xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_send.c (revision d485c77f203fb0f4cdc08dea5ff81631b51d8809)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright 2016 RackTop Systems.
28  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  */
32 
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_synctask.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zfs_znode.h>
51 #include <zfs_fletcher.h>
52 #include <sys/avl.h>
53 #include <sys/ddt.h>
54 #include <sys/zfs_onexit.h>
55 #include <sys/dmu_send.h>
56 #include <sys/dmu_recv.h>
57 #include <sys/dsl_destroy.h>
58 #include <sys/blkptr.h>
59 #include <sys/dsl_bookmark.h>
60 #include <sys/zfeature.h>
61 #include <sys/bqueue.h>
62 #include <sys/zvol.h>
63 #include <sys/policy.h>
64 #include <sys/objlist.h>
65 #ifdef _KERNEL
66 #include <sys/zfs_vfsops.h>
67 #endif
68 
69 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
70 int zfs_send_corrupt_data = B_FALSE;
71 /*
72  * This tunable controls the amount of data (measured in bytes) that will be
73  * prefetched by zfs send.  If the main thread is blocking on reads that haven't
74  * completed, this variable might need to be increased.  If instead the main
75  * thread is issuing new reads because the prefetches have fallen out of the
76  * cache, this may need to be decreased.
77  */
78 int zfs_send_queue_length = SPA_MAXBLOCKSIZE;
79 /*
80  * This tunable controls the length of the queues that zfs send worker threads
81  * use to communicate.  If the send_main_thread is blocking on these queues,
82  * this variable may need to be increased.  If there is a significant slowdown
83  * at the start of a send as these threads consume all the available IO
84  * resources, this variable may need to be decreased.
85  */
86 int zfs_send_no_prefetch_queue_length = 1024 * 1024;
87 /*
88  * These tunables control the fill fraction of the queues by zfs send.  The fill
89  * fraction controls the frequency with which threads have to be cv_signaled.
90  * If a lot of cpu time is being spent on cv_signal, then these should be tuned
91  * down.  If the queues empty before the signalled thread can catch up, then
92  * these should be tuned up.
93  */
94 int zfs_send_queue_ff = 20;
95 int zfs_send_no_prefetch_queue_ff = 20;
96 
97 /*
98  * Use this to override the recordsize calculation for fast zfs send estimates.
99  */
100 int zfs_override_estimate_recordsize = 0;
101 
102 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
103 int zfs_send_set_freerecords_bit = B_TRUE;
104 
105 /* Set this tunable to FALSE is disable sending unmodified spill blocks. */
106 int zfs_send_unmodified_spill_blocks = B_TRUE;
107 
108 static inline boolean_t
109 overflow_multiply(uint64_t a, uint64_t b, uint64_t *c)
110 {
111 	uint64_t temp = a * b;
112 	if (b != 0 && temp / b != a)
113 		return (B_FALSE);
114 	*c = temp;
115 	return (B_TRUE);
116 }
117 
118 struct send_thread_arg {
119 	bqueue_t	q;
120 	objset_t	*os;		/* Objset to traverse */
121 	uint64_t	fromtxg;	/* Traverse from this txg */
122 	int		flags;		/* flags to pass to traverse_dataset */
123 	int		error_code;
124 	boolean_t	cancel;
125 	zbookmark_phys_t resume;
126 	uint64_t	*num_blocks_visited;
127 };
128 
129 struct redact_list_thread_arg {
130 	boolean_t		cancel;
131 	bqueue_t		q;
132 	zbookmark_phys_t	resume;
133 	redaction_list_t	*rl;
134 	boolean_t		mark_redact;
135 	int			error_code;
136 	uint64_t		*num_blocks_visited;
137 };
138 
139 struct send_merge_thread_arg {
140 	bqueue_t			q;
141 	objset_t			*os;
142 	struct redact_list_thread_arg	*from_arg;
143 	struct send_thread_arg		*to_arg;
144 	struct redact_list_thread_arg	*redact_arg;
145 	int				error;
146 	boolean_t			cancel;
147 };
148 
149 struct send_range {
150 	boolean_t		eos_marker; /* Marks the end of the stream */
151 	uint64_t		object;
152 	uint64_t		start_blkid;
153 	uint64_t		end_blkid;
154 	bqueue_node_t		ln;
155 	enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT,
156 	    PREVIOUSLY_REDACTED} type;
157 	union {
158 		struct srd {
159 			dmu_object_type_t	obj_type;
160 			uint32_t		datablksz; // logical size
161 			uint32_t		datasz; // payload size
162 			blkptr_t		bp;
163 			arc_buf_t		*abuf;
164 			abd_t			*abd;
165 			kmutex_t		lock;
166 			kcondvar_t		cv;
167 			boolean_t		io_outstanding;
168 			int			io_err;
169 		} data;
170 		struct srh {
171 			uint32_t		datablksz;
172 		} hole;
173 		struct sro {
174 			/*
175 			 * This is a pointer because embedding it in the
176 			 * struct causes these structures to be massively larger
177 			 * for all range types; this makes the code much less
178 			 * memory efficient.
179 			 */
180 			dnode_phys_t		*dnp;
181 			blkptr_t		bp;
182 		} object;
183 		struct srr {
184 			uint32_t		datablksz;
185 		} redact;
186 		struct sror {
187 			blkptr_t		bp;
188 		} object_range;
189 	} sru;
190 };
191 
192 /*
193  * The list of data whose inclusion in a send stream can be pending from
194  * one call to backup_cb to another.  Multiple calls to dump_free(),
195  * dump_freeobjects(), and dump_redact() can be aggregated into a single
196  * DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record.
197  */
198 typedef enum {
199 	PENDING_NONE,
200 	PENDING_FREE,
201 	PENDING_FREEOBJECTS,
202 	PENDING_REDACT
203 } dmu_pendop_t;
204 
205 typedef struct dmu_send_cookie {
206 	dmu_replay_record_t *dsc_drr;
207 	dmu_send_outparams_t *dsc_dso;
208 	offset_t *dsc_off;
209 	objset_t *dsc_os;
210 	zio_cksum_t dsc_zc;
211 	uint64_t dsc_toguid;
212 	uint64_t dsc_fromtxg;
213 	int dsc_err;
214 	dmu_pendop_t dsc_pending_op;
215 	uint64_t dsc_featureflags;
216 	uint64_t dsc_last_data_object;
217 	uint64_t dsc_last_data_offset;
218 	uint64_t dsc_resume_object;
219 	uint64_t dsc_resume_offset;
220 	boolean_t dsc_sent_begin;
221 	boolean_t dsc_sent_end;
222 } dmu_send_cookie_t;
223 
224 static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range);
225 
226 static void
227 range_free(struct send_range *range)
228 {
229 	if (range->type == OBJECT) {
230 		size_t size = sizeof (dnode_phys_t) *
231 		    (range->sru.object.dnp->dn_extra_slots + 1);
232 		kmem_free(range->sru.object.dnp, size);
233 	} else if (range->type == DATA) {
234 		mutex_enter(&range->sru.data.lock);
235 		while (range->sru.data.io_outstanding)
236 			cv_wait(&range->sru.data.cv, &range->sru.data.lock);
237 		if (range->sru.data.abd != NULL)
238 			abd_free(range->sru.data.abd);
239 		if (range->sru.data.abuf != NULL) {
240 			arc_buf_destroy(range->sru.data.abuf,
241 			    &range->sru.data.abuf);
242 		}
243 		mutex_exit(&range->sru.data.lock);
244 
245 		cv_destroy(&range->sru.data.cv);
246 		mutex_destroy(&range->sru.data.lock);
247 	}
248 	kmem_free(range, sizeof (*range));
249 }
250 
251 /*
252  * For all record types except BEGIN, fill in the checksum (overlaid in
253  * drr_u.drr_checksum.drr_checksum).  The checksum verifies everything
254  * up to the start of the checksum itself.
255  */
256 static int
257 dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len)
258 {
259 	dmu_send_outparams_t *dso = dscp->dsc_dso;
260 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
261 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
262 	(void) fletcher_4_incremental_native(dscp->dsc_drr,
263 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
264 	    &dscp->dsc_zc);
265 	if (dscp->dsc_drr->drr_type == DRR_BEGIN) {
266 		dscp->dsc_sent_begin = B_TRUE;
267 	} else {
268 		ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u.
269 		    drr_checksum.drr_checksum));
270 		dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc;
271 	}
272 	if (dscp->dsc_drr->drr_type == DRR_END) {
273 		dscp->dsc_sent_end = B_TRUE;
274 	}
275 	(void) fletcher_4_incremental_native(&dscp->dsc_drr->
276 	    drr_u.drr_checksum.drr_checksum,
277 	    sizeof (zio_cksum_t), &dscp->dsc_zc);
278 	*dscp->dsc_off += sizeof (dmu_replay_record_t);
279 	dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr,
280 	    sizeof (dmu_replay_record_t), dso->dso_arg);
281 	if (dscp->dsc_err != 0)
282 		return (SET_ERROR(EINTR));
283 	if (payload_len != 0) {
284 		*dscp->dsc_off += payload_len;
285 		/*
286 		 * payload is null when dso_dryrun == B_TRUE (i.e. when we're
287 		 * doing a send size calculation)
288 		 */
289 		if (payload != NULL) {
290 			(void) fletcher_4_incremental_native(
291 			    payload, payload_len, &dscp->dsc_zc);
292 		}
293 
294 		/*
295 		 * The code does not rely on this (len being a multiple of 8).
296 		 * We keep this assertion because of the corresponding assertion
297 		 * in receive_read().  Keeping this assertion ensures that we do
298 		 * not inadvertently break backwards compatibility (causing the
299 		 * assertion in receive_read() to trigger on old software).
300 		 *
301 		 * Raw sends cannot be received on old software, and so can
302 		 * bypass this assertion.
303 		 */
304 
305 		ASSERT((payload_len % 8 == 0) ||
306 		    (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW));
307 
308 		dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload,
309 		    payload_len, dso->dso_arg);
310 		if (dscp->dsc_err != 0)
311 			return (SET_ERROR(EINTR));
312 	}
313 	return (0);
314 }
315 
316 /*
317  * Fill in the drr_free struct, or perform aggregation if the previous record is
318  * also a free record, and the two are adjacent.
319  *
320  * Note that we send free records even for a full send, because we want to be
321  * able to receive a full send as a clone, which requires a list of all the free
322  * and freeobject records that were generated on the source.
323  */
324 static int
325 dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
326     uint64_t length)
327 {
328 	struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free);
329 
330 	/*
331 	 * When we receive a free record, dbuf_free_range() assumes
332 	 * that the receiving system doesn't have any dbufs in the range
333 	 * being freed.  This is always true because there is a one-record
334 	 * constraint: we only send one WRITE record for any given
335 	 * object,offset.  We know that the one-record constraint is
336 	 * true because we always send data in increasing order by
337 	 * object,offset.
338 	 *
339 	 * If the increasing-order constraint ever changes, we should find
340 	 * another way to assert that the one-record constraint is still
341 	 * satisfied.
342 	 */
343 	ASSERT(object > dscp->dsc_last_data_object ||
344 	    (object == dscp->dsc_last_data_object &&
345 	    offset > dscp->dsc_last_data_offset));
346 
347 	/*
348 	 * If there is a pending op, but it's not PENDING_FREE, push it out,
349 	 * since free block aggregation can only be done for blocks of the
350 	 * same type (i.e., DRR_FREE records can only be aggregated with
351 	 * other DRR_FREE records.  DRR_FREEOBJECTS records can only be
352 	 * aggregated with other DRR_FREEOBJECTS records).
353 	 */
354 	if (dscp->dsc_pending_op != PENDING_NONE &&
355 	    dscp->dsc_pending_op != PENDING_FREE) {
356 		if (dump_record(dscp, NULL, 0) != 0)
357 			return (SET_ERROR(EINTR));
358 		dscp->dsc_pending_op = PENDING_NONE;
359 	}
360 
361 	if (dscp->dsc_pending_op == PENDING_FREE) {
362 		/*
363 		 * Check to see whether this free block can be aggregated
364 		 * with pending one.
365 		 */
366 		if (drrf->drr_object == object && drrf->drr_offset +
367 		    drrf->drr_length == offset) {
368 			if (offset + length < offset || length == UINT64_MAX)
369 				drrf->drr_length = UINT64_MAX;
370 			else
371 				drrf->drr_length += length;
372 			return (0);
373 		} else {
374 			/* not a continuation.  Push out pending record */
375 			if (dump_record(dscp, NULL, 0) != 0)
376 				return (SET_ERROR(EINTR));
377 			dscp->dsc_pending_op = PENDING_NONE;
378 		}
379 	}
380 	/* create a FREE record and make it pending */
381 	bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t));
382 	dscp->dsc_drr->drr_type = DRR_FREE;
383 	drrf->drr_object = object;
384 	drrf->drr_offset = offset;
385 	if (offset + length < offset)
386 		drrf->drr_length = DMU_OBJECT_END;
387 	else
388 		drrf->drr_length = length;
389 	drrf->drr_toguid = dscp->dsc_toguid;
390 	if (length == DMU_OBJECT_END) {
391 		if (dump_record(dscp, NULL, 0) != 0)
392 			return (SET_ERROR(EINTR));
393 	} else {
394 		dscp->dsc_pending_op = PENDING_FREE;
395 	}
396 
397 	return (0);
398 }
399 
400 /*
401  * Fill in the drr_redact struct, or perform aggregation if the previous record
402  * is also a redaction record, and the two are adjacent.
403  */
404 static int
405 dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
406     uint64_t length)
407 {
408 	struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact;
409 
410 	/*
411 	 * If there is a pending op, but it's not PENDING_REDACT, push it out,
412 	 * since free block aggregation can only be done for blocks of the
413 	 * same type (i.e., DRR_REDACT records can only be aggregated with
414 	 * other DRR_REDACT records).
415 	 */
416 	if (dscp->dsc_pending_op != PENDING_NONE &&
417 	    dscp->dsc_pending_op != PENDING_REDACT) {
418 		if (dump_record(dscp, NULL, 0) != 0)
419 			return (SET_ERROR(EINTR));
420 		dscp->dsc_pending_op = PENDING_NONE;
421 	}
422 
423 	if (dscp->dsc_pending_op == PENDING_REDACT) {
424 		/*
425 		 * Check to see whether this redacted block can be aggregated
426 		 * with pending one.
427 		 */
428 		if (drrr->drr_object == object && drrr->drr_offset +
429 		    drrr->drr_length == offset) {
430 			drrr->drr_length += length;
431 			return (0);
432 		} else {
433 			/* not a continuation.  Push out pending record */
434 			if (dump_record(dscp, NULL, 0) != 0)
435 				return (SET_ERROR(EINTR));
436 			dscp->dsc_pending_op = PENDING_NONE;
437 		}
438 	}
439 	/* create a REDACT record and make it pending */
440 	bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t));
441 	dscp->dsc_drr->drr_type = DRR_REDACT;
442 	drrr->drr_object = object;
443 	drrr->drr_offset = offset;
444 	drrr->drr_length = length;
445 	drrr->drr_toguid = dscp->dsc_toguid;
446 	dscp->dsc_pending_op = PENDING_REDACT;
447 
448 	return (0);
449 }
450 
451 static int
452 dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object,
453     uint64_t offset, int lsize, int psize, const blkptr_t *bp, void *data)
454 {
455 	uint64_t payload_size;
456 	boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
457 	struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write);
458 
459 	/*
460 	 * We send data in increasing object, offset order.
461 	 * See comment in dump_free() for details.
462 	 */
463 	ASSERT(object > dscp->dsc_last_data_object ||
464 	    (object == dscp->dsc_last_data_object &&
465 	    offset > dscp->dsc_last_data_offset));
466 	dscp->dsc_last_data_object = object;
467 	dscp->dsc_last_data_offset = offset + lsize - 1;
468 
469 	/*
470 	 * If there is any kind of pending aggregation (currently either
471 	 * a grouping of free objects or free blocks), push it out to
472 	 * the stream, since aggregation can't be done across operations
473 	 * of different types.
474 	 */
475 	if (dscp->dsc_pending_op != PENDING_NONE) {
476 		if (dump_record(dscp, NULL, 0) != 0)
477 			return (SET_ERROR(EINTR));
478 		dscp->dsc_pending_op = PENDING_NONE;
479 	}
480 	/* write a WRITE record */
481 	bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t));
482 	dscp->dsc_drr->drr_type = DRR_WRITE;
483 	drrw->drr_object = object;
484 	drrw->drr_type = type;
485 	drrw->drr_offset = offset;
486 	drrw->drr_toguid = dscp->dsc_toguid;
487 	drrw->drr_logical_size = lsize;
488 
489 	/* only set the compression fields if the buf is compressed or raw */
490 	if (raw || lsize != psize) {
491 		ASSERT(raw || dscp->dsc_featureflags &
492 		    DMU_BACKUP_FEATURE_COMPRESSED);
493 		ASSERT(!BP_IS_EMBEDDED(bp));
494 		ASSERT3S(psize, >, 0);
495 
496 		if (raw) {
497 			ASSERT(BP_IS_PROTECTED(bp));
498 
499 			/*
500 			 * This is a raw protected block so we need to pass
501 			 * along everything the receiving side will need to
502 			 * interpret this block, including the byteswap, salt,
503 			 * IV, and MAC.
504 			 */
505 			if (BP_SHOULD_BYTESWAP(bp))
506 				drrw->drr_flags |= DRR_RAW_BYTESWAP;
507 			zio_crypt_decode_params_bp(bp, drrw->drr_salt,
508 			    drrw->drr_iv);
509 			zio_crypt_decode_mac_bp(bp, drrw->drr_mac);
510 		} else {
511 			/* this is a compressed block */
512 			ASSERT(dscp->dsc_featureflags &
513 			    DMU_BACKUP_FEATURE_COMPRESSED);
514 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
515 			ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
516 			ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
517 			ASSERT3S(lsize, >=, psize);
518 		}
519 
520 		/* set fields common to compressed and raw sends */
521 		drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
522 		drrw->drr_compressed_size = psize;
523 		payload_size = drrw->drr_compressed_size;
524 	} else {
525 		payload_size = drrw->drr_logical_size;
526 	}
527 
528 	if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) {
529 		/*
530 		 * There's no pre-computed checksum for partial-block writes,
531 		 * embedded BP's, or encrypted BP's that are being sent as
532 		 * plaintext, so (like fletcher4-checksummed blocks) userland
533 		 * will have to compute a dedup-capable checksum itself.
534 		 */
535 		drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
536 	} else {
537 		drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
538 		if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
539 		    ZCHECKSUM_FLAG_DEDUP)
540 			drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
541 		DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
542 		DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
543 		DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
544 		DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp));
545 		drrw->drr_key.ddk_cksum = bp->blk_cksum;
546 	}
547 
548 	if (dump_record(dscp, data, payload_size) != 0)
549 		return (SET_ERROR(EINTR));
550 	return (0);
551 }
552 
553 static int
554 dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
555     int blksz, const blkptr_t *bp)
556 {
557 	char buf[BPE_PAYLOAD_SIZE];
558 	struct drr_write_embedded *drrw =
559 	    &(dscp->dsc_drr->drr_u.drr_write_embedded);
560 
561 	if (dscp->dsc_pending_op != PENDING_NONE) {
562 		if (dump_record(dscp, NULL, 0) != 0)
563 			return (SET_ERROR(EINTR));
564 		dscp->dsc_pending_op = PENDING_NONE;
565 	}
566 
567 	ASSERT(BP_IS_EMBEDDED(bp));
568 
569 	bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t));
570 	dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED;
571 	drrw->drr_object = object;
572 	drrw->drr_offset = offset;
573 	drrw->drr_length = blksz;
574 	drrw->drr_toguid = dscp->dsc_toguid;
575 	drrw->drr_compression = BP_GET_COMPRESS(bp);
576 	drrw->drr_etype = BPE_GET_ETYPE(bp);
577 	drrw->drr_lsize = BPE_GET_LSIZE(bp);
578 	drrw->drr_psize = BPE_GET_PSIZE(bp);
579 
580 	decode_embedded_bp_compressed(bp, buf);
581 
582 	if (dump_record(dscp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
583 		return (SET_ERROR(EINTR));
584 	return (0);
585 }
586 
587 static int
588 dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
589     void *data)
590 {
591 	struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill);
592 	uint64_t blksz = BP_GET_LSIZE(bp);
593 	uint64_t payload_size = blksz;
594 
595 	if (dscp->dsc_pending_op != PENDING_NONE) {
596 		if (dump_record(dscp, NULL, 0) != 0)
597 			return (SET_ERROR(EINTR));
598 		dscp->dsc_pending_op = PENDING_NONE;
599 	}
600 
601 	/* write a SPILL record */
602 	bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t));
603 	dscp->dsc_drr->drr_type = DRR_SPILL;
604 	drrs->drr_object = object;
605 	drrs->drr_length = blksz;
606 	drrs->drr_toguid = dscp->dsc_toguid;
607 
608 	/* See comment in dump_dnode() for full details */
609 	if (zfs_send_unmodified_spill_blocks &&
610 	    (bp->blk_birth <= dscp->dsc_fromtxg)) {
611 		drrs->drr_flags |= DRR_SPILL_UNMODIFIED;
612 	}
613 
614 	/* handle raw send fields */
615 	if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
616 		ASSERT(BP_IS_PROTECTED(bp));
617 
618 		if (BP_SHOULD_BYTESWAP(bp))
619 			drrs->drr_flags |= DRR_RAW_BYTESWAP;
620 		drrs->drr_compressiontype = BP_GET_COMPRESS(bp);
621 		drrs->drr_compressed_size = BP_GET_PSIZE(bp);
622 		zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv);
623 		zio_crypt_decode_mac_bp(bp, drrs->drr_mac);
624 		payload_size = drrs->drr_compressed_size;
625 	}
626 
627 	if (dump_record(dscp, data, payload_size) != 0)
628 		return (SET_ERROR(EINTR));
629 	return (0);
630 }
631 
632 static int
633 dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs)
634 {
635 	struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects);
636 	uint64_t maxobj = DNODES_PER_BLOCK *
637 	    (DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1);
638 
639 	/*
640 	 * ZoL < 0.7 does not handle large FREEOBJECTS records correctly,
641 	 * leading to zfs recv never completing. to avoid this issue, don't
642 	 * send FREEOBJECTS records for object IDs which cannot exist on the
643 	 * receiving side.
644 	 */
645 	if (maxobj > 0) {
646 		if (maxobj <= firstobj)
647 			return (0);
648 
649 		if (maxobj < firstobj + numobjs)
650 			numobjs = maxobj - firstobj;
651 	}
652 
653 	/*
654 	 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
655 	 * push it out, since free block aggregation can only be done for
656 	 * blocks of the same type (i.e., DRR_FREE records can only be
657 	 * aggregated with other DRR_FREE records.  DRR_FREEOBJECTS records
658 	 * can only be aggregated with other DRR_FREEOBJECTS records).
659 	 */
660 	if (dscp->dsc_pending_op != PENDING_NONE &&
661 	    dscp->dsc_pending_op != PENDING_FREEOBJECTS) {
662 		if (dump_record(dscp, NULL, 0) != 0)
663 			return (SET_ERROR(EINTR));
664 		dscp->dsc_pending_op = PENDING_NONE;
665 	}
666 
667 	if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) {
668 		/*
669 		 * See whether this free object array can be aggregated
670 		 * with pending one
671 		 */
672 		if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
673 			drrfo->drr_numobjs += numobjs;
674 			return (0);
675 		} else {
676 			/* can't be aggregated.  Push out pending record */
677 			if (dump_record(dscp, NULL, 0) != 0)
678 				return (SET_ERROR(EINTR));
679 			dscp->dsc_pending_op = PENDING_NONE;
680 		}
681 	}
682 
683 	/* write a FREEOBJECTS record */
684 	bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t));
685 	dscp->dsc_drr->drr_type = DRR_FREEOBJECTS;
686 	drrfo->drr_firstobj = firstobj;
687 	drrfo->drr_numobjs = numobjs;
688 	drrfo->drr_toguid = dscp->dsc_toguid;
689 
690 	dscp->dsc_pending_op = PENDING_FREEOBJECTS;
691 
692 	return (0);
693 }
694 
695 static int
696 dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
697     dnode_phys_t *dnp)
698 {
699 	struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object);
700 	int bonuslen;
701 
702 	if (object < dscp->dsc_resume_object) {
703 		/*
704 		 * Note: when resuming, we will visit all the dnodes in
705 		 * the block of dnodes that we are resuming from.  In
706 		 * this case it's unnecessary to send the dnodes prior to
707 		 * the one we are resuming from.  We should be at most one
708 		 * block's worth of dnodes behind the resume point.
709 		 */
710 		ASSERT3U(dscp->dsc_resume_object - object, <,
711 		    1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
712 		return (0);
713 	}
714 
715 	if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
716 		return (dump_freeobjects(dscp, object, 1));
717 
718 	if (dscp->dsc_pending_op != PENDING_NONE) {
719 		if (dump_record(dscp, NULL, 0) != 0)
720 			return (SET_ERROR(EINTR));
721 		dscp->dsc_pending_op = PENDING_NONE;
722 	}
723 
724 	/* write an OBJECT record */
725 	bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t));
726 	dscp->dsc_drr->drr_type = DRR_OBJECT;
727 	drro->drr_object = object;
728 	drro->drr_type = dnp->dn_type;
729 	drro->drr_bonustype = dnp->dn_bonustype;
730 	drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
731 	drro->drr_bonuslen = dnp->dn_bonuslen;
732 	drro->drr_dn_slots = dnp->dn_extra_slots + 1;
733 	drro->drr_checksumtype = dnp->dn_checksum;
734 	drro->drr_compress = dnp->dn_compress;
735 	drro->drr_toguid = dscp->dsc_toguid;
736 
737 	if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
738 	    drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
739 		drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
740 
741 	bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8);
742 
743 	if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
744 		ASSERT(BP_IS_ENCRYPTED(bp));
745 
746 		if (BP_SHOULD_BYTESWAP(bp))
747 			drro->drr_flags |= DRR_RAW_BYTESWAP;
748 
749 		/* needed for reconstructing dnp on recv side */
750 		drro->drr_maxblkid = dnp->dn_maxblkid;
751 		drro->drr_indblkshift = dnp->dn_indblkshift;
752 		drro->drr_nlevels = dnp->dn_nlevels;
753 		drro->drr_nblkptr = dnp->dn_nblkptr;
754 
755 		/*
756 		 * Since we encrypt the entire bonus area, the (raw) part
757 		 * beyond the bonuslen is actually nonzero, so we need
758 		 * to send it.
759 		 */
760 		if (bonuslen != 0) {
761 			drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp);
762 			bonuslen = drro->drr_raw_bonuslen;
763 		}
764 	}
765 
766 	/*
767 	 * DRR_OBJECT_SPILL is set for every dnode which references a
768 	 * spill block.	 This allows the receiving pool to definitively
769 	 * determine when a spill block should be kept or freed.
770 	 */
771 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
772 		drro->drr_flags |= DRR_OBJECT_SPILL;
773 
774 	if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0)
775 		return (SET_ERROR(EINTR));
776 
777 	/* Free anything past the end of the file. */
778 	if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) *
779 	    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0)
780 		return (SET_ERROR(EINTR));
781 
782 	/*
783 	 * Send DRR_SPILL records for unmodified spill blocks.	This is useful
784 	 * because changing certain attributes of the object (e.g. blocksize)
785 	 * can cause old versions of ZFS to incorrectly remove a spill block.
786 	 * Including these records in the stream forces an up to date version
787 	 * to always be written ensuring they're never lost.  Current versions
788 	 * of the code which understand the DRR_FLAG_SPILL_BLOCK feature can
789 	 * ignore these unmodified spill blocks.
790 	 */
791 	if (zfs_send_unmodified_spill_blocks &&
792 	    (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) &&
793 	    (DN_SPILL_BLKPTR(dnp)->blk_birth <= dscp->dsc_fromtxg)) {
794 		struct send_range record;
795 		blkptr_t *bp = DN_SPILL_BLKPTR(dnp);
796 
797 		bzero(&record, sizeof (struct send_range));
798 		record.type = DATA;
799 		record.object = object;
800 		record.eos_marker = B_FALSE;
801 		record.start_blkid = DMU_SPILL_BLKID;
802 		record.end_blkid = record.start_blkid + 1;
803 		record.sru.data.bp = *bp;
804 		record.sru.data.obj_type = dnp->dn_type;
805 		record.sru.data.datablksz = BP_GET_LSIZE(bp);
806 
807 		if (do_dump(dscp, &record) != 0)
808 			return (SET_ERROR(EINTR));
809 	}
810 
811 	if (dscp->dsc_err != 0)
812 		return (SET_ERROR(EINTR));
813 
814 	return (0);
815 }
816 
817 static int
818 dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp,
819     uint64_t firstobj, uint64_t numslots)
820 {
821 	struct drr_object_range *drror =
822 	    &(dscp->dsc_drr->drr_u.drr_object_range);
823 
824 	/* we only use this record type for raw sends */
825 	ASSERT(BP_IS_PROTECTED(bp));
826 	ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
827 	ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
828 	ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE);
829 	ASSERT0(BP_GET_LEVEL(bp));
830 
831 	if (dscp->dsc_pending_op != PENDING_NONE) {
832 		if (dump_record(dscp, NULL, 0) != 0)
833 			return (SET_ERROR(EINTR));
834 		dscp->dsc_pending_op = PENDING_NONE;
835 	}
836 
837 	bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t));
838 	dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE;
839 	drror->drr_firstobj = firstobj;
840 	drror->drr_numslots = numslots;
841 	drror->drr_toguid = dscp->dsc_toguid;
842 	if (BP_SHOULD_BYTESWAP(bp))
843 		drror->drr_flags |= DRR_RAW_BYTESWAP;
844 	zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv);
845 	zio_crypt_decode_mac_bp(bp, drror->drr_mac);
846 
847 	if (dump_record(dscp, NULL, 0) != 0)
848 		return (SET_ERROR(EINTR));
849 	return (0);
850 }
851 
852 static boolean_t
853 send_do_embed(const blkptr_t *bp, uint64_t featureflags)
854 {
855 	if (!BP_IS_EMBEDDED(bp))
856 		return (B_FALSE);
857 
858 	/*
859 	 * Compression function must be legacy, or explicitly enabled.
860 	 */
861 	if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
862 	    !(featureflags & DMU_BACKUP_FEATURE_LZ4)))
863 		return (B_FALSE);
864 
865 	/*
866 	 * If we have not set the ZSTD feature flag, we can't send ZSTD
867 	 * compressed embedded blocks, as the receiver may not support them.
868 	 */
869 	if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD &&
870 	    !(featureflags & DMU_BACKUP_FEATURE_ZSTD)))
871 		return (B_FALSE);
872 
873 	/*
874 	 * Embed type must be explicitly enabled.
875 	 */
876 	switch (BPE_GET_ETYPE(bp)) {
877 	case BP_EMBEDDED_TYPE_DATA:
878 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
879 			return (B_TRUE);
880 		break;
881 	default:
882 		return (B_FALSE);
883 	}
884 	return (B_FALSE);
885 }
886 
887 /*
888  * This function actually handles figuring out what kind of record needs to be
889  * dumped, and calling the appropriate helper function.  In most cases,
890  * the data has already been read by send_reader_thread().
891  */
892 static int
893 do_dump(dmu_send_cookie_t *dscp, struct send_range *range)
894 {
895 	int err = 0;
896 	switch (range->type) {
897 	case OBJECT:
898 		err = dump_dnode(dscp, &range->sru.object.bp, range->object,
899 		    range->sru.object.dnp);
900 		return (err);
901 	case OBJECT_RANGE: {
902 		ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
903 		if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
904 			return (0);
905 		}
906 		uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >>
907 		    DNODE_SHIFT;
908 		uint64_t firstobj = range->start_blkid * epb;
909 		err = dump_object_range(dscp, &range->sru.object_range.bp,
910 		    firstobj, epb);
911 		break;
912 	}
913 	case REDACT: {
914 		struct srr *srrp = &range->sru.redact;
915 		err = dump_redact(dscp, range->object, range->start_blkid *
916 		    srrp->datablksz, (range->end_blkid - range->start_blkid) *
917 		    srrp->datablksz);
918 		return (err);
919 	}
920 	case DATA: {
921 		struct srd *srdp = &range->sru.data;
922 		blkptr_t *bp = &srdp->bp;
923 		spa_t *spa =
924 		    dmu_objset_spa(dscp->dsc_os);
925 
926 		ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp));
927 		ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
928 		if (BP_GET_TYPE(bp) == DMU_OT_SA) {
929 			arc_flags_t aflags = ARC_FLAG_WAIT;
930 			enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
931 
932 			if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
933 				ASSERT(BP_IS_PROTECTED(bp));
934 				zioflags |= ZIO_FLAG_RAW;
935 			}
936 
937 			zbookmark_phys_t zb;
938 			ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID);
939 			zb.zb_objset = dmu_objset_id(dscp->dsc_os);
940 			zb.zb_object = range->object;
941 			zb.zb_level = 0;
942 			zb.zb_blkid = range->start_blkid;
943 
944 			arc_buf_t *abuf = NULL;
945 			if (!dscp->dsc_dso->dso_dryrun && arc_read(NULL, spa,
946 			    bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ,
947 			    zioflags, &aflags, &zb) != 0)
948 				return (SET_ERROR(EIO));
949 
950 			err = dump_spill(dscp, bp, zb.zb_object,
951 			    (abuf == NULL ? NULL : abuf->b_data));
952 			if (abuf != NULL)
953 				arc_buf_destroy(abuf, &abuf);
954 			return (err);
955 		}
956 		if (send_do_embed(bp, dscp->dsc_featureflags)) {
957 			err = dump_write_embedded(dscp, range->object,
958 			    range->start_blkid * srdp->datablksz,
959 			    srdp->datablksz, bp);
960 			return (err);
961 		}
962 		ASSERT(range->object > dscp->dsc_resume_object ||
963 		    (range->object == dscp->dsc_resume_object &&
964 		    range->start_blkid * srdp->datablksz >=
965 		    dscp->dsc_resume_offset));
966 		/* it's a level-0 block of a regular object */
967 
968 		mutex_enter(&srdp->lock);
969 		while (srdp->io_outstanding)
970 			cv_wait(&srdp->cv, &srdp->lock);
971 		err = srdp->io_err;
972 		mutex_exit(&srdp->lock);
973 
974 		if (err != 0) {
975 			if (zfs_send_corrupt_data &&
976 			    !dscp->dsc_dso->dso_dryrun) {
977 				/*
978 				 * Send a block filled with 0x"zfs badd bloc"
979 				 */
980 				srdp->abuf = arc_alloc_buf(spa, &srdp->abuf,
981 				    ARC_BUFC_DATA, srdp->datablksz);
982 				uint64_t *ptr;
983 				for (ptr = srdp->abuf->b_data;
984 				    (char *)ptr < (char *)srdp->abuf->b_data +
985 				    srdp->datablksz; ptr++)
986 					*ptr = 0x2f5baddb10cULL;
987 			} else {
988 				return (SET_ERROR(EIO));
989 			}
990 		}
991 
992 		ASSERT(dscp->dsc_dso->dso_dryrun ||
993 		    srdp->abuf != NULL || srdp->abd != NULL);
994 
995 		uint64_t offset = range->start_blkid * srdp->datablksz;
996 
997 		char *data = NULL;
998 		if (srdp->abd != NULL) {
999 			data = abd_to_buf(srdp->abd);
1000 			ASSERT3P(srdp->abuf, ==, NULL);
1001 		} else if (srdp->abuf != NULL) {
1002 			data = srdp->abuf->b_data;
1003 		}
1004 
1005 		/*
1006 		 * If we have large blocks stored on disk but the send flags
1007 		 * don't allow us to send large blocks, we split the data from
1008 		 * the arc buf into chunks.
1009 		 */
1010 		if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1011 		    !(dscp->dsc_featureflags &
1012 		    DMU_BACKUP_FEATURE_LARGE_BLOCKS)) {
1013 			while (srdp->datablksz > 0 && err == 0) {
1014 				int n = MIN(srdp->datablksz,
1015 				    SPA_OLD_MAXBLOCKSIZE);
1016 				err = dmu_dump_write(dscp, srdp->obj_type,
1017 				    range->object, offset, n, n, NULL, data);
1018 				offset += n;
1019 				/*
1020 				 * When doing dry run, data==NULL is used as a
1021 				 * sentinel value by
1022 				 * dmu_dump_write()->dump_record().
1023 				 */
1024 				if (data != NULL)
1025 					data += n;
1026 				srdp->datablksz -= n;
1027 			}
1028 		} else {
1029 			err = dmu_dump_write(dscp, srdp->obj_type,
1030 			    range->object, offset,
1031 			    srdp->datablksz, srdp->datasz, bp, data);
1032 		}
1033 		return (err);
1034 	}
1035 	case HOLE: {
1036 		struct srh *srhp = &range->sru.hole;
1037 		if (range->object == DMU_META_DNODE_OBJECT) {
1038 			uint32_t span = srhp->datablksz >> DNODE_SHIFT;
1039 			uint64_t first_obj = range->start_blkid * span;
1040 			uint64_t numobj = range->end_blkid * span - first_obj;
1041 			return (dump_freeobjects(dscp, first_obj, numobj));
1042 		}
1043 		uint64_t offset = 0;
1044 
1045 		/*
1046 		 * If this multiply overflows, we don't need to send this block.
1047 		 * Even if it has a birth time, it can never not be a hole, so
1048 		 * we don't need to send records for it.
1049 		 */
1050 		if (!overflow_multiply(range->start_blkid, srhp->datablksz,
1051 		    &offset)) {
1052 			return (0);
1053 		}
1054 		uint64_t len = 0;
1055 
1056 		if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len))
1057 			len = UINT64_MAX;
1058 		len = len - offset;
1059 		return (dump_free(dscp, range->object, offset, len));
1060 	}
1061 	default:
1062 		panic("Invalid range type in do_dump: %d", range->type);
1063 	}
1064 	return (err);
1065 }
1066 
1067 static struct send_range *
1068 range_alloc(enum type type, uint64_t object, uint64_t start_blkid,
1069     uint64_t end_blkid, boolean_t eos)
1070 {
1071 	struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP);
1072 	range->type = type;
1073 	range->object = object;
1074 	range->start_blkid = start_blkid;
1075 	range->end_blkid = end_blkid;
1076 	range->eos_marker = eos;
1077 	if (type == DATA) {
1078 		range->sru.data.abd = NULL;
1079 		range->sru.data.abuf = NULL;
1080 		mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL);
1081 		cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL);
1082 		range->sru.data.io_outstanding = 0;
1083 		range->sru.data.io_err = 0;
1084 	}
1085 	return (range);
1086 }
1087 
1088 /*
1089  * This is the callback function to traverse_dataset that acts as a worker
1090  * thread for dmu_send_impl.
1091  */
1092 /*ARGSUSED*/
1093 static int
1094 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1095     const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
1096 {
1097 	struct send_thread_arg *sta = arg;
1098 	struct send_range *record;
1099 
1100 	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
1101 	    zb->zb_object >= sta->resume.zb_object);
1102 
1103 	/*
1104 	 * All bps of an encrypted os should have the encryption bit set.
1105 	 * If this is not true it indicates tampering and we report an error.
1106 	 */
1107 	if (sta->os->os_encrypted &&
1108 	    !BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) {
1109 		spa_log_error(spa, zb);
1110 		zfs_panic_recover("unencrypted block in encrypted "
1111 		    "object set %llu", dmu_objset_id(sta->os));
1112 		return (SET_ERROR(EIO));
1113 	}
1114 
1115 	if (sta->cancel)
1116 		return (SET_ERROR(EINTR));
1117 	if (zb->zb_object != DMU_META_DNODE_OBJECT &&
1118 	    DMU_OBJECT_IS_SPECIAL(zb->zb_object))
1119 		return (0);
1120 	atomic_inc_64(sta->num_blocks_visited);
1121 
1122 	if (zb->zb_level == ZB_DNODE_LEVEL) {
1123 		if (zb->zb_object == DMU_META_DNODE_OBJECT)
1124 			return (0);
1125 		record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE);
1126 		record->sru.object.bp = *bp;
1127 		size_t size  = sizeof (*dnp) * (dnp->dn_extra_slots + 1);
1128 		record->sru.object.dnp = kmem_alloc(size, KM_SLEEP);
1129 		bcopy(dnp, record->sru.object.dnp, size);
1130 		bqueue_enqueue(&sta->q, record, sizeof (*record));
1131 		return (0);
1132 	}
1133 	if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT &&
1134 	    !BP_IS_HOLE(bp)) {
1135 		record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid,
1136 		    zb->zb_blkid + 1, B_FALSE);
1137 		record->sru.object_range.bp = *bp;
1138 		bqueue_enqueue(&sta->q, record, sizeof (*record));
1139 		return (0);
1140 	}
1141 	if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp)))
1142 		return (0);
1143 	if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp))
1144 		return (0);
1145 
1146 	uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
1147 	uint64_t start;
1148 
1149 	/*
1150 	 * If this multiply overflows, we don't need to send this block.
1151 	 * Even if it has a birth time, it can never not be a hole, so
1152 	 * we don't need to send records for it.
1153 	 */
1154 	if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid ==
1155 	    DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) &&
1156 	    span * zb->zb_blkid > dnp->dn_maxblkid)) {
1157 		ASSERT(BP_IS_HOLE(bp));
1158 		return (0);
1159 	}
1160 
1161 	if (zb->zb_blkid == DMU_SPILL_BLKID)
1162 		ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1163 
1164 	enum type record_type = DATA;
1165 	if (BP_IS_HOLE(bp))
1166 		record_type = HOLE;
1167 	else if (BP_IS_REDACTED(bp))
1168 		record_type = REDACT;
1169 	else
1170 		record_type = DATA;
1171 
1172 	record = range_alloc(record_type, zb->zb_object, start,
1173 	    (start + span < start ? 0 : start + span), B_FALSE);
1174 
1175 	uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ?
1176 	    BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
1177 
1178 	if (BP_IS_HOLE(bp)) {
1179 		record->sru.hole.datablksz = datablksz;
1180 	} else if (BP_IS_REDACTED(bp)) {
1181 		record->sru.redact.datablksz = datablksz;
1182 	} else {
1183 		record->sru.data.datablksz = datablksz;
1184 		record->sru.data.obj_type = dnp->dn_type;
1185 		record->sru.data.bp = *bp;
1186 	}
1187 
1188 	bqueue_enqueue(&sta->q, record, sizeof (*record));
1189 	return (0);
1190 }
1191 
1192 struct redact_list_cb_arg {
1193 	uint64_t *num_blocks_visited;
1194 	bqueue_t *q;
1195 	boolean_t *cancel;
1196 	boolean_t mark_redact;
1197 };
1198 
1199 static int
1200 redact_list_cb(redact_block_phys_t *rb, void *arg)
1201 {
1202 	struct redact_list_cb_arg *rlcap = arg;
1203 
1204 	atomic_inc_64(rlcap->num_blocks_visited);
1205 	if (*rlcap->cancel)
1206 		return (-1);
1207 
1208 	struct send_range *data = range_alloc(REDACT, rb->rbp_object,
1209 	    rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE);
1210 	ASSERT3U(data->end_blkid, >, rb->rbp_blkid);
1211 	if (rlcap->mark_redact) {
1212 		data->type = REDACT;
1213 		data->sru.redact.datablksz = redact_block_get_size(rb);
1214 	} else {
1215 		data->type = PREVIOUSLY_REDACTED;
1216 	}
1217 	bqueue_enqueue(rlcap->q, data, sizeof (*data));
1218 
1219 	return (0);
1220 }
1221 
1222 /*
1223  * This function kicks off the traverse_dataset.  It also handles setting the
1224  * error code of the thread in case something goes wrong, and pushes the End of
1225  * Stream record when the traverse_dataset call has finished.
1226  */
1227 static void
1228 send_traverse_thread(void *arg)
1229 {
1230 	struct send_thread_arg *st_arg = arg;
1231 	int err = 0;
1232 	struct send_range *data;
1233 	fstrans_cookie_t cookie = spl_fstrans_mark();
1234 
1235 	err = traverse_dataset_resume(st_arg->os->os_dsl_dataset,
1236 	    st_arg->fromtxg, &st_arg->resume,
1237 	    st_arg->flags, send_cb, st_arg);
1238 
1239 	if (err != EINTR)
1240 		st_arg->error_code = err;
1241 	data = range_alloc(DATA, 0, 0, 0, B_TRUE);
1242 	bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data));
1243 	spl_fstrans_unmark(cookie);
1244 	thread_exit();
1245 }
1246 
1247 /*
1248  * Utility function that causes End of Stream records to compare after of all
1249  * others, so that other threads' comparison logic can stay simple.
1250  */
1251 static int __attribute__((unused))
1252 send_range_after(const struct send_range *from, const struct send_range *to)
1253 {
1254 	if (from->eos_marker == B_TRUE)
1255 		return (1);
1256 	if (to->eos_marker == B_TRUE)
1257 		return (-1);
1258 
1259 	uint64_t from_obj = from->object;
1260 	uint64_t from_end_obj = from->object + 1;
1261 	uint64_t to_obj = to->object;
1262 	uint64_t to_end_obj = to->object + 1;
1263 	if (from_obj == 0) {
1264 		ASSERT(from->type == HOLE || from->type == OBJECT_RANGE);
1265 		from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT;
1266 		from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT;
1267 	}
1268 	if (to_obj == 0) {
1269 		ASSERT(to->type == HOLE || to->type == OBJECT_RANGE);
1270 		to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT;
1271 		to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT;
1272 	}
1273 
1274 	if (from_end_obj <= to_obj)
1275 		return (-1);
1276 	if (from_obj >= to_end_obj)
1277 		return (1);
1278 	int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type ==
1279 	    OBJECT_RANGE);
1280 	if (unlikely(cmp))
1281 		return (cmp);
1282 	cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT);
1283 	if (unlikely(cmp))
1284 		return (cmp);
1285 	if (from->end_blkid <= to->start_blkid)
1286 		return (-1);
1287 	if (from->start_blkid >= to->end_blkid)
1288 		return (1);
1289 	return (0);
1290 }
1291 
1292 /*
1293  * Pop the new data off the queue, check that the records we receive are in
1294  * the right order, but do not free the old data.  This is used so that the
1295  * records can be sent on to the main thread without copying the data.
1296  */
1297 static struct send_range *
1298 get_next_range_nofree(bqueue_t *bq, struct send_range *prev)
1299 {
1300 	struct send_range *next = bqueue_dequeue(bq);
1301 	ASSERT3S(send_range_after(prev, next), ==, -1);
1302 	return (next);
1303 }
1304 
1305 /*
1306  * Pop the new data off the queue, check that the records we receive are in
1307  * the right order, and free the old data.
1308  */
1309 static struct send_range *
1310 get_next_range(bqueue_t *bq, struct send_range *prev)
1311 {
1312 	struct send_range *next = get_next_range_nofree(bq, prev);
1313 	range_free(prev);
1314 	return (next);
1315 }
1316 
1317 static void
1318 redact_list_thread(void *arg)
1319 {
1320 	struct redact_list_thread_arg *rlt_arg = arg;
1321 	struct send_range *record;
1322 	fstrans_cookie_t cookie = spl_fstrans_mark();
1323 	if (rlt_arg->rl != NULL) {
1324 		struct redact_list_cb_arg rlcba = {0};
1325 		rlcba.cancel = &rlt_arg->cancel;
1326 		rlcba.q = &rlt_arg->q;
1327 		rlcba.num_blocks_visited = rlt_arg->num_blocks_visited;
1328 		rlcba.mark_redact = rlt_arg->mark_redact;
1329 		int err = dsl_redaction_list_traverse(rlt_arg->rl,
1330 		    &rlt_arg->resume, redact_list_cb, &rlcba);
1331 		if (err != EINTR)
1332 			rlt_arg->error_code = err;
1333 	}
1334 	record = range_alloc(DATA, 0, 0, 0, B_TRUE);
1335 	bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record));
1336 	spl_fstrans_unmark(cookie);
1337 
1338 	thread_exit();
1339 }
1340 
1341 /*
1342  * Compare the start point of the two provided ranges. End of stream ranges
1343  * compare last, objects compare before any data or hole inside that object and
1344  * multi-object holes that start at the same object.
1345  */
1346 static int
1347 send_range_start_compare(struct send_range *r1, struct send_range *r2)
1348 {
1349 	uint64_t r1_objequiv = r1->object;
1350 	uint64_t r1_l0equiv = r1->start_blkid;
1351 	uint64_t r2_objequiv = r2->object;
1352 	uint64_t r2_l0equiv = r2->start_blkid;
1353 	int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker);
1354 	if (unlikely(cmp))
1355 		return (cmp);
1356 	if (r1->object == 0) {
1357 		r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK;
1358 		r1_l0equiv = 0;
1359 	}
1360 	if (r2->object == 0) {
1361 		r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK;
1362 		r2_l0equiv = 0;
1363 	}
1364 
1365 	cmp = TREE_CMP(r1_objequiv, r2_objequiv);
1366 	if (likely(cmp))
1367 		return (cmp);
1368 	cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE);
1369 	if (unlikely(cmp))
1370 		return (cmp);
1371 	cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT);
1372 	if (unlikely(cmp))
1373 		return (cmp);
1374 
1375 	return (TREE_CMP(r1_l0equiv, r2_l0equiv));
1376 }
1377 
1378 enum q_idx {
1379 	REDACT_IDX = 0,
1380 	TO_IDX,
1381 	FROM_IDX,
1382 	NUM_THREADS
1383 };
1384 
1385 /*
1386  * This function returns the next range the send_merge_thread should operate on.
1387  * The inputs are two arrays; the first one stores the range at the front of the
1388  * queues stored in the second one.  The ranges are sorted in descending
1389  * priority order; the metadata from earlier ranges overrules metadata from
1390  * later ranges.  out_mask is used to return which threads the ranges came from;
1391  * bit i is set if ranges[i] started at the same place as the returned range.
1392  *
1393  * This code is not hardcoded to compare a specific number of threads; it could
1394  * be used with any number, just by changing the q_idx enum.
1395  *
1396  * The "next range" is the one with the earliest start; if two starts are equal,
1397  * the highest-priority range is the next to operate on.  If a higher-priority
1398  * range starts in the middle of the first range, then the first range will be
1399  * truncated to end where the higher-priority range starts, and we will operate
1400  * on that one next time.   In this way, we make sure that each block covered by
1401  * some range gets covered by a returned range, and each block covered is
1402  * returned using the metadata of the highest-priority range it appears in.
1403  *
1404  * For example, if the three ranges at the front of the queues were [2,4),
1405  * [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata
1406  * from the third range, [2,4) with the metadata from the first range, and then
1407  * [4,5) with the metadata from the second.
1408  */
1409 static struct send_range *
1410 find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask)
1411 {
1412 	int idx = 0; // index of the range with the earliest start
1413 	int i;
1414 	uint64_t bmask = 0;
1415 	for (i = 1; i < NUM_THREADS; i++) {
1416 		if (send_range_start_compare(ranges[i], ranges[idx]) < 0)
1417 			idx = i;
1418 	}
1419 	if (ranges[idx]->eos_marker) {
1420 		struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE);
1421 		*out_mask = 0;
1422 		return (ret);
1423 	}
1424 	/*
1425 	 * Find all the ranges that start at that same point.
1426 	 */
1427 	for (i = 0; i < NUM_THREADS; i++) {
1428 		if (send_range_start_compare(ranges[i], ranges[idx]) == 0)
1429 			bmask |= 1 << i;
1430 	}
1431 	*out_mask = bmask;
1432 	/*
1433 	 * OBJECT_RANGE records only come from the TO thread, and should always
1434 	 * be treated as overlapping with nothing and sent on immediately.  They
1435 	 * are only used in raw sends, and are never redacted.
1436 	 */
1437 	if (ranges[idx]->type == OBJECT_RANGE) {
1438 		ASSERT3U(idx, ==, TO_IDX);
1439 		ASSERT3U(*out_mask, ==, 1 << TO_IDX);
1440 		struct send_range *ret = ranges[idx];
1441 		ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1442 		return (ret);
1443 	}
1444 	/*
1445 	 * Find the first start or end point after the start of the first range.
1446 	 */
1447 	uint64_t first_change = ranges[idx]->end_blkid;
1448 	for (i = 0; i < NUM_THREADS; i++) {
1449 		if (i == idx || ranges[i]->eos_marker ||
1450 		    ranges[i]->object > ranges[idx]->object ||
1451 		    ranges[i]->object == DMU_META_DNODE_OBJECT)
1452 			continue;
1453 		ASSERT3U(ranges[i]->object, ==, ranges[idx]->object);
1454 		if (first_change > ranges[i]->start_blkid &&
1455 		    (bmask & (1 << i)) == 0)
1456 			first_change = ranges[i]->start_blkid;
1457 		else if (first_change > ranges[i]->end_blkid)
1458 			first_change = ranges[i]->end_blkid;
1459 	}
1460 	/*
1461 	 * Update all ranges to no longer overlap with the range we're
1462 	 * returning. All such ranges must start at the same place as the range
1463 	 * being returned, and end at or after first_change. Thus we update
1464 	 * their start to first_change. If that makes them size 0, then free
1465 	 * them and pull a new range from that thread.
1466 	 */
1467 	for (i = 0; i < NUM_THREADS; i++) {
1468 		if (i == idx || (bmask & (1 << i)) == 0)
1469 			continue;
1470 		ASSERT3U(first_change, >, ranges[i]->start_blkid);
1471 		ranges[i]->start_blkid = first_change;
1472 		ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid);
1473 		if (ranges[i]->start_blkid == ranges[i]->end_blkid)
1474 			ranges[i] = get_next_range(qs[i], ranges[i]);
1475 	}
1476 	/*
1477 	 * Short-circuit the simple case; if the range doesn't overlap with
1478 	 * anything else, or it only overlaps with things that start at the same
1479 	 * place and are longer, send it on.
1480 	 */
1481 	if (first_change == ranges[idx]->end_blkid) {
1482 		struct send_range *ret = ranges[idx];
1483 		ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1484 		return (ret);
1485 	}
1486 
1487 	/*
1488 	 * Otherwise, return a truncated copy of ranges[idx] and move the start
1489 	 * of ranges[idx] back to first_change.
1490 	 */
1491 	struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP);
1492 	*ret = *ranges[idx];
1493 	ret->end_blkid = first_change;
1494 	ranges[idx]->start_blkid = first_change;
1495 	return (ret);
1496 }
1497 
1498 #define	FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX))
1499 
1500 /*
1501  * Merge the results from the from thread and the to thread, and then hand the
1502  * records off to send_prefetch_thread to prefetch them.  If this is not a
1503  * send from a redaction bookmark, the from thread will push an end of stream
1504  * record and stop, and we'll just send everything that was changed in the
1505  * to_ds since the ancestor's creation txg. If it is, then since
1506  * traverse_dataset has a canonical order, we can compare each change as
1507  * they're pulled off the queues.  That will give us a stream that is
1508  * appropriately sorted, and covers all records.  In addition, we pull the
1509  * data from the redact_list_thread and use that to determine which blocks
1510  * should be redacted.
1511  */
1512 static void
1513 send_merge_thread(void *arg)
1514 {
1515 	struct send_merge_thread_arg *smt_arg = arg;
1516 	struct send_range *front_ranges[NUM_THREADS];
1517 	bqueue_t *queues[NUM_THREADS];
1518 	int err = 0;
1519 	fstrans_cookie_t cookie = spl_fstrans_mark();
1520 
1521 	if (smt_arg->redact_arg == NULL) {
1522 		front_ranges[REDACT_IDX] =
1523 		    kmem_zalloc(sizeof (struct send_range), KM_SLEEP);
1524 		front_ranges[REDACT_IDX]->eos_marker = B_TRUE;
1525 		front_ranges[REDACT_IDX]->type = REDACT;
1526 		queues[REDACT_IDX] = NULL;
1527 	} else {
1528 		front_ranges[REDACT_IDX] =
1529 		    bqueue_dequeue(&smt_arg->redact_arg->q);
1530 		queues[REDACT_IDX] = &smt_arg->redact_arg->q;
1531 	}
1532 	front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q);
1533 	queues[TO_IDX] = &smt_arg->to_arg->q;
1534 	front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q);
1535 	queues[FROM_IDX] = &smt_arg->from_arg->q;
1536 	uint64_t mask = 0;
1537 	struct send_range *range;
1538 	for (range = find_next_range(front_ranges, queues, &mask);
1539 	    !range->eos_marker && err == 0 && !smt_arg->cancel;
1540 	    range = find_next_range(front_ranges, queues, &mask)) {
1541 		/*
1542 		 * If the range in question was in both the from redact bookmark
1543 		 * and the bookmark we're using to redact, then don't send it.
1544 		 * It's already redacted on the receiving system, so a redaction
1545 		 * record would be redundant.
1546 		 */
1547 		if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) {
1548 			ASSERT3U(range->type, ==, REDACT);
1549 			range_free(range);
1550 			continue;
1551 		}
1552 		bqueue_enqueue(&smt_arg->q, range, sizeof (*range));
1553 
1554 		if (smt_arg->to_arg->error_code != 0) {
1555 			err = smt_arg->to_arg->error_code;
1556 		} else if (smt_arg->from_arg->error_code != 0) {
1557 			err = smt_arg->from_arg->error_code;
1558 		} else if (smt_arg->redact_arg != NULL &&
1559 		    smt_arg->redact_arg->error_code != 0) {
1560 			err = smt_arg->redact_arg->error_code;
1561 		}
1562 	}
1563 	if (smt_arg->cancel && err == 0)
1564 		err = SET_ERROR(EINTR);
1565 	smt_arg->error = err;
1566 	if (smt_arg->error != 0) {
1567 		smt_arg->to_arg->cancel = B_TRUE;
1568 		smt_arg->from_arg->cancel = B_TRUE;
1569 		if (smt_arg->redact_arg != NULL)
1570 			smt_arg->redact_arg->cancel = B_TRUE;
1571 	}
1572 	for (int i = 0; i < NUM_THREADS; i++) {
1573 		while (!front_ranges[i]->eos_marker) {
1574 			front_ranges[i] = get_next_range(queues[i],
1575 			    front_ranges[i]);
1576 		}
1577 		range_free(front_ranges[i]);
1578 	}
1579 	if (range == NULL)
1580 		range = kmem_zalloc(sizeof (*range), KM_SLEEP);
1581 	range->eos_marker = B_TRUE;
1582 	bqueue_enqueue_flush(&smt_arg->q, range, 1);
1583 	spl_fstrans_unmark(cookie);
1584 	thread_exit();
1585 }
1586 
1587 struct send_reader_thread_arg {
1588 	struct send_merge_thread_arg *smta;
1589 	bqueue_t q;
1590 	boolean_t cancel;
1591 	boolean_t issue_reads;
1592 	uint64_t featureflags;
1593 	int error;
1594 };
1595 
1596 static void
1597 dmu_send_read_done(zio_t *zio)
1598 {
1599 	struct send_range *range = zio->io_private;
1600 
1601 	mutex_enter(&range->sru.data.lock);
1602 	if (zio->io_error != 0) {
1603 		abd_free(range->sru.data.abd);
1604 		range->sru.data.abd = NULL;
1605 		range->sru.data.io_err = zio->io_error;
1606 	}
1607 
1608 	ASSERT(range->sru.data.io_outstanding);
1609 	range->sru.data.io_outstanding = B_FALSE;
1610 	cv_broadcast(&range->sru.data.cv);
1611 	mutex_exit(&range->sru.data.lock);
1612 }
1613 
1614 static void
1615 issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range)
1616 {
1617 	struct srd *srdp = &range->sru.data;
1618 	blkptr_t *bp = &srdp->bp;
1619 	objset_t *os = srta->smta->os;
1620 
1621 	ASSERT3U(range->type, ==, DATA);
1622 	ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
1623 	/*
1624 	 * If we have large blocks stored on disk but
1625 	 * the send flags don't allow us to send large
1626 	 * blocks, we split the data from the arc buf
1627 	 * into chunks.
1628 	 */
1629 	boolean_t split_large_blocks =
1630 	    srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1631 	    !(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
1632 	/*
1633 	 * We should only request compressed data from the ARC if all
1634 	 * the following are true:
1635 	 *  - stream compression was requested
1636 	 *  - we aren't splitting large blocks into smaller chunks
1637 	 *  - the data won't need to be byteswapped before sending
1638 	 *  - this isn't an embedded block
1639 	 *  - this isn't metadata (if receiving on a different endian
1640 	 *    system it can be byteswapped more easily)
1641 	 */
1642 	boolean_t request_compressed =
1643 	    (srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
1644 	    !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
1645 	    !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
1646 
1647 	enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
1648 
1649 	if (srta->featureflags & DMU_BACKUP_FEATURE_RAW)
1650 		zioflags |= ZIO_FLAG_RAW;
1651 	else if (request_compressed)
1652 		zioflags |= ZIO_FLAG_RAW_COMPRESS;
1653 
1654 	srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ?
1655 	    BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp);
1656 
1657 	if (!srta->issue_reads)
1658 		return;
1659 	if (BP_IS_REDACTED(bp))
1660 		return;
1661 	if (send_do_embed(bp, srta->featureflags))
1662 		return;
1663 
1664 	zbookmark_phys_t zb = {
1665 	    .zb_objset = dmu_objset_id(os),
1666 	    .zb_object = range->object,
1667 	    .zb_level = 0,
1668 	    .zb_blkid = range->start_blkid,
1669 	};
1670 
1671 	arc_flags_t aflags = ARC_FLAG_CACHED_ONLY;
1672 
1673 	int arc_err = arc_read(NULL, os->os_spa, bp,
1674 	    arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ,
1675 	    zioflags, &aflags, &zb);
1676 	/*
1677 	 * If the data is not already cached in the ARC, we read directly
1678 	 * from zio.  This avoids the performance overhead of adding a new
1679 	 * entry to the ARC, and we also avoid polluting the ARC cache with
1680 	 * data that is not likely to be used in the future.
1681 	 */
1682 	if (arc_err != 0) {
1683 		srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE);
1684 		srdp->io_outstanding = B_TRUE;
1685 		zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd,
1686 		    srdp->datasz, dmu_send_read_done, range,
1687 		    ZIO_PRIORITY_ASYNC_READ, zioflags, &zb));
1688 	}
1689 }
1690 
1691 /*
1692  * Create a new record with the given values.
1693  */
1694 static void
1695 enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn,
1696     uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz)
1697 {
1698 	enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE :
1699 	    (BP_IS_REDACTED(bp) ? REDACT : DATA));
1700 
1701 	struct send_range *range = range_alloc(range_type, dn->dn_object,
1702 	    blkid, blkid + count, B_FALSE);
1703 
1704 	if (blkid == DMU_SPILL_BLKID)
1705 		ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1706 
1707 	switch (range_type) {
1708 	case HOLE:
1709 		range->sru.hole.datablksz = datablksz;
1710 		break;
1711 	case DATA:
1712 		ASSERT3U(count, ==, 1);
1713 		range->sru.data.datablksz = datablksz;
1714 		range->sru.data.obj_type = dn->dn_type;
1715 		range->sru.data.bp = *bp;
1716 		issue_data_read(srta, range);
1717 		break;
1718 	case REDACT:
1719 		range->sru.redact.datablksz = datablksz;
1720 		break;
1721 	default:
1722 		break;
1723 	}
1724 	bqueue_enqueue(q, range, datablksz);
1725 }
1726 
1727 /*
1728  * This thread is responsible for two things: First, it retrieves the correct
1729  * blkptr in the to ds if we need to send the data because of something from
1730  * the from thread.  As a result of this, we're the first ones to discover that
1731  * some indirect blocks can be discarded because they're not holes. Second,
1732  * it issues prefetches for the data we need to send.
1733  */
1734 static void
1735 send_reader_thread(void *arg)
1736 {
1737 	struct send_reader_thread_arg *srta = arg;
1738 	struct send_merge_thread_arg *smta = srta->smta;
1739 	bqueue_t *inq = &smta->q;
1740 	bqueue_t *outq = &srta->q;
1741 	objset_t *os = smta->os;
1742 	fstrans_cookie_t cookie = spl_fstrans_mark();
1743 	struct send_range *range = bqueue_dequeue(inq);
1744 	int err = 0;
1745 
1746 	/*
1747 	 * If the record we're analyzing is from a redaction bookmark from the
1748 	 * fromds, then we need to know whether or not it exists in the tods so
1749 	 * we know whether to create records for it or not. If it does, we need
1750 	 * the datablksz so we can generate an appropriate record for it.
1751 	 * Finally, if it isn't redacted, we need the blkptr so that we can send
1752 	 * a WRITE record containing the actual data.
1753 	 */
1754 	uint64_t last_obj = UINT64_MAX;
1755 	uint64_t last_obj_exists = B_TRUE;
1756 	while (!range->eos_marker && !srta->cancel && smta->error == 0 &&
1757 	    err == 0) {
1758 		switch (range->type) {
1759 		case DATA:
1760 			issue_data_read(srta, range);
1761 			bqueue_enqueue(outq, range, range->sru.data.datablksz);
1762 			range = get_next_range_nofree(inq, range);
1763 			break;
1764 		case HOLE:
1765 		case OBJECT:
1766 		case OBJECT_RANGE:
1767 		case REDACT: // Redacted blocks must exist
1768 			bqueue_enqueue(outq, range, sizeof (*range));
1769 			range = get_next_range_nofree(inq, range);
1770 			break;
1771 		case PREVIOUSLY_REDACTED: {
1772 			/*
1773 			 * This entry came from the "from bookmark" when
1774 			 * sending from a bookmark that has a redaction
1775 			 * list.  We need to check if this object/blkid
1776 			 * exists in the target ("to") dataset, and if
1777 			 * not then we drop this entry.  We also need
1778 			 * to fill in the block pointer so that we know
1779 			 * what to prefetch.
1780 			 *
1781 			 * To accomplish the above, we first cache whether or
1782 			 * not the last object we examined exists.  If it
1783 			 * doesn't, we can drop this record. If it does, we hold
1784 			 * the dnode and use it to call dbuf_dnode_findbp. We do
1785 			 * this instead of dbuf_bookmark_findbp because we will
1786 			 * often operate on large ranges, and holding the dnode
1787 			 * once is more efficient.
1788 			 */
1789 			boolean_t object_exists = B_TRUE;
1790 			/*
1791 			 * If the data is redacted, we only care if it exists,
1792 			 * so that we don't send records for objects that have
1793 			 * been deleted.
1794 			 */
1795 			dnode_t *dn;
1796 			if (range->object == last_obj && !last_obj_exists) {
1797 				/*
1798 				 * If we're still examining the same object as
1799 				 * previously, and it doesn't exist, we don't
1800 				 * need to call dbuf_bookmark_findbp.
1801 				 */
1802 				object_exists = B_FALSE;
1803 			} else {
1804 				err = dnode_hold(os, range->object, FTAG, &dn);
1805 				if (err == ENOENT) {
1806 					object_exists = B_FALSE;
1807 					err = 0;
1808 				}
1809 				last_obj = range->object;
1810 				last_obj_exists = object_exists;
1811 			}
1812 
1813 			if (err != 0) {
1814 				break;
1815 			} else if (!object_exists) {
1816 				/*
1817 				 * The block was modified, but doesn't
1818 				 * exist in the to dataset; if it was
1819 				 * deleted in the to dataset, then we'll
1820 				 * visit the hole bp for it at some point.
1821 				 */
1822 				range = get_next_range(inq, range);
1823 				continue;
1824 			}
1825 			uint64_t file_max =
1826 			    (dn->dn_maxblkid < range->end_blkid ?
1827 			    dn->dn_maxblkid : range->end_blkid);
1828 			/*
1829 			 * The object exists, so we need to try to find the
1830 			 * blkptr for each block in the range we're processing.
1831 			 */
1832 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
1833 			for (uint64_t blkid = range->start_blkid;
1834 			    blkid < file_max; blkid++) {
1835 				blkptr_t bp;
1836 				uint32_t datablksz =
1837 				    dn->dn_phys->dn_datablkszsec <<
1838 				    SPA_MINBLOCKSHIFT;
1839 				uint64_t offset = blkid * datablksz;
1840 				/*
1841 				 * This call finds the next non-hole block in
1842 				 * the object. This is to prevent a
1843 				 * performance problem where we're unredacting
1844 				 * a large hole. Using dnode_next_offset to
1845 				 * skip over the large hole avoids iterating
1846 				 * over every block in it.
1847 				 */
1848 				err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1849 				    &offset, 1, 1, 0);
1850 				if (err == ESRCH) {
1851 					offset = UINT64_MAX;
1852 					err = 0;
1853 				} else if (err != 0) {
1854 					break;
1855 				}
1856 				if (offset != blkid * datablksz) {
1857 					/*
1858 					 * if there is a hole from here
1859 					 * (blkid) to offset
1860 					 */
1861 					offset = MIN(offset, file_max *
1862 					    datablksz);
1863 					uint64_t nblks = (offset / datablksz) -
1864 					    blkid;
1865 					enqueue_range(srta, outq, dn, blkid,
1866 					    nblks, NULL, datablksz);
1867 					blkid += nblks;
1868 				}
1869 				if (blkid >= file_max)
1870 					break;
1871 				err = dbuf_dnode_findbp(dn, 0, blkid, &bp,
1872 				    NULL, NULL);
1873 				if (err != 0)
1874 					break;
1875 				ASSERT(!BP_IS_HOLE(&bp));
1876 				enqueue_range(srta, outq, dn, blkid, 1, &bp,
1877 				    datablksz);
1878 			}
1879 			rw_exit(&dn->dn_struct_rwlock);
1880 			dnode_rele(dn, FTAG);
1881 			range = get_next_range(inq, range);
1882 		}
1883 		}
1884 	}
1885 	if (srta->cancel || err != 0) {
1886 		smta->cancel = B_TRUE;
1887 		srta->error = err;
1888 	} else if (smta->error != 0) {
1889 		srta->error = smta->error;
1890 	}
1891 	while (!range->eos_marker)
1892 		range = get_next_range(inq, range);
1893 
1894 	bqueue_enqueue_flush(outq, range, 1);
1895 	spl_fstrans_unmark(cookie);
1896 	thread_exit();
1897 }
1898 
1899 #define	NUM_SNAPS_NOT_REDACTED UINT64_MAX
1900 
1901 struct dmu_send_params {
1902 	/* Pool args */
1903 	void *tag; // Tag that dp was held with, will be used to release dp.
1904 	dsl_pool_t *dp;
1905 	/* To snapshot args */
1906 	const char *tosnap;
1907 	dsl_dataset_t *to_ds;
1908 	/* From snapshot args */
1909 	zfs_bookmark_phys_t ancestor_zb;
1910 	uint64_t *fromredactsnaps;
1911 	/* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */
1912 	uint64_t numfromredactsnaps;
1913 	/* Stream params */
1914 	boolean_t is_clone;
1915 	boolean_t embedok;
1916 	boolean_t large_block_ok;
1917 	boolean_t compressok;
1918 	boolean_t rawok;
1919 	boolean_t savedok;
1920 	uint64_t resumeobj;
1921 	uint64_t resumeoff;
1922 	uint64_t saved_guid;
1923 	zfs_bookmark_phys_t *redactbook;
1924 	/* Stream output params */
1925 	dmu_send_outparams_t *dso;
1926 
1927 	/* Stream progress params */
1928 	offset_t *off;
1929 	int outfd;
1930 	char saved_toname[MAXNAMELEN];
1931 };
1932 
1933 static int
1934 setup_featureflags(struct dmu_send_params *dspp, objset_t *os,
1935     uint64_t *featureflags)
1936 {
1937 	dsl_dataset_t *to_ds = dspp->to_ds;
1938 	dsl_pool_t *dp = dspp->dp;
1939 #ifdef _KERNEL
1940 	if (dmu_objset_type(os) == DMU_OST_ZFS) {
1941 		uint64_t version;
1942 		if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0)
1943 			return (SET_ERROR(EINVAL));
1944 
1945 		if (version >= ZPL_VERSION_SA)
1946 			*featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
1947 	}
1948 #endif
1949 
1950 	/* raw sends imply large_block_ok */
1951 	if ((dspp->rawok || dspp->large_block_ok) &&
1952 	    dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) {
1953 		*featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
1954 	}
1955 
1956 	/* encrypted datasets will not have embedded blocks */
1957 	if ((dspp->embedok || dspp->rawok) && !os->os_encrypted &&
1958 	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
1959 		*featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
1960 	}
1961 
1962 	/* raw send implies compressok */
1963 	if (dspp->compressok || dspp->rawok)
1964 		*featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
1965 
1966 	if (dspp->rawok && os->os_encrypted)
1967 		*featureflags |= DMU_BACKUP_FEATURE_RAW;
1968 
1969 	if ((*featureflags &
1970 	    (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED |
1971 	    DMU_BACKUP_FEATURE_RAW)) != 0 &&
1972 	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
1973 		*featureflags |= DMU_BACKUP_FEATURE_LZ4;
1974 	}
1975 
1976 	/*
1977 	 * We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to
1978 	 * allow sending ZSTD compressed datasets to a receiver that does not
1979 	 * support ZSTD
1980 	 */
1981 	if ((*featureflags &
1982 	    (DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 &&
1983 	    dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) {
1984 		*featureflags |= DMU_BACKUP_FEATURE_ZSTD;
1985 	}
1986 
1987 	if (dspp->resumeobj != 0 || dspp->resumeoff != 0) {
1988 		*featureflags |= DMU_BACKUP_FEATURE_RESUMING;
1989 	}
1990 
1991 	if (dspp->redactbook != NULL) {
1992 		*featureflags |= DMU_BACKUP_FEATURE_REDACTED;
1993 	}
1994 
1995 	if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) {
1996 		*featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
1997 	}
1998 	return (0);
1999 }
2000 
2001 static dmu_replay_record_t *
2002 create_begin_record(struct dmu_send_params *dspp, objset_t *os,
2003     uint64_t featureflags)
2004 {
2005 	dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t),
2006 	    KM_SLEEP);
2007 	drr->drr_type = DRR_BEGIN;
2008 
2009 	struct drr_begin *drrb = &drr->drr_u.drr_begin;
2010 	dsl_dataset_t *to_ds = dspp->to_ds;
2011 
2012 	drrb->drr_magic = DMU_BACKUP_MAGIC;
2013 	drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time;
2014 	drrb->drr_type = dmu_objset_type(os);
2015 	drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2016 	drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid;
2017 
2018 	DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM);
2019 	DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags);
2020 
2021 	if (dspp->is_clone)
2022 		drrb->drr_flags |= DRR_FLAG_CLONE;
2023 	if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET)
2024 		drrb->drr_flags |= DRR_FLAG_CI_DATA;
2025 	if (zfs_send_set_freerecords_bit)
2026 		drrb->drr_flags |= DRR_FLAG_FREERECORDS;
2027 	drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK;
2028 
2029 	if (dspp->savedok) {
2030 		drrb->drr_toguid = dspp->saved_guid;
2031 		strlcpy(drrb->drr_toname, dspp->saved_toname,
2032 		    sizeof (drrb->drr_toname));
2033 	} else {
2034 		dsl_dataset_name(to_ds, drrb->drr_toname);
2035 		if (!to_ds->ds_is_snapshot) {
2036 			(void) strlcat(drrb->drr_toname, "@--head--",
2037 			    sizeof (drrb->drr_toname));
2038 		}
2039 	}
2040 	return (drr);
2041 }
2042 
2043 static void
2044 setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os,
2045     dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok)
2046 {
2047 	VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff,
2048 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2049 	    offsetof(struct send_range, ln)));
2050 	to_arg->error_code = 0;
2051 	to_arg->cancel = B_FALSE;
2052 	to_arg->os = to_os;
2053 	to_arg->fromtxg = fromtxg;
2054 	to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA;
2055 	if (rawok)
2056 		to_arg->flags |= TRAVERSE_NO_DECRYPT;
2057 	to_arg->num_blocks_visited = &dssp->dss_blocks;
2058 	(void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0,
2059 	    curproc, TS_RUN, minclsyspri);
2060 }
2061 
2062 static void
2063 setup_from_thread(struct redact_list_thread_arg *from_arg,
2064     redaction_list_t *from_rl, dmu_sendstatus_t *dssp)
2065 {
2066 	VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff,
2067 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2068 	    offsetof(struct send_range, ln)));
2069 	from_arg->error_code = 0;
2070 	from_arg->cancel = B_FALSE;
2071 	from_arg->rl = from_rl;
2072 	from_arg->mark_redact = B_FALSE;
2073 	from_arg->num_blocks_visited = &dssp->dss_blocks;
2074 	/*
2075 	 * If from_ds is null, send_traverse_thread just returns success and
2076 	 * enqueues an eos marker.
2077 	 */
2078 	(void) thread_create(NULL, 0, redact_list_thread, from_arg, 0,
2079 	    curproc, TS_RUN, minclsyspri);
2080 }
2081 
2082 static void
2083 setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg,
2084     struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp)
2085 {
2086 	if (dspp->redactbook == NULL)
2087 		return;
2088 
2089 	rlt_arg->cancel = B_FALSE;
2090 	VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff,
2091 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2092 	    offsetof(struct send_range, ln)));
2093 	rlt_arg->error_code = 0;
2094 	rlt_arg->mark_redact = B_TRUE;
2095 	rlt_arg->rl = rl;
2096 	rlt_arg->num_blocks_visited = &dssp->dss_blocks;
2097 
2098 	(void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0,
2099 	    curproc, TS_RUN, minclsyspri);
2100 }
2101 
2102 static void
2103 setup_merge_thread(struct send_merge_thread_arg *smt_arg,
2104     struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg,
2105     struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg,
2106     objset_t *os)
2107 {
2108 	VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff,
2109 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2110 	    offsetof(struct send_range, ln)));
2111 	smt_arg->cancel = B_FALSE;
2112 	smt_arg->error = 0;
2113 	smt_arg->from_arg = from_arg;
2114 	smt_arg->to_arg = to_arg;
2115 	if (dspp->redactbook != NULL)
2116 		smt_arg->redact_arg = rlt_arg;
2117 
2118 	smt_arg->os = os;
2119 	(void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc,
2120 	    TS_RUN, minclsyspri);
2121 }
2122 
2123 static void
2124 setup_reader_thread(struct send_reader_thread_arg *srt_arg,
2125     struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg,
2126     uint64_t featureflags)
2127 {
2128 	VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff,
2129 	    MAX(zfs_send_queue_length, 2 * zfs_max_recordsize),
2130 	    offsetof(struct send_range, ln)));
2131 	srt_arg->smta = smt_arg;
2132 	srt_arg->issue_reads = !dspp->dso->dso_dryrun;
2133 	srt_arg->featureflags = featureflags;
2134 	(void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0,
2135 	    curproc, TS_RUN, minclsyspri);
2136 }
2137 
2138 static int
2139 setup_resume_points(struct dmu_send_params *dspp,
2140     struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg,
2141     struct redact_list_thread_arg *rlt_arg,
2142     struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os,
2143     redaction_list_t *redact_rl, nvlist_t *nvl)
2144 {
2145 	dsl_dataset_t *to_ds = dspp->to_ds;
2146 	int err = 0;
2147 
2148 	uint64_t obj = 0;
2149 	uint64_t blkid = 0;
2150 	if (resuming) {
2151 		obj = dspp->resumeobj;
2152 		dmu_object_info_t to_doi;
2153 		err = dmu_object_info(os, obj, &to_doi);
2154 		if (err != 0)
2155 			return (err);
2156 
2157 		blkid = dspp->resumeoff / to_doi.doi_data_block_size;
2158 	}
2159 	/*
2160 	 * If we're resuming a redacted send, we can skip to the appropriate
2161 	 * point in the redaction bookmark by binary searching through it.
2162 	 */
2163 	if (redact_rl != NULL) {
2164 		SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid);
2165 	}
2166 
2167 	SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid);
2168 	if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) {
2169 		uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj;
2170 		/*
2171 		 * Note: If the resume point is in an object whose
2172 		 * blocksize is different in the from vs to snapshots,
2173 		 * we will have divided by the "wrong" blocksize.
2174 		 * However, in this case fromsnap's send_cb() will
2175 		 * detect that the blocksize has changed and therefore
2176 		 * ignore this object.
2177 		 *
2178 		 * If we're resuming a send from a redaction bookmark,
2179 		 * we still cannot accidentally suggest blocks behind
2180 		 * the to_ds.  In addition, we know that any blocks in
2181 		 * the object in the to_ds will have to be sent, since
2182 		 * the size changed.  Therefore, we can't cause any harm
2183 		 * this way either.
2184 		 */
2185 		SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid);
2186 	}
2187 	if (resuming) {
2188 		fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj);
2189 		fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff);
2190 	}
2191 	return (0);
2192 }
2193 
2194 static dmu_sendstatus_t *
2195 setup_send_progress(struct dmu_send_params *dspp)
2196 {
2197 	dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP);
2198 	dssp->dss_outfd = dspp->outfd;
2199 	dssp->dss_off = dspp->off;
2200 	dssp->dss_proc = curproc;
2201 	mutex_enter(&dspp->to_ds->ds_sendstream_lock);
2202 	list_insert_head(&dspp->to_ds->ds_sendstreams, dssp);
2203 	mutex_exit(&dspp->to_ds->ds_sendstream_lock);
2204 	return (dssp);
2205 }
2206 
2207 /*
2208  * Actually do the bulk of the work in a zfs send.
2209  *
2210  * The idea is that we want to do a send from ancestor_zb to to_ds.  We also
2211  * want to not send any data that has been modified by all the datasets in
2212  * redactsnaparr, and store the list of blocks that are redacted in this way in
2213  * a bookmark named redactbook, created on the to_ds.  We do this by creating
2214  * several worker threads, whose function is described below.
2215  *
2216  * There are three cases.
2217  * The first case is a redacted zfs send.  In this case there are 5 threads.
2218  * The first thread is the to_ds traversal thread: it calls dataset_traverse on
2219  * the to_ds and finds all the blocks that have changed since ancestor_zb (if
2220  * it's a full send, that's all blocks in the dataset).  It then sends those
2221  * blocks on to the send merge thread. The redact list thread takes the data
2222  * from the redaction bookmark and sends those blocks on to the send merge
2223  * thread.  The send merge thread takes the data from the to_ds traversal
2224  * thread, and combines it with the redaction records from the redact list
2225  * thread.  If a block appears in both the to_ds's data and the redaction data,
2226  * the send merge thread will mark it as redacted and send it on to the prefetch
2227  * thread.  Otherwise, the send merge thread will send the block on to the
2228  * prefetch thread unchanged. The prefetch thread will issue prefetch reads for
2229  * any data that isn't redacted, and then send the data on to the main thread.
2230  * The main thread behaves the same as in a normal send case, issuing demand
2231  * reads for data blocks and sending out records over the network
2232  *
2233  * The graphic below diagrams the flow of data in the case of a redacted zfs
2234  * send.  Each box represents a thread, and each line represents the flow of
2235  * data.
2236  *
2237  *             Records from the |
2238  *           redaction bookmark |
2239  * +--------------------+       |  +---------------------------+
2240  * |                    |       v  | Send Merge Thread         |
2241  * | Redact List Thread +----------> Apply redaction marks to  |
2242  * |                    |          | records as specified by   |
2243  * +--------------------+          | redaction ranges          |
2244  *                                 +----^---------------+------+
2245  *                                      |               | Merged data
2246  *                                      |               |
2247  *                                      |  +------------v--------+
2248  *                                      |  | Prefetch Thread     |
2249  * +--------------------+               |  | Issues prefetch     |
2250  * | to_ds Traversal    |               |  | reads of data blocks|
2251  * | Thread (finds      +---------------+  +------------+--------+
2252  * | candidate blocks)  |  Blocks modified              | Prefetched data
2253  * +--------------------+  by to_ds since               |
2254  *                         ancestor_zb     +------------v----+
2255  *                                         | Main Thread     |  File Descriptor
2256  *                                         | Sends data over +->(to zfs receive)
2257  *                                         | wire            |
2258  *                                         +-----------------+
2259  *
2260  * The second case is an incremental send from a redaction bookmark.  The to_ds
2261  * traversal thread and the main thread behave the same as in the redacted
2262  * send case.  The new thread is the from bookmark traversal thread.  It
2263  * iterates over the redaction list in the redaction bookmark, and enqueues
2264  * records for each block that was redacted in the original send.  The send
2265  * merge thread now has to merge the data from the two threads.  For details
2266  * about that process, see the header comment of send_merge_thread().  Any data
2267  * it decides to send on will be prefetched by the prefetch thread.  Note that
2268  * you can perform a redacted send from a redaction bookmark; in that case,
2269  * the data flow behaves very similarly to the flow in the redacted send case,
2270  * except with the addition of the bookmark traversal thread iterating over the
2271  * redaction bookmark.  The send_merge_thread also has to take on the
2272  * responsibility of merging the redact list thread's records, the bookmark
2273  * traversal thread's records, and the to_ds records.
2274  *
2275  * +---------------------+
2276  * |                     |
2277  * | Redact List Thread  +--------------+
2278  * |                     |              |
2279  * +---------------------+              |
2280  *        Blocks in redaction list      | Ranges modified by every secure snap
2281  *        of from bookmark              | (or EOS if not readcted)
2282  *                                      |
2283  * +---------------------+   |     +----v----------------------+
2284  * | bookmark Traversal  |   v     | Send Merge Thread         |
2285  * | Thread (finds       +---------> Merges bookmark, rlt, and |
2286  * | candidate blocks)   |         | to_ds send records        |
2287  * +---------------------+         +----^---------------+------+
2288  *                                      |               | Merged data
2289  *                                      |  +------------v--------+
2290  *                                      |  | Prefetch Thread     |
2291  * +--------------------+               |  | Issues prefetch     |
2292  * | to_ds Traversal    |               |  | reads of data blocks|
2293  * | Thread (finds      +---------------+  +------------+--------+
2294  * | candidate blocks)  |  Blocks modified              | Prefetched data
2295  * +--------------------+  by to_ds since  +------------v----+
2296  *                         ancestor_zb     | Main Thread     |  File Descriptor
2297  *                                         | Sends data over +->(to zfs receive)
2298  *                                         | wire            |
2299  *                                         +-----------------+
2300  *
2301  * The final case is a simple zfs full or incremental send.  The to_ds traversal
2302  * thread behaves the same as always. The redact list thread is never started.
2303  * The send merge thread takes all the blocks that the to_ds traversal thread
2304  * sends it, prefetches the data, and sends the blocks on to the main thread.
2305  * The main thread sends the data over the wire.
2306  *
2307  * To keep performance acceptable, we want to prefetch the data in the worker
2308  * threads.  While the to_ds thread could simply use the TRAVERSE_PREFETCH
2309  * feature built into traverse_dataset, the combining and deletion of records
2310  * due to redaction and sends from redaction bookmarks mean that we could
2311  * issue many unnecessary prefetches.  As a result, we only prefetch data
2312  * after we've determined that the record is not going to be redacted.  To
2313  * prevent the prefetching from getting too far ahead of the main thread, the
2314  * blocking queues that are used for communication are capped not by the
2315  * number of entries in the queue, but by the sum of the size of the
2316  * prefetches associated with them.  The limit on the amount of data that the
2317  * thread can prefetch beyond what the main thread has reached is controlled
2318  * by the global variable zfs_send_queue_length.  In addition, to prevent poor
2319  * performance in the beginning of a send, we also limit the distance ahead
2320  * that the traversal threads can be.  That distance is controlled by the
2321  * zfs_send_no_prefetch_queue_length tunable.
2322  *
2323  * Note: Releases dp using the specified tag.
2324  */
2325 static int
2326 dmu_send_impl(struct dmu_send_params *dspp)
2327 {
2328 	objset_t *os;
2329 	dmu_replay_record_t *drr;
2330 	dmu_sendstatus_t *dssp;
2331 	dmu_send_cookie_t dsc = {0};
2332 	int err;
2333 	uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg;
2334 	uint64_t featureflags = 0;
2335 	struct redact_list_thread_arg *from_arg;
2336 	struct send_thread_arg *to_arg;
2337 	struct redact_list_thread_arg *rlt_arg;
2338 	struct send_merge_thread_arg *smt_arg;
2339 	struct send_reader_thread_arg *srt_arg;
2340 	struct send_range *range;
2341 	redaction_list_t *from_rl = NULL;
2342 	redaction_list_t *redact_rl = NULL;
2343 	boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0);
2344 	boolean_t book_resuming = resuming;
2345 
2346 	dsl_dataset_t *to_ds = dspp->to_ds;
2347 	zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb;
2348 	dsl_pool_t *dp = dspp->dp;
2349 	void *tag = dspp->tag;
2350 
2351 	err = dmu_objset_from_ds(to_ds, &os);
2352 	if (err != 0) {
2353 		dsl_pool_rele(dp, tag);
2354 		return (err);
2355 	}
2356 
2357 	/*
2358 	 * If this is a non-raw send of an encrypted ds, we can ensure that
2359 	 * the objset_phys_t is authenticated. This is safe because this is
2360 	 * either a snapshot or we have owned the dataset, ensuring that
2361 	 * it can't be modified.
2362 	 */
2363 	if (!dspp->rawok && os->os_encrypted &&
2364 	    arc_is_unauthenticated(os->os_phys_buf)) {
2365 		zbookmark_phys_t zb;
2366 
2367 		SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT,
2368 		    ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2369 		err = arc_untransform(os->os_phys_buf, os->os_spa,
2370 		    &zb, B_FALSE);
2371 		if (err != 0) {
2372 			dsl_pool_rele(dp, tag);
2373 			return (err);
2374 		}
2375 
2376 		ASSERT0(arc_is_unauthenticated(os->os_phys_buf));
2377 	}
2378 
2379 	if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) {
2380 		dsl_pool_rele(dp, tag);
2381 		return (err);
2382 	}
2383 
2384 	/*
2385 	 * If we're doing a redacted send, hold the bookmark's redaction list.
2386 	 */
2387 	if (dspp->redactbook != NULL) {
2388 		err = dsl_redaction_list_hold_obj(dp,
2389 		    dspp->redactbook->zbm_redaction_obj, FTAG,
2390 		    &redact_rl);
2391 		if (err != 0) {
2392 			dsl_pool_rele(dp, tag);
2393 			return (SET_ERROR(EINVAL));
2394 		}
2395 		dsl_redaction_list_long_hold(dp, redact_rl, FTAG);
2396 	}
2397 
2398 	/*
2399 	 * If we're sending from a redaction bookmark, hold the redaction list
2400 	 * so that we can consider sending the redacted blocks.
2401 	 */
2402 	if (ancestor_zb->zbm_redaction_obj != 0) {
2403 		err = dsl_redaction_list_hold_obj(dp,
2404 		    ancestor_zb->zbm_redaction_obj, FTAG, &from_rl);
2405 		if (err != 0) {
2406 			if (redact_rl != NULL) {
2407 				dsl_redaction_list_long_rele(redact_rl, FTAG);
2408 				dsl_redaction_list_rele(redact_rl, FTAG);
2409 			}
2410 			dsl_pool_rele(dp, tag);
2411 			return (SET_ERROR(EINVAL));
2412 		}
2413 		dsl_redaction_list_long_hold(dp, from_rl, FTAG);
2414 	}
2415 
2416 	dsl_dataset_long_hold(to_ds, FTAG);
2417 
2418 	from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP);
2419 	to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP);
2420 	rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP);
2421 	smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP);
2422 	srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP);
2423 
2424 	drr = create_begin_record(dspp, os, featureflags);
2425 	dssp = setup_send_progress(dspp);
2426 
2427 	dsc.dsc_drr = drr;
2428 	dsc.dsc_dso = dspp->dso;
2429 	dsc.dsc_os = os;
2430 	dsc.dsc_off = dspp->off;
2431 	dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2432 	dsc.dsc_fromtxg = fromtxg;
2433 	dsc.dsc_pending_op = PENDING_NONE;
2434 	dsc.dsc_featureflags = featureflags;
2435 	dsc.dsc_resume_object = dspp->resumeobj;
2436 	dsc.dsc_resume_offset = dspp->resumeoff;
2437 
2438 	dsl_pool_rele(dp, tag);
2439 
2440 	void *payload = NULL;
2441 	size_t payload_len = 0;
2442 	nvlist_t *nvl = fnvlist_alloc();
2443 
2444 	/*
2445 	 * If we're doing a redacted send, we include the snapshots we're
2446 	 * redacted with respect to so that the target system knows what send
2447 	 * streams can be correctly received on top of this dataset. If we're
2448 	 * instead sending a redacted dataset, we include the snapshots that the
2449 	 * dataset was created with respect to.
2450 	 */
2451 	if (dspp->redactbook != NULL) {
2452 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS,
2453 		    redact_rl->rl_phys->rlp_snaps,
2454 		    redact_rl->rl_phys->rlp_num_snaps);
2455 	} else if (dsl_dataset_feature_is_active(to_ds,
2456 	    SPA_FEATURE_REDACTED_DATASETS)) {
2457 		uint64_t *tods_guids;
2458 		uint64_t length;
2459 		VERIFY(dsl_dataset_get_uint64_array_feature(to_ds,
2460 		    SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids));
2461 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids,
2462 		    length);
2463 	}
2464 
2465 	/*
2466 	 * If we're sending from a redaction bookmark, then we should retrieve
2467 	 * the guids of that bookmark so we can send them over the wire.
2468 	 */
2469 	if (from_rl != NULL) {
2470 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2471 		    from_rl->rl_phys->rlp_snaps,
2472 		    from_rl->rl_phys->rlp_num_snaps);
2473 	}
2474 
2475 	/*
2476 	 * If the snapshot we're sending from is redacted, include the redaction
2477 	 * list in the stream.
2478 	 */
2479 	if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) {
2480 		ASSERT3P(from_rl, ==, NULL);
2481 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2482 		    dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps);
2483 		if (dspp->numfromredactsnaps > 0) {
2484 			kmem_free(dspp->fromredactsnaps,
2485 			    dspp->numfromredactsnaps * sizeof (uint64_t));
2486 			dspp->fromredactsnaps = NULL;
2487 		}
2488 	}
2489 
2490 	if (resuming || book_resuming) {
2491 		err = setup_resume_points(dspp, to_arg, from_arg,
2492 		    rlt_arg, smt_arg, resuming, os, redact_rl, nvl);
2493 		if (err != 0)
2494 			goto out;
2495 	}
2496 
2497 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2498 		uint64_t ivset_guid = (ancestor_zb != NULL) ?
2499 		    ancestor_zb->zbm_ivset_guid : 0;
2500 		nvlist_t *keynvl = NULL;
2501 		ASSERT(os->os_encrypted);
2502 
2503 		err = dsl_crypto_populate_key_nvlist(os, ivset_guid,
2504 		    &keynvl);
2505 		if (err != 0) {
2506 			fnvlist_free(nvl);
2507 			goto out;
2508 		}
2509 
2510 		fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl);
2511 		fnvlist_free(keynvl);
2512 	}
2513 
2514 	if (!nvlist_empty(nvl)) {
2515 		payload = fnvlist_pack(nvl, &payload_len);
2516 		drr->drr_payloadlen = payload_len;
2517 	}
2518 
2519 	fnvlist_free(nvl);
2520 	err = dump_record(&dsc, payload, payload_len);
2521 	fnvlist_pack_free(payload, payload_len);
2522 	if (err != 0) {
2523 		err = dsc.dsc_err;
2524 		goto out;
2525 	}
2526 
2527 	setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok);
2528 	setup_from_thread(from_arg, from_rl, dssp);
2529 	setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp);
2530 	setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os);
2531 	setup_reader_thread(srt_arg, dspp, smt_arg, featureflags);
2532 
2533 	range = bqueue_dequeue(&srt_arg->q);
2534 	while (err == 0 && !range->eos_marker) {
2535 		err = do_dump(&dsc, range);
2536 		range = get_next_range(&srt_arg->q, range);
2537 		if (issig(JUSTLOOKING) && issig(FORREAL))
2538 			err = SET_ERROR(EINTR);
2539 	}
2540 
2541 	/*
2542 	 * If we hit an error or are interrupted, cancel our worker threads and
2543 	 * clear the queue of any pending records.  The threads will pass the
2544 	 * cancel up the tree of worker threads, and each one will clean up any
2545 	 * pending records before exiting.
2546 	 */
2547 	if (err != 0) {
2548 		srt_arg->cancel = B_TRUE;
2549 		while (!range->eos_marker) {
2550 			range = get_next_range(&srt_arg->q, range);
2551 		}
2552 	}
2553 	range_free(range);
2554 
2555 	bqueue_destroy(&srt_arg->q);
2556 	bqueue_destroy(&smt_arg->q);
2557 	if (dspp->redactbook != NULL)
2558 		bqueue_destroy(&rlt_arg->q);
2559 	bqueue_destroy(&to_arg->q);
2560 	bqueue_destroy(&from_arg->q);
2561 
2562 	if (err == 0 && srt_arg->error != 0)
2563 		err = srt_arg->error;
2564 
2565 	if (err != 0)
2566 		goto out;
2567 
2568 	if (dsc.dsc_pending_op != PENDING_NONE)
2569 		if (dump_record(&dsc, NULL, 0) != 0)
2570 			err = SET_ERROR(EINTR);
2571 
2572 	if (err != 0) {
2573 		if (err == EINTR && dsc.dsc_err != 0)
2574 			err = dsc.dsc_err;
2575 		goto out;
2576 	}
2577 
2578 	/*
2579 	 * Send the DRR_END record if this is not a saved stream.
2580 	 * Otherwise, the omitted DRR_END record will signal to
2581 	 * the receive side that the stream is incomplete.
2582 	 */
2583 	if (!dspp->savedok) {
2584 		bzero(drr, sizeof (dmu_replay_record_t));
2585 		drr->drr_type = DRR_END;
2586 		drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc;
2587 		drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid;
2588 
2589 		if (dump_record(&dsc, NULL, 0) != 0)
2590 			err = dsc.dsc_err;
2591 	}
2592 out:
2593 	mutex_enter(&to_ds->ds_sendstream_lock);
2594 	list_remove(&to_ds->ds_sendstreams, dssp);
2595 	mutex_exit(&to_ds->ds_sendstream_lock);
2596 
2597 	VERIFY(err != 0 || (dsc.dsc_sent_begin &&
2598 	    (dsc.dsc_sent_end || dspp->savedok)));
2599 
2600 	kmem_free(drr, sizeof (dmu_replay_record_t));
2601 	kmem_free(dssp, sizeof (dmu_sendstatus_t));
2602 	kmem_free(from_arg, sizeof (*from_arg));
2603 	kmem_free(to_arg, sizeof (*to_arg));
2604 	kmem_free(rlt_arg, sizeof (*rlt_arg));
2605 	kmem_free(smt_arg, sizeof (*smt_arg));
2606 	kmem_free(srt_arg, sizeof (*srt_arg));
2607 
2608 	dsl_dataset_long_rele(to_ds, FTAG);
2609 	if (from_rl != NULL) {
2610 		dsl_redaction_list_long_rele(from_rl, FTAG);
2611 		dsl_redaction_list_rele(from_rl, FTAG);
2612 	}
2613 	if (redact_rl != NULL) {
2614 		dsl_redaction_list_long_rele(redact_rl, FTAG);
2615 		dsl_redaction_list_rele(redact_rl, FTAG);
2616 	}
2617 
2618 	return (err);
2619 }
2620 
2621 int
2622 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
2623     boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
2624     boolean_t rawok, boolean_t savedok, int outfd, offset_t *off,
2625     dmu_send_outparams_t *dsop)
2626 {
2627 	int err;
2628 	dsl_dataset_t *fromds;
2629 	ds_hold_flags_t dsflags;
2630 	struct dmu_send_params dspp = {0};
2631 	dspp.embedok = embedok;
2632 	dspp.large_block_ok = large_block_ok;
2633 	dspp.compressok = compressok;
2634 	dspp.outfd = outfd;
2635 	dspp.off = off;
2636 	dspp.dso = dsop;
2637 	dspp.tag = FTAG;
2638 	dspp.rawok = rawok;
2639 	dspp.savedok = savedok;
2640 
2641 	dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2642 	err = dsl_pool_hold(pool, FTAG, &dspp.dp);
2643 	if (err != 0)
2644 		return (err);
2645 
2646 	err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG,
2647 	    &dspp.to_ds);
2648 	if (err != 0) {
2649 		dsl_pool_rele(dspp.dp, FTAG);
2650 		return (err);
2651 	}
2652 
2653 	if (fromsnap != 0) {
2654 		err = dsl_dataset_hold_obj_flags(dspp.dp, fromsnap, dsflags,
2655 		    FTAG, &fromds);
2656 		if (err != 0) {
2657 			dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2658 			dsl_pool_rele(dspp.dp, FTAG);
2659 			return (err);
2660 		}
2661 		dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
2662 		dspp.ancestor_zb.zbm_creation_txg =
2663 		    dsl_dataset_phys(fromds)->ds_creation_txg;
2664 		dspp.ancestor_zb.zbm_creation_time =
2665 		    dsl_dataset_phys(fromds)->ds_creation_time;
2666 
2667 		if (dsl_dataset_is_zapified(fromds)) {
2668 			(void) zap_lookup(dspp.dp->dp_meta_objset,
2669 			    fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2670 			    &dspp.ancestor_zb.zbm_ivset_guid);
2671 		}
2672 
2673 		/* See dmu_send for the reasons behind this. */
2674 		uint64_t *fromredact;
2675 
2676 		if (!dsl_dataset_get_uint64_array_feature(fromds,
2677 		    SPA_FEATURE_REDACTED_DATASETS,
2678 		    &dspp.numfromredactsnaps,
2679 		    &fromredact)) {
2680 			dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2681 		} else if (dspp.numfromredactsnaps > 0) {
2682 			uint64_t size = dspp.numfromredactsnaps *
2683 			    sizeof (uint64_t);
2684 			dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP);
2685 			bcopy(fromredact, dspp.fromredactsnaps, size);
2686 		}
2687 
2688 		boolean_t is_before =
2689 		    dsl_dataset_is_before(dspp.to_ds, fromds, 0);
2690 		dspp.is_clone = (dspp.to_ds->ds_dir !=
2691 		    fromds->ds_dir);
2692 		dsl_dataset_rele(fromds, FTAG);
2693 		if (!is_before) {
2694 			dsl_pool_rele(dspp.dp, FTAG);
2695 			err = SET_ERROR(EXDEV);
2696 		} else {
2697 			err = dmu_send_impl(&dspp);
2698 		}
2699 	} else {
2700 		dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2701 		err = dmu_send_impl(&dspp);
2702 	}
2703 	dsl_dataset_rele(dspp.to_ds, FTAG);
2704 	return (err);
2705 }
2706 
2707 int
2708 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
2709     boolean_t large_block_ok, boolean_t compressok, boolean_t rawok,
2710     boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff,
2711     const char *redactbook, int outfd, offset_t *off,
2712     dmu_send_outparams_t *dsop)
2713 {
2714 	int err = 0;
2715 	ds_hold_flags_t dsflags;
2716 	boolean_t owned = B_FALSE;
2717 	dsl_dataset_t *fromds = NULL;
2718 	zfs_bookmark_phys_t book = {0};
2719 	struct dmu_send_params dspp = {0};
2720 
2721 	dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2722 	dspp.tosnap = tosnap;
2723 	dspp.embedok = embedok;
2724 	dspp.large_block_ok = large_block_ok;
2725 	dspp.compressok = compressok;
2726 	dspp.outfd = outfd;
2727 	dspp.off = off;
2728 	dspp.dso = dsop;
2729 	dspp.tag = FTAG;
2730 	dspp.resumeobj = resumeobj;
2731 	dspp.resumeoff = resumeoff;
2732 	dspp.rawok = rawok;
2733 	dspp.savedok = savedok;
2734 
2735 	if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
2736 		return (SET_ERROR(EINVAL));
2737 
2738 	err = dsl_pool_hold(tosnap, FTAG, &dspp.dp);
2739 	if (err != 0)
2740 		return (err);
2741 
2742 	if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) {
2743 		/*
2744 		 * We are sending a filesystem or volume.  Ensure
2745 		 * that it doesn't change by owning the dataset.
2746 		 */
2747 
2748 		if (savedok) {
2749 			/*
2750 			 * We are looking for the dataset that represents the
2751 			 * partially received send stream. If this stream was
2752 			 * received as a new snapshot of an existing dataset,
2753 			 * this will be saved in a hidden clone named
2754 			 * "<pool>/<dataset>/%recv". Otherwise, the stream
2755 			 * will be saved in the live dataset itself. In
2756 			 * either case we need to use dsl_dataset_own_force()
2757 			 * because the stream is marked as inconsistent,
2758 			 * which would normally make it unavailable to be
2759 			 * owned.
2760 			 */
2761 			char *name = kmem_asprintf("%s/%s", tosnap,
2762 			    recv_clone_name);
2763 			err = dsl_dataset_own_force(dspp.dp, name, dsflags,
2764 			    FTAG, &dspp.to_ds);
2765 			if (err == ENOENT) {
2766 				err = dsl_dataset_own_force(dspp.dp, tosnap,
2767 				    dsflags, FTAG, &dspp.to_ds);
2768 			}
2769 
2770 			if (err == 0) {
2771 				err = zap_lookup(dspp.dp->dp_meta_objset,
2772 				    dspp.to_ds->ds_object,
2773 				    DS_FIELD_RESUME_TOGUID, 8, 1,
2774 				    &dspp.saved_guid);
2775 			}
2776 
2777 			if (err == 0) {
2778 				err = zap_lookup(dspp.dp->dp_meta_objset,
2779 				    dspp.to_ds->ds_object,
2780 				    DS_FIELD_RESUME_TONAME, 1,
2781 				    sizeof (dspp.saved_toname),
2782 				    dspp.saved_toname);
2783 			}
2784 			if (err != 0)
2785 				dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2786 
2787 			kmem_strfree(name);
2788 		} else {
2789 			err = dsl_dataset_own(dspp.dp, tosnap, dsflags,
2790 			    FTAG, &dspp.to_ds);
2791 		}
2792 		owned = B_TRUE;
2793 	} else {
2794 		err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG,
2795 		    &dspp.to_ds);
2796 	}
2797 
2798 	if (err != 0) {
2799 		dsl_pool_rele(dspp.dp, FTAG);
2800 		return (err);
2801 	}
2802 
2803 	if (redactbook != NULL) {
2804 		char path[ZFS_MAX_DATASET_NAME_LEN];
2805 		(void) strlcpy(path, tosnap, sizeof (path));
2806 		char *at = strchr(path, '@');
2807 		if (at == NULL) {
2808 			err = EINVAL;
2809 		} else {
2810 			(void) snprintf(at, sizeof (path) - (at - path), "#%s",
2811 			    redactbook);
2812 			err = dsl_bookmark_lookup(dspp.dp, path,
2813 			    NULL, &book);
2814 			dspp.redactbook = &book;
2815 		}
2816 	}
2817 
2818 	if (err != 0) {
2819 		dsl_pool_rele(dspp.dp, FTAG);
2820 		if (owned)
2821 			dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2822 		else
2823 			dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2824 		return (err);
2825 	}
2826 
2827 	if (fromsnap != NULL) {
2828 		zfs_bookmark_phys_t *zb = &dspp.ancestor_zb;
2829 		int fsnamelen;
2830 		if (strpbrk(tosnap, "@#") != NULL)
2831 			fsnamelen = strpbrk(tosnap, "@#") - tosnap;
2832 		else
2833 			fsnamelen = strlen(tosnap);
2834 
2835 		/*
2836 		 * If the fromsnap is in a different filesystem, then
2837 		 * mark the send stream as a clone.
2838 		 */
2839 		if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
2840 		    (fromsnap[fsnamelen] != '@' &&
2841 		    fromsnap[fsnamelen] != '#')) {
2842 			dspp.is_clone = B_TRUE;
2843 		}
2844 
2845 		if (strchr(fromsnap, '@') != NULL) {
2846 			err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG,
2847 			    &fromds);
2848 
2849 			if (err != 0) {
2850 				ASSERT3P(fromds, ==, NULL);
2851 			} else {
2852 				/*
2853 				 * We need to make a deep copy of the redact
2854 				 * snapshots of the from snapshot, because the
2855 				 * array will be freed when we evict from_ds.
2856 				 */
2857 				uint64_t *fromredact;
2858 				if (!dsl_dataset_get_uint64_array_feature(
2859 				    fromds, SPA_FEATURE_REDACTED_DATASETS,
2860 				    &dspp.numfromredactsnaps,
2861 				    &fromredact)) {
2862 					dspp.numfromredactsnaps =
2863 					    NUM_SNAPS_NOT_REDACTED;
2864 				} else if (dspp.numfromredactsnaps > 0) {
2865 					uint64_t size =
2866 					    dspp.numfromredactsnaps *
2867 					    sizeof (uint64_t);
2868 					dspp.fromredactsnaps = kmem_zalloc(size,
2869 					    KM_SLEEP);
2870 					bcopy(fromredact, dspp.fromredactsnaps,
2871 					    size);
2872 				}
2873 				if (!dsl_dataset_is_before(dspp.to_ds, fromds,
2874 				    0)) {
2875 					err = SET_ERROR(EXDEV);
2876 				} else {
2877 					zb->zbm_creation_txg =
2878 					    dsl_dataset_phys(fromds)->
2879 					    ds_creation_txg;
2880 					zb->zbm_creation_time =
2881 					    dsl_dataset_phys(fromds)->
2882 					    ds_creation_time;
2883 					zb->zbm_guid =
2884 					    dsl_dataset_phys(fromds)->ds_guid;
2885 					zb->zbm_redaction_obj = 0;
2886 
2887 					if (dsl_dataset_is_zapified(fromds)) {
2888 						(void) zap_lookup(
2889 						    dspp.dp->dp_meta_objset,
2890 						    fromds->ds_object,
2891 						    DS_FIELD_IVSET_GUID, 8, 1,
2892 						    &zb->zbm_ivset_guid);
2893 					}
2894 				}
2895 				dsl_dataset_rele(fromds, FTAG);
2896 			}
2897 		} else {
2898 			dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2899 			err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds,
2900 			    zb);
2901 			if (err == EXDEV && zb->zbm_redaction_obj != 0 &&
2902 			    zb->zbm_guid ==
2903 			    dsl_dataset_phys(dspp.to_ds)->ds_guid)
2904 				err = 0;
2905 		}
2906 
2907 		if (err == 0) {
2908 			/* dmu_send_impl will call dsl_pool_rele for us. */
2909 			err = dmu_send_impl(&dspp);
2910 		} else {
2911 			dsl_pool_rele(dspp.dp, FTAG);
2912 		}
2913 	} else {
2914 		dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2915 		err = dmu_send_impl(&dspp);
2916 	}
2917 	if (owned)
2918 		dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2919 	else
2920 		dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2921 	return (err);
2922 }
2923 
2924 static int
2925 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
2926     uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
2927 {
2928 	int err = 0;
2929 	uint64_t size;
2930 	/*
2931 	 * Assume that space (both on-disk and in-stream) is dominated by
2932 	 * data.  We will adjust for indirect blocks and the copies property,
2933 	 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
2934 	 */
2935 
2936 	uint64_t recordsize;
2937 	uint64_t record_count;
2938 	objset_t *os;
2939 	VERIFY0(dmu_objset_from_ds(ds, &os));
2940 
2941 	/* Assume all (uncompressed) blocks are recordsize. */
2942 	if (zfs_override_estimate_recordsize != 0) {
2943 		recordsize = zfs_override_estimate_recordsize;
2944 	} else if (os->os_phys->os_type == DMU_OST_ZVOL) {
2945 		err = dsl_prop_get_int_ds(ds,
2946 		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
2947 	} else {
2948 		err = dsl_prop_get_int_ds(ds,
2949 		    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
2950 	}
2951 	if (err != 0)
2952 		return (err);
2953 	record_count = uncompressed / recordsize;
2954 
2955 	/*
2956 	 * If we're estimating a send size for a compressed stream, use the
2957 	 * compressed data size to estimate the stream size. Otherwise, use the
2958 	 * uncompressed data size.
2959 	 */
2960 	size = stream_compressed ? compressed : uncompressed;
2961 
2962 	/*
2963 	 * Subtract out approximate space used by indirect blocks.
2964 	 * Assume most space is used by data blocks (non-indirect, non-dnode).
2965 	 * Assume no ditto blocks or internal fragmentation.
2966 	 *
2967 	 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
2968 	 * block.
2969 	 */
2970 	size -= record_count * sizeof (blkptr_t);
2971 
2972 	/* Add in the space for the record associated with each block. */
2973 	size += record_count * sizeof (dmu_replay_record_t);
2974 
2975 	*sizep = size;
2976 
2977 	return (0);
2978 }
2979 
2980 int
2981 dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds,
2982     zfs_bookmark_phys_t *frombook, boolean_t stream_compressed,
2983     boolean_t saved, uint64_t *sizep)
2984 {
2985 	int err;
2986 	dsl_dataset_t *ds = origds;
2987 	uint64_t uncomp, comp;
2988 
2989 	ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool));
2990 	ASSERT(fromds == NULL || frombook == NULL);
2991 
2992 	/*
2993 	 * If this is a saved send we may actually be sending
2994 	 * from the %recv clone used for resuming.
2995 	 */
2996 	if (saved) {
2997 		objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset;
2998 		uint64_t guid;
2999 		char dsname[ZFS_MAX_DATASET_NAME_LEN + 6];
3000 
3001 		dsl_dataset_name(origds, dsname);
3002 		(void) strcat(dsname, "/");
3003 		(void) strcat(dsname, recv_clone_name);
3004 
3005 		err = dsl_dataset_hold(origds->ds_dir->dd_pool,
3006 		    dsname, FTAG, &ds);
3007 		if (err != ENOENT && err != 0) {
3008 			return (err);
3009 		} else if (err == ENOENT) {
3010 			ds = origds;
3011 		}
3012 
3013 		/* check that this dataset has partially received data */
3014 		err = zap_lookup(mos, ds->ds_object,
3015 		    DS_FIELD_RESUME_TOGUID, 8, 1, &guid);
3016 		if (err != 0) {
3017 			err = SET_ERROR(err == ENOENT ? EINVAL : err);
3018 			goto out;
3019 		}
3020 
3021 		err = zap_lookup(mos, ds->ds_object,
3022 		    DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname);
3023 		if (err != 0) {
3024 			err = SET_ERROR(err == ENOENT ? EINVAL : err);
3025 			goto out;
3026 		}
3027 	}
3028 
3029 	/* tosnap must be a snapshot or the target of a saved send */
3030 	if (!ds->ds_is_snapshot && ds == origds)
3031 		return (SET_ERROR(EINVAL));
3032 
3033 	if (fromds != NULL) {
3034 		uint64_t used;
3035 		if (!fromds->ds_is_snapshot) {
3036 			err = SET_ERROR(EINVAL);
3037 			goto out;
3038 		}
3039 
3040 		if (!dsl_dataset_is_before(ds, fromds, 0)) {
3041 			err = SET_ERROR(EXDEV);
3042 			goto out;
3043 		}
3044 
3045 		err = dsl_dataset_space_written(fromds, ds, &used, &comp,
3046 		    &uncomp);
3047 		if (err != 0)
3048 			goto out;
3049 	} else if (frombook != NULL) {
3050 		uint64_t used;
3051 		err = dsl_dataset_space_written_bookmark(frombook, ds, &used,
3052 		    &comp, &uncomp);
3053 		if (err != 0)
3054 			goto out;
3055 	} else {
3056 		uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
3057 		comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
3058 	}
3059 
3060 	err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
3061 	    stream_compressed, sizep);
3062 	/*
3063 	 * Add the size of the BEGIN and END records to the estimate.
3064 	 */
3065 	*sizep += 2 * sizeof (dmu_replay_record_t);
3066 
3067 out:
3068 	if (ds != origds)
3069 		dsl_dataset_rele(ds, FTAG);
3070 	return (err);
3071 }
3072 
3073 /* BEGIN CSTYLED */
3074 ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW,
3075 	"Allow sending corrupt data");
3076 
3077 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, INT, ZMOD_RW,
3078 	"Maximum send queue length");
3079 
3080 ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW,
3081 	"Send unmodified spill blocks");
3082 
3083 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, INT, ZMOD_RW,
3084 	"Maximum send queue length for non-prefetch queues");
3085 
3086 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, INT, ZMOD_RW,
3087 	"Send queue fill fraction");
3088 
3089 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, INT, ZMOD_RW,
3090 	"Send queue fill fraction for non-prefetch queues");
3091 
3092 ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, INT, ZMOD_RW,
3093 	"Override block size estimate with fixed size");
3094 /* END CSTYLED */
3095