1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2024, Klara, Inc. 26 */ 27 28 #include <sys/dmu.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dbuf.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_pool.h> 36 #include <sys/zap_impl.h> 37 #include <sys/spa.h> 38 #include <sys/sa.h> 39 #include <sys/sa_impl.h> 40 #include <sys/zfs_context.h> 41 #include <sys/trace_zfs.h> 42 43 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, 44 uint64_t arg1, uint64_t arg2); 45 46 dmu_tx_stats_t dmu_tx_stats = { 47 { "dmu_tx_assigned", KSTAT_DATA_UINT64 }, 48 { "dmu_tx_delay", KSTAT_DATA_UINT64 }, 49 { "dmu_tx_error", KSTAT_DATA_UINT64 }, 50 { "dmu_tx_suspended", KSTAT_DATA_UINT64 }, 51 { "dmu_tx_group", KSTAT_DATA_UINT64 }, 52 { "dmu_tx_memory_reserve", KSTAT_DATA_UINT64 }, 53 { "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64 }, 54 { "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64 }, 55 { "dmu_tx_dirty_delay", KSTAT_DATA_UINT64 }, 56 { "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64 }, 57 { "dmu_tx_dirty_frees_delay", KSTAT_DATA_UINT64 }, 58 { "dmu_tx_wrlog_delay", KSTAT_DATA_UINT64 }, 59 { "dmu_tx_quota", KSTAT_DATA_UINT64 }, 60 }; 61 62 static kstat_t *dmu_tx_ksp; 63 64 dmu_tx_t * 65 dmu_tx_create_dd(dsl_dir_t *dd) 66 { 67 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); 68 tx->tx_dir = dd; 69 if (dd != NULL) 70 tx->tx_pool = dd->dd_pool; 71 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), 72 offsetof(dmu_tx_hold_t, txh_node)); 73 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t), 74 offsetof(dmu_tx_callback_t, dcb_node)); 75 tx->tx_start = gethrtime(); 76 return (tx); 77 } 78 79 dmu_tx_t * 80 dmu_tx_create(objset_t *os) 81 { 82 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir); 83 tx->tx_objset = os; 84 return (tx); 85 } 86 87 dmu_tx_t * 88 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) 89 { 90 dmu_tx_t *tx = dmu_tx_create_dd(NULL); 91 92 TXG_VERIFY(dp->dp_spa, txg); 93 tx->tx_pool = dp; 94 tx->tx_txg = txg; 95 tx->tx_anyobj = TRUE; 96 97 return (tx); 98 } 99 100 int 101 dmu_tx_is_syncing(dmu_tx_t *tx) 102 { 103 return (tx->tx_anyobj); 104 } 105 106 int 107 dmu_tx_private_ok(dmu_tx_t *tx) 108 { 109 return (tx->tx_anyobj); 110 } 111 112 static dmu_tx_hold_t * 113 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type, 114 uint64_t arg1, uint64_t arg2) 115 { 116 dmu_tx_hold_t *txh; 117 118 if (dn != NULL) { 119 (void) zfs_refcount_add(&dn->dn_holds, tx); 120 if (tx->tx_txg != 0) { 121 mutex_enter(&dn->dn_mtx); 122 /* 123 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a 124 * problem, but there's no way for it to happen (for 125 * now, at least). 126 */ 127 ASSERT(dn->dn_assigned_txg == 0); 128 dn->dn_assigned_txg = tx->tx_txg; 129 (void) zfs_refcount_add(&dn->dn_tx_holds, tx); 130 mutex_exit(&dn->dn_mtx); 131 } 132 } 133 134 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); 135 txh->txh_tx = tx; 136 txh->txh_dnode = dn; 137 zfs_refcount_create(&txh->txh_space_towrite); 138 zfs_refcount_create(&txh->txh_memory_tohold); 139 txh->txh_type = type; 140 txh->txh_arg1 = arg1; 141 txh->txh_arg2 = arg2; 142 list_insert_tail(&tx->tx_holds, txh); 143 144 return (txh); 145 } 146 147 static dmu_tx_hold_t * 148 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, 149 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) 150 { 151 dnode_t *dn = NULL; 152 dmu_tx_hold_t *txh; 153 int err; 154 155 if (object != DMU_NEW_OBJECT) { 156 err = dnode_hold(os, object, FTAG, &dn); 157 if (err != 0) { 158 tx->tx_err = err; 159 return (NULL); 160 } 161 } 162 txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2); 163 if (dn != NULL) 164 dnode_rele(dn, FTAG); 165 return (txh); 166 } 167 168 void 169 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn) 170 { 171 /* 172 * If we're syncing, they can manipulate any object anyhow, and 173 * the hold on the dnode_t can cause problems. 174 */ 175 if (!dmu_tx_is_syncing(tx)) 176 (void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0); 177 } 178 179 /* 180 * This function reads specified data from disk. The specified data will 181 * be needed to perform the transaction -- i.e, it will be read after 182 * we do dmu_tx_assign(). There are two reasons that we read the data now 183 * (before dmu_tx_assign()): 184 * 185 * 1. Reading it now has potentially better performance. The transaction 186 * has not yet been assigned, so the TXG is not held open, and also the 187 * caller typically has less locks held when calling dmu_tx_hold_*() than 188 * after the transaction has been assigned. This reduces the lock (and txg) 189 * hold times, thus reducing lock contention. 190 * 191 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors 192 * that are detected before they start making changes to the DMU state 193 * (i.e. now). Once the transaction has been assigned, and some DMU 194 * state has been changed, it can be difficult to recover from an i/o 195 * error (e.g. to undo the changes already made in memory at the DMU 196 * layer). Typically code to do so does not exist in the caller -- it 197 * assumes that the data has already been cached and thus i/o errors are 198 * not possible. 199 * 200 * It has been observed that the i/o initiated here can be a performance 201 * problem, and it appears to be optional, because we don't look at the 202 * data which is read. However, removing this read would only serve to 203 * move the work elsewhere (after the dmu_tx_assign()), where it may 204 * have a greater impact on performance (in addition to the impact on 205 * fault tolerance noted above). 206 */ 207 static int 208 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) 209 { 210 int err; 211 dmu_buf_impl_t *db; 212 213 rw_enter(&dn->dn_struct_rwlock, RW_READER); 214 err = dbuf_hold_impl(dn, level, blkid, TRUE, FALSE, FTAG, &db); 215 rw_exit(&dn->dn_struct_rwlock); 216 if (err == ENOENT) 217 return (0); 218 if (err != 0) 219 return (err); 220 /* 221 * PARTIAL_FIRST allows caching for uncacheable blocks. It will 222 * be cleared after dmu_buf_will_dirty() call dbuf_read() again. 223 */ 224 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH | 225 (level == 0 ? DB_RF_PARTIAL_FIRST : 0)); 226 dbuf_rele(db, FTAG); 227 return (err); 228 } 229 230 static void 231 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 232 { 233 dnode_t *dn = txh->txh_dnode; 234 int err = 0; 235 236 if (len == 0) 237 return; 238 239 (void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG); 240 241 if (dn == NULL) 242 return; 243 244 /* 245 * For i/o error checking, read the blocks that will be needed 246 * to perform the write: the first and last level-0 blocks (if 247 * they are not aligned, i.e. if they are partial-block writes), 248 * and all the level-1 blocks. 249 */ 250 if (dn->dn_maxblkid == 0) { 251 if (off < dn->dn_datablksz && 252 (off > 0 || len < dn->dn_datablksz)) { 253 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 254 if (err != 0) { 255 txh->txh_tx->tx_err = err; 256 } 257 } 258 } else { 259 zio_t *zio = zio_root(dn->dn_objset->os_spa, 260 NULL, NULL, ZIO_FLAG_CANFAIL); 261 262 /* first level-0 block */ 263 uint64_t start = off >> dn->dn_datablkshift; 264 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) { 265 err = dmu_tx_check_ioerr(zio, dn, 0, start); 266 if (err != 0) { 267 txh->txh_tx->tx_err = err; 268 } 269 } 270 271 /* last level-0 block */ 272 uint64_t end = (off + len - 1) >> dn->dn_datablkshift; 273 if (end != start && end <= dn->dn_maxblkid && 274 P2PHASE(off + len, dn->dn_datablksz)) { 275 err = dmu_tx_check_ioerr(zio, dn, 0, end); 276 if (err != 0) { 277 txh->txh_tx->tx_err = err; 278 } 279 } 280 281 /* level-1 blocks */ 282 if (dn->dn_nlevels > 1) { 283 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 284 for (uint64_t i = (start >> shft) + 1; 285 i < end >> shft; i++) { 286 err = dmu_tx_check_ioerr(zio, dn, 1, i); 287 if (err != 0) { 288 txh->txh_tx->tx_err = err; 289 } 290 } 291 } 292 293 err = zio_wait(zio); 294 if (err != 0) { 295 txh->txh_tx->tx_err = err; 296 } 297 } 298 } 299 300 static void 301 dmu_tx_count_append(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 302 { 303 dnode_t *dn = txh->txh_dnode; 304 int err = 0; 305 306 if (len == 0) 307 return; 308 309 (void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG); 310 311 if (dn == NULL) 312 return; 313 314 /* 315 * For i/o error checking, read the blocks that will be needed 316 * to perform the append; first level-0 block (if not aligned, i.e. 317 * if they are partial-block writes), no additional blocks are read. 318 */ 319 if (dn->dn_maxblkid == 0) { 320 if (off < dn->dn_datablksz && 321 (off > 0 || len < dn->dn_datablksz)) { 322 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 323 if (err != 0) { 324 txh->txh_tx->tx_err = err; 325 } 326 } 327 } else { 328 zio_t *zio = zio_root(dn->dn_objset->os_spa, 329 NULL, NULL, ZIO_FLAG_CANFAIL); 330 331 /* first level-0 block */ 332 uint64_t start = off >> dn->dn_datablkshift; 333 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) { 334 err = dmu_tx_check_ioerr(zio, dn, 0, start); 335 if (err != 0) { 336 txh->txh_tx->tx_err = err; 337 } 338 } 339 340 err = zio_wait(zio); 341 if (err != 0) { 342 txh->txh_tx->tx_err = err; 343 } 344 } 345 } 346 347 static void 348 dmu_tx_count_dnode(dmu_tx_hold_t *txh) 349 { 350 (void) zfs_refcount_add_many(&txh->txh_space_towrite, 351 DNODE_MIN_SIZE, FTAG); 352 } 353 354 void 355 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) 356 { 357 dmu_tx_hold_t *txh; 358 359 ASSERT0(tx->tx_txg); 360 ASSERT3U(len, <=, DMU_MAX_ACCESS); 361 ASSERT(len == 0 || UINT64_MAX - off >= len - 1); 362 363 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 364 object, THT_WRITE, off, len); 365 if (txh != NULL) { 366 dmu_tx_count_write(txh, off, len); 367 dmu_tx_count_dnode(txh); 368 } 369 } 370 371 void 372 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len) 373 { 374 dmu_tx_hold_t *txh; 375 376 ASSERT0(tx->tx_txg); 377 ASSERT3U(len, <=, DMU_MAX_ACCESS); 378 ASSERT(len == 0 || UINT64_MAX - off >= len - 1); 379 380 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len); 381 if (txh != NULL) { 382 dmu_tx_count_write(txh, off, len); 383 dmu_tx_count_dnode(txh); 384 } 385 } 386 387 /* 388 * Should be used when appending to an object and the exact offset is unknown. 389 * The write must occur at or beyond the specified offset. Only the L0 block 390 * at provided offset will be prefetched. 391 */ 392 void 393 dmu_tx_hold_append(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) 394 { 395 dmu_tx_hold_t *txh; 396 397 ASSERT0(tx->tx_txg); 398 ASSERT3U(len, <=, DMU_MAX_ACCESS); 399 400 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 401 object, THT_APPEND, off, DMU_OBJECT_END); 402 if (txh != NULL) { 403 dmu_tx_count_append(txh, off, len); 404 dmu_tx_count_dnode(txh); 405 } 406 } 407 408 void 409 dmu_tx_hold_append_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len) 410 { 411 dmu_tx_hold_t *txh; 412 413 ASSERT0(tx->tx_txg); 414 ASSERT3U(len, <=, DMU_MAX_ACCESS); 415 416 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_APPEND, off, DMU_OBJECT_END); 417 if (txh != NULL) { 418 dmu_tx_count_append(txh, off, len); 419 dmu_tx_count_dnode(txh); 420 } 421 } 422 423 /* 424 * This function marks the transaction as being a "net free". The end 425 * result is that refquotas will be disabled for this transaction, and 426 * this transaction will be able to use half of the pool space overhead 427 * (see dsl_pool_adjustedsize()). Therefore this function should only 428 * be called for transactions that we expect will not cause a net increase 429 * in the amount of space used (but it's OK if that is occasionally not true). 430 */ 431 void 432 dmu_tx_mark_netfree(dmu_tx_t *tx) 433 { 434 tx->tx_netfree = B_TRUE; 435 } 436 437 static void 438 dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 439 { 440 dmu_tx_t *tx = txh->txh_tx; 441 dnode_t *dn = txh->txh_dnode; 442 int err; 443 444 ASSERT(tx->tx_txg == 0); 445 446 if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz) 447 return; 448 if (len == DMU_OBJECT_END) 449 len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off; 450 451 /* 452 * For i/o error checking, we read the first and last level-0 453 * blocks if they are not aligned, and all the level-1 blocks. 454 * 455 * Note: dbuf_free_range() assumes that we have not instantiated 456 * any level-0 dbufs that will be completely freed. Therefore we must 457 * exercise care to not read or count the first and last blocks 458 * if they are blocksize-aligned. 459 */ 460 if (dn->dn_datablkshift == 0) { 461 if (off != 0 || len < dn->dn_datablksz) 462 dmu_tx_count_write(txh, 0, dn->dn_datablksz); 463 } else { 464 /* first block will be modified if it is not aligned */ 465 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift)) 466 dmu_tx_count_write(txh, off, 1); 467 /* last block will be modified if it is not aligned */ 468 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift)) 469 dmu_tx_count_write(txh, off + len, 1); 470 } 471 472 /* 473 * Check level-1 blocks. 474 */ 475 if (dn->dn_nlevels > 1) { 476 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 477 SPA_BLKPTRSHIFT; 478 uint64_t start = off >> shift; 479 uint64_t end = (off + len) >> shift; 480 481 ASSERT(dn->dn_indblkshift != 0); 482 483 /* 484 * dnode_reallocate() can result in an object with indirect 485 * blocks having an odd data block size. In this case, 486 * just check the single block. 487 */ 488 if (dn->dn_datablkshift == 0) 489 start = end = 0; 490 491 zio_t *zio = zio_root(tx->tx_pool->dp_spa, 492 NULL, NULL, ZIO_FLAG_CANFAIL); 493 for (uint64_t i = start; i <= end; i++) { 494 uint64_t ibyte = i << shift; 495 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0); 496 i = ibyte >> shift; 497 if (err == ESRCH || i > end) 498 break; 499 if (err != 0) { 500 tx->tx_err = err; 501 (void) zio_wait(zio); 502 return; 503 } 504 505 (void) zfs_refcount_add_many(&txh->txh_memory_tohold, 506 1 << dn->dn_indblkshift, FTAG); 507 508 err = dmu_tx_check_ioerr(zio, dn, 1, i); 509 if (err != 0) { 510 tx->tx_err = err; 511 (void) zio_wait(zio); 512 return; 513 } 514 } 515 err = zio_wait(zio); 516 if (err != 0) { 517 tx->tx_err = err; 518 return; 519 } 520 } 521 } 522 523 void 524 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) 525 { 526 dmu_tx_hold_t *txh; 527 528 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 529 object, THT_FREE, off, len); 530 if (txh != NULL) { 531 dmu_tx_count_dnode(txh); 532 dmu_tx_count_free(txh, off, len); 533 } 534 } 535 536 void 537 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len) 538 { 539 dmu_tx_hold_t *txh; 540 541 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len); 542 if (txh != NULL) { 543 dmu_tx_count_dnode(txh); 544 dmu_tx_count_free(txh, off, len); 545 } 546 } 547 548 static void 549 dmu_tx_count_clone(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 550 { 551 552 /* 553 * Reuse dmu_tx_count_free(), it does exactly what we need for clone. 554 */ 555 dmu_tx_count_free(txh, off, len); 556 } 557 558 void 559 dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len) 560 { 561 dmu_tx_hold_t *txh; 562 563 ASSERT0(tx->tx_txg); 564 ASSERT(len == 0 || UINT64_MAX - off >= len - 1); 565 566 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_CLONE, off, len); 567 if (txh != NULL) { 568 dmu_tx_count_dnode(txh); 569 dmu_tx_count_clone(txh, off, len); 570 } 571 } 572 573 static void 574 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name) 575 { 576 dmu_tx_t *tx = txh->txh_tx; 577 dnode_t *dn = txh->txh_dnode; 578 int err; 579 580 ASSERT(tx->tx_txg == 0); 581 582 dmu_tx_count_dnode(txh); 583 584 /* 585 * Modifying a almost-full microzap is around the worst case (128KB) 586 * 587 * If it is a fat zap, the worst case would be 7*16KB=112KB: 588 * - 3 blocks overwritten: target leaf, ptrtbl block, header block 589 * - 4 new blocks written if adding: 590 * - 2 blocks for possibly split leaves, 591 * - 2 grown ptrtbl blocks 592 */ 593 (void) zfs_refcount_add_many(&txh->txh_space_towrite, 594 zap_get_micro_max_size(tx->tx_pool->dp_spa), FTAG); 595 596 if (dn == NULL) 597 return; 598 599 ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP); 600 601 if (dn->dn_maxblkid == 0 || name == NULL) { 602 /* 603 * This is a microzap (only one block), or we don't know 604 * the name. Check the first block for i/o errors. 605 */ 606 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 607 if (err != 0) { 608 tx->tx_err = err; 609 } 610 } else { 611 /* 612 * Access the name so that we'll check for i/o errors to 613 * the leaf blocks, etc. We ignore ENOENT, as this name 614 * may not yet exist. 615 */ 616 err = zap_lookup_by_dnode(dn, name, 8, 0, NULL); 617 if (err == EIO || err == ECKSUM || err == ENXIO) { 618 tx->tx_err = err; 619 } 620 } 621 } 622 623 void 624 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name) 625 { 626 dmu_tx_hold_t *txh; 627 628 ASSERT0(tx->tx_txg); 629 630 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 631 object, THT_ZAP, add, (uintptr_t)name); 632 if (txh != NULL) 633 dmu_tx_hold_zap_impl(txh, name); 634 } 635 636 void 637 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name) 638 { 639 dmu_tx_hold_t *txh; 640 641 ASSERT0(tx->tx_txg); 642 ASSERT(dn != NULL); 643 644 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name); 645 if (txh != NULL) 646 dmu_tx_hold_zap_impl(txh, name); 647 } 648 649 void 650 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) 651 { 652 dmu_tx_hold_t *txh; 653 654 ASSERT(tx->tx_txg == 0); 655 656 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 657 object, THT_BONUS, 0, 0); 658 if (txh) 659 dmu_tx_count_dnode(txh); 660 } 661 662 void 663 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn) 664 { 665 dmu_tx_hold_t *txh; 666 667 ASSERT0(tx->tx_txg); 668 669 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0); 670 if (txh) 671 dmu_tx_count_dnode(txh); 672 } 673 674 void 675 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) 676 { 677 dmu_tx_hold_t *txh; 678 679 ASSERT(tx->tx_txg == 0); 680 681 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 682 DMU_NEW_OBJECT, THT_SPACE, space, 0); 683 if (txh) { 684 (void) zfs_refcount_add_many( 685 &txh->txh_space_towrite, space, FTAG); 686 } 687 } 688 689 #ifdef ZFS_DEBUG 690 void 691 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) 692 { 693 boolean_t match_object = B_FALSE; 694 boolean_t match_offset = B_FALSE; 695 696 DB_DNODE_ENTER(db); 697 dnode_t *dn = DB_DNODE(db); 698 ASSERT(tx->tx_txg != 0); 699 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset); 700 ASSERT3U(dn->dn_object, ==, db->db.db_object); 701 702 if (tx->tx_anyobj) { 703 DB_DNODE_EXIT(db); 704 return; 705 } 706 707 /* XXX No checking on the meta dnode for now */ 708 if (db->db.db_object == DMU_META_DNODE_OBJECT) { 709 DB_DNODE_EXIT(db); 710 return; 711 } 712 713 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL; 714 txh = list_next(&tx->tx_holds, txh)) { 715 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 716 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) 717 match_object = TRUE; 718 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { 719 int datablkshift = dn->dn_datablkshift ? 720 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; 721 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 722 int shift = datablkshift + epbs * db->db_level; 723 uint64_t beginblk = shift >= 64 ? 0 : 724 (txh->txh_arg1 >> shift); 725 uint64_t endblk = shift >= 64 ? 0 : 726 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); 727 uint64_t blkid = db->db_blkid; 728 729 /* XXX txh_arg2 better not be zero... */ 730 731 dprintf("found txh type %x beginblk=%llx endblk=%llx\n", 732 txh->txh_type, (u_longlong_t)beginblk, 733 (u_longlong_t)endblk); 734 735 switch (txh->txh_type) { 736 case THT_WRITE: 737 if (blkid >= beginblk && blkid <= endblk) 738 match_offset = TRUE; 739 /* 740 * We will let this hold work for the bonus 741 * or spill buffer so that we don't need to 742 * hold it when creating a new object. 743 */ 744 if (blkid == DMU_BONUS_BLKID || 745 blkid == DMU_SPILL_BLKID) 746 match_offset = TRUE; 747 /* 748 * They might have to increase nlevels, 749 * thus dirtying the new TLIBs. Or the 750 * might have to change the block size, 751 * thus dirying the new lvl=0 blk=0. 752 */ 753 if (blkid == 0) 754 match_offset = TRUE; 755 break; 756 case THT_APPEND: 757 if (blkid >= beginblk && (blkid <= endblk || 758 txh->txh_arg2 == DMU_OBJECT_END)) 759 match_offset = TRUE; 760 761 /* 762 * THT_WRITE used for bonus and spill blocks. 763 */ 764 ASSERT(blkid != DMU_BONUS_BLKID && 765 blkid != DMU_SPILL_BLKID); 766 767 /* 768 * They might have to increase nlevels, 769 * thus dirtying the new TLIBs. Or the 770 * might have to change the block size, 771 * thus dirying the new lvl=0 blk=0. 772 */ 773 if (blkid == 0) 774 match_offset = TRUE; 775 break; 776 case THT_FREE: 777 /* 778 * We will dirty all the level 1 blocks in 779 * the free range and perhaps the first and 780 * last level 0 block. 781 */ 782 if (blkid >= beginblk && (blkid <= endblk || 783 txh->txh_arg2 == DMU_OBJECT_END)) 784 match_offset = TRUE; 785 break; 786 case THT_SPILL: 787 if (blkid == DMU_SPILL_BLKID) 788 match_offset = TRUE; 789 break; 790 case THT_BONUS: 791 if (blkid == DMU_BONUS_BLKID) 792 match_offset = TRUE; 793 break; 794 case THT_ZAP: 795 match_offset = TRUE; 796 break; 797 case THT_NEWOBJECT: 798 match_object = TRUE; 799 break; 800 case THT_CLONE: 801 if (blkid >= beginblk && blkid <= endblk) 802 match_offset = TRUE; 803 /* 804 * They might have to increase nlevels, 805 * thus dirtying the new TLIBs. Or the 806 * might have to change the block size, 807 * thus dirying the new lvl=0 blk=0. 808 */ 809 if (blkid == 0) 810 match_offset = TRUE; 811 break; 812 default: 813 cmn_err(CE_PANIC, "bad txh_type %d", 814 txh->txh_type); 815 } 816 } 817 if (match_object && match_offset) { 818 DB_DNODE_EXIT(db); 819 return; 820 } 821 } 822 DB_DNODE_EXIT(db); 823 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", 824 (u_longlong_t)db->db.db_object, db->db_level, 825 (u_longlong_t)db->db_blkid); 826 } 827 #endif 828 829 /* 830 * If we can't do 10 iops, something is wrong. Let us go ahead 831 * and hit zfs_dirty_data_max. 832 */ 833 static const hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */ 834 835 /* 836 * We delay transactions when we've determined that the backend storage 837 * isn't able to accommodate the rate of incoming writes. 838 * 839 * If there is already a transaction waiting, we delay relative to when 840 * that transaction finishes waiting. This way the calculated min_time 841 * is independent of the number of threads concurrently executing 842 * transactions. 843 * 844 * If we are the only waiter, wait relative to when the transaction 845 * started, rather than the current time. This credits the transaction for 846 * "time already served", e.g. reading indirect blocks. 847 * 848 * The minimum time for a transaction to take is calculated as: 849 * min_time = scale * (dirty - min) / (max - dirty) 850 * min_time is then capped at zfs_delay_max_ns. 851 * 852 * The delay has two degrees of freedom that can be adjusted via tunables. 853 * The percentage of dirty data at which we start to delay is defined by 854 * zfs_delay_min_dirty_percent. This should typically be at or above 855 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to 856 * delay after writing at full speed has failed to keep up with the incoming 857 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly 858 * speaking, this variable determines the amount of delay at the midpoint of 859 * the curve. 860 * 861 * delay 862 * 10ms +-------------------------------------------------------------*+ 863 * | *| 864 * 9ms + *+ 865 * | *| 866 * 8ms + *+ 867 * | * | 868 * 7ms + * + 869 * | * | 870 * 6ms + * + 871 * | * | 872 * 5ms + * + 873 * | * | 874 * 4ms + * + 875 * | * | 876 * 3ms + * + 877 * | * | 878 * 2ms + (midpoint) * + 879 * | | ** | 880 * 1ms + v *** + 881 * | zfs_delay_scale ----------> ******** | 882 * 0 +-------------------------------------*********----------------+ 883 * 0% <- zfs_dirty_data_max -> 100% 884 * 885 * Note that since the delay is added to the outstanding time remaining on the 886 * most recent transaction, the delay is effectively the inverse of IOPS. 887 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve 888 * was chosen such that small changes in the amount of accumulated dirty data 889 * in the first 3/4 of the curve yield relatively small differences in the 890 * amount of delay. 891 * 892 * The effects can be easier to understand when the amount of delay is 893 * represented on a log scale: 894 * 895 * delay 896 * 100ms +-------------------------------------------------------------++ 897 * + + 898 * | | 899 * + *+ 900 * 10ms + *+ 901 * + ** + 902 * | (midpoint) ** | 903 * + | ** + 904 * 1ms + v **** + 905 * + zfs_delay_scale ----------> ***** + 906 * | **** | 907 * + **** + 908 * 100us + ** + 909 * + * + 910 * | * | 911 * + * + 912 * 10us + * + 913 * + + 914 * | | 915 * + + 916 * +--------------------------------------------------------------+ 917 * 0% <- zfs_dirty_data_max -> 100% 918 * 919 * Note here that only as the amount of dirty data approaches its limit does 920 * the delay start to increase rapidly. The goal of a properly tuned system 921 * should be to keep the amount of dirty data out of that range by first 922 * ensuring that the appropriate limits are set for the I/O scheduler to reach 923 * optimal throughput on the backend storage, and then by changing the value 924 * of zfs_delay_scale to increase the steepness of the curve. 925 */ 926 static void 927 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty) 928 { 929 dsl_pool_t *dp = tx->tx_pool; 930 uint64_t delay_min_bytes, wrlog; 931 hrtime_t wakeup, tx_time = 0, now; 932 933 /* Calculate minimum transaction time for the dirty data amount. */ 934 delay_min_bytes = 935 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 936 if (dirty > delay_min_bytes) { 937 /* 938 * The caller has already waited until we are under the max. 939 * We make them pass us the amount of dirty data so we don't 940 * have to handle the case of it being >= the max, which 941 * could cause a divide-by-zero if it's == the max. 942 */ 943 ASSERT3U(dirty, <, zfs_dirty_data_max); 944 945 tx_time = zfs_delay_scale * (dirty - delay_min_bytes) / 946 (zfs_dirty_data_max - dirty); 947 } 948 949 /* Calculate minimum transaction time for the TX_WRITE log size. */ 950 wrlog = aggsum_upper_bound(&dp->dp_wrlog_total); 951 delay_min_bytes = 952 zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100; 953 if (wrlog >= zfs_wrlog_data_max) { 954 tx_time = zfs_delay_max_ns; 955 } else if (wrlog > delay_min_bytes) { 956 tx_time = MAX(zfs_delay_scale * (wrlog - delay_min_bytes) / 957 (zfs_wrlog_data_max - wrlog), tx_time); 958 } 959 960 if (tx_time == 0) 961 return; 962 963 tx_time = MIN(tx_time, zfs_delay_max_ns); 964 now = gethrtime(); 965 if (now > tx->tx_start + tx_time) 966 return; 967 968 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty, 969 uint64_t, tx_time); 970 971 mutex_enter(&dp->dp_lock); 972 wakeup = MAX(tx->tx_start + tx_time, dp->dp_last_wakeup + tx_time); 973 dp->dp_last_wakeup = wakeup; 974 mutex_exit(&dp->dp_lock); 975 976 zfs_sleep_until(wakeup); 977 } 978 979 /* 980 * This routine attempts to assign the transaction to a transaction group. 981 * To do so, we must determine if there is sufficient free space on disk. 982 * 983 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree() 984 * on it), then it is assumed that there is sufficient free space, 985 * unless there's insufficient slop space in the pool (see the comment 986 * above spa_slop_shift in spa_misc.c). 987 * 988 * If it is not a "netfree" transaction, then if the data already on disk 989 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or 990 * ENOSPC. Otherwise, if the current rough estimate of pending changes, 991 * plus the rough estimate of this transaction's changes, may exceed the 992 * allowed usage, then this will fail with ERESTART, which will cause the 993 * caller to wait for the pending changes to be written to disk (by waiting 994 * for the next TXG to open), and then check the space usage again. 995 * 996 * The rough estimate of pending changes is comprised of the sum of: 997 * 998 * - this transaction's holds' txh_space_towrite 999 * 1000 * - dd_tempreserved[], which is the sum of in-flight transactions' 1001 * holds' txh_space_towrite (i.e. those transactions that have called 1002 * dmu_tx_assign() but not yet called dmu_tx_commit()). 1003 * 1004 * - dd_space_towrite[], which is the amount of dirtied dbufs. 1005 * 1006 * Note that all of these values are inflated by spa_get_worst_case_asize(), 1007 * which means that we may get ERESTART well before we are actually in danger 1008 * of running out of space, but this also mitigates any small inaccuracies 1009 * in the rough estimate (e.g. txh_space_towrite doesn't take into account 1010 * indirect blocks, and dd_space_towrite[] doesn't take into account changes 1011 * to the MOS). 1012 * 1013 * Note that due to this algorithm, it is possible to exceed the allowed 1014 * usage by one transaction. Also, as we approach the allowed usage, 1015 * we will allow a very limited amount of changes into each TXG, thus 1016 * decreasing performance. 1017 */ 1018 static int 1019 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how) 1020 { 1021 spa_t *spa = tx->tx_pool->dp_spa; 1022 1023 ASSERT0(tx->tx_txg); 1024 1025 if (tx->tx_err) { 1026 DMU_TX_STAT_BUMP(dmu_tx_error); 1027 return (tx->tx_err); 1028 } 1029 1030 if (spa_suspended(spa)) { 1031 DMU_TX_STAT_BUMP(dmu_tx_suspended); 1032 1033 /* 1034 * If the user has indicated a blocking failure mode 1035 * then return ERESTART which will block in dmu_tx_wait(). 1036 * Otherwise, return EIO so that an error can get 1037 * propagated back to the VOP calls. 1038 * 1039 * Note that we always honor the txg_how flag regardless 1040 * of the failuremode setting. 1041 */ 1042 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && 1043 !(txg_how & TXG_WAIT)) 1044 return (SET_ERROR(EIO)); 1045 1046 return (SET_ERROR(ERESTART)); 1047 } 1048 1049 if (!tx->tx_dirty_delayed && 1050 dsl_pool_need_wrlog_delay(tx->tx_pool)) { 1051 tx->tx_wait_dirty = B_TRUE; 1052 DMU_TX_STAT_BUMP(dmu_tx_wrlog_delay); 1053 return (SET_ERROR(ERESTART)); 1054 } 1055 1056 if (!tx->tx_dirty_delayed && 1057 dsl_pool_need_dirty_delay(tx->tx_pool)) { 1058 tx->tx_wait_dirty = B_TRUE; 1059 DMU_TX_STAT_BUMP(dmu_tx_dirty_delay); 1060 return (SET_ERROR(ERESTART)); 1061 } 1062 1063 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); 1064 tx->tx_needassign_txh = NULL; 1065 1066 /* 1067 * NB: No error returns are allowed after txg_hold_open, but 1068 * before processing the dnode holds, due to the 1069 * dmu_tx_unassign() logic. 1070 */ 1071 1072 uint64_t towrite = 0; 1073 uint64_t tohold = 0; 1074 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL; 1075 txh = list_next(&tx->tx_holds, txh)) { 1076 dnode_t *dn = txh->txh_dnode; 1077 if (dn != NULL) { 1078 /* 1079 * This thread can't hold the dn_struct_rwlock 1080 * while assigning the tx, because this can lead to 1081 * deadlock. Specifically, if this dnode is already 1082 * assigned to an earlier txg, this thread may need 1083 * to wait for that txg to sync (the ERESTART case 1084 * below). The other thread that has assigned this 1085 * dnode to an earlier txg prevents this txg from 1086 * syncing until its tx can complete (calling 1087 * dmu_tx_commit()), but it may need to acquire the 1088 * dn_struct_rwlock to do so (e.g. via 1089 * dmu_buf_hold*()). 1090 * 1091 * Note that this thread can't hold the lock for 1092 * read either, but the rwlock doesn't record 1093 * enough information to make that assertion. 1094 */ 1095 ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1096 1097 mutex_enter(&dn->dn_mtx); 1098 if (dn->dn_assigned_txg == tx->tx_txg - 1) { 1099 mutex_exit(&dn->dn_mtx); 1100 tx->tx_needassign_txh = txh; 1101 DMU_TX_STAT_BUMP(dmu_tx_group); 1102 return (SET_ERROR(ERESTART)); 1103 } 1104 if (dn->dn_assigned_txg == 0) 1105 dn->dn_assigned_txg = tx->tx_txg; 1106 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1107 (void) zfs_refcount_add(&dn->dn_tx_holds, tx); 1108 mutex_exit(&dn->dn_mtx); 1109 } 1110 towrite += zfs_refcount_count(&txh->txh_space_towrite); 1111 tohold += zfs_refcount_count(&txh->txh_memory_tohold); 1112 } 1113 1114 /* needed allocation: worst-case estimate of write space */ 1115 uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite); 1116 /* calculate memory footprint estimate */ 1117 uint64_t memory = towrite + tohold; 1118 1119 if (tx->tx_dir != NULL && asize != 0) { 1120 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory, 1121 asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx); 1122 if (err != 0) 1123 return (err); 1124 } 1125 1126 DMU_TX_STAT_BUMP(dmu_tx_assigned); 1127 1128 return (0); 1129 } 1130 1131 static void 1132 dmu_tx_unassign(dmu_tx_t *tx) 1133 { 1134 if (tx->tx_txg == 0) 1135 return; 1136 1137 txg_rele_to_quiesce(&tx->tx_txgh); 1138 1139 /* 1140 * Walk the transaction's hold list, removing the hold on the 1141 * associated dnode, and notifying waiters if the refcount drops to 0. 1142 */ 1143 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); 1144 txh && txh != tx->tx_needassign_txh; 1145 txh = list_next(&tx->tx_holds, txh)) { 1146 dnode_t *dn = txh->txh_dnode; 1147 1148 if (dn == NULL) 1149 continue; 1150 mutex_enter(&dn->dn_mtx); 1151 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1152 1153 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1154 dn->dn_assigned_txg = 0; 1155 cv_broadcast(&dn->dn_notxholds); 1156 } 1157 mutex_exit(&dn->dn_mtx); 1158 } 1159 1160 txg_rele_to_sync(&tx->tx_txgh); 1161 1162 tx->tx_lasttried_txg = tx->tx_txg; 1163 tx->tx_txg = 0; 1164 } 1165 1166 /* 1167 * Assign tx to a transaction group; txg_how is a bitmask: 1168 * 1169 * If TXG_WAIT is set and the currently open txg is full, this function 1170 * will wait until there's a new txg. This should be used when no locks 1171 * are being held. With this bit set, this function will only fail if 1172 * we're truly out of space (or over quota). 1173 * 1174 * If TXG_WAIT is *not* set and we can't assign into the currently open 1175 * txg without blocking, this function will return immediately with 1176 * ERESTART. This should be used whenever locks are being held. On an 1177 * ERESTART error, the caller should drop all locks, call dmu_tx_wait(), 1178 * and try again. 1179 * 1180 * If TXG_NOTHROTTLE is set, this indicates that this tx should not be 1181 * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for 1182 * details on the throttle). This is used by the VFS operations, after 1183 * they have already called dmu_tx_wait() (though most likely on a 1184 * different tx). 1185 * 1186 * It is guaranteed that subsequent successful calls to dmu_tx_assign() 1187 * will assign the tx to monotonically increasing txgs. Of course this is 1188 * not strong monotonicity, because the same txg can be returned multiple 1189 * times in a row. This guarantee holds both for subsequent calls from 1190 * one thread and for multiple threads. For example, it is impossible to 1191 * observe the following sequence of events: 1192 * 1193 * Thread 1 Thread 2 1194 * 1195 * dmu_tx_assign(T1, ...) 1196 * 1 <- dmu_tx_get_txg(T1) 1197 * dmu_tx_assign(T2, ...) 1198 * 2 <- dmu_tx_get_txg(T2) 1199 * dmu_tx_assign(T3, ...) 1200 * 1 <- dmu_tx_get_txg(T3) 1201 */ 1202 int 1203 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how) 1204 { 1205 int err; 1206 1207 ASSERT(tx->tx_txg == 0); 1208 ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE)); 1209 ASSERT(!dsl_pool_sync_context(tx->tx_pool)); 1210 1211 /* If we might wait, we must not hold the config lock. */ 1212 IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool)); 1213 1214 if ((txg_how & TXG_NOTHROTTLE)) 1215 tx->tx_dirty_delayed = B_TRUE; 1216 1217 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { 1218 dmu_tx_unassign(tx); 1219 1220 if (err != ERESTART || !(txg_how & TXG_WAIT)) 1221 return (err); 1222 1223 dmu_tx_wait(tx); 1224 } 1225 1226 txg_rele_to_quiesce(&tx->tx_txgh); 1227 1228 return (0); 1229 } 1230 1231 void 1232 dmu_tx_wait(dmu_tx_t *tx) 1233 { 1234 spa_t *spa = tx->tx_pool->dp_spa; 1235 dsl_pool_t *dp = tx->tx_pool; 1236 hrtime_t before; 1237 1238 ASSERT(tx->tx_txg == 0); 1239 ASSERT(!dsl_pool_config_held(tx->tx_pool)); 1240 1241 before = gethrtime(); 1242 1243 if (tx->tx_wait_dirty) { 1244 uint64_t dirty; 1245 1246 /* 1247 * dmu_tx_try_assign() has determined that we need to wait 1248 * because we've consumed much or all of the dirty buffer 1249 * space. 1250 */ 1251 mutex_enter(&dp->dp_lock); 1252 if (dp->dp_dirty_total >= zfs_dirty_data_max) 1253 DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max); 1254 while (dp->dp_dirty_total >= zfs_dirty_data_max) 1255 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock); 1256 dirty = dp->dp_dirty_total; 1257 mutex_exit(&dp->dp_lock); 1258 1259 dmu_tx_delay(tx, dirty); 1260 1261 tx->tx_wait_dirty = B_FALSE; 1262 1263 /* 1264 * Note: setting tx_dirty_delayed only has effect if the 1265 * caller used TX_WAIT. Otherwise they are going to 1266 * destroy this tx and try again. The common case, 1267 * zfs_write(), uses TX_WAIT. 1268 */ 1269 tx->tx_dirty_delayed = B_TRUE; 1270 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) { 1271 /* 1272 * If the pool is suspended we need to wait until it 1273 * is resumed. Note that it's possible that the pool 1274 * has become active after this thread has tried to 1275 * obtain a tx. If that's the case then tx_lasttried_txg 1276 * would not have been set. 1277 */ 1278 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); 1279 } else if (tx->tx_needassign_txh) { 1280 dnode_t *dn = tx->tx_needassign_txh->txh_dnode; 1281 1282 mutex_enter(&dn->dn_mtx); 1283 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) 1284 cv_wait(&dn->dn_notxholds, &dn->dn_mtx); 1285 mutex_exit(&dn->dn_mtx); 1286 tx->tx_needassign_txh = NULL; 1287 } else { 1288 /* 1289 * If we have a lot of dirty data just wait until we sync 1290 * out a TXG at which point we'll hopefully have synced 1291 * a portion of the changes. 1292 */ 1293 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); 1294 } 1295 1296 spa_tx_assign_add_nsecs(spa, gethrtime() - before); 1297 } 1298 1299 static void 1300 dmu_tx_destroy(dmu_tx_t *tx) 1301 { 1302 dmu_tx_hold_t *txh; 1303 1304 while ((txh = list_head(&tx->tx_holds)) != NULL) { 1305 dnode_t *dn = txh->txh_dnode; 1306 1307 list_remove(&tx->tx_holds, txh); 1308 zfs_refcount_destroy_many(&txh->txh_space_towrite, 1309 zfs_refcount_count(&txh->txh_space_towrite)); 1310 zfs_refcount_destroy_many(&txh->txh_memory_tohold, 1311 zfs_refcount_count(&txh->txh_memory_tohold)); 1312 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1313 if (dn != NULL) 1314 dnode_rele(dn, tx); 1315 } 1316 1317 list_destroy(&tx->tx_callbacks); 1318 list_destroy(&tx->tx_holds); 1319 kmem_free(tx, sizeof (dmu_tx_t)); 1320 } 1321 1322 void 1323 dmu_tx_commit(dmu_tx_t *tx) 1324 { 1325 ASSERT(tx->tx_txg != 0); 1326 1327 /* 1328 * Go through the transaction's hold list and remove holds on 1329 * associated dnodes, notifying waiters if no holds remain. 1330 */ 1331 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL; 1332 txh = list_next(&tx->tx_holds, txh)) { 1333 dnode_t *dn = txh->txh_dnode; 1334 1335 if (dn == NULL) 1336 continue; 1337 1338 mutex_enter(&dn->dn_mtx); 1339 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1340 1341 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1342 dn->dn_assigned_txg = 0; 1343 cv_broadcast(&dn->dn_notxholds); 1344 } 1345 mutex_exit(&dn->dn_mtx); 1346 } 1347 1348 if (tx->tx_tempreserve_cookie) 1349 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); 1350 1351 if (!list_is_empty(&tx->tx_callbacks)) 1352 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks); 1353 1354 if (tx->tx_anyobj == FALSE) 1355 txg_rele_to_sync(&tx->tx_txgh); 1356 1357 dmu_tx_destroy(tx); 1358 } 1359 1360 void 1361 dmu_tx_abort(dmu_tx_t *tx) 1362 { 1363 ASSERT(tx->tx_txg == 0); 1364 1365 /* 1366 * Call any registered callbacks with an error code. 1367 */ 1368 if (!list_is_empty(&tx->tx_callbacks)) 1369 dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED)); 1370 1371 dmu_tx_destroy(tx); 1372 } 1373 1374 uint64_t 1375 dmu_tx_get_txg(dmu_tx_t *tx) 1376 { 1377 ASSERT(tx->tx_txg != 0); 1378 return (tx->tx_txg); 1379 } 1380 1381 dsl_pool_t * 1382 dmu_tx_pool(dmu_tx_t *tx) 1383 { 1384 ASSERT(tx->tx_pool != NULL); 1385 return (tx->tx_pool); 1386 } 1387 1388 /* 1389 * Register a callback to be executed at the end of a TXG. 1390 * 1391 * Note: This currently exists for outside consumers, specifically the ZFS OSD 1392 * for Lustre. Please do not remove before checking that project. For examples 1393 * on how to use this see `ztest_commit_callback`. 1394 */ 1395 void 1396 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data) 1397 { 1398 dmu_tx_callback_t *dcb; 1399 1400 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP); 1401 1402 dcb->dcb_func = func; 1403 dcb->dcb_data = data; 1404 1405 list_insert_tail(&tx->tx_callbacks, dcb); 1406 } 1407 1408 /* 1409 * Call all the commit callbacks on a list, with a given error code. 1410 */ 1411 void 1412 dmu_tx_do_callbacks(list_t *cb_list, int error) 1413 { 1414 dmu_tx_callback_t *dcb; 1415 1416 while ((dcb = list_remove_tail(cb_list)) != NULL) { 1417 dcb->dcb_func(dcb->dcb_data, error); 1418 kmem_free(dcb, sizeof (dmu_tx_callback_t)); 1419 } 1420 } 1421 1422 /* 1423 * Interface to hold a bunch of attributes. 1424 * used for creating new files. 1425 * attrsize is the total size of all attributes 1426 * to be added during object creation 1427 * 1428 * For updating/adding a single attribute dmu_tx_hold_sa() should be used. 1429 */ 1430 1431 /* 1432 * hold necessary attribute name for attribute registration. 1433 * should be a very rare case where this is needed. If it does 1434 * happen it would only happen on the first write to the file system. 1435 */ 1436 static void 1437 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx) 1438 { 1439 if (!sa->sa_need_attr_registration) 1440 return; 1441 1442 for (int i = 0; i != sa->sa_num_attrs; i++) { 1443 if (!sa->sa_attr_table[i].sa_registered) { 1444 if (sa->sa_reg_attr_obj) 1445 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj, 1446 B_TRUE, sa->sa_attr_table[i].sa_name); 1447 else 1448 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 1449 B_TRUE, sa->sa_attr_table[i].sa_name); 1450 } 1451 } 1452 } 1453 1454 void 1455 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object) 1456 { 1457 dmu_tx_hold_t *txh; 1458 1459 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, 1460 THT_SPILL, 0, 0); 1461 if (txh != NULL) 1462 (void) zfs_refcount_add_many(&txh->txh_space_towrite, 1463 SPA_OLD_MAXBLOCKSIZE, FTAG); 1464 } 1465 1466 void 1467 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize) 1468 { 1469 sa_os_t *sa = tx->tx_objset->os_sa; 1470 1471 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1472 1473 if (tx->tx_objset->os_sa->sa_master_obj == 0) 1474 return; 1475 1476 if (tx->tx_objset->os_sa->sa_layout_attr_obj) { 1477 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); 1478 } else { 1479 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); 1480 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); 1481 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1482 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1483 } 1484 1485 dmu_tx_sa_registration_hold(sa, tx); 1486 1487 if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill) 1488 return; 1489 1490 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, 1491 THT_SPILL, 0, 0); 1492 } 1493 1494 /* 1495 * Hold SA attribute 1496 * 1497 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size) 1498 * 1499 * variable_size is the total size of all variable sized attributes 1500 * passed to this function. It is not the total size of all 1501 * variable size attributes that *may* exist on this object. 1502 */ 1503 void 1504 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow) 1505 { 1506 uint64_t object; 1507 sa_os_t *sa = tx->tx_objset->os_sa; 1508 1509 ASSERT(hdl != NULL); 1510 1511 object = sa_handle_object(hdl); 1512 1513 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus; 1514 DB_DNODE_ENTER(db); 1515 dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db)); 1516 DB_DNODE_EXIT(db); 1517 1518 if (tx->tx_objset->os_sa->sa_master_obj == 0) 1519 return; 1520 1521 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 || 1522 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) { 1523 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); 1524 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); 1525 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1526 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1527 } 1528 1529 dmu_tx_sa_registration_hold(sa, tx); 1530 1531 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj) 1532 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); 1533 1534 if (sa->sa_force_spill || may_grow || hdl->sa_spill) { 1535 ASSERT(tx->tx_txg == 0); 1536 dmu_tx_hold_spill(tx, object); 1537 } else { 1538 DB_DNODE_ENTER(db); 1539 if (DB_DNODE(db)->dn_have_spill) { 1540 ASSERT(tx->tx_txg == 0); 1541 dmu_tx_hold_spill(tx, object); 1542 } 1543 DB_DNODE_EXIT(db); 1544 } 1545 } 1546 1547 void 1548 dmu_tx_init(void) 1549 { 1550 dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc", 1551 KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t), 1552 KSTAT_FLAG_VIRTUAL); 1553 1554 if (dmu_tx_ksp != NULL) { 1555 dmu_tx_ksp->ks_data = &dmu_tx_stats; 1556 kstat_install(dmu_tx_ksp); 1557 } 1558 } 1559 1560 void 1561 dmu_tx_fini(void) 1562 { 1563 if (dmu_tx_ksp != NULL) { 1564 kstat_delete(dmu_tx_ksp); 1565 dmu_tx_ksp = NULL; 1566 } 1567 } 1568 1569 #if defined(_KERNEL) 1570 EXPORT_SYMBOL(dmu_tx_create); 1571 EXPORT_SYMBOL(dmu_tx_hold_write); 1572 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode); 1573 EXPORT_SYMBOL(dmu_tx_hold_append); 1574 EXPORT_SYMBOL(dmu_tx_hold_append_by_dnode); 1575 EXPORT_SYMBOL(dmu_tx_hold_free); 1576 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode); 1577 EXPORT_SYMBOL(dmu_tx_hold_zap); 1578 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode); 1579 EXPORT_SYMBOL(dmu_tx_hold_bonus); 1580 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode); 1581 EXPORT_SYMBOL(dmu_tx_abort); 1582 EXPORT_SYMBOL(dmu_tx_assign); 1583 EXPORT_SYMBOL(dmu_tx_wait); 1584 EXPORT_SYMBOL(dmu_tx_commit); 1585 EXPORT_SYMBOL(dmu_tx_mark_netfree); 1586 EXPORT_SYMBOL(dmu_tx_get_txg); 1587 EXPORT_SYMBOL(dmu_tx_callback_register); 1588 EXPORT_SYMBOL(dmu_tx_do_callbacks); 1589 EXPORT_SYMBOL(dmu_tx_hold_spill); 1590 EXPORT_SYMBOL(dmu_tx_hold_sa_create); 1591 EXPORT_SYMBOL(dmu_tx_hold_sa); 1592 #endif 1593