xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_tx.c (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/dmu.h>
28 #include <sys/dmu_impl.h>
29 #include <sys/dbuf.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zap_impl.h>
36 #include <sys/spa.h>
37 #include <sys/sa.h>
38 #include <sys/sa_impl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/trace_zfs.h>
41 
42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
43     uint64_t arg1, uint64_t arg2);
44 
45 dmu_tx_stats_t dmu_tx_stats = {
46 	{ "dmu_tx_assigned",		KSTAT_DATA_UINT64 },
47 	{ "dmu_tx_delay",		KSTAT_DATA_UINT64 },
48 	{ "dmu_tx_error",		KSTAT_DATA_UINT64 },
49 	{ "dmu_tx_suspended",		KSTAT_DATA_UINT64 },
50 	{ "dmu_tx_group",		KSTAT_DATA_UINT64 },
51 	{ "dmu_tx_memory_reserve",	KSTAT_DATA_UINT64 },
52 	{ "dmu_tx_memory_reclaim",	KSTAT_DATA_UINT64 },
53 	{ "dmu_tx_dirty_throttle",	KSTAT_DATA_UINT64 },
54 	{ "dmu_tx_dirty_delay",		KSTAT_DATA_UINT64 },
55 	{ "dmu_tx_dirty_over_max",	KSTAT_DATA_UINT64 },
56 	{ "dmu_tx_dirty_frees_delay",	KSTAT_DATA_UINT64 },
57 	{ "dmu_tx_wrlog_delay",		KSTAT_DATA_UINT64 },
58 	{ "dmu_tx_quota",		KSTAT_DATA_UINT64 },
59 };
60 
61 static kstat_t *dmu_tx_ksp;
62 
63 dmu_tx_t *
64 dmu_tx_create_dd(dsl_dir_t *dd)
65 {
66 	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
67 	tx->tx_dir = dd;
68 	if (dd != NULL)
69 		tx->tx_pool = dd->dd_pool;
70 	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
71 	    offsetof(dmu_tx_hold_t, txh_node));
72 	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
73 	    offsetof(dmu_tx_callback_t, dcb_node));
74 	tx->tx_start = gethrtime();
75 	return (tx);
76 }
77 
78 dmu_tx_t *
79 dmu_tx_create(objset_t *os)
80 {
81 	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
82 	tx->tx_objset = os;
83 	return (tx);
84 }
85 
86 dmu_tx_t *
87 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
88 {
89 	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
90 
91 	TXG_VERIFY(dp->dp_spa, txg);
92 	tx->tx_pool = dp;
93 	tx->tx_txg = txg;
94 	tx->tx_anyobj = TRUE;
95 
96 	return (tx);
97 }
98 
99 int
100 dmu_tx_is_syncing(dmu_tx_t *tx)
101 {
102 	return (tx->tx_anyobj);
103 }
104 
105 int
106 dmu_tx_private_ok(dmu_tx_t *tx)
107 {
108 	return (tx->tx_anyobj);
109 }
110 
111 static dmu_tx_hold_t *
112 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
113     uint64_t arg1, uint64_t arg2)
114 {
115 	dmu_tx_hold_t *txh;
116 
117 	if (dn != NULL) {
118 		(void) zfs_refcount_add(&dn->dn_holds, tx);
119 		if (tx->tx_txg != 0) {
120 			mutex_enter(&dn->dn_mtx);
121 			/*
122 			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
123 			 * problem, but there's no way for it to happen (for
124 			 * now, at least).
125 			 */
126 			ASSERT(dn->dn_assigned_txg == 0);
127 			dn->dn_assigned_txg = tx->tx_txg;
128 			(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
129 			mutex_exit(&dn->dn_mtx);
130 		}
131 	}
132 
133 	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
134 	txh->txh_tx = tx;
135 	txh->txh_dnode = dn;
136 	zfs_refcount_create(&txh->txh_space_towrite);
137 	zfs_refcount_create(&txh->txh_memory_tohold);
138 	txh->txh_type = type;
139 	txh->txh_arg1 = arg1;
140 	txh->txh_arg2 = arg2;
141 	list_insert_tail(&tx->tx_holds, txh);
142 
143 	return (txh);
144 }
145 
146 static dmu_tx_hold_t *
147 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
148     enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
149 {
150 	dnode_t *dn = NULL;
151 	dmu_tx_hold_t *txh;
152 	int err;
153 
154 	if (object != DMU_NEW_OBJECT) {
155 		err = dnode_hold(os, object, FTAG, &dn);
156 		if (err != 0) {
157 			tx->tx_err = err;
158 			return (NULL);
159 		}
160 	}
161 	txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
162 	if (dn != NULL)
163 		dnode_rele(dn, FTAG);
164 	return (txh);
165 }
166 
167 void
168 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
169 {
170 	/*
171 	 * If we're syncing, they can manipulate any object anyhow, and
172 	 * the hold on the dnode_t can cause problems.
173 	 */
174 	if (!dmu_tx_is_syncing(tx))
175 		(void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
176 }
177 
178 /*
179  * This function reads specified data from disk.  The specified data will
180  * be needed to perform the transaction -- i.e, it will be read after
181  * we do dmu_tx_assign().  There are two reasons that we read the data now
182  * (before dmu_tx_assign()):
183  *
184  * 1. Reading it now has potentially better performance.  The transaction
185  * has not yet been assigned, so the TXG is not held open, and also the
186  * caller typically has less locks held when calling dmu_tx_hold_*() than
187  * after the transaction has been assigned.  This reduces the lock (and txg)
188  * hold times, thus reducing lock contention.
189  *
190  * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
191  * that are detected before they start making changes to the DMU state
192  * (i.e. now).  Once the transaction has been assigned, and some DMU
193  * state has been changed, it can be difficult to recover from an i/o
194  * error (e.g. to undo the changes already made in memory at the DMU
195  * layer).  Typically code to do so does not exist in the caller -- it
196  * assumes that the data has already been cached and thus i/o errors are
197  * not possible.
198  *
199  * It has been observed that the i/o initiated here can be a performance
200  * problem, and it appears to be optional, because we don't look at the
201  * data which is read.  However, removing this read would only serve to
202  * move the work elsewhere (after the dmu_tx_assign()), where it may
203  * have a greater impact on performance (in addition to the impact on
204  * fault tolerance noted above).
205  */
206 static int
207 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
208 {
209 	int err;
210 	dmu_buf_impl_t *db;
211 
212 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
213 	db = dbuf_hold_level(dn, level, blkid, FTAG);
214 	rw_exit(&dn->dn_struct_rwlock);
215 	if (db == NULL)
216 		return (SET_ERROR(EIO));
217 	/*
218 	 * PARTIAL_FIRST allows caching for uncacheable blocks.  It will
219 	 * be cleared after dmu_buf_will_dirty() call dbuf_read() again.
220 	 */
221 	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH |
222 	    (level == 0 ? DB_RF_PARTIAL_FIRST : 0));
223 	dbuf_rele(db, FTAG);
224 	return (err);
225 }
226 
227 static void
228 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
229 {
230 	dnode_t *dn = txh->txh_dnode;
231 	int err = 0;
232 
233 	if (len == 0)
234 		return;
235 
236 	(void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
237 
238 	if (dn == NULL)
239 		return;
240 
241 	/*
242 	 * For i/o error checking, read the blocks that will be needed
243 	 * to perform the write: the first and last level-0 blocks (if
244 	 * they are not aligned, i.e. if they are partial-block writes),
245 	 * and all the level-1 blocks.
246 	 */
247 	if (dn->dn_maxblkid == 0) {
248 		if (off < dn->dn_datablksz &&
249 		    (off > 0 || len < dn->dn_datablksz)) {
250 			err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
251 			if (err != 0) {
252 				txh->txh_tx->tx_err = err;
253 			}
254 		}
255 	} else {
256 		zio_t *zio = zio_root(dn->dn_objset->os_spa,
257 		    NULL, NULL, ZIO_FLAG_CANFAIL);
258 
259 		/* first level-0 block */
260 		uint64_t start = off >> dn->dn_datablkshift;
261 		if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
262 			err = dmu_tx_check_ioerr(zio, dn, 0, start);
263 			if (err != 0) {
264 				txh->txh_tx->tx_err = err;
265 			}
266 		}
267 
268 		/* last level-0 block */
269 		uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
270 		if (end != start && end <= dn->dn_maxblkid &&
271 		    P2PHASE(off + len, dn->dn_datablksz)) {
272 			err = dmu_tx_check_ioerr(zio, dn, 0, end);
273 			if (err != 0) {
274 				txh->txh_tx->tx_err = err;
275 			}
276 		}
277 
278 		/* level-1 blocks */
279 		if (dn->dn_nlevels > 1) {
280 			int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
281 			for (uint64_t i = (start >> shft) + 1;
282 			    i < end >> shft; i++) {
283 				err = dmu_tx_check_ioerr(zio, dn, 1, i);
284 				if (err != 0) {
285 					txh->txh_tx->tx_err = err;
286 				}
287 			}
288 		}
289 
290 		err = zio_wait(zio);
291 		if (err != 0) {
292 			txh->txh_tx->tx_err = err;
293 		}
294 	}
295 }
296 
297 static void
298 dmu_tx_count_append(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
299 {
300 	dnode_t *dn = txh->txh_dnode;
301 	int err = 0;
302 
303 	if (len == 0)
304 		return;
305 
306 	(void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
307 
308 	if (dn == NULL)
309 		return;
310 
311 	/*
312 	 * For i/o error checking, read the blocks that will be needed
313 	 * to perform the append; first level-0 block (if not aligned, i.e.
314 	 * if they are partial-block writes), no additional blocks are read.
315 	 */
316 	if (dn->dn_maxblkid == 0) {
317 		if (off < dn->dn_datablksz &&
318 		    (off > 0 || len < dn->dn_datablksz)) {
319 			err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
320 			if (err != 0) {
321 				txh->txh_tx->tx_err = err;
322 			}
323 		}
324 	} else {
325 		zio_t *zio = zio_root(dn->dn_objset->os_spa,
326 		    NULL, NULL, ZIO_FLAG_CANFAIL);
327 
328 		/* first level-0 block */
329 		uint64_t start = off >> dn->dn_datablkshift;
330 		if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
331 			err = dmu_tx_check_ioerr(zio, dn, 0, start);
332 			if (err != 0) {
333 				txh->txh_tx->tx_err = err;
334 			}
335 		}
336 
337 		err = zio_wait(zio);
338 		if (err != 0) {
339 			txh->txh_tx->tx_err = err;
340 		}
341 	}
342 }
343 
344 static void
345 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
346 {
347 	(void) zfs_refcount_add_many(&txh->txh_space_towrite,
348 	    DNODE_MIN_SIZE, FTAG);
349 }
350 
351 void
352 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
353 {
354 	dmu_tx_hold_t *txh;
355 
356 	ASSERT0(tx->tx_txg);
357 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
358 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
359 
360 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
361 	    object, THT_WRITE, off, len);
362 	if (txh != NULL) {
363 		dmu_tx_count_write(txh, off, len);
364 		dmu_tx_count_dnode(txh);
365 	}
366 }
367 
368 void
369 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
370 {
371 	dmu_tx_hold_t *txh;
372 
373 	ASSERT0(tx->tx_txg);
374 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
375 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
376 
377 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
378 	if (txh != NULL) {
379 		dmu_tx_count_write(txh, off, len);
380 		dmu_tx_count_dnode(txh);
381 	}
382 }
383 
384 /*
385  * Should be used when appending to an object and the exact offset is unknown.
386  * The write must occur at or beyond the specified offset.  Only the L0 block
387  * at provided offset will be prefetched.
388  */
389 void
390 dmu_tx_hold_append(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
391 {
392 	dmu_tx_hold_t *txh;
393 
394 	ASSERT0(tx->tx_txg);
395 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
396 
397 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
398 	    object, THT_APPEND, off, DMU_OBJECT_END);
399 	if (txh != NULL) {
400 		dmu_tx_count_append(txh, off, len);
401 		dmu_tx_count_dnode(txh);
402 	}
403 }
404 
405 void
406 dmu_tx_hold_append_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
407 {
408 	dmu_tx_hold_t *txh;
409 
410 	ASSERT0(tx->tx_txg);
411 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
412 
413 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_APPEND, off, DMU_OBJECT_END);
414 	if (txh != NULL) {
415 		dmu_tx_count_append(txh, off, len);
416 		dmu_tx_count_dnode(txh);
417 	}
418 }
419 
420 /*
421  * This function marks the transaction as being a "net free".  The end
422  * result is that refquotas will be disabled for this transaction, and
423  * this transaction will be able to use half of the pool space overhead
424  * (see dsl_pool_adjustedsize()).  Therefore this function should only
425  * be called for transactions that we expect will not cause a net increase
426  * in the amount of space used (but it's OK if that is occasionally not true).
427  */
428 void
429 dmu_tx_mark_netfree(dmu_tx_t *tx)
430 {
431 	tx->tx_netfree = B_TRUE;
432 }
433 
434 static void
435 dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
436 {
437 	dmu_tx_t *tx = txh->txh_tx;
438 	dnode_t *dn = txh->txh_dnode;
439 	int err;
440 
441 	ASSERT(tx->tx_txg == 0);
442 
443 	if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
444 		return;
445 	if (len == DMU_OBJECT_END)
446 		len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
447 
448 	/*
449 	 * For i/o error checking, we read the first and last level-0
450 	 * blocks if they are not aligned, and all the level-1 blocks.
451 	 *
452 	 * Note:  dbuf_free_range() assumes that we have not instantiated
453 	 * any level-0 dbufs that will be completely freed.  Therefore we must
454 	 * exercise care to not read or count the first and last blocks
455 	 * if they are blocksize-aligned.
456 	 */
457 	if (dn->dn_datablkshift == 0) {
458 		if (off != 0 || len < dn->dn_datablksz)
459 			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
460 	} else {
461 		/* first block will be modified if it is not aligned */
462 		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
463 			dmu_tx_count_write(txh, off, 1);
464 		/* last block will be modified if it is not aligned */
465 		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
466 			dmu_tx_count_write(txh, off + len, 1);
467 	}
468 
469 	/*
470 	 * Check level-1 blocks.
471 	 */
472 	if (dn->dn_nlevels > 1) {
473 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
474 		    SPA_BLKPTRSHIFT;
475 		uint64_t start = off >> shift;
476 		uint64_t end = (off + len) >> shift;
477 
478 		ASSERT(dn->dn_indblkshift != 0);
479 
480 		/*
481 		 * dnode_reallocate() can result in an object with indirect
482 		 * blocks having an odd data block size.  In this case,
483 		 * just check the single block.
484 		 */
485 		if (dn->dn_datablkshift == 0)
486 			start = end = 0;
487 
488 		zio_t *zio = zio_root(tx->tx_pool->dp_spa,
489 		    NULL, NULL, ZIO_FLAG_CANFAIL);
490 		for (uint64_t i = start; i <= end; i++) {
491 			uint64_t ibyte = i << shift;
492 			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
493 			i = ibyte >> shift;
494 			if (err == ESRCH || i > end)
495 				break;
496 			if (err != 0) {
497 				tx->tx_err = err;
498 				(void) zio_wait(zio);
499 				return;
500 			}
501 
502 			(void) zfs_refcount_add_many(&txh->txh_memory_tohold,
503 			    1 << dn->dn_indblkshift, FTAG);
504 
505 			err = dmu_tx_check_ioerr(zio, dn, 1, i);
506 			if (err != 0) {
507 				tx->tx_err = err;
508 				(void) zio_wait(zio);
509 				return;
510 			}
511 		}
512 		err = zio_wait(zio);
513 		if (err != 0) {
514 			tx->tx_err = err;
515 			return;
516 		}
517 	}
518 }
519 
520 void
521 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
522 {
523 	dmu_tx_hold_t *txh;
524 
525 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
526 	    object, THT_FREE, off, len);
527 	if (txh != NULL) {
528 		dmu_tx_count_dnode(txh);
529 		dmu_tx_count_free(txh, off, len);
530 	}
531 }
532 
533 void
534 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
535 {
536 	dmu_tx_hold_t *txh;
537 
538 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
539 	if (txh != NULL) {
540 		dmu_tx_count_dnode(txh);
541 		dmu_tx_count_free(txh, off, len);
542 	}
543 }
544 
545 static void
546 dmu_tx_count_clone(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
547 {
548 
549 	/*
550 	 * Reuse dmu_tx_count_free(), it does exactly what we need for clone.
551 	 */
552 	dmu_tx_count_free(txh, off, len);
553 }
554 
555 void
556 dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
557 {
558 	dmu_tx_hold_t *txh;
559 
560 	ASSERT0(tx->tx_txg);
561 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
562 
563 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_CLONE, off, len);
564 	if (txh != NULL) {
565 		dmu_tx_count_dnode(txh);
566 		dmu_tx_count_clone(txh, off, len);
567 	}
568 }
569 
570 static void
571 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
572 {
573 	dmu_tx_t *tx = txh->txh_tx;
574 	dnode_t *dn = txh->txh_dnode;
575 	int err;
576 	extern int zap_micro_max_size;
577 
578 	ASSERT(tx->tx_txg == 0);
579 
580 	dmu_tx_count_dnode(txh);
581 
582 	/*
583 	 * Modifying a almost-full microzap is around the worst case (128KB)
584 	 *
585 	 * If it is a fat zap, the worst case would be 7*16KB=112KB:
586 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
587 	 * - 4 new blocks written if adding:
588 	 *    - 2 blocks for possibly split leaves,
589 	 *    - 2 grown ptrtbl blocks
590 	 */
591 	(void) zfs_refcount_add_many(&txh->txh_space_towrite,
592 	    zap_micro_max_size, FTAG);
593 
594 	if (dn == NULL)
595 		return;
596 
597 	ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
598 
599 	if (dn->dn_maxblkid == 0 || name == NULL) {
600 		/*
601 		 * This is a microzap (only one block), or we don't know
602 		 * the name.  Check the first block for i/o errors.
603 		 */
604 		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
605 		if (err != 0) {
606 			tx->tx_err = err;
607 		}
608 	} else {
609 		/*
610 		 * Access the name so that we'll check for i/o errors to
611 		 * the leaf blocks, etc.  We ignore ENOENT, as this name
612 		 * may not yet exist.
613 		 */
614 		err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
615 		if (err == EIO || err == ECKSUM || err == ENXIO) {
616 			tx->tx_err = err;
617 		}
618 	}
619 }
620 
621 void
622 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
623 {
624 	dmu_tx_hold_t *txh;
625 
626 	ASSERT0(tx->tx_txg);
627 
628 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
629 	    object, THT_ZAP, add, (uintptr_t)name);
630 	if (txh != NULL)
631 		dmu_tx_hold_zap_impl(txh, name);
632 }
633 
634 void
635 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
636 {
637 	dmu_tx_hold_t *txh;
638 
639 	ASSERT0(tx->tx_txg);
640 	ASSERT(dn != NULL);
641 
642 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
643 	if (txh != NULL)
644 		dmu_tx_hold_zap_impl(txh, name);
645 }
646 
647 void
648 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
649 {
650 	dmu_tx_hold_t *txh;
651 
652 	ASSERT(tx->tx_txg == 0);
653 
654 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
655 	    object, THT_BONUS, 0, 0);
656 	if (txh)
657 		dmu_tx_count_dnode(txh);
658 }
659 
660 void
661 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
662 {
663 	dmu_tx_hold_t *txh;
664 
665 	ASSERT0(tx->tx_txg);
666 
667 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
668 	if (txh)
669 		dmu_tx_count_dnode(txh);
670 }
671 
672 void
673 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
674 {
675 	dmu_tx_hold_t *txh;
676 
677 	ASSERT(tx->tx_txg == 0);
678 
679 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
680 	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
681 	if (txh) {
682 		(void) zfs_refcount_add_many(
683 		    &txh->txh_space_towrite, space, FTAG);
684 	}
685 }
686 
687 #ifdef ZFS_DEBUG
688 void
689 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
690 {
691 	boolean_t match_object = B_FALSE;
692 	boolean_t match_offset = B_FALSE;
693 
694 	DB_DNODE_ENTER(db);
695 	dnode_t *dn = DB_DNODE(db);
696 	ASSERT(tx->tx_txg != 0);
697 	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
698 	ASSERT3U(dn->dn_object, ==, db->db.db_object);
699 
700 	if (tx->tx_anyobj) {
701 		DB_DNODE_EXIT(db);
702 		return;
703 	}
704 
705 	/* XXX No checking on the meta dnode for now */
706 	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
707 		DB_DNODE_EXIT(db);
708 		return;
709 	}
710 
711 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
712 	    txh = list_next(&tx->tx_holds, txh)) {
713 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
714 		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
715 			match_object = TRUE;
716 		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
717 			int datablkshift = dn->dn_datablkshift ?
718 			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
719 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
720 			int shift = datablkshift + epbs * db->db_level;
721 			uint64_t beginblk = shift >= 64 ? 0 :
722 			    (txh->txh_arg1 >> shift);
723 			uint64_t endblk = shift >= 64 ? 0 :
724 			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
725 			uint64_t blkid = db->db_blkid;
726 
727 			/* XXX txh_arg2 better not be zero... */
728 
729 			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
730 			    txh->txh_type, (u_longlong_t)beginblk,
731 			    (u_longlong_t)endblk);
732 
733 			switch (txh->txh_type) {
734 			case THT_WRITE:
735 				if (blkid >= beginblk && blkid <= endblk)
736 					match_offset = TRUE;
737 				/*
738 				 * We will let this hold work for the bonus
739 				 * or spill buffer so that we don't need to
740 				 * hold it when creating a new object.
741 				 */
742 				if (blkid == DMU_BONUS_BLKID ||
743 				    blkid == DMU_SPILL_BLKID)
744 					match_offset = TRUE;
745 				/*
746 				 * They might have to increase nlevels,
747 				 * thus dirtying the new TLIBs.  Or the
748 				 * might have to change the block size,
749 				 * thus dirying the new lvl=0 blk=0.
750 				 */
751 				if (blkid == 0)
752 					match_offset = TRUE;
753 				break;
754 			case THT_APPEND:
755 				if (blkid >= beginblk && (blkid <= endblk ||
756 				    txh->txh_arg2 == DMU_OBJECT_END))
757 					match_offset = TRUE;
758 
759 				/*
760 				 * THT_WRITE used for bonus and spill blocks.
761 				 */
762 				ASSERT(blkid != DMU_BONUS_BLKID &&
763 				    blkid != DMU_SPILL_BLKID);
764 
765 				/*
766 				 * They might have to increase nlevels,
767 				 * thus dirtying the new TLIBs.  Or the
768 				 * might have to change the block size,
769 				 * thus dirying the new lvl=0 blk=0.
770 				 */
771 				if (blkid == 0)
772 					match_offset = TRUE;
773 				break;
774 			case THT_FREE:
775 				/*
776 				 * We will dirty all the level 1 blocks in
777 				 * the free range and perhaps the first and
778 				 * last level 0 block.
779 				 */
780 				if (blkid >= beginblk && (blkid <= endblk ||
781 				    txh->txh_arg2 == DMU_OBJECT_END))
782 					match_offset = TRUE;
783 				break;
784 			case THT_SPILL:
785 				if (blkid == DMU_SPILL_BLKID)
786 					match_offset = TRUE;
787 				break;
788 			case THT_BONUS:
789 				if (blkid == DMU_BONUS_BLKID)
790 					match_offset = TRUE;
791 				break;
792 			case THT_ZAP:
793 				match_offset = TRUE;
794 				break;
795 			case THT_NEWOBJECT:
796 				match_object = TRUE;
797 				break;
798 			case THT_CLONE:
799 				if (blkid >= beginblk && blkid <= endblk)
800 					match_offset = TRUE;
801 				break;
802 			default:
803 				cmn_err(CE_PANIC, "bad txh_type %d",
804 				    txh->txh_type);
805 			}
806 		}
807 		if (match_object && match_offset) {
808 			DB_DNODE_EXIT(db);
809 			return;
810 		}
811 	}
812 	DB_DNODE_EXIT(db);
813 	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
814 	    (u_longlong_t)db->db.db_object, db->db_level,
815 	    (u_longlong_t)db->db_blkid);
816 }
817 #endif
818 
819 /*
820  * If we can't do 10 iops, something is wrong.  Let us go ahead
821  * and hit zfs_dirty_data_max.
822  */
823 static const hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
824 
825 /*
826  * We delay transactions when we've determined that the backend storage
827  * isn't able to accommodate the rate of incoming writes.
828  *
829  * If there is already a transaction waiting, we delay relative to when
830  * that transaction finishes waiting.  This way the calculated min_time
831  * is independent of the number of threads concurrently executing
832  * transactions.
833  *
834  * If we are the only waiter, wait relative to when the transaction
835  * started, rather than the current time.  This credits the transaction for
836  * "time already served", e.g. reading indirect blocks.
837  *
838  * The minimum time for a transaction to take is calculated as:
839  *     min_time = scale * (dirty - min) / (max - dirty)
840  *     min_time is then capped at zfs_delay_max_ns.
841  *
842  * The delay has two degrees of freedom that can be adjusted via tunables.
843  * The percentage of dirty data at which we start to delay is defined by
844  * zfs_delay_min_dirty_percent. This should typically be at or above
845  * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
846  * delay after writing at full speed has failed to keep up with the incoming
847  * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
848  * speaking, this variable determines the amount of delay at the midpoint of
849  * the curve.
850  *
851  * delay
852  *  10ms +-------------------------------------------------------------*+
853  *       |                                                             *|
854  *   9ms +                                                             *+
855  *       |                                                             *|
856  *   8ms +                                                             *+
857  *       |                                                            * |
858  *   7ms +                                                            * +
859  *       |                                                            * |
860  *   6ms +                                                            * +
861  *       |                                                            * |
862  *   5ms +                                                           *  +
863  *       |                                                           *  |
864  *   4ms +                                                           *  +
865  *       |                                                           *  |
866  *   3ms +                                                          *   +
867  *       |                                                          *   |
868  *   2ms +                                              (midpoint) *    +
869  *       |                                                  |    **     |
870  *   1ms +                                                  v ***       +
871  *       |             zfs_delay_scale ---------->     ********         |
872  *     0 +-------------------------------------*********----------------+
873  *       0%                    <- zfs_dirty_data_max ->               100%
874  *
875  * Note that since the delay is added to the outstanding time remaining on the
876  * most recent transaction, the delay is effectively the inverse of IOPS.
877  * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
878  * was chosen such that small changes in the amount of accumulated dirty data
879  * in the first 3/4 of the curve yield relatively small differences in the
880  * amount of delay.
881  *
882  * The effects can be easier to understand when the amount of delay is
883  * represented on a log scale:
884  *
885  * delay
886  * 100ms +-------------------------------------------------------------++
887  *       +                                                              +
888  *       |                                                              |
889  *       +                                                             *+
890  *  10ms +                                                             *+
891  *       +                                                           ** +
892  *       |                                              (midpoint)  **  |
893  *       +                                                  |     **    +
894  *   1ms +                                                  v ****      +
895  *       +             zfs_delay_scale ---------->        *****         +
896  *       |                                             ****             |
897  *       +                                          ****                +
898  * 100us +                                        **                    +
899  *       +                                       *                      +
900  *       |                                      *                       |
901  *       +                                     *                        +
902  *  10us +                                     *                        +
903  *       +                                                              +
904  *       |                                                              |
905  *       +                                                              +
906  *       +--------------------------------------------------------------+
907  *       0%                    <- zfs_dirty_data_max ->               100%
908  *
909  * Note here that only as the amount of dirty data approaches its limit does
910  * the delay start to increase rapidly. The goal of a properly tuned system
911  * should be to keep the amount of dirty data out of that range by first
912  * ensuring that the appropriate limits are set for the I/O scheduler to reach
913  * optimal throughput on the backend storage, and then by changing the value
914  * of zfs_delay_scale to increase the steepness of the curve.
915  */
916 static void
917 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
918 {
919 	dsl_pool_t *dp = tx->tx_pool;
920 	uint64_t delay_min_bytes, wrlog;
921 	hrtime_t wakeup, tx_time = 0, now;
922 
923 	/* Calculate minimum transaction time for the dirty data amount. */
924 	delay_min_bytes =
925 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
926 	if (dirty > delay_min_bytes) {
927 		/*
928 		 * The caller has already waited until we are under the max.
929 		 * We make them pass us the amount of dirty data so we don't
930 		 * have to handle the case of it being >= the max, which
931 		 * could cause a divide-by-zero if it's == the max.
932 		 */
933 		ASSERT3U(dirty, <, zfs_dirty_data_max);
934 
935 		tx_time = zfs_delay_scale * (dirty - delay_min_bytes) /
936 		    (zfs_dirty_data_max - dirty);
937 	}
938 
939 	/* Calculate minimum transaction time for the TX_WRITE log size. */
940 	wrlog = aggsum_upper_bound(&dp->dp_wrlog_total);
941 	delay_min_bytes =
942 	    zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
943 	if (wrlog >= zfs_wrlog_data_max) {
944 		tx_time = zfs_delay_max_ns;
945 	} else if (wrlog > delay_min_bytes) {
946 		tx_time = MAX(zfs_delay_scale * (wrlog - delay_min_bytes) /
947 		    (zfs_wrlog_data_max - wrlog), tx_time);
948 	}
949 
950 	if (tx_time == 0)
951 		return;
952 
953 	tx_time = MIN(tx_time, zfs_delay_max_ns);
954 	now = gethrtime();
955 	if (now > tx->tx_start + tx_time)
956 		return;
957 
958 	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
959 	    uint64_t, tx_time);
960 
961 	mutex_enter(&dp->dp_lock);
962 	wakeup = MAX(tx->tx_start + tx_time, dp->dp_last_wakeup + tx_time);
963 	dp->dp_last_wakeup = wakeup;
964 	mutex_exit(&dp->dp_lock);
965 
966 	zfs_sleep_until(wakeup);
967 }
968 
969 /*
970  * This routine attempts to assign the transaction to a transaction group.
971  * To do so, we must determine if there is sufficient free space on disk.
972  *
973  * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
974  * on it), then it is assumed that there is sufficient free space,
975  * unless there's insufficient slop space in the pool (see the comment
976  * above spa_slop_shift in spa_misc.c).
977  *
978  * If it is not a "netfree" transaction, then if the data already on disk
979  * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
980  * ENOSPC.  Otherwise, if the current rough estimate of pending changes,
981  * plus the rough estimate of this transaction's changes, may exceed the
982  * allowed usage, then this will fail with ERESTART, which will cause the
983  * caller to wait for the pending changes to be written to disk (by waiting
984  * for the next TXG to open), and then check the space usage again.
985  *
986  * The rough estimate of pending changes is comprised of the sum of:
987  *
988  *  - this transaction's holds' txh_space_towrite
989  *
990  *  - dd_tempreserved[], which is the sum of in-flight transactions'
991  *    holds' txh_space_towrite (i.e. those transactions that have called
992  *    dmu_tx_assign() but not yet called dmu_tx_commit()).
993  *
994  *  - dd_space_towrite[], which is the amount of dirtied dbufs.
995  *
996  * Note that all of these values are inflated by spa_get_worst_case_asize(),
997  * which means that we may get ERESTART well before we are actually in danger
998  * of running out of space, but this also mitigates any small inaccuracies
999  * in the rough estimate (e.g. txh_space_towrite doesn't take into account
1000  * indirect blocks, and dd_space_towrite[] doesn't take into account changes
1001  * to the MOS).
1002  *
1003  * Note that due to this algorithm, it is possible to exceed the allowed
1004  * usage by one transaction.  Also, as we approach the allowed usage,
1005  * we will allow a very limited amount of changes into each TXG, thus
1006  * decreasing performance.
1007  */
1008 static int
1009 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
1010 {
1011 	spa_t *spa = tx->tx_pool->dp_spa;
1012 
1013 	ASSERT0(tx->tx_txg);
1014 
1015 	if (tx->tx_err) {
1016 		DMU_TX_STAT_BUMP(dmu_tx_error);
1017 		return (tx->tx_err);
1018 	}
1019 
1020 	if (spa_suspended(spa)) {
1021 		DMU_TX_STAT_BUMP(dmu_tx_suspended);
1022 
1023 		/*
1024 		 * If the user has indicated a blocking failure mode
1025 		 * then return ERESTART which will block in dmu_tx_wait().
1026 		 * Otherwise, return EIO so that an error can get
1027 		 * propagated back to the VOP calls.
1028 		 *
1029 		 * Note that we always honor the txg_how flag regardless
1030 		 * of the failuremode setting.
1031 		 */
1032 		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
1033 		    !(txg_how & TXG_WAIT))
1034 			return (SET_ERROR(EIO));
1035 
1036 		return (SET_ERROR(ERESTART));
1037 	}
1038 
1039 	if (!tx->tx_dirty_delayed &&
1040 	    dsl_pool_need_wrlog_delay(tx->tx_pool)) {
1041 		tx->tx_wait_dirty = B_TRUE;
1042 		DMU_TX_STAT_BUMP(dmu_tx_wrlog_delay);
1043 		return (SET_ERROR(ERESTART));
1044 	}
1045 
1046 	if (!tx->tx_dirty_delayed &&
1047 	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
1048 		tx->tx_wait_dirty = B_TRUE;
1049 		DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
1050 		return (SET_ERROR(ERESTART));
1051 	}
1052 
1053 	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
1054 	tx->tx_needassign_txh = NULL;
1055 
1056 	/*
1057 	 * NB: No error returns are allowed after txg_hold_open, but
1058 	 * before processing the dnode holds, due to the
1059 	 * dmu_tx_unassign() logic.
1060 	 */
1061 
1062 	uint64_t towrite = 0;
1063 	uint64_t tohold = 0;
1064 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1065 	    txh = list_next(&tx->tx_holds, txh)) {
1066 		dnode_t *dn = txh->txh_dnode;
1067 		if (dn != NULL) {
1068 			/*
1069 			 * This thread can't hold the dn_struct_rwlock
1070 			 * while assigning the tx, because this can lead to
1071 			 * deadlock. Specifically, if this dnode is already
1072 			 * assigned to an earlier txg, this thread may need
1073 			 * to wait for that txg to sync (the ERESTART case
1074 			 * below).  The other thread that has assigned this
1075 			 * dnode to an earlier txg prevents this txg from
1076 			 * syncing until its tx can complete (calling
1077 			 * dmu_tx_commit()), but it may need to acquire the
1078 			 * dn_struct_rwlock to do so (e.g. via
1079 			 * dmu_buf_hold*()).
1080 			 *
1081 			 * Note that this thread can't hold the lock for
1082 			 * read either, but the rwlock doesn't record
1083 			 * enough information to make that assertion.
1084 			 */
1085 			ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock));
1086 
1087 			mutex_enter(&dn->dn_mtx);
1088 			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
1089 				mutex_exit(&dn->dn_mtx);
1090 				tx->tx_needassign_txh = txh;
1091 				DMU_TX_STAT_BUMP(dmu_tx_group);
1092 				return (SET_ERROR(ERESTART));
1093 			}
1094 			if (dn->dn_assigned_txg == 0)
1095 				dn->dn_assigned_txg = tx->tx_txg;
1096 			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1097 			(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
1098 			mutex_exit(&dn->dn_mtx);
1099 		}
1100 		towrite += zfs_refcount_count(&txh->txh_space_towrite);
1101 		tohold += zfs_refcount_count(&txh->txh_memory_tohold);
1102 	}
1103 
1104 	/* needed allocation: worst-case estimate of write space */
1105 	uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
1106 	/* calculate memory footprint estimate */
1107 	uint64_t memory = towrite + tohold;
1108 
1109 	if (tx->tx_dir != NULL && asize != 0) {
1110 		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
1111 		    asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
1112 		if (err != 0)
1113 			return (err);
1114 	}
1115 
1116 	DMU_TX_STAT_BUMP(dmu_tx_assigned);
1117 
1118 	return (0);
1119 }
1120 
1121 static void
1122 dmu_tx_unassign(dmu_tx_t *tx)
1123 {
1124 	if (tx->tx_txg == 0)
1125 		return;
1126 
1127 	txg_rele_to_quiesce(&tx->tx_txgh);
1128 
1129 	/*
1130 	 * Walk the transaction's hold list, removing the hold on the
1131 	 * associated dnode, and notifying waiters if the refcount drops to 0.
1132 	 */
1133 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
1134 	    txh && txh != tx->tx_needassign_txh;
1135 	    txh = list_next(&tx->tx_holds, txh)) {
1136 		dnode_t *dn = txh->txh_dnode;
1137 
1138 		if (dn == NULL)
1139 			continue;
1140 		mutex_enter(&dn->dn_mtx);
1141 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1142 
1143 		if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1144 			dn->dn_assigned_txg = 0;
1145 			cv_broadcast(&dn->dn_notxholds);
1146 		}
1147 		mutex_exit(&dn->dn_mtx);
1148 	}
1149 
1150 	txg_rele_to_sync(&tx->tx_txgh);
1151 
1152 	tx->tx_lasttried_txg = tx->tx_txg;
1153 	tx->tx_txg = 0;
1154 }
1155 
1156 /*
1157  * Assign tx to a transaction group; txg_how is a bitmask:
1158  *
1159  * If TXG_WAIT is set and the currently open txg is full, this function
1160  * will wait until there's a new txg. This should be used when no locks
1161  * are being held. With this bit set, this function will only fail if
1162  * we're truly out of space (or over quota).
1163  *
1164  * If TXG_WAIT is *not* set and we can't assign into the currently open
1165  * txg without blocking, this function will return immediately with
1166  * ERESTART. This should be used whenever locks are being held.  On an
1167  * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1168  * and try again.
1169  *
1170  * If TXG_NOTHROTTLE is set, this indicates that this tx should not be
1171  * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1172  * details on the throttle). This is used by the VFS operations, after
1173  * they have already called dmu_tx_wait() (though most likely on a
1174  * different tx).
1175  *
1176  * It is guaranteed that subsequent successful calls to dmu_tx_assign()
1177  * will assign the tx to monotonically increasing txgs. Of course this is
1178  * not strong monotonicity, because the same txg can be returned multiple
1179  * times in a row. This guarantee holds both for subsequent calls from
1180  * one thread and for multiple threads. For example, it is impossible to
1181  * observe the following sequence of events:
1182  *
1183  *          Thread 1                            Thread 2
1184  *
1185  *     dmu_tx_assign(T1, ...)
1186  *     1 <- dmu_tx_get_txg(T1)
1187  *                                       dmu_tx_assign(T2, ...)
1188  *                                       2 <- dmu_tx_get_txg(T2)
1189  *     dmu_tx_assign(T3, ...)
1190  *     1 <- dmu_tx_get_txg(T3)
1191  */
1192 int
1193 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
1194 {
1195 	int err;
1196 
1197 	ASSERT(tx->tx_txg == 0);
1198 	ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE));
1199 	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1200 
1201 	/* If we might wait, we must not hold the config lock. */
1202 	IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool));
1203 
1204 	if ((txg_how & TXG_NOTHROTTLE))
1205 		tx->tx_dirty_delayed = B_TRUE;
1206 
1207 	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1208 		dmu_tx_unassign(tx);
1209 
1210 		if (err != ERESTART || !(txg_how & TXG_WAIT))
1211 			return (err);
1212 
1213 		dmu_tx_wait(tx);
1214 	}
1215 
1216 	txg_rele_to_quiesce(&tx->tx_txgh);
1217 
1218 	return (0);
1219 }
1220 
1221 void
1222 dmu_tx_wait(dmu_tx_t *tx)
1223 {
1224 	spa_t *spa = tx->tx_pool->dp_spa;
1225 	dsl_pool_t *dp = tx->tx_pool;
1226 	hrtime_t before;
1227 
1228 	ASSERT(tx->tx_txg == 0);
1229 	ASSERT(!dsl_pool_config_held(tx->tx_pool));
1230 
1231 	before = gethrtime();
1232 
1233 	if (tx->tx_wait_dirty) {
1234 		uint64_t dirty;
1235 
1236 		/*
1237 		 * dmu_tx_try_assign() has determined that we need to wait
1238 		 * because we've consumed much or all of the dirty buffer
1239 		 * space.
1240 		 */
1241 		mutex_enter(&dp->dp_lock);
1242 		if (dp->dp_dirty_total >= zfs_dirty_data_max)
1243 			DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1244 		while (dp->dp_dirty_total >= zfs_dirty_data_max)
1245 			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1246 		dirty = dp->dp_dirty_total;
1247 		mutex_exit(&dp->dp_lock);
1248 
1249 		dmu_tx_delay(tx, dirty);
1250 
1251 		tx->tx_wait_dirty = B_FALSE;
1252 
1253 		/*
1254 		 * Note: setting tx_dirty_delayed only has effect if the
1255 		 * caller used TX_WAIT.  Otherwise they are going to
1256 		 * destroy this tx and try again.  The common case,
1257 		 * zfs_write(), uses TX_WAIT.
1258 		 */
1259 		tx->tx_dirty_delayed = B_TRUE;
1260 	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1261 		/*
1262 		 * If the pool is suspended we need to wait until it
1263 		 * is resumed.  Note that it's possible that the pool
1264 		 * has become active after this thread has tried to
1265 		 * obtain a tx.  If that's the case then tx_lasttried_txg
1266 		 * would not have been set.
1267 		 */
1268 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1269 	} else if (tx->tx_needassign_txh) {
1270 		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1271 
1272 		mutex_enter(&dn->dn_mtx);
1273 		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1274 			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1275 		mutex_exit(&dn->dn_mtx);
1276 		tx->tx_needassign_txh = NULL;
1277 	} else {
1278 		/*
1279 		 * If we have a lot of dirty data just wait until we sync
1280 		 * out a TXG at which point we'll hopefully have synced
1281 		 * a portion of the changes.
1282 		 */
1283 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1284 	}
1285 
1286 	spa_tx_assign_add_nsecs(spa, gethrtime() - before);
1287 }
1288 
1289 static void
1290 dmu_tx_destroy(dmu_tx_t *tx)
1291 {
1292 	dmu_tx_hold_t *txh;
1293 
1294 	while ((txh = list_head(&tx->tx_holds)) != NULL) {
1295 		dnode_t *dn = txh->txh_dnode;
1296 
1297 		list_remove(&tx->tx_holds, txh);
1298 		zfs_refcount_destroy_many(&txh->txh_space_towrite,
1299 		    zfs_refcount_count(&txh->txh_space_towrite));
1300 		zfs_refcount_destroy_many(&txh->txh_memory_tohold,
1301 		    zfs_refcount_count(&txh->txh_memory_tohold));
1302 		kmem_free(txh, sizeof (dmu_tx_hold_t));
1303 		if (dn != NULL)
1304 			dnode_rele(dn, tx);
1305 	}
1306 
1307 	list_destroy(&tx->tx_callbacks);
1308 	list_destroy(&tx->tx_holds);
1309 	kmem_free(tx, sizeof (dmu_tx_t));
1310 }
1311 
1312 void
1313 dmu_tx_commit(dmu_tx_t *tx)
1314 {
1315 	ASSERT(tx->tx_txg != 0);
1316 
1317 	/*
1318 	 * Go through the transaction's hold list and remove holds on
1319 	 * associated dnodes, notifying waiters if no holds remain.
1320 	 */
1321 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1322 	    txh = list_next(&tx->tx_holds, txh)) {
1323 		dnode_t *dn = txh->txh_dnode;
1324 
1325 		if (dn == NULL)
1326 			continue;
1327 
1328 		mutex_enter(&dn->dn_mtx);
1329 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1330 
1331 		if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1332 			dn->dn_assigned_txg = 0;
1333 			cv_broadcast(&dn->dn_notxholds);
1334 		}
1335 		mutex_exit(&dn->dn_mtx);
1336 	}
1337 
1338 	if (tx->tx_tempreserve_cookie)
1339 		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1340 
1341 	if (!list_is_empty(&tx->tx_callbacks))
1342 		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1343 
1344 	if (tx->tx_anyobj == FALSE)
1345 		txg_rele_to_sync(&tx->tx_txgh);
1346 
1347 	dmu_tx_destroy(tx);
1348 }
1349 
1350 void
1351 dmu_tx_abort(dmu_tx_t *tx)
1352 {
1353 	ASSERT(tx->tx_txg == 0);
1354 
1355 	/*
1356 	 * Call any registered callbacks with an error code.
1357 	 */
1358 	if (!list_is_empty(&tx->tx_callbacks))
1359 		dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED));
1360 
1361 	dmu_tx_destroy(tx);
1362 }
1363 
1364 uint64_t
1365 dmu_tx_get_txg(dmu_tx_t *tx)
1366 {
1367 	ASSERT(tx->tx_txg != 0);
1368 	return (tx->tx_txg);
1369 }
1370 
1371 dsl_pool_t *
1372 dmu_tx_pool(dmu_tx_t *tx)
1373 {
1374 	ASSERT(tx->tx_pool != NULL);
1375 	return (tx->tx_pool);
1376 }
1377 
1378 void
1379 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1380 {
1381 	dmu_tx_callback_t *dcb;
1382 
1383 	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1384 
1385 	dcb->dcb_func = func;
1386 	dcb->dcb_data = data;
1387 
1388 	list_insert_tail(&tx->tx_callbacks, dcb);
1389 }
1390 
1391 /*
1392  * Call all the commit callbacks on a list, with a given error code.
1393  */
1394 void
1395 dmu_tx_do_callbacks(list_t *cb_list, int error)
1396 {
1397 	dmu_tx_callback_t *dcb;
1398 
1399 	while ((dcb = list_remove_tail(cb_list)) != NULL) {
1400 		dcb->dcb_func(dcb->dcb_data, error);
1401 		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1402 	}
1403 }
1404 
1405 /*
1406  * Interface to hold a bunch of attributes.
1407  * used for creating new files.
1408  * attrsize is the total size of all attributes
1409  * to be added during object creation
1410  *
1411  * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1412  */
1413 
1414 /*
1415  * hold necessary attribute name for attribute registration.
1416  * should be a very rare case where this is needed.  If it does
1417  * happen it would only happen on the first write to the file system.
1418  */
1419 static void
1420 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1421 {
1422 	if (!sa->sa_need_attr_registration)
1423 		return;
1424 
1425 	for (int i = 0; i != sa->sa_num_attrs; i++) {
1426 		if (!sa->sa_attr_table[i].sa_registered) {
1427 			if (sa->sa_reg_attr_obj)
1428 				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1429 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1430 			else
1431 				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1432 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1433 		}
1434 	}
1435 }
1436 
1437 void
1438 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1439 {
1440 	dmu_tx_hold_t *txh;
1441 
1442 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1443 	    THT_SPILL, 0, 0);
1444 	if (txh != NULL)
1445 		(void) zfs_refcount_add_many(&txh->txh_space_towrite,
1446 		    SPA_OLD_MAXBLOCKSIZE, FTAG);
1447 }
1448 
1449 void
1450 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1451 {
1452 	sa_os_t *sa = tx->tx_objset->os_sa;
1453 
1454 	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1455 
1456 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1457 		return;
1458 
1459 	if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1460 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1461 	} else {
1462 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1463 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1464 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1465 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1466 	}
1467 
1468 	dmu_tx_sa_registration_hold(sa, tx);
1469 
1470 	if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
1471 		return;
1472 
1473 	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1474 	    THT_SPILL, 0, 0);
1475 }
1476 
1477 /*
1478  * Hold SA attribute
1479  *
1480  * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1481  *
1482  * variable_size is the total size of all variable sized attributes
1483  * passed to this function.  It is not the total size of all
1484  * variable size attributes that *may* exist on this object.
1485  */
1486 void
1487 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1488 {
1489 	uint64_t object;
1490 	sa_os_t *sa = tx->tx_objset->os_sa;
1491 
1492 	ASSERT(hdl != NULL);
1493 
1494 	object = sa_handle_object(hdl);
1495 
1496 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1497 	DB_DNODE_ENTER(db);
1498 	dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db));
1499 	DB_DNODE_EXIT(db);
1500 
1501 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1502 		return;
1503 
1504 	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1505 	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1506 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1507 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1508 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1509 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1510 	}
1511 
1512 	dmu_tx_sa_registration_hold(sa, tx);
1513 
1514 	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1515 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1516 
1517 	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1518 		ASSERT(tx->tx_txg == 0);
1519 		dmu_tx_hold_spill(tx, object);
1520 	} else {
1521 		dnode_t *dn;
1522 
1523 		DB_DNODE_ENTER(db);
1524 		dn = DB_DNODE(db);
1525 		if (dn->dn_have_spill) {
1526 			ASSERT(tx->tx_txg == 0);
1527 			dmu_tx_hold_spill(tx, object);
1528 		}
1529 		DB_DNODE_EXIT(db);
1530 	}
1531 }
1532 
1533 void
1534 dmu_tx_init(void)
1535 {
1536 	dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1537 	    KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1538 	    KSTAT_FLAG_VIRTUAL);
1539 
1540 	if (dmu_tx_ksp != NULL) {
1541 		dmu_tx_ksp->ks_data = &dmu_tx_stats;
1542 		kstat_install(dmu_tx_ksp);
1543 	}
1544 }
1545 
1546 void
1547 dmu_tx_fini(void)
1548 {
1549 	if (dmu_tx_ksp != NULL) {
1550 		kstat_delete(dmu_tx_ksp);
1551 		dmu_tx_ksp = NULL;
1552 	}
1553 }
1554 
1555 #if defined(_KERNEL)
1556 EXPORT_SYMBOL(dmu_tx_create);
1557 EXPORT_SYMBOL(dmu_tx_hold_write);
1558 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
1559 EXPORT_SYMBOL(dmu_tx_hold_append);
1560 EXPORT_SYMBOL(dmu_tx_hold_append_by_dnode);
1561 EXPORT_SYMBOL(dmu_tx_hold_free);
1562 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
1563 EXPORT_SYMBOL(dmu_tx_hold_zap);
1564 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
1565 EXPORT_SYMBOL(dmu_tx_hold_bonus);
1566 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
1567 EXPORT_SYMBOL(dmu_tx_abort);
1568 EXPORT_SYMBOL(dmu_tx_assign);
1569 EXPORT_SYMBOL(dmu_tx_wait);
1570 EXPORT_SYMBOL(dmu_tx_commit);
1571 EXPORT_SYMBOL(dmu_tx_mark_netfree);
1572 EXPORT_SYMBOL(dmu_tx_get_txg);
1573 EXPORT_SYMBOL(dmu_tx_callback_register);
1574 EXPORT_SYMBOL(dmu_tx_do_callbacks);
1575 EXPORT_SYMBOL(dmu_tx_hold_spill);
1576 EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1577 EXPORT_SYMBOL(dmu_tx_hold_sa);
1578 #endif
1579