xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_tx.c (revision c203bd70b5957f85616424b6fa374479372d06e3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/dmu.h>
28 #include <sys/dmu_impl.h>
29 #include <sys/dbuf.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zap_impl.h>
36 #include <sys/spa.h>
37 #include <sys/sa.h>
38 #include <sys/sa_impl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/trace_zfs.h>
41 
42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
43     uint64_t arg1, uint64_t arg2);
44 
45 dmu_tx_stats_t dmu_tx_stats = {
46 	{ "dmu_tx_assigned",		KSTAT_DATA_UINT64 },
47 	{ "dmu_tx_delay",		KSTAT_DATA_UINT64 },
48 	{ "dmu_tx_error",		KSTAT_DATA_UINT64 },
49 	{ "dmu_tx_suspended",		KSTAT_DATA_UINT64 },
50 	{ "dmu_tx_group",		KSTAT_DATA_UINT64 },
51 	{ "dmu_tx_memory_reserve",	KSTAT_DATA_UINT64 },
52 	{ "dmu_tx_memory_reclaim",	KSTAT_DATA_UINT64 },
53 	{ "dmu_tx_dirty_throttle",	KSTAT_DATA_UINT64 },
54 	{ "dmu_tx_dirty_delay",		KSTAT_DATA_UINT64 },
55 	{ "dmu_tx_dirty_over_max",	KSTAT_DATA_UINT64 },
56 	{ "dmu_tx_dirty_frees_delay",	KSTAT_DATA_UINT64 },
57 	{ "dmu_tx_quota",		KSTAT_DATA_UINT64 },
58 };
59 
60 static kstat_t *dmu_tx_ksp;
61 
62 dmu_tx_t *
63 dmu_tx_create_dd(dsl_dir_t *dd)
64 {
65 	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
66 	tx->tx_dir = dd;
67 	if (dd != NULL)
68 		tx->tx_pool = dd->dd_pool;
69 	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
70 	    offsetof(dmu_tx_hold_t, txh_node));
71 	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
72 	    offsetof(dmu_tx_callback_t, dcb_node));
73 	tx->tx_start = gethrtime();
74 	return (tx);
75 }
76 
77 dmu_tx_t *
78 dmu_tx_create(objset_t *os)
79 {
80 	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
81 	tx->tx_objset = os;
82 	return (tx);
83 }
84 
85 dmu_tx_t *
86 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
87 {
88 	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
89 
90 	TXG_VERIFY(dp->dp_spa, txg);
91 	tx->tx_pool = dp;
92 	tx->tx_txg = txg;
93 	tx->tx_anyobj = TRUE;
94 
95 	return (tx);
96 }
97 
98 int
99 dmu_tx_is_syncing(dmu_tx_t *tx)
100 {
101 	return (tx->tx_anyobj);
102 }
103 
104 int
105 dmu_tx_private_ok(dmu_tx_t *tx)
106 {
107 	return (tx->tx_anyobj);
108 }
109 
110 static dmu_tx_hold_t *
111 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
112     uint64_t arg1, uint64_t arg2)
113 {
114 	dmu_tx_hold_t *txh;
115 
116 	if (dn != NULL) {
117 		(void) zfs_refcount_add(&dn->dn_holds, tx);
118 		if (tx->tx_txg != 0) {
119 			mutex_enter(&dn->dn_mtx);
120 			/*
121 			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
122 			 * problem, but there's no way for it to happen (for
123 			 * now, at least).
124 			 */
125 			ASSERT(dn->dn_assigned_txg == 0);
126 			dn->dn_assigned_txg = tx->tx_txg;
127 			(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
128 			mutex_exit(&dn->dn_mtx);
129 		}
130 	}
131 
132 	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
133 	txh->txh_tx = tx;
134 	txh->txh_dnode = dn;
135 	zfs_refcount_create(&txh->txh_space_towrite);
136 	zfs_refcount_create(&txh->txh_memory_tohold);
137 	txh->txh_type = type;
138 	txh->txh_arg1 = arg1;
139 	txh->txh_arg2 = arg2;
140 	list_insert_tail(&tx->tx_holds, txh);
141 
142 	return (txh);
143 }
144 
145 static dmu_tx_hold_t *
146 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
147     enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
148 {
149 	dnode_t *dn = NULL;
150 	dmu_tx_hold_t *txh;
151 	int err;
152 
153 	if (object != DMU_NEW_OBJECT) {
154 		err = dnode_hold(os, object, FTAG, &dn);
155 		if (err != 0) {
156 			tx->tx_err = err;
157 			return (NULL);
158 		}
159 	}
160 	txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
161 	if (dn != NULL)
162 		dnode_rele(dn, FTAG);
163 	return (txh);
164 }
165 
166 void
167 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
168 {
169 	/*
170 	 * If we're syncing, they can manipulate any object anyhow, and
171 	 * the hold on the dnode_t can cause problems.
172 	 */
173 	if (!dmu_tx_is_syncing(tx))
174 		(void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
175 }
176 
177 /*
178  * This function reads specified data from disk.  The specified data will
179  * be needed to perform the transaction -- i.e, it will be read after
180  * we do dmu_tx_assign().  There are two reasons that we read the data now
181  * (before dmu_tx_assign()):
182  *
183  * 1. Reading it now has potentially better performance.  The transaction
184  * has not yet been assigned, so the TXG is not held open, and also the
185  * caller typically has less locks held when calling dmu_tx_hold_*() than
186  * after the transaction has been assigned.  This reduces the lock (and txg)
187  * hold times, thus reducing lock contention.
188  *
189  * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
190  * that are detected before they start making changes to the DMU state
191  * (i.e. now).  Once the transaction has been assigned, and some DMU
192  * state has been changed, it can be difficult to recover from an i/o
193  * error (e.g. to undo the changes already made in memory at the DMU
194  * layer).  Typically code to do so does not exist in the caller -- it
195  * assumes that the data has already been cached and thus i/o errors are
196  * not possible.
197  *
198  * It has been observed that the i/o initiated here can be a performance
199  * problem, and it appears to be optional, because we don't look at the
200  * data which is read.  However, removing this read would only serve to
201  * move the work elsewhere (after the dmu_tx_assign()), where it may
202  * have a greater impact on performance (in addition to the impact on
203  * fault tolerance noted above).
204  */
205 static int
206 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
207 {
208 	int err;
209 	dmu_buf_impl_t *db;
210 
211 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
212 	db = dbuf_hold_level(dn, level, blkid, FTAG);
213 	rw_exit(&dn->dn_struct_rwlock);
214 	if (db == NULL)
215 		return (SET_ERROR(EIO));
216 	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
217 	dbuf_rele(db, FTAG);
218 	return (err);
219 }
220 
221 /* ARGSUSED */
222 static void
223 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
224 {
225 	dnode_t *dn = txh->txh_dnode;
226 	int err = 0;
227 
228 	if (len == 0)
229 		return;
230 
231 	(void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
232 
233 	if (dn == NULL)
234 		return;
235 
236 	/*
237 	 * For i/o error checking, read the blocks that will be needed
238 	 * to perform the write: the first and last level-0 blocks (if
239 	 * they are not aligned, i.e. if they are partial-block writes),
240 	 * and all the level-1 blocks.
241 	 */
242 	if (dn->dn_maxblkid == 0) {
243 		if (off < dn->dn_datablksz &&
244 		    (off > 0 || len < dn->dn_datablksz)) {
245 			err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
246 			if (err != 0) {
247 				txh->txh_tx->tx_err = err;
248 			}
249 		}
250 	} else {
251 		zio_t *zio = zio_root(dn->dn_objset->os_spa,
252 		    NULL, NULL, ZIO_FLAG_CANFAIL);
253 
254 		/* first level-0 block */
255 		uint64_t start = off >> dn->dn_datablkshift;
256 		if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
257 			err = dmu_tx_check_ioerr(zio, dn, 0, start);
258 			if (err != 0) {
259 				txh->txh_tx->tx_err = err;
260 			}
261 		}
262 
263 		/* last level-0 block */
264 		uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
265 		if (end != start && end <= dn->dn_maxblkid &&
266 		    P2PHASE(off + len, dn->dn_datablksz)) {
267 			err = dmu_tx_check_ioerr(zio, dn, 0, end);
268 			if (err != 0) {
269 				txh->txh_tx->tx_err = err;
270 			}
271 		}
272 
273 		/* level-1 blocks */
274 		if (dn->dn_nlevels > 1) {
275 			int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
276 			for (uint64_t i = (start >> shft) + 1;
277 			    i < end >> shft; i++) {
278 				err = dmu_tx_check_ioerr(zio, dn, 1, i);
279 				if (err != 0) {
280 					txh->txh_tx->tx_err = err;
281 				}
282 			}
283 		}
284 
285 		err = zio_wait(zio);
286 		if (err != 0) {
287 			txh->txh_tx->tx_err = err;
288 		}
289 	}
290 }
291 
292 static void
293 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
294 {
295 	(void) zfs_refcount_add_many(&txh->txh_space_towrite,
296 	    DNODE_MIN_SIZE, FTAG);
297 }
298 
299 void
300 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
301 {
302 	dmu_tx_hold_t *txh;
303 
304 	ASSERT0(tx->tx_txg);
305 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
306 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
307 
308 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
309 	    object, THT_WRITE, off, len);
310 	if (txh != NULL) {
311 		dmu_tx_count_write(txh, off, len);
312 		dmu_tx_count_dnode(txh);
313 	}
314 }
315 
316 void
317 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
318 {
319 	dmu_tx_hold_t *txh;
320 
321 	ASSERT0(tx->tx_txg);
322 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
323 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
324 
325 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
326 	if (txh != NULL) {
327 		dmu_tx_count_write(txh, off, len);
328 		dmu_tx_count_dnode(txh);
329 	}
330 }
331 
332 /*
333  * This function marks the transaction as being a "net free".  The end
334  * result is that refquotas will be disabled for this transaction, and
335  * this transaction will be able to use half of the pool space overhead
336  * (see dsl_pool_adjustedsize()).  Therefore this function should only
337  * be called for transactions that we expect will not cause a net increase
338  * in the amount of space used (but it's OK if that is occasionally not true).
339  */
340 void
341 dmu_tx_mark_netfree(dmu_tx_t *tx)
342 {
343 	tx->tx_netfree = B_TRUE;
344 }
345 
346 static void
347 dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
348 {
349 	dmu_tx_t *tx = txh->txh_tx;
350 	dnode_t *dn = txh->txh_dnode;
351 	int err;
352 
353 	ASSERT(tx->tx_txg == 0);
354 
355 	dmu_tx_count_dnode(txh);
356 
357 	if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
358 		return;
359 	if (len == DMU_OBJECT_END)
360 		len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
361 
362 	dmu_tx_count_dnode(txh);
363 
364 	/*
365 	 * For i/o error checking, we read the first and last level-0
366 	 * blocks if they are not aligned, and all the level-1 blocks.
367 	 *
368 	 * Note:  dbuf_free_range() assumes that we have not instantiated
369 	 * any level-0 dbufs that will be completely freed.  Therefore we must
370 	 * exercise care to not read or count the first and last blocks
371 	 * if they are blocksize-aligned.
372 	 */
373 	if (dn->dn_datablkshift == 0) {
374 		if (off != 0 || len < dn->dn_datablksz)
375 			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
376 	} else {
377 		/* first block will be modified if it is not aligned */
378 		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
379 			dmu_tx_count_write(txh, off, 1);
380 		/* last block will be modified if it is not aligned */
381 		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
382 			dmu_tx_count_write(txh, off + len, 1);
383 	}
384 
385 	/*
386 	 * Check level-1 blocks.
387 	 */
388 	if (dn->dn_nlevels > 1) {
389 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
390 		    SPA_BLKPTRSHIFT;
391 		uint64_t start = off >> shift;
392 		uint64_t end = (off + len) >> shift;
393 
394 		ASSERT(dn->dn_indblkshift != 0);
395 
396 		/*
397 		 * dnode_reallocate() can result in an object with indirect
398 		 * blocks having an odd data block size.  In this case,
399 		 * just check the single block.
400 		 */
401 		if (dn->dn_datablkshift == 0)
402 			start = end = 0;
403 
404 		zio_t *zio = zio_root(tx->tx_pool->dp_spa,
405 		    NULL, NULL, ZIO_FLAG_CANFAIL);
406 		for (uint64_t i = start; i <= end; i++) {
407 			uint64_t ibyte = i << shift;
408 			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
409 			i = ibyte >> shift;
410 			if (err == ESRCH || i > end)
411 				break;
412 			if (err != 0) {
413 				tx->tx_err = err;
414 				(void) zio_wait(zio);
415 				return;
416 			}
417 
418 			(void) zfs_refcount_add_many(&txh->txh_memory_tohold,
419 			    1 << dn->dn_indblkshift, FTAG);
420 
421 			err = dmu_tx_check_ioerr(zio, dn, 1, i);
422 			if (err != 0) {
423 				tx->tx_err = err;
424 				(void) zio_wait(zio);
425 				return;
426 			}
427 		}
428 		err = zio_wait(zio);
429 		if (err != 0) {
430 			tx->tx_err = err;
431 			return;
432 		}
433 	}
434 }
435 
436 void
437 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
438 {
439 	dmu_tx_hold_t *txh;
440 
441 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
442 	    object, THT_FREE, off, len);
443 	if (txh != NULL)
444 		(void) dmu_tx_hold_free_impl(txh, off, len);
445 }
446 
447 void
448 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
449 {
450 	dmu_tx_hold_t *txh;
451 
452 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
453 	if (txh != NULL)
454 		(void) dmu_tx_hold_free_impl(txh, off, len);
455 }
456 
457 static void
458 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
459 {
460 	dmu_tx_t *tx = txh->txh_tx;
461 	dnode_t *dn = txh->txh_dnode;
462 	int err;
463 
464 	ASSERT(tx->tx_txg == 0);
465 
466 	dmu_tx_count_dnode(txh);
467 
468 	/*
469 	 * Modifying a almost-full microzap is around the worst case (128KB)
470 	 *
471 	 * If it is a fat zap, the worst case would be 7*16KB=112KB:
472 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
473 	 * - 4 new blocks written if adding:
474 	 *    - 2 blocks for possibly split leaves,
475 	 *    - 2 grown ptrtbl blocks
476 	 */
477 	(void) zfs_refcount_add_many(&txh->txh_space_towrite,
478 	    MZAP_MAX_BLKSZ, FTAG);
479 
480 	if (dn == NULL)
481 		return;
482 
483 	ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
484 
485 	if (dn->dn_maxblkid == 0 || name == NULL) {
486 		/*
487 		 * This is a microzap (only one block), or we don't know
488 		 * the name.  Check the first block for i/o errors.
489 		 */
490 		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
491 		if (err != 0) {
492 			tx->tx_err = err;
493 		}
494 	} else {
495 		/*
496 		 * Access the name so that we'll check for i/o errors to
497 		 * the leaf blocks, etc.  We ignore ENOENT, as this name
498 		 * may not yet exist.
499 		 */
500 		err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
501 		if (err == EIO || err == ECKSUM || err == ENXIO) {
502 			tx->tx_err = err;
503 		}
504 	}
505 }
506 
507 void
508 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
509 {
510 	dmu_tx_hold_t *txh;
511 
512 	ASSERT0(tx->tx_txg);
513 
514 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
515 	    object, THT_ZAP, add, (uintptr_t)name);
516 	if (txh != NULL)
517 		dmu_tx_hold_zap_impl(txh, name);
518 }
519 
520 void
521 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
522 {
523 	dmu_tx_hold_t *txh;
524 
525 	ASSERT0(tx->tx_txg);
526 	ASSERT(dn != NULL);
527 
528 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
529 	if (txh != NULL)
530 		dmu_tx_hold_zap_impl(txh, name);
531 }
532 
533 void
534 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
535 {
536 	dmu_tx_hold_t *txh;
537 
538 	ASSERT(tx->tx_txg == 0);
539 
540 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
541 	    object, THT_BONUS, 0, 0);
542 	if (txh)
543 		dmu_tx_count_dnode(txh);
544 }
545 
546 void
547 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
548 {
549 	dmu_tx_hold_t *txh;
550 
551 	ASSERT0(tx->tx_txg);
552 
553 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
554 	if (txh)
555 		dmu_tx_count_dnode(txh);
556 }
557 
558 void
559 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
560 {
561 	dmu_tx_hold_t *txh;
562 
563 	ASSERT(tx->tx_txg == 0);
564 
565 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
566 	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
567 	if (txh) {
568 		(void) zfs_refcount_add_many(
569 		    &txh->txh_space_towrite, space, FTAG);
570 	}
571 }
572 
573 #ifdef ZFS_DEBUG
574 void
575 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
576 {
577 	boolean_t match_object = B_FALSE;
578 	boolean_t match_offset = B_FALSE;
579 
580 	DB_DNODE_ENTER(db);
581 	dnode_t *dn = DB_DNODE(db);
582 	ASSERT(tx->tx_txg != 0);
583 	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
584 	ASSERT3U(dn->dn_object, ==, db->db.db_object);
585 
586 	if (tx->tx_anyobj) {
587 		DB_DNODE_EXIT(db);
588 		return;
589 	}
590 
591 	/* XXX No checking on the meta dnode for now */
592 	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
593 		DB_DNODE_EXIT(db);
594 		return;
595 	}
596 
597 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
598 	    txh = list_next(&tx->tx_holds, txh)) {
599 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
600 		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
601 			match_object = TRUE;
602 		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
603 			int datablkshift = dn->dn_datablkshift ?
604 			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
605 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
606 			int shift = datablkshift + epbs * db->db_level;
607 			uint64_t beginblk = shift >= 64 ? 0 :
608 			    (txh->txh_arg1 >> shift);
609 			uint64_t endblk = shift >= 64 ? 0 :
610 			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
611 			uint64_t blkid = db->db_blkid;
612 
613 			/* XXX txh_arg2 better not be zero... */
614 
615 			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
616 			    txh->txh_type, beginblk, endblk);
617 
618 			switch (txh->txh_type) {
619 			case THT_WRITE:
620 				if (blkid >= beginblk && blkid <= endblk)
621 					match_offset = TRUE;
622 				/*
623 				 * We will let this hold work for the bonus
624 				 * or spill buffer so that we don't need to
625 				 * hold it when creating a new object.
626 				 */
627 				if (blkid == DMU_BONUS_BLKID ||
628 				    blkid == DMU_SPILL_BLKID)
629 					match_offset = TRUE;
630 				/*
631 				 * They might have to increase nlevels,
632 				 * thus dirtying the new TLIBs.  Or the
633 				 * might have to change the block size,
634 				 * thus dirying the new lvl=0 blk=0.
635 				 */
636 				if (blkid == 0)
637 					match_offset = TRUE;
638 				break;
639 			case THT_FREE:
640 				/*
641 				 * We will dirty all the level 1 blocks in
642 				 * the free range and perhaps the first and
643 				 * last level 0 block.
644 				 */
645 				if (blkid >= beginblk && (blkid <= endblk ||
646 				    txh->txh_arg2 == DMU_OBJECT_END))
647 					match_offset = TRUE;
648 				break;
649 			case THT_SPILL:
650 				if (blkid == DMU_SPILL_BLKID)
651 					match_offset = TRUE;
652 				break;
653 			case THT_BONUS:
654 				if (blkid == DMU_BONUS_BLKID)
655 					match_offset = TRUE;
656 				break;
657 			case THT_ZAP:
658 				match_offset = TRUE;
659 				break;
660 			case THT_NEWOBJECT:
661 				match_object = TRUE;
662 				break;
663 			default:
664 				cmn_err(CE_PANIC, "bad txh_type %d",
665 				    txh->txh_type);
666 			}
667 		}
668 		if (match_object && match_offset) {
669 			DB_DNODE_EXIT(db);
670 			return;
671 		}
672 	}
673 	DB_DNODE_EXIT(db);
674 	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
675 	    (u_longlong_t)db->db.db_object, db->db_level,
676 	    (u_longlong_t)db->db_blkid);
677 }
678 #endif
679 
680 /*
681  * If we can't do 10 iops, something is wrong.  Let us go ahead
682  * and hit zfs_dirty_data_max.
683  */
684 hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
685 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
686 
687 /*
688  * We delay transactions when we've determined that the backend storage
689  * isn't able to accommodate the rate of incoming writes.
690  *
691  * If there is already a transaction waiting, we delay relative to when
692  * that transaction finishes waiting.  This way the calculated min_time
693  * is independent of the number of threads concurrently executing
694  * transactions.
695  *
696  * If we are the only waiter, wait relative to when the transaction
697  * started, rather than the current time.  This credits the transaction for
698  * "time already served", e.g. reading indirect blocks.
699  *
700  * The minimum time for a transaction to take is calculated as:
701  *     min_time = scale * (dirty - min) / (max - dirty)
702  *     min_time is then capped at zfs_delay_max_ns.
703  *
704  * The delay has two degrees of freedom that can be adjusted via tunables.
705  * The percentage of dirty data at which we start to delay is defined by
706  * zfs_delay_min_dirty_percent. This should typically be at or above
707  * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
708  * delay after writing at full speed has failed to keep up with the incoming
709  * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
710  * speaking, this variable determines the amount of delay at the midpoint of
711  * the curve.
712  *
713  * delay
714  *  10ms +-------------------------------------------------------------*+
715  *       |                                                             *|
716  *   9ms +                                                             *+
717  *       |                                                             *|
718  *   8ms +                                                             *+
719  *       |                                                            * |
720  *   7ms +                                                            * +
721  *       |                                                            * |
722  *   6ms +                                                            * +
723  *       |                                                            * |
724  *   5ms +                                                           *  +
725  *       |                                                           *  |
726  *   4ms +                                                           *  +
727  *       |                                                           *  |
728  *   3ms +                                                          *   +
729  *       |                                                          *   |
730  *   2ms +                                              (midpoint) *    +
731  *       |                                                  |    **     |
732  *   1ms +                                                  v ***       +
733  *       |             zfs_delay_scale ---------->     ********         |
734  *     0 +-------------------------------------*********----------------+
735  *       0%                    <- zfs_dirty_data_max ->               100%
736  *
737  * Note that since the delay is added to the outstanding time remaining on the
738  * most recent transaction, the delay is effectively the inverse of IOPS.
739  * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
740  * was chosen such that small changes in the amount of accumulated dirty data
741  * in the first 3/4 of the curve yield relatively small differences in the
742  * amount of delay.
743  *
744  * The effects can be easier to understand when the amount of delay is
745  * represented on a log scale:
746  *
747  * delay
748  * 100ms +-------------------------------------------------------------++
749  *       +                                                              +
750  *       |                                                              |
751  *       +                                                             *+
752  *  10ms +                                                             *+
753  *       +                                                           ** +
754  *       |                                              (midpoint)  **  |
755  *       +                                                  |     **    +
756  *   1ms +                                                  v ****      +
757  *       +             zfs_delay_scale ---------->        *****         +
758  *       |                                             ****             |
759  *       +                                          ****                +
760  * 100us +                                        **                    +
761  *       +                                       *                      +
762  *       |                                      *                       |
763  *       +                                     *                        +
764  *  10us +                                     *                        +
765  *       +                                                              +
766  *       |                                                              |
767  *       +                                                              +
768  *       +--------------------------------------------------------------+
769  *       0%                    <- zfs_dirty_data_max ->               100%
770  *
771  * Note here that only as the amount of dirty data approaches its limit does
772  * the delay start to increase rapidly. The goal of a properly tuned system
773  * should be to keep the amount of dirty data out of that range by first
774  * ensuring that the appropriate limits are set for the I/O scheduler to reach
775  * optimal throughput on the backend storage, and then by changing the value
776  * of zfs_delay_scale to increase the steepness of the curve.
777  */
778 static void
779 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
780 {
781 	dsl_pool_t *dp = tx->tx_pool;
782 	uint64_t delay_min_bytes =
783 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
784 	hrtime_t wakeup, min_tx_time, now;
785 
786 	if (dirty <= delay_min_bytes)
787 		return;
788 
789 	/*
790 	 * The caller has already waited until we are under the max.
791 	 * We make them pass us the amount of dirty data so we don't
792 	 * have to handle the case of it being >= the max, which could
793 	 * cause a divide-by-zero if it's == the max.
794 	 */
795 	ASSERT3U(dirty, <, zfs_dirty_data_max);
796 
797 	now = gethrtime();
798 	min_tx_time = zfs_delay_scale *
799 	    (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
800 	min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
801 	if (now > tx->tx_start + min_tx_time)
802 		return;
803 
804 	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
805 	    uint64_t, min_tx_time);
806 
807 	mutex_enter(&dp->dp_lock);
808 	wakeup = MAX(tx->tx_start + min_tx_time,
809 	    dp->dp_last_wakeup + min_tx_time);
810 	dp->dp_last_wakeup = wakeup;
811 	mutex_exit(&dp->dp_lock);
812 
813 	zfs_sleep_until(wakeup);
814 }
815 
816 /*
817  * This routine attempts to assign the transaction to a transaction group.
818  * To do so, we must determine if there is sufficient free space on disk.
819  *
820  * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
821  * on it), then it is assumed that there is sufficient free space,
822  * unless there's insufficient slop space in the pool (see the comment
823  * above spa_slop_shift in spa_misc.c).
824  *
825  * If it is not a "netfree" transaction, then if the data already on disk
826  * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
827  * ENOSPC.  Otherwise, if the current rough estimate of pending changes,
828  * plus the rough estimate of this transaction's changes, may exceed the
829  * allowed usage, then this will fail with ERESTART, which will cause the
830  * caller to wait for the pending changes to be written to disk (by waiting
831  * for the next TXG to open), and then check the space usage again.
832  *
833  * The rough estimate of pending changes is comprised of the sum of:
834  *
835  *  - this transaction's holds' txh_space_towrite
836  *
837  *  - dd_tempreserved[], which is the sum of in-flight transactions'
838  *    holds' txh_space_towrite (i.e. those transactions that have called
839  *    dmu_tx_assign() but not yet called dmu_tx_commit()).
840  *
841  *  - dd_space_towrite[], which is the amount of dirtied dbufs.
842  *
843  * Note that all of these values are inflated by spa_get_worst_case_asize(),
844  * which means that we may get ERESTART well before we are actually in danger
845  * of running out of space, but this also mitigates any small inaccuracies
846  * in the rough estimate (e.g. txh_space_towrite doesn't take into account
847  * indirect blocks, and dd_space_towrite[] doesn't take into account changes
848  * to the MOS).
849  *
850  * Note that due to this algorithm, it is possible to exceed the allowed
851  * usage by one transaction.  Also, as we approach the allowed usage,
852  * we will allow a very limited amount of changes into each TXG, thus
853  * decreasing performance.
854  */
855 static int
856 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
857 {
858 	spa_t *spa = tx->tx_pool->dp_spa;
859 
860 	ASSERT0(tx->tx_txg);
861 
862 	if (tx->tx_err) {
863 		DMU_TX_STAT_BUMP(dmu_tx_error);
864 		return (tx->tx_err);
865 	}
866 
867 	if (spa_suspended(spa)) {
868 		DMU_TX_STAT_BUMP(dmu_tx_suspended);
869 
870 		/*
871 		 * If the user has indicated a blocking failure mode
872 		 * then return ERESTART which will block in dmu_tx_wait().
873 		 * Otherwise, return EIO so that an error can get
874 		 * propagated back to the VOP calls.
875 		 *
876 		 * Note that we always honor the txg_how flag regardless
877 		 * of the failuremode setting.
878 		 */
879 		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
880 		    !(txg_how & TXG_WAIT))
881 			return (SET_ERROR(EIO));
882 
883 		return (SET_ERROR(ERESTART));
884 	}
885 
886 	if (!tx->tx_dirty_delayed &&
887 	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
888 		tx->tx_wait_dirty = B_TRUE;
889 		DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
890 		return (SET_ERROR(ERESTART));
891 	}
892 
893 	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
894 	tx->tx_needassign_txh = NULL;
895 
896 	/*
897 	 * NB: No error returns are allowed after txg_hold_open, but
898 	 * before processing the dnode holds, due to the
899 	 * dmu_tx_unassign() logic.
900 	 */
901 
902 	uint64_t towrite = 0;
903 	uint64_t tohold = 0;
904 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
905 	    txh = list_next(&tx->tx_holds, txh)) {
906 		dnode_t *dn = txh->txh_dnode;
907 		if (dn != NULL) {
908 			/*
909 			 * This thread can't hold the dn_struct_rwlock
910 			 * while assigning the tx, because this can lead to
911 			 * deadlock. Specifically, if this dnode is already
912 			 * assigned to an earlier txg, this thread may need
913 			 * to wait for that txg to sync (the ERESTART case
914 			 * below).  The other thread that has assigned this
915 			 * dnode to an earlier txg prevents this txg from
916 			 * syncing until its tx can complete (calling
917 			 * dmu_tx_commit()), but it may need to acquire the
918 			 * dn_struct_rwlock to do so (e.g. via
919 			 * dmu_buf_hold*()).
920 			 *
921 			 * Note that this thread can't hold the lock for
922 			 * read either, but the rwlock doesn't record
923 			 * enough information to make that assertion.
924 			 */
925 			ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock));
926 
927 			mutex_enter(&dn->dn_mtx);
928 			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
929 				mutex_exit(&dn->dn_mtx);
930 				tx->tx_needassign_txh = txh;
931 				DMU_TX_STAT_BUMP(dmu_tx_group);
932 				return (SET_ERROR(ERESTART));
933 			}
934 			if (dn->dn_assigned_txg == 0)
935 				dn->dn_assigned_txg = tx->tx_txg;
936 			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
937 			(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
938 			mutex_exit(&dn->dn_mtx);
939 		}
940 		towrite += zfs_refcount_count(&txh->txh_space_towrite);
941 		tohold += zfs_refcount_count(&txh->txh_memory_tohold);
942 	}
943 
944 	/* needed allocation: worst-case estimate of write space */
945 	uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
946 	/* calculate memory footprint estimate */
947 	uint64_t memory = towrite + tohold;
948 
949 	if (tx->tx_dir != NULL && asize != 0) {
950 		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
951 		    asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
952 		if (err != 0)
953 			return (err);
954 	}
955 
956 	DMU_TX_STAT_BUMP(dmu_tx_assigned);
957 
958 	return (0);
959 }
960 
961 static void
962 dmu_tx_unassign(dmu_tx_t *tx)
963 {
964 	if (tx->tx_txg == 0)
965 		return;
966 
967 	txg_rele_to_quiesce(&tx->tx_txgh);
968 
969 	/*
970 	 * Walk the transaction's hold list, removing the hold on the
971 	 * associated dnode, and notifying waiters if the refcount drops to 0.
972 	 */
973 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
974 	    txh && txh != tx->tx_needassign_txh;
975 	    txh = list_next(&tx->tx_holds, txh)) {
976 		dnode_t *dn = txh->txh_dnode;
977 
978 		if (dn == NULL)
979 			continue;
980 		mutex_enter(&dn->dn_mtx);
981 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
982 
983 		if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
984 			dn->dn_assigned_txg = 0;
985 			cv_broadcast(&dn->dn_notxholds);
986 		}
987 		mutex_exit(&dn->dn_mtx);
988 	}
989 
990 	txg_rele_to_sync(&tx->tx_txgh);
991 
992 	tx->tx_lasttried_txg = tx->tx_txg;
993 	tx->tx_txg = 0;
994 }
995 
996 /*
997  * Assign tx to a transaction group; txg_how is a bitmask:
998  *
999  * If TXG_WAIT is set and the currently open txg is full, this function
1000  * will wait until there's a new txg. This should be used when no locks
1001  * are being held. With this bit set, this function will only fail if
1002  * we're truly out of space (or over quota).
1003  *
1004  * If TXG_WAIT is *not* set and we can't assign into the currently open
1005  * txg without blocking, this function will return immediately with
1006  * ERESTART. This should be used whenever locks are being held.  On an
1007  * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1008  * and try again.
1009  *
1010  * If TXG_NOTHROTTLE is set, this indicates that this tx should not be
1011  * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1012  * details on the throttle). This is used by the VFS operations, after
1013  * they have already called dmu_tx_wait() (though most likely on a
1014  * different tx).
1015  */
1016 int
1017 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
1018 {
1019 	int err;
1020 
1021 	ASSERT(tx->tx_txg == 0);
1022 	ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE));
1023 	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1024 
1025 	/* If we might wait, we must not hold the config lock. */
1026 	IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool));
1027 
1028 	if ((txg_how & TXG_NOTHROTTLE))
1029 		tx->tx_dirty_delayed = B_TRUE;
1030 
1031 	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1032 		dmu_tx_unassign(tx);
1033 
1034 		if (err != ERESTART || !(txg_how & TXG_WAIT))
1035 			return (err);
1036 
1037 		dmu_tx_wait(tx);
1038 	}
1039 
1040 	txg_rele_to_quiesce(&tx->tx_txgh);
1041 
1042 	return (0);
1043 }
1044 
1045 void
1046 dmu_tx_wait(dmu_tx_t *tx)
1047 {
1048 	spa_t *spa = tx->tx_pool->dp_spa;
1049 	dsl_pool_t *dp = tx->tx_pool;
1050 	hrtime_t before;
1051 
1052 	ASSERT(tx->tx_txg == 0);
1053 	ASSERT(!dsl_pool_config_held(tx->tx_pool));
1054 
1055 	before = gethrtime();
1056 
1057 	if (tx->tx_wait_dirty) {
1058 		uint64_t dirty;
1059 
1060 		/*
1061 		 * dmu_tx_try_assign() has determined that we need to wait
1062 		 * because we've consumed much or all of the dirty buffer
1063 		 * space.
1064 		 */
1065 		mutex_enter(&dp->dp_lock);
1066 		if (dp->dp_dirty_total >= zfs_dirty_data_max)
1067 			DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1068 		while (dp->dp_dirty_total >= zfs_dirty_data_max)
1069 			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1070 		dirty = dp->dp_dirty_total;
1071 		mutex_exit(&dp->dp_lock);
1072 
1073 		dmu_tx_delay(tx, dirty);
1074 
1075 		tx->tx_wait_dirty = B_FALSE;
1076 
1077 		/*
1078 		 * Note: setting tx_dirty_delayed only has effect if the
1079 		 * caller used TX_WAIT.  Otherwise they are going to
1080 		 * destroy this tx and try again.  The common case,
1081 		 * zfs_write(), uses TX_WAIT.
1082 		 */
1083 		tx->tx_dirty_delayed = B_TRUE;
1084 	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1085 		/*
1086 		 * If the pool is suspended we need to wait until it
1087 		 * is resumed.  Note that it's possible that the pool
1088 		 * has become active after this thread has tried to
1089 		 * obtain a tx.  If that's the case then tx_lasttried_txg
1090 		 * would not have been set.
1091 		 */
1092 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1093 	} else if (tx->tx_needassign_txh) {
1094 		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1095 
1096 		mutex_enter(&dn->dn_mtx);
1097 		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1098 			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1099 		mutex_exit(&dn->dn_mtx);
1100 		tx->tx_needassign_txh = NULL;
1101 	} else {
1102 		/*
1103 		 * If we have a lot of dirty data just wait until we sync
1104 		 * out a TXG at which point we'll hopefully have synced
1105 		 * a portion of the changes.
1106 		 */
1107 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1108 	}
1109 
1110 	spa_tx_assign_add_nsecs(spa, gethrtime() - before);
1111 }
1112 
1113 static void
1114 dmu_tx_destroy(dmu_tx_t *tx)
1115 {
1116 	dmu_tx_hold_t *txh;
1117 
1118 	while ((txh = list_head(&tx->tx_holds)) != NULL) {
1119 		dnode_t *dn = txh->txh_dnode;
1120 
1121 		list_remove(&tx->tx_holds, txh);
1122 		zfs_refcount_destroy_many(&txh->txh_space_towrite,
1123 		    zfs_refcount_count(&txh->txh_space_towrite));
1124 		zfs_refcount_destroy_many(&txh->txh_memory_tohold,
1125 		    zfs_refcount_count(&txh->txh_memory_tohold));
1126 		kmem_free(txh, sizeof (dmu_tx_hold_t));
1127 		if (dn != NULL)
1128 			dnode_rele(dn, tx);
1129 	}
1130 
1131 	list_destroy(&tx->tx_callbacks);
1132 	list_destroy(&tx->tx_holds);
1133 	kmem_free(tx, sizeof (dmu_tx_t));
1134 }
1135 
1136 void
1137 dmu_tx_commit(dmu_tx_t *tx)
1138 {
1139 	ASSERT(tx->tx_txg != 0);
1140 
1141 	/*
1142 	 * Go through the transaction's hold list and remove holds on
1143 	 * associated dnodes, notifying waiters if no holds remain.
1144 	 */
1145 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1146 	    txh = list_next(&tx->tx_holds, txh)) {
1147 		dnode_t *dn = txh->txh_dnode;
1148 
1149 		if (dn == NULL)
1150 			continue;
1151 
1152 		mutex_enter(&dn->dn_mtx);
1153 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1154 
1155 		if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1156 			dn->dn_assigned_txg = 0;
1157 			cv_broadcast(&dn->dn_notxholds);
1158 		}
1159 		mutex_exit(&dn->dn_mtx);
1160 	}
1161 
1162 	if (tx->tx_tempreserve_cookie)
1163 		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1164 
1165 	if (!list_is_empty(&tx->tx_callbacks))
1166 		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1167 
1168 	if (tx->tx_anyobj == FALSE)
1169 		txg_rele_to_sync(&tx->tx_txgh);
1170 
1171 	dmu_tx_destroy(tx);
1172 }
1173 
1174 void
1175 dmu_tx_abort(dmu_tx_t *tx)
1176 {
1177 	ASSERT(tx->tx_txg == 0);
1178 
1179 	/*
1180 	 * Call any registered callbacks with an error code.
1181 	 */
1182 	if (!list_is_empty(&tx->tx_callbacks))
1183 		dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED));
1184 
1185 	dmu_tx_destroy(tx);
1186 }
1187 
1188 uint64_t
1189 dmu_tx_get_txg(dmu_tx_t *tx)
1190 {
1191 	ASSERT(tx->tx_txg != 0);
1192 	return (tx->tx_txg);
1193 }
1194 
1195 dsl_pool_t *
1196 dmu_tx_pool(dmu_tx_t *tx)
1197 {
1198 	ASSERT(tx->tx_pool != NULL);
1199 	return (tx->tx_pool);
1200 }
1201 
1202 void
1203 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1204 {
1205 	dmu_tx_callback_t *dcb;
1206 
1207 	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1208 
1209 	dcb->dcb_func = func;
1210 	dcb->dcb_data = data;
1211 
1212 	list_insert_tail(&tx->tx_callbacks, dcb);
1213 }
1214 
1215 /*
1216  * Call all the commit callbacks on a list, with a given error code.
1217  */
1218 void
1219 dmu_tx_do_callbacks(list_t *cb_list, int error)
1220 {
1221 	dmu_tx_callback_t *dcb;
1222 
1223 	while ((dcb = list_tail(cb_list)) != NULL) {
1224 		list_remove(cb_list, dcb);
1225 		dcb->dcb_func(dcb->dcb_data, error);
1226 		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1227 	}
1228 }
1229 
1230 /*
1231  * Interface to hold a bunch of attributes.
1232  * used for creating new files.
1233  * attrsize is the total size of all attributes
1234  * to be added during object creation
1235  *
1236  * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1237  */
1238 
1239 /*
1240  * hold necessary attribute name for attribute registration.
1241  * should be a very rare case where this is needed.  If it does
1242  * happen it would only happen on the first write to the file system.
1243  */
1244 static void
1245 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1246 {
1247 	if (!sa->sa_need_attr_registration)
1248 		return;
1249 
1250 	for (int i = 0; i != sa->sa_num_attrs; i++) {
1251 		if (!sa->sa_attr_table[i].sa_registered) {
1252 			if (sa->sa_reg_attr_obj)
1253 				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1254 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1255 			else
1256 				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1257 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1258 		}
1259 	}
1260 }
1261 
1262 void
1263 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1264 {
1265 	dmu_tx_hold_t *txh;
1266 
1267 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1268 	    THT_SPILL, 0, 0);
1269 	if (txh != NULL)
1270 		(void) zfs_refcount_add_many(&txh->txh_space_towrite,
1271 		    SPA_OLD_MAXBLOCKSIZE, FTAG);
1272 }
1273 
1274 void
1275 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1276 {
1277 	sa_os_t *sa = tx->tx_objset->os_sa;
1278 
1279 	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1280 
1281 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1282 		return;
1283 
1284 	if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1285 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1286 	} else {
1287 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1288 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1289 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1290 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1291 	}
1292 
1293 	dmu_tx_sa_registration_hold(sa, tx);
1294 
1295 	if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
1296 		return;
1297 
1298 	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1299 	    THT_SPILL, 0, 0);
1300 }
1301 
1302 /*
1303  * Hold SA attribute
1304  *
1305  * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1306  *
1307  * variable_size is the total size of all variable sized attributes
1308  * passed to this function.  It is not the total size of all
1309  * variable size attributes that *may* exist on this object.
1310  */
1311 void
1312 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1313 {
1314 	uint64_t object;
1315 	sa_os_t *sa = tx->tx_objset->os_sa;
1316 
1317 	ASSERT(hdl != NULL);
1318 
1319 	object = sa_handle_object(hdl);
1320 
1321 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1322 	DB_DNODE_ENTER(db);
1323 	dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db));
1324 	DB_DNODE_EXIT(db);
1325 
1326 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1327 		return;
1328 
1329 	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1330 	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1331 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1332 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1333 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1334 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1335 	}
1336 
1337 	dmu_tx_sa_registration_hold(sa, tx);
1338 
1339 	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1340 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1341 
1342 	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1343 		ASSERT(tx->tx_txg == 0);
1344 		dmu_tx_hold_spill(tx, object);
1345 	} else {
1346 		dnode_t *dn;
1347 
1348 		DB_DNODE_ENTER(db);
1349 		dn = DB_DNODE(db);
1350 		if (dn->dn_have_spill) {
1351 			ASSERT(tx->tx_txg == 0);
1352 			dmu_tx_hold_spill(tx, object);
1353 		}
1354 		DB_DNODE_EXIT(db);
1355 	}
1356 }
1357 
1358 void
1359 dmu_tx_init(void)
1360 {
1361 	dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1362 	    KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1363 	    KSTAT_FLAG_VIRTUAL);
1364 
1365 	if (dmu_tx_ksp != NULL) {
1366 		dmu_tx_ksp->ks_data = &dmu_tx_stats;
1367 		kstat_install(dmu_tx_ksp);
1368 	}
1369 }
1370 
1371 void
1372 dmu_tx_fini(void)
1373 {
1374 	if (dmu_tx_ksp != NULL) {
1375 		kstat_delete(dmu_tx_ksp);
1376 		dmu_tx_ksp = NULL;
1377 	}
1378 }
1379 
1380 #if defined(_KERNEL)
1381 EXPORT_SYMBOL(dmu_tx_create);
1382 EXPORT_SYMBOL(dmu_tx_hold_write);
1383 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
1384 EXPORT_SYMBOL(dmu_tx_hold_free);
1385 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
1386 EXPORT_SYMBOL(dmu_tx_hold_zap);
1387 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
1388 EXPORT_SYMBOL(dmu_tx_hold_bonus);
1389 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
1390 EXPORT_SYMBOL(dmu_tx_abort);
1391 EXPORT_SYMBOL(dmu_tx_assign);
1392 EXPORT_SYMBOL(dmu_tx_wait);
1393 EXPORT_SYMBOL(dmu_tx_commit);
1394 EXPORT_SYMBOL(dmu_tx_mark_netfree);
1395 EXPORT_SYMBOL(dmu_tx_get_txg);
1396 EXPORT_SYMBOL(dmu_tx_callback_register);
1397 EXPORT_SYMBOL(dmu_tx_do_callbacks);
1398 EXPORT_SYMBOL(dmu_tx_hold_spill);
1399 EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1400 EXPORT_SYMBOL(dmu_tx_hold_sa);
1401 #endif
1402