1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2013, 2017 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_zfetch.h> 34 #include <sys/dmu.h> 35 #include <sys/dbuf.h> 36 #include <sys/kstat.h> 37 38 /* 39 * This tunable disables predictive prefetch. Note that it leaves "prescient" 40 * prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch, 41 * prescient prefetch never issues i/os that end up not being needed, 42 * so it can't hurt performance. 43 */ 44 45 int zfs_prefetch_disable = B_FALSE; 46 47 /* max # of streams per zfetch */ 48 unsigned int zfetch_max_streams = 8; 49 /* min time before stream reclaim */ 50 unsigned int zfetch_min_sec_reap = 2; 51 /* max bytes to prefetch per stream (default 8MB) */ 52 unsigned int zfetch_max_distance = 8 * 1024 * 1024; 53 /* max bytes to prefetch indirects for per stream (default 64MB) */ 54 unsigned int zfetch_max_idistance = 64 * 1024 * 1024; 55 /* max number of bytes in an array_read in which we allow prefetching (1MB) */ 56 unsigned long zfetch_array_rd_sz = 1024 * 1024; 57 58 typedef struct zfetch_stats { 59 kstat_named_t zfetchstat_hits; 60 kstat_named_t zfetchstat_misses; 61 kstat_named_t zfetchstat_max_streams; 62 kstat_named_t zfetchstat_max_completion_us; 63 kstat_named_t zfetchstat_last_completion_us; 64 kstat_named_t zfetchstat_io_issued; 65 } zfetch_stats_t; 66 67 static zfetch_stats_t zfetch_stats = { 68 { "hits", KSTAT_DATA_UINT64 }, 69 { "misses", KSTAT_DATA_UINT64 }, 70 { "max_streams", KSTAT_DATA_UINT64 }, 71 { "max_completion_us", KSTAT_DATA_UINT64 }, 72 { "last_completion_us", KSTAT_DATA_UINT64 }, 73 { "io_issued", KSTAT_DATA_UINT64 }, 74 }; 75 76 #define ZFETCHSTAT_BUMP(stat) \ 77 atomic_inc_64(&zfetch_stats.stat.value.ui64) 78 #define ZFETCHSTAT_ADD(stat, val) \ 79 atomic_add_64(&zfetch_stats.stat.value.ui64, val) 80 #define ZFETCHSTAT_SET(stat, val) \ 81 zfetch_stats.stat.value.ui64 = val 82 #define ZFETCHSTAT_GET(stat) \ 83 zfetch_stats.stat.value.ui64 84 85 86 kstat_t *zfetch_ksp; 87 88 void 89 zfetch_init(void) 90 { 91 zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc", 92 KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t), 93 KSTAT_FLAG_VIRTUAL); 94 95 if (zfetch_ksp != NULL) { 96 zfetch_ksp->ks_data = &zfetch_stats; 97 kstat_install(zfetch_ksp); 98 } 99 } 100 101 void 102 zfetch_fini(void) 103 { 104 if (zfetch_ksp != NULL) { 105 kstat_delete(zfetch_ksp); 106 zfetch_ksp = NULL; 107 } 108 } 109 110 /* 111 * This takes a pointer to a zfetch structure and a dnode. It performs the 112 * necessary setup for the zfetch structure, grokking data from the 113 * associated dnode. 114 */ 115 void 116 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno) 117 { 118 if (zf == NULL) 119 return; 120 zf->zf_dnode = dno; 121 zf->zf_numstreams = 0; 122 123 list_create(&zf->zf_stream, sizeof (zstream_t), 124 offsetof(zstream_t, zs_node)); 125 126 mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL); 127 } 128 129 static void 130 dmu_zfetch_stream_fini(zstream_t *zs) 131 { 132 mutex_destroy(&zs->zs_lock); 133 kmem_free(zs, sizeof (*zs)); 134 } 135 136 static void 137 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs) 138 { 139 ASSERT(MUTEX_HELD(&zf->zf_lock)); 140 list_remove(&zf->zf_stream, zs); 141 dmu_zfetch_stream_fini(zs); 142 zf->zf_numstreams--; 143 } 144 145 static void 146 dmu_zfetch_stream_orphan(zfetch_t *zf, zstream_t *zs) 147 { 148 ASSERT(MUTEX_HELD(&zf->zf_lock)); 149 list_remove(&zf->zf_stream, zs); 150 zs->zs_fetch = NULL; 151 zf->zf_numstreams--; 152 } 153 154 /* 155 * Clean-up state associated with a zfetch structure (e.g. destroy the 156 * streams). This doesn't free the zfetch_t itself, that's left to the caller. 157 */ 158 void 159 dmu_zfetch_fini(zfetch_t *zf) 160 { 161 zstream_t *zs; 162 163 mutex_enter(&zf->zf_lock); 164 while ((zs = list_head(&zf->zf_stream)) != NULL) { 165 if (zfs_refcount_count(&zs->zs_blocks) != 0) 166 dmu_zfetch_stream_orphan(zf, zs); 167 else 168 dmu_zfetch_stream_remove(zf, zs); 169 } 170 mutex_exit(&zf->zf_lock); 171 list_destroy(&zf->zf_stream); 172 mutex_destroy(&zf->zf_lock); 173 174 zf->zf_dnode = NULL; 175 } 176 177 /* 178 * If there aren't too many streams already, create a new stream. 179 * The "blkid" argument is the next block that we expect this stream to access. 180 * While we're here, clean up old streams (which haven't been 181 * accessed for at least zfetch_min_sec_reap seconds). 182 */ 183 static void 184 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid) 185 { 186 zstream_t *zs_next; 187 hrtime_t now = gethrtime(); 188 189 ASSERT(MUTEX_HELD(&zf->zf_lock)); 190 191 /* 192 * Clean up old streams. 193 */ 194 for (zstream_t *zs = list_head(&zf->zf_stream); 195 zs != NULL; zs = zs_next) { 196 zs_next = list_next(&zf->zf_stream, zs); 197 /* 198 * Skip gethrtime() call if there are still references 199 */ 200 if (zfs_refcount_count(&zs->zs_blocks) != 0) 201 continue; 202 if (((now - zs->zs_atime) / NANOSEC) > 203 zfetch_min_sec_reap) 204 dmu_zfetch_stream_remove(zf, zs); 205 } 206 207 /* 208 * The maximum number of streams is normally zfetch_max_streams, 209 * but for small files we lower it such that it's at least possible 210 * for all the streams to be non-overlapping. 211 * 212 * If we are already at the maximum number of streams for this file, 213 * even after removing old streams, then don't create this stream. 214 */ 215 uint32_t max_streams = MAX(1, MIN(zfetch_max_streams, 216 zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz / 217 zfetch_max_distance)); 218 if (zf->zf_numstreams >= max_streams) { 219 ZFETCHSTAT_BUMP(zfetchstat_max_streams); 220 return; 221 } 222 223 zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP); 224 zs->zs_blkid = blkid; 225 zs->zs_pf_blkid = blkid; 226 zs->zs_ipf_blkid = blkid; 227 zs->zs_atime = now; 228 zs->zs_fetch = zf; 229 zfs_refcount_create(&zs->zs_blocks); 230 mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL); 231 zf->zf_numstreams++; 232 list_insert_head(&zf->zf_stream, zs); 233 } 234 235 static void 236 dmu_zfetch_stream_done(void *arg, boolean_t io_issued) 237 { 238 zstream_t *zs = arg; 239 240 if (zs->zs_start_time && io_issued) { 241 hrtime_t now = gethrtime(); 242 hrtime_t delta = NSEC2USEC(now - zs->zs_start_time); 243 244 zs->zs_start_time = 0; 245 ZFETCHSTAT_SET(zfetchstat_last_completion_us, delta); 246 if (delta > ZFETCHSTAT_GET(zfetchstat_max_completion_us)) 247 ZFETCHSTAT_SET(zfetchstat_max_completion_us, delta); 248 } 249 250 if (zfs_refcount_remove(&zs->zs_blocks, NULL) != 0) 251 return; 252 253 /* 254 * The parent fetch structure has gone away 255 */ 256 if (zs->zs_fetch == NULL) 257 dmu_zfetch_stream_fini(zs); 258 } 259 260 /* 261 * This is the predictive prefetch entry point. It associates dnode access 262 * specified with blkid and nblks arguments with prefetch stream, predicts 263 * further accesses based on that stats and initiates speculative prefetch. 264 * fetch_data argument specifies whether actual data blocks should be fetched: 265 * FALSE -- prefetch only indirect blocks for predicted data blocks; 266 * TRUE -- prefetch predicted data blocks plus following indirect blocks. 267 */ 268 void 269 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data, 270 boolean_t have_lock) 271 { 272 zstream_t *zs; 273 int64_t pf_start, ipf_start, ipf_istart, ipf_iend; 274 int64_t pf_ahead_blks, max_blks; 275 int epbs, max_dist_blks, pf_nblks, ipf_nblks, issued; 276 uint64_t end_of_access_blkid; 277 end_of_access_blkid = blkid + nblks; 278 spa_t *spa = zf->zf_dnode->dn_objset->os_spa; 279 280 if (zfs_prefetch_disable) 281 return; 282 /* 283 * If we haven't yet loaded the indirect vdevs' mappings, we 284 * can only read from blocks that we carefully ensure are on 285 * concrete vdevs (or previously-loaded indirect vdevs). So we 286 * can't allow the predictive prefetcher to attempt reads of other 287 * blocks (e.g. of the MOS's dnode object). 288 */ 289 if (!spa_indirect_vdevs_loaded(spa)) 290 return; 291 292 /* 293 * As a fast path for small (single-block) files, ignore access 294 * to the first block. 295 */ 296 if (!have_lock && blkid == 0) 297 return; 298 299 if (!have_lock) 300 rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER); 301 302 /* 303 * A fast path for small files for which no prefetch will 304 * happen. 305 */ 306 if (zf->zf_dnode->dn_maxblkid < 2) { 307 if (!have_lock) 308 rw_exit(&zf->zf_dnode->dn_struct_rwlock); 309 return; 310 } 311 mutex_enter(&zf->zf_lock); 312 313 /* 314 * Find matching prefetch stream. Depending on whether the accesses 315 * are block-aligned, first block of the new access may either follow 316 * the last block of the previous access, or be equal to it. 317 */ 318 for (zs = list_head(&zf->zf_stream); zs != NULL; 319 zs = list_next(&zf->zf_stream, zs)) { 320 if (blkid == zs->zs_blkid || blkid + 1 == zs->zs_blkid) { 321 mutex_enter(&zs->zs_lock); 322 /* 323 * zs_blkid could have changed before we 324 * acquired zs_lock; re-check them here. 325 */ 326 if (blkid == zs->zs_blkid) { 327 break; 328 } else if (blkid + 1 == zs->zs_blkid) { 329 blkid++; 330 nblks--; 331 if (nblks == 0) { 332 /* Already prefetched this before. */ 333 mutex_exit(&zs->zs_lock); 334 mutex_exit(&zf->zf_lock); 335 if (!have_lock) { 336 rw_exit(&zf->zf_dnode-> 337 dn_struct_rwlock); 338 } 339 return; 340 } 341 break; 342 } 343 mutex_exit(&zs->zs_lock); 344 } 345 } 346 347 if (zs == NULL) { 348 /* 349 * This access is not part of any existing stream. Create 350 * a new stream for it. 351 */ 352 ZFETCHSTAT_BUMP(zfetchstat_misses); 353 354 dmu_zfetch_stream_create(zf, end_of_access_blkid); 355 mutex_exit(&zf->zf_lock); 356 if (!have_lock) 357 rw_exit(&zf->zf_dnode->dn_struct_rwlock); 358 return; 359 } 360 361 /* 362 * This access was to a block that we issued a prefetch for on 363 * behalf of this stream. Issue further prefetches for this stream. 364 * 365 * Normally, we start prefetching where we stopped 366 * prefetching last (zs_pf_blkid). But when we get our first 367 * hit on this stream, zs_pf_blkid == zs_blkid, we don't 368 * want to prefetch the block we just accessed. In this case, 369 * start just after the block we just accessed. 370 */ 371 pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid); 372 373 /* 374 * Double our amount of prefetched data, but don't let the 375 * prefetch get further ahead than zfetch_max_distance. 376 */ 377 if (fetch_data) { 378 max_dist_blks = 379 zfetch_max_distance >> zf->zf_dnode->dn_datablkshift; 380 /* 381 * Previously, we were (zs_pf_blkid - blkid) ahead. We 382 * want to now be double that, so read that amount again, 383 * plus the amount we are catching up by (i.e. the amount 384 * read just now). 385 */ 386 pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks; 387 max_blks = max_dist_blks - (pf_start - end_of_access_blkid); 388 pf_nblks = MIN(pf_ahead_blks, max_blks); 389 } else { 390 pf_nblks = 0; 391 } 392 393 zs->zs_pf_blkid = pf_start + pf_nblks; 394 395 /* 396 * Do the same for indirects, starting from where we stopped last, 397 * or where we will stop reading data blocks (and the indirects 398 * that point to them). 399 */ 400 ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid); 401 max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift; 402 /* 403 * We want to double our distance ahead of the data prefetch 404 * (or reader, if we are not prefetching data). Previously, we 405 * were (zs_ipf_blkid - blkid) ahead. To double that, we read 406 * that amount again, plus the amount we are catching up by 407 * (i.e. the amount read now + the amount of data prefetched now). 408 */ 409 pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks; 410 max_blks = max_dist_blks - (ipf_start - end_of_access_blkid); 411 ipf_nblks = MIN(pf_ahead_blks, max_blks); 412 zs->zs_ipf_blkid = ipf_start + ipf_nblks; 413 414 epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 415 ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs; 416 ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs; 417 418 zs->zs_atime = gethrtime(); 419 /* no prior reads in progress */ 420 if (zfs_refcount_count(&zs->zs_blocks) == 0) 421 zs->zs_start_time = zs->zs_atime; 422 zs->zs_blkid = end_of_access_blkid; 423 zfs_refcount_add_many(&zs->zs_blocks, pf_nblks + ipf_iend - ipf_istart, 424 NULL); 425 mutex_exit(&zs->zs_lock); 426 mutex_exit(&zf->zf_lock); 427 issued = 0; 428 429 /* 430 * dbuf_prefetch() is asynchronous (even when it needs to read 431 * indirect blocks), but we still prefer to drop our locks before 432 * calling it to reduce the time we hold them. 433 */ 434 435 for (int i = 0; i < pf_nblks; i++) { 436 issued += dbuf_prefetch_impl(zf->zf_dnode, 0, pf_start + i, 437 ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH, 438 dmu_zfetch_stream_done, zs); 439 } 440 for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) { 441 issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk, 442 ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH, 443 dmu_zfetch_stream_done, zs); 444 } 445 if (!have_lock) 446 rw_exit(&zf->zf_dnode->dn_struct_rwlock); 447 ZFETCHSTAT_BUMP(zfetchstat_hits); 448 449 if (issued) 450 ZFETCHSTAT_ADD(zfetchstat_io_issued, issued); 451 } 452 453 /* BEGIN CSTYLED */ 454 ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW, 455 "Disable all ZFS prefetching"); 456 457 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW, 458 "Max number of streams per zfetch"); 459 460 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW, 461 "Min time before stream reclaim"); 462 463 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW, 464 "Max bytes to prefetch per stream"); 465 466 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW, 467 "Max bytes to prefetch indirects for per stream"); 468 469 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, array_rd_sz, ULONG, ZMOD_RW, 470 "Number of bytes in a array_read"); 471 /* END CSTYLED */ 472