xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_zfetch.c (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/arc_impl.h>
32 #include <sys/dnode.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_zfetch.h>
35 #include <sys/dmu.h>
36 #include <sys/dbuf.h>
37 #include <sys/kstat.h>
38 #include <sys/wmsum.h>
39 
40 /*
41  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
42  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
43  * prescient prefetch never issues i/os that end up not being needed,
44  * so it can't hurt performance.
45  */
46 
47 static int zfs_prefetch_disable = B_FALSE;
48 
49 /* max # of streams per zfetch */
50 static unsigned int	zfetch_max_streams = 8;
51 /* min time before stream reclaim */
52 static unsigned int	zfetch_min_sec_reap = 1;
53 /* max time before stream delete */
54 static unsigned int	zfetch_max_sec_reap = 2;
55 #ifdef _ILP32
56 /* min bytes to prefetch per stream (default 2MB) */
57 static unsigned int	zfetch_min_distance = 2 * 1024 * 1024;
58 /* max bytes to prefetch per stream (default 8MB) */
59 unsigned int	zfetch_max_distance = 8 * 1024 * 1024;
60 #else
61 /* min bytes to prefetch per stream (default 4MB) */
62 static unsigned int	zfetch_min_distance = 4 * 1024 * 1024;
63 /* max bytes to prefetch per stream (default 64MB) */
64 unsigned int	zfetch_max_distance = 64 * 1024 * 1024;
65 #endif
66 /* max bytes to prefetch indirects for per stream (default 64MB) */
67 unsigned int	zfetch_max_idistance = 64 * 1024 * 1024;
68 /* max request reorder distance within a stream (default 16MB) */
69 unsigned int	zfetch_max_reorder = 16 * 1024 * 1024;
70 /* Max log2 fraction of holes in a stream */
71 unsigned int	zfetch_hole_shift = 2;
72 
73 typedef struct zfetch_stats {
74 	kstat_named_t zfetchstat_hits;
75 	kstat_named_t zfetchstat_future;
76 	kstat_named_t zfetchstat_stride;
77 	kstat_named_t zfetchstat_past;
78 	kstat_named_t zfetchstat_misses;
79 	kstat_named_t zfetchstat_max_streams;
80 	kstat_named_t zfetchstat_io_issued;
81 	kstat_named_t zfetchstat_io_active;
82 } zfetch_stats_t;
83 
84 static zfetch_stats_t zfetch_stats = {
85 	{ "hits",			KSTAT_DATA_UINT64 },
86 	{ "future",			KSTAT_DATA_UINT64 },
87 	{ "stride",			KSTAT_DATA_UINT64 },
88 	{ "past",			KSTAT_DATA_UINT64 },
89 	{ "misses",			KSTAT_DATA_UINT64 },
90 	{ "max_streams",		KSTAT_DATA_UINT64 },
91 	{ "io_issued",			KSTAT_DATA_UINT64 },
92 	{ "io_active",			KSTAT_DATA_UINT64 },
93 };
94 
95 struct {
96 	wmsum_t zfetchstat_hits;
97 	wmsum_t zfetchstat_future;
98 	wmsum_t zfetchstat_stride;
99 	wmsum_t zfetchstat_past;
100 	wmsum_t zfetchstat_misses;
101 	wmsum_t zfetchstat_max_streams;
102 	wmsum_t zfetchstat_io_issued;
103 	aggsum_t zfetchstat_io_active;
104 } zfetch_sums;
105 
106 #define	ZFETCHSTAT_BUMP(stat)					\
107 	wmsum_add(&zfetch_sums.stat, 1)
108 #define	ZFETCHSTAT_ADD(stat, val)				\
109 	wmsum_add(&zfetch_sums.stat, val)
110 
111 
112 static kstat_t		*zfetch_ksp;
113 
114 static int
115 zfetch_kstats_update(kstat_t *ksp, int rw)
116 {
117 	zfetch_stats_t *zs = ksp->ks_data;
118 
119 	if (rw == KSTAT_WRITE)
120 		return (EACCES);
121 	zs->zfetchstat_hits.value.ui64 =
122 	    wmsum_value(&zfetch_sums.zfetchstat_hits);
123 	zs->zfetchstat_future.value.ui64 =
124 	    wmsum_value(&zfetch_sums.zfetchstat_future);
125 	zs->zfetchstat_stride.value.ui64 =
126 	    wmsum_value(&zfetch_sums.zfetchstat_stride);
127 	zs->zfetchstat_past.value.ui64 =
128 	    wmsum_value(&zfetch_sums.zfetchstat_past);
129 	zs->zfetchstat_misses.value.ui64 =
130 	    wmsum_value(&zfetch_sums.zfetchstat_misses);
131 	zs->zfetchstat_max_streams.value.ui64 =
132 	    wmsum_value(&zfetch_sums.zfetchstat_max_streams);
133 	zs->zfetchstat_io_issued.value.ui64 =
134 	    wmsum_value(&zfetch_sums.zfetchstat_io_issued);
135 	zs->zfetchstat_io_active.value.ui64 =
136 	    aggsum_value(&zfetch_sums.zfetchstat_io_active);
137 	return (0);
138 }
139 
140 void
141 zfetch_init(void)
142 {
143 	wmsum_init(&zfetch_sums.zfetchstat_hits, 0);
144 	wmsum_init(&zfetch_sums.zfetchstat_future, 0);
145 	wmsum_init(&zfetch_sums.zfetchstat_stride, 0);
146 	wmsum_init(&zfetch_sums.zfetchstat_past, 0);
147 	wmsum_init(&zfetch_sums.zfetchstat_misses, 0);
148 	wmsum_init(&zfetch_sums.zfetchstat_max_streams, 0);
149 	wmsum_init(&zfetch_sums.zfetchstat_io_issued, 0);
150 	aggsum_init(&zfetch_sums.zfetchstat_io_active, 0);
151 
152 	zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
153 	    KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
154 	    KSTAT_FLAG_VIRTUAL);
155 
156 	if (zfetch_ksp != NULL) {
157 		zfetch_ksp->ks_data = &zfetch_stats;
158 		zfetch_ksp->ks_update = zfetch_kstats_update;
159 		kstat_install(zfetch_ksp);
160 	}
161 }
162 
163 void
164 zfetch_fini(void)
165 {
166 	if (zfetch_ksp != NULL) {
167 		kstat_delete(zfetch_ksp);
168 		zfetch_ksp = NULL;
169 	}
170 
171 	wmsum_fini(&zfetch_sums.zfetchstat_hits);
172 	wmsum_fini(&zfetch_sums.zfetchstat_future);
173 	wmsum_fini(&zfetch_sums.zfetchstat_stride);
174 	wmsum_fini(&zfetch_sums.zfetchstat_past);
175 	wmsum_fini(&zfetch_sums.zfetchstat_misses);
176 	wmsum_fini(&zfetch_sums.zfetchstat_max_streams);
177 	wmsum_fini(&zfetch_sums.zfetchstat_io_issued);
178 	ASSERT0(aggsum_value(&zfetch_sums.zfetchstat_io_active));
179 	aggsum_fini(&zfetch_sums.zfetchstat_io_active);
180 }
181 
182 /*
183  * This takes a pointer to a zfetch structure and a dnode.  It performs the
184  * necessary setup for the zfetch structure, grokking data from the
185  * associated dnode.
186  */
187 void
188 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
189 {
190 	if (zf == NULL)
191 		return;
192 	zf->zf_dnode = dno;
193 	zf->zf_numstreams = 0;
194 
195 	list_create(&zf->zf_stream, sizeof (zstream_t),
196 	    offsetof(zstream_t, zs_node));
197 
198 	mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
199 }
200 
201 static void
202 dmu_zfetch_stream_fini(zstream_t *zs)
203 {
204 	ASSERT(!list_link_active(&zs->zs_node));
205 	zfs_refcount_destroy(&zs->zs_callers);
206 	zfs_refcount_destroy(&zs->zs_refs);
207 	kmem_free(zs, sizeof (*zs));
208 }
209 
210 static void
211 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
212 {
213 	ASSERT(MUTEX_HELD(&zf->zf_lock));
214 	list_remove(&zf->zf_stream, zs);
215 	zf->zf_numstreams--;
216 	membar_producer();
217 	if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
218 		dmu_zfetch_stream_fini(zs);
219 }
220 
221 /*
222  * Clean-up state associated with a zfetch structure (e.g. destroy the
223  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
224  */
225 void
226 dmu_zfetch_fini(zfetch_t *zf)
227 {
228 	zstream_t *zs;
229 
230 	mutex_enter(&zf->zf_lock);
231 	while ((zs = list_head(&zf->zf_stream)) != NULL)
232 		dmu_zfetch_stream_remove(zf, zs);
233 	mutex_exit(&zf->zf_lock);
234 	list_destroy(&zf->zf_stream);
235 	mutex_destroy(&zf->zf_lock);
236 
237 	zf->zf_dnode = NULL;
238 }
239 
240 /*
241  * If there aren't too many active streams already, create one more.
242  * In process delete/reuse all streams without hits for zfetch_max_sec_reap.
243  * If needed, reuse oldest stream without hits for zfetch_min_sec_reap or ever.
244  * The "blkid" argument is the next block that we expect this stream to access.
245  */
246 static void
247 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
248 {
249 	zstream_t *zs, *zs_next, *zs_old = NULL;
250 	uint_t now = gethrestime_sec(), t;
251 
252 	ASSERT(MUTEX_HELD(&zf->zf_lock));
253 
254 	/*
255 	 * Delete too old streams, reusing the first found one.
256 	 */
257 	t = now - zfetch_max_sec_reap;
258 	for (zs = list_head(&zf->zf_stream); zs != NULL; zs = zs_next) {
259 		zs_next = list_next(&zf->zf_stream, zs);
260 		/*
261 		 * Skip if still active.  1 -- zf_stream reference.
262 		 */
263 		if ((int)(zs->zs_atime - t) >= 0)
264 			continue;
265 		if (zfs_refcount_count(&zs->zs_refs) != 1)
266 			continue;
267 		if (zs_old)
268 			dmu_zfetch_stream_remove(zf, zs);
269 		else
270 			zs_old = zs;
271 	}
272 	if (zs_old) {
273 		zs = zs_old;
274 		list_remove(&zf->zf_stream, zs);
275 		goto reuse;
276 	}
277 
278 	/*
279 	 * The maximum number of streams is normally zfetch_max_streams,
280 	 * but for small files we lower it such that it's at least possible
281 	 * for all the streams to be non-overlapping.
282 	 */
283 	uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
284 	    (zf->zf_dnode->dn_maxblkid << zf->zf_dnode->dn_datablkshift) /
285 	    zfetch_max_distance));
286 	if (zf->zf_numstreams >= max_streams) {
287 		t = now - zfetch_min_sec_reap;
288 		for (zs = list_head(&zf->zf_stream); zs != NULL;
289 		    zs = list_next(&zf->zf_stream, zs)) {
290 			if ((int)(zs->zs_atime - t) >= 0)
291 				continue;
292 			if (zfs_refcount_count(&zs->zs_refs) != 1)
293 				continue;
294 			if (zs_old == NULL ||
295 			    (int)(zs_old->zs_atime - zs->zs_atime) >= 0)
296 				zs_old = zs;
297 		}
298 		if (zs_old) {
299 			zs = zs_old;
300 			list_remove(&zf->zf_stream, zs);
301 			goto reuse;
302 		}
303 		ZFETCHSTAT_BUMP(zfetchstat_max_streams);
304 		return;
305 	}
306 
307 	zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
308 	zfs_refcount_create(&zs->zs_callers);
309 	zfs_refcount_create(&zs->zs_refs);
310 	/* One reference for zf_stream. */
311 	zfs_refcount_add(&zs->zs_refs, NULL);
312 	zf->zf_numstreams++;
313 
314 reuse:
315 	list_insert_head(&zf->zf_stream, zs);
316 	zs->zs_blkid = blkid;
317 	/* Allow immediate stream reuse until first hit. */
318 	zs->zs_atime = now - zfetch_min_sec_reap;
319 	memset(zs->zs_ranges, 0, sizeof (zs->zs_ranges));
320 	zs->zs_pf_dist = 0;
321 	zs->zs_ipf_dist = 0;
322 	zs->zs_pf_start = blkid;
323 	zs->zs_pf_end = blkid;
324 	zs->zs_ipf_start = blkid;
325 	zs->zs_ipf_end = blkid;
326 	zs->zs_missed = B_FALSE;
327 	zs->zs_more = B_FALSE;
328 }
329 
330 static void
331 dmu_zfetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t io_issued)
332 {
333 	zstream_t *zs = arg;
334 
335 	if (io_issued && level == 0 && blkid < zs->zs_blkid)
336 		zs->zs_more = B_TRUE;
337 	if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
338 		dmu_zfetch_stream_fini(zs);
339 	aggsum_add(&zfetch_sums.zfetchstat_io_active, -1);
340 }
341 
342 /*
343  * Process stream hit access for nblks blocks starting at zs_blkid.  Return
344  * number of blocks to proceed for after aggregation with future ranges.
345  */
346 static uint64_t
347 dmu_zfetch_hit(zstream_t *zs, uint64_t nblks)
348 {
349 	uint_t i, j;
350 
351 	/* Optimize sequential accesses (no future ranges). */
352 	if (zs->zs_ranges[0].start == 0)
353 		goto done;
354 
355 	/* Look for intersections with further ranges. */
356 	for (i = 0; i < ZFETCH_RANGES; i++) {
357 		zsrange_t *r = &zs->zs_ranges[i];
358 		if (r->start == 0 || r->start > nblks)
359 			break;
360 		if (r->end >= nblks) {
361 			nblks = r->end;
362 			i++;
363 			break;
364 		}
365 	}
366 
367 	/* Delete all found intersecting ranges, updates remaining. */
368 	for (j = 0; i < ZFETCH_RANGES; i++, j++) {
369 		if (zs->zs_ranges[i].start == 0)
370 			break;
371 		ASSERT3U(zs->zs_ranges[i].start, >, nblks);
372 		ASSERT3U(zs->zs_ranges[i].end, >, nblks);
373 		zs->zs_ranges[j].start = zs->zs_ranges[i].start - nblks;
374 		zs->zs_ranges[j].end = zs->zs_ranges[i].end - nblks;
375 	}
376 	if (j < ZFETCH_RANGES) {
377 		zs->zs_ranges[j].start = 0;
378 		zs->zs_ranges[j].end = 0;
379 	}
380 
381 done:
382 	zs->zs_blkid += nblks;
383 	return (nblks);
384 }
385 
386 /*
387  * Process future stream access for nblks blocks starting at blkid.  Return
388  * number of blocks to proceed for if future ranges reach fill threshold.
389  */
390 static uint64_t
391 dmu_zfetch_future(zstream_t *zs, uint64_t blkid, uint64_t nblks)
392 {
393 	ASSERT3U(blkid, >, zs->zs_blkid);
394 	blkid -= zs->zs_blkid;
395 	ASSERT3U(blkid + nblks, <=, UINT16_MAX);
396 
397 	/* Search for first and last intersection or insert point. */
398 	uint_t f = ZFETCH_RANGES, l = 0, i;
399 	for (i = 0; i < ZFETCH_RANGES; i++) {
400 		zsrange_t *r = &zs->zs_ranges[i];
401 		if (r->start == 0 || r->start > blkid + nblks)
402 			break;
403 		if (r->end < blkid)
404 			continue;
405 		if (f > i)
406 			f = i;
407 		if (l < i)
408 			l = i;
409 	}
410 	if (f <= l) {
411 		/* Got some intersecting range, expand it if needed. */
412 		if (zs->zs_ranges[f].start > blkid)
413 			zs->zs_ranges[f].start = blkid;
414 		zs->zs_ranges[f].end = MAX(zs->zs_ranges[l].end, blkid + nblks);
415 		if (f < l) {
416 			/* Got more than one intersection, remove others. */
417 			for (f++, l++; l < ZFETCH_RANGES; f++, l++) {
418 				zs->zs_ranges[f].start = zs->zs_ranges[l].start;
419 				zs->zs_ranges[f].end = zs->zs_ranges[l].end;
420 			}
421 			zs->zs_ranges[f].start = 0;
422 			zs->zs_ranges[f].end = 0;
423 		}
424 	} else if (i < ZFETCH_RANGES) {
425 		/* Got no intersecting ranges, insert new one. */
426 		for (l = ZFETCH_RANGES - 1; l > i; l--) {
427 			zs->zs_ranges[l].start = zs->zs_ranges[l - 1].start;
428 			zs->zs_ranges[l].end = zs->zs_ranges[l - 1].end;
429 		}
430 		zs->zs_ranges[i].start = blkid;
431 		zs->zs_ranges[i].end = blkid + nblks;
432 	} else {
433 		/* No space left to insert.  Drop the range. */
434 		return (0);
435 	}
436 
437 	/* Check if with the new access addition we reached fill threshold. */
438 	if (zfetch_hole_shift >= 16)
439 		return (0);
440 	uint_t hole = 0;
441 	for (i = f = l = 0; i < ZFETCH_RANGES; i++) {
442 		zsrange_t *r = &zs->zs_ranges[i];
443 		if (r->start == 0)
444 			break;
445 		hole += r->start - f;
446 		f = r->end;
447 		if (hole <= r->end >> zfetch_hole_shift)
448 			l = r->end;
449 	}
450 	if (l > 0)
451 		return (dmu_zfetch_hit(zs, l));
452 
453 	return (0);
454 }
455 
456 /*
457  * This is the predictive prefetch entry point.  dmu_zfetch_prepare()
458  * associates dnode access specified with blkid and nblks arguments with
459  * prefetch stream, predicts further accesses based on that stats and returns
460  * the stream pointer on success.  That pointer must later be passed to
461  * dmu_zfetch_run() to initiate the speculative prefetch for the stream and
462  * release it.  dmu_zfetch() is a wrapper for simple cases when window between
463  * prediction and prefetch initiation is not needed.
464  * fetch_data argument specifies whether actual data blocks should be fetched:
465  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
466  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
467  */
468 zstream_t *
469 dmu_zfetch_prepare(zfetch_t *zf, uint64_t blkid, uint64_t nblks,
470     boolean_t fetch_data, boolean_t have_lock)
471 {
472 	zstream_t *zs;
473 	spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
474 	zfs_prefetch_type_t os_prefetch = zf->zf_dnode->dn_objset->os_prefetch;
475 
476 	if (zfs_prefetch_disable || os_prefetch == ZFS_PREFETCH_NONE)
477 		return (NULL);
478 
479 	if (os_prefetch == ZFS_PREFETCH_METADATA)
480 		fetch_data = B_FALSE;
481 
482 	/*
483 	 * If we haven't yet loaded the indirect vdevs' mappings, we
484 	 * can only read from blocks that we carefully ensure are on
485 	 * concrete vdevs (or previously-loaded indirect vdevs).  So we
486 	 * can't allow the predictive prefetcher to attempt reads of other
487 	 * blocks (e.g. of the MOS's dnode object).
488 	 */
489 	if (!spa_indirect_vdevs_loaded(spa))
490 		return (NULL);
491 
492 	/*
493 	 * As a fast path for small (single-block) files, ignore access
494 	 * to the first block.
495 	 */
496 	if (!have_lock && blkid == 0)
497 		return (NULL);
498 
499 	if (!have_lock)
500 		rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
501 
502 	/*
503 	 * A fast path for small files for which no prefetch will
504 	 * happen.
505 	 */
506 	uint64_t maxblkid = zf->zf_dnode->dn_maxblkid;
507 	if (maxblkid < 2) {
508 		if (!have_lock)
509 			rw_exit(&zf->zf_dnode->dn_struct_rwlock);
510 		return (NULL);
511 	}
512 	mutex_enter(&zf->zf_lock);
513 
514 	/*
515 	 * Find perfect prefetch stream.  Depending on whether the accesses
516 	 * are block-aligned, first block of the new access may either follow
517 	 * the last block of the previous access, or be equal to it.
518 	 */
519 	unsigned int dbs = zf->zf_dnode->dn_datablkshift;
520 	uint64_t end_blkid = blkid + nblks;
521 	for (zs = list_head(&zf->zf_stream); zs != NULL;
522 	    zs = list_next(&zf->zf_stream, zs)) {
523 		if (blkid == zs->zs_blkid) {
524 			goto hit;
525 		} else if (blkid + 1 == zs->zs_blkid) {
526 			blkid++;
527 			nblks--;
528 			goto hit;
529 		}
530 	}
531 
532 	/*
533 	 * Find close enough prefetch stream.  Access crossing stream position
534 	 * is a hit in its new part.  Access ahead of stream position considered
535 	 * a hit for metadata prefetch, since we do not care about fill percent,
536 	 * or stored for future otherwise.  Access behind stream position is
537 	 * silently ignored, since we already skipped it reaching fill percent.
538 	 */
539 	uint_t max_reorder = MIN((zfetch_max_reorder >> dbs) + 1, UINT16_MAX);
540 	uint_t t = gethrestime_sec() - zfetch_max_sec_reap;
541 	for (zs = list_head(&zf->zf_stream); zs != NULL;
542 	    zs = list_next(&zf->zf_stream, zs)) {
543 		if (blkid > zs->zs_blkid) {
544 			if (end_blkid <= zs->zs_blkid + max_reorder) {
545 				if (!fetch_data) {
546 					nblks = dmu_zfetch_hit(zs,
547 					    end_blkid - zs->zs_blkid);
548 					ZFETCHSTAT_BUMP(zfetchstat_stride);
549 					goto future;
550 				}
551 				nblks = dmu_zfetch_future(zs, blkid, nblks);
552 				if (nblks > 0)
553 					ZFETCHSTAT_BUMP(zfetchstat_stride);
554 				else
555 					ZFETCHSTAT_BUMP(zfetchstat_future);
556 				goto future;
557 			}
558 		} else if (end_blkid >= zs->zs_blkid) {
559 			nblks -= zs->zs_blkid - blkid;
560 			blkid += zs->zs_blkid - blkid;
561 			goto hit;
562 		} else if (end_blkid + max_reorder > zs->zs_blkid &&
563 		    (int)(zs->zs_atime - t) >= 0) {
564 			ZFETCHSTAT_BUMP(zfetchstat_past);
565 			zs->zs_atime = gethrestime_sec();
566 			goto out;
567 		}
568 	}
569 
570 	/*
571 	 * This access is not part of any existing stream.  Create a new
572 	 * stream for it unless we are at the end of file.
573 	 */
574 	if (end_blkid < maxblkid)
575 		dmu_zfetch_stream_create(zf, end_blkid);
576 	mutex_exit(&zf->zf_lock);
577 	if (!have_lock)
578 		rw_exit(&zf->zf_dnode->dn_struct_rwlock);
579 	ZFETCHSTAT_BUMP(zfetchstat_misses);
580 	return (NULL);
581 
582 hit:
583 	nblks = dmu_zfetch_hit(zs, nblks);
584 	ZFETCHSTAT_BUMP(zfetchstat_hits);
585 
586 future:
587 	zs->zs_atime = gethrestime_sec();
588 
589 	/* Exit if we already prefetched for this position before. */
590 	if (nblks == 0)
591 		goto out;
592 
593 	/* If the file is ending, remove the stream. */
594 	end_blkid = zs->zs_blkid;
595 	if (end_blkid >= maxblkid) {
596 		dmu_zfetch_stream_remove(zf, zs);
597 out:
598 		mutex_exit(&zf->zf_lock);
599 		if (!have_lock)
600 			rw_exit(&zf->zf_dnode->dn_struct_rwlock);
601 		return (NULL);
602 	}
603 
604 	/*
605 	 * This access was to a block that we issued a prefetch for on
606 	 * behalf of this stream.  Calculate further prefetch distances.
607 	 *
608 	 * Start prefetch from the demand access size (nblks).  Double the
609 	 * distance every access up to zfetch_min_distance.  After that only
610 	 * if needed increase the distance by 1/8 up to zfetch_max_distance.
611 	 *
612 	 * Don't double the distance beyond single block if we have more
613 	 * than ~6% of ARC held by active prefetches.  It should help with
614 	 * getting out of RAM on some badly mispredicted read patterns.
615 	 */
616 	unsigned int nbytes = nblks << dbs;
617 	unsigned int pf_nblks;
618 	if (fetch_data) {
619 		if (unlikely(zs->zs_pf_dist < nbytes))
620 			zs->zs_pf_dist = nbytes;
621 		else if (zs->zs_pf_dist < zfetch_min_distance &&
622 		    (zs->zs_pf_dist < (1 << dbs) ||
623 		    aggsum_compare(&zfetch_sums.zfetchstat_io_active,
624 		    arc_c_max >> (4 + dbs)) < 0))
625 			zs->zs_pf_dist *= 2;
626 		else if (zs->zs_more)
627 			zs->zs_pf_dist += zs->zs_pf_dist / 8;
628 		zs->zs_more = B_FALSE;
629 		if (zs->zs_pf_dist > zfetch_max_distance)
630 			zs->zs_pf_dist = zfetch_max_distance;
631 		pf_nblks = zs->zs_pf_dist >> dbs;
632 	} else {
633 		pf_nblks = 0;
634 	}
635 	if (zs->zs_pf_start < end_blkid)
636 		zs->zs_pf_start = end_blkid;
637 	if (zs->zs_pf_end < end_blkid + pf_nblks)
638 		zs->zs_pf_end = end_blkid + pf_nblks;
639 
640 	/*
641 	 * Do the same for indirects, starting where we will stop reading
642 	 * data blocks (and the indirects that point to them).
643 	 */
644 	if (unlikely(zs->zs_ipf_dist < nbytes))
645 		zs->zs_ipf_dist = nbytes;
646 	else
647 		zs->zs_ipf_dist *= 2;
648 	if (zs->zs_ipf_dist > zfetch_max_idistance)
649 		zs->zs_ipf_dist = zfetch_max_idistance;
650 	pf_nblks = zs->zs_ipf_dist >> dbs;
651 	if (zs->zs_ipf_start < zs->zs_pf_end)
652 		zs->zs_ipf_start = zs->zs_pf_end;
653 	if (zs->zs_ipf_end < zs->zs_pf_end + pf_nblks)
654 		zs->zs_ipf_end = zs->zs_pf_end + pf_nblks;
655 
656 	zfs_refcount_add(&zs->zs_refs, NULL);
657 	/* Count concurrent callers. */
658 	zfs_refcount_add(&zs->zs_callers, NULL);
659 	mutex_exit(&zf->zf_lock);
660 
661 	if (!have_lock)
662 		rw_exit(&zf->zf_dnode->dn_struct_rwlock);
663 	return (zs);
664 }
665 
666 void
667 dmu_zfetch_run(zfetch_t *zf, zstream_t *zs, boolean_t missed,
668     boolean_t have_lock)
669 {
670 	int64_t pf_start, pf_end, ipf_start, ipf_end;
671 	int epbs, issued;
672 
673 	if (missed)
674 		zs->zs_missed = missed;
675 
676 	/*
677 	 * Postpone the prefetch if there are more concurrent callers.
678 	 * It happens when multiple requests are waiting for the same
679 	 * indirect block.  The last one will run the prefetch for all.
680 	 */
681 	if (zfs_refcount_remove(&zs->zs_callers, NULL) != 0) {
682 		/* Drop reference taken in dmu_zfetch_prepare(). */
683 		if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
684 			dmu_zfetch_stream_fini(zs);
685 		return;
686 	}
687 
688 	mutex_enter(&zf->zf_lock);
689 	if (zs->zs_missed) {
690 		pf_start = zs->zs_pf_start;
691 		pf_end = zs->zs_pf_start = zs->zs_pf_end;
692 	} else {
693 		pf_start = pf_end = 0;
694 	}
695 	ipf_start = zs->zs_ipf_start;
696 	ipf_end = zs->zs_ipf_start = zs->zs_ipf_end;
697 	mutex_exit(&zf->zf_lock);
698 	ASSERT3S(pf_start, <=, pf_end);
699 	ASSERT3S(ipf_start, <=, ipf_end);
700 
701 	epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
702 	ipf_start = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
703 	ipf_end = P2ROUNDUP(ipf_end, 1 << epbs) >> epbs;
704 	ASSERT3S(ipf_start, <=, ipf_end);
705 	issued = pf_end - pf_start + ipf_end - ipf_start;
706 	if (issued > 1) {
707 		/* More references on top of taken in dmu_zfetch_prepare(). */
708 		zfs_refcount_add_few(&zs->zs_refs, issued - 1, NULL);
709 	} else if (issued == 0) {
710 		/* Some other thread has done our work, so drop the ref. */
711 		if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
712 			dmu_zfetch_stream_fini(zs);
713 		return;
714 	}
715 	aggsum_add(&zfetch_sums.zfetchstat_io_active, issued);
716 
717 	if (!have_lock)
718 		rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
719 
720 	issued = 0;
721 	for (int64_t blk = pf_start; blk < pf_end; blk++) {
722 		issued += dbuf_prefetch_impl(zf->zf_dnode, 0, blk,
723 		    ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
724 	}
725 	for (int64_t iblk = ipf_start; iblk < ipf_end; iblk++) {
726 		issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
727 		    ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
728 	}
729 
730 	if (!have_lock)
731 		rw_exit(&zf->zf_dnode->dn_struct_rwlock);
732 
733 	if (issued)
734 		ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
735 }
736 
737 void
738 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
739     boolean_t missed, boolean_t have_lock)
740 {
741 	zstream_t *zs;
742 
743 	zs = dmu_zfetch_prepare(zf, blkid, nblks, fetch_data, have_lock);
744 	if (zs)
745 		dmu_zfetch_run(zf, zs, missed, have_lock);
746 }
747 
748 ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
749 	"Disable all ZFS prefetching");
750 
751 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
752 	"Max number of streams per zfetch");
753 
754 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
755 	"Min time before stream reclaim");
756 
757 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_sec_reap, UINT, ZMOD_RW,
758 	"Max time before stream delete");
759 
760 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_distance, UINT, ZMOD_RW,
761 	"Min bytes to prefetch per stream");
762 
763 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
764 	"Max bytes to prefetch per stream");
765 
766 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
767 	"Max bytes to prefetch indirects for per stream");
768 
769 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_reorder, UINT, ZMOD_RW,
770 	"Max request reorder distance within a stream");
771 
772 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, hole_shift, UINT, ZMOD_RW,
773 	"Max log2 fraction of holes in a stream");
774