xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_zfetch.c (revision 221622ec0c8e184dd1ea7e1f77fb45d2d32cb6e2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37 
38 /*
39  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
40  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
41  * prescient prefetch never issues i/os that end up not being needed,
42  * so it can't hurt performance.
43  */
44 
45 int zfs_prefetch_disable = B_FALSE;
46 
47 /* max # of streams per zfetch */
48 unsigned int	zfetch_max_streams = 8;
49 /* min time before stream reclaim */
50 unsigned int	zfetch_min_sec_reap = 2;
51 /* max bytes to prefetch per stream (default 8MB) */
52 unsigned int	zfetch_max_distance = 8 * 1024 * 1024;
53 /* max bytes to prefetch indirects for per stream (default 64MB) */
54 unsigned int	zfetch_max_idistance = 64 * 1024 * 1024;
55 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
56 unsigned long	zfetch_array_rd_sz = 1024 * 1024;
57 
58 typedef struct zfetch_stats {
59 	kstat_named_t zfetchstat_hits;
60 	kstat_named_t zfetchstat_misses;
61 	kstat_named_t zfetchstat_max_streams;
62 	kstat_named_t zfetchstat_max_completion_us;
63 	kstat_named_t zfetchstat_last_completion_us;
64 	kstat_named_t zfetchstat_io_issued;
65 } zfetch_stats_t;
66 
67 static zfetch_stats_t zfetch_stats = {
68 	{ "hits",			KSTAT_DATA_UINT64 },
69 	{ "misses",			KSTAT_DATA_UINT64 },
70 	{ "max_streams",		KSTAT_DATA_UINT64 },
71 	{ "max_completion_us",		KSTAT_DATA_UINT64 },
72 	{ "last_completion_us",		KSTAT_DATA_UINT64 },
73 	{ "io_issued",		KSTAT_DATA_UINT64 },
74 };
75 
76 #define	ZFETCHSTAT_BUMP(stat) \
77 	atomic_inc_64(&zfetch_stats.stat.value.ui64)
78 #define	ZFETCHSTAT_ADD(stat, val)				\
79 	atomic_add_64(&zfetch_stats.stat.value.ui64, val)
80 #define	ZFETCHSTAT_SET(stat, val)				\
81 	zfetch_stats.stat.value.ui64 = val
82 #define	ZFETCHSTAT_GET(stat)					\
83 	zfetch_stats.stat.value.ui64
84 
85 
86 kstat_t		*zfetch_ksp;
87 
88 void
89 zfetch_init(void)
90 {
91 	zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
92 	    KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
93 	    KSTAT_FLAG_VIRTUAL);
94 
95 	if (zfetch_ksp != NULL) {
96 		zfetch_ksp->ks_data = &zfetch_stats;
97 		kstat_install(zfetch_ksp);
98 	}
99 }
100 
101 void
102 zfetch_fini(void)
103 {
104 	if (zfetch_ksp != NULL) {
105 		kstat_delete(zfetch_ksp);
106 		zfetch_ksp = NULL;
107 	}
108 }
109 
110 /*
111  * This takes a pointer to a zfetch structure and a dnode.  It performs the
112  * necessary setup for the zfetch structure, grokking data from the
113  * associated dnode.
114  */
115 void
116 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
117 {
118 	if (zf == NULL)
119 		return;
120 	zf->zf_dnode = dno;
121 	zf->zf_numstreams = 0;
122 
123 	list_create(&zf->zf_stream, sizeof (zstream_t),
124 	    offsetof(zstream_t, zs_node));
125 
126 	mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
127 }
128 
129 static void
130 dmu_zfetch_stream_fini(zstream_t *zs)
131 {
132 	mutex_destroy(&zs->zs_lock);
133 	kmem_free(zs, sizeof (*zs));
134 }
135 
136 static void
137 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
138 {
139 	ASSERT(MUTEX_HELD(&zf->zf_lock));
140 	list_remove(&zf->zf_stream, zs);
141 	dmu_zfetch_stream_fini(zs);
142 	zf->zf_numstreams--;
143 }
144 
145 static void
146 dmu_zfetch_stream_orphan(zfetch_t *zf, zstream_t *zs)
147 {
148 	ASSERT(MUTEX_HELD(&zf->zf_lock));
149 	list_remove(&zf->zf_stream, zs);
150 	zs->zs_fetch = NULL;
151 	zf->zf_numstreams--;
152 }
153 
154 /*
155  * Clean-up state associated with a zfetch structure (e.g. destroy the
156  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
157  */
158 void
159 dmu_zfetch_fini(zfetch_t *zf)
160 {
161 	zstream_t *zs;
162 
163 	mutex_enter(&zf->zf_lock);
164 	while ((zs = list_head(&zf->zf_stream)) != NULL) {
165 		if (zfs_refcount_count(&zs->zs_blocks) != 0)
166 			dmu_zfetch_stream_orphan(zf, zs);
167 		else
168 			dmu_zfetch_stream_remove(zf, zs);
169 	}
170 	mutex_exit(&zf->zf_lock);
171 	list_destroy(&zf->zf_stream);
172 	mutex_destroy(&zf->zf_lock);
173 
174 	zf->zf_dnode = NULL;
175 }
176 
177 /*
178  * If there aren't too many streams already, create a new stream.
179  * The "blkid" argument is the next block that we expect this stream to access.
180  * While we're here, clean up old streams (which haven't been
181  * accessed for at least zfetch_min_sec_reap seconds).
182  */
183 static void
184 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
185 {
186 	zstream_t *zs_next;
187 	hrtime_t now = gethrtime();
188 
189 	ASSERT(MUTEX_HELD(&zf->zf_lock));
190 
191 	/*
192 	 * Clean up old streams.
193 	 */
194 	for (zstream_t *zs = list_head(&zf->zf_stream);
195 	    zs != NULL; zs = zs_next) {
196 		zs_next = list_next(&zf->zf_stream, zs);
197 		/*
198 		 * Skip gethrtime() call if there are still references
199 		 */
200 		if (zfs_refcount_count(&zs->zs_blocks) != 0)
201 			continue;
202 		if (((now - zs->zs_atime) / NANOSEC) >
203 		    zfetch_min_sec_reap)
204 			dmu_zfetch_stream_remove(zf, zs);
205 	}
206 
207 	/*
208 	 * The maximum number of streams is normally zfetch_max_streams,
209 	 * but for small files we lower it such that it's at least possible
210 	 * for all the streams to be non-overlapping.
211 	 *
212 	 * If we are already at the maximum number of streams for this file,
213 	 * even after removing old streams, then don't create this stream.
214 	 */
215 	uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
216 	    zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
217 	    zfetch_max_distance));
218 	if (zf->zf_numstreams >= max_streams) {
219 		ZFETCHSTAT_BUMP(zfetchstat_max_streams);
220 		return;
221 	}
222 
223 	zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
224 	zs->zs_blkid = blkid;
225 	zs->zs_pf_blkid = blkid;
226 	zs->zs_ipf_blkid = blkid;
227 	zs->zs_atime = now;
228 	zs->zs_fetch = zf;
229 	zfs_refcount_create(&zs->zs_blocks);
230 	mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
231 	zf->zf_numstreams++;
232 	list_insert_head(&zf->zf_stream, zs);
233 }
234 
235 static void
236 dmu_zfetch_stream_done(void *arg, boolean_t io_issued)
237 {
238 	zstream_t *zs = arg;
239 
240 	if (zs->zs_start_time && io_issued) {
241 		hrtime_t now = gethrtime();
242 		hrtime_t delta = NSEC2USEC(now - zs->zs_start_time);
243 
244 		zs->zs_start_time = 0;
245 		ZFETCHSTAT_SET(zfetchstat_last_completion_us, delta);
246 		if (delta > ZFETCHSTAT_GET(zfetchstat_max_completion_us))
247 			ZFETCHSTAT_SET(zfetchstat_max_completion_us, delta);
248 	}
249 
250 	if (zfs_refcount_remove(&zs->zs_blocks, NULL) != 0)
251 		return;
252 
253 	/*
254 	 * The parent fetch structure has gone away
255 	 */
256 	if (zs->zs_fetch == NULL)
257 		dmu_zfetch_stream_fini(zs);
258 }
259 
260 /*
261  * This is the predictive prefetch entry point.  It associates dnode access
262  * specified with blkid and nblks arguments with prefetch stream, predicts
263  * further accesses based on that stats and initiates speculative prefetch.
264  * fetch_data argument specifies whether actual data blocks should be fetched:
265  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
266  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
267  */
268 void
269 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
270     boolean_t have_lock)
271 {
272 	zstream_t *zs;
273 	int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
274 	int64_t pf_ahead_blks, max_blks;
275 	int epbs, max_dist_blks, pf_nblks, ipf_nblks, issued;
276 	uint64_t end_of_access_blkid;
277 	end_of_access_blkid = blkid + nblks;
278 	spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
279 
280 	if (zfs_prefetch_disable)
281 		return;
282 	/*
283 	 * If we haven't yet loaded the indirect vdevs' mappings, we
284 	 * can only read from blocks that we carefully ensure are on
285 	 * concrete vdevs (or previously-loaded indirect vdevs).  So we
286 	 * can't allow the predictive prefetcher to attempt reads of other
287 	 * blocks (e.g. of the MOS's dnode object).
288 	 */
289 	if (!spa_indirect_vdevs_loaded(spa))
290 		return;
291 
292 	/*
293 	 * As a fast path for small (single-block) files, ignore access
294 	 * to the first block.
295 	 */
296 	if (!have_lock && blkid == 0)
297 		return;
298 
299 	if (!have_lock)
300 		rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
301 
302 	/*
303 	 * A fast path for small files for which no prefetch will
304 	 * happen.
305 	 */
306 	if (zf->zf_dnode->dn_maxblkid < 2) {
307 		if (!have_lock)
308 			rw_exit(&zf->zf_dnode->dn_struct_rwlock);
309 		return;
310 	}
311 	mutex_enter(&zf->zf_lock);
312 
313 	/*
314 	 * Find matching prefetch stream.  Depending on whether the accesses
315 	 * are block-aligned, first block of the new access may either follow
316 	 * the last block of the previous access, or be equal to it.
317 	 */
318 	for (zs = list_head(&zf->zf_stream); zs != NULL;
319 	    zs = list_next(&zf->zf_stream, zs)) {
320 		if (blkid == zs->zs_blkid || blkid + 1 == zs->zs_blkid) {
321 			mutex_enter(&zs->zs_lock);
322 			/*
323 			 * zs_blkid could have changed before we
324 			 * acquired zs_lock; re-check them here.
325 			 */
326 			if (blkid == zs->zs_blkid) {
327 				break;
328 			} else if (blkid + 1 == zs->zs_blkid) {
329 				blkid++;
330 				nblks--;
331 				if (nblks == 0) {
332 					/* Already prefetched this before. */
333 					mutex_exit(&zs->zs_lock);
334 					mutex_exit(&zf->zf_lock);
335 					if (!have_lock) {
336 						rw_exit(&zf->zf_dnode->
337 						    dn_struct_rwlock);
338 					}
339 					return;
340 				}
341 				break;
342 			}
343 			mutex_exit(&zs->zs_lock);
344 		}
345 	}
346 
347 	if (zs == NULL) {
348 		/*
349 		 * This access is not part of any existing stream.  Create
350 		 * a new stream for it.
351 		 */
352 		ZFETCHSTAT_BUMP(zfetchstat_misses);
353 
354 		dmu_zfetch_stream_create(zf, end_of_access_blkid);
355 		mutex_exit(&zf->zf_lock);
356 		if (!have_lock)
357 			rw_exit(&zf->zf_dnode->dn_struct_rwlock);
358 		return;
359 	}
360 
361 	/*
362 	 * This access was to a block that we issued a prefetch for on
363 	 * behalf of this stream. Issue further prefetches for this stream.
364 	 *
365 	 * Normally, we start prefetching where we stopped
366 	 * prefetching last (zs_pf_blkid).  But when we get our first
367 	 * hit on this stream, zs_pf_blkid == zs_blkid, we don't
368 	 * want to prefetch the block we just accessed.  In this case,
369 	 * start just after the block we just accessed.
370 	 */
371 	pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
372 
373 	/*
374 	 * Double our amount of prefetched data, but don't let the
375 	 * prefetch get further ahead than zfetch_max_distance.
376 	 */
377 	if (fetch_data) {
378 		max_dist_blks =
379 		    zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
380 		/*
381 		 * Previously, we were (zs_pf_blkid - blkid) ahead.  We
382 		 * want to now be double that, so read that amount again,
383 		 * plus the amount we are catching up by (i.e. the amount
384 		 * read just now).
385 		 */
386 		pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
387 		max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
388 		pf_nblks = MIN(pf_ahead_blks, max_blks);
389 	} else {
390 		pf_nblks = 0;
391 	}
392 
393 	zs->zs_pf_blkid = pf_start + pf_nblks;
394 
395 	/*
396 	 * Do the same for indirects, starting from where we stopped last,
397 	 * or where we will stop reading data blocks (and the indirects
398 	 * that point to them).
399 	 */
400 	ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
401 	max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
402 	/*
403 	 * We want to double our distance ahead of the data prefetch
404 	 * (or reader, if we are not prefetching data).  Previously, we
405 	 * were (zs_ipf_blkid - blkid) ahead.  To double that, we read
406 	 * that amount again, plus the amount we are catching up by
407 	 * (i.e. the amount read now + the amount of data prefetched now).
408 	 */
409 	pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
410 	max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
411 	ipf_nblks = MIN(pf_ahead_blks, max_blks);
412 	zs->zs_ipf_blkid = ipf_start + ipf_nblks;
413 
414 	epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
415 	ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
416 	ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
417 
418 	zs->zs_atime = gethrtime();
419 	/* no prior reads in progress */
420 	if (zfs_refcount_count(&zs->zs_blocks) == 0)
421 		zs->zs_start_time = zs->zs_atime;
422 	zs->zs_blkid = end_of_access_blkid;
423 	zfs_refcount_add_many(&zs->zs_blocks, pf_nblks + ipf_iend - ipf_istart,
424 	    NULL);
425 	mutex_exit(&zs->zs_lock);
426 	mutex_exit(&zf->zf_lock);
427 	issued = 0;
428 
429 	/*
430 	 * dbuf_prefetch() is asynchronous (even when it needs to read
431 	 * indirect blocks), but we still prefer to drop our locks before
432 	 * calling it to reduce the time we hold them.
433 	 */
434 
435 	for (int i = 0; i < pf_nblks; i++) {
436 		issued += dbuf_prefetch_impl(zf->zf_dnode, 0, pf_start + i,
437 		    ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH,
438 		    dmu_zfetch_stream_done, zs);
439 	}
440 	for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) {
441 		issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
442 		    ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH,
443 		    dmu_zfetch_stream_done, zs);
444 	}
445 	if (!have_lock)
446 		rw_exit(&zf->zf_dnode->dn_struct_rwlock);
447 	ZFETCHSTAT_BUMP(zfetchstat_hits);
448 
449 	if (issued)
450 		ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
451 }
452 
453 /* BEGIN CSTYLED */
454 ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
455 	"Disable all ZFS prefetching");
456 
457 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
458 	"Max number of streams per zfetch");
459 
460 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
461 	"Min time before stream reclaim");
462 
463 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
464 	"Max bytes to prefetch per stream");
465 
466 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
467 	"Max bytes to prefetch indirects for per stream");
468 
469 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, array_rd_sz, ULONG, ZMOD_RW,
470 	"Number of bytes in a array_read");
471 /* END CSTYLED */
472