xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_send.c (revision 780f28929782a104eefbc81f031836bf1febb6de)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright 2016 RackTop Systems.
28  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
29  * Copyright (c) 2019, 2024, Klara, Inc.
30  * Copyright (c) 2019, Allan Jude
31  */
32 
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_synctask.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zfs_znode.h>
51 #include <zfs_fletcher.h>
52 #include <sys/avl.h>
53 #include <sys/ddt.h>
54 #include <sys/zfs_onexit.h>
55 #include <sys/dmu_send.h>
56 #include <sys/dmu_recv.h>
57 #include <sys/dsl_destroy.h>
58 #include <sys/blkptr.h>
59 #include <sys/dsl_bookmark.h>
60 #include <sys/zfeature.h>
61 #include <sys/bqueue.h>
62 #include <sys/zvol.h>
63 #include <sys/policy.h>
64 #include <sys/objlist.h>
65 #ifdef _KERNEL
66 #include <sys/zfs_vfsops.h>
67 #endif
68 
69 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
70 static int zfs_send_corrupt_data = B_FALSE;
71 /*
72  * This tunable controls the amount of data (measured in bytes) that will be
73  * prefetched by zfs send.  If the main thread is blocking on reads that haven't
74  * completed, this variable might need to be increased.  If instead the main
75  * thread is issuing new reads because the prefetches have fallen out of the
76  * cache, this may need to be decreased.
77  */
78 static uint_t zfs_send_queue_length = SPA_MAXBLOCKSIZE;
79 /*
80  * This tunable controls the length of the queues that zfs send worker threads
81  * use to communicate.  If the send_main_thread is blocking on these queues,
82  * this variable may need to be increased.  If there is a significant slowdown
83  * at the start of a send as these threads consume all the available IO
84  * resources, this variable may need to be decreased.
85  */
86 static uint_t zfs_send_no_prefetch_queue_length = 1024 * 1024;
87 /*
88  * These tunables control the fill fraction of the queues by zfs send.  The fill
89  * fraction controls the frequency with which threads have to be cv_signaled.
90  * If a lot of cpu time is being spent on cv_signal, then these should be tuned
91  * down.  If the queues empty before the signalled thread can catch up, then
92  * these should be tuned up.
93  */
94 static uint_t zfs_send_queue_ff = 20;
95 static uint_t zfs_send_no_prefetch_queue_ff = 20;
96 
97 /*
98  * Use this to override the recordsize calculation for fast zfs send estimates.
99  */
100 static uint_t zfs_override_estimate_recordsize = 0;
101 
102 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
103 static const boolean_t zfs_send_set_freerecords_bit = B_TRUE;
104 
105 /* Set this tunable to FALSE is disable sending unmodified spill blocks. */
106 static int zfs_send_unmodified_spill_blocks = B_TRUE;
107 
108 static inline boolean_t
109 overflow_multiply(uint64_t a, uint64_t b, uint64_t *c)
110 {
111 	uint64_t temp = a * b;
112 	if (b != 0 && temp / b != a)
113 		return (B_FALSE);
114 	*c = temp;
115 	return (B_TRUE);
116 }
117 
118 struct send_thread_arg {
119 	bqueue_t	q;
120 	objset_t	*os;		/* Objset to traverse */
121 	uint64_t	fromtxg;	/* Traverse from this txg */
122 	int		flags;		/* flags to pass to traverse_dataset */
123 	int		error_code;
124 	boolean_t	cancel;
125 	zbookmark_phys_t resume;
126 	uint64_t	*num_blocks_visited;
127 };
128 
129 struct redact_list_thread_arg {
130 	boolean_t		cancel;
131 	bqueue_t		q;
132 	zbookmark_phys_t	resume;
133 	redaction_list_t	*rl;
134 	boolean_t		mark_redact;
135 	int			error_code;
136 	uint64_t		*num_blocks_visited;
137 };
138 
139 struct send_merge_thread_arg {
140 	bqueue_t			q;
141 	objset_t			*os;
142 	struct redact_list_thread_arg	*from_arg;
143 	struct send_thread_arg		*to_arg;
144 	struct redact_list_thread_arg	*redact_arg;
145 	int				error;
146 	boolean_t			cancel;
147 };
148 
149 struct send_range {
150 	boolean_t		eos_marker; /* Marks the end of the stream */
151 	uint64_t		object;
152 	uint64_t		start_blkid;
153 	uint64_t		end_blkid;
154 	bqueue_node_t		ln;
155 	enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT,
156 	    PREVIOUSLY_REDACTED} type;
157 	union {
158 		struct srd {
159 			dmu_object_type_t	obj_type;
160 			uint32_t		datablksz; // logical size
161 			uint32_t		datasz; // payload size
162 			blkptr_t		bp;
163 			arc_buf_t		*abuf;
164 			abd_t			*abd;
165 			kmutex_t		lock;
166 			kcondvar_t		cv;
167 			boolean_t		io_outstanding;
168 			boolean_t		io_compressed;
169 			int			io_err;
170 		} data;
171 		struct srh {
172 			uint32_t		datablksz;
173 		} hole;
174 		struct sro {
175 			/*
176 			 * This is a pointer because embedding it in the
177 			 * struct causes these structures to be massively larger
178 			 * for all range types; this makes the code much less
179 			 * memory efficient.
180 			 */
181 			dnode_phys_t		*dnp;
182 			blkptr_t		bp;
183 			/* Piggyback unmodified spill block */
184 			struct send_range	*spill_range;
185 		} object;
186 		struct srr {
187 			uint32_t		datablksz;
188 		} redact;
189 		struct sror {
190 			blkptr_t		bp;
191 		} object_range;
192 	} sru;
193 };
194 
195 /*
196  * The list of data whose inclusion in a send stream can be pending from
197  * one call to backup_cb to another.  Multiple calls to dump_free(),
198  * dump_freeobjects(), and dump_redact() can be aggregated into a single
199  * DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record.
200  */
201 typedef enum {
202 	PENDING_NONE,
203 	PENDING_FREE,
204 	PENDING_FREEOBJECTS,
205 	PENDING_REDACT
206 } dmu_pendop_t;
207 
208 typedef struct dmu_send_cookie {
209 	dmu_replay_record_t *dsc_drr;
210 	dmu_send_outparams_t *dsc_dso;
211 	offset_t *dsc_off;
212 	objset_t *dsc_os;
213 	zio_cksum_t dsc_zc;
214 	uint64_t dsc_toguid;
215 	uint64_t dsc_fromtxg;
216 	int dsc_err;
217 	dmu_pendop_t dsc_pending_op;
218 	uint64_t dsc_featureflags;
219 	uint64_t dsc_last_data_object;
220 	uint64_t dsc_last_data_offset;
221 	uint64_t dsc_resume_object;
222 	uint64_t dsc_resume_offset;
223 	boolean_t dsc_sent_begin;
224 	boolean_t dsc_sent_end;
225 } dmu_send_cookie_t;
226 
227 static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range);
228 
229 static void
230 range_free(struct send_range *range)
231 {
232 	if (range->type == OBJECT) {
233 		size_t size = sizeof (dnode_phys_t) *
234 		    (range->sru.object.dnp->dn_extra_slots + 1);
235 		kmem_free(range->sru.object.dnp, size);
236 		if (range->sru.object.spill_range)
237 			range_free(range->sru.object.spill_range);
238 	} else if (range->type == DATA) {
239 		mutex_enter(&range->sru.data.lock);
240 		while (range->sru.data.io_outstanding)
241 			cv_wait(&range->sru.data.cv, &range->sru.data.lock);
242 		if (range->sru.data.abd != NULL)
243 			abd_free(range->sru.data.abd);
244 		if (range->sru.data.abuf != NULL) {
245 			arc_buf_destroy(range->sru.data.abuf,
246 			    &range->sru.data.abuf);
247 		}
248 		mutex_exit(&range->sru.data.lock);
249 
250 		cv_destroy(&range->sru.data.cv);
251 		mutex_destroy(&range->sru.data.lock);
252 	}
253 	kmem_free(range, sizeof (*range));
254 }
255 
256 /*
257  * For all record types except BEGIN, fill in the checksum (overlaid in
258  * drr_u.drr_checksum.drr_checksum).  The checksum verifies everything
259  * up to the start of the checksum itself.
260  */
261 static int
262 dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len)
263 {
264 	dmu_send_outparams_t *dso = dscp->dsc_dso;
265 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
266 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
267 	(void) fletcher_4_incremental_native(dscp->dsc_drr,
268 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
269 	    &dscp->dsc_zc);
270 	if (dscp->dsc_drr->drr_type == DRR_BEGIN) {
271 		dscp->dsc_sent_begin = B_TRUE;
272 	} else {
273 		ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u.
274 		    drr_checksum.drr_checksum));
275 		dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc;
276 	}
277 	if (dscp->dsc_drr->drr_type == DRR_END) {
278 		dscp->dsc_sent_end = B_TRUE;
279 	}
280 	(void) fletcher_4_incremental_native(&dscp->dsc_drr->
281 	    drr_u.drr_checksum.drr_checksum,
282 	    sizeof (zio_cksum_t), &dscp->dsc_zc);
283 	*dscp->dsc_off += sizeof (dmu_replay_record_t);
284 	dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr,
285 	    sizeof (dmu_replay_record_t), dso->dso_arg);
286 	if (dscp->dsc_err != 0)
287 		return (SET_ERROR(EINTR));
288 	if (payload_len != 0) {
289 		*dscp->dsc_off += payload_len;
290 		/*
291 		 * payload is null when dso_dryrun == B_TRUE (i.e. when we're
292 		 * doing a send size calculation)
293 		 */
294 		if (payload != NULL) {
295 			(void) fletcher_4_incremental_native(
296 			    payload, payload_len, &dscp->dsc_zc);
297 		}
298 
299 		/*
300 		 * The code does not rely on this (len being a multiple of 8).
301 		 * We keep this assertion because of the corresponding assertion
302 		 * in receive_read().  Keeping this assertion ensures that we do
303 		 * not inadvertently break backwards compatibility (causing the
304 		 * assertion in receive_read() to trigger on old software).
305 		 *
306 		 * Raw sends cannot be received on old software, and so can
307 		 * bypass this assertion.
308 		 */
309 
310 		ASSERT((payload_len % 8 == 0) ||
311 		    (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW));
312 
313 		dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload,
314 		    payload_len, dso->dso_arg);
315 		if (dscp->dsc_err != 0)
316 			return (SET_ERROR(EINTR));
317 	}
318 	return (0);
319 }
320 
321 /*
322  * Fill in the drr_free struct, or perform aggregation if the previous record is
323  * also a free record, and the two are adjacent.
324  *
325  * Note that we send free records even for a full send, because we want to be
326  * able to receive a full send as a clone, which requires a list of all the free
327  * and freeobject records that were generated on the source.
328  */
329 static int
330 dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
331     uint64_t length)
332 {
333 	struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free);
334 
335 	/*
336 	 * When we receive a free record, dbuf_free_range() assumes
337 	 * that the receiving system doesn't have any dbufs in the range
338 	 * being freed.  This is always true because there is a one-record
339 	 * constraint: we only send one WRITE record for any given
340 	 * object,offset.  We know that the one-record constraint is
341 	 * true because we always send data in increasing order by
342 	 * object,offset.
343 	 *
344 	 * If the increasing-order constraint ever changes, we should find
345 	 * another way to assert that the one-record constraint is still
346 	 * satisfied.
347 	 */
348 	ASSERT(object > dscp->dsc_last_data_object ||
349 	    (object == dscp->dsc_last_data_object &&
350 	    offset > dscp->dsc_last_data_offset));
351 
352 	/*
353 	 * If there is a pending op, but it's not PENDING_FREE, push it out,
354 	 * since free block aggregation can only be done for blocks of the
355 	 * same type (i.e., DRR_FREE records can only be aggregated with
356 	 * other DRR_FREE records.  DRR_FREEOBJECTS records can only be
357 	 * aggregated with other DRR_FREEOBJECTS records).
358 	 */
359 	if (dscp->dsc_pending_op != PENDING_NONE &&
360 	    dscp->dsc_pending_op != PENDING_FREE) {
361 		if (dump_record(dscp, NULL, 0) != 0)
362 			return (SET_ERROR(EINTR));
363 		dscp->dsc_pending_op = PENDING_NONE;
364 	}
365 
366 	if (dscp->dsc_pending_op == PENDING_FREE) {
367 		/*
368 		 * Check to see whether this free block can be aggregated
369 		 * with pending one.
370 		 */
371 		if (drrf->drr_object == object && drrf->drr_offset +
372 		    drrf->drr_length == offset) {
373 			if (offset + length < offset || length == UINT64_MAX)
374 				drrf->drr_length = UINT64_MAX;
375 			else
376 				drrf->drr_length += length;
377 			return (0);
378 		} else {
379 			/* not a continuation.  Push out pending record */
380 			if (dump_record(dscp, NULL, 0) != 0)
381 				return (SET_ERROR(EINTR));
382 			dscp->dsc_pending_op = PENDING_NONE;
383 		}
384 	}
385 	/* create a FREE record and make it pending */
386 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
387 	dscp->dsc_drr->drr_type = DRR_FREE;
388 	drrf->drr_object = object;
389 	drrf->drr_offset = offset;
390 	if (offset + length < offset)
391 		drrf->drr_length = DMU_OBJECT_END;
392 	else
393 		drrf->drr_length = length;
394 	drrf->drr_toguid = dscp->dsc_toguid;
395 	if (length == DMU_OBJECT_END) {
396 		if (dump_record(dscp, NULL, 0) != 0)
397 			return (SET_ERROR(EINTR));
398 	} else {
399 		dscp->dsc_pending_op = PENDING_FREE;
400 	}
401 
402 	return (0);
403 }
404 
405 /*
406  * Fill in the drr_redact struct, or perform aggregation if the previous record
407  * is also a redaction record, and the two are adjacent.
408  */
409 static int
410 dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
411     uint64_t length)
412 {
413 	struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact;
414 
415 	/*
416 	 * If there is a pending op, but it's not PENDING_REDACT, push it out,
417 	 * since free block aggregation can only be done for blocks of the
418 	 * same type (i.e., DRR_REDACT records can only be aggregated with
419 	 * other DRR_REDACT records).
420 	 */
421 	if (dscp->dsc_pending_op != PENDING_NONE &&
422 	    dscp->dsc_pending_op != PENDING_REDACT) {
423 		if (dump_record(dscp, NULL, 0) != 0)
424 			return (SET_ERROR(EINTR));
425 		dscp->dsc_pending_op = PENDING_NONE;
426 	}
427 
428 	if (dscp->dsc_pending_op == PENDING_REDACT) {
429 		/*
430 		 * Check to see whether this redacted block can be aggregated
431 		 * with pending one.
432 		 */
433 		if (drrr->drr_object == object && drrr->drr_offset +
434 		    drrr->drr_length == offset) {
435 			drrr->drr_length += length;
436 			return (0);
437 		} else {
438 			/* not a continuation.  Push out pending record */
439 			if (dump_record(dscp, NULL, 0) != 0)
440 				return (SET_ERROR(EINTR));
441 			dscp->dsc_pending_op = PENDING_NONE;
442 		}
443 	}
444 	/* create a REDACT record and make it pending */
445 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
446 	dscp->dsc_drr->drr_type = DRR_REDACT;
447 	drrr->drr_object = object;
448 	drrr->drr_offset = offset;
449 	drrr->drr_length = length;
450 	drrr->drr_toguid = dscp->dsc_toguid;
451 	dscp->dsc_pending_op = PENDING_REDACT;
452 
453 	return (0);
454 }
455 
456 static int
457 dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object,
458     uint64_t offset, int lsize, int psize, const blkptr_t *bp,
459     boolean_t io_compressed, void *data)
460 {
461 	uint64_t payload_size;
462 	boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
463 	struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write);
464 
465 	/*
466 	 * We send data in increasing object, offset order.
467 	 * See comment in dump_free() for details.
468 	 */
469 	ASSERT(object > dscp->dsc_last_data_object ||
470 	    (object == dscp->dsc_last_data_object &&
471 	    offset > dscp->dsc_last_data_offset));
472 	dscp->dsc_last_data_object = object;
473 	dscp->dsc_last_data_offset = offset + lsize - 1;
474 
475 	/*
476 	 * If there is any kind of pending aggregation (currently either
477 	 * a grouping of free objects or free blocks), push it out to
478 	 * the stream, since aggregation can't be done across operations
479 	 * of different types.
480 	 */
481 	if (dscp->dsc_pending_op != PENDING_NONE) {
482 		if (dump_record(dscp, NULL, 0) != 0)
483 			return (SET_ERROR(EINTR));
484 		dscp->dsc_pending_op = PENDING_NONE;
485 	}
486 	/* write a WRITE record */
487 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
488 	dscp->dsc_drr->drr_type = DRR_WRITE;
489 	drrw->drr_object = object;
490 	drrw->drr_type = type;
491 	drrw->drr_offset = offset;
492 	drrw->drr_toguid = dscp->dsc_toguid;
493 	drrw->drr_logical_size = lsize;
494 
495 	/* only set the compression fields if the buf is compressed or raw */
496 	boolean_t compressed =
497 	    (bp != NULL ? BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
498 	    io_compressed : lsize != psize);
499 	if (raw || compressed) {
500 		ASSERT(bp != NULL);
501 		ASSERT(raw || dscp->dsc_featureflags &
502 		    DMU_BACKUP_FEATURE_COMPRESSED);
503 		ASSERT(!BP_IS_EMBEDDED(bp));
504 		ASSERT3S(psize, >, 0);
505 
506 		if (raw) {
507 			ASSERT(BP_IS_PROTECTED(bp));
508 
509 			/*
510 			 * This is a raw protected block so we need to pass
511 			 * along everything the receiving side will need to
512 			 * interpret this block, including the byteswap, salt,
513 			 * IV, and MAC.
514 			 */
515 			if (BP_SHOULD_BYTESWAP(bp))
516 				drrw->drr_flags |= DRR_RAW_BYTESWAP;
517 			zio_crypt_decode_params_bp(bp, drrw->drr_salt,
518 			    drrw->drr_iv);
519 			zio_crypt_decode_mac_bp(bp, drrw->drr_mac);
520 		} else {
521 			/* this is a compressed block */
522 			ASSERT(dscp->dsc_featureflags &
523 			    DMU_BACKUP_FEATURE_COMPRESSED);
524 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
525 			ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
526 			ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
527 			ASSERT3S(lsize, >=, psize);
528 		}
529 
530 		/* set fields common to compressed and raw sends */
531 		drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
532 		drrw->drr_compressed_size = psize;
533 		payload_size = drrw->drr_compressed_size;
534 	} else {
535 		payload_size = drrw->drr_logical_size;
536 	}
537 
538 	if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) {
539 		/*
540 		 * There's no pre-computed checksum for partial-block writes,
541 		 * embedded BP's, or encrypted BP's that are being sent as
542 		 * plaintext, so (like fletcher4-checksummed blocks) userland
543 		 * will have to compute a dedup-capable checksum itself.
544 		 */
545 		drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
546 	} else {
547 		drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
548 		if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
549 		    ZCHECKSUM_FLAG_DEDUP)
550 			drrw->drr_flags |= DRR_CHECKSUM_DEDUP;
551 		DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
552 		DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
553 		DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
554 		DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp));
555 		drrw->drr_key.ddk_cksum = bp->blk_cksum;
556 	}
557 
558 	if (dump_record(dscp, data, payload_size) != 0)
559 		return (SET_ERROR(EINTR));
560 	return (0);
561 }
562 
563 static int
564 dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset,
565     int blksz, const blkptr_t *bp)
566 {
567 	char buf[BPE_PAYLOAD_SIZE];
568 	struct drr_write_embedded *drrw =
569 	    &(dscp->dsc_drr->drr_u.drr_write_embedded);
570 
571 	if (dscp->dsc_pending_op != PENDING_NONE) {
572 		if (dump_record(dscp, NULL, 0) != 0)
573 			return (SET_ERROR(EINTR));
574 		dscp->dsc_pending_op = PENDING_NONE;
575 	}
576 
577 	ASSERT(BP_IS_EMBEDDED(bp));
578 
579 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
580 	dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED;
581 	drrw->drr_object = object;
582 	drrw->drr_offset = offset;
583 	drrw->drr_length = blksz;
584 	drrw->drr_toguid = dscp->dsc_toguid;
585 	drrw->drr_compression = BP_GET_COMPRESS(bp);
586 	drrw->drr_etype = BPE_GET_ETYPE(bp);
587 	drrw->drr_lsize = BPE_GET_LSIZE(bp);
588 	drrw->drr_psize = BPE_GET_PSIZE(bp);
589 
590 	decode_embedded_bp_compressed(bp, buf);
591 
592 	uint32_t psize = drrw->drr_psize;
593 	uint32_t rsize = P2ROUNDUP(psize, 8);
594 
595 	if (psize != rsize)
596 		memset(buf + psize, 0, rsize - psize);
597 
598 	if (dump_record(dscp, buf, rsize) != 0)
599 		return (SET_ERROR(EINTR));
600 	return (0);
601 }
602 
603 static int
604 dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
605     void *data)
606 {
607 	struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill);
608 	uint64_t blksz = BP_GET_LSIZE(bp);
609 	uint64_t payload_size = blksz;
610 
611 	if (dscp->dsc_pending_op != PENDING_NONE) {
612 		if (dump_record(dscp, NULL, 0) != 0)
613 			return (SET_ERROR(EINTR));
614 		dscp->dsc_pending_op = PENDING_NONE;
615 	}
616 
617 	/* write a SPILL record */
618 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
619 	dscp->dsc_drr->drr_type = DRR_SPILL;
620 	drrs->drr_object = object;
621 	drrs->drr_length = blksz;
622 	drrs->drr_toguid = dscp->dsc_toguid;
623 
624 	/* See comment in piggyback_unmodified_spill() for full details */
625 	if (zfs_send_unmodified_spill_blocks &&
626 	    (BP_GET_LOGICAL_BIRTH(bp) <= dscp->dsc_fromtxg)) {
627 		drrs->drr_flags |= DRR_SPILL_UNMODIFIED;
628 	}
629 
630 	/* handle raw send fields */
631 	if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) {
632 		ASSERT(BP_IS_PROTECTED(bp));
633 
634 		if (BP_SHOULD_BYTESWAP(bp))
635 			drrs->drr_flags |= DRR_RAW_BYTESWAP;
636 		drrs->drr_compressiontype = BP_GET_COMPRESS(bp);
637 		drrs->drr_compressed_size = BP_GET_PSIZE(bp);
638 		zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv);
639 		zio_crypt_decode_mac_bp(bp, drrs->drr_mac);
640 		payload_size = drrs->drr_compressed_size;
641 	}
642 
643 	if (dump_record(dscp, data, payload_size) != 0)
644 		return (SET_ERROR(EINTR));
645 	return (0);
646 }
647 
648 static int
649 dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs)
650 {
651 	struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects);
652 	uint64_t maxobj = DNODES_PER_BLOCK *
653 	    (DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1);
654 
655 	/*
656 	 * ZoL < 0.7 does not handle large FREEOBJECTS records correctly,
657 	 * leading to zfs recv never completing. to avoid this issue, don't
658 	 * send FREEOBJECTS records for object IDs which cannot exist on the
659 	 * receiving side.
660 	 */
661 	if (maxobj > 0) {
662 		if (maxobj <= firstobj)
663 			return (0);
664 
665 		if (maxobj < firstobj + numobjs)
666 			numobjs = maxobj - firstobj;
667 	}
668 
669 	/*
670 	 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
671 	 * push it out, since free block aggregation can only be done for
672 	 * blocks of the same type (i.e., DRR_FREE records can only be
673 	 * aggregated with other DRR_FREE records.  DRR_FREEOBJECTS records
674 	 * can only be aggregated with other DRR_FREEOBJECTS records).
675 	 */
676 	if (dscp->dsc_pending_op != PENDING_NONE &&
677 	    dscp->dsc_pending_op != PENDING_FREEOBJECTS) {
678 		if (dump_record(dscp, NULL, 0) != 0)
679 			return (SET_ERROR(EINTR));
680 		dscp->dsc_pending_op = PENDING_NONE;
681 	}
682 
683 	if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) {
684 		/*
685 		 * See whether this free object array can be aggregated
686 		 * with pending one
687 		 */
688 		if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
689 			drrfo->drr_numobjs += numobjs;
690 			return (0);
691 		} else {
692 			/* can't be aggregated.  Push out pending record */
693 			if (dump_record(dscp, NULL, 0) != 0)
694 				return (SET_ERROR(EINTR));
695 			dscp->dsc_pending_op = PENDING_NONE;
696 		}
697 	}
698 
699 	/* write a FREEOBJECTS record */
700 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
701 	dscp->dsc_drr->drr_type = DRR_FREEOBJECTS;
702 	drrfo->drr_firstobj = firstobj;
703 	drrfo->drr_numobjs = numobjs;
704 	drrfo->drr_toguid = dscp->dsc_toguid;
705 
706 	dscp->dsc_pending_op = PENDING_FREEOBJECTS;
707 
708 	return (0);
709 }
710 
711 static int
712 dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object,
713     dnode_phys_t *dnp)
714 {
715 	struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object);
716 	int bonuslen;
717 
718 	if (object < dscp->dsc_resume_object) {
719 		/*
720 		 * Note: when resuming, we will visit all the dnodes in
721 		 * the block of dnodes that we are resuming from.  In
722 		 * this case it's unnecessary to send the dnodes prior to
723 		 * the one we are resuming from.  We should be at most one
724 		 * block's worth of dnodes behind the resume point.
725 		 */
726 		ASSERT3U(dscp->dsc_resume_object - object, <,
727 		    1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
728 		return (0);
729 	}
730 
731 	if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
732 		return (dump_freeobjects(dscp, object, 1));
733 
734 	if (dscp->dsc_pending_op != PENDING_NONE) {
735 		if (dump_record(dscp, NULL, 0) != 0)
736 			return (SET_ERROR(EINTR));
737 		dscp->dsc_pending_op = PENDING_NONE;
738 	}
739 
740 	/* write an OBJECT record */
741 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
742 	dscp->dsc_drr->drr_type = DRR_OBJECT;
743 	drro->drr_object = object;
744 	drro->drr_type = dnp->dn_type;
745 	drro->drr_bonustype = dnp->dn_bonustype;
746 	drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
747 	drro->drr_bonuslen = dnp->dn_bonuslen;
748 	drro->drr_dn_slots = dnp->dn_extra_slots + 1;
749 	drro->drr_checksumtype = dnp->dn_checksum;
750 	drro->drr_compress = dnp->dn_compress;
751 	drro->drr_toguid = dscp->dsc_toguid;
752 
753 	if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
754 	    drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
755 		drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
756 
757 	bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8);
758 
759 	if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
760 		ASSERT(BP_IS_ENCRYPTED(bp));
761 
762 		if (BP_SHOULD_BYTESWAP(bp))
763 			drro->drr_flags |= DRR_RAW_BYTESWAP;
764 
765 		/* needed for reconstructing dnp on recv side */
766 		drro->drr_maxblkid = dnp->dn_maxblkid;
767 		drro->drr_indblkshift = dnp->dn_indblkshift;
768 		drro->drr_nlevels = dnp->dn_nlevels;
769 		drro->drr_nblkptr = dnp->dn_nblkptr;
770 
771 		/*
772 		 * Since we encrypt the entire bonus area, the (raw) part
773 		 * beyond the bonuslen is actually nonzero, so we need
774 		 * to send it.
775 		 */
776 		if (bonuslen != 0) {
777 			if (drro->drr_bonuslen > DN_MAX_BONUS_LEN(dnp))
778 				return (SET_ERROR(EINVAL));
779 			drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp);
780 			bonuslen = drro->drr_raw_bonuslen;
781 		}
782 	}
783 
784 	/*
785 	 * DRR_OBJECT_SPILL is set for every dnode which references a
786 	 * spill block.	 This allows the receiving pool to definitively
787 	 * determine when a spill block should be kept or freed.
788 	 */
789 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
790 		drro->drr_flags |= DRR_OBJECT_SPILL;
791 
792 	if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0)
793 		return (SET_ERROR(EINTR));
794 
795 	/* Free anything past the end of the file. */
796 	if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) *
797 	    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0)
798 		return (SET_ERROR(EINTR));
799 
800 	if (dscp->dsc_err != 0)
801 		return (SET_ERROR(EINTR));
802 
803 	return (0);
804 }
805 
806 static int
807 dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp,
808     uint64_t firstobj, uint64_t numslots)
809 {
810 	struct drr_object_range *drror =
811 	    &(dscp->dsc_drr->drr_u.drr_object_range);
812 
813 	/* we only use this record type for raw sends */
814 	ASSERT(BP_IS_PROTECTED(bp));
815 	ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW);
816 	ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
817 	ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE);
818 	ASSERT0(BP_GET_LEVEL(bp));
819 
820 	if (dscp->dsc_pending_op != PENDING_NONE) {
821 		if (dump_record(dscp, NULL, 0) != 0)
822 			return (SET_ERROR(EINTR));
823 		dscp->dsc_pending_op = PENDING_NONE;
824 	}
825 
826 	memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t));
827 	dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE;
828 	drror->drr_firstobj = firstobj;
829 	drror->drr_numslots = numslots;
830 	drror->drr_toguid = dscp->dsc_toguid;
831 	if (BP_SHOULD_BYTESWAP(bp))
832 		drror->drr_flags |= DRR_RAW_BYTESWAP;
833 	zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv);
834 	zio_crypt_decode_mac_bp(bp, drror->drr_mac);
835 
836 	if (dump_record(dscp, NULL, 0) != 0)
837 		return (SET_ERROR(EINTR));
838 	return (0);
839 }
840 
841 static boolean_t
842 send_do_embed(const blkptr_t *bp, uint64_t featureflags)
843 {
844 	if (!BP_IS_EMBEDDED(bp))
845 		return (B_FALSE);
846 
847 	/*
848 	 * Compression function must be legacy, or explicitly enabled.
849 	 */
850 	if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
851 	    !(featureflags & DMU_BACKUP_FEATURE_LZ4)))
852 		return (B_FALSE);
853 
854 	/*
855 	 * If we have not set the ZSTD feature flag, we can't send ZSTD
856 	 * compressed embedded blocks, as the receiver may not support them.
857 	 */
858 	if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD &&
859 	    !(featureflags & DMU_BACKUP_FEATURE_ZSTD)))
860 		return (B_FALSE);
861 
862 	/*
863 	 * Embed type must be explicitly enabled.
864 	 */
865 	switch (BPE_GET_ETYPE(bp)) {
866 	case BP_EMBEDDED_TYPE_DATA:
867 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
868 			return (B_TRUE);
869 		break;
870 	default:
871 		return (B_FALSE);
872 	}
873 	return (B_FALSE);
874 }
875 
876 /*
877  * This function actually handles figuring out what kind of record needs to be
878  * dumped, and calling the appropriate helper function.  In most cases,
879  * the data has already been read by send_reader_thread().
880  */
881 static int
882 do_dump(dmu_send_cookie_t *dscp, struct send_range *range)
883 {
884 	int err = 0;
885 	switch (range->type) {
886 	case OBJECT:
887 		err = dump_dnode(dscp, &range->sru.object.bp, range->object,
888 		    range->sru.object.dnp);
889 		/* Dump piggybacked unmodified spill block */
890 		if (!err && range->sru.object.spill_range)
891 			err = do_dump(dscp, range->sru.object.spill_range);
892 		return (err);
893 	case OBJECT_RANGE: {
894 		ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
895 		if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) {
896 			return (0);
897 		}
898 		uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >>
899 		    DNODE_SHIFT;
900 		uint64_t firstobj = range->start_blkid * epb;
901 		err = dump_object_range(dscp, &range->sru.object_range.bp,
902 		    firstobj, epb);
903 		break;
904 	}
905 	case REDACT: {
906 		struct srr *srrp = &range->sru.redact;
907 		err = dump_redact(dscp, range->object, range->start_blkid *
908 		    srrp->datablksz, (range->end_blkid - range->start_blkid) *
909 		    srrp->datablksz);
910 		return (err);
911 	}
912 	case DATA: {
913 		struct srd *srdp = &range->sru.data;
914 		blkptr_t *bp = &srdp->bp;
915 		spa_t *spa =
916 		    dmu_objset_spa(dscp->dsc_os);
917 
918 		ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp));
919 		ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
920 
921 		if (send_do_embed(bp, dscp->dsc_featureflags)) {
922 			err = dump_write_embedded(dscp, range->object,
923 			    range->start_blkid * srdp->datablksz,
924 			    srdp->datablksz, bp);
925 			return (err);
926 		}
927 		ASSERT(range->object > dscp->dsc_resume_object ||
928 		    (range->object == dscp->dsc_resume_object &&
929 		    (range->start_blkid == DMU_SPILL_BLKID ||
930 		    range->start_blkid * srdp->datablksz >=
931 		    dscp->dsc_resume_offset)));
932 		/* it's a level-0 block of a regular object */
933 
934 		mutex_enter(&srdp->lock);
935 		while (srdp->io_outstanding)
936 			cv_wait(&srdp->cv, &srdp->lock);
937 		err = srdp->io_err;
938 		mutex_exit(&srdp->lock);
939 
940 		if (err != 0) {
941 			if (zfs_send_corrupt_data &&
942 			    !dscp->dsc_dso->dso_dryrun) {
943 				/*
944 				 * Send a block filled with 0x"zfs badd bloc"
945 				 */
946 				srdp->abuf = arc_alloc_buf(spa, &srdp->abuf,
947 				    ARC_BUFC_DATA, srdp->datablksz);
948 				uint64_t *ptr;
949 				for (ptr = srdp->abuf->b_data;
950 				    (char *)ptr < (char *)srdp->abuf->b_data +
951 				    srdp->datablksz; ptr++)
952 					*ptr = 0x2f5baddb10cULL;
953 			} else {
954 				return (SET_ERROR(EIO));
955 			}
956 		}
957 
958 		ASSERT(dscp->dsc_dso->dso_dryrun ||
959 		    srdp->abuf != NULL || srdp->abd != NULL);
960 
961 		char *data = NULL;
962 		if (srdp->abd != NULL) {
963 			data = abd_to_buf(srdp->abd);
964 			ASSERT3P(srdp->abuf, ==, NULL);
965 		} else if (srdp->abuf != NULL) {
966 			data = srdp->abuf->b_data;
967 		}
968 
969 		if (BP_GET_TYPE(bp) == DMU_OT_SA) {
970 			ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID);
971 			err = dump_spill(dscp, bp, range->object, data);
972 			return (err);
973 		}
974 
975 		uint64_t offset = range->start_blkid * srdp->datablksz;
976 
977 		/*
978 		 * If we have large blocks stored on disk but the send flags
979 		 * don't allow us to send large blocks, we split the data from
980 		 * the arc buf into chunks.
981 		 */
982 		if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
983 		    !(dscp->dsc_featureflags &
984 		    DMU_BACKUP_FEATURE_LARGE_BLOCKS)) {
985 			while (srdp->datablksz > 0 && err == 0) {
986 				int n = MIN(srdp->datablksz,
987 				    SPA_OLD_MAXBLOCKSIZE);
988 				err = dmu_dump_write(dscp, srdp->obj_type,
989 				    range->object, offset, n, n, NULL, B_FALSE,
990 				    data);
991 				offset += n;
992 				/*
993 				 * When doing dry run, data==NULL is used as a
994 				 * sentinel value by
995 				 * dmu_dump_write()->dump_record().
996 				 */
997 				if (data != NULL)
998 					data += n;
999 				srdp->datablksz -= n;
1000 			}
1001 		} else {
1002 			err = dmu_dump_write(dscp, srdp->obj_type,
1003 			    range->object, offset,
1004 			    srdp->datablksz, srdp->datasz, bp,
1005 			    srdp->io_compressed, data);
1006 		}
1007 		return (err);
1008 	}
1009 	case HOLE: {
1010 		struct srh *srhp = &range->sru.hole;
1011 		if (range->object == DMU_META_DNODE_OBJECT) {
1012 			uint32_t span = srhp->datablksz >> DNODE_SHIFT;
1013 			uint64_t first_obj = range->start_blkid * span;
1014 			uint64_t numobj = range->end_blkid * span - first_obj;
1015 			return (dump_freeobjects(dscp, first_obj, numobj));
1016 		}
1017 		uint64_t offset = 0;
1018 
1019 		/*
1020 		 * If this multiply overflows, we don't need to send this block.
1021 		 * Even if it has a birth time, it can never not be a hole, so
1022 		 * we don't need to send records for it.
1023 		 */
1024 		if (!overflow_multiply(range->start_blkid, srhp->datablksz,
1025 		    &offset)) {
1026 			return (0);
1027 		}
1028 		uint64_t len = 0;
1029 
1030 		if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len))
1031 			len = UINT64_MAX;
1032 		len = len - offset;
1033 		return (dump_free(dscp, range->object, offset, len));
1034 	}
1035 	default:
1036 		panic("Invalid range type in do_dump: %d", range->type);
1037 	}
1038 	return (err);
1039 }
1040 
1041 static struct send_range *
1042 range_alloc(enum type type, uint64_t object, uint64_t start_blkid,
1043     uint64_t end_blkid, boolean_t eos)
1044 {
1045 	struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP);
1046 	range->type = type;
1047 	range->object = object;
1048 	range->start_blkid = start_blkid;
1049 	range->end_blkid = end_blkid;
1050 	range->eos_marker = eos;
1051 	if (type == DATA) {
1052 		range->sru.data.abd = NULL;
1053 		range->sru.data.abuf = NULL;
1054 		mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL);
1055 		cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL);
1056 		range->sru.data.io_outstanding = 0;
1057 		range->sru.data.io_err = 0;
1058 		range->sru.data.io_compressed = B_FALSE;
1059 	} else if (type == OBJECT) {
1060 		range->sru.object.spill_range = NULL;
1061 	}
1062 	return (range);
1063 }
1064 
1065 /*
1066  * This is the callback function to traverse_dataset that acts as a worker
1067  * thread for dmu_send_impl.
1068  */
1069 static int
1070 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1071     const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
1072 {
1073 	(void) zilog;
1074 	struct send_thread_arg *sta = arg;
1075 	struct send_range *record;
1076 
1077 	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
1078 	    zb->zb_object >= sta->resume.zb_object);
1079 
1080 	/*
1081 	 * All bps of an encrypted os should have the encryption bit set.
1082 	 * If this is not true it indicates tampering and we report an error.
1083 	 */
1084 	if (sta->os->os_encrypted &&
1085 	    !BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) {
1086 		spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
1087 		return (SET_ERROR(EIO));
1088 	}
1089 
1090 	if (sta->cancel)
1091 		return (SET_ERROR(EINTR));
1092 	if (zb->zb_object != DMU_META_DNODE_OBJECT &&
1093 	    DMU_OBJECT_IS_SPECIAL(zb->zb_object))
1094 		return (0);
1095 	atomic_inc_64(sta->num_blocks_visited);
1096 
1097 	if (zb->zb_level == ZB_DNODE_LEVEL) {
1098 		if (zb->zb_object == DMU_META_DNODE_OBJECT)
1099 			return (0);
1100 		record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE);
1101 		record->sru.object.bp = *bp;
1102 		size_t size  = sizeof (*dnp) * (dnp->dn_extra_slots + 1);
1103 		record->sru.object.dnp = kmem_alloc(size, KM_SLEEP);
1104 		memcpy(record->sru.object.dnp, dnp, size);
1105 		bqueue_enqueue(&sta->q, record, sizeof (*record));
1106 		return (0);
1107 	}
1108 	if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT &&
1109 	    !BP_IS_HOLE(bp)) {
1110 		record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid,
1111 		    zb->zb_blkid + 1, B_FALSE);
1112 		record->sru.object_range.bp = *bp;
1113 		bqueue_enqueue(&sta->q, record, sizeof (*record));
1114 		return (0);
1115 	}
1116 	if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp)))
1117 		return (0);
1118 	if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp))
1119 		return (0);
1120 
1121 	uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
1122 	uint64_t start;
1123 
1124 	/*
1125 	 * If this multiply overflows, we don't need to send this block.
1126 	 * Even if it has a birth time, it can never not be a hole, so
1127 	 * we don't need to send records for it.
1128 	 */
1129 	if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid ==
1130 	    DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) &&
1131 	    span * zb->zb_blkid > dnp->dn_maxblkid)) {
1132 		ASSERT(BP_IS_HOLE(bp));
1133 		return (0);
1134 	}
1135 
1136 	if (zb->zb_blkid == DMU_SPILL_BLKID)
1137 		ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1138 
1139 	enum type record_type = DATA;
1140 	if (BP_IS_HOLE(bp))
1141 		record_type = HOLE;
1142 	else if (BP_IS_REDACTED(bp))
1143 		record_type = REDACT;
1144 	else
1145 		record_type = DATA;
1146 
1147 	record = range_alloc(record_type, zb->zb_object, start,
1148 	    (start + span < start ? 0 : start + span), B_FALSE);
1149 
1150 	uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ?
1151 	    BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
1152 
1153 	if (BP_IS_HOLE(bp)) {
1154 		record->sru.hole.datablksz = datablksz;
1155 	} else if (BP_IS_REDACTED(bp)) {
1156 		record->sru.redact.datablksz = datablksz;
1157 	} else {
1158 		record->sru.data.datablksz = datablksz;
1159 		record->sru.data.obj_type = dnp->dn_type;
1160 		record->sru.data.bp = *bp;
1161 	}
1162 
1163 	bqueue_enqueue(&sta->q, record, sizeof (*record));
1164 	return (0);
1165 }
1166 
1167 struct redact_list_cb_arg {
1168 	uint64_t *num_blocks_visited;
1169 	bqueue_t *q;
1170 	boolean_t *cancel;
1171 	boolean_t mark_redact;
1172 };
1173 
1174 static int
1175 redact_list_cb(redact_block_phys_t *rb, void *arg)
1176 {
1177 	struct redact_list_cb_arg *rlcap = arg;
1178 
1179 	atomic_inc_64(rlcap->num_blocks_visited);
1180 	if (*rlcap->cancel)
1181 		return (-1);
1182 
1183 	struct send_range *data = range_alloc(REDACT, rb->rbp_object,
1184 	    rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE);
1185 	ASSERT3U(data->end_blkid, >, rb->rbp_blkid);
1186 	if (rlcap->mark_redact) {
1187 		data->type = REDACT;
1188 		data->sru.redact.datablksz = redact_block_get_size(rb);
1189 	} else {
1190 		data->type = PREVIOUSLY_REDACTED;
1191 	}
1192 	bqueue_enqueue(rlcap->q, data, sizeof (*data));
1193 
1194 	return (0);
1195 }
1196 
1197 /*
1198  * This function kicks off the traverse_dataset.  It also handles setting the
1199  * error code of the thread in case something goes wrong, and pushes the End of
1200  * Stream record when the traverse_dataset call has finished.
1201  */
1202 static __attribute__((noreturn)) void
1203 send_traverse_thread(void *arg)
1204 {
1205 	struct send_thread_arg *st_arg = arg;
1206 	int err = 0;
1207 	struct send_range *data;
1208 	fstrans_cookie_t cookie = spl_fstrans_mark();
1209 
1210 	err = traverse_dataset_resume(st_arg->os->os_dsl_dataset,
1211 	    st_arg->fromtxg, &st_arg->resume,
1212 	    st_arg->flags, send_cb, st_arg);
1213 
1214 	if (err != EINTR)
1215 		st_arg->error_code = err;
1216 	data = range_alloc(DATA, 0, 0, 0, B_TRUE);
1217 	bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data));
1218 	spl_fstrans_unmark(cookie);
1219 	thread_exit();
1220 }
1221 
1222 /*
1223  * Utility function that causes End of Stream records to compare after of all
1224  * others, so that other threads' comparison logic can stay simple.
1225  */
1226 static int __attribute__((unused))
1227 send_range_after(const struct send_range *from, const struct send_range *to)
1228 {
1229 	if (from->eos_marker == B_TRUE)
1230 		return (1);
1231 	if (to->eos_marker == B_TRUE)
1232 		return (-1);
1233 
1234 	uint64_t from_obj = from->object;
1235 	uint64_t from_end_obj = from->object + 1;
1236 	uint64_t to_obj = to->object;
1237 	uint64_t to_end_obj = to->object + 1;
1238 	if (from_obj == 0) {
1239 		ASSERT(from->type == HOLE || from->type == OBJECT_RANGE);
1240 		from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT;
1241 		from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT;
1242 	}
1243 	if (to_obj == 0) {
1244 		ASSERT(to->type == HOLE || to->type == OBJECT_RANGE);
1245 		to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT;
1246 		to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT;
1247 	}
1248 
1249 	if (from_end_obj <= to_obj)
1250 		return (-1);
1251 	if (from_obj >= to_end_obj)
1252 		return (1);
1253 	int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type ==
1254 	    OBJECT_RANGE);
1255 	if (unlikely(cmp))
1256 		return (cmp);
1257 	cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT);
1258 	if (unlikely(cmp))
1259 		return (cmp);
1260 	if (from->end_blkid <= to->start_blkid)
1261 		return (-1);
1262 	if (from->start_blkid >= to->end_blkid)
1263 		return (1);
1264 	return (0);
1265 }
1266 
1267 /*
1268  * Pop the new data off the queue, check that the records we receive are in
1269  * the right order, but do not free the old data.  This is used so that the
1270  * records can be sent on to the main thread without copying the data.
1271  */
1272 static struct send_range *
1273 get_next_range_nofree(bqueue_t *bq, struct send_range *prev)
1274 {
1275 	struct send_range *next = bqueue_dequeue(bq);
1276 	ASSERT3S(send_range_after(prev, next), ==, -1);
1277 	return (next);
1278 }
1279 
1280 /*
1281  * Pop the new data off the queue, check that the records we receive are in
1282  * the right order, and free the old data.
1283  */
1284 static struct send_range *
1285 get_next_range(bqueue_t *bq, struct send_range *prev)
1286 {
1287 	struct send_range *next = get_next_range_nofree(bq, prev);
1288 	range_free(prev);
1289 	return (next);
1290 }
1291 
1292 static __attribute__((noreturn)) void
1293 redact_list_thread(void *arg)
1294 {
1295 	struct redact_list_thread_arg *rlt_arg = arg;
1296 	struct send_range *record;
1297 	fstrans_cookie_t cookie = spl_fstrans_mark();
1298 	if (rlt_arg->rl != NULL) {
1299 		struct redact_list_cb_arg rlcba = {0};
1300 		rlcba.cancel = &rlt_arg->cancel;
1301 		rlcba.q = &rlt_arg->q;
1302 		rlcba.num_blocks_visited = rlt_arg->num_blocks_visited;
1303 		rlcba.mark_redact = rlt_arg->mark_redact;
1304 		int err = dsl_redaction_list_traverse(rlt_arg->rl,
1305 		    &rlt_arg->resume, redact_list_cb, &rlcba);
1306 		if (err != EINTR)
1307 			rlt_arg->error_code = err;
1308 	}
1309 	record = range_alloc(DATA, 0, 0, 0, B_TRUE);
1310 	bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record));
1311 	spl_fstrans_unmark(cookie);
1312 
1313 	thread_exit();
1314 }
1315 
1316 /*
1317  * Compare the start point of the two provided ranges. End of stream ranges
1318  * compare last, objects compare before any data or hole inside that object and
1319  * multi-object holes that start at the same object.
1320  */
1321 static int
1322 send_range_start_compare(struct send_range *r1, struct send_range *r2)
1323 {
1324 	uint64_t r1_objequiv = r1->object;
1325 	uint64_t r1_l0equiv = r1->start_blkid;
1326 	uint64_t r2_objequiv = r2->object;
1327 	uint64_t r2_l0equiv = r2->start_blkid;
1328 	int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker);
1329 	if (unlikely(cmp))
1330 		return (cmp);
1331 	if (r1->object == 0) {
1332 		r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK;
1333 		r1_l0equiv = 0;
1334 	}
1335 	if (r2->object == 0) {
1336 		r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK;
1337 		r2_l0equiv = 0;
1338 	}
1339 
1340 	cmp = TREE_CMP(r1_objequiv, r2_objequiv);
1341 	if (likely(cmp))
1342 		return (cmp);
1343 	cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE);
1344 	if (unlikely(cmp))
1345 		return (cmp);
1346 	cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT);
1347 	if (unlikely(cmp))
1348 		return (cmp);
1349 
1350 	return (TREE_CMP(r1_l0equiv, r2_l0equiv));
1351 }
1352 
1353 enum q_idx {
1354 	REDACT_IDX = 0,
1355 	TO_IDX,
1356 	FROM_IDX,
1357 	NUM_THREADS
1358 };
1359 
1360 /*
1361  * This function returns the next range the send_merge_thread should operate on.
1362  * The inputs are two arrays; the first one stores the range at the front of the
1363  * queues stored in the second one.  The ranges are sorted in descending
1364  * priority order; the metadata from earlier ranges overrules metadata from
1365  * later ranges.  out_mask is used to return which threads the ranges came from;
1366  * bit i is set if ranges[i] started at the same place as the returned range.
1367  *
1368  * This code is not hardcoded to compare a specific number of threads; it could
1369  * be used with any number, just by changing the q_idx enum.
1370  *
1371  * The "next range" is the one with the earliest start; if two starts are equal,
1372  * the highest-priority range is the next to operate on.  If a higher-priority
1373  * range starts in the middle of the first range, then the first range will be
1374  * truncated to end where the higher-priority range starts, and we will operate
1375  * on that one next time.   In this way, we make sure that each block covered by
1376  * some range gets covered by a returned range, and each block covered is
1377  * returned using the metadata of the highest-priority range it appears in.
1378  *
1379  * For example, if the three ranges at the front of the queues were [2,4),
1380  * [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata
1381  * from the third range, [2,4) with the metadata from the first range, and then
1382  * [4,5) with the metadata from the second.
1383  */
1384 static struct send_range *
1385 find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask)
1386 {
1387 	int idx = 0; // index of the range with the earliest start
1388 	int i;
1389 	uint64_t bmask = 0;
1390 	for (i = 1; i < NUM_THREADS; i++) {
1391 		if (send_range_start_compare(ranges[i], ranges[idx]) < 0)
1392 			idx = i;
1393 	}
1394 	if (ranges[idx]->eos_marker) {
1395 		struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE);
1396 		*out_mask = 0;
1397 		return (ret);
1398 	}
1399 	/*
1400 	 * Find all the ranges that start at that same point.
1401 	 */
1402 	for (i = 0; i < NUM_THREADS; i++) {
1403 		if (send_range_start_compare(ranges[i], ranges[idx]) == 0)
1404 			bmask |= 1 << i;
1405 	}
1406 	*out_mask = bmask;
1407 	/*
1408 	 * OBJECT_RANGE records only come from the TO thread, and should always
1409 	 * be treated as overlapping with nothing and sent on immediately.  They
1410 	 * are only used in raw sends, and are never redacted.
1411 	 */
1412 	if (ranges[idx]->type == OBJECT_RANGE) {
1413 		ASSERT3U(idx, ==, TO_IDX);
1414 		ASSERT3U(*out_mask, ==, 1 << TO_IDX);
1415 		struct send_range *ret = ranges[idx];
1416 		ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1417 		return (ret);
1418 	}
1419 	/*
1420 	 * Find the first start or end point after the start of the first range.
1421 	 */
1422 	uint64_t first_change = ranges[idx]->end_blkid;
1423 	for (i = 0; i < NUM_THREADS; i++) {
1424 		if (i == idx || ranges[i]->eos_marker ||
1425 		    ranges[i]->object > ranges[idx]->object ||
1426 		    ranges[i]->object == DMU_META_DNODE_OBJECT)
1427 			continue;
1428 		ASSERT3U(ranges[i]->object, ==, ranges[idx]->object);
1429 		if (first_change > ranges[i]->start_blkid &&
1430 		    (bmask & (1 << i)) == 0)
1431 			first_change = ranges[i]->start_blkid;
1432 		else if (first_change > ranges[i]->end_blkid)
1433 			first_change = ranges[i]->end_blkid;
1434 	}
1435 	/*
1436 	 * Update all ranges to no longer overlap with the range we're
1437 	 * returning. All such ranges must start at the same place as the range
1438 	 * being returned, and end at or after first_change. Thus we update
1439 	 * their start to first_change. If that makes them size 0, then free
1440 	 * them and pull a new range from that thread.
1441 	 */
1442 	for (i = 0; i < NUM_THREADS; i++) {
1443 		if (i == idx || (bmask & (1 << i)) == 0)
1444 			continue;
1445 		ASSERT3U(first_change, >, ranges[i]->start_blkid);
1446 		ranges[i]->start_blkid = first_change;
1447 		ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid);
1448 		if (ranges[i]->start_blkid == ranges[i]->end_blkid)
1449 			ranges[i] = get_next_range(qs[i], ranges[i]);
1450 	}
1451 	/*
1452 	 * Short-circuit the simple case; if the range doesn't overlap with
1453 	 * anything else, or it only overlaps with things that start at the same
1454 	 * place and are longer, send it on.
1455 	 */
1456 	if (first_change == ranges[idx]->end_blkid) {
1457 		struct send_range *ret = ranges[idx];
1458 		ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]);
1459 		return (ret);
1460 	}
1461 
1462 	/*
1463 	 * Otherwise, return a truncated copy of ranges[idx] and move the start
1464 	 * of ranges[idx] back to first_change.
1465 	 */
1466 	struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP);
1467 	*ret = *ranges[idx];
1468 	ret->end_blkid = first_change;
1469 	ranges[idx]->start_blkid = first_change;
1470 	return (ret);
1471 }
1472 
1473 #define	FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX))
1474 
1475 /*
1476  * Merge the results from the from thread and the to thread, and then hand the
1477  * records off to send_prefetch_thread to prefetch them.  If this is not a
1478  * send from a redaction bookmark, the from thread will push an end of stream
1479  * record and stop, and we'll just send everything that was changed in the
1480  * to_ds since the ancestor's creation txg. If it is, then since
1481  * traverse_dataset has a canonical order, we can compare each change as
1482  * they're pulled off the queues.  That will give us a stream that is
1483  * appropriately sorted, and covers all records.  In addition, we pull the
1484  * data from the redact_list_thread and use that to determine which blocks
1485  * should be redacted.
1486  */
1487 static __attribute__((noreturn)) void
1488 send_merge_thread(void *arg)
1489 {
1490 	struct send_merge_thread_arg *smt_arg = arg;
1491 	struct send_range *front_ranges[NUM_THREADS];
1492 	bqueue_t *queues[NUM_THREADS];
1493 	int err = 0;
1494 	fstrans_cookie_t cookie = spl_fstrans_mark();
1495 
1496 	if (smt_arg->redact_arg == NULL) {
1497 		front_ranges[REDACT_IDX] =
1498 		    kmem_zalloc(sizeof (struct send_range), KM_SLEEP);
1499 		front_ranges[REDACT_IDX]->eos_marker = B_TRUE;
1500 		front_ranges[REDACT_IDX]->type = REDACT;
1501 		queues[REDACT_IDX] = NULL;
1502 	} else {
1503 		front_ranges[REDACT_IDX] =
1504 		    bqueue_dequeue(&smt_arg->redact_arg->q);
1505 		queues[REDACT_IDX] = &smt_arg->redact_arg->q;
1506 	}
1507 	front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q);
1508 	queues[TO_IDX] = &smt_arg->to_arg->q;
1509 	front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q);
1510 	queues[FROM_IDX] = &smt_arg->from_arg->q;
1511 	uint64_t mask = 0;
1512 	struct send_range *range;
1513 	for (range = find_next_range(front_ranges, queues, &mask);
1514 	    !range->eos_marker && err == 0 && !smt_arg->cancel;
1515 	    range = find_next_range(front_ranges, queues, &mask)) {
1516 		/*
1517 		 * If the range in question was in both the from redact bookmark
1518 		 * and the bookmark we're using to redact, then don't send it.
1519 		 * It's already redacted on the receiving system, so a redaction
1520 		 * record would be redundant.
1521 		 */
1522 		if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) {
1523 			ASSERT3U(range->type, ==, REDACT);
1524 			range_free(range);
1525 			continue;
1526 		}
1527 		bqueue_enqueue(&smt_arg->q, range, sizeof (*range));
1528 
1529 		if (smt_arg->to_arg->error_code != 0) {
1530 			err = smt_arg->to_arg->error_code;
1531 		} else if (smt_arg->from_arg->error_code != 0) {
1532 			err = smt_arg->from_arg->error_code;
1533 		} else if (smt_arg->redact_arg != NULL &&
1534 		    smt_arg->redact_arg->error_code != 0) {
1535 			err = smt_arg->redact_arg->error_code;
1536 		}
1537 	}
1538 	if (smt_arg->cancel && err == 0)
1539 		err = SET_ERROR(EINTR);
1540 	smt_arg->error = err;
1541 	if (smt_arg->error != 0) {
1542 		smt_arg->to_arg->cancel = B_TRUE;
1543 		smt_arg->from_arg->cancel = B_TRUE;
1544 		if (smt_arg->redact_arg != NULL)
1545 			smt_arg->redact_arg->cancel = B_TRUE;
1546 	}
1547 	for (int i = 0; i < NUM_THREADS; i++) {
1548 		while (!front_ranges[i]->eos_marker) {
1549 			front_ranges[i] = get_next_range(queues[i],
1550 			    front_ranges[i]);
1551 		}
1552 		range_free(front_ranges[i]);
1553 	}
1554 	range->eos_marker = B_TRUE;
1555 	bqueue_enqueue_flush(&smt_arg->q, range, 1);
1556 	spl_fstrans_unmark(cookie);
1557 	thread_exit();
1558 }
1559 
1560 struct send_reader_thread_arg {
1561 	struct send_merge_thread_arg *smta;
1562 	bqueue_t q;
1563 	boolean_t cancel;
1564 	boolean_t issue_reads;
1565 	uint64_t featureflags;
1566 	int error;
1567 };
1568 
1569 static void
1570 dmu_send_read_done(zio_t *zio)
1571 {
1572 	struct send_range *range = zio->io_private;
1573 
1574 	mutex_enter(&range->sru.data.lock);
1575 	if (zio->io_error != 0) {
1576 		abd_free(range->sru.data.abd);
1577 		range->sru.data.abd = NULL;
1578 		range->sru.data.io_err = zio->io_error;
1579 	}
1580 
1581 	ASSERT(range->sru.data.io_outstanding);
1582 	range->sru.data.io_outstanding = B_FALSE;
1583 	cv_broadcast(&range->sru.data.cv);
1584 	mutex_exit(&range->sru.data.lock);
1585 }
1586 
1587 static void
1588 issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range)
1589 {
1590 	struct srd *srdp = &range->sru.data;
1591 	blkptr_t *bp = &srdp->bp;
1592 	objset_t *os = srta->smta->os;
1593 
1594 	ASSERT3U(range->type, ==, DATA);
1595 	ASSERT3U(range->start_blkid + 1, ==, range->end_blkid);
1596 	/*
1597 	 * If we have large blocks stored on disk but
1598 	 * the send flags don't allow us to send large
1599 	 * blocks, we split the data from the arc buf
1600 	 * into chunks.
1601 	 */
1602 	boolean_t split_large_blocks =
1603 	    srdp->datablksz > SPA_OLD_MAXBLOCKSIZE &&
1604 	    !(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
1605 	/*
1606 	 * We should only request compressed data from the ARC if all
1607 	 * the following are true:
1608 	 *  - stream compression was requested
1609 	 *  - we aren't splitting large blocks into smaller chunks
1610 	 *  - the data won't need to be byteswapped before sending
1611 	 *  - this isn't an embedded block
1612 	 *  - this isn't metadata (if receiving on a different endian
1613 	 *    system it can be byteswapped more easily)
1614 	 */
1615 	boolean_t request_compressed =
1616 	    (srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
1617 	    !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
1618 	    !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
1619 
1620 	zio_flag_t zioflags = ZIO_FLAG_CANFAIL;
1621 
1622 	if (srta->featureflags & DMU_BACKUP_FEATURE_RAW) {
1623 		zioflags |= ZIO_FLAG_RAW;
1624 		srdp->io_compressed = B_TRUE;
1625 	} else if (request_compressed) {
1626 		zioflags |= ZIO_FLAG_RAW_COMPRESS;
1627 		srdp->io_compressed = B_TRUE;
1628 	}
1629 
1630 	srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ?
1631 	    BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp);
1632 
1633 	if (!srta->issue_reads)
1634 		return;
1635 	if (BP_IS_REDACTED(bp))
1636 		return;
1637 	if (send_do_embed(bp, srta->featureflags))
1638 		return;
1639 
1640 	zbookmark_phys_t zb = {
1641 	    .zb_objset = dmu_objset_id(os),
1642 	    .zb_object = range->object,
1643 	    .zb_level = 0,
1644 	    .zb_blkid = range->start_blkid,
1645 	};
1646 
1647 	arc_flags_t aflags = ARC_FLAG_CACHED_ONLY;
1648 
1649 	int arc_err = arc_read(NULL, os->os_spa, bp,
1650 	    arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ,
1651 	    zioflags, &aflags, &zb);
1652 	/*
1653 	 * If the data is not already cached in the ARC, we read directly
1654 	 * from zio.  This avoids the performance overhead of adding a new
1655 	 * entry to the ARC, and we also avoid polluting the ARC cache with
1656 	 * data that is not likely to be used in the future.
1657 	 */
1658 	if (arc_err != 0) {
1659 		srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE);
1660 		srdp->io_outstanding = B_TRUE;
1661 		zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd,
1662 		    srdp->datasz, dmu_send_read_done, range,
1663 		    ZIO_PRIORITY_ASYNC_READ, zioflags, &zb));
1664 	}
1665 }
1666 
1667 /*
1668  * Create a new record with the given values.
1669  */
1670 static void
1671 enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn,
1672     uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz)
1673 {
1674 	enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE :
1675 	    (BP_IS_REDACTED(bp) ? REDACT : DATA));
1676 
1677 	struct send_range *range = range_alloc(range_type, dn->dn_object,
1678 	    blkid, blkid + count, B_FALSE);
1679 
1680 	if (blkid == DMU_SPILL_BLKID) {
1681 		ASSERT3P(bp, !=, NULL);
1682 		ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA);
1683 	}
1684 
1685 	switch (range_type) {
1686 	case HOLE:
1687 		range->sru.hole.datablksz = datablksz;
1688 		break;
1689 	case DATA:
1690 		ASSERT3U(count, ==, 1);
1691 		range->sru.data.datablksz = datablksz;
1692 		range->sru.data.obj_type = dn->dn_type;
1693 		range->sru.data.bp = *bp;
1694 		issue_data_read(srta, range);
1695 		break;
1696 	case REDACT:
1697 		range->sru.redact.datablksz = datablksz;
1698 		break;
1699 	default:
1700 		break;
1701 	}
1702 	bqueue_enqueue(q, range, datablksz);
1703 }
1704 
1705 /*
1706  * Send DRR_SPILL records for unmodified spill blocks.	This is useful
1707  * because changing certain attributes of the object (e.g. blocksize)
1708  * can cause old versions of ZFS to incorrectly remove a spill block.
1709  * Including these records in the stream forces an up to date version
1710  * to always be written ensuring they're never lost.  Current versions
1711  * of the code which understand the DRR_FLAG_SPILL_BLOCK feature can
1712  * ignore these unmodified spill blocks.
1713  *
1714  * We piggyback the spill_range to dnode range instead of enqueueing it
1715  * so send_range_after won't complain.
1716  */
1717 static uint64_t
1718 piggyback_unmodified_spill(struct send_reader_thread_arg *srta,
1719     struct send_range *range)
1720 {
1721 	ASSERT3U(range->type, ==, OBJECT);
1722 
1723 	dnode_phys_t *dnp = range->sru.object.dnp;
1724 	uint64_t fromtxg = srta->smta->to_arg->fromtxg;
1725 
1726 	if (!zfs_send_unmodified_spill_blocks ||
1727 	    !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ||
1728 	    !(BP_GET_LOGICAL_BIRTH(DN_SPILL_BLKPTR(dnp)) <= fromtxg))
1729 		return (0);
1730 
1731 	blkptr_t *bp = DN_SPILL_BLKPTR(dnp);
1732 	struct send_range *spill_range = range_alloc(DATA, range->object,
1733 	    DMU_SPILL_BLKID, DMU_SPILL_BLKID+1, B_FALSE);
1734 	spill_range->sru.data.bp = *bp;
1735 	spill_range->sru.data.obj_type = dnp->dn_type;
1736 	spill_range->sru.data.datablksz = BP_GET_LSIZE(bp);
1737 
1738 	issue_data_read(srta, spill_range);
1739 	range->sru.object.spill_range = spill_range;
1740 
1741 	return (BP_GET_LSIZE(bp));
1742 }
1743 
1744 /*
1745  * This thread is responsible for two things: First, it retrieves the correct
1746  * blkptr in the to ds if we need to send the data because of something from
1747  * the from thread.  As a result of this, we're the first ones to discover that
1748  * some indirect blocks can be discarded because they're not holes. Second,
1749  * it issues prefetches for the data we need to send.
1750  */
1751 static __attribute__((noreturn)) void
1752 send_reader_thread(void *arg)
1753 {
1754 	struct send_reader_thread_arg *srta = arg;
1755 	struct send_merge_thread_arg *smta = srta->smta;
1756 	bqueue_t *inq = &smta->q;
1757 	bqueue_t *outq = &srta->q;
1758 	objset_t *os = smta->os;
1759 	fstrans_cookie_t cookie = spl_fstrans_mark();
1760 	struct send_range *range = bqueue_dequeue(inq);
1761 	int err = 0;
1762 
1763 	/*
1764 	 * If the record we're analyzing is from a redaction bookmark from the
1765 	 * fromds, then we need to know whether or not it exists in the tods so
1766 	 * we know whether to create records for it or not. If it does, we need
1767 	 * the datablksz so we can generate an appropriate record for it.
1768 	 * Finally, if it isn't redacted, we need the blkptr so that we can send
1769 	 * a WRITE record containing the actual data.
1770 	 */
1771 	uint64_t last_obj = UINT64_MAX;
1772 	uint64_t last_obj_exists = B_TRUE;
1773 	while (!range->eos_marker && !srta->cancel && smta->error == 0 &&
1774 	    err == 0) {
1775 		uint64_t spill = 0;
1776 		switch (range->type) {
1777 		case DATA:
1778 			issue_data_read(srta, range);
1779 			bqueue_enqueue(outq, range, range->sru.data.datablksz);
1780 			range = get_next_range_nofree(inq, range);
1781 			break;
1782 		case OBJECT:
1783 			spill = piggyback_unmodified_spill(srta, range);
1784 			zfs_fallthrough;
1785 		case HOLE:
1786 		case OBJECT_RANGE:
1787 		case REDACT: // Redacted blocks must exist
1788 			bqueue_enqueue(outq, range, sizeof (*range) + spill);
1789 			range = get_next_range_nofree(inq, range);
1790 			break;
1791 		case PREVIOUSLY_REDACTED: {
1792 			/*
1793 			 * This entry came from the "from bookmark" when
1794 			 * sending from a bookmark that has a redaction
1795 			 * list.  We need to check if this object/blkid
1796 			 * exists in the target ("to") dataset, and if
1797 			 * not then we drop this entry.  We also need
1798 			 * to fill in the block pointer so that we know
1799 			 * what to prefetch.
1800 			 *
1801 			 * To accomplish the above, we first cache whether or
1802 			 * not the last object we examined exists.  If it
1803 			 * doesn't, we can drop this record. If it does, we hold
1804 			 * the dnode and use it to call dbuf_dnode_findbp. We do
1805 			 * this instead of dbuf_bookmark_findbp because we will
1806 			 * often operate on large ranges, and holding the dnode
1807 			 * once is more efficient.
1808 			 */
1809 			boolean_t object_exists = B_TRUE;
1810 			/*
1811 			 * If the data is redacted, we only care if it exists,
1812 			 * so that we don't send records for objects that have
1813 			 * been deleted.
1814 			 */
1815 			dnode_t *dn;
1816 			if (range->object == last_obj && !last_obj_exists) {
1817 				/*
1818 				 * If we're still examining the same object as
1819 				 * previously, and it doesn't exist, we don't
1820 				 * need to call dbuf_bookmark_findbp.
1821 				 */
1822 				object_exists = B_FALSE;
1823 			} else {
1824 				err = dnode_hold(os, range->object, FTAG, &dn);
1825 				if (err == ENOENT) {
1826 					object_exists = B_FALSE;
1827 					err = 0;
1828 				}
1829 				last_obj = range->object;
1830 				last_obj_exists = object_exists;
1831 			}
1832 
1833 			if (err != 0) {
1834 				break;
1835 			} else if (!object_exists) {
1836 				/*
1837 				 * The block was modified, but doesn't
1838 				 * exist in the to dataset; if it was
1839 				 * deleted in the to dataset, then we'll
1840 				 * visit the hole bp for it at some point.
1841 				 */
1842 				range = get_next_range(inq, range);
1843 				continue;
1844 			}
1845 			uint64_t file_max =
1846 			    MIN(dn->dn_maxblkid, range->end_blkid);
1847 			/*
1848 			 * The object exists, so we need to try to find the
1849 			 * blkptr for each block in the range we're processing.
1850 			 */
1851 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
1852 			for (uint64_t blkid = range->start_blkid;
1853 			    blkid < file_max; blkid++) {
1854 				blkptr_t bp;
1855 				uint32_t datablksz =
1856 				    dn->dn_phys->dn_datablkszsec <<
1857 				    SPA_MINBLOCKSHIFT;
1858 				uint64_t offset = blkid * datablksz;
1859 				/*
1860 				 * This call finds the next non-hole block in
1861 				 * the object. This is to prevent a
1862 				 * performance problem where we're unredacting
1863 				 * a large hole. Using dnode_next_offset to
1864 				 * skip over the large hole avoids iterating
1865 				 * over every block in it.
1866 				 */
1867 				err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1868 				    &offset, 1, 1, 0);
1869 				if (err == ESRCH) {
1870 					offset = UINT64_MAX;
1871 					err = 0;
1872 				} else if (err != 0) {
1873 					break;
1874 				}
1875 				if (offset != blkid * datablksz) {
1876 					/*
1877 					 * if there is a hole from here
1878 					 * (blkid) to offset
1879 					 */
1880 					offset = MIN(offset, file_max *
1881 					    datablksz);
1882 					uint64_t nblks = (offset / datablksz) -
1883 					    blkid;
1884 					enqueue_range(srta, outq, dn, blkid,
1885 					    nblks, NULL, datablksz);
1886 					blkid += nblks;
1887 				}
1888 				if (blkid >= file_max)
1889 					break;
1890 				err = dbuf_dnode_findbp(dn, 0, blkid, &bp,
1891 				    NULL, NULL);
1892 				if (err != 0)
1893 					break;
1894 				ASSERT(!BP_IS_HOLE(&bp));
1895 				enqueue_range(srta, outq, dn, blkid, 1, &bp,
1896 				    datablksz);
1897 			}
1898 			rw_exit(&dn->dn_struct_rwlock);
1899 			dnode_rele(dn, FTAG);
1900 			range = get_next_range(inq, range);
1901 		}
1902 		}
1903 	}
1904 	if (srta->cancel || err != 0) {
1905 		smta->cancel = B_TRUE;
1906 		srta->error = err;
1907 	} else if (smta->error != 0) {
1908 		srta->error = smta->error;
1909 	}
1910 	while (!range->eos_marker)
1911 		range = get_next_range(inq, range);
1912 
1913 	bqueue_enqueue_flush(outq, range, 1);
1914 	spl_fstrans_unmark(cookie);
1915 	thread_exit();
1916 }
1917 
1918 #define	NUM_SNAPS_NOT_REDACTED UINT64_MAX
1919 
1920 struct dmu_send_params {
1921 	/* Pool args */
1922 	const void *tag; // Tag dp was held with, will be used to release dp.
1923 	dsl_pool_t *dp;
1924 	/* To snapshot args */
1925 	const char *tosnap;
1926 	dsl_dataset_t *to_ds;
1927 	/* From snapshot args */
1928 	zfs_bookmark_phys_t ancestor_zb;
1929 	uint64_t *fromredactsnaps;
1930 	/* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */
1931 	uint64_t numfromredactsnaps;
1932 	/* Stream params */
1933 	boolean_t is_clone;
1934 	boolean_t embedok;
1935 	boolean_t large_block_ok;
1936 	boolean_t compressok;
1937 	boolean_t rawok;
1938 	boolean_t savedok;
1939 	uint64_t resumeobj;
1940 	uint64_t resumeoff;
1941 	uint64_t saved_guid;
1942 	zfs_bookmark_phys_t *redactbook;
1943 	/* Stream output params */
1944 	dmu_send_outparams_t *dso;
1945 
1946 	/* Stream progress params */
1947 	offset_t *off;
1948 	int outfd;
1949 	char saved_toname[MAXNAMELEN];
1950 };
1951 
1952 static int
1953 setup_featureflags(struct dmu_send_params *dspp, objset_t *os,
1954     uint64_t *featureflags)
1955 {
1956 	dsl_dataset_t *to_ds = dspp->to_ds;
1957 	dsl_pool_t *dp = dspp->dp;
1958 
1959 	if (dmu_objset_type(os) == DMU_OST_ZFS) {
1960 		uint64_t version;
1961 		if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0)
1962 			return (SET_ERROR(EINVAL));
1963 
1964 		if (version >= ZPL_VERSION_SA)
1965 			*featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
1966 	}
1967 
1968 	/* raw sends imply large_block_ok */
1969 	if ((dspp->rawok || dspp->large_block_ok) &&
1970 	    dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) {
1971 		*featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
1972 	}
1973 
1974 	/* encrypted datasets will not have embedded blocks */
1975 	if ((dspp->embedok || dspp->rawok) && !os->os_encrypted &&
1976 	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
1977 		*featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
1978 	}
1979 
1980 	/* raw send implies compressok */
1981 	if (dspp->compressok || dspp->rawok)
1982 		*featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
1983 
1984 	if (dspp->rawok && os->os_encrypted)
1985 		*featureflags |= DMU_BACKUP_FEATURE_RAW;
1986 
1987 	if ((*featureflags &
1988 	    (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED |
1989 	    DMU_BACKUP_FEATURE_RAW)) != 0 &&
1990 	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
1991 		*featureflags |= DMU_BACKUP_FEATURE_LZ4;
1992 	}
1993 
1994 	/*
1995 	 * We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to
1996 	 * allow sending ZSTD compressed datasets to a receiver that does not
1997 	 * support ZSTD
1998 	 */
1999 	if ((*featureflags &
2000 	    (DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 &&
2001 	    dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) {
2002 		*featureflags |= DMU_BACKUP_FEATURE_ZSTD;
2003 	}
2004 
2005 	if (dspp->resumeobj != 0 || dspp->resumeoff != 0) {
2006 		*featureflags |= DMU_BACKUP_FEATURE_RESUMING;
2007 	}
2008 
2009 	if (dspp->redactbook != NULL) {
2010 		*featureflags |= DMU_BACKUP_FEATURE_REDACTED;
2011 	}
2012 
2013 	if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) {
2014 		*featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE;
2015 	}
2016 
2017 	if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LONGNAME)) {
2018 		*featureflags |= DMU_BACKUP_FEATURE_LONGNAME;
2019 	}
2020 
2021 	if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_MICROZAP)) {
2022 		/*
2023 		 * We must never split a large microzap block, so we can only
2024 		 * send large microzaps if LARGE_BLOCKS is already enabled.
2025 		 */
2026 		if (!(*featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
2027 			return (SET_ERROR(ZFS_ERR_STREAM_LARGE_MICROZAP));
2028 		*featureflags |= DMU_BACKUP_FEATURE_LARGE_MICROZAP;
2029 	}
2030 
2031 	return (0);
2032 }
2033 
2034 static dmu_replay_record_t *
2035 create_begin_record(struct dmu_send_params *dspp, objset_t *os,
2036     uint64_t featureflags)
2037 {
2038 	dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t),
2039 	    KM_SLEEP);
2040 	drr->drr_type = DRR_BEGIN;
2041 
2042 	struct drr_begin *drrb = &drr->drr_u.drr_begin;
2043 	dsl_dataset_t *to_ds = dspp->to_ds;
2044 
2045 	drrb->drr_magic = DMU_BACKUP_MAGIC;
2046 	drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time;
2047 	drrb->drr_type = dmu_objset_type(os);
2048 	drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2049 	drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid;
2050 
2051 	DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM);
2052 	DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags);
2053 
2054 	if (dspp->is_clone)
2055 		drrb->drr_flags |= DRR_FLAG_CLONE;
2056 	if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET)
2057 		drrb->drr_flags |= DRR_FLAG_CI_DATA;
2058 	if (zfs_send_set_freerecords_bit)
2059 		drrb->drr_flags |= DRR_FLAG_FREERECORDS;
2060 	drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK;
2061 
2062 	if (dspp->savedok) {
2063 		drrb->drr_toguid = dspp->saved_guid;
2064 		strlcpy(drrb->drr_toname, dspp->saved_toname,
2065 		    sizeof (drrb->drr_toname));
2066 	} else {
2067 		dsl_dataset_name(to_ds, drrb->drr_toname);
2068 		if (!to_ds->ds_is_snapshot) {
2069 			(void) strlcat(drrb->drr_toname, "@--head--",
2070 			    sizeof (drrb->drr_toname));
2071 		}
2072 	}
2073 	return (drr);
2074 }
2075 
2076 static void
2077 setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os,
2078     dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok)
2079 {
2080 	VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff,
2081 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2082 	    offsetof(struct send_range, ln)));
2083 	to_arg->error_code = 0;
2084 	to_arg->cancel = B_FALSE;
2085 	to_arg->os = to_os;
2086 	to_arg->fromtxg = fromtxg;
2087 	to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA;
2088 	if (rawok)
2089 		to_arg->flags |= TRAVERSE_NO_DECRYPT;
2090 	if (zfs_send_corrupt_data)
2091 		to_arg->flags |= TRAVERSE_HARD;
2092 	to_arg->num_blocks_visited = &dssp->dss_blocks;
2093 	(void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0,
2094 	    curproc, TS_RUN, minclsyspri);
2095 }
2096 
2097 static void
2098 setup_from_thread(struct redact_list_thread_arg *from_arg,
2099     redaction_list_t *from_rl, dmu_sendstatus_t *dssp)
2100 {
2101 	VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff,
2102 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2103 	    offsetof(struct send_range, ln)));
2104 	from_arg->error_code = 0;
2105 	from_arg->cancel = B_FALSE;
2106 	from_arg->rl = from_rl;
2107 	from_arg->mark_redact = B_FALSE;
2108 	from_arg->num_blocks_visited = &dssp->dss_blocks;
2109 	/*
2110 	 * If from_ds is null, send_traverse_thread just returns success and
2111 	 * enqueues an eos marker.
2112 	 */
2113 	(void) thread_create(NULL, 0, redact_list_thread, from_arg, 0,
2114 	    curproc, TS_RUN, minclsyspri);
2115 }
2116 
2117 static void
2118 setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg,
2119     struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp)
2120 {
2121 	if (dspp->redactbook == NULL)
2122 		return;
2123 
2124 	rlt_arg->cancel = B_FALSE;
2125 	VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff,
2126 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2127 	    offsetof(struct send_range, ln)));
2128 	rlt_arg->error_code = 0;
2129 	rlt_arg->mark_redact = B_TRUE;
2130 	rlt_arg->rl = rl;
2131 	rlt_arg->num_blocks_visited = &dssp->dss_blocks;
2132 
2133 	(void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0,
2134 	    curproc, TS_RUN, minclsyspri);
2135 }
2136 
2137 static void
2138 setup_merge_thread(struct send_merge_thread_arg *smt_arg,
2139     struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg,
2140     struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg,
2141     objset_t *os)
2142 {
2143 	VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff,
2144 	    MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize),
2145 	    offsetof(struct send_range, ln)));
2146 	smt_arg->cancel = B_FALSE;
2147 	smt_arg->error = 0;
2148 	smt_arg->from_arg = from_arg;
2149 	smt_arg->to_arg = to_arg;
2150 	if (dspp->redactbook != NULL)
2151 		smt_arg->redact_arg = rlt_arg;
2152 
2153 	smt_arg->os = os;
2154 	(void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc,
2155 	    TS_RUN, minclsyspri);
2156 }
2157 
2158 static void
2159 setup_reader_thread(struct send_reader_thread_arg *srt_arg,
2160     struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg,
2161     uint64_t featureflags)
2162 {
2163 	VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff,
2164 	    MAX(zfs_send_queue_length, 2 * zfs_max_recordsize),
2165 	    offsetof(struct send_range, ln)));
2166 	srt_arg->smta = smt_arg;
2167 	srt_arg->issue_reads = !dspp->dso->dso_dryrun;
2168 	srt_arg->featureflags = featureflags;
2169 	(void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0,
2170 	    curproc, TS_RUN, minclsyspri);
2171 }
2172 
2173 static int
2174 setup_resume_points(struct dmu_send_params *dspp,
2175     struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg,
2176     struct redact_list_thread_arg *rlt_arg,
2177     struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os,
2178     redaction_list_t *redact_rl, nvlist_t *nvl)
2179 {
2180 	(void) smt_arg;
2181 	dsl_dataset_t *to_ds = dspp->to_ds;
2182 	int err = 0;
2183 
2184 	uint64_t obj = 0;
2185 	uint64_t blkid = 0;
2186 	if (resuming) {
2187 		obj = dspp->resumeobj;
2188 		dmu_object_info_t to_doi;
2189 		err = dmu_object_info(os, obj, &to_doi);
2190 		if (err != 0)
2191 			return (err);
2192 
2193 		blkid = dspp->resumeoff / to_doi.doi_data_block_size;
2194 	}
2195 	/*
2196 	 * If we're resuming a redacted send, we can skip to the appropriate
2197 	 * point in the redaction bookmark by binary searching through it.
2198 	 */
2199 	if (redact_rl != NULL) {
2200 		SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid);
2201 	}
2202 
2203 	SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid);
2204 	if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) {
2205 		uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj;
2206 		/*
2207 		 * Note: If the resume point is in an object whose
2208 		 * blocksize is different in the from vs to snapshots,
2209 		 * we will have divided by the "wrong" blocksize.
2210 		 * However, in this case fromsnap's send_cb() will
2211 		 * detect that the blocksize has changed and therefore
2212 		 * ignore this object.
2213 		 *
2214 		 * If we're resuming a send from a redaction bookmark,
2215 		 * we still cannot accidentally suggest blocks behind
2216 		 * the to_ds.  In addition, we know that any blocks in
2217 		 * the object in the to_ds will have to be sent, since
2218 		 * the size changed.  Therefore, we can't cause any harm
2219 		 * this way either.
2220 		 */
2221 		SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid);
2222 	}
2223 	if (resuming) {
2224 		fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj);
2225 		fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff);
2226 	}
2227 	return (0);
2228 }
2229 
2230 static dmu_sendstatus_t *
2231 setup_send_progress(struct dmu_send_params *dspp)
2232 {
2233 	dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP);
2234 	dssp->dss_outfd = dspp->outfd;
2235 	dssp->dss_off = dspp->off;
2236 	dssp->dss_proc = curproc;
2237 	mutex_enter(&dspp->to_ds->ds_sendstream_lock);
2238 	list_insert_head(&dspp->to_ds->ds_sendstreams, dssp);
2239 	mutex_exit(&dspp->to_ds->ds_sendstream_lock);
2240 	return (dssp);
2241 }
2242 
2243 /*
2244  * Actually do the bulk of the work in a zfs send.
2245  *
2246  * The idea is that we want to do a send from ancestor_zb to to_ds.  We also
2247  * want to not send any data that has been modified by all the datasets in
2248  * redactsnaparr, and store the list of blocks that are redacted in this way in
2249  * a bookmark named redactbook, created on the to_ds.  We do this by creating
2250  * several worker threads, whose function is described below.
2251  *
2252  * There are three cases.
2253  * The first case is a redacted zfs send.  In this case there are 5 threads.
2254  * The first thread is the to_ds traversal thread: it calls dataset_traverse on
2255  * the to_ds and finds all the blocks that have changed since ancestor_zb (if
2256  * it's a full send, that's all blocks in the dataset).  It then sends those
2257  * blocks on to the send merge thread. The redact list thread takes the data
2258  * from the redaction bookmark and sends those blocks on to the send merge
2259  * thread.  The send merge thread takes the data from the to_ds traversal
2260  * thread, and combines it with the redaction records from the redact list
2261  * thread.  If a block appears in both the to_ds's data and the redaction data,
2262  * the send merge thread will mark it as redacted and send it on to the prefetch
2263  * thread.  Otherwise, the send merge thread will send the block on to the
2264  * prefetch thread unchanged. The prefetch thread will issue prefetch reads for
2265  * any data that isn't redacted, and then send the data on to the main thread.
2266  * The main thread behaves the same as in a normal send case, issuing demand
2267  * reads for data blocks and sending out records over the network
2268  *
2269  * The graphic below diagrams the flow of data in the case of a redacted zfs
2270  * send.  Each box represents a thread, and each line represents the flow of
2271  * data.
2272  *
2273  *             Records from the |
2274  *           redaction bookmark |
2275  * +--------------------+       |  +---------------------------+
2276  * |                    |       v  | Send Merge Thread         |
2277  * | Redact List Thread +----------> Apply redaction marks to  |
2278  * |                    |          | records as specified by   |
2279  * +--------------------+          | redaction ranges          |
2280  *                                 +----^---------------+------+
2281  *                                      |               | Merged data
2282  *                                      |               |
2283  *                                      |  +------------v--------+
2284  *                                      |  | Prefetch Thread     |
2285  * +--------------------+               |  | Issues prefetch     |
2286  * | to_ds Traversal    |               |  | reads of data blocks|
2287  * | Thread (finds      +---------------+  +------------+--------+
2288  * | candidate blocks)  |  Blocks modified              | Prefetched data
2289  * +--------------------+  by to_ds since               |
2290  *                         ancestor_zb     +------------v----+
2291  *                                         | Main Thread     |  File Descriptor
2292  *                                         | Sends data over +->(to zfs receive)
2293  *                                         | wire            |
2294  *                                         +-----------------+
2295  *
2296  * The second case is an incremental send from a redaction bookmark.  The to_ds
2297  * traversal thread and the main thread behave the same as in the redacted
2298  * send case.  The new thread is the from bookmark traversal thread.  It
2299  * iterates over the redaction list in the redaction bookmark, and enqueues
2300  * records for each block that was redacted in the original send.  The send
2301  * merge thread now has to merge the data from the two threads.  For details
2302  * about that process, see the header comment of send_merge_thread().  Any data
2303  * it decides to send on will be prefetched by the prefetch thread.  Note that
2304  * you can perform a redacted send from a redaction bookmark; in that case,
2305  * the data flow behaves very similarly to the flow in the redacted send case,
2306  * except with the addition of the bookmark traversal thread iterating over the
2307  * redaction bookmark.  The send_merge_thread also has to take on the
2308  * responsibility of merging the redact list thread's records, the bookmark
2309  * traversal thread's records, and the to_ds records.
2310  *
2311  * +---------------------+
2312  * |                     |
2313  * | Redact List Thread  +--------------+
2314  * |                     |              |
2315  * +---------------------+              |
2316  *        Blocks in redaction list      | Ranges modified by every secure snap
2317  *        of from bookmark              | (or EOS if not readcted)
2318  *                                      |
2319  * +---------------------+   |     +----v----------------------+
2320  * | bookmark Traversal  |   v     | Send Merge Thread         |
2321  * | Thread (finds       +---------> Merges bookmark, rlt, and |
2322  * | candidate blocks)   |         | to_ds send records        |
2323  * +---------------------+         +----^---------------+------+
2324  *                                      |               | Merged data
2325  *                                      |  +------------v--------+
2326  *                                      |  | Prefetch Thread     |
2327  * +--------------------+               |  | Issues prefetch     |
2328  * | to_ds Traversal    |               |  | reads of data blocks|
2329  * | Thread (finds      +---------------+  +------------+--------+
2330  * | candidate blocks)  |  Blocks modified              | Prefetched data
2331  * +--------------------+  by to_ds since  +------------v----+
2332  *                         ancestor_zb     | Main Thread     |  File Descriptor
2333  *                                         | Sends data over +->(to zfs receive)
2334  *                                         | wire            |
2335  *                                         +-----------------+
2336  *
2337  * The final case is a simple zfs full or incremental send.  The to_ds traversal
2338  * thread behaves the same as always. The redact list thread is never started.
2339  * The send merge thread takes all the blocks that the to_ds traversal thread
2340  * sends it, prefetches the data, and sends the blocks on to the main thread.
2341  * The main thread sends the data over the wire.
2342  *
2343  * To keep performance acceptable, we want to prefetch the data in the worker
2344  * threads.  While the to_ds thread could simply use the TRAVERSE_PREFETCH
2345  * feature built into traverse_dataset, the combining and deletion of records
2346  * due to redaction and sends from redaction bookmarks mean that we could
2347  * issue many unnecessary prefetches.  As a result, we only prefetch data
2348  * after we've determined that the record is not going to be redacted.  To
2349  * prevent the prefetching from getting too far ahead of the main thread, the
2350  * blocking queues that are used for communication are capped not by the
2351  * number of entries in the queue, but by the sum of the size of the
2352  * prefetches associated with them.  The limit on the amount of data that the
2353  * thread can prefetch beyond what the main thread has reached is controlled
2354  * by the global variable zfs_send_queue_length.  In addition, to prevent poor
2355  * performance in the beginning of a send, we also limit the distance ahead
2356  * that the traversal threads can be.  That distance is controlled by the
2357  * zfs_send_no_prefetch_queue_length tunable.
2358  *
2359  * Note: Releases dp using the specified tag.
2360  */
2361 static int
2362 dmu_send_impl(struct dmu_send_params *dspp)
2363 {
2364 	objset_t *os;
2365 	dmu_replay_record_t *drr;
2366 	dmu_sendstatus_t *dssp;
2367 	dmu_send_cookie_t dsc = {0};
2368 	int err;
2369 	uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg;
2370 	uint64_t featureflags = 0;
2371 	struct redact_list_thread_arg *from_arg;
2372 	struct send_thread_arg *to_arg;
2373 	struct redact_list_thread_arg *rlt_arg;
2374 	struct send_merge_thread_arg *smt_arg;
2375 	struct send_reader_thread_arg *srt_arg;
2376 	struct send_range *range;
2377 	redaction_list_t *from_rl = NULL;
2378 	redaction_list_t *redact_rl = NULL;
2379 	boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0);
2380 	boolean_t book_resuming = resuming;
2381 
2382 	dsl_dataset_t *to_ds = dspp->to_ds;
2383 	zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb;
2384 	dsl_pool_t *dp = dspp->dp;
2385 	const void *tag = dspp->tag;
2386 
2387 	err = dmu_objset_from_ds(to_ds, &os);
2388 	if (err != 0) {
2389 		dsl_pool_rele(dp, tag);
2390 		return (err);
2391 	}
2392 
2393 	/*
2394 	 * If this is a non-raw send of an encrypted ds, we can ensure that
2395 	 * the objset_phys_t is authenticated. This is safe because this is
2396 	 * either a snapshot or we have owned the dataset, ensuring that
2397 	 * it can't be modified.
2398 	 */
2399 	if (!dspp->rawok && os->os_encrypted &&
2400 	    arc_is_unauthenticated(os->os_phys_buf)) {
2401 		zbookmark_phys_t zb;
2402 
2403 		SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT,
2404 		    ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2405 		err = arc_untransform(os->os_phys_buf, os->os_spa,
2406 		    &zb, B_FALSE);
2407 		if (err != 0) {
2408 			dsl_pool_rele(dp, tag);
2409 			return (err);
2410 		}
2411 
2412 		ASSERT0(arc_is_unauthenticated(os->os_phys_buf));
2413 	}
2414 
2415 	if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) {
2416 		dsl_pool_rele(dp, tag);
2417 		return (err);
2418 	}
2419 
2420 	/*
2421 	 * If we're doing a redacted send, hold the bookmark's redaction list.
2422 	 */
2423 	if (dspp->redactbook != NULL) {
2424 		err = dsl_redaction_list_hold_obj(dp,
2425 		    dspp->redactbook->zbm_redaction_obj, FTAG,
2426 		    &redact_rl);
2427 		if (err != 0) {
2428 			dsl_pool_rele(dp, tag);
2429 			return (SET_ERROR(EINVAL));
2430 		}
2431 		dsl_redaction_list_long_hold(dp, redact_rl, FTAG);
2432 	}
2433 
2434 	/*
2435 	 * If we're sending from a redaction bookmark, hold the redaction list
2436 	 * so that we can consider sending the redacted blocks.
2437 	 */
2438 	if (ancestor_zb->zbm_redaction_obj != 0) {
2439 		err = dsl_redaction_list_hold_obj(dp,
2440 		    ancestor_zb->zbm_redaction_obj, FTAG, &from_rl);
2441 		if (err != 0) {
2442 			if (redact_rl != NULL) {
2443 				dsl_redaction_list_long_rele(redact_rl, FTAG);
2444 				dsl_redaction_list_rele(redact_rl, FTAG);
2445 			}
2446 			dsl_pool_rele(dp, tag);
2447 			return (SET_ERROR(EINVAL));
2448 		}
2449 		dsl_redaction_list_long_hold(dp, from_rl, FTAG);
2450 	}
2451 
2452 	dsl_dataset_long_hold(to_ds, FTAG);
2453 
2454 	from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP);
2455 	to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP);
2456 	rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP);
2457 	smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP);
2458 	srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP);
2459 
2460 	drr = create_begin_record(dspp, os, featureflags);
2461 	dssp = setup_send_progress(dspp);
2462 
2463 	dsc.dsc_drr = drr;
2464 	dsc.dsc_dso = dspp->dso;
2465 	dsc.dsc_os = os;
2466 	dsc.dsc_off = dspp->off;
2467 	dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid;
2468 	dsc.dsc_fromtxg = fromtxg;
2469 	dsc.dsc_pending_op = PENDING_NONE;
2470 	dsc.dsc_featureflags = featureflags;
2471 	dsc.dsc_resume_object = dspp->resumeobj;
2472 	dsc.dsc_resume_offset = dspp->resumeoff;
2473 
2474 	dsl_pool_rele(dp, tag);
2475 
2476 	void *payload = NULL;
2477 	size_t payload_len = 0;
2478 	nvlist_t *nvl = fnvlist_alloc();
2479 
2480 	/*
2481 	 * If we're doing a redacted send, we include the snapshots we're
2482 	 * redacted with respect to so that the target system knows what send
2483 	 * streams can be correctly received on top of this dataset. If we're
2484 	 * instead sending a redacted dataset, we include the snapshots that the
2485 	 * dataset was created with respect to.
2486 	 */
2487 	if (dspp->redactbook != NULL) {
2488 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS,
2489 		    redact_rl->rl_phys->rlp_snaps,
2490 		    redact_rl->rl_phys->rlp_num_snaps);
2491 	} else if (dsl_dataset_feature_is_active(to_ds,
2492 	    SPA_FEATURE_REDACTED_DATASETS)) {
2493 		uint64_t *tods_guids;
2494 		uint64_t length;
2495 		VERIFY(dsl_dataset_get_uint64_array_feature(to_ds,
2496 		    SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids));
2497 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids,
2498 		    length);
2499 	}
2500 
2501 	/*
2502 	 * If we're sending from a redaction bookmark, then we should retrieve
2503 	 * the guids of that bookmark so we can send them over the wire.
2504 	 */
2505 	if (from_rl != NULL) {
2506 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2507 		    from_rl->rl_phys->rlp_snaps,
2508 		    from_rl->rl_phys->rlp_num_snaps);
2509 	}
2510 
2511 	/*
2512 	 * If the snapshot we're sending from is redacted, include the redaction
2513 	 * list in the stream.
2514 	 */
2515 	if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) {
2516 		ASSERT3P(from_rl, ==, NULL);
2517 		fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS,
2518 		    dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps);
2519 		if (dspp->numfromredactsnaps > 0) {
2520 			kmem_free(dspp->fromredactsnaps,
2521 			    dspp->numfromredactsnaps * sizeof (uint64_t));
2522 			dspp->fromredactsnaps = NULL;
2523 		}
2524 	}
2525 
2526 	if (resuming || book_resuming) {
2527 		err = setup_resume_points(dspp, to_arg, from_arg,
2528 		    rlt_arg, smt_arg, resuming, os, redact_rl, nvl);
2529 		if (err != 0)
2530 			goto out;
2531 	}
2532 
2533 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2534 		uint64_t ivset_guid = ancestor_zb->zbm_ivset_guid;
2535 		nvlist_t *keynvl = NULL;
2536 		ASSERT(os->os_encrypted);
2537 
2538 		err = dsl_crypto_populate_key_nvlist(os, ivset_guid,
2539 		    &keynvl);
2540 		if (err != 0) {
2541 			fnvlist_free(nvl);
2542 			goto out;
2543 		}
2544 
2545 		fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl);
2546 		fnvlist_free(keynvl);
2547 	}
2548 
2549 	if (!nvlist_empty(nvl)) {
2550 		payload = fnvlist_pack(nvl, &payload_len);
2551 		drr->drr_payloadlen = payload_len;
2552 	}
2553 
2554 	fnvlist_free(nvl);
2555 	err = dump_record(&dsc, payload, payload_len);
2556 	fnvlist_pack_free(payload, payload_len);
2557 	if (err != 0) {
2558 		err = dsc.dsc_err;
2559 		goto out;
2560 	}
2561 
2562 	setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok);
2563 	setup_from_thread(from_arg, from_rl, dssp);
2564 	setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp);
2565 	setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os);
2566 	setup_reader_thread(srt_arg, dspp, smt_arg, featureflags);
2567 
2568 	range = bqueue_dequeue(&srt_arg->q);
2569 	while (err == 0 && !range->eos_marker) {
2570 		err = do_dump(&dsc, range);
2571 		range = get_next_range(&srt_arg->q, range);
2572 		if (issig())
2573 			err = SET_ERROR(EINTR);
2574 	}
2575 
2576 	/*
2577 	 * If we hit an error or are interrupted, cancel our worker threads and
2578 	 * clear the queue of any pending records.  The threads will pass the
2579 	 * cancel up the tree of worker threads, and each one will clean up any
2580 	 * pending records before exiting.
2581 	 */
2582 	if (err != 0) {
2583 		srt_arg->cancel = B_TRUE;
2584 		while (!range->eos_marker) {
2585 			range = get_next_range(&srt_arg->q, range);
2586 		}
2587 	}
2588 	range_free(range);
2589 
2590 	bqueue_destroy(&srt_arg->q);
2591 	bqueue_destroy(&smt_arg->q);
2592 	if (dspp->redactbook != NULL)
2593 		bqueue_destroy(&rlt_arg->q);
2594 	bqueue_destroy(&to_arg->q);
2595 	bqueue_destroy(&from_arg->q);
2596 
2597 	if (err == 0 && srt_arg->error != 0)
2598 		err = srt_arg->error;
2599 
2600 	if (err != 0)
2601 		goto out;
2602 
2603 	if (dsc.dsc_pending_op != PENDING_NONE)
2604 		if (dump_record(&dsc, NULL, 0) != 0)
2605 			err = SET_ERROR(EINTR);
2606 
2607 	if (err != 0) {
2608 		if (err == EINTR && dsc.dsc_err != 0)
2609 			err = dsc.dsc_err;
2610 		goto out;
2611 	}
2612 
2613 	/*
2614 	 * Send the DRR_END record if this is not a saved stream.
2615 	 * Otherwise, the omitted DRR_END record will signal to
2616 	 * the receive side that the stream is incomplete.
2617 	 */
2618 	if (!dspp->savedok) {
2619 		memset(drr, 0, sizeof (dmu_replay_record_t));
2620 		drr->drr_type = DRR_END;
2621 		drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc;
2622 		drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid;
2623 
2624 		if (dump_record(&dsc, NULL, 0) != 0)
2625 			err = dsc.dsc_err;
2626 	}
2627 out:
2628 	mutex_enter(&to_ds->ds_sendstream_lock);
2629 	list_remove(&to_ds->ds_sendstreams, dssp);
2630 	mutex_exit(&to_ds->ds_sendstream_lock);
2631 
2632 	VERIFY(err != 0 || (dsc.dsc_sent_begin &&
2633 	    (dsc.dsc_sent_end || dspp->savedok)));
2634 
2635 	kmem_free(drr, sizeof (dmu_replay_record_t));
2636 	kmem_free(dssp, sizeof (dmu_sendstatus_t));
2637 	kmem_free(from_arg, sizeof (*from_arg));
2638 	kmem_free(to_arg, sizeof (*to_arg));
2639 	kmem_free(rlt_arg, sizeof (*rlt_arg));
2640 	kmem_free(smt_arg, sizeof (*smt_arg));
2641 	kmem_free(srt_arg, sizeof (*srt_arg));
2642 
2643 	dsl_dataset_long_rele(to_ds, FTAG);
2644 	if (from_rl != NULL) {
2645 		dsl_redaction_list_long_rele(from_rl, FTAG);
2646 		dsl_redaction_list_rele(from_rl, FTAG);
2647 	}
2648 	if (redact_rl != NULL) {
2649 		dsl_redaction_list_long_rele(redact_rl, FTAG);
2650 		dsl_redaction_list_rele(redact_rl, FTAG);
2651 	}
2652 
2653 	return (err);
2654 }
2655 
2656 int
2657 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
2658     boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
2659     boolean_t rawok, boolean_t savedok, int outfd, offset_t *off,
2660     dmu_send_outparams_t *dsop)
2661 {
2662 	int err;
2663 	dsl_dataset_t *fromds;
2664 	ds_hold_flags_t dsflags;
2665 	struct dmu_send_params dspp = {0};
2666 	dspp.embedok = embedok;
2667 	dspp.large_block_ok = large_block_ok;
2668 	dspp.compressok = compressok;
2669 	dspp.outfd = outfd;
2670 	dspp.off = off;
2671 	dspp.dso = dsop;
2672 	dspp.tag = FTAG;
2673 	dspp.rawok = rawok;
2674 	dspp.savedok = savedok;
2675 
2676 	dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2677 	err = dsl_pool_hold(pool, FTAG, &dspp.dp);
2678 	if (err != 0)
2679 		return (err);
2680 
2681 	err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG,
2682 	    &dspp.to_ds);
2683 	if (err != 0) {
2684 		dsl_pool_rele(dspp.dp, FTAG);
2685 		return (err);
2686 	}
2687 
2688 	if (fromsnap != 0) {
2689 		err = dsl_dataset_hold_obj_flags(dspp.dp, fromsnap, dsflags,
2690 		    FTAG, &fromds);
2691 		if (err != 0) {
2692 			dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2693 			dsl_pool_rele(dspp.dp, FTAG);
2694 			return (err);
2695 		}
2696 		dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
2697 		dspp.ancestor_zb.zbm_creation_txg =
2698 		    dsl_dataset_phys(fromds)->ds_creation_txg;
2699 		dspp.ancestor_zb.zbm_creation_time =
2700 		    dsl_dataset_phys(fromds)->ds_creation_time;
2701 
2702 		if (dsl_dataset_is_zapified(fromds)) {
2703 			(void) zap_lookup(dspp.dp->dp_meta_objset,
2704 			    fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2705 			    &dspp.ancestor_zb.zbm_ivset_guid);
2706 		}
2707 
2708 		/* See dmu_send for the reasons behind this. */
2709 		uint64_t *fromredact;
2710 
2711 		if (!dsl_dataset_get_uint64_array_feature(fromds,
2712 		    SPA_FEATURE_REDACTED_DATASETS,
2713 		    &dspp.numfromredactsnaps,
2714 		    &fromredact)) {
2715 			dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2716 		} else if (dspp.numfromredactsnaps > 0) {
2717 			uint64_t size = dspp.numfromredactsnaps *
2718 			    sizeof (uint64_t);
2719 			dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP);
2720 			memcpy(dspp.fromredactsnaps, fromredact, size);
2721 		}
2722 
2723 		boolean_t is_before =
2724 		    dsl_dataset_is_before(dspp.to_ds, fromds, 0);
2725 		dspp.is_clone = (dspp.to_ds->ds_dir !=
2726 		    fromds->ds_dir);
2727 		dsl_dataset_rele(fromds, FTAG);
2728 		if (!is_before) {
2729 			dsl_pool_rele(dspp.dp, FTAG);
2730 			err = SET_ERROR(EXDEV);
2731 		} else {
2732 			err = dmu_send_impl(&dspp);
2733 		}
2734 	} else {
2735 		dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2736 		err = dmu_send_impl(&dspp);
2737 	}
2738 	if (dspp.fromredactsnaps)
2739 		kmem_free(dspp.fromredactsnaps,
2740 		    dspp.numfromredactsnaps * sizeof (uint64_t));
2741 
2742 	dsl_dataset_rele(dspp.to_ds, FTAG);
2743 	return (err);
2744 }
2745 
2746 int
2747 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
2748     boolean_t large_block_ok, boolean_t compressok, boolean_t rawok,
2749     boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff,
2750     const char *redactbook, int outfd, offset_t *off,
2751     dmu_send_outparams_t *dsop)
2752 {
2753 	int err = 0;
2754 	ds_hold_flags_t dsflags;
2755 	boolean_t owned = B_FALSE;
2756 	dsl_dataset_t *fromds = NULL;
2757 	zfs_bookmark_phys_t book = {0};
2758 	struct dmu_send_params dspp = {0};
2759 
2760 	dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2761 	dspp.tosnap = tosnap;
2762 	dspp.embedok = embedok;
2763 	dspp.large_block_ok = large_block_ok;
2764 	dspp.compressok = compressok;
2765 	dspp.outfd = outfd;
2766 	dspp.off = off;
2767 	dspp.dso = dsop;
2768 	dspp.tag = FTAG;
2769 	dspp.resumeobj = resumeobj;
2770 	dspp.resumeoff = resumeoff;
2771 	dspp.rawok = rawok;
2772 	dspp.savedok = savedok;
2773 
2774 	if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
2775 		return (SET_ERROR(EINVAL));
2776 
2777 	err = dsl_pool_hold(tosnap, FTAG, &dspp.dp);
2778 	if (err != 0)
2779 		return (err);
2780 
2781 	if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) {
2782 		/*
2783 		 * We are sending a filesystem or volume.  Ensure
2784 		 * that it doesn't change by owning the dataset.
2785 		 */
2786 
2787 		if (savedok) {
2788 			/*
2789 			 * We are looking for the dataset that represents the
2790 			 * partially received send stream. If this stream was
2791 			 * received as a new snapshot of an existing dataset,
2792 			 * this will be saved in a hidden clone named
2793 			 * "<pool>/<dataset>/%recv". Otherwise, the stream
2794 			 * will be saved in the live dataset itself. In
2795 			 * either case we need to use dsl_dataset_own_force()
2796 			 * because the stream is marked as inconsistent,
2797 			 * which would normally make it unavailable to be
2798 			 * owned.
2799 			 */
2800 			char *name = kmem_asprintf("%s/%s", tosnap,
2801 			    recv_clone_name);
2802 			err = dsl_dataset_own_force(dspp.dp, name, dsflags,
2803 			    FTAG, &dspp.to_ds);
2804 			if (err == ENOENT) {
2805 				err = dsl_dataset_own_force(dspp.dp, tosnap,
2806 				    dsflags, FTAG, &dspp.to_ds);
2807 			}
2808 
2809 			if (err == 0) {
2810 				owned = B_TRUE;
2811 				err = zap_lookup(dspp.dp->dp_meta_objset,
2812 				    dspp.to_ds->ds_object,
2813 				    DS_FIELD_RESUME_TOGUID, 8, 1,
2814 				    &dspp.saved_guid);
2815 			}
2816 
2817 			if (err == 0) {
2818 				err = zap_lookup(dspp.dp->dp_meta_objset,
2819 				    dspp.to_ds->ds_object,
2820 				    DS_FIELD_RESUME_TONAME, 1,
2821 				    sizeof (dspp.saved_toname),
2822 				    dspp.saved_toname);
2823 			}
2824 			/* Only disown if there was an error in the lookups */
2825 			if (owned && (err != 0))
2826 				dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2827 
2828 			kmem_strfree(name);
2829 		} else {
2830 			err = dsl_dataset_own(dspp.dp, tosnap, dsflags,
2831 			    FTAG, &dspp.to_ds);
2832 			if (err == 0)
2833 				owned = B_TRUE;
2834 		}
2835 	} else {
2836 		err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG,
2837 		    &dspp.to_ds);
2838 	}
2839 
2840 	if (err != 0) {
2841 		/* Note: dsl dataset is not owned at this point */
2842 		dsl_pool_rele(dspp.dp, FTAG);
2843 		return (err);
2844 	}
2845 
2846 	if (redactbook != NULL) {
2847 		char path[ZFS_MAX_DATASET_NAME_LEN];
2848 		(void) strlcpy(path, tosnap, sizeof (path));
2849 		char *at = strchr(path, '@');
2850 		if (at == NULL) {
2851 			err = EINVAL;
2852 		} else {
2853 			(void) snprintf(at, sizeof (path) - (at - path), "#%s",
2854 			    redactbook);
2855 			err = dsl_bookmark_lookup(dspp.dp, path,
2856 			    NULL, &book);
2857 			dspp.redactbook = &book;
2858 		}
2859 	}
2860 
2861 	if (err != 0) {
2862 		dsl_pool_rele(dspp.dp, FTAG);
2863 		if (owned)
2864 			dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2865 		else
2866 			dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2867 		return (err);
2868 	}
2869 
2870 	if (fromsnap != NULL) {
2871 		zfs_bookmark_phys_t *zb = &dspp.ancestor_zb;
2872 		int fsnamelen;
2873 		if (strpbrk(tosnap, "@#") != NULL)
2874 			fsnamelen = strpbrk(tosnap, "@#") - tosnap;
2875 		else
2876 			fsnamelen = strlen(tosnap);
2877 
2878 		/*
2879 		 * If the fromsnap is in a different filesystem, then
2880 		 * mark the send stream as a clone.
2881 		 */
2882 		if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
2883 		    (fromsnap[fsnamelen] != '@' &&
2884 		    fromsnap[fsnamelen] != '#')) {
2885 			dspp.is_clone = B_TRUE;
2886 		}
2887 
2888 		if (strchr(fromsnap, '@') != NULL) {
2889 			err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG,
2890 			    &fromds);
2891 
2892 			if (err != 0) {
2893 				ASSERT3P(fromds, ==, NULL);
2894 			} else {
2895 				/*
2896 				 * We need to make a deep copy of the redact
2897 				 * snapshots of the from snapshot, because the
2898 				 * array will be freed when we evict from_ds.
2899 				 */
2900 				uint64_t *fromredact;
2901 				if (!dsl_dataset_get_uint64_array_feature(
2902 				    fromds, SPA_FEATURE_REDACTED_DATASETS,
2903 				    &dspp.numfromredactsnaps,
2904 				    &fromredact)) {
2905 					dspp.numfromredactsnaps =
2906 					    NUM_SNAPS_NOT_REDACTED;
2907 				} else if (dspp.numfromredactsnaps > 0) {
2908 					uint64_t size =
2909 					    dspp.numfromredactsnaps *
2910 					    sizeof (uint64_t);
2911 					dspp.fromredactsnaps = kmem_zalloc(size,
2912 					    KM_SLEEP);
2913 					memcpy(dspp.fromredactsnaps, fromredact,
2914 					    size);
2915 				}
2916 				if (!dsl_dataset_is_before(dspp.to_ds, fromds,
2917 				    0)) {
2918 					err = SET_ERROR(EXDEV);
2919 				} else {
2920 					zb->zbm_creation_txg =
2921 					    dsl_dataset_phys(fromds)->
2922 					    ds_creation_txg;
2923 					zb->zbm_creation_time =
2924 					    dsl_dataset_phys(fromds)->
2925 					    ds_creation_time;
2926 					zb->zbm_guid =
2927 					    dsl_dataset_phys(fromds)->ds_guid;
2928 					zb->zbm_redaction_obj = 0;
2929 
2930 					if (dsl_dataset_is_zapified(fromds)) {
2931 						(void) zap_lookup(
2932 						    dspp.dp->dp_meta_objset,
2933 						    fromds->ds_object,
2934 						    DS_FIELD_IVSET_GUID, 8, 1,
2935 						    &zb->zbm_ivset_guid);
2936 					}
2937 				}
2938 				dsl_dataset_rele(fromds, FTAG);
2939 			}
2940 		} else {
2941 			dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2942 			err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds,
2943 			    zb);
2944 			if (err == EXDEV && zb->zbm_redaction_obj != 0 &&
2945 			    zb->zbm_guid ==
2946 			    dsl_dataset_phys(dspp.to_ds)->ds_guid)
2947 				err = 0;
2948 		}
2949 
2950 		if (err == 0) {
2951 			/* dmu_send_impl will call dsl_pool_rele for us. */
2952 			err = dmu_send_impl(&dspp);
2953 		} else {
2954 			if (dspp.fromredactsnaps)
2955 				kmem_free(dspp.fromredactsnaps,
2956 				    dspp.numfromredactsnaps *
2957 				    sizeof (uint64_t));
2958 			dsl_pool_rele(dspp.dp, FTAG);
2959 		}
2960 	} else {
2961 		dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED;
2962 		err = dmu_send_impl(&dspp);
2963 	}
2964 	if (owned)
2965 		dsl_dataset_disown(dspp.to_ds, dsflags, FTAG);
2966 	else
2967 		dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG);
2968 	return (err);
2969 }
2970 
2971 static int
2972 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
2973     uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
2974 {
2975 	int err = 0;
2976 	uint64_t size;
2977 	/*
2978 	 * Assume that space (both on-disk and in-stream) is dominated by
2979 	 * data.  We will adjust for indirect blocks and the copies property,
2980 	 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
2981 	 */
2982 
2983 	uint64_t recordsize;
2984 	uint64_t record_count;
2985 	objset_t *os;
2986 	VERIFY0(dmu_objset_from_ds(ds, &os));
2987 
2988 	/* Assume all (uncompressed) blocks are recordsize. */
2989 	if (zfs_override_estimate_recordsize != 0) {
2990 		recordsize = zfs_override_estimate_recordsize;
2991 	} else if (os->os_phys->os_type == DMU_OST_ZVOL) {
2992 		err = dsl_prop_get_int_ds(ds,
2993 		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
2994 	} else {
2995 		err = dsl_prop_get_int_ds(ds,
2996 		    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
2997 	}
2998 	if (err != 0)
2999 		return (err);
3000 	record_count = uncompressed / recordsize;
3001 
3002 	/*
3003 	 * If we're estimating a send size for a compressed stream, use the
3004 	 * compressed data size to estimate the stream size. Otherwise, use the
3005 	 * uncompressed data size.
3006 	 */
3007 	size = stream_compressed ? compressed : uncompressed;
3008 
3009 	/*
3010 	 * Subtract out approximate space used by indirect blocks.
3011 	 * Assume most space is used by data blocks (non-indirect, non-dnode).
3012 	 * Assume no ditto blocks or internal fragmentation.
3013 	 *
3014 	 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
3015 	 * block.
3016 	 */
3017 	size -= record_count * sizeof (blkptr_t);
3018 
3019 	/* Add in the space for the record associated with each block. */
3020 	size += record_count * sizeof (dmu_replay_record_t);
3021 
3022 	*sizep = size;
3023 
3024 	return (0);
3025 }
3026 
3027 int
3028 dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds,
3029     zfs_bookmark_phys_t *frombook, boolean_t stream_compressed,
3030     boolean_t saved, uint64_t *sizep)
3031 {
3032 	int err;
3033 	dsl_dataset_t *ds = origds;
3034 	uint64_t uncomp, comp;
3035 
3036 	ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool));
3037 	ASSERT(fromds == NULL || frombook == NULL);
3038 
3039 	/*
3040 	 * If this is a saved send we may actually be sending
3041 	 * from the %recv clone used for resuming.
3042 	 */
3043 	if (saved) {
3044 		objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset;
3045 		uint64_t guid;
3046 		char dsname[ZFS_MAX_DATASET_NAME_LEN + 6];
3047 
3048 		dsl_dataset_name(origds, dsname);
3049 		(void) strcat(dsname, "/");
3050 		(void) strlcat(dsname, recv_clone_name, sizeof (dsname));
3051 
3052 		err = dsl_dataset_hold(origds->ds_dir->dd_pool,
3053 		    dsname, FTAG, &ds);
3054 		if (err != ENOENT && err != 0) {
3055 			return (err);
3056 		} else if (err == ENOENT) {
3057 			ds = origds;
3058 		}
3059 
3060 		/* check that this dataset has partially received data */
3061 		err = zap_lookup(mos, ds->ds_object,
3062 		    DS_FIELD_RESUME_TOGUID, 8, 1, &guid);
3063 		if (err != 0) {
3064 			err = SET_ERROR(err == ENOENT ? EINVAL : err);
3065 			goto out;
3066 		}
3067 
3068 		err = zap_lookup(mos, ds->ds_object,
3069 		    DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname);
3070 		if (err != 0) {
3071 			err = SET_ERROR(err == ENOENT ? EINVAL : err);
3072 			goto out;
3073 		}
3074 	}
3075 
3076 	/* tosnap must be a snapshot or the target of a saved send */
3077 	if (!ds->ds_is_snapshot && ds == origds)
3078 		return (SET_ERROR(EINVAL));
3079 
3080 	if (fromds != NULL) {
3081 		uint64_t used;
3082 		if (!fromds->ds_is_snapshot) {
3083 			err = SET_ERROR(EINVAL);
3084 			goto out;
3085 		}
3086 
3087 		if (!dsl_dataset_is_before(ds, fromds, 0)) {
3088 			err = SET_ERROR(EXDEV);
3089 			goto out;
3090 		}
3091 
3092 		err = dsl_dataset_space_written(fromds, ds, &used, &comp,
3093 		    &uncomp);
3094 		if (err != 0)
3095 			goto out;
3096 	} else if (frombook != NULL) {
3097 		uint64_t used;
3098 		err = dsl_dataset_space_written_bookmark(frombook, ds, &used,
3099 		    &comp, &uncomp);
3100 		if (err != 0)
3101 			goto out;
3102 	} else {
3103 		uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
3104 		comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
3105 	}
3106 
3107 	err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
3108 	    stream_compressed, sizep);
3109 	/*
3110 	 * Add the size of the BEGIN and END records to the estimate.
3111 	 */
3112 	*sizep += 2 * sizeof (dmu_replay_record_t);
3113 
3114 out:
3115 	if (ds != origds)
3116 		dsl_dataset_rele(ds, FTAG);
3117 	return (err);
3118 }
3119 
3120 ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW,
3121 	"Allow sending corrupt data");
3122 
3123 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, UINT, ZMOD_RW,
3124 	"Maximum send queue length");
3125 
3126 ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW,
3127 	"Send unmodified spill blocks");
3128 
3129 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, UINT, ZMOD_RW,
3130 	"Maximum send queue length for non-prefetch queues");
3131 
3132 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, UINT, ZMOD_RW,
3133 	"Send queue fill fraction");
3134 
3135 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, UINT, ZMOD_RW,
3136 	"Send queue fill fraction for non-prefetch queues");
3137 
3138 ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, UINT, ZMOD_RW,
3139 	"Override block size estimate with fixed size");
3140