_type;
608 	dn->dn_nblkptr = dnp->dn_nblkptr;
609 	dn->dn_checksum = dnp->dn_checksum;
610 	dn->dn_compress = dnp->dn_compress;
611 	dn->dn_bonustype = dnp->dn_bonustype;
612 	dn->dn_bonuslen = dnp->dn_bonuslen;
613 	dn->dn_num_slots = dnp->dn_extra_slots + 1;
614 	dn->dn_maxblkid = dnp->dn_maxblkid;
615 	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
616 	dn->dn_id_flags = 0;
617 
618 	dn->dn_storage_type = DMU_OT_NONE;
619 
620 	dmu_zfetch_init(&dn->dn_zfetch, dn);
621 
622 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
623 	ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
624 	ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
625 
626 	mutex_enter(&os->os_lock);
627 
628 	/*
629 	 * Exclude special dnodes from os_dnodes so an empty os_dnodes
630 	 * signifies that the special dnodes have no references from
631 	 * their children (the entries in os_dnodes).  This allows
632 	 * dnode_destroy() to easily determine if the last child has
633 	 * been removed and then complete eviction of the objset.
634 	 */
635 	if (!DMU_OBJECT_IS_SPECIAL(object))
636 		list_insert_head(&os->os_dnodes, dn);
637 	membar_producer();
638 
639 	/*
640 	 * Everything else must be valid before assigning dn_objset
641 	 * makes the dnode eligible for dnode_move().
642 	 */
643 	dn->dn_objset = os;
644 
645 	dnh->dnh_dnode = dn;
646 	mutex_exit(&os->os_lock);
647 
648 	arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
649 
650 	return (dn);
651 }
652 
653 /*
654  * Caller must be holding the dnode handle, which is released upon return.
655  */
656 static void
657 dnode_destroy(dnode_t *dn)
658 {
659 	objset_t *os = dn->dn_objset;
660 	boolean_t complete_os_eviction = B_FALSE;
661 
662 	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
663 
664 	mutex_enter(&os->os_lock);
665 	POINTER_INVALIDATE(&dn->dn_objset);
666 	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
667 		list_remove(&os->os_dnodes, dn);
668 		complete_os_eviction =
669 		    list_is_empty(&os->os_dnodes) &&
670 		    list_link_active(&os->os_evicting_node);
671 	}
672 	mutex_exit(&os->os_lock);
673 
674 	/* the dnode can no longer move, so we can release the handle */
675 	if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
676 		zrl_remove(&dn->dn_handle->dnh_zrlock);
677 
678 	dn->dn_allocated_txg = 0;
679 	dn->dn_free_txg = 0;
680 	dn->dn_assigned_txg = 0;
681 	dn->dn_dirty_txg = 0;
682 
683 	dn->dn_dirtyctx = 0;
684 	dn->dn_dirtyctx_firstset = NULL;
685 	if (dn->dn_bonus != NULL) {
686 		mutex_enter(&dn->dn_bonus->db_mtx);
687 		dbuf_destroy(dn->dn_bonus);
688 		dn->dn_bonus = NULL;
689 	}
690 	dn->dn_zio = NULL;
691 
692 	dn->dn_have_spill = B_FALSE;
693 	dn->dn_oldused = 0;
694 	dn->dn_oldflags = 0;
695 	dn->dn_olduid = 0;
696 	dn->dn_oldgid = 0;
697 	dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
698 	dn->dn_newuid = 0;
699 	dn->dn_newgid = 0;
700 	dn->dn_newprojid = ZFS_DEFAULT_PROJID;
701 	dn->dn_id_flags = 0;
702 
703 	dn->dn_storage_type = DMU_OT_NONE;
704 
705 	dmu_zfetch_fini(&dn->dn_zfetch);
706 	kmem_cache_free(dnode_cache, dn);
707 	arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
708 
709 	if (complete_os_eviction)
710 		dmu_objset_evict_done(os);
711 }
712 
713 void
714 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
715     dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
716 {
717 	int i;
718 
719 	ASSERT3U(dn_slots, >, 0);
720 	ASSERT3U(dn_slots << DNODE_SHIFT, <=,
721 	    spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
722 	ASSERT3U(blocksize, <=,
723 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
724 	if (blocksize == 0)
725 		blocksize = 1 << zfs_default_bs;
726 	else
727 		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
728 
729 	if (ibs == 0)
730 		ibs = zfs_default_ibs;
731 
732 	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
733 
734 	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
735 	    dn->dn_objset, (u_longlong_t)dn->dn_object,
736 	    (u_longlong_t)tx->tx_txg, blocksize, ibs, dn_slots);
737 	DNODE_STAT_BUMP(dnode_allocate);
738 
739 	ASSERT(dn->dn_type == DMU_OT_NONE);
740 	ASSERT0(memcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)));
741 	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
742 	ASSERT(ot != DMU_OT_NONE);
743 	ASSERT(DMU_OT_IS_VALID(ot));
744 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
745 	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
746 	    (bonustype == DMU_OTN_UINT64_METADATA && bonuslen == 0) ||
747 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
748 	ASSERT(DMU_OT_IS_VALID(bonustype));
749 	ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
750 	ASSERT(dn->dn_type == DMU_OT_NONE);
751 	ASSERT0(dn->dn_maxblkid);
752 	ASSERT0(dn->dn_allocated_txg);
753 	ASSERT0(dn->dn_assigned_txg);
754 	ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
755 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
756 	ASSERT(avl_is_empty(&dn->dn_dbufs));
757 
758 	for (i = 0; i < TXG_SIZE; i++) {
759 		ASSERT0(dn->dn_next_nblkptr[i]);
760 		ASSERT0(dn->dn_next_nlevels[i]);
761 		ASSERT0(dn->dn_next_indblkshift[i]);
762 		ASSERT0(dn->dn_next_bonuslen[i]);
763 		ASSERT0(dn->dn_next_bonustype[i]);
764 		ASSERT0(dn->dn_rm_spillblk[i]);
765 		ASSERT0(dn->dn_next_blksz[i]);
766 		ASSERT0(dn->dn_next_maxblkid[i]);
767 		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
768 		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
769 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
770 	}
771 
772 	dn->dn_type = ot;
773 	dnode_setdblksz(dn, blocksize);
774 	dn->dn_indblkshift = ibs;
775 	dn->dn_nlevels = 1;
776 	dn->dn_num_slots = dn_slots;
777 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
778 		dn->dn_nblkptr = 1;
779 	else {
780 		dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
781 		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
782 		    SPA_BLKPTRSHIFT));
783 	}
784 
785 	dn->dn_bonustype = bonustype;
786 	dn->dn_bonuslen = bonuslen;
787 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
788 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
789 	dn->dn_dirtyctx = 0;
790 
791 	dn->dn_free_txg = 0;
792 	dn->dn_dirtyctx_firstset = NULL;
793 	dn->dn_dirty_txg = 0;
794 
795 	dn->dn_allocated_txg = tx->tx_txg;
796 	dn->dn_id_flags = 0;
797 
798 	dnode_setdirty(dn, tx);
799 	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
800 	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
801 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
802 	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
803 }
804 
805 void
806 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
807     dmu_object_type_t bonustype, int bonuslen, int dn_slots,
808     boolean_t keep_spill, dmu_tx_t *tx)
809 {
810 	int nblkptr;
811 
812 	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
813 	ASSERT3U(blocksize, <=,
814 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
815 	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
816 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
817 	ASSERT(tx->tx_txg != 0);
818 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
819 	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
820 	    (bonustype == DMU_OT_SA && bonuslen == 0));
821 	ASSERT(DMU_OT_IS_VALID(bonustype));
822 	ASSERT3U(bonuslen, <=,
823 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
824 	ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
825 
826 	dnode_free_interior_slots(dn);
827 	DNODE_STAT_BUMP(dnode_reallocate);
828 
829 	/* clean up any unreferenced dbufs */
830 	dnode_evict_dbufs(dn);
831 
832 	dn->dn_id_flags = 0;
833 
834 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
835 	dnode_setdirty(dn, tx);
836 	if (dn->dn_datablksz != blocksize) {
837 		/* change blocksize */
838 		ASSERT0(dn->dn_maxblkid);
839 		ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
840 		    dnode_block_freed(dn, 0));
841 
842 		dnode_setdblksz(dn, blocksize);
843 		dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize;
844 	}
845 	if (dn->dn_bonuslen != bonuslen)
846 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen;
847 
848 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
849 		nblkptr = 1;
850 	else
851 		nblkptr = MIN(DN_MAX_NBLKPTR,
852 		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
853 		    SPA_BLKPTRSHIFT));
854 	if (dn->dn_bonustype != bonustype)
855 		dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype;
856 	if (dn->dn_nblkptr != nblkptr)
857 		dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr;
858 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) {
859 		dbuf_rm_spill(dn, tx);
860 		dnode_rm_spill(dn, tx);
861 	}
862 
863 	rw_exit(&dn->dn_struct_rwlock);
864 
865 	/* change type */
866 	dn->dn_type = ot;
867 
868 	/* change bonus size and type */
869 	mutex_enter(&dn->dn_mtx);
870 	dn->dn_bonustype = bonustype;
871 	dn->dn_bonuslen = bonuslen;
872 	dn->dn_num_slots = dn_slots;
873 	dn->dn_nblkptr = nblkptr;
874 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
875 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
876 	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
877 
878 	/* fix up the bonus db_size */
879 	if (dn->dn_bonus) {
880 		dn->dn_bonus->db.db_size =
881 		    DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
882 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
883 		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
884 	}
885 
886 	dn->dn_allocated_txg = tx->tx_txg;
887 	mutex_exit(&dn->dn_mtx);
888 }
889 
890 #ifdef	_KERNEL
891 static void
892 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
893 {
894 	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
895 	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
896 	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
897 
898 	/* Copy fields. */
899 	ndn->dn_objset = odn->dn_objset;
900 	ndn->dn_object = odn->dn_object;
901 	ndn->dn_dbuf = odn->dn_dbuf;
902 	ndn->dn_handle = odn->dn_handle;
903 	ndn->dn_phys = odn->dn_phys;
904 	ndn->dn_type = odn->dn_type;
905 	ndn->dn_bonuslen = odn->dn_bonuslen;
906 	ndn->dn_bonustype = odn->dn_bonustype;
907 	ndn->dn_nblkptr = odn->dn_nblkptr;
908 	ndn->dn_checksum = odn->dn_checksum;
909 	ndn->dn_compress = odn->dn_compress;
910 	ndn->dn_nlevels = odn->dn_nlevels;
911 	ndn->dn_indblkshift = odn->dn_indblkshift;
912 	ndn->dn_datablkshift = odn->dn_datablkshift;
913 	ndn->dn_datablkszsec = odn->dn_datablkszsec;
914 	ndn->dn_datablksz = odn->dn_datablksz;
915 	ndn->dn_maxblkid = odn->dn_maxblkid;
916 	ndn->dn_num_slots = odn->dn_num_slots;
917 	memcpy(ndn->dn_next_type, odn->dn_next_type,
918 	    sizeof (odn->dn_next_type));
919 	memcpy(ndn->dn_next_nblkptr, odn->dn_next_nblkptr,
920 	    sizeof (odn->dn_next_nblkptr));
921 	memcpy(ndn->dn_next_nlevels, odn->dn_next_nlevels,
922 	    sizeof (odn->dn_next_nlevels));
923 	memcpy(ndn->dn_next_indblkshift, odn->dn_next_indblkshift,
924 	    sizeof (odn->dn_next_indblkshift));
925 	memcpy(ndn->dn_next_bonustype, odn->dn_next_bonustype,
926 	    sizeof (odn->dn_next_bonustype));
927 	memcpy(ndn->dn_rm_spillblk, odn->dn_rm_spillblk,
928 	    sizeof (odn->dn_rm_spillblk));
929 	memcpy(ndn->dn_next_bonuslen, odn->dn_next_bonuslen,
930 	    sizeof (odn->dn_next_bonuslen));
931 	memcpy(ndn->dn_next_blksz, odn->dn_next_blksz,
932 	    sizeof (odn->dn_next_blksz));
933 	memcpy(ndn->dn_next_maxblkid, odn->dn_next_maxblkid,
934 	    sizeof (odn->dn_next_maxblkid));
935 	for (int i = 0; i < TXG_SIZE; i++) {
936 		list_move_tail(&ndn->dn_dirty_records[i],
937 		    &odn->dn_dirty_records[i]);
938 	}
939 	memcpy(ndn->dn_free_ranges, odn->dn_free_ranges,
940 	    sizeof (odn->dn_free_ranges));
941 	ndn->dn_allocated_txg = odn->dn_allocated_txg;
942 	ndn->dn_free_txg = odn->dn_free_txg;
943 	ndn->dn_assigned_txg = odn->dn_assigned_txg;
944 	ndn->dn_dirty_txg = odn->dn_dirty_txg;
945 	ndn->dn_dirtyctx = odn->dn_dirtyctx;
946 	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
947 	ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
948 	zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
949 	ASSERT(avl_is_empty(&ndn->dn_dbufs));
950 	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
951 	ndn->dn_dbufs_count = odn->dn_dbufs_count;
952 	ndn->dn_bonus = odn->dn_bonus;
953 	ndn->dn_have_spill = odn->dn_have_spill;
954 	ndn->dn_zio = odn->dn_zio;
955 	ndn->dn_oldused = odn->dn_oldused;
956 	ndn->dn_oldflags = odn->dn_oldflags;
957 	ndn->dn_olduid = odn->dn_olduid;
958 	ndn->dn_oldgid = odn->dn_oldgid;
959 	ndn->dn_oldprojid = odn->dn_oldprojid;
960 	ndn->dn_newuid = odn->dn_newuid;
961 	ndn->dn_newgid = odn->dn_newgid;
962 	ndn->dn_newprojid = odn->dn_newprojid;
963 	ndn->dn_id_flags = odn->dn_id_flags;
964 	ndn->dn_storage_type = odn->dn_storage_type;
965 	dmu_zfetch_init(&ndn->dn_zfetch, ndn);
966 
967 	/*
968 	 * Update back pointers. Updating the handle fixes the back pointer of
969 	 * every descendant dbuf as well as the bonus dbuf.
970 	 */
971 	ASSERT(ndn->dn_handle->dnh_dnode == odn);
972 	ndn->dn_handle->dnh_dnode = ndn;
973 
974 	/*
975 	 * Invalidate the original dnode by clearing all of its back pointers.
976 	 */
977 	odn->dn_dbuf = NULL;
978 	odn->dn_handle = NULL;
979 	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
980 	    offsetof(dmu_buf_impl_t, db_link));
981 	odn->dn_dbufs_count = 0;
982 	odn->dn_bonus = NULL;
983 	dmu_zfetch_fini(&odn->dn_zfetch);
984 
985 	/*
986 	 * Set the low bit of the objset pointer to ensure that dnode_move()
987 	 * recognizes the dnode as invalid in any subsequent callback.
988 	 */
989 	POINTER_INVALIDATE(&odn->dn_objset);
990 
991 	/*
992 	 * Satisfy the destructor.
993 	 */
994 	for (int i = 0; i < TXG_SIZE; i++) {
995 		list_create(&odn->dn_dirty_records[i],
996 		    sizeof (dbuf_dirty_record_t),
997 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
998 		odn->dn_free_ranges[i] = NULL;
999 		odn->dn_next_nlevels[i] = 0;
1000 		odn->dn_next_indblkshift[i] = 0;
1001 		odn->dn_next_bonustype[i] = 0;
1002 		odn->dn_rm_spillblk[i] = 0;
1003 		odn->dn_next_bonuslen[i] = 0;
1004 		odn->dn_next_blksz[i] = 0;
1005 	}
1006 	odn->dn_allocated_txg = 0;
1007 	odn->dn_free_txg = 0;
1008 	odn->dn_assigned_txg = 0;
1009 	odn->dn_dirty_txg = 0;
1010 	odn->dn_dirtyctx = 0;
1011 	odn->dn_dirtyctx_firstset = NULL;
1012 	odn->dn_have_spill = B_FALSE;
1013 	odn->dn_zio = NULL;
1014 	odn->dn_oldused = 0;
1015 	odn->dn_oldflags = 0;
1016 	odn->dn_olduid = 0;
1017 	odn->dn_oldgid = 0;
1018 	odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
1019 	odn->dn_newuid = 0;
1020 	odn->dn_newgid = 0;
1021 	odn->dn_newprojid = ZFS_DEFAULT_PROJID;
1022 	odn->dn_id_flags = 0;
1023 	odn->dn_storage_type = DMU_OT_NONE;
1024 
1025 	/*
1026 	 * Mark the dnode.
1027 	 */
1028 	ndn->dn_moved = 1;
1029 	odn->dn_moved = (uint8_t)-1;
1030 }
1031 
1032 static kmem_cbrc_t
1033 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
1034 {
1035 	dnode_t *odn = buf, *ndn = newbuf;
1036 	objset_t *os;
1037 	int64_t refcount;
1038 	uint32_t dbufs;
1039 
1040 #ifndef USE_DNODE_HANDLE
1041 	/*
1042 	 * We can't move dnodes if dbufs reference them directly without
1043 	 * using handles and respecitve locking.  Unless USE_DNODE_HANDLE
1044 	 * is defined the code below is only to make sure it still builds,
1045 	 * but it should never be used, since it is unsafe.
1046 	 */
1047 #ifdef ZFS_DEBUG
1048 	PANIC("dnode_move() called without USE_DNODE_HANDLE");
1049 #endif
1050 	return (KMEM_CBRC_NO);
1051 #endif
1052 
1053 	/*
1054 	 * The dnode is on the objset's list of known dnodes if the objset
1055 	 * pointer is valid. We set the low bit of the objset pointer when
1056 	 * freeing the dnode to invalidate it, and the memory patterns written
1057 	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
1058 	 * A newly created dnode sets the objset pointer last of all to indicate
1059 	 * that the dnode is known and in a valid state to be moved by this
1060 	 * function.
1061 	 */
1062 	os = odn->dn_objset;
1063 	if (!POINTER_IS_VALID(os)) {
1064 		DNODE_STAT_BUMP(dnode_move_invalid);
1065 		return (KMEM_CBRC_DONT_KNOW);
1066 	}
1067 
1068 	/*
1069 	 * Ensure that the objset does not go away during the move.
1070 	 */
1071 	rw_enter(&os_lock, RW_WRITER);
1072 	if (os != odn->dn_objset) {
1073 		rw_exit(&os_lock);
1074 		DNODE_STAT_BUMP(dnode_move_recheck1);
1075 		return (KMEM_CBRC_DONT_KNOW);
1076 	}
1077 
1078 	/*
1079 	 * If the dnode is still valid, then so is the objset. We know that no
1080 	 * valid objset can be freed while we hold os_lock, so we can safely
1081 	 * ensure that the objset remains in use.
1082 	 */
1083 	mutex_enter(&os->os_lock);
1084 
1085 	/*
1086 	 * Recheck the objset pointer in case the dnode was removed just before
1087 	 * acquiring the lock.
1088 	 */
1089 	if (os != odn->dn_objset) {
1090 		mutex_exit(&os->os_lock);
1091 		rw_exit(&os_lock);
1092 		DNODE_STAT_BUMP(dnode_move_recheck2);
1093 		return (KMEM_CBRC_DONT_KNOW);
1094 	}
1095 
1096 	/*
1097 	 * At this point we know that as long as we hold os->os_lock, the dnode
1098 	 * cannot be freed and fields within the dnode can be safely accessed.
1099 	 * The objset listing this dnode cannot go away as long as this dnode is
1100 	 * on its list.
1101 	 */
1102 	rw_exit(&os_lock);
1103 	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
1104 		mutex_exit(&os->os_lock);
1105 		DNODE_STAT_BUMP(dnode_move_special);
1106 		return (KMEM_CBRC_NO);
1107 	}
1108 	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
1109 
1110 	/*
1111 	 * Lock the dnode handle to prevent the dnode from obtaining any new
1112 	 * holds. This also prevents the descendant dbufs and the bonus dbuf
1113 	 * from accessing the dnode, so that we can discount their holds. The
1114 	 * handle is safe to access because we know that while the dnode cannot
1115 	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
1116 	 * safely move any dnode referenced only by dbufs.
1117 	 */
1118 	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
1119 		mutex_exit(&os->os_lock);
1120 		DNODE_STAT_BUMP(dnode_move_handle);
1121 		return (KMEM_CBRC_LATER);
1122 	}
1123 
1124 	/*
1125 	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
1126 	 * We need to guarantee that there is a hold for every dbuf in order to
1127 	 * determine whether the dnode is actively referenced. Falsely matching
1128 	 * a dbuf to an active hold would lead to an unsafe move. It's possible
1129 	 * that a thread already having an active dnode hold is about to add a
1130 	 * dbuf, and we can't compare hold and dbuf counts while the add is in
1131 	 * progress.
1132 	 */
1133 	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
1134 		zrl_exit(&odn->dn_handle->dnh_zrlock);
1135 		mutex_exit(&os->os_lock);
1136 		DNODE_STAT_BUMP(dnode_move_rwlock);
1137 		return (KMEM_CBRC_LATER);
1138 	}
1139 
1140 	/*
1141 	 * A dbuf may be removed (evicted) without an active dnode hold. In that
1142 	 * case, the dbuf count is decremented under the handle lock before the
1143 	 * dbuf's hold is released. This order ensures that if we count the hold
1144 	 * after the dbuf is removed but before its hold is released, we will
1145 	 * treat the unmatched hold as active and exit safely. If we count the
1146 	 * hold before the dbuf is removed, the hold is discounted, and the
1147 	 * removal is blocked until the move completes.
1148 	 */
1149 	refcount = zfs_refcount_count(&odn->dn_holds);
1150 	ASSERT(refcount >= 0);
1151 	dbufs = DN_DBUFS_COUNT(odn);
1152 
1153 	/* We can't have more dbufs than dnode holds. */
1154 	ASSERT3U(dbufs, <=, refcount);
1155 	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1156 	    uint32_t, dbufs);
1157 
1158 	if (refcount > dbufs) {
1159 		rw_exit(&odn->dn_struct_rwlock);
1160 		zrl_exit(&odn->dn_handle->dnh_zrlock);
1161 		mutex_exit(&os->os_lock);
1162 		DNODE_STAT_BUMP(dnode_move_active);
1163 		return (KMEM_CBRC_LATER);
1164 	}
1165 
1166 	rw_exit(&odn->dn_struct_rwlock);
1167 
1168 	/*
1169 	 * At this point we know that anyone with a hold on the dnode is not
1170 	 * actively referencing it. The dnode is known and in a valid state to
1171 	 * move. We're holding the locks needed to execute the critical section.
1172 	 */
1173 	dnode_move_impl(odn, ndn);
1174 
1175 	list_link_replace(&odn->dn_link, &ndn->dn_link);
1176 	/* If the dnode was safe to move, the refcount cannot have changed. */
1177 	ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
1178 	ASSERT(dbufs == DN_DBUFS_COUNT(ndn));
1179 	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1180 	mutex_exit(&os->os_lock);
1181 
1182 	return (KMEM_CBRC_YES);
1183 }
1184 #endif	/* _KERNEL */
1185 
1186 static void
1187 dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1188 {
1189 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1190 
1191 	for (int i = idx; i < idx + slots; i++) {
1192 		dnode_handle_t *dnh = &children->dnc_children[i];
1193 		zrl_add(&dnh->dnh_zrlock);
1194 	}
1195 }
1196 
1197 static void
1198 dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1199 {
1200 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1201 
1202 	for (int i = idx; i < idx + slots; i++) {
1203 		dnode_handle_t *dnh = &children->dnc_children[i];
1204 
1205 		if (zrl_is_locked(&dnh->dnh_zrlock))
1206 			zrl_exit(&dnh->dnh_zrlock);
1207 		else
1208 			zrl_remove(&dnh->dnh_zrlock);
1209 	}
1210 }
1211 
1212 static int
1213 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1214 {
1215 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1216 
1217 	for (int i = idx; i < idx + slots; i++) {
1218 		dnode_handle_t *dnh = &children->dnc_children[i];
1219 
1220 		if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1221 			for (int j = idx; j < i; j++) {
1222 				dnh = &children->dnc_children[j];
1223 				zrl_exit(&dnh->dnh_zrlock);
1224 			}
1225 
1226 			return (0);
1227 		}
1228 	}
1229 
1230 	return (1);
1231 }
1232 
1233 static void
1234 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1235 {
1236 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1237 
1238 	for (int i = idx; i < idx + slots; i++) {
1239 		dnode_handle_t *dnh = &children->dnc_children[i];
1240 		dnh->dnh_dnode = ptr;
1241 	}
1242 }
1243 
1244 static boolean_t
1245 dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1246 {
1247 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1248 
1249 	/*
1250 	 * If all dnode slots are either already free or
1251 	 * evictable return B_TRUE.
1252 	 */
1253 	for (int i = idx; i < idx + slots; i++) {
1254 		dnode_handle_t *dnh = &children->dnc_children[i];
1255 		dnode_t *dn = dnh->dnh_dnode;
1256 
1257 		if (dn == DN_SLOT_FREE) {
1258 			continue;
1259 		} else if (DN_SLOT_IS_PTR(dn)) {
1260 			mutex_enter(&dn->dn_mtx);
1261 			boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1262 			    zfs_refcount_is_zero(&dn->dn_holds) &&
1263 			    !DNODE_IS_DIRTY(dn));
1264 			mutex_exit(&dn->dn_mtx);
1265 
1266 			if (!can_free)
1267 				return (B_FALSE);
1268 			else
1269 				continue;
1270 		} else {
1271 			return (B_FALSE);
1272 		}
1273 	}
1274 
1275 	return (B_TRUE);
1276 }
1277 
1278 static uint_t
1279 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1280 {
1281 	uint_t reclaimed = 0;
1282 
1283 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1284 
1285 	for (int i = idx; i < idx + slots; i++) {
1286 		dnode_handle_t *dnh = &children->dnc_children[i];
1287 
1288 		ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1289 
1290 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1291 			ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1292 			dnode_destroy(dnh->dnh_dnode);
1293 			dnh->dnh_dnode = DN_SLOT_FREE;
1294 			reclaimed++;
1295 		}
1296 	}
1297 
1298 	return (reclaimed);
1299 }
1300 
1301 void
1302 dnode_free_interior_slots(dnode_t *dn)
1303 {
1304 	dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1305 	int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1306 	int idx = (dn->dn_object & (epb - 1)) + 1;
1307 	int slots = dn->dn_num_slots - 1;
1308 
1309 	if (slots == 0)
1310 		return;
1311 
1312 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1313 
1314 	while (!dnode_slots_tryenter(children, idx, slots)) {
1315 		DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1316 		kpreempt(KPREEMPT_SYNC);
1317 	}
1318 
1319 	dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1320 	dnode_slots_rele(children, idx, slots);
1321 }
1322 
1323 void
1324 dnode_special_close(dnode_handle_t *dnh)
1325 {
1326 	dnode_t *dn = dnh->dnh_dnode;
1327 
1328 	/*
1329 	 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final
1330 	 * zfs_refcount_remove()
1331 	 */
1332 	mutex_enter(&dn->dn_mtx);
1333 	if (zfs_refcount_count(&dn->dn_holds) > 0)
1334 		cv_wait(&dn->dn_nodnholds, &dn->dn_mtx);
1335 	mutex_exit(&dn->dn_mtx);
1336 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0);
1337 
1338 	ASSERT(dn->dn_dbuf == NULL ||
1339 	    dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1340 	zrl_add(&dnh->dnh_zrlock);
1341 	dnode_destroy(dn); /* implicit zrl_remove() */
1342 	zrl_destroy(&dnh->dnh_zrlock);
1343 	dnh->dnh_dnode = NULL;
1344 }
1345 
1346 void
1347 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1348     dnode_handle_t *dnh)
1349 {
1350 	dnode_t *dn;
1351 
1352 	zrl_init(&dnh->dnh_zrlock);
1353 	VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock));
1354 
1355 	dn = dnode_create(os, dnp, NULL, object, dnh);
1356 	DNODE_VERIFY(dn);
1357 
1358 	zrl_exit(&dnh->dnh_zrlock);
1359 }
1360 
1361 static void
1362 dnode_buf_evict_async(void *dbu)
1363 {
1364 	dnode_children_t *dnc = dbu;
1365 
1366 	DNODE_STAT_BUMP(dnode_buf_evict);
1367 
1368 	for (int i = 0; i < dnc->dnc_count; i++) {
1369 		dnode_handle_t *dnh = &dnc->dnc_children[i];
1370 		dnode_t *dn;
1371 
1372 		/*
1373 		 * The dnode handle lock guards against the dnode moving to
1374 		 * another valid address, so there is no need here to guard
1375 		 * against changes to or from NULL.
1376 		 */
1377 		if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1378 			zrl_destroy(&dnh->dnh_zrlock);
1379 			dnh->dnh_dnode = DN_SLOT_UNINIT;
1380 			continue;
1381 		}
1382 
1383 		zrl_add(&dnh->dnh_zrlock);
1384 		dn = dnh->dnh_dnode;
1385 		/*
1386 		 * If there are holds on this dnode, then there should
1387 		 * be holds on the dnode's containing dbuf as well; thus
1388 		 * it wouldn't be eligible for eviction and this function
1389 		 * would not have been called.
1390 		 */
1391 		ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
1392 		ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
1393 
1394 		dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1395 		zrl_destroy(&dnh->dnh_zrlock);
1396 		dnh->dnh_dnode = DN_SLOT_UNINIT;
1397 	}
1398 	kmem_free(dnc, sizeof (dnode_children_t) +
1399 	    dnc->dnc_count * sizeof (dnode_handle_t));
1400 }
1401 
1402 /*
1403  * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1404  * to ensure the hole at the specified object offset is large enough to
1405  * hold the dnode being created. The slots parameter is also used to ensure
1406  * a dnode does not span multiple dnode blocks. In both of these cases, if
1407  * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1408  * are only possible when using DNODE_MUST_BE_FREE.
1409  *
1410  * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1411  * dnode_hold_impl() will check if the requested dnode is already consumed
1412  * as an extra dnode slot by an large dnode, in which case it returns
1413  * ENOENT.
1414  *
1415  * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just
1416  * return whether the hold would succeed or not. tag and dnp should set to
1417  * NULL in this case.
1418  *
1419  * errors:
1420  * EINVAL - Invalid object number or flags.
1421  * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1422  * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1423  *        - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1424  *        - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1425  * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1426  *        - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1427  * EIO    - I/O error when reading the meta dnode dbuf.
1428  *
1429  * succeeds even for free dnodes.
1430  */
1431 int
1432 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1433     const void *tag, dnode_t **dnp)
1434 {
1435 	int epb, idx, err;
1436 	int drop_struct_lock = FALSE;
1437 	int type;
1438 	uint64_t blk;
1439 	dnode_t *mdn, *dn;
1440 	dmu_buf_impl_t *db;
1441 	dnode_children_t *dnc;
1442 	dnode_phys_t *dn_block;
1443 	dnode_handle_t *dnh;
1444 
1445 	ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1446 	ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1447 	IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL));
1448 
1449 	/*
1450 	 * If you are holding the spa config lock as writer, you shouldn't
1451 	 * be asking the DMU to do *anything* unless it's the root pool
1452 	 * which may require us to read from the root filesystem while
1453 	 * holding some (not all) of the locks as writer.
1454 	 */
1455 	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1456 	    (spa_is_root(os->os_spa) &&
1457 	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1458 
1459 	ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1460 
1461 	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
1462 	    object == DMU_PROJECTUSED_OBJECT) {
1463 		if (object == DMU_USERUSED_OBJECT)
1464 			dn = DMU_USERUSED_DNODE(os);
1465 		else if (object == DMU_GROUPUSED_OBJECT)
1466 			dn = DMU_GROUPUSED_DNODE(os);
1467 		else
1468 			dn = DMU_PROJECTUSED_DNODE(os);
1469 		if (dn == NULL)
1470 			return (SET_ERROR(ENOENT));
1471 		type = dn->dn_type;
1472 		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1473 			return (SET_ERROR(ENOENT));
1474 		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1475 			return (SET_ERROR(EEXIST));
1476 		DNODE_VERIFY(dn);
1477 		/* Don't actually hold if dry run, just return 0 */
1478 		if (!(flag & DNODE_DRY_RUN)) {
1479 			(void) zfs_refcount_add(&dn->dn_holds, tag);
1480 			*dnp = dn;
1481 		}
1482 		return (0);
1483 	}
1484 
1485 	if (object == 0 || object >= DN_MAX_OBJECT)
1486 		return (SET_ERROR(EINVAL));
1487 
1488 	mdn = DMU_META_DNODE(os);
1489 	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1490 
1491 	DNODE_VERIFY(mdn);
1492 
1493 	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1494 		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1495 		drop_struct_lock = TRUE;
1496 	}
1497 
1498 	blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1499 	db = dbuf_hold(mdn, blk, FTAG);
1500 	if (drop_struct_lock)
1501 		rw_exit(&mdn->dn_struct_rwlock);
1502 	if (db == NULL) {
1503 		DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1504 		return (SET_ERROR(EIO));
1505 	}
1506 
1507 	/*
1508 	 * We do not need to decrypt to read the dnode so it doesn't matter
1509 	 * if we get the encrypted or decrypted version.
1510 	 */
1511 	err = dbuf_read(db, NULL, DB_RF_CANFAIL |
1512 	    DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH);
1513 	if (err) {
1514 		DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1515 		dbuf_rele(db, FTAG);
1516 		return (err);
1517 	}
1518 
1519 	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1520 	epb = db->db.db_size >> DNODE_SHIFT;
1521 
1522 	idx = object & (epb - 1);
1523 	dn_block = (dnode_phys_t *)db->db.db_data;
1524 
1525 	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1526 	dnc = dmu_buf_get_user(&db->db);
1527 	dnh = NULL;
1528 	if (dnc == NULL) {
1529 		dnode_children_t *winner;
1530 		int skip = 0;
1531 
1532 		dnc = kmem_zalloc(sizeof (dnode_children_t) +
1533 		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1534 		dnc->dnc_count = epb;
1535 		dnh = &dnc->dnc_children[0];
1536 
1537 		/* Initialize dnode slot status from dnode_phys_t */
1538 		for (int i = 0; i < epb; i++) {
1539 			zrl_init(&dnh[i].dnh_zrlock);
1540 
1541 			if (skip) {
1542 				skip--;
1543 				continue;
1544 			}
1545 
1546 			if (dn_block[i].dn_type != DMU_OT_NONE) {
1547 				int interior = dn_block[i].dn_extra_slots;
1548 
1549 				dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1550 				dnode_set_slots(dnc, i + 1, interior,
1551 				    DN_SLOT_INTERIOR);
1552 				skip = interior;
1553 			} else {
1554 				dnh[i].dnh_dnode = DN_SLOT_FREE;
1555 				skip = 0;
1556 			}
1557 		}
1558 
1559 		dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1560 		    dnode_buf_evict_async, NULL);
1561 		winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1562 		if (winner != NULL) {
1563 
1564 			for (int i = 0; i < epb; i++)
1565 				zrl_destroy(&dnh[i].dnh_zrlock);
1566 
1567 			kmem_free(dnc, sizeof (dnode_children_t) +
1568 			    epb * sizeof (dnode_handle_t));
1569 			dnc = winner;
1570 		}
1571 	}
1572 
1573 	ASSERT(dnc->dnc_count == epb);
1574 
1575 	if (flag & DNODE_MUST_BE_ALLOCATED) {
1576 		slots = 1;
1577 
1578 		dnode_slots_hold(dnc, idx, slots);
1579 		dnh = &dnc->dnc_children[idx];
1580 
1581 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1582 			dn = dnh->dnh_dnode;
1583 		} else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1584 			DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1585 			dnode_slots_rele(dnc, idx, slots);
1586 			dbuf_rele(db, FTAG);
1587 			return (SET_ERROR(EEXIST));
1588 		} else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1589 			DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1590 			dnode_slots_rele(dnc, idx, slots);
1591 			dbuf_rele(db, FTAG);
1592 			return (SET_ERROR(ENOENT));
1593 		} else {
1594 			dnode_slots_rele(dnc, idx, slots);
1595 			while (!dnode_slots_tryenter(dnc, idx, slots)) {
1596 				DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1597 				kpreempt(KPREEMPT_SYNC);
1598 			}
1599 
1600 			/*
1601 			 * Someone else won the race and called dnode_create()
1602 			 * after we checked DN_SLOT_IS_PTR() above but before
1603 			 * we acquired the lock.
1604 			 */
1605 			if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1606 				DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1607 				dn = dnh->dnh_dnode;
1608 			} else {
1609 				dn = dnode_create(os, dn_block + idx, db,
1610 				    object, dnh);
1611 				dmu_buf_add_user_size(&db->db,
1612 				    sizeof (dnode_t));
1613 			}
1614 		}
1615 
1616 		mutex_enter(&dn->dn_mtx);
1617 		if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
1618 			DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1619 			mutex_exit(&dn->dn_mtx);
1620 			dnode_slots_rele(dnc, idx, slots);
1621 			dbuf_rele(db, FTAG);
1622 			return (SET_ERROR(ENOENT));
1623 		}
1624 
1625 		/* Don't actually hold if dry run, just return 0 */
1626 		if (flag & DNODE_DRY_RUN) {
1627 			mutex_exit(&dn->dn_mtx);
1628 			dnode_slots_rele(dnc, idx, slots);
1629 			dbuf_rele(db, FTAG);
1630 			return (0);
1631 		}
1632 
1633 		DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1634 	} else if (flag & DNODE_MUST_BE_FREE) {
1635 
1636 		if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1637 			DNODE_STAT_BUMP(dnode_hold_free_overflow);
1638 			dbuf_rele(db, FTAG);
1639 			return (SET_ERROR(ENOSPC));
1640 		}
1641 
1642 		dnode_slots_hold(dnc, idx, slots);
1643 
1644 		if (!dnode_check_slots_free(dnc, idx, slots)) {
1645 			DNODE_STAT_BUMP(dnode_hold_free_misses);
1646 			dnode_slots_rele(dnc, idx, slots);
1647 			dbuf_rele(db, FTAG);
1648 			return (SET_ERROR(ENOSPC));
1649 		}
1650 
1651 		dnode_slots_rele(dnc, idx, slots);
1652 		while (!dnode_slots_tryenter(dnc, idx, slots)) {
1653 			DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1654 			kpreempt(KPREEMPT_SYNC);
1655 		}
1656 
1657 		if (!dnode_check_slots_free(dnc, idx, slots)) {
1658 			DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1659 			dnode_slots_rele(dnc, idx, slots);
1660 			dbuf_rele(db, FTAG);
1661 			return (SET_ERROR(ENOSPC));
1662 		}
1663 
1664 		/*
1665 		 * Allocated but otherwise free dnodes which would
1666 		 * be in the interior of a multi-slot dnodes need
1667 		 * to be freed.  Single slot dnodes can be safely
1668 		 * re-purposed as a performance optimization.
1669 		 */
1670 		if (slots > 1) {
1671 			uint_t reclaimed =
1672 			    dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1673 			if (reclaimed > 0)
1674 				dmu_buf_sub_user_size(&db->db,
1675 				    reclaimed * sizeof (dnode_t));
1676 		}
1677 
1678 		dnh = &dnc->dnc_children[idx];
1679 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1680 			dn = dnh->dnh_dnode;
1681 		} else {
1682 			dn = dnode_create(os, dn_block + idx, db,
1683 			    object, dnh);
1684 			dmu_buf_add_user_size(&db->db, sizeof (dnode_t));
1685 		}
1686 
1687 		mutex_enter(&dn->dn_mtx);
1688 		if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
1689 			DNODE_STAT_BUMP(dnode_hold_free_refcount);
1690 			mutex_exit(&dn->dn_mtx);
1691 			dnode_slots_rele(dnc, idx, slots);
1692 			dbuf_rele(db, FTAG);
1693 			return (SET_ERROR(EEXIST));
1694 		}
1695 
1696 		/* Don't actually hold if dry run, just return 0 */
1697 		if (flag & DNODE_DRY_RUN) {
1698 			mutex_exit(&dn->dn_mtx);
1699 			dnode_slots_rele(dnc, idx, slots);
1700 			dbuf_rele(db, FTAG);
1701 			return (0);
1702 		}
1703 
1704 		dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1705 		DNODE_STAT_BUMP(dnode_hold_free_hits);
1706 	} else {
1707 		dbuf_rele(db, FTAG);
1708 		return (SET_ERROR(EINVAL));
1709 	}
1710 
1711 	ASSERT0(dn->dn_free_txg);
1712 
1713 	if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
1714 		dbuf_add_ref(db, dnh);
1715 
1716 	mutex_exit(&dn->dn_mtx);
1717 
1718 	/* Now we can rely on the hold to prevent the dnode from moving. */
1719 	dnode_slots_rele(dnc, idx, slots);
1720 
1721 	DNODE_VERIFY(dn);
1722 	ASSERT3P(dnp, !=, NULL);
1723 	ASSERT3P(dn->dn_dbuf, ==, db);
1724 	ASSERT3U(dn->dn_object, ==, object);
1725 	dbuf_rele(db, FTAG);
1726 
1727 	*dnp = dn;
1728 	return (0);
1729 }
1730 
1731 /*
1732  * Return held dnode if the object is allocated, NULL if not.
1733  */
1734 int
1735 dnode_hold(objset_t *os, uint64_t object, const void *tag, dnode_t **dnp)
1736 {
1737 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1738 	    dnp));
1739 }
1740 
1741 /*
1742  * Can only add a reference if there is already at least one
1743  * reference on the dnode.  Returns FALSE if unable to add a
1744  * new reference.
1745  */
1746 boolean_t
1747 dnode_add_ref(dnode_t *dn, const void *tag)
1748 {
1749 	mutex_enter(&dn->dn_mtx);
1750 	if (zfs_refcount_is_zero(&dn->dn_holds)) {
1751 		mutex_exit(&dn->dn_mtx);
1752 		return (FALSE);
1753 	}
1754 	VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
1755 	mutex_exit(&dn->dn_mtx);
1756 	return (TRUE);
1757 }
1758 
1759 void
1760 dnode_rele(dnode_t *dn, const void *tag)
1761 {
1762 	mutex_enter(&dn->dn_mtx);
1763 	dnode_rele_and_unlock(dn, tag, B_FALSE);
1764 }
1765 
1766 void
1767 dnode_rele_and_unlock(dnode_t *dn, const void *tag, boolean_t evicting)
1768 {
1769 	uint64_t refs;
1770 	/* Get while the hold prevents the dnode from moving. */
1771 	dmu_buf_impl_t *db = dn->dn_dbuf;
1772 	dnode_handle_t *dnh = dn->dn_handle;
1773 
1774 	refs = zfs_refcount_remove(&dn->dn_holds, tag);
1775 	if (refs == 0)
1776 		cv_broadcast(&dn->dn_nodnholds);
1777 	mutex_exit(&dn->dn_mtx);
1778 	/* dnode could get destroyed at this point, so don't use it anymore */
1779 
1780 	/*
1781 	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1782 	 * indirectly by dbuf_rele() while relying on the dnode handle to
1783 	 * prevent the dnode from moving, since releasing the last hold could
1784 	 * result in the dnode's parent dbuf evicting its dnode handles. For
1785 	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1786 	 * other direct or indirect hold on the dnode must first drop the dnode
1787 	 * handle.
1788 	 */
1789 #ifdef ZFS_DEBUG
1790 	ASSERT(refs > 0 || zrl_owner(&dnh->dnh_zrlock) != curthread);
1791 #endif
1792 
1793 	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1794 	if (refs == 0 && db != NULL) {
1795 		/*
1796 		 * Another thread could add a hold to the dnode handle in
1797 		 * dnode_hold_impl() while holding the parent dbuf. Since the
1798 		 * hold on the parent dbuf prevents the handle from being
1799 		 * destroyed, the hold on the handle is OK. We can't yet assert
1800 		 * that the handle has zero references, but that will be
1801 		 * asserted anyway when the handle gets destroyed.
1802 		 */
1803 		mutex_enter(&db->db_mtx);
1804 		dbuf_rele_and_unlock(db, dnh, evicting);
1805 	}
1806 }
1807 
1808 /*
1809  * Test whether we can create a dnode at the specified location.
1810  */
1811 int
1812 dnode_try_claim(objset_t *os, uint64_t object, int slots)
1813 {
1814 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN,
1815 	    slots, NULL, NULL));
1816 }
1817 
1818 /*
1819  * Checks if the dnode itself is dirty, or is carrying any uncommitted records.
1820  * It is important to check both conditions, as some operations (eg appending
1821  * to a file) can dirty both as a single logical unit, but they are not synced
1822  * out atomically, so checking one and not the other can result in an object
1823  * appearing to be clean mid-way through a commit.
1824  *
1825  * Do not change this lightly! If you get it wrong, dmu_offset_next() can
1826  * detect a hole where there is really data, leading to silent corruption.
1827  */
1828 boolean_t
1829 dnode_is_dirty(dnode_t *dn)
1830 {
1831 	mutex_enter(&dn->dn_mtx);
1832 
1833 	for (int i = 0; i < TXG_SIZE; i++) {
1834 		if (multilist_link_active(&dn->dn_dirty_link[i]) ||
1835 		    !list_is_empty(&dn->dn_dirty_records[i])) {
1836 			mutex_exit(&dn->dn_mtx);
1837 			return (B_TRUE);
1838 		}
1839 	}
1840 
1841 	mutex_exit(&dn->dn_mtx);
1842 
1843 	return (B_FALSE);
1844 }
1845 
1846 void
1847 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1848 {
1849 	objset_t *os = dn->dn_objset;
1850 	uint64_t txg = tx->tx_txg;
1851 
1852 	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1853 		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1854 		return;
1855 	}
1856 
1857 	DNODE_VERIFY(dn);
1858 
1859 #ifdef ZFS_DEBUG
1860 	mutex_enter(&dn->dn_mtx);
1861 	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1862 	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1863 	mutex_exit(&dn->dn_mtx);
1864 #endif
1865 
1866 	/*
1867 	 * Determine old uid/gid when necessary
1868 	 */
1869 	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1870 
1871 	multilist_t *dirtylist = &os->os_dirty_dnodes[txg & TXG_MASK];
1872 	multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1873 
1874 	/*
1875 	 * If we are already marked dirty, we're done.
1876 	 */
1877 	if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1878 		multilist_sublist_unlock(mls);
1879 		return;
1880 	}
1881 
1882 	ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
1883 	    !avl_is_empty(&dn->dn_dbufs));
1884 	ASSERT(dn->dn_datablksz != 0);
1885 	ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]);
1886 	ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]);
1887 	ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]);
1888 
1889 	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1890 	    (u_longlong_t)dn->dn_object, (u_longlong_t)txg);
1891 
1892 	multilist_sublist_insert_head(mls, dn);
1893 
1894 	multilist_sublist_unlock(mls);
1895 
1896 	/*
1897 	 * The dnode maintains a hold on its containing dbuf as
1898 	 * long as there are holds on it.  Each instantiated child
1899 	 * dbuf maintains a hold on the dnode.  When the last child
1900 	 * drops its hold, the dnode will drop its hold on the
1901 	 * containing dbuf. We add a "dirty hold" here so that the
1902 	 * dnode will hang around after we finish processing its
1903 	 * children.
1904 	 */
1905 	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1906 
1907 	(void) dbuf_dirty(dn->dn_dbuf, tx);
1908 
1909 	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1910 }
1911 
1912 void
1913 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1914 {
1915 	mutex_enter(&dn->dn_mtx);
1916 	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1917 		mutex_exit(&dn->dn_mtx);
1918 		return;
1919 	}
1920 	dn->dn_free_txg = tx->tx_txg;
1921 	mutex_exit(&dn->dn_mtx);
1922 
1923 	dnode_setdirty(dn, tx);
1924 }
1925 
1926 /*
1927  * Try to change the block size for the indicated dnode.  This can only
1928  * succeed if there are no blocks allocated or dirty beyond first block
1929  */
1930 int
1931 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1932 {
1933 	dmu_buf_impl_t *db;
1934 	int err;
1935 
1936 	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1937 	if (size == 0)
1938 		size = SPA_MINBLOCKSIZE;
1939 	else
1940 		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1941 
1942 	if (ibs == dn->dn_indblkshift)
1943 		ibs = 0;
1944 
1945 	if (size == dn->dn_datablksz && ibs == 0)
1946 		return (0);
1947 
1948 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1949 
1950 	/* Check for any allocated blocks beyond the first */
1951 	if (dn->dn_maxblkid != 0)
1952 		goto fail;
1953 
1954 	mutex_enter(&dn->dn_dbufs_mtx);
1955 	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1956 	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1957 		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1958 		    db->db_blkid != DMU_SPILL_BLKID) {
1959 			mutex_exit(&dn->dn_dbufs_mtx);
1960 			goto fail;
1961 		}
1962 	}
1963 	mutex_exit(&dn->dn_dbufs_mtx);
1964 
1965 	if (ibs && dn->dn_nlevels != 1)
1966 		goto fail;
1967 
1968 	dnode_setdirty(dn, tx);
1969 	if (size != dn->dn_datablksz) {
1970 		/* resize the old block */
1971 		err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1972 		if (err == 0) {
1973 			dbuf_new_size(db, size, tx);
1974 		} else if (err != ENOENT) {
1975 			goto fail;
1976 		}
1977 
1978 		dnode_setdblksz(dn, size);
1979 		dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = size;
1980 		if (db)
1981 			dbuf_rele(db, FTAG);
1982 	}
1983 	if (ibs) {
1984 		dn->dn_indblkshift = ibs;
1985 		dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
1986 	}
1987 
1988 	rw_exit(&dn->dn_struct_rwlock);
1989 	return (0);
1990 
1991 fail:
1992 	rw_exit(&dn->dn_struct_rwlock);
1993 	return (SET_ERROR(ENOTSUP));
1994 }
1995 
1996 static void
1997 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
1998 {
1999 	uint64_t txgoff = tx->tx_txg & TXG_MASK;
2000 	int old_nlevels = dn->dn_nlevels;
2001 	dmu_buf_impl_t *db;
2002 	list_t *list;
2003 	dbuf_dirty_record_t *new, *dr, *dr_next;
2004 
2005 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2006 
2007 	ASSERT3U(new_nlevels, >, dn->dn_nlevels);
2008 	dn->dn_nlevels = new_nlevels;
2009 
2010 	ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
2011 	dn->dn_next_nlevels[txgoff] = new_nlevels;
2012 
2013 	/* dirty the left indirects */
2014 	db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
2015 	ASSERT(db != NULL);
2016 	new = dbuf_dirty(db, tx);
2017 	dbuf_rele(db, FTAG);
2018 
2019 	/* transfer the dirty records to the new indirect */
2020 	mutex_enter(&dn->dn_mtx);
2021 	mutex_enter(&new->dt.di.dr_mtx);
2022 	list = &dn->dn_dirty_records[txgoff];
2023 	for (dr = list_head(list); dr; dr = dr_next) {
2024 		dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
2025 
2026 		IMPLY(dr->dr_dbuf == NULL, old_nlevels == 1);
2027 		if (dr->dr_dbuf == NULL ||
2028 		    (dr->dr_dbuf->db_level == old_nlevels - 1 &&
2029 		    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
2030 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID)) {
2031 			list_remove(&dn->dn_dirty_records[txgoff], dr);
2032 			list_insert_tail(&new->dt.di.dr_children, dr);
2033 			dr->dr_parent = new;
2034 		}
2035 	}
2036 	mutex_exit(&new->dt.di.dr_mtx);
2037 	mutex_exit(&dn->dn_mtx);
2038 }
2039 
2040 int
2041 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
2042 {
2043 	int ret = 0;
2044 
2045 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2046 
2047 	if (dn->dn_nlevels == nlevels) {
2048 		ret = 0;
2049 		goto out;
2050 	} else if (nlevels < dn->dn_nlevels) {
2051 		ret = SET_ERROR(EINVAL);
2052 		goto out;
2053 	}
2054 
2055 	dnode_set_nlevels_impl(dn, nlevels, tx);
2056 
2057 out:
2058 	rw_exit(&dn->dn_struct_rwlock);
2059 	return (ret);
2060 }
2061 
2062 /* read-holding callers must not rely on the lock being continuously held */
2063 void
2064 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read,
2065     boolean_t force)
2066 {
2067 	int epbs, new_nlevels;
2068 	uint64_t sz;
2069 
2070 	ASSERT(blkid != DMU_BONUS_BLKID);
2071 
2072 	ASSERT(have_read ?
2073 	    RW_READ_HELD(&dn->dn_struct_rwlock) :
2074 	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
2075 
2076 	/*
2077 	 * if we have a read-lock, check to see if we need to do any work
2078 	 * before upgrading to a write-lock.
2079 	 */
2080 	if (have_read) {
2081 		if (blkid <= dn->dn_maxblkid)
2082 			return;
2083 
2084 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
2085 			rw_exit(&dn->dn_struct_rwlock);
2086 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2087 		}
2088 	}
2089 
2090 	/*
2091 	 * Raw sends (indicated by the force flag) require that we take the
2092 	 * given blkid even if the value is lower than the current value.
2093 	 */
2094 	if (!force && blkid <= dn->dn_maxblkid)
2095 		goto out;
2096 
2097 	/*
2098 	 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
2099 	 * to indicate that this field is set. This allows us to set the
2100 	 * maxblkid to 0 on an existing object in dnode_sync().
2101 	 */
2102 	dn->dn_maxblkid = blkid;
2103 	dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] =
2104 	    blkid | DMU_NEXT_MAXBLKID_SET;
2105 
2106 	/*
2107 	 * Compute the number of levels necessary to support the new maxblkid.
2108 	 * Raw sends will ensure nlevels is set correctly for us.
2109 	 */
2110 	new_nlevels = 1;
2111 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2112 	for (sz = dn->dn_nblkptr;
2113 	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
2114 		new_nlevels++;
2115 
2116 	ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
2117 
2118 	if (!force) {
2119 		if (new_nlevels > dn->dn_nlevels)
2120 			dnode_set_nlevels_impl(dn, new_nlevels, tx);
2121 	} else {
2122 		ASSERT3U(dn->dn_nlevels, >=, new_nlevels);
2123 	}
2124 
2125 out:
2126 	if (have_read)
2127 		rw_downgrade(&dn->dn_struct_rwlock);
2128 }
2129 
2130 static void
2131 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
2132 {
2133 	dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
2134 	if (db != NULL) {
2135 		dmu_buf_will_dirty(&db->db, tx);
2136 		dbuf_rele(db, FTAG);
2137 	}
2138 }
2139 
2140 /*
2141  * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
2142  * and end_blkid.
2143  */
2144 static void
2145 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
2146     dmu_tx_t *tx)
2147 {
2148 	dmu_buf_impl_t *db_search;
2149 	dmu_buf_impl_t *db;
2150 	avl_index_t where;
2151 
2152 	db_search = kmem_zalloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
2153 
2154 	mutex_enter(&dn->dn_dbufs_mtx);
2155 
2156 	db_search->db_level = 1;
2157 	db_search->db_blkid = start_blkid + 1;
2158 	db_search->db_state = DB_SEARCH;
2159 	for (;;) {
2160 
2161 		db = avl_find(&dn->dn_dbufs, db_search, &where);
2162 		if (db == NULL)
2163 			db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2164 
2165 		if (db == NULL || db->db_level != 1 ||
2166 		    db->db_blkid >= end_blkid) {
2167 			break;
2168 		}
2169 
2170 		/*
2171 		 * Setup the next blkid we want to search for.
2172 		 */
2173 		db_search->db_blkid = db->db_blkid + 1;
2174 		ASSERT3U(db->db_blkid, >=, start_blkid);
2175 
2176 		/*
2177 		 * If the dbuf transitions to DB_EVICTING while we're trying
2178 		 * to dirty it, then we will be unable to discover it in
2179 		 * the dbuf hash table. This will result in a call to
2180 		 * dbuf_create() which needs to acquire the dn_dbufs_mtx
2181 		 * lock. To avoid a deadlock, we drop the lock before
2182 		 * dirtying the level-1 dbuf.
2183 		 */
2184 		mutex_exit(&dn->dn_dbufs_mtx);
2185 		dnode_dirty_l1(dn, db->db_blkid, tx);
2186 		mutex_enter(&dn->dn_dbufs_mtx);
2187 	}
2188 
2189 #ifdef ZFS_DEBUG
2190 	/*
2191 	 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
2192 	 */
2193 	db_search->db_level = 1;
2194 	db_search->db_blkid = start_blkid + 1;
2195 	db_search->db_state = DB_SEARCH;
2196 	db = avl_find(&dn->dn_dbufs, db_search, &where);
2197 	if (db == NULL)
2198 		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2199 	for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
2200 		if (db->db_level != 1 || db->db_blkid >= end_blkid)
2201 			break;
2202 		if (db->db_state != DB_EVICTING)
2203 			ASSERT(db->db_dirtycnt > 0);
2204 	}
2205 #endif
2206 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
2207 	mutex_exit(&dn->dn_dbufs_mtx);
2208 }
2209 
2210 void
2211 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, const void *tag)
2212 {
2213 	/*
2214 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
2215 	 * initialize the objset.
2216 	 */
2217 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
2218 		dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2219 
2220 		if (ds != NULL) {
2221 			rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag);
2222 		}
2223 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
2224 			if (dmu_tx_is_syncing(tx))
2225 				dn->dn_dirtyctx = DN_DIRTY_SYNC;
2226 			else
2227 				dn->dn_dirtyctx = DN_DIRTY_OPEN;
2228 			dn->dn_dirtyctx_firstset = tag;
2229 		}
2230 		if (ds != NULL) {
2231 			rrw_exit(&ds->ds_bp_rwlock, tag);
2232 		}
2233 	}
2234 }
2235 
2236 static void
2237 dnode_partial_zero(dnode_t *dn, uint64_t off, uint64_t blkoff, uint64_t len,
2238     dmu_tx_t *tx)
2239 {
2240 	dmu_buf_impl_t *db;
2241 	int res;
2242 
2243 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2244 	res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), TRUE, FALSE,
2245 	    FTAG, &db);
2246 	rw_exit(&dn->dn_struct_rwlock);
2247 	if (res == 0) {
2248 		db_lock_type_t dblt;
2249 		boolean_t dirty;
2250 
2251 		dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2252 		/* don't dirty if not on disk and not dirty */
2253 		dirty = !list_is_empty(&db->db_dirty_records) ||
2254 		    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
2255 		dmu_buf_unlock_parent(db, dblt, FTAG);
2256 		if (dirty) {
2257 			caddr_t data;
2258 
2259 			dmu_buf_will_dirty(&db->db, tx);
2260 			data = db->db.db_data;
2261 			memset(data + blkoff, 0, len);
2262 		}
2263 		dbuf_rele(db, FTAG);
2264 	}
2265 }
2266 
2267 void
2268 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
2269 {
2270 	uint64_t blkoff, blkid, nblks;
2271 	int blksz, blkshift, head, tail;
2272 	int trunc = FALSE;
2273 	int epbs;
2274 
2275 	blksz = dn->dn_datablksz;
2276 	blkshift = dn->dn_datablkshift;
2277 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2278 
2279 	if (len == DMU_OBJECT_END) {
2280 		len = UINT64_MAX - off;
2281 		trunc = TRUE;
2282 	}
2283 
2284 	/*
2285 	 * First, block align the region to free:
2286 	 */
2287 	if (ISP2(blksz)) {
2288 		head = P2NPHASE(off, blksz);
2289 		blkoff = P2PHASE(off, blksz);
2290 		if ((off >> blkshift) > dn->dn_maxblkid)
2291 			return;
2292 	} else {
2293 		ASSERT(dn->dn_maxblkid == 0);
2294 		if (off == 0 && len >= blksz) {
2295 			/*
2296 			 * Freeing the whole block; fast-track this request.
2297 			 */
2298 			blkid = 0;
2299 			nblks = 1;
2300 			if (dn->dn_nlevels > 1) {
2301 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2302 				dnode_dirty_l1(dn, 0, tx);
2303 				rw_exit(&dn->dn_struct_rwlock);
2304 			}
2305 			goto done;
2306 		} else if (off >= blksz) {
2307 			/* Freeing past end-of-data */
2308 			return;
2309 		} else {
2310 			/* Freeing part of the block. */
2311 			head = blksz - off;
2312 			ASSERT3U(head, >, 0);
2313 		}
2314 		blkoff = off;
2315 	}
2316 	/* zero out any partial block data at the start of the range */
2317 	if (head) {
2318 		ASSERT3U(blkoff + head, ==, blksz);
2319 		if (len < head)
2320 			head = len;
2321 		dnode_partial_zero(dn, off, blkoff, head, tx);
2322 		off += head;
2323 		len -= head;
2324 	}
2325 
2326 	/* If the range was less than one block, we're done */
2327 	if (len == 0)
2328 		return;
2329 
2330 	/* If the remaining range is past end of file, we're done */
2331 	if ((off >> blkshift) > dn->dn_maxblkid)
2332 		return;
2333 
2334 	ASSERT(ISP2(blksz));
2335 	if (trunc)
2336 		tail = 0;
2337 	else
2338 		tail = P2PHASE(len, blksz);
2339 
2340 	ASSERT0(P2PHASE(off, blksz));
2341 	/* zero out any partial block data at the end of the range */
2342 	if (tail) {
2343 		if (len < tail)
2344 			tail = len;
2345 		dnode_partial_zero(dn, off + len, 0, tail, tx);
2346 		len -= tail;
2347 	}
2348 
2349 	/* If the range did not include a full block, we are done */
2350 	if (len == 0)
2351 		return;
2352 
2353 	ASSERT(IS_P2ALIGNED(off, blksz));
2354 	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2355 	blkid = off >> blkshift;
2356 	nblks = len >> blkshift;
2357 	if (trunc)
2358 		nblks += 1;
2359 
2360 	/*
2361 	 * Dirty all the indirect blocks in this range.  Note that only
2362 	 * the first and last indirect blocks can actually be written
2363 	 * (if they were partially freed) -- they must be dirtied, even if
2364 	 * they do not exist on disk yet.  The interior blocks will
2365 	 * be freed by free_children(), so they will not actually be written.
2366 	 * Even though these interior blocks will not be written, we
2367 	 * dirty them for two reasons:
2368 	 *
2369 	 *  - It ensures that the indirect blocks remain in memory until
2370 	 *    syncing context.  (They have already been prefetched by
2371 	 *    dmu_tx_hold_free(), so we don't have to worry about reading
2372 	 *    them serially here.)
2373 	 *
2374 	 *  - The dirty space accounting will put pressure on the txg sync
2375 	 *    mechanism to begin syncing, and to delay transactions if there
2376 	 *    is a large amount of freeing.  Even though these indirect
2377 	 *    blocks will not be written, we could need to write the same
2378 	 *    amount of space if we copy the freed BPs into deadlists.
2379 	 */
2380 	if (dn->dn_nlevels > 1) {
2381 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2382 		uint64_t first, last;
2383 
2384 		first = blkid >> epbs;
2385 		dnode_dirty_l1(dn, first, tx);
2386 		if (trunc)
2387 			last = dn->dn_maxblkid >> epbs;
2388 		else
2389 			last = (blkid + nblks - 1) >> epbs;
2390 		if (last != first)
2391 			dnode_dirty_l1(dn, last, tx);
2392 
2393 		dnode_dirty_l1range(dn, first, last, tx);
2394 
2395 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2396 		    SPA_BLKPTRSHIFT;
2397 		for (uint64_t i = first + 1; i < last; i++) {
2398 			/*
2399 			 * Set i to the blockid of the next non-hole
2400 			 * level-1 indirect block at or after i.  Note
2401 			 * that dnode_next_offset() operates in terms of
2402 			 * level-0-equivalent bytes.
2403 			 */
2404 			uint64_t ibyte = i << shift;
2405 			int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2406 			    &ibyte, 2, 1, 0);
2407 			i = ibyte >> shift;
2408 			if (i >= last)
2409 				break;
2410 
2411 			/*
2412 			 * Normally we should not see an error, either
2413 			 * from dnode_next_offset() or dbuf_hold_level()
2414 			 * (except for ESRCH from dnode_next_offset).
2415 			 * If there is an i/o error, then when we read
2416 			 * this block in syncing context, it will use
2417 			 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2418 			 * to the "failmode" property.  dnode_next_offset()
2419 			 * doesn't have a flag to indicate MUSTSUCCEED.
2420 			 */
2421 			if (err != 0)
2422 				break;
2423 
2424 			dnode_dirty_l1(dn, i, tx);
2425 		}
2426 		rw_exit(&dn->dn_struct_rwlock);
2427 	}
2428 
2429 done:
2430 	/*
2431 	 * Add this range to the dnode range list.
2432 	 * We will finish up this free operation in the syncing phase.
2433 	 */
2434 	mutex_enter(&dn->dn_mtx);
2435 	{
2436 		int txgoff = tx->tx_txg & TXG_MASK;
2437 		if (dn->dn_free_ranges[txgoff] == NULL) {
2438 			dn->dn_free_ranges[txgoff] = range_tree_create(NULL,
2439 			    RANGE_SEG64, NULL, 0, 0);
2440 		}
2441 		range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2442 		range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2443 	}
2444 	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2445 	    (u_longlong_t)blkid, (u_longlong_t)nblks,
2446 	    (u_longlong_t)tx->tx_txg);
2447 	mutex_exit(&dn->dn_mtx);
2448 
2449 	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2450 	dnode_setdirty(dn, tx);
2451 }
2452 
2453 static boolean_t
2454 dnode_spill_freed(dnode_t *dn)
2455 {
2456 	int i;
2457 
2458 	mutex_enter(&dn->dn_mtx);
2459 	for (i = 0; i < TXG_SIZE; i++) {
2460 		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2461 			break;
2462 	}
2463 	mutex_exit(&dn->dn_mtx);
2464 	return (i < TXG_SIZE);
2465 }
2466 
2467 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2468 uint64_t
2469 dnode_block_freed(dnode_t *dn, uint64_t blkid)
2470 {
2471 	int i;
2472 
2473 	if (blkid == DMU_BONUS_BLKID)
2474 		return (FALSE);
2475 
2476 	if (dn->dn_free_txg)
2477 		return (TRUE);
2478 
2479 	if (blkid == DMU_SPILL_BLKID)
2480 		return (dnode_spill_freed(dn));
2481 
2482 	mutex_enter(&dn->dn_mtx);
2483 	for (i = 0; i < TXG_SIZE; i++) {
2484 		if (dn->dn_free_ranges[i] != NULL &&
2485 		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2486 			break;
2487 	}
2488 	mutex_exit(&dn->dn_mtx);
2489 	return (i < TXG_SIZE);
2490 }
2491 
2492 /* call from syncing context when we actually write/free space for this dnode */
2493 void
2494 dnode_diduse_space(dnode_t *dn, int64_t delta)
2495 {
2496 	uint64_t space;
2497 	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2498 	    dn, dn->dn_phys,
2499 	    (u_longlong_t)dn->dn_phys->dn_used,
2500 	    (longlong_t)delta);
2501 
2502 	mutex_enter(&dn->dn_mtx);
2503 	space = DN_USED_BYTES(dn->dn_phys);
2504 	if (delta > 0) {
2505 		ASSERT3U(space + delta, >=, space); /* no overflow */
2506 	} else {
2507 		ASSERT3U(space, >=, -delta); /* no underflow */
2508 	}
2509 	space += delta;
2510 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2511 		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2512 		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2513 		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2514 	} else {
2515 		dn->dn_phys->dn_used = space;
2516 		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2517 	}
2518 	mutex_exit(&dn->dn_mtx);
2519 }
2520 
2521 /*
2522  * Scans a block at the indicated "level" looking for a hole or data,
2523  * depending on 'flags'.
2524  *
2525  * If level > 0, then we are scanning an indirect block looking at its
2526  * pointers.  If level == 0, then we are looking at a block of dnodes.
2527  *
2528  * If we don't find what we are looking for in the block, we return ESRCH.
2529  * Otherwise, return with *offset pointing to the beginning (if searching
2530  * forwards) or end (if searching backwards) of the range covered by the
2531  * block pointer we matched on (or dnode).
2532  *
2533  * The basic search algorithm used below by dnode_next_offset() is to
2534  * use this function to search up the block tree (widen the search) until
2535  * we find something (i.e., we don't return ESRCH) and then search back
2536  * down the tree (narrow the search) until we reach our original search
2537  * level.
2538  */
2539 static int
2540 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2541     int lvl, uint64_t blkfill, uint64_t txg)
2542 {
2543 	dmu_buf_impl_t *db = NULL;
2544 	void *data = NULL;
2545 	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2546 	uint64_t epb = 1ULL << epbs;
2547 	uint64_t minfill, maxfill;
2548 	boolean_t hole;
2549 	int i, inc, error, span;
2550 
2551 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2552 
2553 	hole = ((flags & DNODE_FIND_HOLE) != 0);
2554 	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2555 	ASSERT(txg == 0 || !hole);
2556 
2557 	if (lvl == dn->dn_phys->dn_nlevels) {
2558 		error = 0;
2559 		epb = dn->dn_phys->dn_nblkptr;
2560 		data = dn->dn_phys->dn_blkptr;
2561 	} else {
2562 		uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2563 		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2564 		if (error) {
2565 			if (error != ENOENT)
2566 				return (error);
2567 			if (hole)
2568 				return (0);
2569 			/*
2570 			 * This can only happen when we are searching up
2571 			 * the block tree for data.  We don't really need to
2572 			 * adjust the offset, as we will just end up looking
2573 			 * at the pointer to this block in its parent, and its
2574 			 * going to be unallocated, so we will skip over it.
2575 			 */
2576 			return (SET_ERROR(ESRCH));
2577 		}
2578 		error = dbuf_read(db, NULL,
2579 		    DB_RF_CANFAIL | DB_RF_HAVESTRUCT |
2580 		    DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH);
2581 		if (error) {
2582 			dbuf_rele(db, FTAG);
2583 			return (error);
2584 		}
2585 		data = db->db.db_data;
2586 		rw_enter(&db->db_rwlock, RW_READER);
2587 	}
2588 
2589 	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2590 	    BP_GET_LOGICAL_BIRTH(db->db_blkptr) <= txg ||
2591 	    BP_IS_HOLE(db->db_blkptr))) {
2592 		/*
2593 		 * This can only happen when we are searching up the tree
2594 		 * and these conditions mean that we need to keep climbing.
2595 		 */
2596 		error = SET_ERROR(ESRCH);
2597 	} else if (lvl == 0) {
2598 		dnode_phys_t *dnp = data;
2599 
2600 		ASSERT(dn->dn_type == DMU_OT_DNODE);
2601 		ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2602 
2603 		for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2604 		    i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2605 			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2606 				break;
2607 		}
2608 
2609 		if (i == blkfill)
2610 			error = SET_ERROR(ESRCH);
2611 
2612 		*offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2613 		    (i << DNODE_SHIFT);
2614 	} else {
2615 		blkptr_t *bp = data;
2616 		uint64_t start = *offset;
2617 		span = (lvl - 1) * epbs + dn->dn_datablkshift;
2618 		minfill = 0;
2619 		maxfill = blkfill << ((lvl - 1) * epbs);
2620 
2621 		if (hole)
2622 			maxfill--;
2623 		else
2624 			minfill++;
2625 
2626 		if (span >= 8 * sizeof (*offset)) {
2627 			/* This only happens on the highest indirection level */
2628 			ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
2629 			*offset = 0;
2630 		} else {
2631 			*offset = *offset >> span;
2632 		}
2633 
2634 		for (i = BF64_GET(*offset, 0, epbs);
2635 		    i >= 0 && i < epb; i += inc) {
2636 			if (BP_GET_FILL(&bp[i]) >= minfill &&
2637 			    BP_GET_FILL(&bp[i]) <= maxfill &&
2638 			    (hole || BP_GET_LOGICAL_BIRTH(&bp[i]) > txg))
2639 				break;
2640 			if (inc > 0 || *offset > 0)
2641 				*offset += inc;
2642 		}
2643 
2644 		if (span >= 8 * sizeof (*offset)) {
2645 			*offset = start;
2646 		} else {
2647 			*offset = *offset << span;
2648 		}
2649 
2650 		if (inc < 0) {
2651 			/* traversing backwards; position offset at the end */
2652 			if (span < 8 * sizeof (*offset))
2653 				*offset = MIN(*offset + (1ULL << span) - 1,
2654 				    start);
2655 		} else if (*offset < start) {
2656 			*offset = start;
2657 		}
2658 		if (i < 0 || i >= epb)
2659 			error = SET_ERROR(ESRCH);
2660 	}
2661 
2662 	if (db != NULL) {
2663 		rw_exit(&db->db_rwlock);
2664 		dbuf_rele(db, FTAG);
2665 	}
2666 
2667 	return (error);
2668 }
2669 
2670 /*
2671  * Find the next hole, data, or sparse region at or after *offset.
2672  * The value 'blkfill' tells us how many items we expect to find
2673  * in an L0 data block; this value is 1 for normal objects,
2674  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2675  * DNODES_PER_BLOCK when searching for sparse regions thereof.
2676  *
2677  * Examples:
2678  *
2679  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2680  *	Finds the next/previous hole/data in a file.
2681  *	Used in dmu_offset_next().
2682  *
2683  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2684  *	Finds the next free/allocated dnode an objset's meta-dnode.
2685  *	Only finds objects that have new contents since txg (ie.
2686  *	bonus buffer changes and content removal are ignored).
2687  *	Used in dmu_object_next().
2688  *
2689  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2690  *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
2691  *	Used in dmu_object_alloc().
2692  */
2693 int
2694 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2695     int minlvl, uint64_t blkfill, uint64_t txg)
2696 {
2697 	uint64_t initial_offset = *offset;
2698 	int lvl, maxlvl;
2699 	int error = 0;
2700 
2701 	if (!(flags & DNODE_FIND_HAVELOCK))
2702 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2703 
2704 	if (dn->dn_phys->dn_nlevels == 0) {
2705 		error = SET_ERROR(ESRCH);
2706 		goto out;
2707 	}
2708 
2709 	if (dn->dn_datablkshift == 0) {
2710 		if (*offset < dn->dn_datablksz) {
2711 			if (flags & DNODE_FIND_HOLE)
2712 				*offset = dn->dn_datablksz;
2713 		} else {
2714 			error = SET_ERROR(ESRCH);
2715 		}
2716 		goto out;
2717 	}
2718 
2719 	maxlvl = dn->dn_phys->dn_nlevels;
2720 
2721 	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2722 		error = dnode_next_offset_level(dn,
2723 		    flags, offset, lvl, blkfill, txg);
2724 		if (error != ESRCH)
2725 			break;
2726 	}
2727 
2728 	while (error == 0 && --lvl >= minlvl) {
2729 		error = dnode_next_offset_level(dn,
2730 		    flags, offset, lvl, blkfill, txg);
2731 	}
2732 
2733 	/*
2734 	 * There's always a "virtual hole" at the end of the object, even
2735 	 * if all BP's which physically exist are non-holes.
2736 	 */
2737 	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2738 	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2739 		error = 0;
2740 	}
2741 
2742 	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2743 	    initial_offset < *offset : initial_offset > *offset))
2744 		error = SET_ERROR(ESRCH);
2745 out:
2746 	if (!(flags & DNODE_FIND_HAVELOCK))
2747 		rw_exit(&dn->dn_struct_rwlock);
2748 
2749 	return (error);
2750 }
2751 
2752 #if defined(_KERNEL)
2753 EXPORT_SYMBOL(dnode_hold);
2754 EXPORT_SYMBOL(dnode_rele);
2755 EXPORT_SYMBOL(dnode_set_nlevels);
2756 EXPORT_SYMBOL(dnode_set_blksz);
2757 EXPORT_SYMBOL(dnode_free_range);
2758 EXPORT_SYMBOL(dnode_evict_dbufs);
2759 EXPORT_SYMBOL(dnode_evict_bonus);
2760 #endif
2761 
2762 ZFS_MODULE_PARAM(zfs, zfs_, default_bs, INT, ZMOD_RW,
2763 	"Default dnode block shift");
2764 ZFS_MODULE_PARAM(zfs, zfs_, default_ibs, INT, ZMOD_RW,
2765 	"Default dnode indirect block shift");
2766