xref: /freebsd/sys/contrib/openzfs/module/zfs/dnode.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/dbuf.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/zio.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/range_tree.h>
40 #include <sys/trace_zfs.h>
41 #include <sys/zfs_project.h>
42 
43 dnode_stats_t dnode_stats = {
44 	{ "dnode_hold_dbuf_hold",		KSTAT_DATA_UINT64 },
45 	{ "dnode_hold_dbuf_read",		KSTAT_DATA_UINT64 },
46 	{ "dnode_hold_alloc_hits",		KSTAT_DATA_UINT64 },
47 	{ "dnode_hold_alloc_misses",		KSTAT_DATA_UINT64 },
48 	{ "dnode_hold_alloc_interior",		KSTAT_DATA_UINT64 },
49 	{ "dnode_hold_alloc_lock_retry",	KSTAT_DATA_UINT64 },
50 	{ "dnode_hold_alloc_lock_misses",	KSTAT_DATA_UINT64 },
51 	{ "dnode_hold_alloc_type_none",		KSTAT_DATA_UINT64 },
52 	{ "dnode_hold_free_hits",		KSTAT_DATA_UINT64 },
53 	{ "dnode_hold_free_misses",		KSTAT_DATA_UINT64 },
54 	{ "dnode_hold_free_lock_misses",	KSTAT_DATA_UINT64 },
55 	{ "dnode_hold_free_lock_retry",		KSTAT_DATA_UINT64 },
56 	{ "dnode_hold_free_overflow",		KSTAT_DATA_UINT64 },
57 	{ "dnode_hold_free_refcount",		KSTAT_DATA_UINT64 },
58 	{ "dnode_free_interior_lock_retry",	KSTAT_DATA_UINT64 },
59 	{ "dnode_allocate",			KSTAT_DATA_UINT64 },
60 	{ "dnode_reallocate",			KSTAT_DATA_UINT64 },
61 	{ "dnode_buf_evict",			KSTAT_DATA_UINT64 },
62 	{ "dnode_alloc_next_chunk",		KSTAT_DATA_UINT64 },
63 	{ "dnode_alloc_race",			KSTAT_DATA_UINT64 },
64 	{ "dnode_alloc_next_block",		KSTAT_DATA_UINT64 },
65 	{ "dnode_move_invalid",			KSTAT_DATA_UINT64 },
66 	{ "dnode_move_recheck1",		KSTAT_DATA_UINT64 },
67 	{ "dnode_move_recheck2",		KSTAT_DATA_UINT64 },
68 	{ "dnode_move_special",			KSTAT_DATA_UINT64 },
69 	{ "dnode_move_handle",			KSTAT_DATA_UINT64 },
70 	{ "dnode_move_rwlock",			KSTAT_DATA_UINT64 },
71 	{ "dnode_move_active",			KSTAT_DATA_UINT64 },
72 };
73 
74 dnode_sums_t dnode_sums;
75 
76 static kstat_t *dnode_ksp;
77 static kmem_cache_t *dnode_cache;
78 
79 static dnode_phys_t dnode_phys_zero __maybe_unused;
80 
81 int zfs_default_bs = SPA_MINBLOCKSHIFT;
82 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
83 
84 #ifdef	_KERNEL
85 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
86 #endif /* _KERNEL */
87 
88 static int
89 dbuf_compare(const void *x1, const void *x2)
90 {
91 	const dmu_buf_impl_t *d1 = x1;
92 	const dmu_buf_impl_t *d2 = x2;
93 
94 	int cmp = TREE_CMP(d1->db_level, d2->db_level);
95 	if (likely(cmp))
96 		return (cmp);
97 
98 	cmp = TREE_CMP(d1->db_blkid, d2->db_blkid);
99 	if (likely(cmp))
100 		return (cmp);
101 
102 	if (d1->db_state == DB_SEARCH) {
103 		ASSERT3S(d2->db_state, !=, DB_SEARCH);
104 		return (-1);
105 	} else if (d2->db_state == DB_SEARCH) {
106 		ASSERT3S(d1->db_state, !=, DB_SEARCH);
107 		return (1);
108 	}
109 
110 	return (TREE_PCMP(d1, d2));
111 }
112 
113 static int
114 dnode_cons(void *arg, void *unused, int kmflag)
115 {
116 	(void) unused, (void) kmflag;
117 	dnode_t *dn = arg;
118 
119 	rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
120 	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
121 	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
122 	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
123 	cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL);
124 
125 	/*
126 	 * Every dbuf has a reference, and dropping a tracked reference is
127 	 * O(number of references), so don't track dn_holds.
128 	 */
129 	zfs_refcount_create_untracked(&dn->dn_holds);
130 	zfs_refcount_create(&dn->dn_tx_holds);
131 	list_link_init(&dn->dn_link);
132 
133 	memset(dn->dn_next_type, 0, sizeof (dn->dn_next_type));
134 	memset(dn->dn_next_nblkptr, 0, sizeof (dn->dn_next_nblkptr));
135 	memset(dn->dn_next_nlevels, 0, sizeof (dn->dn_next_nlevels));
136 	memset(dn->dn_next_indblkshift, 0, sizeof (dn->dn_next_indblkshift));
137 	memset(dn->dn_next_bonustype, 0, sizeof (dn->dn_next_bonustype));
138 	memset(dn->dn_rm_spillblk, 0, sizeof (dn->dn_rm_spillblk));
139 	memset(dn->dn_next_bonuslen, 0, sizeof (dn->dn_next_bonuslen));
140 	memset(dn->dn_next_blksz, 0, sizeof (dn->dn_next_blksz));
141 	memset(dn->dn_next_maxblkid, 0, sizeof (dn->dn_next_maxblkid));
142 
143 	for (int i = 0; i < TXG_SIZE; i++) {
144 		multilist_link_init(&dn->dn_dirty_link[i]);
145 		dn->dn_free_ranges[i] = NULL;
146 		list_create(&dn->dn_dirty_records[i],
147 		    sizeof (dbuf_dirty_record_t),
148 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
149 	}
150 
151 	dn->dn_allocated_txg = 0;
152 	dn->dn_free_txg = 0;
153 	dn->dn_assigned_txg = 0;
154 	dn->dn_dirty_txg = 0;
155 	dn->dn_dirtyctx = 0;
156 	dn->dn_dirtyctx_firstset = NULL;
157 	dn->dn_bonus = NULL;
158 	dn->dn_have_spill = B_FALSE;
159 	dn->dn_zio = NULL;
160 	dn->dn_oldused = 0;
161 	dn->dn_oldflags = 0;
162 	dn->dn_olduid = 0;
163 	dn->dn_oldgid = 0;
164 	dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
165 	dn->dn_newuid = 0;
166 	dn->dn_newgid = 0;
167 	dn->dn_newprojid = ZFS_DEFAULT_PROJID;
168 	dn->dn_id_flags = 0;
169 
170 	dn->dn_dbufs_count = 0;
171 	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
172 	    offsetof(dmu_buf_impl_t, db_link));
173 
174 	dn->dn_moved = 0;
175 	return (0);
176 }
177 
178 static void
179 dnode_dest(void *arg, void *unused)
180 {
181 	(void) unused;
182 	dnode_t *dn = arg;
183 
184 	rw_destroy(&dn->dn_struct_rwlock);
185 	mutex_destroy(&dn->dn_mtx);
186 	mutex_destroy(&dn->dn_dbufs_mtx);
187 	cv_destroy(&dn->dn_notxholds);
188 	cv_destroy(&dn->dn_nodnholds);
189 	zfs_refcount_destroy(&dn->dn_holds);
190 	zfs_refcount_destroy(&dn->dn_tx_holds);
191 	ASSERT(!list_link_active(&dn->dn_link));
192 
193 	for (int i = 0; i < TXG_SIZE; i++) {
194 		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
195 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
196 		list_destroy(&dn->dn_dirty_records[i]);
197 		ASSERT0(dn->dn_next_nblkptr[i]);
198 		ASSERT0(dn->dn_next_nlevels[i]);
199 		ASSERT0(dn->dn_next_indblkshift[i]);
200 		ASSERT0(dn->dn_next_bonustype[i]);
201 		ASSERT0(dn->dn_rm_spillblk[i]);
202 		ASSERT0(dn->dn_next_bonuslen[i]);
203 		ASSERT0(dn->dn_next_blksz[i]);
204 		ASSERT0(dn->dn_next_maxblkid[i]);
205 	}
206 
207 	ASSERT0(dn->dn_allocated_txg);
208 	ASSERT0(dn->dn_free_txg);
209 	ASSERT0(dn->dn_assigned_txg);
210 	ASSERT0(dn->dn_dirty_txg);
211 	ASSERT0(dn->dn_dirtyctx);
212 	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
213 	ASSERT3P(dn->dn_bonus, ==, NULL);
214 	ASSERT(!dn->dn_have_spill);
215 	ASSERT3P(dn->dn_zio, ==, NULL);
216 	ASSERT0(dn->dn_oldused);
217 	ASSERT0(dn->dn_oldflags);
218 	ASSERT0(dn->dn_olduid);
219 	ASSERT0(dn->dn_oldgid);
220 	ASSERT0(dn->dn_oldprojid);
221 	ASSERT0(dn->dn_newuid);
222 	ASSERT0(dn->dn_newgid);
223 	ASSERT0(dn->dn_newprojid);
224 	ASSERT0(dn->dn_id_flags);
225 
226 	ASSERT0(dn->dn_dbufs_count);
227 	avl_destroy(&dn->dn_dbufs);
228 }
229 
230 static int
231 dnode_kstats_update(kstat_t *ksp, int rw)
232 {
233 	dnode_stats_t *ds = ksp->ks_data;
234 
235 	if (rw == KSTAT_WRITE)
236 		return (EACCES);
237 	ds->dnode_hold_dbuf_hold.value.ui64 =
238 	    wmsum_value(&dnode_sums.dnode_hold_dbuf_hold);
239 	ds->dnode_hold_dbuf_read.value.ui64 =
240 	    wmsum_value(&dnode_sums.dnode_hold_dbuf_read);
241 	ds->dnode_hold_alloc_hits.value.ui64 =
242 	    wmsum_value(&dnode_sums.dnode_hold_alloc_hits);
243 	ds->dnode_hold_alloc_misses.value.ui64 =
244 	    wmsum_value(&dnode_sums.dnode_hold_alloc_misses);
245 	ds->dnode_hold_alloc_interior.value.ui64 =
246 	    wmsum_value(&dnode_sums.dnode_hold_alloc_interior);
247 	ds->dnode_hold_alloc_lock_retry.value.ui64 =
248 	    wmsum_value(&dnode_sums.dnode_hold_alloc_lock_retry);
249 	ds->dnode_hold_alloc_lock_misses.value.ui64 =
250 	    wmsum_value(&dnode_sums.dnode_hold_alloc_lock_misses);
251 	ds->dnode_hold_alloc_type_none.value.ui64 =
252 	    wmsum_value(&dnode_sums.dnode_hold_alloc_type_none);
253 	ds->dnode_hold_free_hits.value.ui64 =
254 	    wmsum_value(&dnode_sums.dnode_hold_free_hits);
255 	ds->dnode_hold_free_misses.value.ui64 =
256 	    wmsum_value(&dnode_sums.dnode_hold_free_misses);
257 	ds->dnode_hold_free_lock_misses.value.ui64 =
258 	    wmsum_value(&dnode_sums.dnode_hold_free_lock_misses);
259 	ds->dnode_hold_free_lock_retry.value.ui64 =
260 	    wmsum_value(&dnode_sums.dnode_hold_free_lock_retry);
261 	ds->dnode_hold_free_refcount.value.ui64 =
262 	    wmsum_value(&dnode_sums.dnode_hold_free_refcount);
263 	ds->dnode_hold_free_overflow.value.ui64 =
264 	    wmsum_value(&dnode_sums.dnode_hold_free_overflow);
265 	ds->dnode_free_interior_lock_retry.value.ui64 =
266 	    wmsum_value(&dnode_sums.dnode_free_interior_lock_retry);
267 	ds->dnode_allocate.value.ui64 =
268 	    wmsum_value(&dnode_sums.dnode_allocate);
269 	ds->dnode_reallocate.value.ui64 =
270 	    wmsum_value(&dnode_sums.dnode_reallocate);
271 	ds->dnode_buf_evict.value.ui64 =
272 	    wmsum_value(&dnode_sums.dnode_buf_evict);
273 	ds->dnode_alloc_next_chunk.value.ui64 =
274 	    wmsum_value(&dnode_sums.dnode_alloc_next_chunk);
275 	ds->dnode_alloc_race.value.ui64 =
276 	    wmsum_value(&dnode_sums.dnode_alloc_race);
277 	ds->dnode_alloc_next_block.value.ui64 =
278 	    wmsum_value(&dnode_sums.dnode_alloc_next_block);
279 	ds->dnode_move_invalid.value.ui64 =
280 	    wmsum_value(&dnode_sums.dnode_move_invalid);
281 	ds->dnode_move_recheck1.value.ui64 =
282 	    wmsum_value(&dnode_sums.dnode_move_recheck1);
283 	ds->dnode_move_recheck2.value.ui64 =
284 	    wmsum_value(&dnode_sums.dnode_move_recheck2);
285 	ds->dnode_move_special.value.ui64 =
286 	    wmsum_value(&dnode_sums.dnode_move_special);
287 	ds->dnode_move_handle.value.ui64 =
288 	    wmsum_value(&dnode_sums.dnode_move_handle);
289 	ds->dnode_move_rwlock.value.ui64 =
290 	    wmsum_value(&dnode_sums.dnode_move_rwlock);
291 	ds->dnode_move_active.value.ui64 =
292 	    wmsum_value(&dnode_sums.dnode_move_active);
293 	return (0);
294 }
295 
296 void
297 dnode_init(void)
298 {
299 	ASSERT(dnode_cache == NULL);
300 	dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
301 	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
302 	kmem_cache_set_move(dnode_cache, dnode_move);
303 
304 	wmsum_init(&dnode_sums.dnode_hold_dbuf_hold, 0);
305 	wmsum_init(&dnode_sums.dnode_hold_dbuf_read, 0);
306 	wmsum_init(&dnode_sums.dnode_hold_alloc_hits, 0);
307 	wmsum_init(&dnode_sums.dnode_hold_alloc_misses, 0);
308 	wmsum_init(&dnode_sums.dnode_hold_alloc_interior, 0);
309 	wmsum_init(&dnode_sums.dnode_hold_alloc_lock_retry, 0);
310 	wmsum_init(&dnode_sums.dnode_hold_alloc_lock_misses, 0);
311 	wmsum_init(&dnode_sums.dnode_hold_alloc_type_none, 0);
312 	wmsum_init(&dnode_sums.dnode_hold_free_hits, 0);
313 	wmsum_init(&dnode_sums.dnode_hold_free_misses, 0);
314 	wmsum_init(&dnode_sums.dnode_hold_free_lock_misses, 0);
315 	wmsum_init(&dnode_sums.dnode_hold_free_lock_retry, 0);
316 	wmsum_init(&dnode_sums.dnode_hold_free_refcount, 0);
317 	wmsum_init(&dnode_sums.dnode_hold_free_overflow, 0);
318 	wmsum_init(&dnode_sums.dnode_free_interior_lock_retry, 0);
319 	wmsum_init(&dnode_sums.dnode_allocate, 0);
320 	wmsum_init(&dnode_sums.dnode_reallocate, 0);
321 	wmsum_init(&dnode_sums.dnode_buf_evict, 0);
322 	wmsum_init(&dnode_sums.dnode_alloc_next_chunk, 0);
323 	wmsum_init(&dnode_sums.dnode_alloc_race, 0);
324 	wmsum_init(&dnode_sums.dnode_alloc_next_block, 0);
325 	wmsum_init(&dnode_sums.dnode_move_invalid, 0);
326 	wmsum_init(&dnode_sums.dnode_move_recheck1, 0);
327 	wmsum_init(&dnode_sums.dnode_move_recheck2, 0);
328 	wmsum_init(&dnode_sums.dnode_move_special, 0);
329 	wmsum_init(&dnode_sums.dnode_move_handle, 0);
330 	wmsum_init(&dnode_sums.dnode_move_rwlock, 0);
331 	wmsum_init(&dnode_sums.dnode_move_active, 0);
332 
333 	dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
334 	    KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
335 	    KSTAT_FLAG_VIRTUAL);
336 	if (dnode_ksp != NULL) {
337 		dnode_ksp->ks_data = &dnode_stats;
338 		dnode_ksp->ks_update = dnode_kstats_update;
339 		kstat_install(dnode_ksp);
340 	}
341 }
342 
343 void
344 dnode_fini(void)
345 {
346 	if (dnode_ksp != NULL) {
347 		kstat_delete(dnode_ksp);
348 		dnode_ksp = NULL;
349 	}
350 
351 	wmsum_fini(&dnode_sums.dnode_hold_dbuf_hold);
352 	wmsum_fini(&dnode_sums.dnode_hold_dbuf_read);
353 	wmsum_fini(&dnode_sums.dnode_hold_alloc_hits);
354 	wmsum_fini(&dnode_sums.dnode_hold_alloc_misses);
355 	wmsum_fini(&dnode_sums.dnode_hold_alloc_interior);
356 	wmsum_fini(&dnode_sums.dnode_hold_alloc_lock_retry);
357 	wmsum_fini(&dnode_sums.dnode_hold_alloc_lock_misses);
358 	wmsum_fini(&dnode_sums.dnode_hold_alloc_type_none);
359 	wmsum_fini(&dnode_sums.dnode_hold_free_hits);
360 	wmsum_fini(&dnode_sums.dnode_hold_free_misses);
361 	wmsum_fini(&dnode_sums.dnode_hold_free_lock_misses);
362 	wmsum_fini(&dnode_sums.dnode_hold_free_lock_retry);
363 	wmsum_fini(&dnode_sums.dnode_hold_free_refcount);
364 	wmsum_fini(&dnode_sums.dnode_hold_free_overflow);
365 	wmsum_fini(&dnode_sums.dnode_free_interior_lock_retry);
366 	wmsum_fini(&dnode_sums.dnode_allocate);
367 	wmsum_fini(&dnode_sums.dnode_reallocate);
368 	wmsum_fini(&dnode_sums.dnode_buf_evict);
369 	wmsum_fini(&dnode_sums.dnode_alloc_next_chunk);
370 	wmsum_fini(&dnode_sums.dnode_alloc_race);
371 	wmsum_fini(&dnode_sums.dnode_alloc_next_block);
372 	wmsum_fini(&dnode_sums.dnode_move_invalid);
373 	wmsum_fini(&dnode_sums.dnode_move_recheck1);
374 	wmsum_fini(&dnode_sums.dnode_move_recheck2);
375 	wmsum_fini(&dnode_sums.dnode_move_special);
376 	wmsum_fini(&dnode_sums.dnode_move_handle);
377 	wmsum_fini(&dnode_sums.dnode_move_rwlock);
378 	wmsum_fini(&dnode_sums.dnode_move_active);
379 
380 	kmem_cache_destroy(dnode_cache);
381 	dnode_cache = NULL;
382 }
383 
384 
385 #ifdef ZFS_DEBUG
386 void
387 dnode_verify(dnode_t *dn)
388 {
389 	int drop_struct_lock = FALSE;
390 
391 	ASSERT(dn->dn_phys);
392 	ASSERT(dn->dn_objset);
393 	ASSERT(dn->dn_handle->dnh_dnode == dn);
394 
395 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
396 
397 	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
398 		return;
399 
400 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
401 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
402 		drop_struct_lock = TRUE;
403 	}
404 	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
405 		int i;
406 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
407 		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
408 		if (dn->dn_datablkshift) {
409 			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
410 			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
411 			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
412 		}
413 		ASSERT3U(dn->dn_nlevels, <=, 30);
414 		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
415 		ASSERT3U(dn->dn_nblkptr, >=, 1);
416 		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
417 		ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
418 		ASSERT3U(dn->dn_datablksz, ==,
419 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
420 		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
421 		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
422 		    dn->dn_bonuslen, <=, max_bonuslen);
423 		for (i = 0; i < TXG_SIZE; i++) {
424 			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
425 		}
426 	}
427 	if (dn->dn_phys->dn_type != DMU_OT_NONE)
428 		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
429 	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
430 	if (dn->dn_dbuf != NULL) {
431 		ASSERT3P(dn->dn_phys, ==,
432 		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
433 		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
434 	}
435 	if (drop_struct_lock)
436 		rw_exit(&dn->dn_struct_rwlock);
437 }
438 #endif
439 
440 void
441 dnode_byteswap(dnode_phys_t *dnp)
442 {
443 	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
444 	int i;
445 
446 	if (dnp->dn_type == DMU_OT_NONE) {
447 		memset(dnp, 0, sizeof (dnode_phys_t));
448 		return;
449 	}
450 
451 	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
452 	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
453 	dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
454 	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
455 	dnp->dn_used = BSWAP_64(dnp->dn_used);
456 
457 	/*
458 	 * dn_nblkptr is only one byte, so it's OK to read it in either
459 	 * byte order.  We can't read dn_bouslen.
460 	 */
461 	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
462 	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
463 	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
464 		buf64[i] = BSWAP_64(buf64[i]);
465 
466 	/*
467 	 * OK to check dn_bonuslen for zero, because it won't matter if
468 	 * we have the wrong byte order.  This is necessary because the
469 	 * dnode dnode is smaller than a regular dnode.
470 	 */
471 	if (dnp->dn_bonuslen != 0) {
472 		dmu_object_byteswap_t byteswap;
473 		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
474 		byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
475 		dmu_ot_byteswap[byteswap].ob_func(DN_BONUS(dnp),
476 		    DN_MAX_BONUS_LEN(dnp));
477 	}
478 
479 	/* Swap SPILL block if we have one */
480 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
481 		byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
482 }
483 
484 void
485 dnode_buf_byteswap(void *vbuf, size_t size)
486 {
487 	int i = 0;
488 
489 	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
490 	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
491 
492 	while (i < size) {
493 		dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
494 		dnode_byteswap(dnp);
495 
496 		i += DNODE_MIN_SIZE;
497 		if (dnp->dn_type != DMU_OT_NONE)
498 			i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
499 	}
500 }
501 
502 void
503 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
504 {
505 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
506 
507 	dnode_setdirty(dn, tx);
508 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
509 	ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
510 	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
511 
512 	if (newsize < dn->dn_bonuslen) {
513 		/* clear any data after the end of the new size */
514 		size_t diff = dn->dn_bonuslen - newsize;
515 		char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize;
516 		memset(data_end, 0, diff);
517 	}
518 
519 	dn->dn_bonuslen = newsize;
520 	if (newsize == 0)
521 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
522 	else
523 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
524 	rw_exit(&dn->dn_struct_rwlock);
525 }
526 
527 void
528 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
529 {
530 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
531 	dnode_setdirty(dn, tx);
532 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
533 	dn->dn_bonustype = newtype;
534 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
535 	rw_exit(&dn->dn_struct_rwlock);
536 }
537 
538 void
539 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
540 {
541 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
542 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
543 	dnode_setdirty(dn, tx);
544 	dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK;
545 	dn->dn_have_spill = B_FALSE;
546 }
547 
548 static void
549 dnode_setdblksz(dnode_t *dn, int size)
550 {
551 	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
552 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
553 	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
554 	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
555 	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
556 	dn->dn_datablksz = size;
557 	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
558 	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
559 }
560 
561 static dnode_t *
562 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
563     uint64_t object, dnode_handle_t *dnh)
564 {
565 	dnode_t *dn;
566 
567 	dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
568 	dn->dn_moved = 0;
569 
570 	/*
571 	 * Defer setting dn_objset until the dnode is ready to be a candidate
572 	 * for the dnode_move() callback.
573 	 */
574 	dn->dn_object = object;
575 	dn->dn_dbuf = db;
576 	dn->dn_handle = dnh;
577 	dn->dn_phys = dnp;
578 
579 	if (dnp->dn_datablkszsec) {
580 		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
581 	} else {
582 		dn->dn_datablksz = 0;
583 		dn->dn_datablkszsec = 0;
584 		dn->dn_datablkshift = 0;
585 	}
586 	dn->dn_indblkshift = dnp->dn_indblkshift;
587 	dn->dn_nlevels = dnp->dn_nlevels;
588 	dn->dn_type = dnp->dn_type;
589 	dn->dn_nblkptr = dnp->dn_nblkptr;
590 	dn->dn_checksum = dnp->dn_checksum;
591 	dn->dn_compress = dnp->dn_compress;
592 	dn->dn_bonustype = dnp->dn_bonustype;
593 	dn->dn_bonuslen = dnp->dn_bonuslen;
594 	dn->dn_num_slots = dnp->dn_extra_slots + 1;
595 	dn->dn_maxblkid = dnp->dn_maxblkid;
596 	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
597 	dn->dn_id_flags = 0;
598 
599 	dmu_zfetch_init(&dn->dn_zfetch, dn);
600 
601 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
602 	ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
603 	ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
604 
605 	mutex_enter(&os->os_lock);
606 
607 	/*
608 	 * Exclude special dnodes from os_dnodes so an empty os_dnodes
609 	 * signifies that the special dnodes have no references from
610 	 * their children (the entries in os_dnodes).  This allows
611 	 * dnode_destroy() to easily determine if the last child has
612 	 * been removed and then complete eviction of the objset.
613 	 */
614 	if (!DMU_OBJECT_IS_SPECIAL(object))
615 		list_insert_head(&os->os_dnodes, dn);
616 	membar_producer();
617 
618 	/*
619 	 * Everything else must be valid before assigning dn_objset
620 	 * makes the dnode eligible for dnode_move().
621 	 */
622 	dn->dn_objset = os;
623 
624 	dnh->dnh_dnode = dn;
625 	mutex_exit(&os->os_lock);
626 
627 	arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
628 
629 	return (dn);
630 }
631 
632 /*
633  * Caller must be holding the dnode handle, which is released upon return.
634  */
635 static void
636 dnode_destroy(dnode_t *dn)
637 {
638 	objset_t *os = dn->dn_objset;
639 	boolean_t complete_os_eviction = B_FALSE;
640 
641 	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
642 
643 	mutex_enter(&os->os_lock);
644 	POINTER_INVALIDATE(&dn->dn_objset);
645 	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
646 		list_remove(&os->os_dnodes, dn);
647 		complete_os_eviction =
648 		    list_is_empty(&os->os_dnodes) &&
649 		    list_link_active(&os->os_evicting_node);
650 	}
651 	mutex_exit(&os->os_lock);
652 
653 	/* the dnode can no longer move, so we can release the handle */
654 	if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
655 		zrl_remove(&dn->dn_handle->dnh_zrlock);
656 
657 	dn->dn_allocated_txg = 0;
658 	dn->dn_free_txg = 0;
659 	dn->dn_assigned_txg = 0;
660 	dn->dn_dirty_txg = 0;
661 
662 	dn->dn_dirtyctx = 0;
663 	dn->dn_dirtyctx_firstset = NULL;
664 	if (dn->dn_bonus != NULL) {
665 		mutex_enter(&dn->dn_bonus->db_mtx);
666 		dbuf_destroy(dn->dn_bonus);
667 		dn->dn_bonus = NULL;
668 	}
669 	dn->dn_zio = NULL;
670 
671 	dn->dn_have_spill = B_FALSE;
672 	dn->dn_oldused = 0;
673 	dn->dn_oldflags = 0;
674 	dn->dn_olduid = 0;
675 	dn->dn_oldgid = 0;
676 	dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
677 	dn->dn_newuid = 0;
678 	dn->dn_newgid = 0;
679 	dn->dn_newprojid = ZFS_DEFAULT_PROJID;
680 	dn->dn_id_flags = 0;
681 
682 	dmu_zfetch_fini(&dn->dn_zfetch);
683 	kmem_cache_free(dnode_cache, dn);
684 	arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
685 
686 	if (complete_os_eviction)
687 		dmu_objset_evict_done(os);
688 }
689 
690 void
691 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
692     dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
693 {
694 	int i;
695 
696 	ASSERT3U(dn_slots, >, 0);
697 	ASSERT3U(dn_slots << DNODE_SHIFT, <=,
698 	    spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
699 	ASSERT3U(blocksize, <=,
700 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
701 	if (blocksize == 0)
702 		blocksize = 1 << zfs_default_bs;
703 	else
704 		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
705 
706 	if (ibs == 0)
707 		ibs = zfs_default_ibs;
708 
709 	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
710 
711 	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
712 	    dn->dn_objset, (u_longlong_t)dn->dn_object,
713 	    (u_longlong_t)tx->tx_txg, blocksize, ibs, dn_slots);
714 	DNODE_STAT_BUMP(dnode_allocate);
715 
716 	ASSERT(dn->dn_type == DMU_OT_NONE);
717 	ASSERT0(memcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)));
718 	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
719 	ASSERT(ot != DMU_OT_NONE);
720 	ASSERT(DMU_OT_IS_VALID(ot));
721 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
722 	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
723 	    (bonustype == DMU_OTN_UINT64_METADATA && bonuslen == 0) ||
724 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
725 	ASSERT(DMU_OT_IS_VALID(bonustype));
726 	ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
727 	ASSERT(dn->dn_type == DMU_OT_NONE);
728 	ASSERT0(dn->dn_maxblkid);
729 	ASSERT0(dn->dn_allocated_txg);
730 	ASSERT0(dn->dn_assigned_txg);
731 	ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
732 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
733 	ASSERT(avl_is_empty(&dn->dn_dbufs));
734 
735 	for (i = 0; i < TXG_SIZE; i++) {
736 		ASSERT0(dn->dn_next_nblkptr[i]);
737 		ASSERT0(dn->dn_next_nlevels[i]);
738 		ASSERT0(dn->dn_next_indblkshift[i]);
739 		ASSERT0(dn->dn_next_bonuslen[i]);
740 		ASSERT0(dn->dn_next_bonustype[i]);
741 		ASSERT0(dn->dn_rm_spillblk[i]);
742 		ASSERT0(dn->dn_next_blksz[i]);
743 		ASSERT0(dn->dn_next_maxblkid[i]);
744 		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
745 		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
746 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
747 	}
748 
749 	dn->dn_type = ot;
750 	dnode_setdblksz(dn, blocksize);
751 	dn->dn_indblkshift = ibs;
752 	dn->dn_nlevels = 1;
753 	dn->dn_num_slots = dn_slots;
754 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
755 		dn->dn_nblkptr = 1;
756 	else {
757 		dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
758 		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
759 		    SPA_BLKPTRSHIFT));
760 	}
761 
762 	dn->dn_bonustype = bonustype;
763 	dn->dn_bonuslen = bonuslen;
764 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
765 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
766 	dn->dn_dirtyctx = 0;
767 
768 	dn->dn_free_txg = 0;
769 	dn->dn_dirtyctx_firstset = NULL;
770 	dn->dn_dirty_txg = 0;
771 
772 	dn->dn_allocated_txg = tx->tx_txg;
773 	dn->dn_id_flags = 0;
774 
775 	dnode_setdirty(dn, tx);
776 	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
777 	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
778 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
779 	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
780 }
781 
782 void
783 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
784     dmu_object_type_t bonustype, int bonuslen, int dn_slots,
785     boolean_t keep_spill, dmu_tx_t *tx)
786 {
787 	int nblkptr;
788 
789 	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
790 	ASSERT3U(blocksize, <=,
791 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
792 	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
793 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
794 	ASSERT(tx->tx_txg != 0);
795 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
796 	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
797 	    (bonustype == DMU_OT_SA && bonuslen == 0));
798 	ASSERT(DMU_OT_IS_VALID(bonustype));
799 	ASSERT3U(bonuslen, <=,
800 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
801 	ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
802 
803 	dnode_free_interior_slots(dn);
804 	DNODE_STAT_BUMP(dnode_reallocate);
805 
806 	/* clean up any unreferenced dbufs */
807 	dnode_evict_dbufs(dn);
808 
809 	dn->dn_id_flags = 0;
810 
811 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
812 	dnode_setdirty(dn, tx);
813 	if (dn->dn_datablksz != blocksize) {
814 		/* change blocksize */
815 		ASSERT0(dn->dn_maxblkid);
816 		ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
817 		    dnode_block_freed(dn, 0));
818 
819 		dnode_setdblksz(dn, blocksize);
820 		dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize;
821 	}
822 	if (dn->dn_bonuslen != bonuslen)
823 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen;
824 
825 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
826 		nblkptr = 1;
827 	else
828 		nblkptr = MIN(DN_MAX_NBLKPTR,
829 		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
830 		    SPA_BLKPTRSHIFT));
831 	if (dn->dn_bonustype != bonustype)
832 		dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype;
833 	if (dn->dn_nblkptr != nblkptr)
834 		dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr;
835 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) {
836 		dbuf_rm_spill(dn, tx);
837 		dnode_rm_spill(dn, tx);
838 	}
839 
840 	rw_exit(&dn->dn_struct_rwlock);
841 
842 	/* change type */
843 	dn->dn_type = ot;
844 
845 	/* change bonus size and type */
846 	mutex_enter(&dn->dn_mtx);
847 	dn->dn_bonustype = bonustype;
848 	dn->dn_bonuslen = bonuslen;
849 	dn->dn_num_slots = dn_slots;
850 	dn->dn_nblkptr = nblkptr;
851 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
852 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
853 	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
854 
855 	/* fix up the bonus db_size */
856 	if (dn->dn_bonus) {
857 		dn->dn_bonus->db.db_size =
858 		    DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
859 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
860 		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
861 	}
862 
863 	dn->dn_allocated_txg = tx->tx_txg;
864 	mutex_exit(&dn->dn_mtx);
865 }
866 
867 #ifdef	_KERNEL
868 static void
869 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
870 {
871 	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
872 	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
873 	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
874 
875 	/* Copy fields. */
876 	ndn->dn_objset = odn->dn_objset;
877 	ndn->dn_object = odn->dn_object;
878 	ndn->dn_dbuf = odn->dn_dbuf;
879 	ndn->dn_handle = odn->dn_handle;
880 	ndn->dn_phys = odn->dn_phys;
881 	ndn->dn_type = odn->dn_type;
882 	ndn->dn_bonuslen = odn->dn_bonuslen;
883 	ndn->dn_bonustype = odn->dn_bonustype;
884 	ndn->dn_nblkptr = odn->dn_nblkptr;
885 	ndn->dn_checksum = odn->dn_checksum;
886 	ndn->dn_compress = odn->dn_compress;
887 	ndn->dn_nlevels = odn->dn_nlevels;
888 	ndn->dn_indblkshift = odn->dn_indblkshift;
889 	ndn->dn_datablkshift = odn->dn_datablkshift;
890 	ndn->dn_datablkszsec = odn->dn_datablkszsec;
891 	ndn->dn_datablksz = odn->dn_datablksz;
892 	ndn->dn_maxblkid = odn->dn_maxblkid;
893 	ndn->dn_num_slots = odn->dn_num_slots;
894 	memcpy(ndn->dn_next_type, odn->dn_next_type,
895 	    sizeof (odn->dn_next_type));
896 	memcpy(ndn->dn_next_nblkptr, odn->dn_next_nblkptr,
897 	    sizeof (odn->dn_next_nblkptr));
898 	memcpy(ndn->dn_next_nlevels, odn->dn_next_nlevels,
899 	    sizeof (odn->dn_next_nlevels));
900 	memcpy(ndn->dn_next_indblkshift, odn->dn_next_indblkshift,
901 	    sizeof (odn->dn_next_indblkshift));
902 	memcpy(ndn->dn_next_bonustype, odn->dn_next_bonustype,
903 	    sizeof (odn->dn_next_bonustype));
904 	memcpy(ndn->dn_rm_spillblk, odn->dn_rm_spillblk,
905 	    sizeof (odn->dn_rm_spillblk));
906 	memcpy(ndn->dn_next_bonuslen, odn->dn_next_bonuslen,
907 	    sizeof (odn->dn_next_bonuslen));
908 	memcpy(ndn->dn_next_blksz, odn->dn_next_blksz,
909 	    sizeof (odn->dn_next_blksz));
910 	memcpy(ndn->dn_next_maxblkid, odn->dn_next_maxblkid,
911 	    sizeof (odn->dn_next_maxblkid));
912 	for (int i = 0; i < TXG_SIZE; i++) {
913 		list_move_tail(&ndn->dn_dirty_records[i],
914 		    &odn->dn_dirty_records[i]);
915 	}
916 	memcpy(ndn->dn_free_ranges, odn->dn_free_ranges,
917 	    sizeof (odn->dn_free_ranges));
918 	ndn->dn_allocated_txg = odn->dn_allocated_txg;
919 	ndn->dn_free_txg = odn->dn_free_txg;
920 	ndn->dn_assigned_txg = odn->dn_assigned_txg;
921 	ndn->dn_dirty_txg = odn->dn_dirty_txg;
922 	ndn->dn_dirtyctx = odn->dn_dirtyctx;
923 	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
924 	ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
925 	zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
926 	ASSERT(avl_is_empty(&ndn->dn_dbufs));
927 	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
928 	ndn->dn_dbufs_count = odn->dn_dbufs_count;
929 	ndn->dn_bonus = odn->dn_bonus;
930 	ndn->dn_have_spill = odn->dn_have_spill;
931 	ndn->dn_zio = odn->dn_zio;
932 	ndn->dn_oldused = odn->dn_oldused;
933 	ndn->dn_oldflags = odn->dn_oldflags;
934 	ndn->dn_olduid = odn->dn_olduid;
935 	ndn->dn_oldgid = odn->dn_oldgid;
936 	ndn->dn_oldprojid = odn->dn_oldprojid;
937 	ndn->dn_newuid = odn->dn_newuid;
938 	ndn->dn_newgid = odn->dn_newgid;
939 	ndn->dn_newprojid = odn->dn_newprojid;
940 	ndn->dn_id_flags = odn->dn_id_flags;
941 	dmu_zfetch_init(&ndn->dn_zfetch, ndn);
942 
943 	/*
944 	 * Update back pointers. Updating the handle fixes the back pointer of
945 	 * every descendant dbuf as well as the bonus dbuf.
946 	 */
947 	ASSERT(ndn->dn_handle->dnh_dnode == odn);
948 	ndn->dn_handle->dnh_dnode = ndn;
949 
950 	/*
951 	 * Invalidate the original dnode by clearing all of its back pointers.
952 	 */
953 	odn->dn_dbuf = NULL;
954 	odn->dn_handle = NULL;
955 	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
956 	    offsetof(dmu_buf_impl_t, db_link));
957 	odn->dn_dbufs_count = 0;
958 	odn->dn_bonus = NULL;
959 	dmu_zfetch_fini(&odn->dn_zfetch);
960 
961 	/*
962 	 * Set the low bit of the objset pointer to ensure that dnode_move()
963 	 * recognizes the dnode as invalid in any subsequent callback.
964 	 */
965 	POINTER_INVALIDATE(&odn->dn_objset);
966 
967 	/*
968 	 * Satisfy the destructor.
969 	 */
970 	for (int i = 0; i < TXG_SIZE; i++) {
971 		list_create(&odn->dn_dirty_records[i],
972 		    sizeof (dbuf_dirty_record_t),
973 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
974 		odn->dn_free_ranges[i] = NULL;
975 		odn->dn_next_nlevels[i] = 0;
976 		odn->dn_next_indblkshift[i] = 0;
977 		odn->dn_next_bonustype[i] = 0;
978 		odn->dn_rm_spillblk[i] = 0;
979 		odn->dn_next_bonuslen[i] = 0;
980 		odn->dn_next_blksz[i] = 0;
981 	}
982 	odn->dn_allocated_txg = 0;
983 	odn->dn_free_txg = 0;
984 	odn->dn_assigned_txg = 0;
985 	odn->dn_dirty_txg = 0;
986 	odn->dn_dirtyctx = 0;
987 	odn->dn_dirtyctx_firstset = NULL;
988 	odn->dn_have_spill = B_FALSE;
989 	odn->dn_zio = NULL;
990 	odn->dn_oldused = 0;
991 	odn->dn_oldflags = 0;
992 	odn->dn_olduid = 0;
993 	odn->dn_oldgid = 0;
994 	odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
995 	odn->dn_newuid = 0;
996 	odn->dn_newgid = 0;
997 	odn->dn_newprojid = ZFS_DEFAULT_PROJID;
998 	odn->dn_id_flags = 0;
999 
1000 	/*
1001 	 * Mark the dnode.
1002 	 */
1003 	ndn->dn_moved = 1;
1004 	odn->dn_moved = (uint8_t)-1;
1005 }
1006 
1007 static kmem_cbrc_t
1008 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
1009 {
1010 	dnode_t *odn = buf, *ndn = newbuf;
1011 	objset_t *os;
1012 	int64_t refcount;
1013 	uint32_t dbufs;
1014 
1015 	/*
1016 	 * The dnode is on the objset's list of known dnodes if the objset
1017 	 * pointer is valid. We set the low bit of the objset pointer when
1018 	 * freeing the dnode to invalidate it, and the memory patterns written
1019 	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
1020 	 * A newly created dnode sets the objset pointer last of all to indicate
1021 	 * that the dnode is known and in a valid state to be moved by this
1022 	 * function.
1023 	 */
1024 	os = odn->dn_objset;
1025 	if (!POINTER_IS_VALID(os)) {
1026 		DNODE_STAT_BUMP(dnode_move_invalid);
1027 		return (KMEM_CBRC_DONT_KNOW);
1028 	}
1029 
1030 	/*
1031 	 * Ensure that the objset does not go away during the move.
1032 	 */
1033 	rw_enter(&os_lock, RW_WRITER);
1034 	if (os != odn->dn_objset) {
1035 		rw_exit(&os_lock);
1036 		DNODE_STAT_BUMP(dnode_move_recheck1);
1037 		return (KMEM_CBRC_DONT_KNOW);
1038 	}
1039 
1040 	/*
1041 	 * If the dnode is still valid, then so is the objset. We know that no
1042 	 * valid objset can be freed while we hold os_lock, so we can safely
1043 	 * ensure that the objset remains in use.
1044 	 */
1045 	mutex_enter(&os->os_lock);
1046 
1047 	/*
1048 	 * Recheck the objset pointer in case the dnode was removed just before
1049 	 * acquiring the lock.
1050 	 */
1051 	if (os != odn->dn_objset) {
1052 		mutex_exit(&os->os_lock);
1053 		rw_exit(&os_lock);
1054 		DNODE_STAT_BUMP(dnode_move_recheck2);
1055 		return (KMEM_CBRC_DONT_KNOW);
1056 	}
1057 
1058 	/*
1059 	 * At this point we know that as long as we hold os->os_lock, the dnode
1060 	 * cannot be freed and fields within the dnode can be safely accessed.
1061 	 * The objset listing this dnode cannot go away as long as this dnode is
1062 	 * on its list.
1063 	 */
1064 	rw_exit(&os_lock);
1065 	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
1066 		mutex_exit(&os->os_lock);
1067 		DNODE_STAT_BUMP(dnode_move_special);
1068 		return (KMEM_CBRC_NO);
1069 	}
1070 	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
1071 
1072 	/*
1073 	 * Lock the dnode handle to prevent the dnode from obtaining any new
1074 	 * holds. This also prevents the descendant dbufs and the bonus dbuf
1075 	 * from accessing the dnode, so that we can discount their holds. The
1076 	 * handle is safe to access because we know that while the dnode cannot
1077 	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
1078 	 * safely move any dnode referenced only by dbufs.
1079 	 */
1080 	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
1081 		mutex_exit(&os->os_lock);
1082 		DNODE_STAT_BUMP(dnode_move_handle);
1083 		return (KMEM_CBRC_LATER);
1084 	}
1085 
1086 	/*
1087 	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
1088 	 * We need to guarantee that there is a hold for every dbuf in order to
1089 	 * determine whether the dnode is actively referenced. Falsely matching
1090 	 * a dbuf to an active hold would lead to an unsafe move. It's possible
1091 	 * that a thread already having an active dnode hold is about to add a
1092 	 * dbuf, and we can't compare hold and dbuf counts while the add is in
1093 	 * progress.
1094 	 */
1095 	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
1096 		zrl_exit(&odn->dn_handle->dnh_zrlock);
1097 		mutex_exit(&os->os_lock);
1098 		DNODE_STAT_BUMP(dnode_move_rwlock);
1099 		return (KMEM_CBRC_LATER);
1100 	}
1101 
1102 	/*
1103 	 * A dbuf may be removed (evicted) without an active dnode hold. In that
1104 	 * case, the dbuf count is decremented under the handle lock before the
1105 	 * dbuf's hold is released. This order ensures that if we count the hold
1106 	 * after the dbuf is removed but before its hold is released, we will
1107 	 * treat the unmatched hold as active and exit safely. If we count the
1108 	 * hold before the dbuf is removed, the hold is discounted, and the
1109 	 * removal is blocked until the move completes.
1110 	 */
1111 	refcount = zfs_refcount_count(&odn->dn_holds);
1112 	ASSERT(refcount >= 0);
1113 	dbufs = DN_DBUFS_COUNT(odn);
1114 
1115 	/* We can't have more dbufs than dnode holds. */
1116 	ASSERT3U(dbufs, <=, refcount);
1117 	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1118 	    uint32_t, dbufs);
1119 
1120 	if (refcount > dbufs) {
1121 		rw_exit(&odn->dn_struct_rwlock);
1122 		zrl_exit(&odn->dn_handle->dnh_zrlock);
1123 		mutex_exit(&os->os_lock);
1124 		DNODE_STAT_BUMP(dnode_move_active);
1125 		return (KMEM_CBRC_LATER);
1126 	}
1127 
1128 	rw_exit(&odn->dn_struct_rwlock);
1129 
1130 	/*
1131 	 * At this point we know that anyone with a hold on the dnode is not
1132 	 * actively referencing it. The dnode is known and in a valid state to
1133 	 * move. We're holding the locks needed to execute the critical section.
1134 	 */
1135 	dnode_move_impl(odn, ndn);
1136 
1137 	list_link_replace(&odn->dn_link, &ndn->dn_link);
1138 	/* If the dnode was safe to move, the refcount cannot have changed. */
1139 	ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
1140 	ASSERT(dbufs == DN_DBUFS_COUNT(ndn));
1141 	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1142 	mutex_exit(&os->os_lock);
1143 
1144 	return (KMEM_CBRC_YES);
1145 }
1146 #endif	/* _KERNEL */
1147 
1148 static void
1149 dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1150 {
1151 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1152 
1153 	for (int i = idx; i < idx + slots; i++) {
1154 		dnode_handle_t *dnh = &children->dnc_children[i];
1155 		zrl_add(&dnh->dnh_zrlock);
1156 	}
1157 }
1158 
1159 static void
1160 dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1161 {
1162 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1163 
1164 	for (int i = idx; i < idx + slots; i++) {
1165 		dnode_handle_t *dnh = &children->dnc_children[i];
1166 
1167 		if (zrl_is_locked(&dnh->dnh_zrlock))
1168 			zrl_exit(&dnh->dnh_zrlock);
1169 		else
1170 			zrl_remove(&dnh->dnh_zrlock);
1171 	}
1172 }
1173 
1174 static int
1175 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1176 {
1177 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1178 
1179 	for (int i = idx; i < idx + slots; i++) {
1180 		dnode_handle_t *dnh = &children->dnc_children[i];
1181 
1182 		if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1183 			for (int j = idx; j < i; j++) {
1184 				dnh = &children->dnc_children[j];
1185 				zrl_exit(&dnh->dnh_zrlock);
1186 			}
1187 
1188 			return (0);
1189 		}
1190 	}
1191 
1192 	return (1);
1193 }
1194 
1195 static void
1196 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1197 {
1198 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1199 
1200 	for (int i = idx; i < idx + slots; i++) {
1201 		dnode_handle_t *dnh = &children->dnc_children[i];
1202 		dnh->dnh_dnode = ptr;
1203 	}
1204 }
1205 
1206 static boolean_t
1207 dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1208 {
1209 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1210 
1211 	/*
1212 	 * If all dnode slots are either already free or
1213 	 * evictable return B_TRUE.
1214 	 */
1215 	for (int i = idx; i < idx + slots; i++) {
1216 		dnode_handle_t *dnh = &children->dnc_children[i];
1217 		dnode_t *dn = dnh->dnh_dnode;
1218 
1219 		if (dn == DN_SLOT_FREE) {
1220 			continue;
1221 		} else if (DN_SLOT_IS_PTR(dn)) {
1222 			mutex_enter(&dn->dn_mtx);
1223 			boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1224 			    zfs_refcount_is_zero(&dn->dn_holds) &&
1225 			    !DNODE_IS_DIRTY(dn));
1226 			mutex_exit(&dn->dn_mtx);
1227 
1228 			if (!can_free)
1229 				return (B_FALSE);
1230 			else
1231 				continue;
1232 		} else {
1233 			return (B_FALSE);
1234 		}
1235 	}
1236 
1237 	return (B_TRUE);
1238 }
1239 
1240 static void
1241 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1242 {
1243 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1244 
1245 	for (int i = idx; i < idx + slots; i++) {
1246 		dnode_handle_t *dnh = &children->dnc_children[i];
1247 
1248 		ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1249 
1250 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1251 			ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1252 			dnode_destroy(dnh->dnh_dnode);
1253 			dnh->dnh_dnode = DN_SLOT_FREE;
1254 		}
1255 	}
1256 }
1257 
1258 void
1259 dnode_free_interior_slots(dnode_t *dn)
1260 {
1261 	dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1262 	int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1263 	int idx = (dn->dn_object & (epb - 1)) + 1;
1264 	int slots = dn->dn_num_slots - 1;
1265 
1266 	if (slots == 0)
1267 		return;
1268 
1269 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1270 
1271 	while (!dnode_slots_tryenter(children, idx, slots)) {
1272 		DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1273 		kpreempt(KPREEMPT_SYNC);
1274 	}
1275 
1276 	dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1277 	dnode_slots_rele(children, idx, slots);
1278 }
1279 
1280 void
1281 dnode_special_close(dnode_handle_t *dnh)
1282 {
1283 	dnode_t *dn = dnh->dnh_dnode;
1284 
1285 	/*
1286 	 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final
1287 	 * zfs_refcount_remove()
1288 	 */
1289 	mutex_enter(&dn->dn_mtx);
1290 	if (zfs_refcount_count(&dn->dn_holds) > 0)
1291 		cv_wait(&dn->dn_nodnholds, &dn->dn_mtx);
1292 	mutex_exit(&dn->dn_mtx);
1293 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0);
1294 
1295 	ASSERT(dn->dn_dbuf == NULL ||
1296 	    dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1297 	zrl_add(&dnh->dnh_zrlock);
1298 	dnode_destroy(dn); /* implicit zrl_remove() */
1299 	zrl_destroy(&dnh->dnh_zrlock);
1300 	dnh->dnh_dnode = NULL;
1301 }
1302 
1303 void
1304 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1305     dnode_handle_t *dnh)
1306 {
1307 	dnode_t *dn;
1308 
1309 	zrl_init(&dnh->dnh_zrlock);
1310 	VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock));
1311 
1312 	dn = dnode_create(os, dnp, NULL, object, dnh);
1313 	DNODE_VERIFY(dn);
1314 
1315 	zrl_exit(&dnh->dnh_zrlock);
1316 }
1317 
1318 static void
1319 dnode_buf_evict_async(void *dbu)
1320 {
1321 	dnode_children_t *dnc = dbu;
1322 
1323 	DNODE_STAT_BUMP(dnode_buf_evict);
1324 
1325 	for (int i = 0; i < dnc->dnc_count; i++) {
1326 		dnode_handle_t *dnh = &dnc->dnc_children[i];
1327 		dnode_t *dn;
1328 
1329 		/*
1330 		 * The dnode handle lock guards against the dnode moving to
1331 		 * another valid address, so there is no need here to guard
1332 		 * against changes to or from NULL.
1333 		 */
1334 		if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1335 			zrl_destroy(&dnh->dnh_zrlock);
1336 			dnh->dnh_dnode = DN_SLOT_UNINIT;
1337 			continue;
1338 		}
1339 
1340 		zrl_add(&dnh->dnh_zrlock);
1341 		dn = dnh->dnh_dnode;
1342 		/*
1343 		 * If there are holds on this dnode, then there should
1344 		 * be holds on the dnode's containing dbuf as well; thus
1345 		 * it wouldn't be eligible for eviction and this function
1346 		 * would not have been called.
1347 		 */
1348 		ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
1349 		ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
1350 
1351 		dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1352 		zrl_destroy(&dnh->dnh_zrlock);
1353 		dnh->dnh_dnode = DN_SLOT_UNINIT;
1354 	}
1355 	kmem_free(dnc, sizeof (dnode_children_t) +
1356 	    dnc->dnc_count * sizeof (dnode_handle_t));
1357 }
1358 
1359 /*
1360  * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1361  * to ensure the hole at the specified object offset is large enough to
1362  * hold the dnode being created. The slots parameter is also used to ensure
1363  * a dnode does not span multiple dnode blocks. In both of these cases, if
1364  * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1365  * are only possible when using DNODE_MUST_BE_FREE.
1366  *
1367  * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1368  * dnode_hold_impl() will check if the requested dnode is already consumed
1369  * as an extra dnode slot by an large dnode, in which case it returns
1370  * ENOENT.
1371  *
1372  * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just
1373  * return whether the hold would succeed or not. tag and dnp should set to
1374  * NULL in this case.
1375  *
1376  * errors:
1377  * EINVAL - Invalid object number or flags.
1378  * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1379  * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1380  *        - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1381  *        - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1382  * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1383  *        - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1384  * EIO    - I/O error when reading the meta dnode dbuf.
1385  *
1386  * succeeds even for free dnodes.
1387  */
1388 int
1389 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1390     const void *tag, dnode_t **dnp)
1391 {
1392 	int epb, idx, err;
1393 	int drop_struct_lock = FALSE;
1394 	int type;
1395 	uint64_t blk;
1396 	dnode_t *mdn, *dn;
1397 	dmu_buf_impl_t *db;
1398 	dnode_children_t *dnc;
1399 	dnode_phys_t *dn_block;
1400 	dnode_handle_t *dnh;
1401 
1402 	ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1403 	ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1404 	IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL));
1405 
1406 	/*
1407 	 * If you are holding the spa config lock as writer, you shouldn't
1408 	 * be asking the DMU to do *anything* unless it's the root pool
1409 	 * which may require us to read from the root filesystem while
1410 	 * holding some (not all) of the locks as writer.
1411 	 */
1412 	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1413 	    (spa_is_root(os->os_spa) &&
1414 	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1415 
1416 	ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1417 
1418 	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
1419 	    object == DMU_PROJECTUSED_OBJECT) {
1420 		if (object == DMU_USERUSED_OBJECT)
1421 			dn = DMU_USERUSED_DNODE(os);
1422 		else if (object == DMU_GROUPUSED_OBJECT)
1423 			dn = DMU_GROUPUSED_DNODE(os);
1424 		else
1425 			dn = DMU_PROJECTUSED_DNODE(os);
1426 		if (dn == NULL)
1427 			return (SET_ERROR(ENOENT));
1428 		type = dn->dn_type;
1429 		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1430 			return (SET_ERROR(ENOENT));
1431 		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1432 			return (SET_ERROR(EEXIST));
1433 		DNODE_VERIFY(dn);
1434 		/* Don't actually hold if dry run, just return 0 */
1435 		if (!(flag & DNODE_DRY_RUN)) {
1436 			(void) zfs_refcount_add(&dn->dn_holds, tag);
1437 			*dnp = dn;
1438 		}
1439 		return (0);
1440 	}
1441 
1442 	if (object == 0 || object >= DN_MAX_OBJECT)
1443 		return (SET_ERROR(EINVAL));
1444 
1445 	mdn = DMU_META_DNODE(os);
1446 	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1447 
1448 	DNODE_VERIFY(mdn);
1449 
1450 	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1451 		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1452 		drop_struct_lock = TRUE;
1453 	}
1454 
1455 	blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1456 	db = dbuf_hold(mdn, blk, FTAG);
1457 	if (drop_struct_lock)
1458 		rw_exit(&mdn->dn_struct_rwlock);
1459 	if (db == NULL) {
1460 		DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1461 		return (SET_ERROR(EIO));
1462 	}
1463 
1464 	/*
1465 	 * We do not need to decrypt to read the dnode so it doesn't matter
1466 	 * if we get the encrypted or decrypted version.
1467 	 */
1468 	err = dbuf_read(db, NULL, DB_RF_CANFAIL |
1469 	    DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH);
1470 	if (err) {
1471 		DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1472 		dbuf_rele(db, FTAG);
1473 		return (err);
1474 	}
1475 
1476 	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1477 	epb = db->db.db_size >> DNODE_SHIFT;
1478 
1479 	idx = object & (epb - 1);
1480 	dn_block = (dnode_phys_t *)db->db.db_data;
1481 
1482 	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1483 	dnc = dmu_buf_get_user(&db->db);
1484 	dnh = NULL;
1485 	if (dnc == NULL) {
1486 		dnode_children_t *winner;
1487 		int skip = 0;
1488 
1489 		dnc = kmem_zalloc(sizeof (dnode_children_t) +
1490 		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1491 		dnc->dnc_count = epb;
1492 		dnh = &dnc->dnc_children[0];
1493 
1494 		/* Initialize dnode slot status from dnode_phys_t */
1495 		for (int i = 0; i < epb; i++) {
1496 			zrl_init(&dnh[i].dnh_zrlock);
1497 
1498 			if (skip) {
1499 				skip--;
1500 				continue;
1501 			}
1502 
1503 			if (dn_block[i].dn_type != DMU_OT_NONE) {
1504 				int interior = dn_block[i].dn_extra_slots;
1505 
1506 				dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1507 				dnode_set_slots(dnc, i + 1, interior,
1508 				    DN_SLOT_INTERIOR);
1509 				skip = interior;
1510 			} else {
1511 				dnh[i].dnh_dnode = DN_SLOT_FREE;
1512 				skip = 0;
1513 			}
1514 		}
1515 
1516 		dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1517 		    dnode_buf_evict_async, NULL);
1518 		winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1519 		if (winner != NULL) {
1520 
1521 			for (int i = 0; i < epb; i++)
1522 				zrl_destroy(&dnh[i].dnh_zrlock);
1523 
1524 			kmem_free(dnc, sizeof (dnode_children_t) +
1525 			    epb * sizeof (dnode_handle_t));
1526 			dnc = winner;
1527 		}
1528 	}
1529 
1530 	ASSERT(dnc->dnc_count == epb);
1531 
1532 	if (flag & DNODE_MUST_BE_ALLOCATED) {
1533 		slots = 1;
1534 
1535 		dnode_slots_hold(dnc, idx, slots);
1536 		dnh = &dnc->dnc_children[idx];
1537 
1538 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1539 			dn = dnh->dnh_dnode;
1540 		} else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1541 			DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1542 			dnode_slots_rele(dnc, idx, slots);
1543 			dbuf_rele(db, FTAG);
1544 			return (SET_ERROR(EEXIST));
1545 		} else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1546 			DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1547 			dnode_slots_rele(dnc, idx, slots);
1548 			dbuf_rele(db, FTAG);
1549 			return (SET_ERROR(ENOENT));
1550 		} else {
1551 			dnode_slots_rele(dnc, idx, slots);
1552 			while (!dnode_slots_tryenter(dnc, idx, slots)) {
1553 				DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1554 				kpreempt(KPREEMPT_SYNC);
1555 			}
1556 
1557 			/*
1558 			 * Someone else won the race and called dnode_create()
1559 			 * after we checked DN_SLOT_IS_PTR() above but before
1560 			 * we acquired the lock.
1561 			 */
1562 			if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1563 				DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1564 				dn = dnh->dnh_dnode;
1565 			} else {
1566 				dn = dnode_create(os, dn_block + idx, db,
1567 				    object, dnh);
1568 			}
1569 		}
1570 
1571 		mutex_enter(&dn->dn_mtx);
1572 		if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
1573 			DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1574 			mutex_exit(&dn->dn_mtx);
1575 			dnode_slots_rele(dnc, idx, slots);
1576 			dbuf_rele(db, FTAG);
1577 			return (SET_ERROR(ENOENT));
1578 		}
1579 
1580 		/* Don't actually hold if dry run, just return 0 */
1581 		if (flag & DNODE_DRY_RUN) {
1582 			mutex_exit(&dn->dn_mtx);
1583 			dnode_slots_rele(dnc, idx, slots);
1584 			dbuf_rele(db, FTAG);
1585 			return (0);
1586 		}
1587 
1588 		DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1589 	} else if (flag & DNODE_MUST_BE_FREE) {
1590 
1591 		if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1592 			DNODE_STAT_BUMP(dnode_hold_free_overflow);
1593 			dbuf_rele(db, FTAG);
1594 			return (SET_ERROR(ENOSPC));
1595 		}
1596 
1597 		dnode_slots_hold(dnc, idx, slots);
1598 
1599 		if (!dnode_check_slots_free(dnc, idx, slots)) {
1600 			DNODE_STAT_BUMP(dnode_hold_free_misses);
1601 			dnode_slots_rele(dnc, idx, slots);
1602 			dbuf_rele(db, FTAG);
1603 			return (SET_ERROR(ENOSPC));
1604 		}
1605 
1606 		dnode_slots_rele(dnc, idx, slots);
1607 		while (!dnode_slots_tryenter(dnc, idx, slots)) {
1608 			DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1609 			kpreempt(KPREEMPT_SYNC);
1610 		}
1611 
1612 		if (!dnode_check_slots_free(dnc, idx, slots)) {
1613 			DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1614 			dnode_slots_rele(dnc, idx, slots);
1615 			dbuf_rele(db, FTAG);
1616 			return (SET_ERROR(ENOSPC));
1617 		}
1618 
1619 		/*
1620 		 * Allocated but otherwise free dnodes which would
1621 		 * be in the interior of a multi-slot dnodes need
1622 		 * to be freed.  Single slot dnodes can be safely
1623 		 * re-purposed as a performance optimization.
1624 		 */
1625 		if (slots > 1)
1626 			dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1627 
1628 		dnh = &dnc->dnc_children[idx];
1629 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1630 			dn = dnh->dnh_dnode;
1631 		} else {
1632 			dn = dnode_create(os, dn_block + idx, db,
1633 			    object, dnh);
1634 		}
1635 
1636 		mutex_enter(&dn->dn_mtx);
1637 		if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
1638 			DNODE_STAT_BUMP(dnode_hold_free_refcount);
1639 			mutex_exit(&dn->dn_mtx);
1640 			dnode_slots_rele(dnc, idx, slots);
1641 			dbuf_rele(db, FTAG);
1642 			return (SET_ERROR(EEXIST));
1643 		}
1644 
1645 		/* Don't actually hold if dry run, just return 0 */
1646 		if (flag & DNODE_DRY_RUN) {
1647 			mutex_exit(&dn->dn_mtx);
1648 			dnode_slots_rele(dnc, idx, slots);
1649 			dbuf_rele(db, FTAG);
1650 			return (0);
1651 		}
1652 
1653 		dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1654 		DNODE_STAT_BUMP(dnode_hold_free_hits);
1655 	} else {
1656 		dbuf_rele(db, FTAG);
1657 		return (SET_ERROR(EINVAL));
1658 	}
1659 
1660 	ASSERT0(dn->dn_free_txg);
1661 
1662 	if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
1663 		dbuf_add_ref(db, dnh);
1664 
1665 	mutex_exit(&dn->dn_mtx);
1666 
1667 	/* Now we can rely on the hold to prevent the dnode from moving. */
1668 	dnode_slots_rele(dnc, idx, slots);
1669 
1670 	DNODE_VERIFY(dn);
1671 	ASSERT3P(dnp, !=, NULL);
1672 	ASSERT3P(dn->dn_dbuf, ==, db);
1673 	ASSERT3U(dn->dn_object, ==, object);
1674 	dbuf_rele(db, FTAG);
1675 
1676 	*dnp = dn;
1677 	return (0);
1678 }
1679 
1680 /*
1681  * Return held dnode if the object is allocated, NULL if not.
1682  */
1683 int
1684 dnode_hold(objset_t *os, uint64_t object, const void *tag, dnode_t **dnp)
1685 {
1686 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1687 	    dnp));
1688 }
1689 
1690 /*
1691  * Can only add a reference if there is already at least one
1692  * reference on the dnode.  Returns FALSE if unable to add a
1693  * new reference.
1694  */
1695 boolean_t
1696 dnode_add_ref(dnode_t *dn, const void *tag)
1697 {
1698 	mutex_enter(&dn->dn_mtx);
1699 	if (zfs_refcount_is_zero(&dn->dn_holds)) {
1700 		mutex_exit(&dn->dn_mtx);
1701 		return (FALSE);
1702 	}
1703 	VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
1704 	mutex_exit(&dn->dn_mtx);
1705 	return (TRUE);
1706 }
1707 
1708 void
1709 dnode_rele(dnode_t *dn, const void *tag)
1710 {
1711 	mutex_enter(&dn->dn_mtx);
1712 	dnode_rele_and_unlock(dn, tag, B_FALSE);
1713 }
1714 
1715 void
1716 dnode_rele_and_unlock(dnode_t *dn, const void *tag, boolean_t evicting)
1717 {
1718 	uint64_t refs;
1719 	/* Get while the hold prevents the dnode from moving. */
1720 	dmu_buf_impl_t *db = dn->dn_dbuf;
1721 	dnode_handle_t *dnh = dn->dn_handle;
1722 
1723 	refs = zfs_refcount_remove(&dn->dn_holds, tag);
1724 	if (refs == 0)
1725 		cv_broadcast(&dn->dn_nodnholds);
1726 	mutex_exit(&dn->dn_mtx);
1727 	/* dnode could get destroyed at this point, so don't use it anymore */
1728 
1729 	/*
1730 	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1731 	 * indirectly by dbuf_rele() while relying on the dnode handle to
1732 	 * prevent the dnode from moving, since releasing the last hold could
1733 	 * result in the dnode's parent dbuf evicting its dnode handles. For
1734 	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1735 	 * other direct or indirect hold on the dnode must first drop the dnode
1736 	 * handle.
1737 	 */
1738 #ifdef ZFS_DEBUG
1739 	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1740 #endif
1741 
1742 	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1743 	if (refs == 0 && db != NULL) {
1744 		/*
1745 		 * Another thread could add a hold to the dnode handle in
1746 		 * dnode_hold_impl() while holding the parent dbuf. Since the
1747 		 * hold on the parent dbuf prevents the handle from being
1748 		 * destroyed, the hold on the handle is OK. We can't yet assert
1749 		 * that the handle has zero references, but that will be
1750 		 * asserted anyway when the handle gets destroyed.
1751 		 */
1752 		mutex_enter(&db->db_mtx);
1753 		dbuf_rele_and_unlock(db, dnh, evicting);
1754 	}
1755 }
1756 
1757 /*
1758  * Test whether we can create a dnode at the specified location.
1759  */
1760 int
1761 dnode_try_claim(objset_t *os, uint64_t object, int slots)
1762 {
1763 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN,
1764 	    slots, NULL, NULL));
1765 }
1766 
1767 /*
1768  * Checks if the dnode contains any uncommitted dirty records.
1769  */
1770 boolean_t
1771 dnode_is_dirty(dnode_t *dn)
1772 {
1773 	mutex_enter(&dn->dn_mtx);
1774 
1775 	for (int i = 0; i < TXG_SIZE; i++) {
1776 		if (multilist_link_active(&dn->dn_dirty_link[i])) {
1777 			mutex_exit(&dn->dn_mtx);
1778 			return (B_TRUE);
1779 		}
1780 	}
1781 
1782 	mutex_exit(&dn->dn_mtx);
1783 
1784 	return (B_FALSE);
1785 }
1786 
1787 void
1788 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1789 {
1790 	objset_t *os = dn->dn_objset;
1791 	uint64_t txg = tx->tx_txg;
1792 
1793 	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1794 		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1795 		return;
1796 	}
1797 
1798 	DNODE_VERIFY(dn);
1799 
1800 #ifdef ZFS_DEBUG
1801 	mutex_enter(&dn->dn_mtx);
1802 	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1803 	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1804 	mutex_exit(&dn->dn_mtx);
1805 #endif
1806 
1807 	/*
1808 	 * Determine old uid/gid when necessary
1809 	 */
1810 	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1811 
1812 	multilist_t *dirtylist = &os->os_dirty_dnodes[txg & TXG_MASK];
1813 	multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1814 
1815 	/*
1816 	 * If we are already marked dirty, we're done.
1817 	 */
1818 	if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1819 		multilist_sublist_unlock(mls);
1820 		return;
1821 	}
1822 
1823 	ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
1824 	    !avl_is_empty(&dn->dn_dbufs));
1825 	ASSERT(dn->dn_datablksz != 0);
1826 	ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]);
1827 	ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]);
1828 	ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]);
1829 
1830 	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1831 	    (u_longlong_t)dn->dn_object, (u_longlong_t)txg);
1832 
1833 	multilist_sublist_insert_head(mls, dn);
1834 
1835 	multilist_sublist_unlock(mls);
1836 
1837 	/*
1838 	 * The dnode maintains a hold on its containing dbuf as
1839 	 * long as there are holds on it.  Each instantiated child
1840 	 * dbuf maintains a hold on the dnode.  When the last child
1841 	 * drops its hold, the dnode will drop its hold on the
1842 	 * containing dbuf. We add a "dirty hold" here so that the
1843 	 * dnode will hang around after we finish processing its
1844 	 * children.
1845 	 */
1846 	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1847 
1848 	(void) dbuf_dirty(dn->dn_dbuf, tx);
1849 
1850 	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1851 }
1852 
1853 void
1854 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1855 {
1856 	mutex_enter(&dn->dn_mtx);
1857 	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1858 		mutex_exit(&dn->dn_mtx);
1859 		return;
1860 	}
1861 	dn->dn_free_txg = tx->tx_txg;
1862 	mutex_exit(&dn->dn_mtx);
1863 
1864 	dnode_setdirty(dn, tx);
1865 }
1866 
1867 /*
1868  * Try to change the block size for the indicated dnode.  This can only
1869  * succeed if there are no blocks allocated or dirty beyond first block
1870  */
1871 int
1872 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1873 {
1874 	dmu_buf_impl_t *db;
1875 	int err;
1876 
1877 	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1878 	if (size == 0)
1879 		size = SPA_MINBLOCKSIZE;
1880 	else
1881 		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1882 
1883 	if (ibs == dn->dn_indblkshift)
1884 		ibs = 0;
1885 
1886 	if (size == dn->dn_datablksz && ibs == 0)
1887 		return (0);
1888 
1889 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1890 
1891 	/* Check for any allocated blocks beyond the first */
1892 	if (dn->dn_maxblkid != 0)
1893 		goto fail;
1894 
1895 	mutex_enter(&dn->dn_dbufs_mtx);
1896 	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1897 	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1898 		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1899 		    db->db_blkid != DMU_SPILL_BLKID) {
1900 			mutex_exit(&dn->dn_dbufs_mtx);
1901 			goto fail;
1902 		}
1903 	}
1904 	mutex_exit(&dn->dn_dbufs_mtx);
1905 
1906 	if (ibs && dn->dn_nlevels != 1)
1907 		goto fail;
1908 
1909 	dnode_setdirty(dn, tx);
1910 	if (size != dn->dn_datablksz) {
1911 		/* resize the old block */
1912 		err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1913 		if (err == 0) {
1914 			dbuf_new_size(db, size, tx);
1915 		} else if (err != ENOENT) {
1916 			goto fail;
1917 		}
1918 
1919 		dnode_setdblksz(dn, size);
1920 		dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = size;
1921 		if (db)
1922 			dbuf_rele(db, FTAG);
1923 	}
1924 	if (ibs) {
1925 		dn->dn_indblkshift = ibs;
1926 		dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
1927 	}
1928 
1929 	rw_exit(&dn->dn_struct_rwlock);
1930 	return (0);
1931 
1932 fail:
1933 	rw_exit(&dn->dn_struct_rwlock);
1934 	return (SET_ERROR(ENOTSUP));
1935 }
1936 
1937 static void
1938 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
1939 {
1940 	uint64_t txgoff = tx->tx_txg & TXG_MASK;
1941 	int old_nlevels = dn->dn_nlevels;
1942 	dmu_buf_impl_t *db;
1943 	list_t *list;
1944 	dbuf_dirty_record_t *new, *dr, *dr_next;
1945 
1946 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1947 
1948 	ASSERT3U(new_nlevels, >, dn->dn_nlevels);
1949 	dn->dn_nlevels = new_nlevels;
1950 
1951 	ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1952 	dn->dn_next_nlevels[txgoff] = new_nlevels;
1953 
1954 	/* dirty the left indirects */
1955 	db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1956 	ASSERT(db != NULL);
1957 	new = dbuf_dirty(db, tx);
1958 	dbuf_rele(db, FTAG);
1959 
1960 	/* transfer the dirty records to the new indirect */
1961 	mutex_enter(&dn->dn_mtx);
1962 	mutex_enter(&new->dt.di.dr_mtx);
1963 	list = &dn->dn_dirty_records[txgoff];
1964 	for (dr = list_head(list); dr; dr = dr_next) {
1965 		dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1966 
1967 		IMPLY(dr->dr_dbuf == NULL, old_nlevels == 1);
1968 		if (dr->dr_dbuf == NULL ||
1969 		    (dr->dr_dbuf->db_level == old_nlevels - 1 &&
1970 		    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1971 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID)) {
1972 			list_remove(&dn->dn_dirty_records[txgoff], dr);
1973 			list_insert_tail(&new->dt.di.dr_children, dr);
1974 			dr->dr_parent = new;
1975 		}
1976 	}
1977 	mutex_exit(&new->dt.di.dr_mtx);
1978 	mutex_exit(&dn->dn_mtx);
1979 }
1980 
1981 int
1982 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
1983 {
1984 	int ret = 0;
1985 
1986 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1987 
1988 	if (dn->dn_nlevels == nlevels) {
1989 		ret = 0;
1990 		goto out;
1991 	} else if (nlevels < dn->dn_nlevels) {
1992 		ret = SET_ERROR(EINVAL);
1993 		goto out;
1994 	}
1995 
1996 	dnode_set_nlevels_impl(dn, nlevels, tx);
1997 
1998 out:
1999 	rw_exit(&dn->dn_struct_rwlock);
2000 	return (ret);
2001 }
2002 
2003 /* read-holding callers must not rely on the lock being continuously held */
2004 void
2005 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read,
2006     boolean_t force)
2007 {
2008 	int epbs, new_nlevels;
2009 	uint64_t sz;
2010 
2011 	ASSERT(blkid != DMU_BONUS_BLKID);
2012 
2013 	ASSERT(have_read ?
2014 	    RW_READ_HELD(&dn->dn_struct_rwlock) :
2015 	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
2016 
2017 	/*
2018 	 * if we have a read-lock, check to see if we need to do any work
2019 	 * before upgrading to a write-lock.
2020 	 */
2021 	if (have_read) {
2022 		if (blkid <= dn->dn_maxblkid)
2023 			return;
2024 
2025 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
2026 			rw_exit(&dn->dn_struct_rwlock);
2027 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2028 		}
2029 	}
2030 
2031 	/*
2032 	 * Raw sends (indicated by the force flag) require that we take the
2033 	 * given blkid even if the value is lower than the current value.
2034 	 */
2035 	if (!force && blkid <= dn->dn_maxblkid)
2036 		goto out;
2037 
2038 	/*
2039 	 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
2040 	 * to indicate that this field is set. This allows us to set the
2041 	 * maxblkid to 0 on an existing object in dnode_sync().
2042 	 */
2043 	dn->dn_maxblkid = blkid;
2044 	dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] =
2045 	    blkid | DMU_NEXT_MAXBLKID_SET;
2046 
2047 	/*
2048 	 * Compute the number of levels necessary to support the new maxblkid.
2049 	 * Raw sends will ensure nlevels is set correctly for us.
2050 	 */
2051 	new_nlevels = 1;
2052 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2053 	for (sz = dn->dn_nblkptr;
2054 	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
2055 		new_nlevels++;
2056 
2057 	ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
2058 
2059 	if (!force) {
2060 		if (new_nlevels > dn->dn_nlevels)
2061 			dnode_set_nlevels_impl(dn, new_nlevels, tx);
2062 	} else {
2063 		ASSERT3U(dn->dn_nlevels, >=, new_nlevels);
2064 	}
2065 
2066 out:
2067 	if (have_read)
2068 		rw_downgrade(&dn->dn_struct_rwlock);
2069 }
2070 
2071 static void
2072 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
2073 {
2074 	dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
2075 	if (db != NULL) {
2076 		dmu_buf_will_dirty(&db->db, tx);
2077 		dbuf_rele(db, FTAG);
2078 	}
2079 }
2080 
2081 /*
2082  * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
2083  * and end_blkid.
2084  */
2085 static void
2086 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
2087     dmu_tx_t *tx)
2088 {
2089 	dmu_buf_impl_t *db_search;
2090 	dmu_buf_impl_t *db;
2091 	avl_index_t where;
2092 
2093 	db_search = kmem_zalloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
2094 
2095 	mutex_enter(&dn->dn_dbufs_mtx);
2096 
2097 	db_search->db_level = 1;
2098 	db_search->db_blkid = start_blkid + 1;
2099 	db_search->db_state = DB_SEARCH;
2100 	for (;;) {
2101 
2102 		db = avl_find(&dn->dn_dbufs, db_search, &where);
2103 		if (db == NULL)
2104 			db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2105 
2106 		if (db == NULL || db->db_level != 1 ||
2107 		    db->db_blkid >= end_blkid) {
2108 			break;
2109 		}
2110 
2111 		/*
2112 		 * Setup the next blkid we want to search for.
2113 		 */
2114 		db_search->db_blkid = db->db_blkid + 1;
2115 		ASSERT3U(db->db_blkid, >=, start_blkid);
2116 
2117 		/*
2118 		 * If the dbuf transitions to DB_EVICTING while we're trying
2119 		 * to dirty it, then we will be unable to discover it in
2120 		 * the dbuf hash table. This will result in a call to
2121 		 * dbuf_create() which needs to acquire the dn_dbufs_mtx
2122 		 * lock. To avoid a deadlock, we drop the lock before
2123 		 * dirtying the level-1 dbuf.
2124 		 */
2125 		mutex_exit(&dn->dn_dbufs_mtx);
2126 		dnode_dirty_l1(dn, db->db_blkid, tx);
2127 		mutex_enter(&dn->dn_dbufs_mtx);
2128 	}
2129 
2130 #ifdef ZFS_DEBUG
2131 	/*
2132 	 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
2133 	 */
2134 	db_search->db_level = 1;
2135 	db_search->db_blkid = start_blkid + 1;
2136 	db_search->db_state = DB_SEARCH;
2137 	db = avl_find(&dn->dn_dbufs, db_search, &where);
2138 	if (db == NULL)
2139 		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2140 	for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
2141 		if (db->db_level != 1 || db->db_blkid >= end_blkid)
2142 			break;
2143 		if (db->db_state != DB_EVICTING)
2144 			ASSERT(db->db_dirtycnt > 0);
2145 	}
2146 #endif
2147 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
2148 	mutex_exit(&dn->dn_dbufs_mtx);
2149 }
2150 
2151 void
2152 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, const void *tag)
2153 {
2154 	/*
2155 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
2156 	 * initialize the objset.
2157 	 */
2158 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
2159 		dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2160 
2161 		if (ds != NULL) {
2162 			rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag);
2163 		}
2164 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
2165 			if (dmu_tx_is_syncing(tx))
2166 				dn->dn_dirtyctx = DN_DIRTY_SYNC;
2167 			else
2168 				dn->dn_dirtyctx = DN_DIRTY_OPEN;
2169 			dn->dn_dirtyctx_firstset = tag;
2170 		}
2171 		if (ds != NULL) {
2172 			rrw_exit(&ds->ds_bp_rwlock, tag);
2173 		}
2174 	}
2175 }
2176 
2177 static void
2178 dnode_partial_zero(dnode_t *dn, uint64_t off, uint64_t blkoff, uint64_t len,
2179     dmu_tx_t *tx)
2180 {
2181 	dmu_buf_impl_t *db;
2182 	int res;
2183 
2184 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2185 	res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), TRUE, FALSE,
2186 	    FTAG, &db);
2187 	rw_exit(&dn->dn_struct_rwlock);
2188 	if (res == 0) {
2189 		db_lock_type_t dblt;
2190 		boolean_t dirty;
2191 
2192 		dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2193 		/* don't dirty if not on disk and not dirty */
2194 		dirty = !list_is_empty(&db->db_dirty_records) ||
2195 		    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
2196 		dmu_buf_unlock_parent(db, dblt, FTAG);
2197 		if (dirty) {
2198 			caddr_t data;
2199 
2200 			dmu_buf_will_dirty(&db->db, tx);
2201 			data = db->db.db_data;
2202 			memset(data + blkoff, 0, len);
2203 		}
2204 		dbuf_rele(db, FTAG);
2205 	}
2206 }
2207 
2208 void
2209 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
2210 {
2211 	uint64_t blkoff, blkid, nblks;
2212 	int blksz, blkshift, head, tail;
2213 	int trunc = FALSE;
2214 	int epbs;
2215 
2216 	blksz = dn->dn_datablksz;
2217 	blkshift = dn->dn_datablkshift;
2218 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2219 
2220 	if (len == DMU_OBJECT_END) {
2221 		len = UINT64_MAX - off;
2222 		trunc = TRUE;
2223 	}
2224 
2225 	/*
2226 	 * First, block align the region to free:
2227 	 */
2228 	if (ISP2(blksz)) {
2229 		head = P2NPHASE(off, blksz);
2230 		blkoff = P2PHASE(off, blksz);
2231 		if ((off >> blkshift) > dn->dn_maxblkid)
2232 			return;
2233 	} else {
2234 		ASSERT(dn->dn_maxblkid == 0);
2235 		if (off == 0 && len >= blksz) {
2236 			/*
2237 			 * Freeing the whole block; fast-track this request.
2238 			 */
2239 			blkid = 0;
2240 			nblks = 1;
2241 			if (dn->dn_nlevels > 1) {
2242 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2243 				dnode_dirty_l1(dn, 0, tx);
2244 				rw_exit(&dn->dn_struct_rwlock);
2245 			}
2246 			goto done;
2247 		} else if (off >= blksz) {
2248 			/* Freeing past end-of-data */
2249 			return;
2250 		} else {
2251 			/* Freeing part of the block. */
2252 			head = blksz - off;
2253 			ASSERT3U(head, >, 0);
2254 		}
2255 		blkoff = off;
2256 	}
2257 	/* zero out any partial block data at the start of the range */
2258 	if (head) {
2259 		ASSERT3U(blkoff + head, ==, blksz);
2260 		if (len < head)
2261 			head = len;
2262 		dnode_partial_zero(dn, off, blkoff, head, tx);
2263 		off += head;
2264 		len -= head;
2265 	}
2266 
2267 	/* If the range was less than one block, we're done */
2268 	if (len == 0)
2269 		return;
2270 
2271 	/* If the remaining range is past end of file, we're done */
2272 	if ((off >> blkshift) > dn->dn_maxblkid)
2273 		return;
2274 
2275 	ASSERT(ISP2(blksz));
2276 	if (trunc)
2277 		tail = 0;
2278 	else
2279 		tail = P2PHASE(len, blksz);
2280 
2281 	ASSERT0(P2PHASE(off, blksz));
2282 	/* zero out any partial block data at the end of the range */
2283 	if (tail) {
2284 		if (len < tail)
2285 			tail = len;
2286 		dnode_partial_zero(dn, off + len, 0, tail, tx);
2287 		len -= tail;
2288 	}
2289 
2290 	/* If the range did not include a full block, we are done */
2291 	if (len == 0)
2292 		return;
2293 
2294 	ASSERT(IS_P2ALIGNED(off, blksz));
2295 	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2296 	blkid = off >> blkshift;
2297 	nblks = len >> blkshift;
2298 	if (trunc)
2299 		nblks += 1;
2300 
2301 	/*
2302 	 * Dirty all the indirect blocks in this range.  Note that only
2303 	 * the first and last indirect blocks can actually be written
2304 	 * (if they were partially freed) -- they must be dirtied, even if
2305 	 * they do not exist on disk yet.  The interior blocks will
2306 	 * be freed by free_children(), so they will not actually be written.
2307 	 * Even though these interior blocks will not be written, we
2308 	 * dirty them for two reasons:
2309 	 *
2310 	 *  - It ensures that the indirect blocks remain in memory until
2311 	 *    syncing context.  (They have already been prefetched by
2312 	 *    dmu_tx_hold_free(), so we don't have to worry about reading
2313 	 *    them serially here.)
2314 	 *
2315 	 *  - The dirty space accounting will put pressure on the txg sync
2316 	 *    mechanism to begin syncing, and to delay transactions if there
2317 	 *    is a large amount of freeing.  Even though these indirect
2318 	 *    blocks will not be written, we could need to write the same
2319 	 *    amount of space if we copy the freed BPs into deadlists.
2320 	 */
2321 	if (dn->dn_nlevels > 1) {
2322 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2323 		uint64_t first, last;
2324 
2325 		first = blkid >> epbs;
2326 		dnode_dirty_l1(dn, first, tx);
2327 		if (trunc)
2328 			last = dn->dn_maxblkid >> epbs;
2329 		else
2330 			last = (blkid + nblks - 1) >> epbs;
2331 		if (last != first)
2332 			dnode_dirty_l1(dn, last, tx);
2333 
2334 		dnode_dirty_l1range(dn, first, last, tx);
2335 
2336 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2337 		    SPA_BLKPTRSHIFT;
2338 		for (uint64_t i = first + 1; i < last; i++) {
2339 			/*
2340 			 * Set i to the blockid of the next non-hole
2341 			 * level-1 indirect block at or after i.  Note
2342 			 * that dnode_next_offset() operates in terms of
2343 			 * level-0-equivalent bytes.
2344 			 */
2345 			uint64_t ibyte = i << shift;
2346 			int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2347 			    &ibyte, 2, 1, 0);
2348 			i = ibyte >> shift;
2349 			if (i >= last)
2350 				break;
2351 
2352 			/*
2353 			 * Normally we should not see an error, either
2354 			 * from dnode_next_offset() or dbuf_hold_level()
2355 			 * (except for ESRCH from dnode_next_offset).
2356 			 * If there is an i/o error, then when we read
2357 			 * this block in syncing context, it will use
2358 			 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2359 			 * to the "failmode" property.  dnode_next_offset()
2360 			 * doesn't have a flag to indicate MUSTSUCCEED.
2361 			 */
2362 			if (err != 0)
2363 				break;
2364 
2365 			dnode_dirty_l1(dn, i, tx);
2366 		}
2367 		rw_exit(&dn->dn_struct_rwlock);
2368 	}
2369 
2370 done:
2371 	/*
2372 	 * Add this range to the dnode range list.
2373 	 * We will finish up this free operation in the syncing phase.
2374 	 */
2375 	mutex_enter(&dn->dn_mtx);
2376 	{
2377 		int txgoff = tx->tx_txg & TXG_MASK;
2378 		if (dn->dn_free_ranges[txgoff] == NULL) {
2379 			dn->dn_free_ranges[txgoff] = range_tree_create(NULL,
2380 			    RANGE_SEG64, NULL, 0, 0);
2381 		}
2382 		range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2383 		range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2384 	}
2385 	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2386 	    (u_longlong_t)blkid, (u_longlong_t)nblks,
2387 	    (u_longlong_t)tx->tx_txg);
2388 	mutex_exit(&dn->dn_mtx);
2389 
2390 	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2391 	dnode_setdirty(dn, tx);
2392 }
2393 
2394 static boolean_t
2395 dnode_spill_freed(dnode_t *dn)
2396 {
2397 	int i;
2398 
2399 	mutex_enter(&dn->dn_mtx);
2400 	for (i = 0; i < TXG_SIZE; i++) {
2401 		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2402 			break;
2403 	}
2404 	mutex_exit(&dn->dn_mtx);
2405 	return (i < TXG_SIZE);
2406 }
2407 
2408 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2409 uint64_t
2410 dnode_block_freed(dnode_t *dn, uint64_t blkid)
2411 {
2412 	int i;
2413 
2414 	if (blkid == DMU_BONUS_BLKID)
2415 		return (FALSE);
2416 
2417 	if (dn->dn_free_txg)
2418 		return (TRUE);
2419 
2420 	if (blkid == DMU_SPILL_BLKID)
2421 		return (dnode_spill_freed(dn));
2422 
2423 	mutex_enter(&dn->dn_mtx);
2424 	for (i = 0; i < TXG_SIZE; i++) {
2425 		if (dn->dn_free_ranges[i] != NULL &&
2426 		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2427 			break;
2428 	}
2429 	mutex_exit(&dn->dn_mtx);
2430 	return (i < TXG_SIZE);
2431 }
2432 
2433 /* call from syncing context when we actually write/free space for this dnode */
2434 void
2435 dnode_diduse_space(dnode_t *dn, int64_t delta)
2436 {
2437 	uint64_t space;
2438 	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2439 	    dn, dn->dn_phys,
2440 	    (u_longlong_t)dn->dn_phys->dn_used,
2441 	    (longlong_t)delta);
2442 
2443 	mutex_enter(&dn->dn_mtx);
2444 	space = DN_USED_BYTES(dn->dn_phys);
2445 	if (delta > 0) {
2446 		ASSERT3U(space + delta, >=, space); /* no overflow */
2447 	} else {
2448 		ASSERT3U(space, >=, -delta); /* no underflow */
2449 	}
2450 	space += delta;
2451 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2452 		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2453 		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2454 		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2455 	} else {
2456 		dn->dn_phys->dn_used = space;
2457 		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2458 	}
2459 	mutex_exit(&dn->dn_mtx);
2460 }
2461 
2462 /*
2463  * Scans a block at the indicated "level" looking for a hole or data,
2464  * depending on 'flags'.
2465  *
2466  * If level > 0, then we are scanning an indirect block looking at its
2467  * pointers.  If level == 0, then we are looking at a block of dnodes.
2468  *
2469  * If we don't find what we are looking for in the block, we return ESRCH.
2470  * Otherwise, return with *offset pointing to the beginning (if searching
2471  * forwards) or end (if searching backwards) of the range covered by the
2472  * block pointer we matched on (or dnode).
2473  *
2474  * The basic search algorithm used below by dnode_next_offset() is to
2475  * use this function to search up the block tree (widen the search) until
2476  * we find something (i.e., we don't return ESRCH) and then search back
2477  * down the tree (narrow the search) until we reach our original search
2478  * level.
2479  */
2480 static int
2481 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2482     int lvl, uint64_t blkfill, uint64_t txg)
2483 {
2484 	dmu_buf_impl_t *db = NULL;
2485 	void *data = NULL;
2486 	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2487 	uint64_t epb = 1ULL << epbs;
2488 	uint64_t minfill, maxfill;
2489 	boolean_t hole;
2490 	int i, inc, error, span;
2491 
2492 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2493 
2494 	hole = ((flags & DNODE_FIND_HOLE) != 0);
2495 	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2496 	ASSERT(txg == 0 || !hole);
2497 
2498 	if (lvl == dn->dn_phys->dn_nlevels) {
2499 		error = 0;
2500 		epb = dn->dn_phys->dn_nblkptr;
2501 		data = dn->dn_phys->dn_blkptr;
2502 	} else {
2503 		uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2504 		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2505 		if (error) {
2506 			if (error != ENOENT)
2507 				return (error);
2508 			if (hole)
2509 				return (0);
2510 			/*
2511 			 * This can only happen when we are searching up
2512 			 * the block tree for data.  We don't really need to
2513 			 * adjust the offset, as we will just end up looking
2514 			 * at the pointer to this block in its parent, and its
2515 			 * going to be unallocated, so we will skip over it.
2516 			 */
2517 			return (SET_ERROR(ESRCH));
2518 		}
2519 		error = dbuf_read(db, NULL,
2520 		    DB_RF_CANFAIL | DB_RF_HAVESTRUCT |
2521 		    DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH);
2522 		if (error) {
2523 			dbuf_rele(db, FTAG);
2524 			return (error);
2525 		}
2526 		data = db->db.db_data;
2527 		rw_enter(&db->db_rwlock, RW_READER);
2528 	}
2529 
2530 	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2531 	    db->db_blkptr->blk_birth <= txg ||
2532 	    BP_IS_HOLE(db->db_blkptr))) {
2533 		/*
2534 		 * This can only happen when we are searching up the tree
2535 		 * and these conditions mean that we need to keep climbing.
2536 		 */
2537 		error = SET_ERROR(ESRCH);
2538 	} else if (lvl == 0) {
2539 		dnode_phys_t *dnp = data;
2540 
2541 		ASSERT(dn->dn_type == DMU_OT_DNODE);
2542 		ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2543 
2544 		for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2545 		    i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2546 			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2547 				break;
2548 		}
2549 
2550 		if (i == blkfill)
2551 			error = SET_ERROR(ESRCH);
2552 
2553 		*offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2554 		    (i << DNODE_SHIFT);
2555 	} else {
2556 		blkptr_t *bp = data;
2557 		uint64_t start = *offset;
2558 		span = (lvl - 1) * epbs + dn->dn_datablkshift;
2559 		minfill = 0;
2560 		maxfill = blkfill << ((lvl - 1) * epbs);
2561 
2562 		if (hole)
2563 			maxfill--;
2564 		else
2565 			minfill++;
2566 
2567 		if (span >= 8 * sizeof (*offset)) {
2568 			/* This only happens on the highest indirection level */
2569 			ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
2570 			*offset = 0;
2571 		} else {
2572 			*offset = *offset >> span;
2573 		}
2574 
2575 		for (i = BF64_GET(*offset, 0, epbs);
2576 		    i >= 0 && i < epb; i += inc) {
2577 			if (BP_GET_FILL(&bp[i]) >= minfill &&
2578 			    BP_GET_FILL(&bp[i]) <= maxfill &&
2579 			    (hole || bp[i].blk_birth > txg))
2580 				break;
2581 			if (inc > 0 || *offset > 0)
2582 				*offset += inc;
2583 		}
2584 
2585 		if (span >= 8 * sizeof (*offset)) {
2586 			*offset = start;
2587 		} else {
2588 			*offset = *offset << span;
2589 		}
2590 
2591 		if (inc < 0) {
2592 			/* traversing backwards; position offset at the end */
2593 			if (span < 8 * sizeof (*offset))
2594 				*offset = MIN(*offset + (1ULL << span) - 1,
2595 				    start);
2596 		} else if (*offset < start) {
2597 			*offset = start;
2598 		}
2599 		if (i < 0 || i >= epb)
2600 			error = SET_ERROR(ESRCH);
2601 	}
2602 
2603 	if (db != NULL) {
2604 		rw_exit(&db->db_rwlock);
2605 		dbuf_rele(db, FTAG);
2606 	}
2607 
2608 	return (error);
2609 }
2610 
2611 /*
2612  * Find the next hole, data, or sparse region at or after *offset.
2613  * The value 'blkfill' tells us how many items we expect to find
2614  * in an L0 data block; this value is 1 for normal objects,
2615  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2616  * DNODES_PER_BLOCK when searching for sparse regions thereof.
2617  *
2618  * Examples:
2619  *
2620  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2621  *	Finds the next/previous hole/data in a file.
2622  *	Used in dmu_offset_next().
2623  *
2624  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2625  *	Finds the next free/allocated dnode an objset's meta-dnode.
2626  *	Only finds objects that have new contents since txg (ie.
2627  *	bonus buffer changes and content removal are ignored).
2628  *	Used in dmu_object_next().
2629  *
2630  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2631  *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
2632  *	Used in dmu_object_alloc().
2633  */
2634 int
2635 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2636     int minlvl, uint64_t blkfill, uint64_t txg)
2637 {
2638 	uint64_t initial_offset = *offset;
2639 	int lvl, maxlvl;
2640 	int error = 0;
2641 
2642 	if (!(flags & DNODE_FIND_HAVELOCK))
2643 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2644 
2645 	if (dn->dn_phys->dn_nlevels == 0) {
2646 		error = SET_ERROR(ESRCH);
2647 		goto out;
2648 	}
2649 
2650 	if (dn->dn_datablkshift == 0) {
2651 		if (*offset < dn->dn_datablksz) {
2652 			if (flags & DNODE_FIND_HOLE)
2653 				*offset = dn->dn_datablksz;
2654 		} else {
2655 			error = SET_ERROR(ESRCH);
2656 		}
2657 		goto out;
2658 	}
2659 
2660 	maxlvl = dn->dn_phys->dn_nlevels;
2661 
2662 	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2663 		error = dnode_next_offset_level(dn,
2664 		    flags, offset, lvl, blkfill, txg);
2665 		if (error != ESRCH)
2666 			break;
2667 	}
2668 
2669 	while (error == 0 && --lvl >= minlvl) {
2670 		error = dnode_next_offset_level(dn,
2671 		    flags, offset, lvl, blkfill, txg);
2672 	}
2673 
2674 	/*
2675 	 * There's always a "virtual hole" at the end of the object, even
2676 	 * if all BP's which physically exist are non-holes.
2677 	 */
2678 	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2679 	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2680 		error = 0;
2681 	}
2682 
2683 	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2684 	    initial_offset < *offset : initial_offset > *offset))
2685 		error = SET_ERROR(ESRCH);
2686 out:
2687 	if (!(flags & DNODE_FIND_HAVELOCK))
2688 		rw_exit(&dn->dn_struct_rwlock);
2689 
2690 	return (error);
2691 }
2692 
2693 #if defined(_KERNEL)
2694 EXPORT_SYMBOL(dnode_hold);
2695 EXPORT_SYMBOL(dnode_rele);
2696 EXPORT_SYMBOL(dnode_set_nlevels);
2697 EXPORT_SYMBOL(dnode_set_blksz);
2698 EXPORT_SYMBOL(dnode_free_range);
2699 EXPORT_SYMBOL(dnode_evict_dbufs);
2700 EXPORT_SYMBOL(dnode_evict_bonus);
2701 #endif
2702 
2703 ZFS_MODULE_PARAM(zfs, zfs_, default_bs, INT, ZMOD_RW,
2704 	"Default dnode block shift");
2705 ZFS_MODULE_PARAM(zfs, zfs_, default_ibs, INT, ZMOD_RW,
2706 	"Default dnode indirect block shift");
2707