xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_send.c (revision fa4d25f5b4573a54eebeb7f254b52153b8d3811e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright 2016 RackTop Systems.
28  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  */
32 
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_synctask.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zfs_znode.h>
51 #include <zfs_fletcher.h>
52 #include <sys/avl.h>
53 #include <sys/ddt.h>
54 #include <sys/zfs_onexit.h>
55 #include <sys/dmu_send.h>
56 #include <sys/dmu_recv.h>
57 #include <sys/dsl_destroy.h>
58 #include <sys/blkptr.h>
59 #include <sys/dsl_bookmark.h>
60 #include <sys/zfeature.h>
61 #include <sys/bqueue.h>
62 #include <sys/zvol.h>
63 #include <sys/policy.h>
64 #include <sys/objlist.h>
65 #ifdef _KERNEL
66 #include <sys/zfs_vfsops.h>
67 #endif
68 
69 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
70 static int zfs_send_corrupt_data = B_FALSE;
71 /*
72  * This tunable controls the amount of data (measured in bytes) that will be
73  * prefetched by zfs send.  If the main thread is blocking on reads that haven't
74  * completed, this variable might need to be increased.  If instead the main
75  * thread is issuing new reads because the prefetches have fallen out of the
76  * cache, this may need to be decreased.
77  */
78 static uint_t zfs_send_queue_length = SPA_MAXBLOCKSIZE;
79 /*
80  * This tunable controls the length of the queues that zfs send worker threads
81  * use to communicate.  If the send_main_thread is blocking on these queues,
82  * this variable may need to be increased.  If there is a significant slowdown
83  * at the start of a send as these threads consume all the available IO
84  * resources, this variable may need to be decreased.
85  */
86 static uint_t zfs_send_no_prefetch_queue_length = 1024 * 1024;
87 /*
88  * These tunables control the fill fraction of the queues by zfs send.  The fill
89  * fraction controls the frequency with which threads have to be cv_signaled.
90  * If a lot of cpu time is being spent on cv_signal, then these should be tuned
91  * down.  If the queues empty before the signalled thread can catch up, then
92  * these should be tuned up.
93  */
94 static uint_t zfs_send_queue_ff = 20;
95 static uint_t zfs_send_no_prefetch_queue_ff = 20;
96 
97 /*
98  * Use this to override the recordsize calculation for fast zfs send estimates.
99  */
100 static uint_t zfs_override_estimate_recordsize = 0;
101 
102 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
103 static const boolean_t zfs_send_set_freerecords_bit = B_TRUE;
104 
105 /* Set this tunable to FALSE is disable sending unmodified spill blocks. */
106 static int zfs_send_unmodified_spill_blocks = B_TRUE;
107 
108 static inline boolean_t
109 overflow_multiply(uint64_t a, uint64_t b, uint64_t *c)
110 {
111 	uint64_t temp = a * b;
112 	if (b != 0 && temp / b != a)
113 		return (B_FALSE);
114 	*c = temp;
115 	return (B_TRUE);
116 }
117 
118 struct send_thread_arg {
119 	bqueue_t	q;
120 	objset_t	*os;		/* Objset to traverse */
121 	uint64_t	fromtxg;	/* Traverse from this txg */
122 	int		flags;		/* flags to pass to traverse_dataset */
123 	int		error_code;
124 	boolean_t	cancel;
125 	zbookmark_phys_t resume;
126 	uint64_t	*num_blocks_visited;
127 };
128 
129 struct redact_list_thread_arg {
130 	boolean_t		cancel;
131 	bqueue_t		q;
132 	zbookmark_phys_t	resume;
133 	redaction_list_t	*rl;
134 	boolean_t		mark_redact;
135 	int			error_code;
136 	uint64_t		*num_blocks_visited;
137 };
138 
139 struct send_merge_thread_arg {
140 	bqueue_t			q;
141 	objset_t			*os;
142 	struct redact_list_thread_arg	*from_arg;
143 	struct send_thread_arg		*to_arg;
144 	struct redact_list_thread_arg	*redact_arg;
145 	int				error;
146 	boolean_t			cancel;
147 };
148 
149 struct send_range {
150 	boolean_t		eos_marker; /* Marks the end of the stream */
151 	uint64_t		object;
152 	uint64_t		start_blkid;
153 	uint64_t		end_blkid;
154 	bqueue_node_t		ln;
155 	enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT,
156 	    PREVIOUSLY_REDACTED} type;
157 	union {
158 		struct srd {
159 			dmu_object_type_t	obj_type;
160 			uint32_t		datablksz; // logical size
161 			uint32_t		datasz; // payload size
162 			blkptr_t		bp;
163 			arc_buf_t		*abuf;
164 			abd_t			*abd;
165 			kmutex_t		lock;
166 			kcondvar_t		cv;
167 			boolean_t		io_outstanding;
168 			boolean_t		io_compressed;
169 			int			io_err;
170 		} data;
171 		struct srh {
172 			uint32_t		datablksz;
173 		} hole;
174 		struct sro {
175 			/*
176 			 * This is a pointer because embedding it in the
177 			 * struct causes these structures to be massively larger
178 			 * for all range types; this makes the code much less
179 			 * memory efficient.
180 			 */
181 			dnode_phys_t		*dnp;
182 			blkptr_t		bp;
183 		} object;
184 		struct srr {
185 			uint32_t		datablksz;
186 		} redact;
187 		struct sror {
188 			blkptr_t		bp;
189 		} object_range;
190 	} sru;
191 };
192 
193 /*
194  * The list of data whose inclusion in a send stream can be pending from
195  * one call to backup_cb to another.  Multiple calls to dump_free(),
196  * dump_freeobjects(), and dump_redact() can be aggregated into a single
197  * DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record.
198  */
199 typedef enum {
200 	PENDING_NONE,
201 	PENDING_FREE,
202 	PENDING_FREEOBJECTS,
203 	PENDING_REDACT
204 } dmu_pendop_t;
205 
206 typedef struct dmu_send_cookie {
207 	dmu_replay_record_t *dsc_drr;
208 	dmu_send_outparams_t *dsc_dso;
209 	offset_t *dsc_off;
210 	objset_t *dsc_os;
211 	zio_cksum_t dsc_zc;
212 	uint64_t dsc_toguid;
213 	uint64_t dsc_fromtxg;
214 	int dsc_err;
215 	dmu_pendop_t dsc_pending_op;
216 	uint64_t dsc_featureflags;
217 	uint64_t dsc_last_data_object;
218 	uint64_t dsc_last_data_offset;
219 	uint64_t dsc_resume_object;
220 	uint64_t dsc_resume_offset;
221 	boolean_t dsc_sent_begin;
222 	boolean_t dsc_sent_end;
223 } dmu_send_cookie_t;
224 
225 static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range);
226 
227 static void
228 range_free(struct send_range *range)
229 {
230 	if (range->type == OBJECT) {
231 		size_t size = sizeof (dnode_phys_t) *
232 		    (range->sru.object.dnp->dn_extra_slots + 1);
233 		kmem_free(range->sru.object.dnp, size);
234 	} else if (range->type == DATA) {
235 		mutex_enter(&range->sru.data.lock);
236 		while (range->sru.data.io_outstanding)
237 			cv_wait(&range->sru.data.cv, &range->sru.data.lock);
238 		if (range->sru.data.abd != NULL)
239 			abd_free(range->sru.data.abd);
240 		if (range->sru.data.abuf != NULL) {
241 			arc_buf_destroy(range->sru.data.abuf,
242 			    &range->sru.data.abuf);
243 		}
244 		mutex_exit(&range->sru.data.lock);
245 
246 		cv_destroy(&range->sru.data.cv);
247 		mutex_destroy(&range->sru.data.lock);
248 	}
249 	kmem_free(range, sizeof (*range));
250 }
251 
252 /*
253  * For all record types except BEGIN, fill in the checksum (overlaid in
254  * drr_u.drr_checksum.drr_checksum).  The checksum verifies everything
255  * up to the start of the checksum itself.
256  */
257 static int
258 dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len)
259 {
260 	dmu_send_outparams_t *dso = dscp->dsc_dso;
261 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
262 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
263 	(void) fletcher_4_incremental_native(dscp->dsc_drr,
264 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
265 	    &dscp->dsc_zc);
266 	if (dscp->dsc_drr->drr_type == DRR_BEGIN) {
267 		dscp->dsc_sent_begin = B_TRUE;
268 	} else {
269 		ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u.
270 		    drr_checksum.drr_checksum));
271 		dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc;
272 	}
273 	if (dscp->dsc_drr->drr_type == DRR_END) {
274 		dscp->dsc_sent_end = B_TRUE;
275 	}
276 	(void) fletcher_4_incremental_native(&dscp->dsc_drr->
277 	    drr_u.drr_checksum.drr_checksum,
278 	    sizeof (zio_cksum_t), &dscp->dsc_zc);
279 	*dscp->dsc_off += sizeof (dmu_replay_record_t);
280 	dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr,
281 	    sizeof (dmu_replay_record_t), dso->dso_arg);
282 	if (dscp->dsc_err != 0)
283 		return (SET_ERROR(EINTR));
284 	if (payload_len != 0) {
285 		*dscp->dsc_off += payload_len;
286 		/*
287 		 * payload is null when dso_dryrun == B_TRUE (i.e. when we're
288 		 * doing a send size calculation)
289 		 */
290 		if (payload != NULL) {
291 			(void) fletcher_4_incremental_native(
292 			    payload, payload_len, &dscp->dsc_zc);
293 		}
294 
295 		/*
296 		 * The code does not rely on this (len being a multiple of 8).
297 		 * We keep this assertion because of the corresponding assertion
298 		 * in receive_read().  Keeping this assertion ensures that we do
299 		 * not inadvertently break backwards compatibility (causing the
300 		 * assertion in receive_read() to trigger on old software).
301 		 *
302 		 * Raw sends cannot be received on old software, and so can
303 		 * bypass this assertion.
304 		 */
305 
306 		ASSERT((payload_len % 8 == 0) ||
307 		    (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW));
308 
309 		dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload,
310 		    payload_len, dso->dso_arg);
311 		if (dscp->dsc_err != 0)
312 			return (SET_ERROR(EINTR));
313 	}
314 	return (0);
315 }
316 
317 /*
318  * Fill in the drr_free struct, or perform aggregation if the previous record is
319  * also a free record, and the two are adjacent.
320  *
321  * Note that we send free records even for a full send, because we want to be
322  * able to receive a full send as a clone, which requires a list of all the free
323  * and freeobject records that were generated on the source.
324  */
325 static int
326 dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
327     uint64_t length)
328 {
329 	struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free);
330 
331 	/*
332 	 * When we receive a free record, dbuf_free_range() assumes
333 	 * that the receiving system doesn't have any dbufs in the range
334 	 * being freed.  This is always true because there is a one-record
335 	 * constraint: we only send one WRITE record for any given
336 	 * object,offset.  We know that the one-record constraint is
337 	 * true because we always send data in increasing order by
338 	 * object,offset.
339 	 *
340 	 * If the increasing-order constraint ever changes, we should find
341 	 * another way to assert that the one-record constraint is still
342 	 * satisfied.
343 	 */
344 	ASSERT(object > dscp->dsc_last_data_object ||
345 	    (object == dscp->dsc_last_data_object &&
346 	    offset > dscp->dsc_last_data_offset));
347 
348 	/*
349 	 * If there is a pending op, but it's not PENDING_FREE, push it out,
350 	 * since free block aggregation can only be done for blocks of the
351 	 * same type (i.e., DRR_FREE records can only be aggregated with
352 	 * other DRR_FREE records.  DRR_FREEOBJECTS records can only be
353 	 * aggregated with other DRR_FREEOBJECTS records).
354 	 */
355 	if (dscp->dsc_pending_op != PENDING_NONE &&
356 	    dscp->dsc_pending_op != PENDING_FREE) {
357 		if (dump_record(dscp, NULL, 0) != 0)
358 			return (SET_ERROR(EINTR));
359 		dscp->dsc_pending_op = PENDING_NONE;
360 	}
361 
362 	if (dscp->dsc_pending_op == PENDING_FREE) {
363 		/*
364 		 * Check to see whether this free block can be aggregated
365 		 * with pending one.
366 		 */
367 		if (drrf->drr_object == object && drrf->drr_offset +
368 		    drrf->drr_length == offset) {
369 			if (offset + length < offset || length == UINT64_MAX)
370 				drrf->drr_length = UINT64_MAX;
371 			else
372 				drrf->drr_length += length;
373 			return (0);
374 		} else {
375 			/* not a continuation.  Push out pending record */
376 			if (dump_record(dscp, NULL, 0) != 0)
377 				return (SET_ERROR(EINTR));
378 			dscp->dsc_pending_op = PENDING_NONE;
379 		}
380 	}
381 	/* create a FREE record and make it pending */
382 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
383 	dscp->dsc_drr->drr_type = DRR_FREE;
384 	drrf->drr_object = object;
385 	drrf->drr_offset = offset;
386 	if (offset + length < offset)
387 		drrf->drr_length = DMU_OBJECT_END;
388 	else
389 		drrf->drr_length = length;
390 	drrf->drr_toguid = dscp->dsc_toguid;
391 	if (length == DMU_OBJECT_END) {
392 		if (dump_record(dscp, NULL, 0) != 0)
393 			return (SET_ERROR(EINTR));
394 	} else {
395 		dscp->dsc_pending_op = PENDING_FREE;
396 	}
397 
398 	return (0);
399 }
400 
401 /*
402  * Fill in the drr_redact struct, or perform aggregation if the previous record
403  * is also a redaction record, and the two are adjacent.
404  */
405 static int
406 dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
407     uint64_t length)
408 {
409 	struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact;
410 
411 	/*
412 	 * If there is a pending op, but it's not PENDING_REDACT, push it out,
413 	 * since free block aggregation can only be done for blocks of the
414 	 * same type (i.e., DRR_REDACT records can only be aggregated with
415 	 * other DRR_REDACT records).
416 	 */
417 	if (dscp->dsc_pending_op != PENDING_NONE &&
418 	    dscp->dsc_pending_op != PENDING_REDACT) {
419 		if (dump_record(dscp, NULL, 0) != 0)
420 			return (SET_ERROR(EINTR));
421 		dscp->dsc_pending_op = PENDING_NONE;
422 	}
423 
424 	if (dscp->dsc_pending_op == PENDING_REDACT) {
425 		/*
426 		 * Check to see whether this redacted block can be aggregated
427 		 * with pending one.
428 		 */
429 		if (drrr->drr_object == object && drrr->drr_offset +
430 		    drrr->drr_length == offset) {
431 			drrr->drr_length += length;
432 			return (0);
433 		} else {
434 			/* not a continuation.  Push out pending record */
435 			if (dump_record(dscp, NULL, 0) != 0)
436 				return (SET_ERROR(EINTR));
437 			dscp->dsc_pending_op = PENDING_NONE;
438 		}
439 	}
440 	/* create a REDACT record and make it pending */
441 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
442 	dscp->dsc_drr->drr_type = DRR_REDACT;
443 	drrr->drr_object = object;
444 	drrr->drr_offset = offset;
445 	drrr->drr_length = length;
446 	drrr->drr_toguid = dscp->dsc_toguid;
447 	dscp->dsc_pending_op = PENDING_REDACT;
448 
449 	return (0);
450 }
451 
452 static int
453 dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object,
454     uint64_t offset, int lsize, int psize, const blkptr_t *bp,
455     boolean_t io_compressed, void *data)
456 {
457 	uint64_t payload_size;
458 	boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
459 	struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write);
460 
461 	/*
462 	 * We send data in increasing object, offset order.
463 	 * See comment in dump_free() for details.
464 	 */
465 	ASSERT(object > dscp->dsc_last_data_object ||
466 	    (object == dscp->dsc_last_data_object &&
467 	    offset > dscp->dsc_last_data_offset));
468 	dscp->dsc_last_data_object = object;
469 	dscp->dsc_last_data_offset = offset + lsize - 1;
470 
471 	/*
472 	 * If there is any kind of pending aggregation (currently either
473 	 * a grouping of free objects or free blocks), push it out to
474 	 * the stream, since aggregation can't be done across operations
475 	 * of different types.
476 	 */
477 	if (dscp->dsc_pending_op != PENDING_NONE) {
478 		if (dump_record(dscp, NULL, 0) != 0)
479 			return (SET_ERROR(EINTR));
480 		dscp->dsc_pending_op = PENDING_NONE;
481 	}
482 	/* write a WRITE record */
483 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
484 	dscp->dsc_drr->drr_type = DRR_WRITE;
485 	drrw->drr_object = object;
486 	drrw->drr_type = type;
487 	drrw->drr_offset = offset;
488 	drrw->drr_toguid = dscp->dsc_toguid;
489 	drrw->drr_logical_size = lsize;
490 
491 	/* only set the compression fields if the buf is compressed or raw */
492 	boolean_t compressed =
493 	    (bp != NULL ? BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
494 	    io_compressed : lsize != psize);
495 	if (raw || compressed) {
496 		ASSERT(raw || dscp->dsc_featureflags &
497 		    DMU_BACKUP_FEATURE_COMPRESSED);
498 		ASSERT(!BP_IS_EMBEDDED(bp));
499 		ASSERT3S(psize, >, 0);
500 
501 		if (raw) {
502 			ASSERT(BP_IS_PROTECTED(bp));
503 
504 			/*
505 			 * This is a raw protected block so we need to pass
506 			 * along everything the receiving side will need to
507 			 * interpret this block, including the byteswap, salt,
508 			 * IV, and MAC.
509 			 */
510 			if (BP_SHOULD_BYTESWAP(bp))
511 				drrw->drr_flags |= DRR_RAW_BYTESWAP;
512 			zio_crypt_decode_params_bp(bp, drrw->drr_salt,
513 			    drrw->drr_iv);
514 			zio_crypt_decode_mac_bp(bp, drrw->drr_mac);
515 		} else {
516 			/* this is a compressed block */
517 			ASSERT(dscp->dsc_featureflags &
518 			    DMU_BACKUP_FEATURE_COMPRESSED);
519 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
520 			ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
521 			ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
522 			ASSERT3S(lsize, >=, psize);
523 		}
524 
525 		/* set fields common to compressed and raw sends */
526 		drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
527 		drrw->drr_compressed_size = psize;
528 		payload_size = drrw->drr_compressed_size;
529 	} else {
530 		payload_size = drrw->drr_logical_size;
531 	}
532 
533 	if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) {
534 		/*
535 		 * There's no pre-computed checksum for partial-block writes,
536 		 * embedded BP's, or encrypted BP's that are being sent as
537 		 * plaintext, so (like fletcher4-checksummed blocks) userland
538 		 * will have to compute a dedup-capable checksum itself.
539 		 */
540 		drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
541 	} else {
542 		drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
543 		if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
544 		    ZCHECKSUM_FLAG_DEDUP)
545 			drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
546 		DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
547 		DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
548 		DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
549 		DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp));
550 		drrw->drr_key.ddk_cksum = bp->blk_cksum;
551 	}
552 
553 	if (dump_record(dscp, data, payload_size) != 0)
554 		return (SET_ERROR(EINTR));
555 	return (0);
556 }
557 
558 static int
559 dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
560     int blksz, const blkptr_t *bp)
561 {
562 	char buf[BPE_PAYLOAD_SIZE];
563 	struct drr_write_embedded *drrw =
564 	    &(dscp->dsc_drr->drr_u.drr_write_embedded);
565 
566 	if (dscp->dsc_pending_op != PENDING_NONE) {
567 		if (dump_record(dscp, NULL, 0) != 0)
568 			return (SET_ERROR(EINTR));
569 		dscp->dsc_pending_op = PENDING_NONE;
570 	}
571 
572 	ASSERT(BP_IS_EMBEDDED(bp));
573 
574 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
575 	dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED;
576 	drrw->drr_object = object;
577 	drrw->drr_offset = offset;
578 	drrw->drr_length = blksz;
579 	drrw->drr_toguid = dscp->dsc_toguid;
580 	drrw->drr_compression = BP_GET_COMPRESS(bp);
581 	drrw->drr_etype = BPE_GET_ETYPE(bp);
582 	drrw->drr_lsize = BPE_GET_LSIZE(bp);
583 	drrw->drr_psize = BPE_GET_PSIZE(bp);
584 
585 	decode_embedded_bp_compressed(bp, buf);
586 
587 	if (dump_record(dscp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
588 		return (SET_ERROR(EINTR));
589 	return (0);
590 }
591 
592 static int
593 dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
594     void *data)
595 {
596 	struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill);
597 	uint64_t blksz = BP_GET_LSIZE(bp);
598 	uint64_t payload_size = blksz;
599 
600 	if (dscp->dsc_pending_op != PENDING_NONE) {
601 		if (dump_record(dscp, NULL, 0) != 0)
602 			return (SET_ERROR(EINTR));
603 		dscp->dsc_pending_op = PENDING_NONE;
604 	}
605 
606 	/* write a SPILL record */
607 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
608 	dscp->dsc_drr->drr_type = DRR_SPILL;
609 	drrs->drr_object = object;
610 	drrs->drr_length = blksz;
611 	drrs->drr_toguid = dscp->dsc_toguid;
612 
613 	/* See comment in dump_dnode() for full details */
614 	if (zfs_send_unmodified_spill_blocks &&
615 	    (bp->blk_birth <= dscp->dsc_fromtxg)) {
616 		drrs->drr_flags |= DRR_SPILL_UNMODIFIED;
617 	}
618 
619 	/* handle raw send fields */
620 	if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
621 		ASSERT(BP_IS_PROTECTED(bp));
622 
623 		if (BP_SHOULD_BYTESWAP(bp))
624 			drrs->drr_flags |= DRR_RAW_BYTESWAP;
625 		drrs->drr_compressiontype = BP_GET_COMPRESS(bp);
626 		drrs->drr_compressed_size = BP_GET_PSIZE(bp);
627 		zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv);
628 		zio_crypt_decode_mac_bp(bp, drrs->drr_mac);
629 		payload_size = drrs->drr_compressed_size;
630 	}
631 
632 	if (dump_record(dscp, data, payload_size) != 0)
633 		return (SET_ERROR(EINTR));
634 	return (0);
635 }
636 
637 static int
638 dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs)
639 {
640 	struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects);
641 	uint64_t maxobj = DNODES_PER_BLOCK *
642 	    (DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1);
643 
644 	/*
645 	 * ZoL < 0.7 does not handle large FREEOBJECTS records correctly,
646 	 * leading to zfs recv never completing. to avoid this issue, don't
647 	 * send FREEOBJECTS records for object IDs which cannot exist on the
648 	 * receiving side.
649 	 */
650 	if (maxobj > 0) {
651 		if (maxobj <= firstobj)
652 			return (0);
653 
654 		if (maxobj < firstobj + numobjs)
655 			numobjs = maxobj - firstobj;
656 	}
657 
658 	/*
659 	 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
660 	 * push it out, since free block aggregation can only be done for
661 	 * blocks of the same type (i.e., DRR_FREE records can only be
662 	 * aggregated with other DRR_FREE records.  DRR_FREEOBJECTS records
663 	 * can only be aggregated with other DRR_FREEOBJECTS records).
664 	 */
665 	if (dscp->dsc_pending_op != PENDING_NONE &&
666 	    dscp->dsc_pending_op != PENDING_FREEOBJECTS) {
667 		if (dump_record(dscp, NULL, 0) != 0)
668 			return (SET_ERROR(EINTR));
669 		dscp->dsc_pending_op = PENDING_NONE;
670 	}
671 
672 	if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) {
673 		/*
674 		 * See whether this free object array can be aggregated
675 		 * with pending one
676 		 */
677 		if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
678 			drrfo->drr_numobjs += numobjs;
679 			return (0);
680 		} else {
681 			/* can't be aggregated.  Push out pending record */
682 			if (dump_record(dscp, NULL, 0) != 0)
683 				return (SET_ERROR(EINTR));
684 			dscp->dsc_pending_op = PENDING_NONE;
685 		}
686 	}
687 
688 	/* write a FREEOBJECTS record */
689 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
690 	dscp->dsc_drr->drr_type = DRR_FREEOBJECTS;
691 	drrfo->drr_firstobj = firstobj;
692 	drrfo->drr_numobjs = numobjs;
693 	drrfo->drr_toguid = dscp->dsc_toguid;
694 
695 	dscp->dsc_pending_op = PENDING_FREEOBJECTS;
696 
697 	return (0);
698 }
699 
700 static int
701 dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
702     dnode_phys_t *dnp)
703 {
704 	struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object);
705 	int bonuslen;
706 
707 	if (object < dscp->dsc_resume_object) {
708 		/*
709 		 * Note: when resuming, we will visit all the dnodes in
710 		 * the block of dnodes that we are resuming from.  In
711 		 * this case it's unnecessary to send the dnodes prior to
712 		 * the one we are resuming from.  We should be at most one
713 		 * block's worth of dnodes behind the resume point.
714 		 */
715 		ASSERT3U(dscp->dsc_resume_object - object, <,
716 		    1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
717 		return (0);
718 	}
719 
720 	if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
721 		return (dump_freeobjects(dscp, object, 1));
722 
723 	if (dscp->dsc_pending_op != PENDING_NONE) {
724 		if (dump_record(dscp, NULL, 0) != 0)
725 			return (SET_ERROR(EINTR));
726 		dscp->dsc_pending_op = PENDING_NONE;
727 	}
728 
729 	/* write an OBJECT record */
730 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
731 	dscp->dsc_drr->drr_type = DRR_OBJECT;
732 	drro->drr_object = object;
733 	drro->drr_type = dnp->dn_type;
734 	drro->drr_bonustype = dnp->dn_bonustype;
735 	drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
736 	drro->drr_bonuslen = dnp->dn_bonuslen;
737 	drro->drr_dn_slots = dnp->dn_extra_slots + 1;
738 	drro->drr_checksumtype = dnp->dn_checksum;
739 	drro->drr_compress = dnp->dn_compress;
740 	drro->drr_toguid = dscp->dsc_toguid;
741 
742 	if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
743 	    drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
744 		drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
745 
746 	bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8);
747 
748 	if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
749 		ASSERT(BP_IS_ENCRYPTED(bp));
750 
751 		if (BP_SHOULD_BYTESWAP(bp))
752 			drro->drr_flags |= DRR_RAW_BYTESWAP;
753 
754 		/* needed for reconstructing dnp on recv side */
755 		drro->drr_maxblkid = dnp->dn_maxblkid;
756 		drro->drr_indblkshift = dnp->dn_indblkshift;
757 		drro->drr_nlevels = dnp->dn_nlevels;
758 		drro->drr_nblkptr = dnp->dn_nblkptr;
759 
760 		/*
761 		 * Since we encrypt the entire bonus area, the (raw) part
762 		 * beyond the bonuslen is actually nonzero, so we need
763 		 * to send it.
764 		 */
765 		if (bonuslen != 0) {
766 			if (drro->drr_bonuslen > DN_MAX_BONUS_LEN(dnp))
767 				return (SET_ERROR(EINVAL));
768 			drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp);
769 			bonuslen = drro->drr_raw_bonuslen;
770 		}
771 	}
772 
773 	/*
774 	 * DRR_OBJECT_SPILL is set for every dnode which references a
775 	 * spill block.	 This allows the receiving pool to definitively
776 	 * determine when a spill block should be kept or freed.
777 	 */
778 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
779 		drro->drr_flags |= DRR_OBJECT_SPILL;
780 
781 	if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0)
782 		return (SET_ERROR(EINTR));
783 
784 	/* Free anything past the end of the file. */
785 	if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) *
786 	    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0)
787 		return (SET_ERROR(EINTR));
788 
789 	/*
790 	 * Send DRR_SPILL records for unmodified spill blocks.	This is useful
791 	 * because changing certain attributes of the object (e.g. blocksize)
792 	 * can cause old versions of ZFS to incorrectly remove a spill block.
793 	 * Including these records in the stream forces an up to date version
794 	 * to always be written ensuring they're never lost.  Current versions
795 	 * of the code which understand the DRR_FLAG_SPILL_BLOCK feature can
796 	 * ignore these unmodified spill blocks.
797 	 */
798 	if (zfs_send_unmodified_spill_blocks &&
799 	    (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) &&
800 	    (DN_SPILL_BLKPTR(dnp)->blk_birth <= dscp->dsc_fromtxg)) {
801 		struct send_range record;
802 		blkptr_t *bp = DN_SPILL_BLKPTR(dnp);
803 
804 		memset(&record, 0, sizeof (struct send_range));
805 		record.type = DATA;
806 		record.object = object;
807 		record.eos_marker = B_FALSE;
808 		record.start_blkid = DMU_SPILL_BLKID;
809 		record.end_blkid = record.start_blkid + 1;
810 		record.sru.data.bp = *bp;
811 		record.sru.data.obj_type = dnp->dn_type;
812 		record.sru.data.datablksz = BP_GET_LSIZE(bp);
813 
814 		if (do_dump(dscp, &record) != 0)
815 			return (SET_ERROR(EINTR));
816 	}
817 
818 	if (dscp->dsc_err != 0)
819 		return (SET_ERROR(EINTR));
820 
821 	return (0);
822 }
823 
824 static int
825 dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp,
826     uint64_t firstobj, uint64_t numslots)
827 {
828 	struct drr_object_range *drror =
829 	    &(dscp->dsc_drr->drr_u.drr_object_range);
830 
831 	/* we only use this record type for raw sends */
832 	ASSERT(BP_IS_PROTECTED(bp));
833 	ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
834 	ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
835 	ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE);
836 	ASSERT0(BP_GET_LEVEL(bp));
837 
838 	if (dscp->dsc_pending_op != PENDING_NONE) {
839 		if (dump_record(dscp, NULL, 0) != 0)
840 			return (SET_ERROR(EINTR));
841 		dscp->dsc_pending_op = PENDING_NONE;
842 	}
843 
844 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
845 	dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE;
846 	drror->drr_firstobj = firstobj;
847 	drror->drr_numslots = numslots;
848 	drror->drr_toguid = dscp->dsc_toguid;
849 	if (BP_SHOULD_BYTESWAP(bp))
850 		drror->drr_flags |= DRR_RAW_BYTESWAP;
851 	zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv);
852 	zio_crypt_decode_mac_bp(bp, drror->drr_mac);
853 
854 	if (dump_record(dscp, NULL, 0) != 0)
855 		return (SET_ERROR(EINTR));
856 	return (0);
857 }
858 
859 static boolean_t
860 send_do_embed(const blkptr_t *bp, uint64_t featureflags)
861 {
862 	if (!BP_IS_EMBEDDED(bp))
863 		return (B_FALSE);
864 
865 	/*
866 	 * Compression function must be legacy, or explicitly enabled.
867 	 */
868 	if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
869 	    !(featureflags & DMU_BACKUP_FEATURE_LZ4)))
870 		return (B_FALSE);
871 
872 	/*
873 	 * If we have not set the ZSTD feature flag, we can't send ZSTD
874 	 * compressed embedded blocks, as the receiver may not support them.
875 	 */
876 	if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD &&
877 	    !(featureflags & DMU_BACKUP_FEATURE_ZSTD)))
878 		return (B_FALSE);
879 
880 	/*
881 	 * Embed type must be explicitly enabled.
882 	 */
883 	switch (BPE_GET_ETYPE(bp)) {
884 	case BP_EMBEDDED_TYPE_DATA:
885 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
886 			return (B_TRUE);
887 		break;
888 	default:
889 		return (B_FALSE);
890 	}
891 	return (B_FALSE);
892 }
893 
894 /*
895  * This function actually handles figuring out what kind of record needs to be
896  * dumped, and calling the appropriate helper function.  In most cases,
897  * the data has already been read by send_reader_thread().
898  */
899 static int
900 do_dump(dmu_send_cookie_t *dscp, struct send_range *range)
901 {
902 	int err = 0;
903 	switch (range->type) {
904 	case OBJECT:
905 		err = dump_dnode(dscp, &range->sru.object.bp, range->object,
906 		    range->sru.object.dnp);
907 		return (err);
908 	case OBJECT_RANGE: {
909 		ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
910 		if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
911 			return (0);
912 		}
913 		uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >>
914 		    DNODE_SHIFT;
915 		uint64_t firstobj = range->start_blkid * epb;
916 		err = dump_object_range(dscp, &range->sru.object_range.bp,
917 		    firstobj, epb);
918 		break;
919 	}
920 	case REDACT: {
921 		struct srr *srrp = &range->sru.redact;
922 		err = dump_redact(dscp, range->object, range->start_blkid *
923 		    srrp->datablksz, (range->end_blkid - range->start_blkid) *
924 		    srrp->datablksz);
925 		return (err);
926 	}
927 	case DATA: {
928 		struct srd *srdp = &range->sru.data;
929 		blkptr_t *bp = &srdp->bp;
930 		spa_t *spa =
931 		    dmu_objset_spa(dscp->dsc_os);
932 
933 		ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp));
934 		ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
935 		if (BP_GET_TYPE(bp) == DMU_OT_SA) {
936 			arc_flags_t aflags = ARC_FLAG_WAIT;
937 			zio_flag_t zioflags = ZIO_FLAG_CANFAIL;
938 
939 			if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
940 				ASSERT(BP_IS_PROTECTED(bp));
941 				zioflags |= ZIO_FLAG_RAW;
942 			}
943 
944 			zbookmark_phys_t zb;
945 			ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID);
946 			zb.zb_objset = dmu_objset_id(dscp->dsc_os);
947 			zb.zb_object = range->object;
948 			zb.zb_level = 0;
949 			zb.zb_blkid = range->start_blkid;
950 
951 			arc_buf_t *abuf = NULL;
952 			if (!dscp->dsc_dso->dso_dryrun && arc_read(NULL, spa,
953 			    bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ,
954 			    zioflags, &aflags, &zb) != 0)
955 				return (SET_ERROR(EIO));
956 
957 			err = dump_spill(dscp, bp, zb.zb_object,
958 			    (abuf == NULL ? NULL : abuf->b_data));
959 			if (abuf != NULL)
960 				arc_buf_destroy(abuf, &abuf);
961 			return (err);
962 		}
963 		if (send_do_embed(bp, dscp->dsc_featureflags)) {
964 			err = dump_write_embedded(dscp, range->object,
965 			    range->start_blkid * srdp->datablksz,
966 			    srdp->datablksz, bp);
967 			return (err);
968 		}
969 		ASSERT(range->object > dscp->dsc_resume_object ||
970 		    (range->object == dscp->dsc_resume_object &&
971 		    range->start_blkid * srdp->datablksz >=
972 		    dscp->dsc_resume_offset));
973 		/* it's a level-0 block of a regular object */
974 
975 		mutex_enter(&srdp->lock);
976 		while (srdp->io_outstanding)
977 			cv_wait(&srdp->cv, &srdp->lock);
978 		err = srdp->io_err;
979 		mutex_exit(&srdp->lock);
980 
981 		if (err != 0) {
982 			if (zfs_send_corrupt_data &&
983 			    !dscp->dsc_dso->dso_dryrun) {
984 				/*
985 				 * Send a block filled with 0x"zfs badd bloc"
986 				 */
987 				srdp->abuf = arc_alloc_buf(spa, &srdp->abuf,
988 				    ARC_BUFC_DATA, srdp->datablksz);
989 				uint64_t *ptr;
990 				for (ptr = srdp->abuf->b_data;
991 				    (char *)ptr < (char *)srdp->abuf->b_data +
992 				    srdp->datablksz; ptr++)
993 					*ptr = 0x2f5baddb10cULL;
994 			} else {
995 				return (SET_ERROR(EIO));
996 			}
997 		}
998 
999 		ASSERT(dscp->dsc_dso->dso_dryrun ||
1000 		    srdp->abuf != NULL || srdp->abd != NULL);
1001 
1002 		uint64_t offset = range->start_blkid * srdp->datablksz;
1003 
1004 		char *data = NULL;
1005 		if (srdp->abd != NULL) {
1006 			data = abd_to_buf(srdp->abd);
1007 			ASSERT3P(srdp->abuf, ==, NULL);
1008 		} else if (srdp->abuf != NULL) {
1009 			data = srdp->abuf->b_data;
1010 		}
1011 
1012 		/*
1013 		 * If we have large blocks stored on disk but the send flags
1014 		 * don't allow us to send large blocks, we split the data from
1015 		 * the arc buf into chunks.
1016 		 */
1017 		if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1018 		    !(dscp->dsc_featureflags &
1019 		    DMU_BACKUP_FEATURE_LARGE_BLOCKS)) {
1020 			while (srdp->datablksz > 0 && err == 0) {
1021 				int n = MIN(srdp->datablksz,
1022 				    SPA_OLD_MAXBLOCKSIZE);
1023 				err = dmu_dump_write(dscp, srdp->obj_type,
1024 				    range->object, offset, n, n, NULL, B_FALSE,
1025 				    data);
1026 				offset += n;
1027 				/*
1028 				 * When doing dry run, data==NULL is used as a
1029 				 * sentinel value by
1030 				 * dmu_dump_write()->dump_record().
1031 				 */
1032 				if (data != NULL)
1033 					data += n;
1034 				srdp->datablksz -= n;
1035 			}
1036 		} else {
1037 			err = dmu_dump_write(dscp, srdp->obj_type,
1038 			    range->object, offset,
1039 			    srdp->datablksz, srdp->datasz, bp,
1040 			    srdp->io_compressed, data);
1041 		}
1042 		return (err);
1043 	}
1044 	case HOLE: {
1045 		struct srh *srhp = &range->sru.hole;
1046 		if (range->object == DMU_META_DNODE_OBJECT) {
1047 			uint32_t span = srhp->datablksz >> DNODE_SHIFT;
1048 			uint64_t first_obj = range->start_blkid * span;
1049 			uint64_t numobj = range->end_blkid * span - first_obj;
1050 			return (dump_freeobjects(dscp, first_obj, numobj));
1051 		}
1052 		uint64_t offset = 0;
1053 
1054 		/*
1055 		 * If this multiply overflows, we don't need to send this block.
1056 		 * Even if it has a birth time, it can never not be a hole, so
1057 		 * we don't need to send records for it.
1058 		 */
1059 		if (!overflow_multiply(range->start_blkid, srhp->datablksz,
1060 		    &offset)) {
1061 			return (0);
1062 		}
1063 		uint64_t len = 0;
1064 
1065 		if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len))
1066 			len = UINT64_MAX;
1067 		len = len - offset;
1068 		return (dump_free(dscp, range->object, offset, len));
1069 	}
1070 	default:
1071 		panic("Invalid range type in do_dump: %d", range->type);
1072 	}
1073 	return (err);
1074 }
1075 
1076 static struct send_range *
1077 range_alloc(enum type type, uint64_t object, uint64_t start_blkid,
1078     uint64_t end_blkid, boolean_t eos)
1079 {
1080 	struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP);
1081 	range->type = type;
1082 	range->object = object;
1083 	range->start_blkid = start_blkid;
1084 	range->end_blkid = end_blkid;
1085 	range->eos_marker = eos;
1086 	if (type == DATA) {
1087 		range->sru.data.abd = NULL;
1088 		range->sru.data.abuf = NULL;
1089 		mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL);
1090 		cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL);
1091 		range->sru.data.io_outstanding = 0;
1092 		range->sru.data.io_err = 0;
1093 		range->sru.data.io_compressed = B_FALSE;
1094 	}
1095 	return (range);
1096 }
1097 
1098 /*
1099  * This is the callback function to traverse_dataset that acts as a worker
1100  * thread for dmu_send_impl.
1101  */
1102 static int
1103 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1104     const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
1105 {
1106 	(void) zilog;
1107 	struct send_thread_arg *sta = arg;
1108 	struct send_range *record;
1109 
1110 	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
1111 	    zb->zb_object >= sta->resume.zb_object);
1112 
1113 	/*
1114 	 * All bps of an encrypted os should have the encryption bit set.
1115 	 * If this is not true it indicates tampering and we report an error.
1116 	 */
1117 	if (sta->os->os_encrypted &&
1118 	    !BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) {
1119 		spa_log_error(spa, zb);
1120 		zfs_panic_recover("unencrypted block in encrypted "
1121 		    "object set %llu", dmu_objset_id(sta->os));
1122 		return (SET_ERROR(EIO));
1123 	}
1124 
1125 	if (sta->cancel)
1126 		return (SET_ERROR(EINTR));
1127 	if (zb->zb_object != DMU_META_DNODE_OBJECT &&
1128 	    DMU_OBJECT_IS_SPECIAL(zb->zb_object))
1129 		return (0);
1130 	atomic_inc_64(sta->num_blocks_visited);
1131 
1132 	if (zb->zb_level == ZB_DNODE_LEVEL) {
1133 		if (zb->zb_object == DMU_META_DNODE_OBJECT)
1134 			return (0);
1135 		record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE);
1136 		record->sru.object.bp = *bp;
1137 		size_t size  = sizeof (*dnp) * (dnp->dn_extra_slots + 1);
1138 		record->sru.object.dnp = kmem_alloc(size, KM_SLEEP);
1139 		memcpy(record->sru.object.dnp, dnp, size);
1140 		bqueue_enqueue(&sta->q, record, sizeof (*record));
1141 		return (0);
1142 	}
1143 	if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT &&
1144 	    !BP_IS_HOLE(bp)) {
1145 		record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid,
1146 		    zb->zb_blkid + 1, B_FALSE);
1147 		record->sru.object_range.bp = *bp;
1148 		bqueue_enqueue(&sta->q, record, sizeof (*record));
1149 		return (0);
1150 	}
1151 	if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp)))
1152 		return (0);
1153 	if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp))
1154 		return (0);
1155 
1156 	uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
1157 	uint64_t start;
1158 
1159 	/*
1160 	 * If this multiply overflows, we don't need to send this block.
1161 	 * Even if it has a birth time, it can never not be a hole, so
1162 	 * we don't need to send records for it.
1163 	 */
1164 	if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid ==
1165 	    DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) &&
1166 	    span * zb->zb_blkid > dnp->dn_maxblkid)) {
1167 		ASSERT(BP_IS_HOLE(bp));
1168 		return (0);
1169 	}
1170 
1171 	if (zb->zb_blkid == DMU_SPILL_BLKID)
1172 		ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1173 
1174 	enum type record_type = DATA;
1175 	if (BP_IS_HOLE(bp))
1176 		record_type = HOLE;
1177 	else if (BP_IS_REDACTED(bp))
1178 		record_type = REDACT;
1179 	else
1180 		record_type = DATA;
1181 
1182 	record = range_alloc(record_type, zb->zb_object, start,
1183 	    (start + span < start ? 0 : start + span), B_FALSE);
1184 
1185 	uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ?
1186 	    BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
1187 
1188 	if (BP_IS_HOLE(bp)) {
1189 		record->sru.hole.datablksz = datablksz;
1190 	} else if (BP_IS_REDACTED(bp)) {
1191 		record->sru.redact.datablksz = datablksz;
1192 	} else {
1193 		record->sru.data.datablksz = datablksz;
1194 		record->sru.data.obj_type = dnp->dn_type;
1195 		record->sru.data.bp = *bp;
1196 	}
1197 
1198 	bqueue_enqueue(&sta->q, record, sizeof (*record));
1199 	return (0);
1200 }
1201 
1202 struct redact_list_cb_arg {
1203 	uint64_t *num_blocks_visited;
1204 	bqueue_t *q;
1205 	boolean_t *cancel;
1206 	boolean_t mark_redact;
1207 };
1208 
1209 static int
1210 redact_list_cb(redact_block_phys_t *rb, void *arg)
1211 {
1212 	struct redact_list_cb_arg *rlcap = arg;
1213 
1214 	atomic_inc_64(rlcap->num_blocks_visited);
1215 	if (*rlcap->cancel)
1216 		return (-1);
1217 
1218 	struct send_range *data = range_alloc(REDACT, rb->rbp_object,
1219 	    rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE);
1220 	ASSERT3U(data->end_blkid, >, rb->rbp_blkid);
1221 	if (rlcap->mark_redact) {
1222 		data->type = REDACT;
1223 		data->sru.redact.datablksz = redact_block_get_size(rb);
1224 	} else {
1225 		data->type = PREVIOUSLY_REDACTED;
1226 	}
1227 	bqueue_enqueue(rlcap->q, data, sizeof (*data));
1228 
1229 	return (0);
1230 }
1231 
1232 /*
1233  * This function kicks off the traverse_dataset.  It also handles setting the
1234  * error code of the thread in case something goes wrong, and pushes the End of
1235  * Stream record when the traverse_dataset call has finished.
1236  */
1237 static __attribute__((noreturn)) void
1238 send_traverse_thread(void *arg)
1239 {
1240 	struct send_thread_arg *st_arg = arg;
1241 	int err = 0;
1242 	struct send_range *data;
1243 	fstrans_cookie_t cookie = spl_fstrans_mark();
1244 
1245 	err = traverse_dataset_resume(st_arg->os->os_dsl_dataset,
1246 	    st_arg->fromtxg, &st_arg->resume,
1247 	    st_arg->flags, send_cb, st_arg);
1248 
1249 	if (err != EINTR)
1250 		st_arg->error_code = err;
1251 	data = range_alloc(DATA, 0, 0, 0, B_TRUE);
1252 	bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data));
1253 	spl_fstrans_unmark(cookie);
1254 	thread_exit();
1255 }
1256 
1257 /*
1258  * Utility function that causes End of Stream records to compare after of all
1259  * others, so that other threads' comparison logic can stay simple.
1260  */
1261 static int __attribute__((unused))
1262 send_range_after(const struct send_range *from, const struct send_range *to)
1263 {
1264 	if (from->eos_marker == B_TRUE)
1265 		return (1);
1266 	if (to->eos_marker == B_TRUE)
1267 		return (-1);
1268 
1269 	uint64_t from_obj = from->object;
1270 	uint64_t from_end_obj = from->object + 1;
1271 	uint64_t to_obj = to->object;
1272 	uint64_t to_end_obj = to->object + 1;
1273 	if (from_obj == 0) {
1274 		ASSERT(from->type == HOLE || from->type == OBJECT_RANGE);
1275 		from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT;
1276 		from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT;
1277 	}
1278 	if (to_obj == 0) {
1279 		ASSERT(to->type == HOLE || to->type == OBJECT_RANGE);
1280 		to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT;
1281 		to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT;
1282 	}
1283 
1284 	if (from_end_obj <= to_obj)
1285 		return (-1);
1286 	if (from_obj >= to_end_obj)
1287 		return (1);
1288 	int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type ==
1289 	    OBJECT_RANGE);
1290 	if (unlikely(cmp))
1291 		return (cmp);
1292 	cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT);
1293 	if (unlikely(cmp))
1294 		return (cmp);
1295 	if (from->end_blkid <= to->start_blkid)
1296 		return (-1);
1297 	if (from->start_blkid >= to->end_blkid)
1298 		return (1);
1299 	return (0);
1300 }
1301 
1302 /*
1303  * Pop the new data off the queue, check that the records we receive are in
1304  * the right order, but do not free the old data.  This is used so that the
1305  * records can be sent on to the main thread without copying the data.
1306  */
1307 static struct send_range *
1308 get_next_range_nofree(bqueue_t *bq, struct send_range *prev)
1309 {
1310 	struct send_range *next = bqueue_dequeue(bq);
1311 	ASSERT3S(send_range_after(prev, next), ==, -1);
1312 	return (next);
1313 }
1314 
1315 /*
1316  * Pop the new data off the queue, check that the records we receive are in
1317  * the right order, and free the old data.
1318  */
1319 static struct send_range *
1320 get_next_range(bqueue_t *bq, struct send_range *prev)
1321 {
1322 	struct send_range *next = get_next_range_nofree(bq, prev);
1323 	range_free(prev);
1324 	return (next);
1325 }
1326 
1327 static __attribute__((noreturn)) void
1328 redact_list_thread(void *arg)
1329 {
1330 	struct redact_list_thread_arg *rlt_arg = arg;
1331 	struct send_range *record;
1332 	fstrans_cookie_t cookie = spl_fstrans_mark();
1333 	if (rlt_arg->rl != NULL) {
1334 		struct redact_list_cb_arg rlcba = {0};
1335 		rlcba.cancel = &rlt_arg->cancel;
1336 		rlcba.q = &rlt_arg->q;
1337 		rlcba.num_blocks_visited = rlt_arg->num_blocks_visited;
1338 		rlcba.mark_redact = rlt_arg->mark_redact;
1339 		int err = dsl_redaction_list_traverse(rlt_arg->rl,
1340 		    &rlt_arg->resume, redact_list_cb, &rlcba);
1341 		if (err != EINTR)
1342 			rlt_arg->error_code = err;
1343 	}
1344 	record = range_alloc(DATA, 0, 0, 0, B_TRUE);
1345 	bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record));
1346 	spl_fstrans_unmark(cookie);
1347 
1348 	thread_exit();
1349 }
1350 
1351 /*
1352  * Compare the start point of the two provided ranges. End of stream ranges
1353  * compare last, objects compare before any data or hole inside that object and
1354  * multi-object holes that start at the same object.
1355  */
1356 static int
1357 send_range_start_compare(struct send_range *r1, struct send_range *r2)
1358 {
1359 	uint64_t r1_objequiv = r1->object;
1360 	uint64_t r1_l0equiv = r1->start_blkid;
1361 	uint64_t r2_objequiv = r2->object;
1362 	uint64_t r2_l0equiv = r2->start_blkid;
1363 	int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker);
1364 	if (unlikely(cmp))
1365 		return (cmp);
1366 	if (r1->object == 0) {
1367 		r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK;
1368 		r1_l0equiv = 0;
1369 	}
1370 	if (r2->object == 0) {
1371 		r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK;
1372 		r2_l0equiv = 0;
1373 	}
1374 
1375 	cmp = TREE_CMP(r1_objequiv, r2_objequiv);
1376 	if (likely(cmp))
1377 		return (cmp);
1378 	cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE);
1379 	if (unlikely(cmp))
1380 		return (cmp);
1381 	cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT);
1382 	if (unlikely(cmp))
1383 		return (cmp);
1384 
1385 	return (TREE_CMP(r1_l0equiv, r2_l0equiv));
1386 }
1387 
1388 enum q_idx {
1389 	REDACT_IDX = 0,
1390 	TO_IDX,
1391 	FROM_IDX,
1392 	NUM_THREADS
1393 };
1394 
1395 /*
1396  * This function returns the next range the send_merge_thread should operate on.
1397  * The inputs are two arrays; the first one stores the range at the front of the
1398  * queues stored in the second one.  The ranges are sorted in descending
1399  * priority order; the metadata from earlier ranges overrules metadata from
1400  * later ranges.  out_mask is used to return which threads the ranges came from;
1401  * bit i is set if ranges[i] started at the same place as the returned range.
1402  *
1403  * This code is not hardcoded to compare a specific number of threads; it could
1404  * be used with any number, just by changing the q_idx enum.
1405  *
1406  * The "next range" is the one with the earliest start; if two starts are equal,
1407  * the highest-priority range is the next to operate on.  If a higher-priority
1408  * range starts in the middle of the first range, then the first range will be
1409  * truncated to end where the higher-priority range starts, and we will operate
1410  * on that one next time.   In this way, we make sure that each block covered by
1411  * some range gets covered by a returned range, and each block covered is
1412  * returned using the metadata of the highest-priority range it appears in.
1413  *
1414  * For example, if the three ranges at the front of the queues were [2,4),
1415  * [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata
1416  * from the third range, [2,4) with the metadata from the first range, and then
1417  * [4,5) with the metadata from the second.
1418  */
1419 static struct send_range *
1420 find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask)
1421 {
1422 	int idx = 0; // index of the range with the earliest start
1423 	int i;
1424 	uint64_t bmask = 0;
1425 	for (i = 1; i < NUM_THREADS; i++) {
1426 		if (send_range_start_compare(ranges[i], ranges[idx]) < 0)
1427 			idx = i;
1428 	}
1429 	if (ranges[idx]->eos_marker) {
1430 		struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE);
1431 		*out_mask = 0;
1432 		return (ret);
1433 	}
1434 	/*
1435 	 * Find all the ranges that start at that same point.
1436 	 */
1437 	for (i = 0; i < NUM_THREADS; i++) {
1438 		if (send_range_start_compare(ranges[i], ranges[idx]) == 0)
1439 			bmask |= 1 << i;
1440 	}
1441 	*out_mask = bmask;
1442 	/*
1443 	 * OBJECT_RANGE records only come from the TO thread, and should always
1444 	 * be treated as overlapping with nothing and sent on immediately.  They
1445 	 * are only used in raw sends, and are never redacted.
1446 	 */
1447 	if (ranges[idx]->type == OBJECT_RANGE) {
1448 		ASSERT3U(idx, ==, TO_IDX);
1449 		ASSERT3U(*out_mask, ==, 1 << TO_IDX);
1450 		struct send_range *ret = ranges[idx];
1451 		ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1452 		return (ret);
1453 	}
1454 	/*
1455 	 * Find the first start or end point after the start of the first range.
1456 	 */
1457 	uint64_t first_change = ranges[idx]->end_blkid;
1458 	for (i = 0; i < NUM_THREADS; i++) {
1459 		if (i == idx || ranges[i]->eos_marker ||
1460 		    ranges[i]->object > ranges[idx]->object ||
1461 		    ranges[i]->object == DMU_META_DNODE_OBJECT)
1462 			continue;
1463 		ASSERT3U(ranges[i]->object, ==, ranges[idx]->object);
1464 		if (first_change > ranges[i]->start_blkid &&
1465 		    (bmask & (1 << i)) == 0)
1466 			first_change = ranges[i]->start_blkid;
1467 		else if (first_change > ranges[i]->end_blkid)
1468 			first_change = ranges[i]->end_blkid;
1469 	}
1470 	/*
1471 	 * Update all ranges to no longer overlap with the range we're
1472 	 * returning. All such ranges must start at the same place as the range
1473 	 * being returned, and end at or after first_change. Thus we update
1474 	 * their start to first_change. If that makes them size 0, then free
1475 	 * them and pull a new range from that thread.
1476 	 */
1477 	for (i = 0; i < NUM_THREADS; i++) {
1478 		if (i == idx || (bmask & (1 << i)) == 0)
1479 			continue;
1480 		ASSERT3U(first_change, >, ranges[i]->start_blkid);
1481 		ranges[i]->start_blkid = first_change;
1482 		ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid);
1483 		if (ranges[i]->start_blkid == ranges[i]->end_blkid)
1484 			ranges[i] = get_next_range(qs[i], ranges[i]);
1485 	}
1486 	/*
1487 	 * Short-circuit the simple case; if the range doesn't overlap with
1488 	 * anything else, or it only overlaps with things that start at the same
1489 	 * place and are longer, send it on.
1490 	 */
1491 	if (first_change == ranges[idx]->end_blkid) {
1492 		struct send_range *ret = ranges[idx];
1493 		ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1494 		return (ret);
1495 	}
1496 
1497 	/*
1498 	 * Otherwise, return a truncated copy of ranges[idx] and move the start
1499 	 * of ranges[idx] back to first_change.
1500 	 */
1501 	struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP);
1502 	*ret = *ranges[idx];
1503 	ret->end_blkid = first_change;
1504 	ranges[idx]->start_blkid = first_change;
1505 	return (ret);
1506 }
1507 
1508 #define	FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX))
1509 
1510 /*
1511  * Merge the results from the from thread and the to thread, and then hand the
1512  * records off to send_prefetch_thread to prefetch them.  If this is not a
1513  * send from a redaction bookmark, the from thread will push an end of stream
1514  * record and stop, and we'll just send everything that was changed in the
1515  * to_ds since the ancestor's creation txg. If it is, then since
1516  * traverse_dataset has a canonical order, we can compare each change as
1517  * they're pulled off the queues.  That will give us a stream that is
1518  * appropriately sorted, and covers all records.  In addition, we pull the
1519  * data from the redact_list_thread and use that to determine which blocks
1520  * should be redacted.
1521  */
1522 static __attribute__((noreturn)) void
1523 send_merge_thread(void *arg)
1524 {
1525 	struct send_merge_thread_arg *smt_arg = arg;
1526 	struct send_range *front_ranges[NUM_THREADS];
1527 	bqueue_t *queues[NUM_THREADS];
1528 	int err = 0;
1529 	fstrans_cookie_t cookie = spl_fstrans_mark();
1530 
1531 	if (smt_arg->redact_arg == NULL) {
1532 		front_ranges[REDACT_IDX] =
1533 		    kmem_zalloc(sizeof (struct send_range), KM_SLEEP);
1534 		front_ranges[REDACT_IDX]->eos_marker = B_TRUE;
1535 		front_ranges[REDACT_IDX]->type = REDACT;
1536 		queues[REDACT_IDX] = NULL;
1537 	} else {
1538 		front_ranges[REDACT_IDX] =
1539 		    bqueue_dequeue(&smt_arg->redact_arg->q);
1540 		queues[REDACT_IDX] = &smt_arg->redact_arg->q;
1541 	}
1542 	front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q);
1543 	queues[TO_IDX] = &smt_arg->to_arg->q;
1544 	front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q);
1545 	queues[FROM_IDX] = &smt_arg->from_arg->q;
1546 	uint64_t mask = 0;
1547 	struct send_range *range;
1548 	for (range = find_next_range(front_ranges, queues, &mask);
1549 	    !range->eos_marker && err == 0 && !smt_arg->cancel;
1550 	    range = find_next_range(front_ranges, queues, &mask)) {
1551 		/*
1552 		 * If the range in question was in both the from redact bookmark
1553 		 * and the bookmark we're using to redact, then don't send it.
1554 		 * It's already redacted on the receiving system, so a redaction
1555 		 * record would be redundant.
1556 		 */
1557 		if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) {
1558 			ASSERT3U(range->type, ==, REDACT);
1559 			range_free(range);
1560 			continue;
1561 		}
1562 		bqueue_enqueue(&smt_arg->q, range, sizeof (*range));
1563 
1564 		if (smt_arg->to_arg->error_code != 0) {
1565 			err = smt_arg->to_arg->error_code;
1566 		} else if (smt_arg->from_arg->error_code != 0) {
1567 			err = smt_arg->from_arg->error_code;
1568 		} else if (smt_arg->redact_arg != NULL &&
1569 		    smt_arg->redact_arg->error_code != 0) {
1570 			err = smt_arg->redact_arg->error_code;
1571 		}
1572 	}
1573 	if (smt_arg->cancel && err == 0)
1574 		err = SET_ERROR(EINTR);
1575 	smt_arg->error = err;
1576 	if (smt_arg->error != 0) {
1577 		smt_arg->to_arg->cancel = B_TRUE;
1578 		smt_arg->from_arg->cancel = B_TRUE;
1579 		if (smt_arg->redact_arg != NULL)
1580 			smt_arg->redact_arg->cancel = B_TRUE;
1581 	}
1582 	for (int i = 0; i < NUM_THREADS; i++) {
1583 		while (!front_ranges[i]->eos_marker) {
1584 			front_ranges[i] = get_next_range(queues[i],
1585 			    front_ranges[i]);
1586 		}
1587 		range_free(front_ranges[i]);
1588 	}
1589 	range->eos_marker = B_TRUE;
1590 	bqueue_enqueue_flush(&smt_arg->q, range, 1);
1591 	spl_fstrans_unmark(cookie);
1592 	thread_exit();
1593 }
1594 
1595 struct send_reader_thread_arg {
1596 	struct send_merge_thread_arg *smta;
1597 	bqueue_t q;
1598 	boolean_t cancel;
1599 	boolean_t issue_reads;
1600 	uint64_t featureflags;
1601 	int error;
1602 };
1603 
1604 static void
1605 dmu_send_read_done(zio_t *zio)
1606 {
1607 	struct send_range *range = zio->io_private;
1608 
1609 	mutex_enter(&range->sru.data.lock);
1610 	if (zio->io_error != 0) {
1611 		abd_free(range->sru.data.abd);
1612 		range->sru.data.abd = NULL;
1613 		range->sru.data.io_err = zio->io_error;
1614 	}
1615 
1616 	ASSERT(range->sru.data.io_outstanding);
1617 	range->sru.data.io_outstanding = B_FALSE;
1618 	cv_broadcast(&range->sru.data.cv);
1619 	mutex_exit(&range->sru.data.lock);
1620 }
1621 
1622 static void
1623 issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range)
1624 {
1625 	struct srd *srdp = &range->sru.data;
1626 	blkptr_t *bp = &srdp->bp;
1627 	objset_t *os = srta->smta->os;
1628 
1629 	ASSERT3U(range->type, ==, DATA);
1630 	ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
1631 	/*
1632 	 * If we have large blocks stored on disk but
1633 	 * the send flags don't allow us to send large
1634 	 * blocks, we split the data from the arc buf
1635 	 * into chunks.
1636 	 */
1637 	boolean_t split_large_blocks =
1638 	    srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1639 	    !(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
1640 	/*
1641 	 * We should only request compressed data from the ARC if all
1642 	 * the following are true:
1643 	 *  - stream compression was requested
1644 	 *  - we aren't splitting large blocks into smaller chunks
1645 	 *  - the data won't need to be byteswapped before sending
1646 	 *  - this isn't an embedded block
1647 	 *  - this isn't metadata (if receiving on a different endian
1648 	 *    system it can be byteswapped more easily)
1649 	 */
1650 	boolean_t request_compressed =
1651 	    (srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
1652 	    !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
1653 	    !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
1654 
1655 	zio_flag_t zioflags = ZIO_FLAG_CANFAIL;
1656 
1657 	if (srta->featureflags & DMU_BACKUP_FEATURE_RAW) {
1658 		zioflags |= ZIO_FLAG_RAW;
1659 		srdp->io_compressed = B_TRUE;
1660 	} else if (request_compressed) {
1661 		zioflags |= ZIO_FLAG_RAW_COMPRESS;
1662 		srdp->io_compressed = B_TRUE;
1663 	}
1664 
1665 	srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ?
1666 	    BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp);
1667 
1668 	if (!srta->issue_reads)
1669 		return;
1670 	if (BP_IS_REDACTED(bp))
1671 		return;
1672 	if (send_do_embed(bp, srta->featureflags))
1673 		return;
1674 
1675 	zbookmark_phys_t zb = {
1676 	    .zb_objset = dmu_objset_id(os),
1677 	    .zb_object = range->object,
1678 	    .zb_level = 0,
1679 	    .zb_blkid = range->start_blkid,
1680 	};
1681 
1682 	arc_flags_t aflags = ARC_FLAG_CACHED_ONLY;
1683 
1684 	int arc_err = arc_read(NULL, os->os_spa, bp,
1685 	    arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ,
1686 	    zioflags, &aflags, &zb);
1687 	/*
1688 	 * If the data is not already cached in the ARC, we read directly
1689 	 * from zio.  This avoids the performance overhead of adding a new
1690 	 * entry to the ARC, and we also avoid polluting the ARC cache with
1691 	 * data that is not likely to be used in the future.
1692 	 */
1693 	if (arc_err != 0) {
1694 		srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE);
1695 		srdp->io_outstanding = B_TRUE;
1696 		zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd,
1697 		    srdp->datasz, dmu_send_read_done, range,
1698 		    ZIO_PRIORITY_ASYNC_READ, zioflags, &zb));
1699 	}
1700 }
1701 
1702 /*
1703  * Create a new record with the given values.
1704  */
1705 static void
1706 enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn,
1707     uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz)
1708 {
1709 	enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE :
1710 	    (BP_IS_REDACTED(bp) ? REDACT : DATA));
1711 
1712 	struct send_range *range = range_alloc(range_type, dn->dn_object,
1713 	    blkid, blkid + count, B_FALSE);
1714 
1715 	if (blkid == DMU_SPILL_BLKID)
1716 		ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1717 
1718 	switch (range_type) {
1719 	case HOLE:
1720 		range->sru.hole.datablksz = datablksz;
1721 		break;
1722 	case DATA:
1723 		ASSERT3U(count, ==, 1);
1724 		range->sru.data.datablksz = datablksz;
1725 		range->sru.data.obj_type = dn->dn_type;
1726 		range->sru.data.bp = *bp;
1727 		issue_data_read(srta, range);
1728 		break;
1729 	case REDACT:
1730 		range->sru.redact.datablksz = datablksz;
1731 		break;
1732 	default:
1733 		break;
1734 	}
1735 	bqueue_enqueue(q, range, datablksz);
1736 }
1737 
1738 /*
1739  * This thread is responsible for two things: First, it retrieves the correct
1740  * blkptr in the to ds if we need to send the data because of something from
1741  * the from thread.  As a result of this, we're the first ones to discover that
1742  * some indirect blocks can be discarded because they're not holes. Second,
1743  * it issues prefetches for the data we need to send.
1744  */
1745 static __attribute__((noreturn)) void
1746 send_reader_thread(void *arg)
1747 {
1748 	struct send_reader_thread_arg *srta = arg;
1749 	struct send_merge_thread_arg *smta = srta->smta;
1750 	bqueue_t *inq = &smta->q;
1751 	bqueue_t *outq = &srta->q;
1752 	objset_t *os = smta->os;
1753 	fstrans_cookie_t cookie = spl_fstrans_mark();
1754 	struct send_range *range = bqueue_dequeue(inq);
1755 	int err = 0;
1756 
1757 	/*
1758 	 * If the record we're analyzing is from a redaction bookmark from the
1759 	 * fromds, then we need to know whether or not it exists in the tods so
1760 	 * we know whether to create records for it or not. If it does, we need
1761 	 * the datablksz so we can generate an appropriate record for it.
1762 	 * Finally, if it isn't redacted, we need the blkptr so that we can send
1763 	 * a WRITE record containing the actual data.
1764 	 */
1765 	uint64_t last_obj = UINT64_MAX;
1766 	uint64_t last_obj_exists = B_TRUE;
1767 	while (!range->eos_marker && !srta->cancel && smta->error == 0 &&
1768 	    err == 0) {
1769 		switch (range->type) {
1770 		case DATA:
1771 			issue_data_read(srta, range);
1772 			bqueue_enqueue(outq, range, range->sru.data.datablksz);
1773 			range = get_next_range_nofree(inq, range);
1774 			break;
1775 		case HOLE:
1776 		case OBJECT:
1777 		case OBJECT_RANGE:
1778 		case REDACT: // Redacted blocks must exist
1779 			bqueue_enqueue(outq, range, sizeof (*range));
1780 			range = get_next_range_nofree(inq, range);
1781 			break;
1782 		case PREVIOUSLY_REDACTED: {
1783 			/*
1784 			 * This entry came from the "from bookmark" when
1785 			 * sending from a bookmark that has a redaction
1786 			 * list.  We need to check if this object/blkid
1787 			 * exists in the target ("to") dataset, and if
1788 			 * not then we drop this entry.  We also need
1789 			 * to fill in the block pointer so that we know
1790 			 * what to prefetch.
1791 			 *
1792 			 * To accomplish the above, we first cache whether or
1793 			 * not the last object we examined exists.  If it
1794 			 * doesn't, we can drop this record. If it does, we hold
1795 			 * the dnode and use it to call dbuf_dnode_findbp. We do
1796 			 * this instead of dbuf_bookmark_findbp because we will
1797 			 * often operate on large ranges, and holding the dnode
1798 			 * once is more efficient.
1799 			 */
1800 			boolean_t object_exists = B_TRUE;
1801 			/*
1802 			 * If the data is redacted, we only care if it exists,
1803 			 * so that we don't send records for objects that have
1804 			 * been deleted.
1805 			 */
1806 			dnode_t *dn;
1807 			if (range->object == last_obj && !last_obj_exists) {
1808 				/*
1809 				 * If we're still examining the same object as
1810 				 * previously, and it doesn't exist, we don't
1811 				 * need to call dbuf_bookmark_findbp.
1812 				 */
1813 				object_exists = B_FALSE;
1814 			} else {
1815 				err = dnode_hold(os, range->object, FTAG, &dn);
1816 				if (err == ENOENT) {
1817 					object_exists = B_FALSE;
1818 					err = 0;
1819 				}
1820 				last_obj = range->object;
1821 				last_obj_exists = object_exists;
1822 			}
1823 
1824 			if (err != 0) {
1825 				break;
1826 			} else if (!object_exists) {
1827 				/*
1828 				 * The block was modified, but doesn't
1829 				 * exist in the to dataset; if it was
1830 				 * deleted in the to dataset, then we'll
1831 				 * visit the hole bp for it at some point.
1832 				 */
1833 				range = get_next_range(inq, range);
1834 				continue;
1835 			}
1836 			uint64_t file_max =
1837 			    (dn->dn_maxblkid < range->end_blkid ?
1838 			    dn->dn_maxblkid : range->end_blkid);
1839 			/*
1840 			 * The object exists, so we need to try to find the
1841 			 * blkptr for each block in the range we're processing.
1842 			 */
1843 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
1844 			for (uint64_t blkid = range->start_blkid;
1845 			    blkid < file_max; blkid++) {
1846 				blkptr_t bp;
1847 				uint32_t datablksz =
1848 				    dn->dn_phys->dn_datablkszsec <<
1849 				    SPA_MINBLOCKSHIFT;
1850 				uint64_t offset = blkid * datablksz;
1851 				/*
1852 				 * This call finds the next non-hole block in
1853 				 * the object. This is to prevent a
1854 				 * performance problem where we're unredacting
1855 				 * a large hole. Using dnode_next_offset to
1856 				 * skip over the large hole avoids iterating
1857 				 * over every block in it.
1858 				 */
1859 				err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1860 				    &offset, 1, 1, 0);
1861 				if (err == ESRCH) {
1862 					offset = UINT64_MAX;
1863 					err = 0;
1864 				} else if (err != 0) {
1865 					break;
1866 				}
1867 				if (offset != blkid * datablksz) {
1868 					/*
1869 					 * if there is a hole from here
1870 					 * (blkid) to offset
1871 					 */
1872 					offset = MIN(offset, file_max *
1873 					    datablksz);
1874 					uint64_t nblks = (offset / datablksz) -
1875 					    blkid;
1876 					enqueue_range(srta, outq, dn, blkid,
1877 					    nblks, NULL, datablksz);
1878 					blkid += nblks;
1879 				}
1880 				if (blkid >= file_max)
1881 					break;
1882 				err = dbuf_dnode_findbp(dn, 0, blkid, &bp,
1883 				    NULL, NULL);
1884 				if (err != 0)
1885 					break;
1886 				ASSERT(!BP_IS_HOLE(&bp));
1887 				enqueue_range(srta, outq, dn, blkid, 1, &bp,
1888 				    datablksz);
1889 			}
1890 			rw_exit(&dn->dn_struct_rwlock);
1891 			dnode_rele(dn, FTAG);
1892 			range = get_next_range(inq, range);
1893 		}
1894 		}
1895 	}
1896 	if (srta->cancel || err != 0) {
1897 		smta->cancel = B_TRUE;
1898 		srta->error = err;
1899 	} else if (smta->error != 0) {
1900 		srta->error = smta->error;
1901 	}
1902 	while (!range->eos_marker)
1903 		range = get_next_range(inq, range);
1904 
1905 	bqueue_enqueue_flush(outq, range, 1);
1906 	spl_fstrans_unmark(cookie);
1907 	thread_exit();
1908 }
1909 
1910 #define	NUM_SNAPS_NOT_REDACTED UINT64_MAX
1911 
1912 struct dmu_send_params {
1913 	/* Pool args */
1914 	const void *tag; // Tag dp was held with, will be used to release dp.
1915 	dsl_pool_t *dp;
1916 	/* To snapshot args */
1917 	const char *tosnap;
1918 	dsl_dataset_t *to_ds;
1919 	/* From snapshot args */
1920 	zfs_bookmark_phys_t ancestor_zb;
1921 	uint64_t *fromredactsnaps;
1922 	/* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */
1923 	uint64_t numfromredactsnaps;
1924 	/* Stream params */
1925 	boolean_t is_clone;
1926 	boolean_t embedok;
1927 	boolean_t large_block_ok;
1928 	boolean_t compressok;
1929 	boolean_t rawok;
1930 	boolean_t savedok;
1931 	uint64_t resumeobj;
1932 	uint64_t resumeoff;
1933 	uint64_t saved_guid;
1934 	zfs_bookmark_phys_t *redactbook;
1935 	/* Stream output params */
1936 	dmu_send_outparams_t *dso;
1937 
1938 	/* Stream progress params */
1939 	offset_t *off;
1940 	int outfd;
1941 	char saved_toname[MAXNAMELEN];
1942 };
1943 
1944 static int
1945 setup_featureflags(struct dmu_send_params *dspp, objset_t *os,
1946     uint64_t *featureflags)
1947 {
1948 	dsl_dataset_t *to_ds = dspp->to_ds;
1949 	dsl_pool_t *dp = dspp->dp;
1950 #ifdef _KERNEL
1951 	if (dmu_objset_type(os) == DMU_OST_ZFS) {
1952 		uint64_t version;
1953 		if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0)
1954 			return (SET_ERROR(EINVAL));
1955 
1956 		if (version >= ZPL_VERSION_SA)
1957 			*featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
1958 	}
1959 #endif
1960 
1961 	/* raw sends imply large_block_ok */
1962 	if ((dspp->rawok || dspp->large_block_ok) &&
1963 	    dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) {
1964 		*featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
1965 	}
1966 
1967 	/* encrypted datasets will not have embedded blocks */
1968 	if ((dspp->embedok || dspp->rawok) && !os->os_encrypted &&
1969 	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
1970 		*featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
1971 	}
1972 
1973 	/* raw send implies compressok */
1974 	if (dspp->compressok || dspp->rawok)
1975 		*featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
1976 
1977 	if (dspp->rawok && os->os_encrypted)
1978 		*featureflags |= DMU_BACKUP_FEATURE_RAW;
1979 
1980 	if ((*featureflags &
1981 	    (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED |
1982 	    DMU_BACKUP_FEATURE_RAW)) != 0 &&
1983 	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
1984 		*featureflags |= DMU_BACKUP_FEATURE_LZ4;
1985 	}
1986 
1987 	/*
1988 	 * We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to
1989 	 * allow sending ZSTD compressed datasets to a receiver that does not
1990 	 * support ZSTD
1991 	 */
1992 	if ((*featureflags &
1993 	    (DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 &&
1994 	    dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) {
1995 		*featureflags |= DMU_BACKUP_FEATURE_ZSTD;
1996 	}
1997 
1998 	if (dspp->resumeobj != 0 || dspp->resumeoff != 0) {
1999 		*featureflags |= DMU_BACKUP_FEATURE_RESUMING;
2000 	}
2001 
2002 	if (dspp->redactbook != NULL) {
2003 		*featureflags |= DMU_BACKUP_FEATURE_REDACTED;
2004 	}
2005 
2006 	if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) {
2007 		*featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
2008 	}
2009 	return (0);
2010 }
2011 
2012 static dmu_replay_record_t *
2013 create_begin_record(struct dmu_send_params *dspp, objset_t *os,
2014     uint64_t featureflags)
2015 {
2016 	dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t),
2017 	    KM_SLEEP);
2018 	drr->drr_type = DRR_BEGIN;
2019 
2020 	struct drr_begin *drrb = &drr->drr_u.drr_begin;
2021 	dsl_dataset_t *to_ds = dspp->to_ds;
2022 
2023 	drrb->drr_magic = DMU_BACKUP_MAGIC;
2024 	drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time;
2025 	drrb->drr_type = dmu_objset_type(os);
2026 	drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2027 	drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid;
2028 
2029 	DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM);
2030 	DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags);
2031 
2032 	if (dspp->is_clone)
2033 		drrb->drr_flags |= DRR_FLAG_CLONE;
2034 	if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET)
2035 		drrb->drr_flags |= DRR_FLAG_CI_DATA;
2036 	if (zfs_send_set_freerecords_bit)
2037 		drrb->drr_flags |= DRR_FLAG_FREERECORDS;
2038 	drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK;
2039 
2040 	if (dspp->savedok) {
2041 		drrb->drr_toguid = dspp->saved_guid;
2042 		strlcpy(drrb->drr_toname, dspp->saved_toname,
2043 		    sizeof (drrb->drr_toname));
2044 	} else {
2045 		dsl_dataset_name(to_ds, drrb->drr_toname);
2046 		if (!to_ds->ds_is_snapshot) {
2047 			(void) strlcat(drrb->drr_toname, "@--head--",
2048 			    sizeof (drrb->drr_toname));
2049 		}
2050 	}
2051 	return (drr);
2052 }
2053 
2054 static void
2055 setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os,
2056     dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok)
2057 {
2058 	VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff,
2059 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2060 	    offsetof(struct send_range, ln)));
2061 	to_arg->error_code = 0;
2062 	to_arg->cancel = B_FALSE;
2063 	to_arg->os = to_os;
2064 	to_arg->fromtxg = fromtxg;
2065 	to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA;
2066 	if (rawok)
2067 		to_arg->flags |= TRAVERSE_NO_DECRYPT;
2068 	if (zfs_send_corrupt_data)
2069 		to_arg->flags |= TRAVERSE_HARD;
2070 	to_arg->num_blocks_visited = &dssp->dss_blocks;
2071 	(void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0,
2072 	    curproc, TS_RUN, minclsyspri);
2073 }
2074 
2075 static void
2076 setup_from_thread(struct redact_list_thread_arg *from_arg,
2077     redaction_list_t *from_rl, dmu_sendstatus_t *dssp)
2078 {
2079 	VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff,
2080 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2081 	    offsetof(struct send_range, ln)));
2082 	from_arg->error_code = 0;
2083 	from_arg->cancel = B_FALSE;
2084 	from_arg->rl = from_rl;
2085 	from_arg->mark_redact = B_FALSE;
2086 	from_arg->num_blocks_visited = &dssp->dss_blocks;
2087 	/*
2088 	 * If from_ds is null, send_traverse_thread just returns success and
2089 	 * enqueues an eos marker.
2090 	 */
2091 	(void) thread_create(NULL, 0, redact_list_thread, from_arg, 0,
2092 	    curproc, TS_RUN, minclsyspri);
2093 }
2094 
2095 static void
2096 setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg,
2097     struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp)
2098 {
2099 	if (dspp->redactbook == NULL)
2100 		return;
2101 
2102 	rlt_arg->cancel = B_FALSE;
2103 	VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff,
2104 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2105 	    offsetof(struct send_range, ln)));
2106 	rlt_arg->error_code = 0;
2107 	rlt_arg->mark_redact = B_TRUE;
2108 	rlt_arg->rl = rl;
2109 	rlt_arg->num_blocks_visited = &dssp->dss_blocks;
2110 
2111 	(void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0,
2112 	    curproc, TS_RUN, minclsyspri);
2113 }
2114 
2115 static void
2116 setup_merge_thread(struct send_merge_thread_arg *smt_arg,
2117     struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg,
2118     struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg,
2119     objset_t *os)
2120 {
2121 	VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff,
2122 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2123 	    offsetof(struct send_range, ln)));
2124 	smt_arg->cancel = B_FALSE;
2125 	smt_arg->error = 0;
2126 	smt_arg->from_arg = from_arg;
2127 	smt_arg->to_arg = to_arg;
2128 	if (dspp->redactbook != NULL)
2129 		smt_arg->redact_arg = rlt_arg;
2130 
2131 	smt_arg->os = os;
2132 	(void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc,
2133 	    TS_RUN, minclsyspri);
2134 }
2135 
2136 static void
2137 setup_reader_thread(struct send_reader_thread_arg *srt_arg,
2138     struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg,
2139     uint64_t featureflags)
2140 {
2141 	VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff,
2142 	    MAX(zfs_send_queue_length, 2 * zfs_max_recordsize),
2143 	    offsetof(struct send_range, ln)));
2144 	srt_arg->smta = smt_arg;
2145 	srt_arg->issue_reads = !dspp->dso->dso_dryrun;
2146 	srt_arg->featureflags = featureflags;
2147 	(void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0,
2148 	    curproc, TS_RUN, minclsyspri);
2149 }
2150 
2151 static int
2152 setup_resume_points(struct dmu_send_params *dspp,
2153     struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg,
2154     struct redact_list_thread_arg *rlt_arg,
2155     struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os,
2156     redaction_list_t *redact_rl, nvlist_t *nvl)
2157 {
2158 	(void) smt_arg;
2159 	dsl_dataset_t *to_ds = dspp->to_ds;
2160 	int err = 0;
2161 
2162 	uint64_t obj = 0;
2163 	uint64_t blkid = 0;
2164 	if (resuming) {
2165 		obj = dspp->resumeobj;
2166 		dmu_object_info_t to_doi;
2167 		err = dmu_object_info(os, obj, &to_doi);
2168 		if (err != 0)
2169 			return (err);
2170 
2171 		blkid = dspp->resumeoff / to_doi.doi_data_block_size;
2172 	}
2173 	/*
2174 	 * If we're resuming a redacted send, we can skip to the appropriate
2175 	 * point in the redaction bookmark by binary searching through it.
2176 	 */
2177 	if (redact_rl != NULL) {
2178 		SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid);
2179 	}
2180 
2181 	SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid);
2182 	if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) {
2183 		uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj;
2184 		/*
2185 		 * Note: If the resume point is in an object whose
2186 		 * blocksize is different in the from vs to snapshots,
2187 		 * we will have divided by the "wrong" blocksize.
2188 		 * However, in this case fromsnap's send_cb() will
2189 		 * detect that the blocksize has changed and therefore
2190 		 * ignore this object.
2191 		 *
2192 		 * If we're resuming a send from a redaction bookmark,
2193 		 * we still cannot accidentally suggest blocks behind
2194 		 * the to_ds.  In addition, we know that any blocks in
2195 		 * the object in the to_ds will have to be sent, since
2196 		 * the size changed.  Therefore, we can't cause any harm
2197 		 * this way either.
2198 		 */
2199 		SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid);
2200 	}
2201 	if (resuming) {
2202 		fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj);
2203 		fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff);
2204 	}
2205 	return (0);
2206 }
2207 
2208 static dmu_sendstatus_t *
2209 setup_send_progress(struct dmu_send_params *dspp)
2210 {
2211 	dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP);
2212 	dssp->dss_outfd = dspp->outfd;
2213 	dssp->dss_off = dspp->off;
2214 	dssp->dss_proc = curproc;
2215 	mutex_enter(&dspp->to_ds->ds_sendstream_lock);
2216 	list_insert_head(&dspp->to_ds->ds_sendstreams, dssp);
2217 	mutex_exit(&dspp->to_ds->ds_sendstream_lock);
2218 	return (dssp);
2219 }
2220 
2221 /*
2222  * Actually do the bulk of the work in a zfs send.
2223  *
2224  * The idea is that we want to do a send from ancestor_zb to to_ds.  We also
2225  * want to not send any data that has been modified by all the datasets in
2226  * redactsnaparr, and store the list of blocks that are redacted in this way in
2227  * a bookmark named redactbook, created on the to_ds.  We do this by creating
2228  * several worker threads, whose function is described below.
2229  *
2230  * There are three cases.
2231  * The first case is a redacted zfs send.  In this case there are 5 threads.
2232  * The first thread is the to_ds traversal thread: it calls dataset_traverse on
2233  * the to_ds and finds all the blocks that have changed since ancestor_zb (if
2234  * it's a full send, that's all blocks in the dataset).  It then sends those
2235  * blocks on to the send merge thread. The redact list thread takes the data
2236  * from the redaction bookmark and sends those blocks on to the send merge
2237  * thread.  The send merge thread takes the data from the to_ds traversal
2238  * thread, and combines it with the redaction records from the redact list
2239  * thread.  If a block appears in both the to_ds's data and the redaction data,
2240  * the send merge thread will mark it as redacted and send it on to the prefetch
2241  * thread.  Otherwise, the send merge thread will send the block on to the
2242  * prefetch thread unchanged. The prefetch thread will issue prefetch reads for
2243  * any data that isn't redacted, and then send the data on to the main thread.
2244  * The main thread behaves the same as in a normal send case, issuing demand
2245  * reads for data blocks and sending out records over the network
2246  *
2247  * The graphic below diagrams the flow of data in the case of a redacted zfs
2248  * send.  Each box represents a thread, and each line represents the flow of
2249  * data.
2250  *
2251  *             Records from the |
2252  *           redaction bookmark |
2253  * +--------------------+       |  +---------------------------+
2254  * |                    |       v  | Send Merge Thread         |
2255  * | Redact List Thread +----------> Apply redaction marks to  |
2256  * |                    |          | records as specified by   |
2257  * +--------------------+          | redaction ranges          |
2258  *                                 +----^---------------+------+
2259  *                                      |               | Merged data
2260  *                                      |               |
2261  *                                      |  +------------v--------+
2262  *                                      |  | Prefetch Thread     |
2263  * +--------------------+               |  | Issues prefetch     |
2264  * | to_ds Traversal    |               |  | reads of data blocks|
2265  * | Thread (finds      +---------------+  +------------+--------+
2266  * | candidate blocks)  |  Blocks modified              | Prefetched data
2267  * +--------------------+  by to_ds since               |
2268  *                         ancestor_zb     +------------v----+
2269  *                                         | Main Thread     |  File Descriptor
2270  *                                         | Sends data over +->(to zfs receive)
2271  *                                         | wire            |
2272  *                                         +-----------------+
2273  *
2274  * The second case is an incremental send from a redaction bookmark.  The to_ds
2275  * traversal thread and the main thread behave the same as in the redacted
2276  * send case.  The new thread is the from bookmark traversal thread.  It
2277  * iterates over the redaction list in the redaction bookmark, and enqueues
2278  * records for each block that was redacted in the original send.  The send
2279  * merge thread now has to merge the data from the two threads.  For details
2280  * about that process, see the header comment of send_merge_thread().  Any data
2281  * it decides to send on will be prefetched by the prefetch thread.  Note that
2282  * you can perform a redacted send from a redaction bookmark; in that case,
2283  * the data flow behaves very similarly to the flow in the redacted send case,
2284  * except with the addition of the bookmark traversal thread iterating over the
2285  * redaction bookmark.  The send_merge_thread also has to take on the
2286  * responsibility of merging the redact list thread's records, the bookmark
2287  * traversal thread's records, and the to_ds records.
2288  *
2289  * +---------------------+
2290  * |                     |
2291  * | Redact List Thread  +--------------+
2292  * |                     |              |
2293  * +---------------------+              |
2294  *        Blocks in redaction list      | Ranges modified by every secure snap
2295  *        of from bookmark              | (or EOS if not readcted)
2296  *                                      |
2297  * +---------------------+   |     +----v----------------------+
2298  * | bookmark Traversal  |   v     | Send Merge Thread         |
2299  * | Thread (finds       +---------> Merges bookmark, rlt, and |
2300  * | candidate blocks)   |         | to_ds send records        |
2301  * +---------------------+         +----^---------------+------+
2302  *                                      |               | Merged data
2303  *                                      |  +------------v--------+
2304  *                                      |  | Prefetch Thread     |
2305  * +--------------------+               |  | Issues prefetch     |
2306  * | to_ds Traversal    |               |  | reads of data blocks|
2307  * | Thread (finds      +---------------+  +------------+--------+
2308  * | candidate blocks)  |  Blocks modified              | Prefetched data
2309  * +--------------------+  by to_ds since  +------------v----+
2310  *                         ancestor_zb     | Main Thread     |  File Descriptor
2311  *                                         | Sends data over +->(to zfs receive)
2312  *                                         | wire            |
2313  *                                         +-----------------+
2314  *
2315  * The final case is a simple zfs full or incremental send.  The to_ds traversal
2316  * thread behaves the same as always. The redact list thread is never started.
2317  * The send merge thread takes all the blocks that the to_ds traversal thread
2318  * sends it, prefetches the data, and sends the blocks on to the main thread.
2319  * The main thread sends the data over the wire.
2320  *
2321  * To keep performance acceptable, we want to prefetch the data in the worker
2322  * threads.  While the to_ds thread could simply use the TRAVERSE_PREFETCH
2323  * feature built into traverse_dataset, the combining and deletion of records
2324  * due to redaction and sends from redaction bookmarks mean that we could
2325  * issue many unnecessary prefetches.  As a result, we only prefetch data
2326  * after we've determined that the record is not going to be redacted.  To
2327  * prevent the prefetching from getting too far ahead of the main thread, the
2328  * blocking queues that are used for communication are capped not by the
2329  * number of entries in the queue, but by the sum of the size of the
2330  * prefetches associated with them.  The limit on the amount of data that the
2331  * thread can prefetch beyond what the main thread has reached is controlled
2332  * by the global variable zfs_send_queue_length.  In addition, to prevent poor
2333  * performance in the beginning of a send, we also limit the distance ahead
2334  * that the traversal threads can be.  That distance is controlled by the
2335  * zfs_send_no_prefetch_queue_length tunable.
2336  *
2337  * Note: Releases dp using the specified tag.
2338  */
2339 static int
2340 dmu_send_impl(struct dmu_send_params *dspp)
2341 {
2342 	objset_t *os;
2343 	dmu_replay_record_t *drr;
2344 	dmu_sendstatus_t *dssp;
2345 	dmu_send_cookie_t dsc = {0};
2346 	int err;
2347 	uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg;
2348 	uint64_t featureflags = 0;
2349 	struct redact_list_thread_arg *from_arg;
2350 	struct send_thread_arg *to_arg;
2351 	struct redact_list_thread_arg *rlt_arg;
2352 	struct send_merge_thread_arg *smt_arg;
2353 	struct send_reader_thread_arg *srt_arg;
2354 	struct send_range *range;
2355 	redaction_list_t *from_rl = NULL;
2356 	redaction_list_t *redact_rl = NULL;
2357 	boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0);
2358 	boolean_t book_resuming = resuming;
2359 
2360 	dsl_dataset_t *to_ds = dspp->to_ds;
2361 	zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb;
2362 	dsl_pool_t *dp = dspp->dp;
2363 	const void *tag = dspp->tag;
2364 
2365 	err = dmu_objset_from_ds(to_ds, &os);
2366 	if (err != 0) {
2367 		dsl_pool_rele(dp, tag);
2368 		return (err);
2369 	}
2370 
2371 	/*
2372 	 * If this is a non-raw send of an encrypted ds, we can ensure that
2373 	 * the objset_phys_t is authenticated. This is safe because this is
2374 	 * either a snapshot or we have owned the dataset, ensuring that
2375 	 * it can't be modified.
2376 	 */
2377 	if (!dspp->rawok && os->os_encrypted &&
2378 	    arc_is_unauthenticated(os->os_phys_buf)) {
2379 		zbookmark_phys_t zb;
2380 
2381 		SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT,
2382 		    ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2383 		err = arc_untransform(os->os_phys_buf, os->os_spa,
2384 		    &zb, B_FALSE);
2385 		if (err != 0) {
2386 			dsl_pool_rele(dp, tag);
2387 			return (err);
2388 		}
2389 
2390 		ASSERT0(arc_is_unauthenticated(os->os_phys_buf));
2391 	}
2392 
2393 	if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) {
2394 		dsl_pool_rele(dp, tag);
2395 		return (err);
2396 	}
2397 
2398 	/*
2399 	 * If we're doing a redacted send, hold the bookmark's redaction list.
2400 	 */
2401 	if (dspp->redactbook != NULL) {
2402 		err = dsl_redaction_list_hold_obj(dp,
2403 		    dspp->redactbook->zbm_redaction_obj, FTAG,
2404 		    &redact_rl);
2405 		if (err != 0) {
2406 			dsl_pool_rele(dp, tag);
2407 			return (SET_ERROR(EINVAL));
2408 		}
2409 		dsl_redaction_list_long_hold(dp, redact_rl, FTAG);
2410 	}
2411 
2412 	/*
2413 	 * If we're sending from a redaction bookmark, hold the redaction list
2414 	 * so that we can consider sending the redacted blocks.
2415 	 */
2416 	if (ancestor_zb->zbm_redaction_obj != 0) {
2417 		err = dsl_redaction_list_hold_obj(dp,
2418 		    ancestor_zb->zbm_redaction_obj, FTAG, &from_rl);
2419 		if (err != 0) {
2420 			if (redact_rl != NULL) {
2421 				dsl_redaction_list_long_rele(redact_rl, FTAG);
2422 				dsl_redaction_list_rele(redact_rl, FTAG);
2423 			}
2424 			dsl_pool_rele(dp, tag);
2425 			return (SET_ERROR(EINVAL));
2426 		}
2427 		dsl_redaction_list_long_hold(dp, from_rl, FTAG);
2428 	}
2429 
2430 	dsl_dataset_long_hold(to_ds, FTAG);
2431 
2432 	from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP);
2433 	to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP);
2434 	rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP);
2435 	smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP);
2436 	srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP);
2437 
2438 	drr = create_begin_record(dspp, os, featureflags);
2439 	dssp = setup_send_progress(dspp);
2440 
2441 	dsc.dsc_drr = drr;
2442 	dsc.dsc_dso = dspp->dso;
2443 	dsc.dsc_os = os;
2444 	dsc.dsc_off = dspp->off;
2445 	dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2446 	dsc.dsc_fromtxg = fromtxg;
2447 	dsc.dsc_pending_op = PENDING_NONE;
2448 	dsc.dsc_featureflags = featureflags;
2449 	dsc.dsc_resume_object = dspp->resumeobj;
2450 	dsc.dsc_resume_offset = dspp->resumeoff;
2451 
2452 	dsl_pool_rele(dp, tag);
2453 
2454 	void *payload = NULL;
2455 	size_t payload_len = 0;
2456 	nvlist_t *nvl = fnvlist_alloc();
2457 
2458 	/*
2459 	 * If we're doing a redacted send, we include the snapshots we're
2460 	 * redacted with respect to so that the target system knows what send
2461 	 * streams can be correctly received on top of this dataset. If we're
2462 	 * instead sending a redacted dataset, we include the snapshots that the
2463 	 * dataset was created with respect to.
2464 	 */
2465 	if (dspp->redactbook != NULL) {
2466 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS,
2467 		    redact_rl->rl_phys->rlp_snaps,
2468 		    redact_rl->rl_phys->rlp_num_snaps);
2469 	} else if (dsl_dataset_feature_is_active(to_ds,
2470 	    SPA_FEATURE_REDACTED_DATASETS)) {
2471 		uint64_t *tods_guids;
2472 		uint64_t length;
2473 		VERIFY(dsl_dataset_get_uint64_array_feature(to_ds,
2474 		    SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids));
2475 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids,
2476 		    length);
2477 	}
2478 
2479 	/*
2480 	 * If we're sending from a redaction bookmark, then we should retrieve
2481 	 * the guids of that bookmark so we can send them over the wire.
2482 	 */
2483 	if (from_rl != NULL) {
2484 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2485 		    from_rl->rl_phys->rlp_snaps,
2486 		    from_rl->rl_phys->rlp_num_snaps);
2487 	}
2488 
2489 	/*
2490 	 * If the snapshot we're sending from is redacted, include the redaction
2491 	 * list in the stream.
2492 	 */
2493 	if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) {
2494 		ASSERT3P(from_rl, ==, NULL);
2495 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2496 		    dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps);
2497 		if (dspp->numfromredactsnaps > 0) {
2498 			kmem_free(dspp->fromredactsnaps,
2499 			    dspp->numfromredactsnaps * sizeof (uint64_t));
2500 			dspp->fromredactsnaps = NULL;
2501 		}
2502 	}
2503 
2504 	if (resuming || book_resuming) {
2505 		err = setup_resume_points(dspp, to_arg, from_arg,
2506 		    rlt_arg, smt_arg, resuming, os, redact_rl, nvl);
2507 		if (err != 0)
2508 			goto out;
2509 	}
2510 
2511 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2512 		uint64_t ivset_guid = ancestor_zb->zbm_ivset_guid;
2513 		nvlist_t *keynvl = NULL;
2514 		ASSERT(os->os_encrypted);
2515 
2516 		err = dsl_crypto_populate_key_nvlist(os, ivset_guid,
2517 		    &keynvl);
2518 		if (err != 0) {
2519 			fnvlist_free(nvl);
2520 			goto out;
2521 		}
2522 
2523 		fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl);
2524 		fnvlist_free(keynvl);
2525 	}
2526 
2527 	if (!nvlist_empty(nvl)) {
2528 		payload = fnvlist_pack(nvl, &payload_len);
2529 		drr->drr_payloadlen = payload_len;
2530 	}
2531 
2532 	fnvlist_free(nvl);
2533 	err = dump_record(&dsc, payload, payload_len);
2534 	fnvlist_pack_free(payload, payload_len);
2535 	if (err != 0) {
2536 		err = dsc.dsc_err;
2537 		goto out;
2538 	}
2539 
2540 	setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok);
2541 	setup_from_thread(from_arg, from_rl, dssp);
2542 	setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp);
2543 	setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os);
2544 	setup_reader_thread(srt_arg, dspp, smt_arg, featureflags);
2545 
2546 	range = bqueue_dequeue(&srt_arg->q);
2547 	while (err == 0 && !range->eos_marker) {
2548 		err = do_dump(&dsc, range);
2549 		range = get_next_range(&srt_arg->q, range);
2550 		if (issig(JUSTLOOKING) && issig(FORREAL))
2551 			err = SET_ERROR(EINTR);
2552 	}
2553 
2554 	/*
2555 	 * If we hit an error or are interrupted, cancel our worker threads and
2556 	 * clear the queue of any pending records.  The threads will pass the
2557 	 * cancel up the tree of worker threads, and each one will clean up any
2558 	 * pending records before exiting.
2559 	 */
2560 	if (err != 0) {
2561 		srt_arg->cancel = B_TRUE;
2562 		while (!range->eos_marker) {
2563 			range = get_next_range(&srt_arg->q, range);
2564 		}
2565 	}
2566 	range_free(range);
2567 
2568 	bqueue_destroy(&srt_arg->q);
2569 	bqueue_destroy(&smt_arg->q);
2570 	if (dspp->redactbook != NULL)
2571 		bqueue_destroy(&rlt_arg->q);
2572 	bqueue_destroy(&to_arg->q);
2573 	bqueue_destroy(&from_arg->q);
2574 
2575 	if (err == 0 && srt_arg->error != 0)
2576 		err = srt_arg->error;
2577 
2578 	if (err != 0)
2579 		goto out;
2580 
2581 	if (dsc.dsc_pending_op != PENDING_NONE)
2582 		if (dump_record(&dsc, NULL, 0) != 0)
2583 			err = SET_ERROR(EINTR);
2584 
2585 	if (err != 0) {
2586 		if (err == EINTR && dsc.dsc_err != 0)
2587 			err = dsc.dsc_err;
2588 		goto out;
2589 	}
2590 
2591 	/*
2592 	 * Send the DRR_END record if this is not a saved stream.
2593 	 * Otherwise, the omitted DRR_END record will signal to
2594 	 * the receive side that the stream is incomplete.
2595 	 */
2596 	if (!dspp->savedok) {
2597 		memset(drr, 0, sizeof (dmu_replay_record_t));
2598 		drr->drr_type = DRR_END;
2599 		drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc;
2600 		drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid;
2601 
2602 		if (dump_record(&dsc, NULL, 0) != 0)
2603 			err = dsc.dsc_err;
2604 	}
2605 out:
2606 	mutex_enter(&to_ds->ds_sendstream_lock);
2607 	list_remove(&to_ds->ds_sendstreams, dssp);
2608 	mutex_exit(&to_ds->ds_sendstream_lock);
2609 
2610 	VERIFY(err != 0 || (dsc.dsc_sent_begin &&
2611 	    (dsc.dsc_sent_end || dspp->savedok)));
2612 
2613 	kmem_free(drr, sizeof (dmu_replay_record_t));
2614 	kmem_free(dssp, sizeof (dmu_sendstatus_t));
2615 	kmem_free(from_arg, sizeof (*from_arg));
2616 	kmem_free(to_arg, sizeof (*to_arg));
2617 	kmem_free(rlt_arg, sizeof (*rlt_arg));
2618 	kmem_free(smt_arg, sizeof (*smt_arg));
2619 	kmem_free(srt_arg, sizeof (*srt_arg));
2620 
2621 	dsl_dataset_long_rele(to_ds, FTAG);
2622 	if (from_rl != NULL) {
2623 		dsl_redaction_list_long_rele(from_rl, FTAG);
2624 		dsl_redaction_list_rele(from_rl, FTAG);
2625 	}
2626 	if (redact_rl != NULL) {
2627 		dsl_redaction_list_long_rele(redact_rl, FTAG);
2628 		dsl_redaction_list_rele(redact_rl, FTAG);
2629 	}
2630 
2631 	return (err);
2632 }
2633 
2634 int
2635 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
2636     boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
2637     boolean_t rawok, boolean_t savedok, int outfd, offset_t *off,
2638     dmu_send_outparams_t *dsop)
2639 {
2640 	int err;
2641 	dsl_dataset_t *fromds;
2642 	ds_hold_flags_t dsflags;
2643 	struct dmu_send_params dspp = {0};
2644 	dspp.embedok = embedok;
2645 	dspp.large_block_ok = large_block_ok;
2646 	dspp.compressok = compressok;
2647 	dspp.outfd = outfd;
2648 	dspp.off = off;
2649 	dspp.dso = dsop;
2650 	dspp.tag = FTAG;
2651 	dspp.rawok = rawok;
2652 	dspp.savedok = savedok;
2653 
2654 	dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2655 	err = dsl_pool_hold(pool, FTAG, &dspp.dp);
2656 	if (err != 0)
2657 		return (err);
2658 
2659 	err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG,
2660 	    &dspp.to_ds);
2661 	if (err != 0) {
2662 		dsl_pool_rele(dspp.dp, FTAG);
2663 		return (err);
2664 	}
2665 
2666 	if (fromsnap != 0) {
2667 		err = dsl_dataset_hold_obj_flags(dspp.dp, fromsnap, dsflags,
2668 		    FTAG, &fromds);
2669 		if (err != 0) {
2670 			dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2671 			dsl_pool_rele(dspp.dp, FTAG);
2672 			return (err);
2673 		}
2674 		dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
2675 		dspp.ancestor_zb.zbm_creation_txg =
2676 		    dsl_dataset_phys(fromds)->ds_creation_txg;
2677 		dspp.ancestor_zb.zbm_creation_time =
2678 		    dsl_dataset_phys(fromds)->ds_creation_time;
2679 
2680 		if (dsl_dataset_is_zapified(fromds)) {
2681 			(void) zap_lookup(dspp.dp->dp_meta_objset,
2682 			    fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2683 			    &dspp.ancestor_zb.zbm_ivset_guid);
2684 		}
2685 
2686 		/* See dmu_send for the reasons behind this. */
2687 		uint64_t *fromredact;
2688 
2689 		if (!dsl_dataset_get_uint64_array_feature(fromds,
2690 		    SPA_FEATURE_REDACTED_DATASETS,
2691 		    &dspp.numfromredactsnaps,
2692 		    &fromredact)) {
2693 			dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2694 		} else if (dspp.numfromredactsnaps > 0) {
2695 			uint64_t size = dspp.numfromredactsnaps *
2696 			    sizeof (uint64_t);
2697 			dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP);
2698 			memcpy(dspp.fromredactsnaps, fromredact, size);
2699 		}
2700 
2701 		boolean_t is_before =
2702 		    dsl_dataset_is_before(dspp.to_ds, fromds, 0);
2703 		dspp.is_clone = (dspp.to_ds->ds_dir !=
2704 		    fromds->ds_dir);
2705 		dsl_dataset_rele(fromds, FTAG);
2706 		if (!is_before) {
2707 			dsl_pool_rele(dspp.dp, FTAG);
2708 			err = SET_ERROR(EXDEV);
2709 		} else {
2710 			err = dmu_send_impl(&dspp);
2711 		}
2712 	} else {
2713 		dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2714 		err = dmu_send_impl(&dspp);
2715 	}
2716 	if (dspp.fromredactsnaps)
2717 		kmem_free(dspp.fromredactsnaps,
2718 		    dspp.numfromredactsnaps * sizeof (uint64_t));
2719 
2720 	dsl_dataset_rele(dspp.to_ds, FTAG);
2721 	return (err);
2722 }
2723 
2724 int
2725 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
2726     boolean_t large_block_ok, boolean_t compressok, boolean_t rawok,
2727     boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff,
2728     const char *redactbook, int outfd, offset_t *off,
2729     dmu_send_outparams_t *dsop)
2730 {
2731 	int err = 0;
2732 	ds_hold_flags_t dsflags;
2733 	boolean_t owned = B_FALSE;
2734 	dsl_dataset_t *fromds = NULL;
2735 	zfs_bookmark_phys_t book = {0};
2736 	struct dmu_send_params dspp = {0};
2737 
2738 	dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2739 	dspp.tosnap = tosnap;
2740 	dspp.embedok = embedok;
2741 	dspp.large_block_ok = large_block_ok;
2742 	dspp.compressok = compressok;
2743 	dspp.outfd = outfd;
2744 	dspp.off = off;
2745 	dspp.dso = dsop;
2746 	dspp.tag = FTAG;
2747 	dspp.resumeobj = resumeobj;
2748 	dspp.resumeoff = resumeoff;
2749 	dspp.rawok = rawok;
2750 	dspp.savedok = savedok;
2751 
2752 	if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
2753 		return (SET_ERROR(EINVAL));
2754 
2755 	err = dsl_pool_hold(tosnap, FTAG, &dspp.dp);
2756 	if (err != 0)
2757 		return (err);
2758 
2759 	if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) {
2760 		/*
2761 		 * We are sending a filesystem or volume.  Ensure
2762 		 * that it doesn't change by owning the dataset.
2763 		 */
2764 
2765 		if (savedok) {
2766 			/*
2767 			 * We are looking for the dataset that represents the
2768 			 * partially received send stream. If this stream was
2769 			 * received as a new snapshot of an existing dataset,
2770 			 * this will be saved in a hidden clone named
2771 			 * "<pool>/<dataset>/%recv". Otherwise, the stream
2772 			 * will be saved in the live dataset itself. In
2773 			 * either case we need to use dsl_dataset_own_force()
2774 			 * because the stream is marked as inconsistent,
2775 			 * which would normally make it unavailable to be
2776 			 * owned.
2777 			 */
2778 			char *name = kmem_asprintf("%s/%s", tosnap,
2779 			    recv_clone_name);
2780 			err = dsl_dataset_own_force(dspp.dp, name, dsflags,
2781 			    FTAG, &dspp.to_ds);
2782 			if (err == ENOENT) {
2783 				err = dsl_dataset_own_force(dspp.dp, tosnap,
2784 				    dsflags, FTAG, &dspp.to_ds);
2785 			}
2786 
2787 			if (err == 0) {
2788 				err = zap_lookup(dspp.dp->dp_meta_objset,
2789 				    dspp.to_ds->ds_object,
2790 				    DS_FIELD_RESUME_TOGUID, 8, 1,
2791 				    &dspp.saved_guid);
2792 			}
2793 
2794 			if (err == 0) {
2795 				err = zap_lookup(dspp.dp->dp_meta_objset,
2796 				    dspp.to_ds->ds_object,
2797 				    DS_FIELD_RESUME_TONAME, 1,
2798 				    sizeof (dspp.saved_toname),
2799 				    dspp.saved_toname);
2800 			}
2801 			if (err != 0)
2802 				dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2803 
2804 			kmem_strfree(name);
2805 		} else {
2806 			err = dsl_dataset_own(dspp.dp, tosnap, dsflags,
2807 			    FTAG, &dspp.to_ds);
2808 		}
2809 		owned = B_TRUE;
2810 	} else {
2811 		err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG,
2812 		    &dspp.to_ds);
2813 	}
2814 
2815 	if (err != 0) {
2816 		dsl_pool_rele(dspp.dp, FTAG);
2817 		return (err);
2818 	}
2819 
2820 	if (redactbook != NULL) {
2821 		char path[ZFS_MAX_DATASET_NAME_LEN];
2822 		(void) strlcpy(path, tosnap, sizeof (path));
2823 		char *at = strchr(path, '@');
2824 		if (at == NULL) {
2825 			err = EINVAL;
2826 		} else {
2827 			(void) snprintf(at, sizeof (path) - (at - path), "#%s",
2828 			    redactbook);
2829 			err = dsl_bookmark_lookup(dspp.dp, path,
2830 			    NULL, &book);
2831 			dspp.redactbook = &book;
2832 		}
2833 	}
2834 
2835 	if (err != 0) {
2836 		dsl_pool_rele(dspp.dp, FTAG);
2837 		if (owned)
2838 			dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2839 		else
2840 			dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2841 		return (err);
2842 	}
2843 
2844 	if (fromsnap != NULL) {
2845 		zfs_bookmark_phys_t *zb = &dspp.ancestor_zb;
2846 		int fsnamelen;
2847 		if (strpbrk(tosnap, "@#") != NULL)
2848 			fsnamelen = strpbrk(tosnap, "@#") - tosnap;
2849 		else
2850 			fsnamelen = strlen(tosnap);
2851 
2852 		/*
2853 		 * If the fromsnap is in a different filesystem, then
2854 		 * mark the send stream as a clone.
2855 		 */
2856 		if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
2857 		    (fromsnap[fsnamelen] != '@' &&
2858 		    fromsnap[fsnamelen] != '#')) {
2859 			dspp.is_clone = B_TRUE;
2860 		}
2861 
2862 		if (strchr(fromsnap, '@') != NULL) {
2863 			err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG,
2864 			    &fromds);
2865 
2866 			if (err != 0) {
2867 				ASSERT3P(fromds, ==, NULL);
2868 			} else {
2869 				/*
2870 				 * We need to make a deep copy of the redact
2871 				 * snapshots of the from snapshot, because the
2872 				 * array will be freed when we evict from_ds.
2873 				 */
2874 				uint64_t *fromredact;
2875 				if (!dsl_dataset_get_uint64_array_feature(
2876 				    fromds, SPA_FEATURE_REDACTED_DATASETS,
2877 				    &dspp.numfromredactsnaps,
2878 				    &fromredact)) {
2879 					dspp.numfromredactsnaps =
2880 					    NUM_SNAPS_NOT_REDACTED;
2881 				} else if (dspp.numfromredactsnaps > 0) {
2882 					uint64_t size =
2883 					    dspp.numfromredactsnaps *
2884 					    sizeof (uint64_t);
2885 					dspp.fromredactsnaps = kmem_zalloc(size,
2886 					    KM_SLEEP);
2887 					memcpy(dspp.fromredactsnaps, fromredact,
2888 					    size);
2889 				}
2890 				if (!dsl_dataset_is_before(dspp.to_ds, fromds,
2891 				    0)) {
2892 					err = SET_ERROR(EXDEV);
2893 				} else {
2894 					zb->zbm_creation_txg =
2895 					    dsl_dataset_phys(fromds)->
2896 					    ds_creation_txg;
2897 					zb->zbm_creation_time =
2898 					    dsl_dataset_phys(fromds)->
2899 					    ds_creation_time;
2900 					zb->zbm_guid =
2901 					    dsl_dataset_phys(fromds)->ds_guid;
2902 					zb->zbm_redaction_obj = 0;
2903 
2904 					if (dsl_dataset_is_zapified(fromds)) {
2905 						(void) zap_lookup(
2906 						    dspp.dp->dp_meta_objset,
2907 						    fromds->ds_object,
2908 						    DS_FIELD_IVSET_GUID, 8, 1,
2909 						    &zb->zbm_ivset_guid);
2910 					}
2911 				}
2912 				dsl_dataset_rele(fromds, FTAG);
2913 			}
2914 		} else {
2915 			dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2916 			err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds,
2917 			    zb);
2918 			if (err == EXDEV && zb->zbm_redaction_obj != 0 &&
2919 			    zb->zbm_guid ==
2920 			    dsl_dataset_phys(dspp.to_ds)->ds_guid)
2921 				err = 0;
2922 		}
2923 
2924 		if (err == 0) {
2925 			/* dmu_send_impl will call dsl_pool_rele for us. */
2926 			err = dmu_send_impl(&dspp);
2927 		} else {
2928 			if (dspp.fromredactsnaps)
2929 				kmem_free(dspp.fromredactsnaps,
2930 				    dspp.numfromredactsnaps *
2931 				    sizeof (uint64_t));
2932 			dsl_pool_rele(dspp.dp, FTAG);
2933 		}
2934 	} else {
2935 		dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2936 		err = dmu_send_impl(&dspp);
2937 	}
2938 	if (owned)
2939 		dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2940 	else
2941 		dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2942 	return (err);
2943 }
2944 
2945 static int
2946 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
2947     uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
2948 {
2949 	int err = 0;
2950 	uint64_t size;
2951 	/*
2952 	 * Assume that space (both on-disk and in-stream) is dominated by
2953 	 * data.  We will adjust for indirect blocks and the copies property,
2954 	 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
2955 	 */
2956 
2957 	uint64_t recordsize;
2958 	uint64_t record_count;
2959 	objset_t *os;
2960 	VERIFY0(dmu_objset_from_ds(ds, &os));
2961 
2962 	/* Assume all (uncompressed) blocks are recordsize. */
2963 	if (zfs_override_estimate_recordsize != 0) {
2964 		recordsize = zfs_override_estimate_recordsize;
2965 	} else if (os->os_phys->os_type == DMU_OST_ZVOL) {
2966 		err = dsl_prop_get_int_ds(ds,
2967 		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
2968 	} else {
2969 		err = dsl_prop_get_int_ds(ds,
2970 		    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
2971 	}
2972 	if (err != 0)
2973 		return (err);
2974 	record_count = uncompressed / recordsize;
2975 
2976 	/*
2977 	 * If we're estimating a send size for a compressed stream, use the
2978 	 * compressed data size to estimate the stream size. Otherwise, use the
2979 	 * uncompressed data size.
2980 	 */
2981 	size = stream_compressed ? compressed : uncompressed;
2982 
2983 	/*
2984 	 * Subtract out approximate space used by indirect blocks.
2985 	 * Assume most space is used by data blocks (non-indirect, non-dnode).
2986 	 * Assume no ditto blocks or internal fragmentation.
2987 	 *
2988 	 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
2989 	 * block.
2990 	 */
2991 	size -= record_count * sizeof (blkptr_t);
2992 
2993 	/* Add in the space for the record associated with each block. */
2994 	size += record_count * sizeof (dmu_replay_record_t);
2995 
2996 	*sizep = size;
2997 
2998 	return (0);
2999 }
3000 
3001 int
3002 dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds,
3003     zfs_bookmark_phys_t *frombook, boolean_t stream_compressed,
3004     boolean_t saved, uint64_t *sizep)
3005 {
3006 	int err;
3007 	dsl_dataset_t *ds = origds;
3008 	uint64_t uncomp, comp;
3009 
3010 	ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool));
3011 	ASSERT(fromds == NULL || frombook == NULL);
3012 
3013 	/*
3014 	 * If this is a saved send we may actually be sending
3015 	 * from the %recv clone used for resuming.
3016 	 */
3017 	if (saved) {
3018 		objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset;
3019 		uint64_t guid;
3020 		char dsname[ZFS_MAX_DATASET_NAME_LEN + 6];
3021 
3022 		dsl_dataset_name(origds, dsname);
3023 		(void) strcat(dsname, "/");
3024 		(void) strlcat(dsname, recv_clone_name,
3025 		    sizeof (dsname) - strlen(dsname));
3026 
3027 		err = dsl_dataset_hold(origds->ds_dir->dd_pool,
3028 		    dsname, FTAG, &ds);
3029 		if (err != ENOENT && err != 0) {
3030 			return (err);
3031 		} else if (err == ENOENT) {
3032 			ds = origds;
3033 		}
3034 
3035 		/* check that this dataset has partially received data */
3036 		err = zap_lookup(mos, ds->ds_object,
3037 		    DS_FIELD_RESUME_TOGUID, 8, 1, &guid);
3038 		if (err != 0) {
3039 			err = SET_ERROR(err == ENOENT ? EINVAL : err);
3040 			goto out;
3041 		}
3042 
3043 		err = zap_lookup(mos, ds->ds_object,
3044 		    DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname);
3045 		if (err != 0) {
3046 			err = SET_ERROR(err == ENOENT ? EINVAL : err);
3047 			goto out;
3048 		}
3049 	}
3050 
3051 	/* tosnap must be a snapshot or the target of a saved send */
3052 	if (!ds->ds_is_snapshot && ds == origds)
3053 		return (SET_ERROR(EINVAL));
3054 
3055 	if (fromds != NULL) {
3056 		uint64_t used;
3057 		if (!fromds->ds_is_snapshot) {
3058 			err = SET_ERROR(EINVAL);
3059 			goto out;
3060 		}
3061 
3062 		if (!dsl_dataset_is_before(ds, fromds, 0)) {
3063 			err = SET_ERROR(EXDEV);
3064 			goto out;
3065 		}
3066 
3067 		err = dsl_dataset_space_written(fromds, ds, &used, &comp,
3068 		    &uncomp);
3069 		if (err != 0)
3070 			goto out;
3071 	} else if (frombook != NULL) {
3072 		uint64_t used;
3073 		err = dsl_dataset_space_written_bookmark(frombook, ds, &used,
3074 		    &comp, &uncomp);
3075 		if (err != 0)
3076 			goto out;
3077 	} else {
3078 		uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
3079 		comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
3080 	}
3081 
3082 	err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
3083 	    stream_compressed, sizep);
3084 	/*
3085 	 * Add the size of the BEGIN and END records to the estimate.
3086 	 */
3087 	*sizep += 2 * sizeof (dmu_replay_record_t);
3088 
3089 out:
3090 	if (ds != origds)
3091 		dsl_dataset_rele(ds, FTAG);
3092 	return (err);
3093 }
3094 
3095 ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW,
3096 	"Allow sending corrupt data");
3097 
3098 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, UINT, ZMOD_RW,
3099 	"Maximum send queue length");
3100 
3101 ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW,
3102 	"Send unmodified spill blocks");
3103 
3104 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, UINT, ZMOD_RW,
3105 	"Maximum send queue length for non-prefetch queues");
3106 
3107 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, UINT, ZMOD_RW,
3108 	"Send queue fill fraction");
3109 
3110 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, UINT, ZMOD_RW,
3111 	"Send queue fill fraction for non-prefetch queues");
3112 
3113 ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, UINT, ZMOD_RW,
3114 	"Override block size estimate with fixed size");
3115