xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_tx.c (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/dmu.h>
28 #include <sys/dmu_impl.h>
29 #include <sys/dbuf.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zap_impl.h>
36 #include <sys/spa.h>
37 #include <sys/sa.h>
38 #include <sys/sa_impl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/trace_zfs.h>
41 
42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
43     uint64_t arg1, uint64_t arg2);
44 
45 dmu_tx_stats_t dmu_tx_stats = {
46 	{ "dmu_tx_assigned",		KSTAT_DATA_UINT64 },
47 	{ "dmu_tx_delay",		KSTAT_DATA_UINT64 },
48 	{ "dmu_tx_error",		KSTAT_DATA_UINT64 },
49 	{ "dmu_tx_suspended",		KSTAT_DATA_UINT64 },
50 	{ "dmu_tx_group",		KSTAT_DATA_UINT64 },
51 	{ "dmu_tx_memory_reserve",	KSTAT_DATA_UINT64 },
52 	{ "dmu_tx_memory_reclaim",	KSTAT_DATA_UINT64 },
53 	{ "dmu_tx_dirty_throttle",	KSTAT_DATA_UINT64 },
54 	{ "dmu_tx_dirty_delay",		KSTAT_DATA_UINT64 },
55 	{ "dmu_tx_dirty_over_max",	KSTAT_DATA_UINT64 },
56 	{ "dmu_tx_wrlog_over_max",	KSTAT_DATA_UINT64 },
57 	{ "dmu_tx_dirty_frees_delay",	KSTAT_DATA_UINT64 },
58 	{ "dmu_tx_quota",		KSTAT_DATA_UINT64 },
59 };
60 
61 static kstat_t *dmu_tx_ksp;
62 
63 dmu_tx_t *
64 dmu_tx_create_dd(dsl_dir_t *dd)
65 {
66 	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
67 	tx->tx_dir = dd;
68 	if (dd != NULL)
69 		tx->tx_pool = dd->dd_pool;
70 	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
71 	    offsetof(dmu_tx_hold_t, txh_node));
72 	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
73 	    offsetof(dmu_tx_callback_t, dcb_node));
74 	tx->tx_start = gethrtime();
75 	return (tx);
76 }
77 
78 dmu_tx_t *
79 dmu_tx_create(objset_t *os)
80 {
81 	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
82 	tx->tx_objset = os;
83 	return (tx);
84 }
85 
86 dmu_tx_t *
87 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
88 {
89 	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
90 
91 	TXG_VERIFY(dp->dp_spa, txg);
92 	tx->tx_pool = dp;
93 	tx->tx_txg = txg;
94 	tx->tx_anyobj = TRUE;
95 
96 	return (tx);
97 }
98 
99 int
100 dmu_tx_is_syncing(dmu_tx_t *tx)
101 {
102 	return (tx->tx_anyobj);
103 }
104 
105 int
106 dmu_tx_private_ok(dmu_tx_t *tx)
107 {
108 	return (tx->tx_anyobj);
109 }
110 
111 static dmu_tx_hold_t *
112 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
113     uint64_t arg1, uint64_t arg2)
114 {
115 	dmu_tx_hold_t *txh;
116 
117 	if (dn != NULL) {
118 		(void) zfs_refcount_add(&dn->dn_holds, tx);
119 		if (tx->tx_txg != 0) {
120 			mutex_enter(&dn->dn_mtx);
121 			/*
122 			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
123 			 * problem, but there's no way for it to happen (for
124 			 * now, at least).
125 			 */
126 			ASSERT(dn->dn_assigned_txg == 0);
127 			dn->dn_assigned_txg = tx->tx_txg;
128 			(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
129 			mutex_exit(&dn->dn_mtx);
130 		}
131 	}
132 
133 	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
134 	txh->txh_tx = tx;
135 	txh->txh_dnode = dn;
136 	zfs_refcount_create(&txh->txh_space_towrite);
137 	zfs_refcount_create(&txh->txh_memory_tohold);
138 	txh->txh_type = type;
139 	txh->txh_arg1 = arg1;
140 	txh->txh_arg2 = arg2;
141 	list_insert_tail(&tx->tx_holds, txh);
142 
143 	return (txh);
144 }
145 
146 static dmu_tx_hold_t *
147 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
148     enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
149 {
150 	dnode_t *dn = NULL;
151 	dmu_tx_hold_t *txh;
152 	int err;
153 
154 	if (object != DMU_NEW_OBJECT) {
155 		err = dnode_hold(os, object, FTAG, &dn);
156 		if (err != 0) {
157 			tx->tx_err = err;
158 			return (NULL);
159 		}
160 	}
161 	txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
162 	if (dn != NULL)
163 		dnode_rele(dn, FTAG);
164 	return (txh);
165 }
166 
167 void
168 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
169 {
170 	/*
171 	 * If we're syncing, they can manipulate any object anyhow, and
172 	 * the hold on the dnode_t can cause problems.
173 	 */
174 	if (!dmu_tx_is_syncing(tx))
175 		(void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
176 }
177 
178 /*
179  * This function reads specified data from disk.  The specified data will
180  * be needed to perform the transaction -- i.e, it will be read after
181  * we do dmu_tx_assign().  There are two reasons that we read the data now
182  * (before dmu_tx_assign()):
183  *
184  * 1. Reading it now has potentially better performance.  The transaction
185  * has not yet been assigned, so the TXG is not held open, and also the
186  * caller typically has less locks held when calling dmu_tx_hold_*() than
187  * after the transaction has been assigned.  This reduces the lock (and txg)
188  * hold times, thus reducing lock contention.
189  *
190  * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
191  * that are detected before they start making changes to the DMU state
192  * (i.e. now).  Once the transaction has been assigned, and some DMU
193  * state has been changed, it can be difficult to recover from an i/o
194  * error (e.g. to undo the changes already made in memory at the DMU
195  * layer).  Typically code to do so does not exist in the caller -- it
196  * assumes that the data has already been cached and thus i/o errors are
197  * not possible.
198  *
199  * It has been observed that the i/o initiated here can be a performance
200  * problem, and it appears to be optional, because we don't look at the
201  * data which is read.  However, removing this read would only serve to
202  * move the work elsewhere (after the dmu_tx_assign()), where it may
203  * have a greater impact on performance (in addition to the impact on
204  * fault tolerance noted above).
205  */
206 static int
207 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
208 {
209 	int err;
210 	dmu_buf_impl_t *db;
211 
212 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
213 	db = dbuf_hold_level(dn, level, blkid, FTAG);
214 	rw_exit(&dn->dn_struct_rwlock);
215 	if (db == NULL)
216 		return (SET_ERROR(EIO));
217 	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
218 	dbuf_rele(db, FTAG);
219 	return (err);
220 }
221 
222 /* ARGSUSED */
223 static void
224 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
225 {
226 	dnode_t *dn = txh->txh_dnode;
227 	int err = 0;
228 
229 	if (len == 0)
230 		return;
231 
232 	(void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
233 
234 	if (dn == NULL)
235 		return;
236 
237 	/*
238 	 * For i/o error checking, read the blocks that will be needed
239 	 * to perform the write: the first and last level-0 blocks (if
240 	 * they are not aligned, i.e. if they are partial-block writes),
241 	 * and all the level-1 blocks.
242 	 */
243 	if (dn->dn_maxblkid == 0) {
244 		if (off < dn->dn_datablksz &&
245 		    (off > 0 || len < dn->dn_datablksz)) {
246 			err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
247 			if (err != 0) {
248 				txh->txh_tx->tx_err = err;
249 			}
250 		}
251 	} else {
252 		zio_t *zio = zio_root(dn->dn_objset->os_spa,
253 		    NULL, NULL, ZIO_FLAG_CANFAIL);
254 
255 		/* first level-0 block */
256 		uint64_t start = off >> dn->dn_datablkshift;
257 		if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
258 			err = dmu_tx_check_ioerr(zio, dn, 0, start);
259 			if (err != 0) {
260 				txh->txh_tx->tx_err = err;
261 			}
262 		}
263 
264 		/* last level-0 block */
265 		uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
266 		if (end != start && end <= dn->dn_maxblkid &&
267 		    P2PHASE(off + len, dn->dn_datablksz)) {
268 			err = dmu_tx_check_ioerr(zio, dn, 0, end);
269 			if (err != 0) {
270 				txh->txh_tx->tx_err = err;
271 			}
272 		}
273 
274 		/* level-1 blocks */
275 		if (dn->dn_nlevels > 1) {
276 			int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
277 			for (uint64_t i = (start >> shft) + 1;
278 			    i < end >> shft; i++) {
279 				err = dmu_tx_check_ioerr(zio, dn, 1, i);
280 				if (err != 0) {
281 					txh->txh_tx->tx_err = err;
282 				}
283 			}
284 		}
285 
286 		err = zio_wait(zio);
287 		if (err != 0) {
288 			txh->txh_tx->tx_err = err;
289 		}
290 	}
291 }
292 
293 static void
294 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
295 {
296 	(void) zfs_refcount_add_many(&txh->txh_space_towrite,
297 	    DNODE_MIN_SIZE, FTAG);
298 }
299 
300 void
301 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
302 {
303 	dmu_tx_hold_t *txh;
304 
305 	ASSERT0(tx->tx_txg);
306 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
307 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
308 
309 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
310 	    object, THT_WRITE, off, len);
311 	if (txh != NULL) {
312 		dmu_tx_count_write(txh, off, len);
313 		dmu_tx_count_dnode(txh);
314 	}
315 }
316 
317 void
318 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
319 {
320 	dmu_tx_hold_t *txh;
321 
322 	ASSERT0(tx->tx_txg);
323 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
324 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
325 
326 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
327 	if (txh != NULL) {
328 		dmu_tx_count_write(txh, off, len);
329 		dmu_tx_count_dnode(txh);
330 	}
331 }
332 
333 /*
334  * This function marks the transaction as being a "net free".  The end
335  * result is that refquotas will be disabled for this transaction, and
336  * this transaction will be able to use half of the pool space overhead
337  * (see dsl_pool_adjustedsize()).  Therefore this function should only
338  * be called for transactions that we expect will not cause a net increase
339  * in the amount of space used (but it's OK if that is occasionally not true).
340  */
341 void
342 dmu_tx_mark_netfree(dmu_tx_t *tx)
343 {
344 	tx->tx_netfree = B_TRUE;
345 }
346 
347 static void
348 dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
349 {
350 	dmu_tx_t *tx = txh->txh_tx;
351 	dnode_t *dn = txh->txh_dnode;
352 	int err;
353 
354 	ASSERT(tx->tx_txg == 0);
355 
356 	dmu_tx_count_dnode(txh);
357 
358 	if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
359 		return;
360 	if (len == DMU_OBJECT_END)
361 		len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
362 
363 	dmu_tx_count_dnode(txh);
364 
365 	/*
366 	 * For i/o error checking, we read the first and last level-0
367 	 * blocks if they are not aligned, and all the level-1 blocks.
368 	 *
369 	 * Note:  dbuf_free_range() assumes that we have not instantiated
370 	 * any level-0 dbufs that will be completely freed.  Therefore we must
371 	 * exercise care to not read or count the first and last blocks
372 	 * if they are blocksize-aligned.
373 	 */
374 	if (dn->dn_datablkshift == 0) {
375 		if (off != 0 || len < dn->dn_datablksz)
376 			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
377 	} else {
378 		/* first block will be modified if it is not aligned */
379 		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
380 			dmu_tx_count_write(txh, off, 1);
381 		/* last block will be modified if it is not aligned */
382 		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
383 			dmu_tx_count_write(txh, off + len, 1);
384 	}
385 
386 	/*
387 	 * Check level-1 blocks.
388 	 */
389 	if (dn->dn_nlevels > 1) {
390 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
391 		    SPA_BLKPTRSHIFT;
392 		uint64_t start = off >> shift;
393 		uint64_t end = (off + len) >> shift;
394 
395 		ASSERT(dn->dn_indblkshift != 0);
396 
397 		/*
398 		 * dnode_reallocate() can result in an object with indirect
399 		 * blocks having an odd data block size.  In this case,
400 		 * just check the single block.
401 		 */
402 		if (dn->dn_datablkshift == 0)
403 			start = end = 0;
404 
405 		zio_t *zio = zio_root(tx->tx_pool->dp_spa,
406 		    NULL, NULL, ZIO_FLAG_CANFAIL);
407 		for (uint64_t i = start; i <= end; i++) {
408 			uint64_t ibyte = i << shift;
409 			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
410 			i = ibyte >> shift;
411 			if (err == ESRCH || i > end)
412 				break;
413 			if (err != 0) {
414 				tx->tx_err = err;
415 				(void) zio_wait(zio);
416 				return;
417 			}
418 
419 			(void) zfs_refcount_add_many(&txh->txh_memory_tohold,
420 			    1 << dn->dn_indblkshift, FTAG);
421 
422 			err = dmu_tx_check_ioerr(zio, dn, 1, i);
423 			if (err != 0) {
424 				tx->tx_err = err;
425 				(void) zio_wait(zio);
426 				return;
427 			}
428 		}
429 		err = zio_wait(zio);
430 		if (err != 0) {
431 			tx->tx_err = err;
432 			return;
433 		}
434 	}
435 }
436 
437 void
438 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
439 {
440 	dmu_tx_hold_t *txh;
441 
442 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
443 	    object, THT_FREE, off, len);
444 	if (txh != NULL)
445 		(void) dmu_tx_hold_free_impl(txh, off, len);
446 }
447 
448 void
449 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
450 {
451 	dmu_tx_hold_t *txh;
452 
453 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
454 	if (txh != NULL)
455 		(void) dmu_tx_hold_free_impl(txh, off, len);
456 }
457 
458 static void
459 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
460 {
461 	dmu_tx_t *tx = txh->txh_tx;
462 	dnode_t *dn = txh->txh_dnode;
463 	int err;
464 
465 	ASSERT(tx->tx_txg == 0);
466 
467 	dmu_tx_count_dnode(txh);
468 
469 	/*
470 	 * Modifying a almost-full microzap is around the worst case (128KB)
471 	 *
472 	 * If it is a fat zap, the worst case would be 7*16KB=112KB:
473 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
474 	 * - 4 new blocks written if adding:
475 	 *    - 2 blocks for possibly split leaves,
476 	 *    - 2 grown ptrtbl blocks
477 	 */
478 	(void) zfs_refcount_add_many(&txh->txh_space_towrite,
479 	    MZAP_MAX_BLKSZ, FTAG);
480 
481 	if (dn == NULL)
482 		return;
483 
484 	ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
485 
486 	if (dn->dn_maxblkid == 0 || name == NULL) {
487 		/*
488 		 * This is a microzap (only one block), or we don't know
489 		 * the name.  Check the first block for i/o errors.
490 		 */
491 		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
492 		if (err != 0) {
493 			tx->tx_err = err;
494 		}
495 	} else {
496 		/*
497 		 * Access the name so that we'll check for i/o errors to
498 		 * the leaf blocks, etc.  We ignore ENOENT, as this name
499 		 * may not yet exist.
500 		 */
501 		err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
502 		if (err == EIO || err == ECKSUM || err == ENXIO) {
503 			tx->tx_err = err;
504 		}
505 	}
506 }
507 
508 void
509 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
510 {
511 	dmu_tx_hold_t *txh;
512 
513 	ASSERT0(tx->tx_txg);
514 
515 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
516 	    object, THT_ZAP, add, (uintptr_t)name);
517 	if (txh != NULL)
518 		dmu_tx_hold_zap_impl(txh, name);
519 }
520 
521 void
522 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
523 {
524 	dmu_tx_hold_t *txh;
525 
526 	ASSERT0(tx->tx_txg);
527 	ASSERT(dn != NULL);
528 
529 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
530 	if (txh != NULL)
531 		dmu_tx_hold_zap_impl(txh, name);
532 }
533 
534 void
535 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
536 {
537 	dmu_tx_hold_t *txh;
538 
539 	ASSERT(tx->tx_txg == 0);
540 
541 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
542 	    object, THT_BONUS, 0, 0);
543 	if (txh)
544 		dmu_tx_count_dnode(txh);
545 }
546 
547 void
548 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
549 {
550 	dmu_tx_hold_t *txh;
551 
552 	ASSERT0(tx->tx_txg);
553 
554 	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
555 	if (txh)
556 		dmu_tx_count_dnode(txh);
557 }
558 
559 void
560 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
561 {
562 	dmu_tx_hold_t *txh;
563 
564 	ASSERT(tx->tx_txg == 0);
565 
566 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
567 	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
568 	if (txh) {
569 		(void) zfs_refcount_add_many(
570 		    &txh->txh_space_towrite, space, FTAG);
571 	}
572 }
573 
574 #ifdef ZFS_DEBUG
575 void
576 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
577 {
578 	boolean_t match_object = B_FALSE;
579 	boolean_t match_offset = B_FALSE;
580 
581 	DB_DNODE_ENTER(db);
582 	dnode_t *dn = DB_DNODE(db);
583 	ASSERT(tx->tx_txg != 0);
584 	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
585 	ASSERT3U(dn->dn_object, ==, db->db.db_object);
586 
587 	if (tx->tx_anyobj) {
588 		DB_DNODE_EXIT(db);
589 		return;
590 	}
591 
592 	/* XXX No checking on the meta dnode for now */
593 	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
594 		DB_DNODE_EXIT(db);
595 		return;
596 	}
597 
598 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
599 	    txh = list_next(&tx->tx_holds, txh)) {
600 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
601 		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
602 			match_object = TRUE;
603 		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
604 			int datablkshift = dn->dn_datablkshift ?
605 			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
606 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
607 			int shift = datablkshift + epbs * db->db_level;
608 			uint64_t beginblk = shift >= 64 ? 0 :
609 			    (txh->txh_arg1 >> shift);
610 			uint64_t endblk = shift >= 64 ? 0 :
611 			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
612 			uint64_t blkid = db->db_blkid;
613 
614 			/* XXX txh_arg2 better not be zero... */
615 
616 			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
617 			    txh->txh_type, (u_longlong_t)beginblk,
618 			    (u_longlong_t)endblk);
619 
620 			switch (txh->txh_type) {
621 			case THT_WRITE:
622 				if (blkid >= beginblk && blkid <= endblk)
623 					match_offset = TRUE;
624 				/*
625 				 * We will let this hold work for the bonus
626 				 * or spill buffer so that we don't need to
627 				 * hold it when creating a new object.
628 				 */
629 				if (blkid == DMU_BONUS_BLKID ||
630 				    blkid == DMU_SPILL_BLKID)
631 					match_offset = TRUE;
632 				/*
633 				 * They might have to increase nlevels,
634 				 * thus dirtying the new TLIBs.  Or the
635 				 * might have to change the block size,
636 				 * thus dirying the new lvl=0 blk=0.
637 				 */
638 				if (blkid == 0)
639 					match_offset = TRUE;
640 				break;
641 			case THT_FREE:
642 				/*
643 				 * We will dirty all the level 1 blocks in
644 				 * the free range and perhaps the first and
645 				 * last level 0 block.
646 				 */
647 				if (blkid >= beginblk && (blkid <= endblk ||
648 				    txh->txh_arg2 == DMU_OBJECT_END))
649 					match_offset = TRUE;
650 				break;
651 			case THT_SPILL:
652 				if (blkid == DMU_SPILL_BLKID)
653 					match_offset = TRUE;
654 				break;
655 			case THT_BONUS:
656 				if (blkid == DMU_BONUS_BLKID)
657 					match_offset = TRUE;
658 				break;
659 			case THT_ZAP:
660 				match_offset = TRUE;
661 				break;
662 			case THT_NEWOBJECT:
663 				match_object = TRUE;
664 				break;
665 			default:
666 				cmn_err(CE_PANIC, "bad txh_type %d",
667 				    txh->txh_type);
668 			}
669 		}
670 		if (match_object && match_offset) {
671 			DB_DNODE_EXIT(db);
672 			return;
673 		}
674 	}
675 	DB_DNODE_EXIT(db);
676 	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
677 	    (u_longlong_t)db->db.db_object, db->db_level,
678 	    (u_longlong_t)db->db_blkid);
679 }
680 #endif
681 
682 /*
683  * If we can't do 10 iops, something is wrong.  Let us go ahead
684  * and hit zfs_dirty_data_max.
685  */
686 hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
687 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
688 
689 /*
690  * We delay transactions when we've determined that the backend storage
691  * isn't able to accommodate the rate of incoming writes.
692  *
693  * If there is already a transaction waiting, we delay relative to when
694  * that transaction finishes waiting.  This way the calculated min_time
695  * is independent of the number of threads concurrently executing
696  * transactions.
697  *
698  * If we are the only waiter, wait relative to when the transaction
699  * started, rather than the current time.  This credits the transaction for
700  * "time already served", e.g. reading indirect blocks.
701  *
702  * The minimum time for a transaction to take is calculated as:
703  *     min_time = scale * (dirty - min) / (max - dirty)
704  *     min_time is then capped at zfs_delay_max_ns.
705  *
706  * The delay has two degrees of freedom that can be adjusted via tunables.
707  * The percentage of dirty data at which we start to delay is defined by
708  * zfs_delay_min_dirty_percent. This should typically be at or above
709  * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
710  * delay after writing at full speed has failed to keep up with the incoming
711  * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
712  * speaking, this variable determines the amount of delay at the midpoint of
713  * the curve.
714  *
715  * delay
716  *  10ms +-------------------------------------------------------------*+
717  *       |                                                             *|
718  *   9ms +                                                             *+
719  *       |                                                             *|
720  *   8ms +                                                             *+
721  *       |                                                            * |
722  *   7ms +                                                            * +
723  *       |                                                            * |
724  *   6ms +                                                            * +
725  *       |                                                            * |
726  *   5ms +                                                           *  +
727  *       |                                                           *  |
728  *   4ms +                                                           *  +
729  *       |                                                           *  |
730  *   3ms +                                                          *   +
731  *       |                                                          *   |
732  *   2ms +                                              (midpoint) *    +
733  *       |                                                  |    **     |
734  *   1ms +                                                  v ***       +
735  *       |             zfs_delay_scale ---------->     ********         |
736  *     0 +-------------------------------------*********----------------+
737  *       0%                    <- zfs_dirty_data_max ->               100%
738  *
739  * Note that since the delay is added to the outstanding time remaining on the
740  * most recent transaction, the delay is effectively the inverse of IOPS.
741  * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
742  * was chosen such that small changes in the amount of accumulated dirty data
743  * in the first 3/4 of the curve yield relatively small differences in the
744  * amount of delay.
745  *
746  * The effects can be easier to understand when the amount of delay is
747  * represented on a log scale:
748  *
749  * delay
750  * 100ms +-------------------------------------------------------------++
751  *       +                                                              +
752  *       |                                                              |
753  *       +                                                             *+
754  *  10ms +                                                             *+
755  *       +                                                           ** +
756  *       |                                              (midpoint)  **  |
757  *       +                                                  |     **    +
758  *   1ms +                                                  v ****      +
759  *       +             zfs_delay_scale ---------->        *****         +
760  *       |                                             ****             |
761  *       +                                          ****                +
762  * 100us +                                        **                    +
763  *       +                                       *                      +
764  *       |                                      *                       |
765  *       +                                     *                        +
766  *  10us +                                     *                        +
767  *       +                                                              +
768  *       |                                                              |
769  *       +                                                              +
770  *       +--------------------------------------------------------------+
771  *       0%                    <- zfs_dirty_data_max ->               100%
772  *
773  * Note here that only as the amount of dirty data approaches its limit does
774  * the delay start to increase rapidly. The goal of a properly tuned system
775  * should be to keep the amount of dirty data out of that range by first
776  * ensuring that the appropriate limits are set for the I/O scheduler to reach
777  * optimal throughput on the backend storage, and then by changing the value
778  * of zfs_delay_scale to increase the steepness of the curve.
779  */
780 static void
781 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
782 {
783 	dsl_pool_t *dp = tx->tx_pool;
784 	uint64_t delay_min_bytes =
785 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
786 	hrtime_t wakeup, min_tx_time, now;
787 
788 	if (dirty <= delay_min_bytes)
789 		return;
790 
791 	/*
792 	 * The caller has already waited until we are under the max.
793 	 * We make them pass us the amount of dirty data so we don't
794 	 * have to handle the case of it being >= the max, which could
795 	 * cause a divide-by-zero if it's == the max.
796 	 */
797 	ASSERT3U(dirty, <, zfs_dirty_data_max);
798 
799 	now = gethrtime();
800 	min_tx_time = zfs_delay_scale *
801 	    (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
802 	min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
803 	if (now > tx->tx_start + min_tx_time)
804 		return;
805 
806 	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
807 	    uint64_t, min_tx_time);
808 
809 	mutex_enter(&dp->dp_lock);
810 	wakeup = MAX(tx->tx_start + min_tx_time,
811 	    dp->dp_last_wakeup + min_tx_time);
812 	dp->dp_last_wakeup = wakeup;
813 	mutex_exit(&dp->dp_lock);
814 
815 	zfs_sleep_until(wakeup);
816 }
817 
818 /*
819  * This routine attempts to assign the transaction to a transaction group.
820  * To do so, we must determine if there is sufficient free space on disk.
821  *
822  * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
823  * on it), then it is assumed that there is sufficient free space,
824  * unless there's insufficient slop space in the pool (see the comment
825  * above spa_slop_shift in spa_misc.c).
826  *
827  * If it is not a "netfree" transaction, then if the data already on disk
828  * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
829  * ENOSPC.  Otherwise, if the current rough estimate of pending changes,
830  * plus the rough estimate of this transaction's changes, may exceed the
831  * allowed usage, then this will fail with ERESTART, which will cause the
832  * caller to wait for the pending changes to be written to disk (by waiting
833  * for the next TXG to open), and then check the space usage again.
834  *
835  * The rough estimate of pending changes is comprised of the sum of:
836  *
837  *  - this transaction's holds' txh_space_towrite
838  *
839  *  - dd_tempreserved[], which is the sum of in-flight transactions'
840  *    holds' txh_space_towrite (i.e. those transactions that have called
841  *    dmu_tx_assign() but not yet called dmu_tx_commit()).
842  *
843  *  - dd_space_towrite[], which is the amount of dirtied dbufs.
844  *
845  * Note that all of these values are inflated by spa_get_worst_case_asize(),
846  * which means that we may get ERESTART well before we are actually in danger
847  * of running out of space, but this also mitigates any small inaccuracies
848  * in the rough estimate (e.g. txh_space_towrite doesn't take into account
849  * indirect blocks, and dd_space_towrite[] doesn't take into account changes
850  * to the MOS).
851  *
852  * Note that due to this algorithm, it is possible to exceed the allowed
853  * usage by one transaction.  Also, as we approach the allowed usage,
854  * we will allow a very limited amount of changes into each TXG, thus
855  * decreasing performance.
856  */
857 static int
858 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
859 {
860 	spa_t *spa = tx->tx_pool->dp_spa;
861 
862 	ASSERT0(tx->tx_txg);
863 
864 	if (tx->tx_err) {
865 		DMU_TX_STAT_BUMP(dmu_tx_error);
866 		return (tx->tx_err);
867 	}
868 
869 	if (spa_suspended(spa)) {
870 		DMU_TX_STAT_BUMP(dmu_tx_suspended);
871 
872 		/*
873 		 * If the user has indicated a blocking failure mode
874 		 * then return ERESTART which will block in dmu_tx_wait().
875 		 * Otherwise, return EIO so that an error can get
876 		 * propagated back to the VOP calls.
877 		 *
878 		 * Note that we always honor the txg_how flag regardless
879 		 * of the failuremode setting.
880 		 */
881 		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
882 		    !(txg_how & TXG_WAIT))
883 			return (SET_ERROR(EIO));
884 
885 		return (SET_ERROR(ERESTART));
886 	}
887 
888 	if (!tx->tx_dirty_delayed &&
889 	    dsl_pool_wrlog_over_max(tx->tx_pool)) {
890 		DMU_TX_STAT_BUMP(dmu_tx_wrlog_over_max);
891 		return (SET_ERROR(ERESTART));
892 	}
893 
894 	if (!tx->tx_dirty_delayed &&
895 	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
896 		tx->tx_wait_dirty = B_TRUE;
897 		DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
898 		return (SET_ERROR(ERESTART));
899 	}
900 
901 	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
902 	tx->tx_needassign_txh = NULL;
903 
904 	/*
905 	 * NB: No error returns are allowed after txg_hold_open, but
906 	 * before processing the dnode holds, due to the
907 	 * dmu_tx_unassign() logic.
908 	 */
909 
910 	uint64_t towrite = 0;
911 	uint64_t tohold = 0;
912 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
913 	    txh = list_next(&tx->tx_holds, txh)) {
914 		dnode_t *dn = txh->txh_dnode;
915 		if (dn != NULL) {
916 			/*
917 			 * This thread can't hold the dn_struct_rwlock
918 			 * while assigning the tx, because this can lead to
919 			 * deadlock. Specifically, if this dnode is already
920 			 * assigned to an earlier txg, this thread may need
921 			 * to wait for that txg to sync (the ERESTART case
922 			 * below).  The other thread that has assigned this
923 			 * dnode to an earlier txg prevents this txg from
924 			 * syncing until its tx can complete (calling
925 			 * dmu_tx_commit()), but it may need to acquire the
926 			 * dn_struct_rwlock to do so (e.g. via
927 			 * dmu_buf_hold*()).
928 			 *
929 			 * Note that this thread can't hold the lock for
930 			 * read either, but the rwlock doesn't record
931 			 * enough information to make that assertion.
932 			 */
933 			ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock));
934 
935 			mutex_enter(&dn->dn_mtx);
936 			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
937 				mutex_exit(&dn->dn_mtx);
938 				tx->tx_needassign_txh = txh;
939 				DMU_TX_STAT_BUMP(dmu_tx_group);
940 				return (SET_ERROR(ERESTART));
941 			}
942 			if (dn->dn_assigned_txg == 0)
943 				dn->dn_assigned_txg = tx->tx_txg;
944 			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
945 			(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
946 			mutex_exit(&dn->dn_mtx);
947 		}
948 		towrite += zfs_refcount_count(&txh->txh_space_towrite);
949 		tohold += zfs_refcount_count(&txh->txh_memory_tohold);
950 	}
951 
952 	/* needed allocation: worst-case estimate of write space */
953 	uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
954 	/* calculate memory footprint estimate */
955 	uint64_t memory = towrite + tohold;
956 
957 	if (tx->tx_dir != NULL && asize != 0) {
958 		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
959 		    asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
960 		if (err != 0)
961 			return (err);
962 	}
963 
964 	DMU_TX_STAT_BUMP(dmu_tx_assigned);
965 
966 	return (0);
967 }
968 
969 static void
970 dmu_tx_unassign(dmu_tx_t *tx)
971 {
972 	if (tx->tx_txg == 0)
973 		return;
974 
975 	txg_rele_to_quiesce(&tx->tx_txgh);
976 
977 	/*
978 	 * Walk the transaction's hold list, removing the hold on the
979 	 * associated dnode, and notifying waiters if the refcount drops to 0.
980 	 */
981 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
982 	    txh && txh != tx->tx_needassign_txh;
983 	    txh = list_next(&tx->tx_holds, txh)) {
984 		dnode_t *dn = txh->txh_dnode;
985 
986 		if (dn == NULL)
987 			continue;
988 		mutex_enter(&dn->dn_mtx);
989 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
990 
991 		if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
992 			dn->dn_assigned_txg = 0;
993 			cv_broadcast(&dn->dn_notxholds);
994 		}
995 		mutex_exit(&dn->dn_mtx);
996 	}
997 
998 	txg_rele_to_sync(&tx->tx_txgh);
999 
1000 	tx->tx_lasttried_txg = tx->tx_txg;
1001 	tx->tx_txg = 0;
1002 }
1003 
1004 /*
1005  * Assign tx to a transaction group; txg_how is a bitmask:
1006  *
1007  * If TXG_WAIT is set and the currently open txg is full, this function
1008  * will wait until there's a new txg. This should be used when no locks
1009  * are being held. With this bit set, this function will only fail if
1010  * we're truly out of space (or over quota).
1011  *
1012  * If TXG_WAIT is *not* set and we can't assign into the currently open
1013  * txg without blocking, this function will return immediately with
1014  * ERESTART. This should be used whenever locks are being held.  On an
1015  * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1016  * and try again.
1017  *
1018  * If TXG_NOTHROTTLE is set, this indicates that this tx should not be
1019  * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1020  * details on the throttle). This is used by the VFS operations, after
1021  * they have already called dmu_tx_wait() (though most likely on a
1022  * different tx).
1023  *
1024  * It is guaranteed that subsequent successful calls to dmu_tx_assign()
1025  * will assign the tx to monotonically increasing txgs. Of course this is
1026  * not strong monotonicity, because the same txg can be returned multiple
1027  * times in a row. This guarantee holds both for subsequent calls from
1028  * one thread and for multiple threads. For example, it is impossible to
1029  * observe the following sequence of events:
1030  *
1031  *          Thread 1                            Thread 2
1032  *
1033  *     dmu_tx_assign(T1, ...)
1034  *     1 <- dmu_tx_get_txg(T1)
1035  *                                       dmu_tx_assign(T2, ...)
1036  *                                       2 <- dmu_tx_get_txg(T2)
1037  *     dmu_tx_assign(T3, ...)
1038  *     1 <- dmu_tx_get_txg(T3)
1039  */
1040 int
1041 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
1042 {
1043 	int err;
1044 
1045 	ASSERT(tx->tx_txg == 0);
1046 	ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE));
1047 	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1048 
1049 	/* If we might wait, we must not hold the config lock. */
1050 	IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool));
1051 
1052 	if ((txg_how & TXG_NOTHROTTLE))
1053 		tx->tx_dirty_delayed = B_TRUE;
1054 
1055 	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1056 		dmu_tx_unassign(tx);
1057 
1058 		if (err != ERESTART || !(txg_how & TXG_WAIT))
1059 			return (err);
1060 
1061 		dmu_tx_wait(tx);
1062 	}
1063 
1064 	txg_rele_to_quiesce(&tx->tx_txgh);
1065 
1066 	return (0);
1067 }
1068 
1069 void
1070 dmu_tx_wait(dmu_tx_t *tx)
1071 {
1072 	spa_t *spa = tx->tx_pool->dp_spa;
1073 	dsl_pool_t *dp = tx->tx_pool;
1074 	hrtime_t before;
1075 
1076 	ASSERT(tx->tx_txg == 0);
1077 	ASSERT(!dsl_pool_config_held(tx->tx_pool));
1078 
1079 	before = gethrtime();
1080 
1081 	if (tx->tx_wait_dirty) {
1082 		uint64_t dirty;
1083 
1084 		/*
1085 		 * dmu_tx_try_assign() has determined that we need to wait
1086 		 * because we've consumed much or all of the dirty buffer
1087 		 * space.
1088 		 */
1089 		mutex_enter(&dp->dp_lock);
1090 		if (dp->dp_dirty_total >= zfs_dirty_data_max)
1091 			DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1092 		while (dp->dp_dirty_total >= zfs_dirty_data_max)
1093 			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1094 		dirty = dp->dp_dirty_total;
1095 		mutex_exit(&dp->dp_lock);
1096 
1097 		dmu_tx_delay(tx, dirty);
1098 
1099 		tx->tx_wait_dirty = B_FALSE;
1100 
1101 		/*
1102 		 * Note: setting tx_dirty_delayed only has effect if the
1103 		 * caller used TX_WAIT.  Otherwise they are going to
1104 		 * destroy this tx and try again.  The common case,
1105 		 * zfs_write(), uses TX_WAIT.
1106 		 */
1107 		tx->tx_dirty_delayed = B_TRUE;
1108 	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1109 		/*
1110 		 * If the pool is suspended we need to wait until it
1111 		 * is resumed.  Note that it's possible that the pool
1112 		 * has become active after this thread has tried to
1113 		 * obtain a tx.  If that's the case then tx_lasttried_txg
1114 		 * would not have been set.
1115 		 */
1116 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1117 	} else if (tx->tx_needassign_txh) {
1118 		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1119 
1120 		mutex_enter(&dn->dn_mtx);
1121 		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1122 			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1123 		mutex_exit(&dn->dn_mtx);
1124 		tx->tx_needassign_txh = NULL;
1125 	} else {
1126 		/*
1127 		 * If we have a lot of dirty data just wait until we sync
1128 		 * out a TXG at which point we'll hopefully have synced
1129 		 * a portion of the changes.
1130 		 */
1131 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1132 	}
1133 
1134 	spa_tx_assign_add_nsecs(spa, gethrtime() - before);
1135 }
1136 
1137 static void
1138 dmu_tx_destroy(dmu_tx_t *tx)
1139 {
1140 	dmu_tx_hold_t *txh;
1141 
1142 	while ((txh = list_head(&tx->tx_holds)) != NULL) {
1143 		dnode_t *dn = txh->txh_dnode;
1144 
1145 		list_remove(&tx->tx_holds, txh);
1146 		zfs_refcount_destroy_many(&txh->txh_space_towrite,
1147 		    zfs_refcount_count(&txh->txh_space_towrite));
1148 		zfs_refcount_destroy_many(&txh->txh_memory_tohold,
1149 		    zfs_refcount_count(&txh->txh_memory_tohold));
1150 		kmem_free(txh, sizeof (dmu_tx_hold_t));
1151 		if (dn != NULL)
1152 			dnode_rele(dn, tx);
1153 	}
1154 
1155 	list_destroy(&tx->tx_callbacks);
1156 	list_destroy(&tx->tx_holds);
1157 	kmem_free(tx, sizeof (dmu_tx_t));
1158 }
1159 
1160 void
1161 dmu_tx_commit(dmu_tx_t *tx)
1162 {
1163 	ASSERT(tx->tx_txg != 0);
1164 
1165 	/*
1166 	 * Go through the transaction's hold list and remove holds on
1167 	 * associated dnodes, notifying waiters if no holds remain.
1168 	 */
1169 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1170 	    txh = list_next(&tx->tx_holds, txh)) {
1171 		dnode_t *dn = txh->txh_dnode;
1172 
1173 		if (dn == NULL)
1174 			continue;
1175 
1176 		mutex_enter(&dn->dn_mtx);
1177 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1178 
1179 		if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1180 			dn->dn_assigned_txg = 0;
1181 			cv_broadcast(&dn->dn_notxholds);
1182 		}
1183 		mutex_exit(&dn->dn_mtx);
1184 	}
1185 
1186 	if (tx->tx_tempreserve_cookie)
1187 		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1188 
1189 	if (!list_is_empty(&tx->tx_callbacks))
1190 		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1191 
1192 	if (tx->tx_anyobj == FALSE)
1193 		txg_rele_to_sync(&tx->tx_txgh);
1194 
1195 	dmu_tx_destroy(tx);
1196 }
1197 
1198 void
1199 dmu_tx_abort(dmu_tx_t *tx)
1200 {
1201 	ASSERT(tx->tx_txg == 0);
1202 
1203 	/*
1204 	 * Call any registered callbacks with an error code.
1205 	 */
1206 	if (!list_is_empty(&tx->tx_callbacks))
1207 		dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED));
1208 
1209 	dmu_tx_destroy(tx);
1210 }
1211 
1212 uint64_t
1213 dmu_tx_get_txg(dmu_tx_t *tx)
1214 {
1215 	ASSERT(tx->tx_txg != 0);
1216 	return (tx->tx_txg);
1217 }
1218 
1219 dsl_pool_t *
1220 dmu_tx_pool(dmu_tx_t *tx)
1221 {
1222 	ASSERT(tx->tx_pool != NULL);
1223 	return (tx->tx_pool);
1224 }
1225 
1226 void
1227 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1228 {
1229 	dmu_tx_callback_t *dcb;
1230 
1231 	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1232 
1233 	dcb->dcb_func = func;
1234 	dcb->dcb_data = data;
1235 
1236 	list_insert_tail(&tx->tx_callbacks, dcb);
1237 }
1238 
1239 /*
1240  * Call all the commit callbacks on a list, with a given error code.
1241  */
1242 void
1243 dmu_tx_do_callbacks(list_t *cb_list, int error)
1244 {
1245 	dmu_tx_callback_t *dcb;
1246 
1247 	while ((dcb = list_tail(cb_list)) != NULL) {
1248 		list_remove(cb_list, dcb);
1249 		dcb->dcb_func(dcb->dcb_data, error);
1250 		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1251 	}
1252 }
1253 
1254 /*
1255  * Interface to hold a bunch of attributes.
1256  * used for creating new files.
1257  * attrsize is the total size of all attributes
1258  * to be added during object creation
1259  *
1260  * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1261  */
1262 
1263 /*
1264  * hold necessary attribute name for attribute registration.
1265  * should be a very rare case where this is needed.  If it does
1266  * happen it would only happen on the first write to the file system.
1267  */
1268 static void
1269 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1270 {
1271 	if (!sa->sa_need_attr_registration)
1272 		return;
1273 
1274 	for (int i = 0; i != sa->sa_num_attrs; i++) {
1275 		if (!sa->sa_attr_table[i].sa_registered) {
1276 			if (sa->sa_reg_attr_obj)
1277 				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1278 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1279 			else
1280 				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1281 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1282 		}
1283 	}
1284 }
1285 
1286 void
1287 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1288 {
1289 	dmu_tx_hold_t *txh;
1290 
1291 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1292 	    THT_SPILL, 0, 0);
1293 	if (txh != NULL)
1294 		(void) zfs_refcount_add_many(&txh->txh_space_towrite,
1295 		    SPA_OLD_MAXBLOCKSIZE, FTAG);
1296 }
1297 
1298 void
1299 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1300 {
1301 	sa_os_t *sa = tx->tx_objset->os_sa;
1302 
1303 	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1304 
1305 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1306 		return;
1307 
1308 	if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1309 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1310 	} else {
1311 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1312 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1313 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1314 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1315 	}
1316 
1317 	dmu_tx_sa_registration_hold(sa, tx);
1318 
1319 	if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
1320 		return;
1321 
1322 	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1323 	    THT_SPILL, 0, 0);
1324 }
1325 
1326 /*
1327  * Hold SA attribute
1328  *
1329  * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1330  *
1331  * variable_size is the total size of all variable sized attributes
1332  * passed to this function.  It is not the total size of all
1333  * variable size attributes that *may* exist on this object.
1334  */
1335 void
1336 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1337 {
1338 	uint64_t object;
1339 	sa_os_t *sa = tx->tx_objset->os_sa;
1340 
1341 	ASSERT(hdl != NULL);
1342 
1343 	object = sa_handle_object(hdl);
1344 
1345 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1346 	DB_DNODE_ENTER(db);
1347 	dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db));
1348 	DB_DNODE_EXIT(db);
1349 
1350 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1351 		return;
1352 
1353 	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1354 	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1355 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1356 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1357 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1358 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1359 	}
1360 
1361 	dmu_tx_sa_registration_hold(sa, tx);
1362 
1363 	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1364 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1365 
1366 	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1367 		ASSERT(tx->tx_txg == 0);
1368 		dmu_tx_hold_spill(tx, object);
1369 	} else {
1370 		dnode_t *dn;
1371 
1372 		DB_DNODE_ENTER(db);
1373 		dn = DB_DNODE(db);
1374 		if (dn->dn_have_spill) {
1375 			ASSERT(tx->tx_txg == 0);
1376 			dmu_tx_hold_spill(tx, object);
1377 		}
1378 		DB_DNODE_EXIT(db);
1379 	}
1380 }
1381 
1382 void
1383 dmu_tx_init(void)
1384 {
1385 	dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1386 	    KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1387 	    KSTAT_FLAG_VIRTUAL);
1388 
1389 	if (dmu_tx_ksp != NULL) {
1390 		dmu_tx_ksp->ks_data = &dmu_tx_stats;
1391 		kstat_install(dmu_tx_ksp);
1392 	}
1393 }
1394 
1395 void
1396 dmu_tx_fini(void)
1397 {
1398 	if (dmu_tx_ksp != NULL) {
1399 		kstat_delete(dmu_tx_ksp);
1400 		dmu_tx_ksp = NULL;
1401 	}
1402 }
1403 
1404 #if defined(_KERNEL)
1405 EXPORT_SYMBOL(dmu_tx_create);
1406 EXPORT_SYMBOL(dmu_tx_hold_write);
1407 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
1408 EXPORT_SYMBOL(dmu_tx_hold_free);
1409 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
1410 EXPORT_SYMBOL(dmu_tx_hold_zap);
1411 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
1412 EXPORT_SYMBOL(dmu_tx_hold_bonus);
1413 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
1414 EXPORT_SYMBOL(dmu_tx_abort);
1415 EXPORT_SYMBOL(dmu_tx_assign);
1416 EXPORT_SYMBOL(dmu_tx_wait);
1417 EXPORT_SYMBOL(dmu_tx_commit);
1418 EXPORT_SYMBOL(dmu_tx_mark_netfree);
1419 EXPORT_SYMBOL(dmu_tx_get_txg);
1420 EXPORT_SYMBOL(dmu_tx_callback_register);
1421 EXPORT_SYMBOL(dmu_tx_do_callbacks);
1422 EXPORT_SYMBOL(dmu_tx_hold_spill);
1423 EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1424 EXPORT_SYMBOL(dmu_tx_hold_sa);
1425 #endif
1426