1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/dmu.h> 28 #include <sys/dmu_impl.h> 29 #include <sys/dbuf.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dsl_pool.h> 35 #include <sys/zap_impl.h> 36 #include <sys/spa.h> 37 #include <sys/sa.h> 38 #include <sys/sa_impl.h> 39 #include <sys/zfs_context.h> 40 #include <sys/trace_zfs.h> 41 42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, 43 uint64_t arg1, uint64_t arg2); 44 45 dmu_tx_stats_t dmu_tx_stats = { 46 { "dmu_tx_assigned", KSTAT_DATA_UINT64 }, 47 { "dmu_tx_delay", KSTAT_DATA_UINT64 }, 48 { "dmu_tx_error", KSTAT_DATA_UINT64 }, 49 { "dmu_tx_suspended", KSTAT_DATA_UINT64 }, 50 { "dmu_tx_group", KSTAT_DATA_UINT64 }, 51 { "dmu_tx_memory_reserve", KSTAT_DATA_UINT64 }, 52 { "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64 }, 53 { "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64 }, 54 { "dmu_tx_dirty_delay", KSTAT_DATA_UINT64 }, 55 { "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64 }, 56 { "dmu_tx_dirty_frees_delay", KSTAT_DATA_UINT64 }, 57 { "dmu_tx_quota", KSTAT_DATA_UINT64 }, 58 }; 59 60 static kstat_t *dmu_tx_ksp; 61 62 dmu_tx_t * 63 dmu_tx_create_dd(dsl_dir_t *dd) 64 { 65 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); 66 tx->tx_dir = dd; 67 if (dd != NULL) 68 tx->tx_pool = dd->dd_pool; 69 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), 70 offsetof(dmu_tx_hold_t, txh_node)); 71 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t), 72 offsetof(dmu_tx_callback_t, dcb_node)); 73 tx->tx_start = gethrtime(); 74 return (tx); 75 } 76 77 dmu_tx_t * 78 dmu_tx_create(objset_t *os) 79 { 80 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir); 81 tx->tx_objset = os; 82 return (tx); 83 } 84 85 dmu_tx_t * 86 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) 87 { 88 dmu_tx_t *tx = dmu_tx_create_dd(NULL); 89 90 TXG_VERIFY(dp->dp_spa, txg); 91 tx->tx_pool = dp; 92 tx->tx_txg = txg; 93 tx->tx_anyobj = TRUE; 94 95 return (tx); 96 } 97 98 int 99 dmu_tx_is_syncing(dmu_tx_t *tx) 100 { 101 return (tx->tx_anyobj); 102 } 103 104 int 105 dmu_tx_private_ok(dmu_tx_t *tx) 106 { 107 return (tx->tx_anyobj); 108 } 109 110 static dmu_tx_hold_t * 111 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type, 112 uint64_t arg1, uint64_t arg2) 113 { 114 dmu_tx_hold_t *txh; 115 116 if (dn != NULL) { 117 (void) zfs_refcount_add(&dn->dn_holds, tx); 118 if (tx->tx_txg != 0) { 119 mutex_enter(&dn->dn_mtx); 120 /* 121 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a 122 * problem, but there's no way for it to happen (for 123 * now, at least). 124 */ 125 ASSERT(dn->dn_assigned_txg == 0); 126 dn->dn_assigned_txg = tx->tx_txg; 127 (void) zfs_refcount_add(&dn->dn_tx_holds, tx); 128 mutex_exit(&dn->dn_mtx); 129 } 130 } 131 132 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); 133 txh->txh_tx = tx; 134 txh->txh_dnode = dn; 135 zfs_refcount_create(&txh->txh_space_towrite); 136 zfs_refcount_create(&txh->txh_memory_tohold); 137 txh->txh_type = type; 138 txh->txh_arg1 = arg1; 139 txh->txh_arg2 = arg2; 140 list_insert_tail(&tx->tx_holds, txh); 141 142 return (txh); 143 } 144 145 static dmu_tx_hold_t * 146 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, 147 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) 148 { 149 dnode_t *dn = NULL; 150 dmu_tx_hold_t *txh; 151 int err; 152 153 if (object != DMU_NEW_OBJECT) { 154 err = dnode_hold(os, object, FTAG, &dn); 155 if (err != 0) { 156 tx->tx_err = err; 157 return (NULL); 158 } 159 } 160 txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2); 161 if (dn != NULL) 162 dnode_rele(dn, FTAG); 163 return (txh); 164 } 165 166 void 167 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn) 168 { 169 /* 170 * If we're syncing, they can manipulate any object anyhow, and 171 * the hold on the dnode_t can cause problems. 172 */ 173 if (!dmu_tx_is_syncing(tx)) 174 (void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0); 175 } 176 177 /* 178 * This function reads specified data from disk. The specified data will 179 * be needed to perform the transaction -- i.e, it will be read after 180 * we do dmu_tx_assign(). There are two reasons that we read the data now 181 * (before dmu_tx_assign()): 182 * 183 * 1. Reading it now has potentially better performance. The transaction 184 * has not yet been assigned, so the TXG is not held open, and also the 185 * caller typically has less locks held when calling dmu_tx_hold_*() than 186 * after the transaction has been assigned. This reduces the lock (and txg) 187 * hold times, thus reducing lock contention. 188 * 189 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors 190 * that are detected before they start making changes to the DMU state 191 * (i.e. now). Once the transaction has been assigned, and some DMU 192 * state has been changed, it can be difficult to recover from an i/o 193 * error (e.g. to undo the changes already made in memory at the DMU 194 * layer). Typically code to do so does not exist in the caller -- it 195 * assumes that the data has already been cached and thus i/o errors are 196 * not possible. 197 * 198 * It has been observed that the i/o initiated here can be a performance 199 * problem, and it appears to be optional, because we don't look at the 200 * data which is read. However, removing this read would only serve to 201 * move the work elsewhere (after the dmu_tx_assign()), where it may 202 * have a greater impact on performance (in addition to the impact on 203 * fault tolerance noted above). 204 */ 205 static int 206 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) 207 { 208 int err; 209 dmu_buf_impl_t *db; 210 211 rw_enter(&dn->dn_struct_rwlock, RW_READER); 212 db = dbuf_hold_level(dn, level, blkid, FTAG); 213 rw_exit(&dn->dn_struct_rwlock); 214 if (db == NULL) 215 return (SET_ERROR(EIO)); 216 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH); 217 dbuf_rele(db, FTAG); 218 return (err); 219 } 220 221 /* ARGSUSED */ 222 static void 223 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 224 { 225 dnode_t *dn = txh->txh_dnode; 226 int err = 0; 227 228 if (len == 0) 229 return; 230 231 (void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG); 232 233 if (dn == NULL) 234 return; 235 236 /* 237 * For i/o error checking, read the blocks that will be needed 238 * to perform the write: the first and last level-0 blocks (if 239 * they are not aligned, i.e. if they are partial-block writes), 240 * and all the level-1 blocks. 241 */ 242 if (dn->dn_maxblkid == 0) { 243 if (off < dn->dn_datablksz && 244 (off > 0 || len < dn->dn_datablksz)) { 245 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 246 if (err != 0) { 247 txh->txh_tx->tx_err = err; 248 } 249 } 250 } else { 251 zio_t *zio = zio_root(dn->dn_objset->os_spa, 252 NULL, NULL, ZIO_FLAG_CANFAIL); 253 254 /* first level-0 block */ 255 uint64_t start = off >> dn->dn_datablkshift; 256 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) { 257 err = dmu_tx_check_ioerr(zio, dn, 0, start); 258 if (err != 0) { 259 txh->txh_tx->tx_err = err; 260 } 261 } 262 263 /* last level-0 block */ 264 uint64_t end = (off + len - 1) >> dn->dn_datablkshift; 265 if (end != start && end <= dn->dn_maxblkid && 266 P2PHASE(off + len, dn->dn_datablksz)) { 267 err = dmu_tx_check_ioerr(zio, dn, 0, end); 268 if (err != 0) { 269 txh->txh_tx->tx_err = err; 270 } 271 } 272 273 /* level-1 blocks */ 274 if (dn->dn_nlevels > 1) { 275 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 276 for (uint64_t i = (start >> shft) + 1; 277 i < end >> shft; i++) { 278 err = dmu_tx_check_ioerr(zio, dn, 1, i); 279 if (err != 0) { 280 txh->txh_tx->tx_err = err; 281 } 282 } 283 } 284 285 err = zio_wait(zio); 286 if (err != 0) { 287 txh->txh_tx->tx_err = err; 288 } 289 } 290 } 291 292 static void 293 dmu_tx_count_dnode(dmu_tx_hold_t *txh) 294 { 295 (void) zfs_refcount_add_many(&txh->txh_space_towrite, 296 DNODE_MIN_SIZE, FTAG); 297 } 298 299 void 300 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) 301 { 302 dmu_tx_hold_t *txh; 303 304 ASSERT0(tx->tx_txg); 305 ASSERT3U(len, <=, DMU_MAX_ACCESS); 306 ASSERT(len == 0 || UINT64_MAX - off >= len - 1); 307 308 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 309 object, THT_WRITE, off, len); 310 if (txh != NULL) { 311 dmu_tx_count_write(txh, off, len); 312 dmu_tx_count_dnode(txh); 313 } 314 } 315 316 void 317 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len) 318 { 319 dmu_tx_hold_t *txh; 320 321 ASSERT0(tx->tx_txg); 322 ASSERT3U(len, <=, DMU_MAX_ACCESS); 323 ASSERT(len == 0 || UINT64_MAX - off >= len - 1); 324 325 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len); 326 if (txh != NULL) { 327 dmu_tx_count_write(txh, off, len); 328 dmu_tx_count_dnode(txh); 329 } 330 } 331 332 /* 333 * This function marks the transaction as being a "net free". The end 334 * result is that refquotas will be disabled for this transaction, and 335 * this transaction will be able to use half of the pool space overhead 336 * (see dsl_pool_adjustedsize()). Therefore this function should only 337 * be called for transactions that we expect will not cause a net increase 338 * in the amount of space used (but it's OK if that is occasionally not true). 339 */ 340 void 341 dmu_tx_mark_netfree(dmu_tx_t *tx) 342 { 343 tx->tx_netfree = B_TRUE; 344 } 345 346 static void 347 dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 348 { 349 dmu_tx_t *tx = txh->txh_tx; 350 dnode_t *dn = txh->txh_dnode; 351 int err; 352 353 ASSERT(tx->tx_txg == 0); 354 355 dmu_tx_count_dnode(txh); 356 357 if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz) 358 return; 359 if (len == DMU_OBJECT_END) 360 len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off; 361 362 dmu_tx_count_dnode(txh); 363 364 /* 365 * For i/o error checking, we read the first and last level-0 366 * blocks if they are not aligned, and all the level-1 blocks. 367 * 368 * Note: dbuf_free_range() assumes that we have not instantiated 369 * any level-0 dbufs that will be completely freed. Therefore we must 370 * exercise care to not read or count the first and last blocks 371 * if they are blocksize-aligned. 372 */ 373 if (dn->dn_datablkshift == 0) { 374 if (off != 0 || len < dn->dn_datablksz) 375 dmu_tx_count_write(txh, 0, dn->dn_datablksz); 376 } else { 377 /* first block will be modified if it is not aligned */ 378 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift)) 379 dmu_tx_count_write(txh, off, 1); 380 /* last block will be modified if it is not aligned */ 381 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift)) 382 dmu_tx_count_write(txh, off + len, 1); 383 } 384 385 /* 386 * Check level-1 blocks. 387 */ 388 if (dn->dn_nlevels > 1) { 389 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 390 SPA_BLKPTRSHIFT; 391 uint64_t start = off >> shift; 392 uint64_t end = (off + len) >> shift; 393 394 ASSERT(dn->dn_indblkshift != 0); 395 396 /* 397 * dnode_reallocate() can result in an object with indirect 398 * blocks having an odd data block size. In this case, 399 * just check the single block. 400 */ 401 if (dn->dn_datablkshift == 0) 402 start = end = 0; 403 404 zio_t *zio = zio_root(tx->tx_pool->dp_spa, 405 NULL, NULL, ZIO_FLAG_CANFAIL); 406 for (uint64_t i = start; i <= end; i++) { 407 uint64_t ibyte = i << shift; 408 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0); 409 i = ibyte >> shift; 410 if (err == ESRCH || i > end) 411 break; 412 if (err != 0) { 413 tx->tx_err = err; 414 (void) zio_wait(zio); 415 return; 416 } 417 418 (void) zfs_refcount_add_many(&txh->txh_memory_tohold, 419 1 << dn->dn_indblkshift, FTAG); 420 421 err = dmu_tx_check_ioerr(zio, dn, 1, i); 422 if (err != 0) { 423 tx->tx_err = err; 424 (void) zio_wait(zio); 425 return; 426 } 427 } 428 err = zio_wait(zio); 429 if (err != 0) { 430 tx->tx_err = err; 431 return; 432 } 433 } 434 } 435 436 void 437 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) 438 { 439 dmu_tx_hold_t *txh; 440 441 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 442 object, THT_FREE, off, len); 443 if (txh != NULL) 444 (void) dmu_tx_hold_free_impl(txh, off, len); 445 } 446 447 void 448 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len) 449 { 450 dmu_tx_hold_t *txh; 451 452 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len); 453 if (txh != NULL) 454 (void) dmu_tx_hold_free_impl(txh, off, len); 455 } 456 457 static void 458 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name) 459 { 460 dmu_tx_t *tx = txh->txh_tx; 461 dnode_t *dn = txh->txh_dnode; 462 int err; 463 464 ASSERT(tx->tx_txg == 0); 465 466 dmu_tx_count_dnode(txh); 467 468 /* 469 * Modifying a almost-full microzap is around the worst case (128KB) 470 * 471 * If it is a fat zap, the worst case would be 7*16KB=112KB: 472 * - 3 blocks overwritten: target leaf, ptrtbl block, header block 473 * - 4 new blocks written if adding: 474 * - 2 blocks for possibly split leaves, 475 * - 2 grown ptrtbl blocks 476 */ 477 (void) zfs_refcount_add_many(&txh->txh_space_towrite, 478 MZAP_MAX_BLKSZ, FTAG); 479 480 if (dn == NULL) 481 return; 482 483 ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP); 484 485 if (dn->dn_maxblkid == 0 || name == NULL) { 486 /* 487 * This is a microzap (only one block), or we don't know 488 * the name. Check the first block for i/o errors. 489 */ 490 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 491 if (err != 0) { 492 tx->tx_err = err; 493 } 494 } else { 495 /* 496 * Access the name so that we'll check for i/o errors to 497 * the leaf blocks, etc. We ignore ENOENT, as this name 498 * may not yet exist. 499 */ 500 err = zap_lookup_by_dnode(dn, name, 8, 0, NULL); 501 if (err == EIO || err == ECKSUM || err == ENXIO) { 502 tx->tx_err = err; 503 } 504 } 505 } 506 507 void 508 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name) 509 { 510 dmu_tx_hold_t *txh; 511 512 ASSERT0(tx->tx_txg); 513 514 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 515 object, THT_ZAP, add, (uintptr_t)name); 516 if (txh != NULL) 517 dmu_tx_hold_zap_impl(txh, name); 518 } 519 520 void 521 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name) 522 { 523 dmu_tx_hold_t *txh; 524 525 ASSERT0(tx->tx_txg); 526 ASSERT(dn != NULL); 527 528 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name); 529 if (txh != NULL) 530 dmu_tx_hold_zap_impl(txh, name); 531 } 532 533 void 534 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) 535 { 536 dmu_tx_hold_t *txh; 537 538 ASSERT(tx->tx_txg == 0); 539 540 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 541 object, THT_BONUS, 0, 0); 542 if (txh) 543 dmu_tx_count_dnode(txh); 544 } 545 546 void 547 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn) 548 { 549 dmu_tx_hold_t *txh; 550 551 ASSERT0(tx->tx_txg); 552 553 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0); 554 if (txh) 555 dmu_tx_count_dnode(txh); 556 } 557 558 void 559 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) 560 { 561 dmu_tx_hold_t *txh; 562 563 ASSERT(tx->tx_txg == 0); 564 565 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 566 DMU_NEW_OBJECT, THT_SPACE, space, 0); 567 if (txh) { 568 (void) zfs_refcount_add_many( 569 &txh->txh_space_towrite, space, FTAG); 570 } 571 } 572 573 #ifdef ZFS_DEBUG 574 void 575 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) 576 { 577 boolean_t match_object = B_FALSE; 578 boolean_t match_offset = B_FALSE; 579 580 DB_DNODE_ENTER(db); 581 dnode_t *dn = DB_DNODE(db); 582 ASSERT(tx->tx_txg != 0); 583 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset); 584 ASSERT3U(dn->dn_object, ==, db->db.db_object); 585 586 if (tx->tx_anyobj) { 587 DB_DNODE_EXIT(db); 588 return; 589 } 590 591 /* XXX No checking on the meta dnode for now */ 592 if (db->db.db_object == DMU_META_DNODE_OBJECT) { 593 DB_DNODE_EXIT(db); 594 return; 595 } 596 597 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL; 598 txh = list_next(&tx->tx_holds, txh)) { 599 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 600 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) 601 match_object = TRUE; 602 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { 603 int datablkshift = dn->dn_datablkshift ? 604 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; 605 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 606 int shift = datablkshift + epbs * db->db_level; 607 uint64_t beginblk = shift >= 64 ? 0 : 608 (txh->txh_arg1 >> shift); 609 uint64_t endblk = shift >= 64 ? 0 : 610 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); 611 uint64_t blkid = db->db_blkid; 612 613 /* XXX txh_arg2 better not be zero... */ 614 615 dprintf("found txh type %x beginblk=%llx endblk=%llx\n", 616 txh->txh_type, (u_longlong_t)beginblk, 617 (u_longlong_t)endblk); 618 619 switch (txh->txh_type) { 620 case THT_WRITE: 621 if (blkid >= beginblk && blkid <= endblk) 622 match_offset = TRUE; 623 /* 624 * We will let this hold work for the bonus 625 * or spill buffer so that we don't need to 626 * hold it when creating a new object. 627 */ 628 if (blkid == DMU_BONUS_BLKID || 629 blkid == DMU_SPILL_BLKID) 630 match_offset = TRUE; 631 /* 632 * They might have to increase nlevels, 633 * thus dirtying the new TLIBs. Or the 634 * might have to change the block size, 635 * thus dirying the new lvl=0 blk=0. 636 */ 637 if (blkid == 0) 638 match_offset = TRUE; 639 break; 640 case THT_FREE: 641 /* 642 * We will dirty all the level 1 blocks in 643 * the free range and perhaps the first and 644 * last level 0 block. 645 */ 646 if (blkid >= beginblk && (blkid <= endblk || 647 txh->txh_arg2 == DMU_OBJECT_END)) 648 match_offset = TRUE; 649 break; 650 case THT_SPILL: 651 if (blkid == DMU_SPILL_BLKID) 652 match_offset = TRUE; 653 break; 654 case THT_BONUS: 655 if (blkid == DMU_BONUS_BLKID) 656 match_offset = TRUE; 657 break; 658 case THT_ZAP: 659 match_offset = TRUE; 660 break; 661 case THT_NEWOBJECT: 662 match_object = TRUE; 663 break; 664 default: 665 cmn_err(CE_PANIC, "bad txh_type %d", 666 txh->txh_type); 667 } 668 } 669 if (match_object && match_offset) { 670 DB_DNODE_EXIT(db); 671 return; 672 } 673 } 674 DB_DNODE_EXIT(db); 675 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", 676 (u_longlong_t)db->db.db_object, db->db_level, 677 (u_longlong_t)db->db_blkid); 678 } 679 #endif 680 681 /* 682 * If we can't do 10 iops, something is wrong. Let us go ahead 683 * and hit zfs_dirty_data_max. 684 */ 685 hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */ 686 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */ 687 688 /* 689 * We delay transactions when we've determined that the backend storage 690 * isn't able to accommodate the rate of incoming writes. 691 * 692 * If there is already a transaction waiting, we delay relative to when 693 * that transaction finishes waiting. This way the calculated min_time 694 * is independent of the number of threads concurrently executing 695 * transactions. 696 * 697 * If we are the only waiter, wait relative to when the transaction 698 * started, rather than the current time. This credits the transaction for 699 * "time already served", e.g. reading indirect blocks. 700 * 701 * The minimum time for a transaction to take is calculated as: 702 * min_time = scale * (dirty - min) / (max - dirty) 703 * min_time is then capped at zfs_delay_max_ns. 704 * 705 * The delay has two degrees of freedom that can be adjusted via tunables. 706 * The percentage of dirty data at which we start to delay is defined by 707 * zfs_delay_min_dirty_percent. This should typically be at or above 708 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to 709 * delay after writing at full speed has failed to keep up with the incoming 710 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly 711 * speaking, this variable determines the amount of delay at the midpoint of 712 * the curve. 713 * 714 * delay 715 * 10ms +-------------------------------------------------------------*+ 716 * | *| 717 * 9ms + *+ 718 * | *| 719 * 8ms + *+ 720 * | * | 721 * 7ms + * + 722 * | * | 723 * 6ms + * + 724 * | * | 725 * 5ms + * + 726 * | * | 727 * 4ms + * + 728 * | * | 729 * 3ms + * + 730 * | * | 731 * 2ms + (midpoint) * + 732 * | | ** | 733 * 1ms + v *** + 734 * | zfs_delay_scale ----------> ******** | 735 * 0 +-------------------------------------*********----------------+ 736 * 0% <- zfs_dirty_data_max -> 100% 737 * 738 * Note that since the delay is added to the outstanding time remaining on the 739 * most recent transaction, the delay is effectively the inverse of IOPS. 740 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve 741 * was chosen such that small changes in the amount of accumulated dirty data 742 * in the first 3/4 of the curve yield relatively small differences in the 743 * amount of delay. 744 * 745 * The effects can be easier to understand when the amount of delay is 746 * represented on a log scale: 747 * 748 * delay 749 * 100ms +-------------------------------------------------------------++ 750 * + + 751 * | | 752 * + *+ 753 * 10ms + *+ 754 * + ** + 755 * | (midpoint) ** | 756 * + | ** + 757 * 1ms + v **** + 758 * + zfs_delay_scale ----------> ***** + 759 * | **** | 760 * + **** + 761 * 100us + ** + 762 * + * + 763 * | * | 764 * + * + 765 * 10us + * + 766 * + + 767 * | | 768 * + + 769 * +--------------------------------------------------------------+ 770 * 0% <- zfs_dirty_data_max -> 100% 771 * 772 * Note here that only as the amount of dirty data approaches its limit does 773 * the delay start to increase rapidly. The goal of a properly tuned system 774 * should be to keep the amount of dirty data out of that range by first 775 * ensuring that the appropriate limits are set for the I/O scheduler to reach 776 * optimal throughput on the backend storage, and then by changing the value 777 * of zfs_delay_scale to increase the steepness of the curve. 778 */ 779 static void 780 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty) 781 { 782 dsl_pool_t *dp = tx->tx_pool; 783 uint64_t delay_min_bytes = 784 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 785 hrtime_t wakeup, min_tx_time, now; 786 787 if (dirty <= delay_min_bytes) 788 return; 789 790 /* 791 * The caller has already waited until we are under the max. 792 * We make them pass us the amount of dirty data so we don't 793 * have to handle the case of it being >= the max, which could 794 * cause a divide-by-zero if it's == the max. 795 */ 796 ASSERT3U(dirty, <, zfs_dirty_data_max); 797 798 now = gethrtime(); 799 min_tx_time = zfs_delay_scale * 800 (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty); 801 min_tx_time = MIN(min_tx_time, zfs_delay_max_ns); 802 if (now > tx->tx_start + min_tx_time) 803 return; 804 805 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty, 806 uint64_t, min_tx_time); 807 808 mutex_enter(&dp->dp_lock); 809 wakeup = MAX(tx->tx_start + min_tx_time, 810 dp->dp_last_wakeup + min_tx_time); 811 dp->dp_last_wakeup = wakeup; 812 mutex_exit(&dp->dp_lock); 813 814 zfs_sleep_until(wakeup); 815 } 816 817 /* 818 * This routine attempts to assign the transaction to a transaction group. 819 * To do so, we must determine if there is sufficient free space on disk. 820 * 821 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree() 822 * on it), then it is assumed that there is sufficient free space, 823 * unless there's insufficient slop space in the pool (see the comment 824 * above spa_slop_shift in spa_misc.c). 825 * 826 * If it is not a "netfree" transaction, then if the data already on disk 827 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or 828 * ENOSPC. Otherwise, if the current rough estimate of pending changes, 829 * plus the rough estimate of this transaction's changes, may exceed the 830 * allowed usage, then this will fail with ERESTART, which will cause the 831 * caller to wait for the pending changes to be written to disk (by waiting 832 * for the next TXG to open), and then check the space usage again. 833 * 834 * The rough estimate of pending changes is comprised of the sum of: 835 * 836 * - this transaction's holds' txh_space_towrite 837 * 838 * - dd_tempreserved[], which is the sum of in-flight transactions' 839 * holds' txh_space_towrite (i.e. those transactions that have called 840 * dmu_tx_assign() but not yet called dmu_tx_commit()). 841 * 842 * - dd_space_towrite[], which is the amount of dirtied dbufs. 843 * 844 * Note that all of these values are inflated by spa_get_worst_case_asize(), 845 * which means that we may get ERESTART well before we are actually in danger 846 * of running out of space, but this also mitigates any small inaccuracies 847 * in the rough estimate (e.g. txh_space_towrite doesn't take into account 848 * indirect blocks, and dd_space_towrite[] doesn't take into account changes 849 * to the MOS). 850 * 851 * Note that due to this algorithm, it is possible to exceed the allowed 852 * usage by one transaction. Also, as we approach the allowed usage, 853 * we will allow a very limited amount of changes into each TXG, thus 854 * decreasing performance. 855 */ 856 static int 857 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how) 858 { 859 spa_t *spa = tx->tx_pool->dp_spa; 860 861 ASSERT0(tx->tx_txg); 862 863 if (tx->tx_err) { 864 DMU_TX_STAT_BUMP(dmu_tx_error); 865 return (tx->tx_err); 866 } 867 868 if (spa_suspended(spa)) { 869 DMU_TX_STAT_BUMP(dmu_tx_suspended); 870 871 /* 872 * If the user has indicated a blocking failure mode 873 * then return ERESTART which will block in dmu_tx_wait(). 874 * Otherwise, return EIO so that an error can get 875 * propagated back to the VOP calls. 876 * 877 * Note that we always honor the txg_how flag regardless 878 * of the failuremode setting. 879 */ 880 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && 881 !(txg_how & TXG_WAIT)) 882 return (SET_ERROR(EIO)); 883 884 return (SET_ERROR(ERESTART)); 885 } 886 887 if (!tx->tx_dirty_delayed && 888 dsl_pool_need_dirty_delay(tx->tx_pool)) { 889 tx->tx_wait_dirty = B_TRUE; 890 DMU_TX_STAT_BUMP(dmu_tx_dirty_delay); 891 return (SET_ERROR(ERESTART)); 892 } 893 894 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); 895 tx->tx_needassign_txh = NULL; 896 897 /* 898 * NB: No error returns are allowed after txg_hold_open, but 899 * before processing the dnode holds, due to the 900 * dmu_tx_unassign() logic. 901 */ 902 903 uint64_t towrite = 0; 904 uint64_t tohold = 0; 905 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL; 906 txh = list_next(&tx->tx_holds, txh)) { 907 dnode_t *dn = txh->txh_dnode; 908 if (dn != NULL) { 909 /* 910 * This thread can't hold the dn_struct_rwlock 911 * while assigning the tx, because this can lead to 912 * deadlock. Specifically, if this dnode is already 913 * assigned to an earlier txg, this thread may need 914 * to wait for that txg to sync (the ERESTART case 915 * below). The other thread that has assigned this 916 * dnode to an earlier txg prevents this txg from 917 * syncing until its tx can complete (calling 918 * dmu_tx_commit()), but it may need to acquire the 919 * dn_struct_rwlock to do so (e.g. via 920 * dmu_buf_hold*()). 921 * 922 * Note that this thread can't hold the lock for 923 * read either, but the rwlock doesn't record 924 * enough information to make that assertion. 925 */ 926 ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock)); 927 928 mutex_enter(&dn->dn_mtx); 929 if (dn->dn_assigned_txg == tx->tx_txg - 1) { 930 mutex_exit(&dn->dn_mtx); 931 tx->tx_needassign_txh = txh; 932 DMU_TX_STAT_BUMP(dmu_tx_group); 933 return (SET_ERROR(ERESTART)); 934 } 935 if (dn->dn_assigned_txg == 0) 936 dn->dn_assigned_txg = tx->tx_txg; 937 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 938 (void) zfs_refcount_add(&dn->dn_tx_holds, tx); 939 mutex_exit(&dn->dn_mtx); 940 } 941 towrite += zfs_refcount_count(&txh->txh_space_towrite); 942 tohold += zfs_refcount_count(&txh->txh_memory_tohold); 943 } 944 945 /* needed allocation: worst-case estimate of write space */ 946 uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite); 947 /* calculate memory footprint estimate */ 948 uint64_t memory = towrite + tohold; 949 950 if (tx->tx_dir != NULL && asize != 0) { 951 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory, 952 asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx); 953 if (err != 0) 954 return (err); 955 } 956 957 DMU_TX_STAT_BUMP(dmu_tx_assigned); 958 959 return (0); 960 } 961 962 static void 963 dmu_tx_unassign(dmu_tx_t *tx) 964 { 965 if (tx->tx_txg == 0) 966 return; 967 968 txg_rele_to_quiesce(&tx->tx_txgh); 969 970 /* 971 * Walk the transaction's hold list, removing the hold on the 972 * associated dnode, and notifying waiters if the refcount drops to 0. 973 */ 974 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); 975 txh && txh != tx->tx_needassign_txh; 976 txh = list_next(&tx->tx_holds, txh)) { 977 dnode_t *dn = txh->txh_dnode; 978 979 if (dn == NULL) 980 continue; 981 mutex_enter(&dn->dn_mtx); 982 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 983 984 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) { 985 dn->dn_assigned_txg = 0; 986 cv_broadcast(&dn->dn_notxholds); 987 } 988 mutex_exit(&dn->dn_mtx); 989 } 990 991 txg_rele_to_sync(&tx->tx_txgh); 992 993 tx->tx_lasttried_txg = tx->tx_txg; 994 tx->tx_txg = 0; 995 } 996 997 /* 998 * Assign tx to a transaction group; txg_how is a bitmask: 999 * 1000 * If TXG_WAIT is set and the currently open txg is full, this function 1001 * will wait until there's a new txg. This should be used when no locks 1002 * are being held. With this bit set, this function will only fail if 1003 * we're truly out of space (or over quota). 1004 * 1005 * If TXG_WAIT is *not* set and we can't assign into the currently open 1006 * txg without blocking, this function will return immediately with 1007 * ERESTART. This should be used whenever locks are being held. On an 1008 * ERESTART error, the caller should drop all locks, call dmu_tx_wait(), 1009 * and try again. 1010 * 1011 * If TXG_NOTHROTTLE is set, this indicates that this tx should not be 1012 * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for 1013 * details on the throttle). This is used by the VFS operations, after 1014 * they have already called dmu_tx_wait() (though most likely on a 1015 * different tx). 1016 * 1017 * It is guaranteed that subsequent successful calls to dmu_tx_assign() 1018 * will assign the tx to monotonically increasing txgs. Of course this is 1019 * not strong monotonicity, because the same txg can be returned multiple 1020 * times in a row. This guarantee holds both for subsequent calls from 1021 * one thread and for multiple threads. For example, it is impossible to 1022 * observe the following sequence of events: 1023 * 1024 * Thread 1 Thread 2 1025 * 1026 * dmu_tx_assign(T1, ...) 1027 * 1 <- dmu_tx_get_txg(T1) 1028 * dmu_tx_assign(T2, ...) 1029 * 2 <- dmu_tx_get_txg(T2) 1030 * dmu_tx_assign(T3, ...) 1031 * 1 <- dmu_tx_get_txg(T3) 1032 */ 1033 int 1034 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how) 1035 { 1036 int err; 1037 1038 ASSERT(tx->tx_txg == 0); 1039 ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE)); 1040 ASSERT(!dsl_pool_sync_context(tx->tx_pool)); 1041 1042 /* If we might wait, we must not hold the config lock. */ 1043 IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool)); 1044 1045 if ((txg_how & TXG_NOTHROTTLE)) 1046 tx->tx_dirty_delayed = B_TRUE; 1047 1048 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { 1049 dmu_tx_unassign(tx); 1050 1051 if (err != ERESTART || !(txg_how & TXG_WAIT)) 1052 return (err); 1053 1054 dmu_tx_wait(tx); 1055 } 1056 1057 txg_rele_to_quiesce(&tx->tx_txgh); 1058 1059 return (0); 1060 } 1061 1062 void 1063 dmu_tx_wait(dmu_tx_t *tx) 1064 { 1065 spa_t *spa = tx->tx_pool->dp_spa; 1066 dsl_pool_t *dp = tx->tx_pool; 1067 hrtime_t before; 1068 1069 ASSERT(tx->tx_txg == 0); 1070 ASSERT(!dsl_pool_config_held(tx->tx_pool)); 1071 1072 before = gethrtime(); 1073 1074 if (tx->tx_wait_dirty) { 1075 uint64_t dirty; 1076 1077 /* 1078 * dmu_tx_try_assign() has determined that we need to wait 1079 * because we've consumed much or all of the dirty buffer 1080 * space. 1081 */ 1082 mutex_enter(&dp->dp_lock); 1083 if (dp->dp_dirty_total >= zfs_dirty_data_max) 1084 DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max); 1085 while (dp->dp_dirty_total >= zfs_dirty_data_max) 1086 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock); 1087 dirty = dp->dp_dirty_total; 1088 mutex_exit(&dp->dp_lock); 1089 1090 dmu_tx_delay(tx, dirty); 1091 1092 tx->tx_wait_dirty = B_FALSE; 1093 1094 /* 1095 * Note: setting tx_dirty_delayed only has effect if the 1096 * caller used TX_WAIT. Otherwise they are going to 1097 * destroy this tx and try again. The common case, 1098 * zfs_write(), uses TX_WAIT. 1099 */ 1100 tx->tx_dirty_delayed = B_TRUE; 1101 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) { 1102 /* 1103 * If the pool is suspended we need to wait until it 1104 * is resumed. Note that it's possible that the pool 1105 * has become active after this thread has tried to 1106 * obtain a tx. If that's the case then tx_lasttried_txg 1107 * would not have been set. 1108 */ 1109 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); 1110 } else if (tx->tx_needassign_txh) { 1111 dnode_t *dn = tx->tx_needassign_txh->txh_dnode; 1112 1113 mutex_enter(&dn->dn_mtx); 1114 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) 1115 cv_wait(&dn->dn_notxholds, &dn->dn_mtx); 1116 mutex_exit(&dn->dn_mtx); 1117 tx->tx_needassign_txh = NULL; 1118 } else { 1119 /* 1120 * If we have a lot of dirty data just wait until we sync 1121 * out a TXG at which point we'll hopefully have synced 1122 * a portion of the changes. 1123 */ 1124 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); 1125 } 1126 1127 spa_tx_assign_add_nsecs(spa, gethrtime() - before); 1128 } 1129 1130 static void 1131 dmu_tx_destroy(dmu_tx_t *tx) 1132 { 1133 dmu_tx_hold_t *txh; 1134 1135 while ((txh = list_head(&tx->tx_holds)) != NULL) { 1136 dnode_t *dn = txh->txh_dnode; 1137 1138 list_remove(&tx->tx_holds, txh); 1139 zfs_refcount_destroy_many(&txh->txh_space_towrite, 1140 zfs_refcount_count(&txh->txh_space_towrite)); 1141 zfs_refcount_destroy_many(&txh->txh_memory_tohold, 1142 zfs_refcount_count(&txh->txh_memory_tohold)); 1143 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1144 if (dn != NULL) 1145 dnode_rele(dn, tx); 1146 } 1147 1148 list_destroy(&tx->tx_callbacks); 1149 list_destroy(&tx->tx_holds); 1150 kmem_free(tx, sizeof (dmu_tx_t)); 1151 } 1152 1153 void 1154 dmu_tx_commit(dmu_tx_t *tx) 1155 { 1156 ASSERT(tx->tx_txg != 0); 1157 1158 /* 1159 * Go through the transaction's hold list and remove holds on 1160 * associated dnodes, notifying waiters if no holds remain. 1161 */ 1162 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL; 1163 txh = list_next(&tx->tx_holds, txh)) { 1164 dnode_t *dn = txh->txh_dnode; 1165 1166 if (dn == NULL) 1167 continue; 1168 1169 mutex_enter(&dn->dn_mtx); 1170 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1171 1172 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1173 dn->dn_assigned_txg = 0; 1174 cv_broadcast(&dn->dn_notxholds); 1175 } 1176 mutex_exit(&dn->dn_mtx); 1177 } 1178 1179 if (tx->tx_tempreserve_cookie) 1180 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); 1181 1182 if (!list_is_empty(&tx->tx_callbacks)) 1183 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks); 1184 1185 if (tx->tx_anyobj == FALSE) 1186 txg_rele_to_sync(&tx->tx_txgh); 1187 1188 dmu_tx_destroy(tx); 1189 } 1190 1191 void 1192 dmu_tx_abort(dmu_tx_t *tx) 1193 { 1194 ASSERT(tx->tx_txg == 0); 1195 1196 /* 1197 * Call any registered callbacks with an error code. 1198 */ 1199 if (!list_is_empty(&tx->tx_callbacks)) 1200 dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED)); 1201 1202 dmu_tx_destroy(tx); 1203 } 1204 1205 uint64_t 1206 dmu_tx_get_txg(dmu_tx_t *tx) 1207 { 1208 ASSERT(tx->tx_txg != 0); 1209 return (tx->tx_txg); 1210 } 1211 1212 dsl_pool_t * 1213 dmu_tx_pool(dmu_tx_t *tx) 1214 { 1215 ASSERT(tx->tx_pool != NULL); 1216 return (tx->tx_pool); 1217 } 1218 1219 void 1220 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data) 1221 { 1222 dmu_tx_callback_t *dcb; 1223 1224 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP); 1225 1226 dcb->dcb_func = func; 1227 dcb->dcb_data = data; 1228 1229 list_insert_tail(&tx->tx_callbacks, dcb); 1230 } 1231 1232 /* 1233 * Call all the commit callbacks on a list, with a given error code. 1234 */ 1235 void 1236 dmu_tx_do_callbacks(list_t *cb_list, int error) 1237 { 1238 dmu_tx_callback_t *dcb; 1239 1240 while ((dcb = list_tail(cb_list)) != NULL) { 1241 list_remove(cb_list, dcb); 1242 dcb->dcb_func(dcb->dcb_data, error); 1243 kmem_free(dcb, sizeof (dmu_tx_callback_t)); 1244 } 1245 } 1246 1247 /* 1248 * Interface to hold a bunch of attributes. 1249 * used for creating new files. 1250 * attrsize is the total size of all attributes 1251 * to be added during object creation 1252 * 1253 * For updating/adding a single attribute dmu_tx_hold_sa() should be used. 1254 */ 1255 1256 /* 1257 * hold necessary attribute name for attribute registration. 1258 * should be a very rare case where this is needed. If it does 1259 * happen it would only happen on the first write to the file system. 1260 */ 1261 static void 1262 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx) 1263 { 1264 if (!sa->sa_need_attr_registration) 1265 return; 1266 1267 for (int i = 0; i != sa->sa_num_attrs; i++) { 1268 if (!sa->sa_attr_table[i].sa_registered) { 1269 if (sa->sa_reg_attr_obj) 1270 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj, 1271 B_TRUE, sa->sa_attr_table[i].sa_name); 1272 else 1273 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 1274 B_TRUE, sa->sa_attr_table[i].sa_name); 1275 } 1276 } 1277 } 1278 1279 void 1280 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object) 1281 { 1282 dmu_tx_hold_t *txh; 1283 1284 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, 1285 THT_SPILL, 0, 0); 1286 if (txh != NULL) 1287 (void) zfs_refcount_add_many(&txh->txh_space_towrite, 1288 SPA_OLD_MAXBLOCKSIZE, FTAG); 1289 } 1290 1291 void 1292 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize) 1293 { 1294 sa_os_t *sa = tx->tx_objset->os_sa; 1295 1296 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1297 1298 if (tx->tx_objset->os_sa->sa_master_obj == 0) 1299 return; 1300 1301 if (tx->tx_objset->os_sa->sa_layout_attr_obj) { 1302 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); 1303 } else { 1304 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); 1305 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); 1306 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1307 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1308 } 1309 1310 dmu_tx_sa_registration_hold(sa, tx); 1311 1312 if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill) 1313 return; 1314 1315 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, 1316 THT_SPILL, 0, 0); 1317 } 1318 1319 /* 1320 * Hold SA attribute 1321 * 1322 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size) 1323 * 1324 * variable_size is the total size of all variable sized attributes 1325 * passed to this function. It is not the total size of all 1326 * variable size attributes that *may* exist on this object. 1327 */ 1328 void 1329 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow) 1330 { 1331 uint64_t object; 1332 sa_os_t *sa = tx->tx_objset->os_sa; 1333 1334 ASSERT(hdl != NULL); 1335 1336 object = sa_handle_object(hdl); 1337 1338 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus; 1339 DB_DNODE_ENTER(db); 1340 dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db)); 1341 DB_DNODE_EXIT(db); 1342 1343 if (tx->tx_objset->os_sa->sa_master_obj == 0) 1344 return; 1345 1346 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 || 1347 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) { 1348 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); 1349 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); 1350 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1351 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1352 } 1353 1354 dmu_tx_sa_registration_hold(sa, tx); 1355 1356 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj) 1357 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); 1358 1359 if (sa->sa_force_spill || may_grow || hdl->sa_spill) { 1360 ASSERT(tx->tx_txg == 0); 1361 dmu_tx_hold_spill(tx, object); 1362 } else { 1363 dnode_t *dn; 1364 1365 DB_DNODE_ENTER(db); 1366 dn = DB_DNODE(db); 1367 if (dn->dn_have_spill) { 1368 ASSERT(tx->tx_txg == 0); 1369 dmu_tx_hold_spill(tx, object); 1370 } 1371 DB_DNODE_EXIT(db); 1372 } 1373 } 1374 1375 void 1376 dmu_tx_init(void) 1377 { 1378 dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc", 1379 KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t), 1380 KSTAT_FLAG_VIRTUAL); 1381 1382 if (dmu_tx_ksp != NULL) { 1383 dmu_tx_ksp->ks_data = &dmu_tx_stats; 1384 kstat_install(dmu_tx_ksp); 1385 } 1386 } 1387 1388 void 1389 dmu_tx_fini(void) 1390 { 1391 if (dmu_tx_ksp != NULL) { 1392 kstat_delete(dmu_tx_ksp); 1393 dmu_tx_ksp = NULL; 1394 } 1395 } 1396 1397 #if defined(_KERNEL) 1398 EXPORT_SYMBOL(dmu_tx_create); 1399 EXPORT_SYMBOL(dmu_tx_hold_write); 1400 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode); 1401 EXPORT_SYMBOL(dmu_tx_hold_free); 1402 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode); 1403 EXPORT_SYMBOL(dmu_tx_hold_zap); 1404 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode); 1405 EXPORT_SYMBOL(dmu_tx_hold_bonus); 1406 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode); 1407 EXPORT_SYMBOL(dmu_tx_abort); 1408 EXPORT_SYMBOL(dmu_tx_assign); 1409 EXPORT_SYMBOL(dmu_tx_wait); 1410 EXPORT_SYMBOL(dmu_tx_commit); 1411 EXPORT_SYMBOL(dmu_tx_mark_netfree); 1412 EXPORT_SYMBOL(dmu_tx_get_txg); 1413 EXPORT_SYMBOL(dmu_tx_callback_register); 1414 EXPORT_SYMBOL(dmu_tx_do_callbacks); 1415 EXPORT_SYMBOL(dmu_tx_hold_spill); 1416 EXPORT_SYMBOL(dmu_tx_hold_sa_create); 1417 EXPORT_SYMBOL(dmu_tx_hold_sa); 1418 #endif 1419