1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 */ 32 33 #include <sys/dmu.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/dbuf.h> 37 #include <sys/dnode.h> 38 #include <sys/zfs_context.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/dmu_traverse.h> 41 #include <sys/dsl_dataset.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/dsl_prop.h> 44 #include <sys/dsl_pool.h> 45 #include <sys/dsl_synctask.h> 46 #include <sys/spa_impl.h> 47 #include <sys/zfs_ioctl.h> 48 #include <sys/zap.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/zfs_znode.h> 51 #include <zfs_fletcher.h> 52 #include <sys/avl.h> 53 #include <sys/ddt.h> 54 #include <sys/zfs_onexit.h> 55 #include <sys/dmu_send.h> 56 #include <sys/dmu_recv.h> 57 #include <sys/dsl_destroy.h> 58 #include <sys/blkptr.h> 59 #include <sys/dsl_bookmark.h> 60 #include <sys/zfeature.h> 61 #include <sys/bqueue.h> 62 #include <sys/zvol.h> 63 #include <sys/policy.h> 64 #include <sys/objlist.h> 65 #ifdef _KERNEL 66 #include <sys/zfs_vfsops.h> 67 #endif 68 69 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 70 static int zfs_send_corrupt_data = B_FALSE; 71 /* 72 * This tunable controls the amount of data (measured in bytes) that will be 73 * prefetched by zfs send. If the main thread is blocking on reads that haven't 74 * completed, this variable might need to be increased. If instead the main 75 * thread is issuing new reads because the prefetches have fallen out of the 76 * cache, this may need to be decreased. 77 */ 78 static uint_t zfs_send_queue_length = SPA_MAXBLOCKSIZE; 79 /* 80 * This tunable controls the length of the queues that zfs send worker threads 81 * use to communicate. If the send_main_thread is blocking on these queues, 82 * this variable may need to be increased. If there is a significant slowdown 83 * at the start of a send as these threads consume all the available IO 84 * resources, this variable may need to be decreased. 85 */ 86 static uint_t zfs_send_no_prefetch_queue_length = 1024 * 1024; 87 /* 88 * These tunables control the fill fraction of the queues by zfs send. The fill 89 * fraction controls the frequency with which threads have to be cv_signaled. 90 * If a lot of cpu time is being spent on cv_signal, then these should be tuned 91 * down. If the queues empty before the signalled thread can catch up, then 92 * these should be tuned up. 93 */ 94 static uint_t zfs_send_queue_ff = 20; 95 static uint_t zfs_send_no_prefetch_queue_ff = 20; 96 97 /* 98 * Use this to override the recordsize calculation for fast zfs send estimates. 99 */ 100 static uint_t zfs_override_estimate_recordsize = 0; 101 102 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */ 103 static const boolean_t zfs_send_set_freerecords_bit = B_TRUE; 104 105 /* Set this tunable to FALSE is disable sending unmodified spill blocks. */ 106 static int zfs_send_unmodified_spill_blocks = B_TRUE; 107 108 static inline boolean_t 109 overflow_multiply(uint64_t a, uint64_t b, uint64_t *c) 110 { 111 uint64_t temp = a * b; 112 if (b != 0 && temp / b != a) 113 return (B_FALSE); 114 *c = temp; 115 return (B_TRUE); 116 } 117 118 struct send_thread_arg { 119 bqueue_t q; 120 objset_t *os; /* Objset to traverse */ 121 uint64_t fromtxg; /* Traverse from this txg */ 122 int flags; /* flags to pass to traverse_dataset */ 123 int error_code; 124 boolean_t cancel; 125 zbookmark_phys_t resume; 126 uint64_t *num_blocks_visited; 127 }; 128 129 struct redact_list_thread_arg { 130 boolean_t cancel; 131 bqueue_t q; 132 zbookmark_phys_t resume; 133 redaction_list_t *rl; 134 boolean_t mark_redact; 135 int error_code; 136 uint64_t *num_blocks_visited; 137 }; 138 139 struct send_merge_thread_arg { 140 bqueue_t q; 141 objset_t *os; 142 struct redact_list_thread_arg *from_arg; 143 struct send_thread_arg *to_arg; 144 struct redact_list_thread_arg *redact_arg; 145 int error; 146 boolean_t cancel; 147 }; 148 149 struct send_range { 150 boolean_t eos_marker; /* Marks the end of the stream */ 151 uint64_t object; 152 uint64_t start_blkid; 153 uint64_t end_blkid; 154 bqueue_node_t ln; 155 enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT, 156 PREVIOUSLY_REDACTED} type; 157 union { 158 struct srd { 159 dmu_object_type_t obj_type; 160 uint32_t datablksz; // logical size 161 uint32_t datasz; // payload size 162 blkptr_t bp; 163 arc_buf_t *abuf; 164 abd_t *abd; 165 kmutex_t lock; 166 kcondvar_t cv; 167 boolean_t io_outstanding; 168 boolean_t io_compressed; 169 int io_err; 170 } data; 171 struct srh { 172 uint32_t datablksz; 173 } hole; 174 struct sro { 175 /* 176 * This is a pointer because embedding it in the 177 * struct causes these structures to be massively larger 178 * for all range types; this makes the code much less 179 * memory efficient. 180 */ 181 dnode_phys_t *dnp; 182 blkptr_t bp; 183 } object; 184 struct srr { 185 uint32_t datablksz; 186 } redact; 187 struct sror { 188 blkptr_t bp; 189 } object_range; 190 } sru; 191 }; 192 193 /* 194 * The list of data whose inclusion in a send stream can be pending from 195 * one call to backup_cb to another. Multiple calls to dump_free(), 196 * dump_freeobjects(), and dump_redact() can be aggregated into a single 197 * DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record. 198 */ 199 typedef enum { 200 PENDING_NONE, 201 PENDING_FREE, 202 PENDING_FREEOBJECTS, 203 PENDING_REDACT 204 } dmu_pendop_t; 205 206 typedef struct dmu_send_cookie { 207 dmu_replay_record_t *dsc_drr; 208 dmu_send_outparams_t *dsc_dso; 209 offset_t *dsc_off; 210 objset_t *dsc_os; 211 zio_cksum_t dsc_zc; 212 uint64_t dsc_toguid; 213 uint64_t dsc_fromtxg; 214 int dsc_err; 215 dmu_pendop_t dsc_pending_op; 216 uint64_t dsc_featureflags; 217 uint64_t dsc_last_data_object; 218 uint64_t dsc_last_data_offset; 219 uint64_t dsc_resume_object; 220 uint64_t dsc_resume_offset; 221 boolean_t dsc_sent_begin; 222 boolean_t dsc_sent_end; 223 } dmu_send_cookie_t; 224 225 static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range); 226 227 static void 228 range_free(struct send_range *range) 229 { 230 if (range->type == OBJECT) { 231 size_t size = sizeof (dnode_phys_t) * 232 (range->sru.object.dnp->dn_extra_slots + 1); 233 kmem_free(range->sru.object.dnp, size); 234 } else if (range->type == DATA) { 235 mutex_enter(&range->sru.data.lock); 236 while (range->sru.data.io_outstanding) 237 cv_wait(&range->sru.data.cv, &range->sru.data.lock); 238 if (range->sru.data.abd != NULL) 239 abd_free(range->sru.data.abd); 240 if (range->sru.data.abuf != NULL) { 241 arc_buf_destroy(range->sru.data.abuf, 242 &range->sru.data.abuf); 243 } 244 mutex_exit(&range->sru.data.lock); 245 246 cv_destroy(&range->sru.data.cv); 247 mutex_destroy(&range->sru.data.lock); 248 } 249 kmem_free(range, sizeof (*range)); 250 } 251 252 /* 253 * For all record types except BEGIN, fill in the checksum (overlaid in 254 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 255 * up to the start of the checksum itself. 256 */ 257 static int 258 dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len) 259 { 260 dmu_send_outparams_t *dso = dscp->dsc_dso; 261 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 262 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 263 (void) fletcher_4_incremental_native(dscp->dsc_drr, 264 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 265 &dscp->dsc_zc); 266 if (dscp->dsc_drr->drr_type == DRR_BEGIN) { 267 dscp->dsc_sent_begin = B_TRUE; 268 } else { 269 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u. 270 drr_checksum.drr_checksum)); 271 dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc; 272 } 273 if (dscp->dsc_drr->drr_type == DRR_END) { 274 dscp->dsc_sent_end = B_TRUE; 275 } 276 (void) fletcher_4_incremental_native(&dscp->dsc_drr-> 277 drr_u.drr_checksum.drr_checksum, 278 sizeof (zio_cksum_t), &dscp->dsc_zc); 279 *dscp->dsc_off += sizeof (dmu_replay_record_t); 280 dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr, 281 sizeof (dmu_replay_record_t), dso->dso_arg); 282 if (dscp->dsc_err != 0) 283 return (SET_ERROR(EINTR)); 284 if (payload_len != 0) { 285 *dscp->dsc_off += payload_len; 286 /* 287 * payload is null when dso_dryrun == B_TRUE (i.e. when we're 288 * doing a send size calculation) 289 */ 290 if (payload != NULL) { 291 (void) fletcher_4_incremental_native( 292 payload, payload_len, &dscp->dsc_zc); 293 } 294 295 /* 296 * The code does not rely on this (len being a multiple of 8). 297 * We keep this assertion because of the corresponding assertion 298 * in receive_read(). Keeping this assertion ensures that we do 299 * not inadvertently break backwards compatibility (causing the 300 * assertion in receive_read() to trigger on old software). 301 * 302 * Raw sends cannot be received on old software, and so can 303 * bypass this assertion. 304 */ 305 306 ASSERT((payload_len % 8 == 0) || 307 (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)); 308 309 dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload, 310 payload_len, dso->dso_arg); 311 if (dscp->dsc_err != 0) 312 return (SET_ERROR(EINTR)); 313 } 314 return (0); 315 } 316 317 /* 318 * Fill in the drr_free struct, or perform aggregation if the previous record is 319 * also a free record, and the two are adjacent. 320 * 321 * Note that we send free records even for a full send, because we want to be 322 * able to receive a full send as a clone, which requires a list of all the free 323 * and freeobject records that were generated on the source. 324 */ 325 static int 326 dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset, 327 uint64_t length) 328 { 329 struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free); 330 331 /* 332 * When we receive a free record, dbuf_free_range() assumes 333 * that the receiving system doesn't have any dbufs in the range 334 * being freed. This is always true because there is a one-record 335 * constraint: we only send one WRITE record for any given 336 * object,offset. We know that the one-record constraint is 337 * true because we always send data in increasing order by 338 * object,offset. 339 * 340 * If the increasing-order constraint ever changes, we should find 341 * another way to assert that the one-record constraint is still 342 * satisfied. 343 */ 344 ASSERT(object > dscp->dsc_last_data_object || 345 (object == dscp->dsc_last_data_object && 346 offset > dscp->dsc_last_data_offset)); 347 348 /* 349 * If there is a pending op, but it's not PENDING_FREE, push it out, 350 * since free block aggregation can only be done for blocks of the 351 * same type (i.e., DRR_FREE records can only be aggregated with 352 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 353 * aggregated with other DRR_FREEOBJECTS records). 354 */ 355 if (dscp->dsc_pending_op != PENDING_NONE && 356 dscp->dsc_pending_op != PENDING_FREE) { 357 if (dump_record(dscp, NULL, 0) != 0) 358 return (SET_ERROR(EINTR)); 359 dscp->dsc_pending_op = PENDING_NONE; 360 } 361 362 if (dscp->dsc_pending_op == PENDING_FREE) { 363 /* 364 * Check to see whether this free block can be aggregated 365 * with pending one. 366 */ 367 if (drrf->drr_object == object && drrf->drr_offset + 368 drrf->drr_length == offset) { 369 if (offset + length < offset || length == UINT64_MAX) 370 drrf->drr_length = UINT64_MAX; 371 else 372 drrf->drr_length += length; 373 return (0); 374 } else { 375 /* not a continuation. Push out pending record */ 376 if (dump_record(dscp, NULL, 0) != 0) 377 return (SET_ERROR(EINTR)); 378 dscp->dsc_pending_op = PENDING_NONE; 379 } 380 } 381 /* create a FREE record and make it pending */ 382 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t)); 383 dscp->dsc_drr->drr_type = DRR_FREE; 384 drrf->drr_object = object; 385 drrf->drr_offset = offset; 386 if (offset + length < offset) 387 drrf->drr_length = DMU_OBJECT_END; 388 else 389 drrf->drr_length = length; 390 drrf->drr_toguid = dscp->dsc_toguid; 391 if (length == DMU_OBJECT_END) { 392 if (dump_record(dscp, NULL, 0) != 0) 393 return (SET_ERROR(EINTR)); 394 } else { 395 dscp->dsc_pending_op = PENDING_FREE; 396 } 397 398 return (0); 399 } 400 401 /* 402 * Fill in the drr_redact struct, or perform aggregation if the previous record 403 * is also a redaction record, and the two are adjacent. 404 */ 405 static int 406 dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset, 407 uint64_t length) 408 { 409 struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact; 410 411 /* 412 * If there is a pending op, but it's not PENDING_REDACT, push it out, 413 * since free block aggregation can only be done for blocks of the 414 * same type (i.e., DRR_REDACT records can only be aggregated with 415 * other DRR_REDACT records). 416 */ 417 if (dscp->dsc_pending_op != PENDING_NONE && 418 dscp->dsc_pending_op != PENDING_REDACT) { 419 if (dump_record(dscp, NULL, 0) != 0) 420 return (SET_ERROR(EINTR)); 421 dscp->dsc_pending_op = PENDING_NONE; 422 } 423 424 if (dscp->dsc_pending_op == PENDING_REDACT) { 425 /* 426 * Check to see whether this redacted block can be aggregated 427 * with pending one. 428 */ 429 if (drrr->drr_object == object && drrr->drr_offset + 430 drrr->drr_length == offset) { 431 drrr->drr_length += length; 432 return (0); 433 } else { 434 /* not a continuation. Push out pending record */ 435 if (dump_record(dscp, NULL, 0) != 0) 436 return (SET_ERROR(EINTR)); 437 dscp->dsc_pending_op = PENDING_NONE; 438 } 439 } 440 /* create a REDACT record and make it pending */ 441 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t)); 442 dscp->dsc_drr->drr_type = DRR_REDACT; 443 drrr->drr_object = object; 444 drrr->drr_offset = offset; 445 drrr->drr_length = length; 446 drrr->drr_toguid = dscp->dsc_toguid; 447 dscp->dsc_pending_op = PENDING_REDACT; 448 449 return (0); 450 } 451 452 static int 453 dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object, 454 uint64_t offset, int lsize, int psize, const blkptr_t *bp, 455 boolean_t io_compressed, void *data) 456 { 457 uint64_t payload_size; 458 boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW); 459 struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write); 460 461 /* 462 * We send data in increasing object, offset order. 463 * See comment in dump_free() for details. 464 */ 465 ASSERT(object > dscp->dsc_last_data_object || 466 (object == dscp->dsc_last_data_object && 467 offset > dscp->dsc_last_data_offset)); 468 dscp->dsc_last_data_object = object; 469 dscp->dsc_last_data_offset = offset + lsize - 1; 470 471 /* 472 * If there is any kind of pending aggregation (currently either 473 * a grouping of free objects or free blocks), push it out to 474 * the stream, since aggregation can't be done across operations 475 * of different types. 476 */ 477 if (dscp->dsc_pending_op != PENDING_NONE) { 478 if (dump_record(dscp, NULL, 0) != 0) 479 return (SET_ERROR(EINTR)); 480 dscp->dsc_pending_op = PENDING_NONE; 481 } 482 /* write a WRITE record */ 483 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t)); 484 dscp->dsc_drr->drr_type = DRR_WRITE; 485 drrw->drr_object = object; 486 drrw->drr_type = type; 487 drrw->drr_offset = offset; 488 drrw->drr_toguid = dscp->dsc_toguid; 489 drrw->drr_logical_size = lsize; 490 491 /* only set the compression fields if the buf is compressed or raw */ 492 boolean_t compressed = 493 (bp != NULL ? BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 494 io_compressed : lsize != psize); 495 if (raw || compressed) { 496 ASSERT(raw || dscp->dsc_featureflags & 497 DMU_BACKUP_FEATURE_COMPRESSED); 498 ASSERT(!BP_IS_EMBEDDED(bp)); 499 ASSERT3S(psize, >, 0); 500 501 if (raw) { 502 ASSERT(BP_IS_PROTECTED(bp)); 503 504 /* 505 * This is a raw protected block so we need to pass 506 * along everything the receiving side will need to 507 * interpret this block, including the byteswap, salt, 508 * IV, and MAC. 509 */ 510 if (BP_SHOULD_BYTESWAP(bp)) 511 drrw->drr_flags |= DRR_RAW_BYTESWAP; 512 zio_crypt_decode_params_bp(bp, drrw->drr_salt, 513 drrw->drr_iv); 514 zio_crypt_decode_mac_bp(bp, drrw->drr_mac); 515 } else { 516 /* this is a compressed block */ 517 ASSERT(dscp->dsc_featureflags & 518 DMU_BACKUP_FEATURE_COMPRESSED); 519 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 520 ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp))); 521 ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF); 522 ASSERT3S(lsize, >=, psize); 523 } 524 525 /* set fields common to compressed and raw sends */ 526 drrw->drr_compressiontype = BP_GET_COMPRESS(bp); 527 drrw->drr_compressed_size = psize; 528 payload_size = drrw->drr_compressed_size; 529 } else { 530 payload_size = drrw->drr_logical_size; 531 } 532 533 if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) { 534 /* 535 * There's no pre-computed checksum for partial-block writes, 536 * embedded BP's, or encrypted BP's that are being sent as 537 * plaintext, so (like fletcher4-checksummed blocks) userland 538 * will have to compute a dedup-capable checksum itself. 539 */ 540 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 541 } else { 542 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 543 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 544 ZCHECKSUM_FLAG_DEDUP) 545 drrw->drr_flags |= DRR_CHECKSUM_DEDUP; 546 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 547 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 548 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 549 DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp)); 550 drrw->drr_key.ddk_cksum = bp->blk_cksum; 551 } 552 553 if (dump_record(dscp, data, payload_size) != 0) 554 return (SET_ERROR(EINTR)); 555 return (0); 556 } 557 558 static int 559 dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset, 560 int blksz, const blkptr_t *bp) 561 { 562 char buf[BPE_PAYLOAD_SIZE]; 563 struct drr_write_embedded *drrw = 564 &(dscp->dsc_drr->drr_u.drr_write_embedded); 565 566 if (dscp->dsc_pending_op != PENDING_NONE) { 567 if (dump_record(dscp, NULL, 0) != 0) 568 return (SET_ERROR(EINTR)); 569 dscp->dsc_pending_op = PENDING_NONE; 570 } 571 572 ASSERT(BP_IS_EMBEDDED(bp)); 573 574 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t)); 575 dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED; 576 drrw->drr_object = object; 577 drrw->drr_offset = offset; 578 drrw->drr_length = blksz; 579 drrw->drr_toguid = dscp->dsc_toguid; 580 drrw->drr_compression = BP_GET_COMPRESS(bp); 581 drrw->drr_etype = BPE_GET_ETYPE(bp); 582 drrw->drr_lsize = BPE_GET_LSIZE(bp); 583 drrw->drr_psize = BPE_GET_PSIZE(bp); 584 585 decode_embedded_bp_compressed(bp, buf); 586 587 if (dump_record(dscp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 588 return (SET_ERROR(EINTR)); 589 return (0); 590 } 591 592 static int 593 dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object, 594 void *data) 595 { 596 struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill); 597 uint64_t blksz = BP_GET_LSIZE(bp); 598 uint64_t payload_size = blksz; 599 600 if (dscp->dsc_pending_op != PENDING_NONE) { 601 if (dump_record(dscp, NULL, 0) != 0) 602 return (SET_ERROR(EINTR)); 603 dscp->dsc_pending_op = PENDING_NONE; 604 } 605 606 /* write a SPILL record */ 607 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t)); 608 dscp->dsc_drr->drr_type = DRR_SPILL; 609 drrs->drr_object = object; 610 drrs->drr_length = blksz; 611 drrs->drr_toguid = dscp->dsc_toguid; 612 613 /* See comment in dump_dnode() for full details */ 614 if (zfs_send_unmodified_spill_blocks && 615 (bp->blk_birth <= dscp->dsc_fromtxg)) { 616 drrs->drr_flags |= DRR_SPILL_UNMODIFIED; 617 } 618 619 /* handle raw send fields */ 620 if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) { 621 ASSERT(BP_IS_PROTECTED(bp)); 622 623 if (BP_SHOULD_BYTESWAP(bp)) 624 drrs->drr_flags |= DRR_RAW_BYTESWAP; 625 drrs->drr_compressiontype = BP_GET_COMPRESS(bp); 626 drrs->drr_compressed_size = BP_GET_PSIZE(bp); 627 zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv); 628 zio_crypt_decode_mac_bp(bp, drrs->drr_mac); 629 payload_size = drrs->drr_compressed_size; 630 } 631 632 if (dump_record(dscp, data, payload_size) != 0) 633 return (SET_ERROR(EINTR)); 634 return (0); 635 } 636 637 static int 638 dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs) 639 { 640 struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects); 641 uint64_t maxobj = DNODES_PER_BLOCK * 642 (DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1); 643 644 /* 645 * ZoL < 0.7 does not handle large FREEOBJECTS records correctly, 646 * leading to zfs recv never completing. to avoid this issue, don't 647 * send FREEOBJECTS records for object IDs which cannot exist on the 648 * receiving side. 649 */ 650 if (maxobj > 0) { 651 if (maxobj <= firstobj) 652 return (0); 653 654 if (maxobj < firstobj + numobjs) 655 numobjs = maxobj - firstobj; 656 } 657 658 /* 659 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 660 * push it out, since free block aggregation can only be done for 661 * blocks of the same type (i.e., DRR_FREE records can only be 662 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 663 * can only be aggregated with other DRR_FREEOBJECTS records). 664 */ 665 if (dscp->dsc_pending_op != PENDING_NONE && 666 dscp->dsc_pending_op != PENDING_FREEOBJECTS) { 667 if (dump_record(dscp, NULL, 0) != 0) 668 return (SET_ERROR(EINTR)); 669 dscp->dsc_pending_op = PENDING_NONE; 670 } 671 672 if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) { 673 /* 674 * See whether this free object array can be aggregated 675 * with pending one 676 */ 677 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 678 drrfo->drr_numobjs += numobjs; 679 return (0); 680 } else { 681 /* can't be aggregated. Push out pending record */ 682 if (dump_record(dscp, NULL, 0) != 0) 683 return (SET_ERROR(EINTR)); 684 dscp->dsc_pending_op = PENDING_NONE; 685 } 686 } 687 688 /* write a FREEOBJECTS record */ 689 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t)); 690 dscp->dsc_drr->drr_type = DRR_FREEOBJECTS; 691 drrfo->drr_firstobj = firstobj; 692 drrfo->drr_numobjs = numobjs; 693 drrfo->drr_toguid = dscp->dsc_toguid; 694 695 dscp->dsc_pending_op = PENDING_FREEOBJECTS; 696 697 return (0); 698 } 699 700 static int 701 dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object, 702 dnode_phys_t *dnp) 703 { 704 struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object); 705 int bonuslen; 706 707 if (object < dscp->dsc_resume_object) { 708 /* 709 * Note: when resuming, we will visit all the dnodes in 710 * the block of dnodes that we are resuming from. In 711 * this case it's unnecessary to send the dnodes prior to 712 * the one we are resuming from. We should be at most one 713 * block's worth of dnodes behind the resume point. 714 */ 715 ASSERT3U(dscp->dsc_resume_object - object, <, 716 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 717 return (0); 718 } 719 720 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 721 return (dump_freeobjects(dscp, object, 1)); 722 723 if (dscp->dsc_pending_op != PENDING_NONE) { 724 if (dump_record(dscp, NULL, 0) != 0) 725 return (SET_ERROR(EINTR)); 726 dscp->dsc_pending_op = PENDING_NONE; 727 } 728 729 /* write an OBJECT record */ 730 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t)); 731 dscp->dsc_drr->drr_type = DRR_OBJECT; 732 drro->drr_object = object; 733 drro->drr_type = dnp->dn_type; 734 drro->drr_bonustype = dnp->dn_bonustype; 735 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 736 drro->drr_bonuslen = dnp->dn_bonuslen; 737 drro->drr_dn_slots = dnp->dn_extra_slots + 1; 738 drro->drr_checksumtype = dnp->dn_checksum; 739 drro->drr_compress = dnp->dn_compress; 740 drro->drr_toguid = dscp->dsc_toguid; 741 742 if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 743 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 744 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 745 746 bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8); 747 748 if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) { 749 ASSERT(BP_IS_ENCRYPTED(bp)); 750 751 if (BP_SHOULD_BYTESWAP(bp)) 752 drro->drr_flags |= DRR_RAW_BYTESWAP; 753 754 /* needed for reconstructing dnp on recv side */ 755 drro->drr_maxblkid = dnp->dn_maxblkid; 756 drro->drr_indblkshift = dnp->dn_indblkshift; 757 drro->drr_nlevels = dnp->dn_nlevels; 758 drro->drr_nblkptr = dnp->dn_nblkptr; 759 760 /* 761 * Since we encrypt the entire bonus area, the (raw) part 762 * beyond the bonuslen is actually nonzero, so we need 763 * to send it. 764 */ 765 if (bonuslen != 0) { 766 if (drro->drr_bonuslen > DN_MAX_BONUS_LEN(dnp)) 767 return (SET_ERROR(EINVAL)); 768 drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp); 769 bonuslen = drro->drr_raw_bonuslen; 770 } 771 } 772 773 /* 774 * DRR_OBJECT_SPILL is set for every dnode which references a 775 * spill block. This allows the receiving pool to definitively 776 * determine when a spill block should be kept or freed. 777 */ 778 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 779 drro->drr_flags |= DRR_OBJECT_SPILL; 780 781 if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0) 782 return (SET_ERROR(EINTR)); 783 784 /* Free anything past the end of the file. */ 785 if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) * 786 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0) 787 return (SET_ERROR(EINTR)); 788 789 /* 790 * Send DRR_SPILL records for unmodified spill blocks. This is useful 791 * because changing certain attributes of the object (e.g. blocksize) 792 * can cause old versions of ZFS to incorrectly remove a spill block. 793 * Including these records in the stream forces an up to date version 794 * to always be written ensuring they're never lost. Current versions 795 * of the code which understand the DRR_FLAG_SPILL_BLOCK feature can 796 * ignore these unmodified spill blocks. 797 */ 798 if (zfs_send_unmodified_spill_blocks && 799 (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) && 800 (DN_SPILL_BLKPTR(dnp)->blk_birth <= dscp->dsc_fromtxg)) { 801 struct send_range record; 802 blkptr_t *bp = DN_SPILL_BLKPTR(dnp); 803 804 memset(&record, 0, sizeof (struct send_range)); 805 record.type = DATA; 806 record.object = object; 807 record.eos_marker = B_FALSE; 808 record.start_blkid = DMU_SPILL_BLKID; 809 record.end_blkid = record.start_blkid + 1; 810 record.sru.data.bp = *bp; 811 record.sru.data.obj_type = dnp->dn_type; 812 record.sru.data.datablksz = BP_GET_LSIZE(bp); 813 814 if (do_dump(dscp, &record) != 0) 815 return (SET_ERROR(EINTR)); 816 } 817 818 if (dscp->dsc_err != 0) 819 return (SET_ERROR(EINTR)); 820 821 return (0); 822 } 823 824 static int 825 dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp, 826 uint64_t firstobj, uint64_t numslots) 827 { 828 struct drr_object_range *drror = 829 &(dscp->dsc_drr->drr_u.drr_object_range); 830 831 /* we only use this record type for raw sends */ 832 ASSERT(BP_IS_PROTECTED(bp)); 833 ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW); 834 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 835 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE); 836 ASSERT0(BP_GET_LEVEL(bp)); 837 838 if (dscp->dsc_pending_op != PENDING_NONE) { 839 if (dump_record(dscp, NULL, 0) != 0) 840 return (SET_ERROR(EINTR)); 841 dscp->dsc_pending_op = PENDING_NONE; 842 } 843 844 memset(dscp->dsc_drr, 0, sizeof (dmu_replay_record_t)); 845 dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE; 846 drror->drr_firstobj = firstobj; 847 drror->drr_numslots = numslots; 848 drror->drr_toguid = dscp->dsc_toguid; 849 if (BP_SHOULD_BYTESWAP(bp)) 850 drror->drr_flags |= DRR_RAW_BYTESWAP; 851 zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv); 852 zio_crypt_decode_mac_bp(bp, drror->drr_mac); 853 854 if (dump_record(dscp, NULL, 0) != 0) 855 return (SET_ERROR(EINTR)); 856 return (0); 857 } 858 859 static boolean_t 860 send_do_embed(const blkptr_t *bp, uint64_t featureflags) 861 { 862 if (!BP_IS_EMBEDDED(bp)) 863 return (B_FALSE); 864 865 /* 866 * Compression function must be legacy, or explicitly enabled. 867 */ 868 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 869 !(featureflags & DMU_BACKUP_FEATURE_LZ4))) 870 return (B_FALSE); 871 872 /* 873 * If we have not set the ZSTD feature flag, we can't send ZSTD 874 * compressed embedded blocks, as the receiver may not support them. 875 */ 876 if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD && 877 !(featureflags & DMU_BACKUP_FEATURE_ZSTD))) 878 return (B_FALSE); 879 880 /* 881 * Embed type must be explicitly enabled. 882 */ 883 switch (BPE_GET_ETYPE(bp)) { 884 case BP_EMBEDDED_TYPE_DATA: 885 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 886 return (B_TRUE); 887 break; 888 default: 889 return (B_FALSE); 890 } 891 return (B_FALSE); 892 } 893 894 /* 895 * This function actually handles figuring out what kind of record needs to be 896 * dumped, and calling the appropriate helper function. In most cases, 897 * the data has already been read by send_reader_thread(). 898 */ 899 static int 900 do_dump(dmu_send_cookie_t *dscp, struct send_range *range) 901 { 902 int err = 0; 903 switch (range->type) { 904 case OBJECT: 905 err = dump_dnode(dscp, &range->sru.object.bp, range->object, 906 range->sru.object.dnp); 907 return (err); 908 case OBJECT_RANGE: { 909 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid); 910 if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) { 911 return (0); 912 } 913 uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >> 914 DNODE_SHIFT; 915 uint64_t firstobj = range->start_blkid * epb; 916 err = dump_object_range(dscp, &range->sru.object_range.bp, 917 firstobj, epb); 918 break; 919 } 920 case REDACT: { 921 struct srr *srrp = &range->sru.redact; 922 err = dump_redact(dscp, range->object, range->start_blkid * 923 srrp->datablksz, (range->end_blkid - range->start_blkid) * 924 srrp->datablksz); 925 return (err); 926 } 927 case DATA: { 928 struct srd *srdp = &range->sru.data; 929 blkptr_t *bp = &srdp->bp; 930 spa_t *spa = 931 dmu_objset_spa(dscp->dsc_os); 932 933 ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp)); 934 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid); 935 if (BP_GET_TYPE(bp) == DMU_OT_SA) { 936 arc_flags_t aflags = ARC_FLAG_WAIT; 937 zio_flag_t zioflags = ZIO_FLAG_CANFAIL; 938 939 if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) { 940 ASSERT(BP_IS_PROTECTED(bp)); 941 zioflags |= ZIO_FLAG_RAW; 942 } 943 944 zbookmark_phys_t zb; 945 ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID); 946 zb.zb_objset = dmu_objset_id(dscp->dsc_os); 947 zb.zb_object = range->object; 948 zb.zb_level = 0; 949 zb.zb_blkid = range->start_blkid; 950 951 arc_buf_t *abuf = NULL; 952 if (!dscp->dsc_dso->dso_dryrun && arc_read(NULL, spa, 953 bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ, 954 zioflags, &aflags, &zb) != 0) 955 return (SET_ERROR(EIO)); 956 957 err = dump_spill(dscp, bp, zb.zb_object, 958 (abuf == NULL ? NULL : abuf->b_data)); 959 if (abuf != NULL) 960 arc_buf_destroy(abuf, &abuf); 961 return (err); 962 } 963 if (send_do_embed(bp, dscp->dsc_featureflags)) { 964 err = dump_write_embedded(dscp, range->object, 965 range->start_blkid * srdp->datablksz, 966 srdp->datablksz, bp); 967 return (err); 968 } 969 ASSERT(range->object > dscp->dsc_resume_object || 970 (range->object == dscp->dsc_resume_object && 971 range->start_blkid * srdp->datablksz >= 972 dscp->dsc_resume_offset)); 973 /* it's a level-0 block of a regular object */ 974 975 mutex_enter(&srdp->lock); 976 while (srdp->io_outstanding) 977 cv_wait(&srdp->cv, &srdp->lock); 978 err = srdp->io_err; 979 mutex_exit(&srdp->lock); 980 981 if (err != 0) { 982 if (zfs_send_corrupt_data && 983 !dscp->dsc_dso->dso_dryrun) { 984 /* 985 * Send a block filled with 0x"zfs badd bloc" 986 */ 987 srdp->abuf = arc_alloc_buf(spa, &srdp->abuf, 988 ARC_BUFC_DATA, srdp->datablksz); 989 uint64_t *ptr; 990 for (ptr = srdp->abuf->b_data; 991 (char *)ptr < (char *)srdp->abuf->b_data + 992 srdp->datablksz; ptr++) 993 *ptr = 0x2f5baddb10cULL; 994 } else { 995 return (SET_ERROR(EIO)); 996 } 997 } 998 999 ASSERT(dscp->dsc_dso->dso_dryrun || 1000 srdp->abuf != NULL || srdp->abd != NULL); 1001 1002 uint64_t offset = range->start_blkid * srdp->datablksz; 1003 1004 char *data = NULL; 1005 if (srdp->abd != NULL) { 1006 data = abd_to_buf(srdp->abd); 1007 ASSERT3P(srdp->abuf, ==, NULL); 1008 } else if (srdp->abuf != NULL) { 1009 data = srdp->abuf->b_data; 1010 } 1011 1012 /* 1013 * If we have large blocks stored on disk but the send flags 1014 * don't allow us to send large blocks, we split the data from 1015 * the arc buf into chunks. 1016 */ 1017 if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE && 1018 !(dscp->dsc_featureflags & 1019 DMU_BACKUP_FEATURE_LARGE_BLOCKS)) { 1020 while (srdp->datablksz > 0 && err == 0) { 1021 int n = MIN(srdp->datablksz, 1022 SPA_OLD_MAXBLOCKSIZE); 1023 err = dmu_dump_write(dscp, srdp->obj_type, 1024 range->object, offset, n, n, NULL, B_FALSE, 1025 data); 1026 offset += n; 1027 /* 1028 * When doing dry run, data==NULL is used as a 1029 * sentinel value by 1030 * dmu_dump_write()->dump_record(). 1031 */ 1032 if (data != NULL) 1033 data += n; 1034 srdp->datablksz -= n; 1035 } 1036 } else { 1037 err = dmu_dump_write(dscp, srdp->obj_type, 1038 range->object, offset, 1039 srdp->datablksz, srdp->datasz, bp, 1040 srdp->io_compressed, data); 1041 } 1042 return (err); 1043 } 1044 case HOLE: { 1045 struct srh *srhp = &range->sru.hole; 1046 if (range->object == DMU_META_DNODE_OBJECT) { 1047 uint32_t span = srhp->datablksz >> DNODE_SHIFT; 1048 uint64_t first_obj = range->start_blkid * span; 1049 uint64_t numobj = range->end_blkid * span - first_obj; 1050 return (dump_freeobjects(dscp, first_obj, numobj)); 1051 } 1052 uint64_t offset = 0; 1053 1054 /* 1055 * If this multiply overflows, we don't need to send this block. 1056 * Even if it has a birth time, it can never not be a hole, so 1057 * we don't need to send records for it. 1058 */ 1059 if (!overflow_multiply(range->start_blkid, srhp->datablksz, 1060 &offset)) { 1061 return (0); 1062 } 1063 uint64_t len = 0; 1064 1065 if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len)) 1066 len = UINT64_MAX; 1067 len = len - offset; 1068 return (dump_free(dscp, range->object, offset, len)); 1069 } 1070 default: 1071 panic("Invalid range type in do_dump: %d", range->type); 1072 } 1073 return (err); 1074 } 1075 1076 static struct send_range * 1077 range_alloc(enum type type, uint64_t object, uint64_t start_blkid, 1078 uint64_t end_blkid, boolean_t eos) 1079 { 1080 struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP); 1081 range->type = type; 1082 range->object = object; 1083 range->start_blkid = start_blkid; 1084 range->end_blkid = end_blkid; 1085 range->eos_marker = eos; 1086 if (type == DATA) { 1087 range->sru.data.abd = NULL; 1088 range->sru.data.abuf = NULL; 1089 mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL); 1090 cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL); 1091 range->sru.data.io_outstanding = 0; 1092 range->sru.data.io_err = 0; 1093 range->sru.data.io_compressed = B_FALSE; 1094 } 1095 return (range); 1096 } 1097 1098 /* 1099 * This is the callback function to traverse_dataset that acts as a worker 1100 * thread for dmu_send_impl. 1101 */ 1102 static int 1103 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1104 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 1105 { 1106 (void) zilog; 1107 struct send_thread_arg *sta = arg; 1108 struct send_range *record; 1109 1110 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 1111 zb->zb_object >= sta->resume.zb_object); 1112 1113 /* 1114 * All bps of an encrypted os should have the encryption bit set. 1115 * If this is not true it indicates tampering and we report an error. 1116 */ 1117 if (sta->os->os_encrypted && 1118 !BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) { 1119 spa_log_error(spa, zb); 1120 zfs_panic_recover("unencrypted block in encrypted " 1121 "object set %llu", dmu_objset_id(sta->os)); 1122 return (SET_ERROR(EIO)); 1123 } 1124 1125 if (sta->cancel) 1126 return (SET_ERROR(EINTR)); 1127 if (zb->zb_object != DMU_META_DNODE_OBJECT && 1128 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) 1129 return (0); 1130 atomic_inc_64(sta->num_blocks_visited); 1131 1132 if (zb->zb_level == ZB_DNODE_LEVEL) { 1133 if (zb->zb_object == DMU_META_DNODE_OBJECT) 1134 return (0); 1135 record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE); 1136 record->sru.object.bp = *bp; 1137 size_t size = sizeof (*dnp) * (dnp->dn_extra_slots + 1); 1138 record->sru.object.dnp = kmem_alloc(size, KM_SLEEP); 1139 memcpy(record->sru.object.dnp, dnp, size); 1140 bqueue_enqueue(&sta->q, record, sizeof (*record)); 1141 return (0); 1142 } 1143 if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT && 1144 !BP_IS_HOLE(bp)) { 1145 record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid, 1146 zb->zb_blkid + 1, B_FALSE); 1147 record->sru.object_range.bp = *bp; 1148 bqueue_enqueue(&sta->q, record, sizeof (*record)); 1149 return (0); 1150 } 1151 if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp))) 1152 return (0); 1153 if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp)) 1154 return (0); 1155 1156 uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level); 1157 uint64_t start; 1158 1159 /* 1160 * If this multiply overflows, we don't need to send this block. 1161 * Even if it has a birth time, it can never not be a hole, so 1162 * we don't need to send records for it. 1163 */ 1164 if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid == 1165 DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) && 1166 span * zb->zb_blkid > dnp->dn_maxblkid)) { 1167 ASSERT(BP_IS_HOLE(bp)); 1168 return (0); 1169 } 1170 1171 if (zb->zb_blkid == DMU_SPILL_BLKID) 1172 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA); 1173 1174 enum type record_type = DATA; 1175 if (BP_IS_HOLE(bp)) 1176 record_type = HOLE; 1177 else if (BP_IS_REDACTED(bp)) 1178 record_type = REDACT; 1179 else 1180 record_type = DATA; 1181 1182 record = range_alloc(record_type, zb->zb_object, start, 1183 (start + span < start ? 0 : start + span), B_FALSE); 1184 1185 uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ? 1186 BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 1187 1188 if (BP_IS_HOLE(bp)) { 1189 record->sru.hole.datablksz = datablksz; 1190 } else if (BP_IS_REDACTED(bp)) { 1191 record->sru.redact.datablksz = datablksz; 1192 } else { 1193 record->sru.data.datablksz = datablksz; 1194 record->sru.data.obj_type = dnp->dn_type; 1195 record->sru.data.bp = *bp; 1196 } 1197 1198 bqueue_enqueue(&sta->q, record, sizeof (*record)); 1199 return (0); 1200 } 1201 1202 struct redact_list_cb_arg { 1203 uint64_t *num_blocks_visited; 1204 bqueue_t *q; 1205 boolean_t *cancel; 1206 boolean_t mark_redact; 1207 }; 1208 1209 static int 1210 redact_list_cb(redact_block_phys_t *rb, void *arg) 1211 { 1212 struct redact_list_cb_arg *rlcap = arg; 1213 1214 atomic_inc_64(rlcap->num_blocks_visited); 1215 if (*rlcap->cancel) 1216 return (-1); 1217 1218 struct send_range *data = range_alloc(REDACT, rb->rbp_object, 1219 rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE); 1220 ASSERT3U(data->end_blkid, >, rb->rbp_blkid); 1221 if (rlcap->mark_redact) { 1222 data->type = REDACT; 1223 data->sru.redact.datablksz = redact_block_get_size(rb); 1224 } else { 1225 data->type = PREVIOUSLY_REDACTED; 1226 } 1227 bqueue_enqueue(rlcap->q, data, sizeof (*data)); 1228 1229 return (0); 1230 } 1231 1232 /* 1233 * This function kicks off the traverse_dataset. It also handles setting the 1234 * error code of the thread in case something goes wrong, and pushes the End of 1235 * Stream record when the traverse_dataset call has finished. 1236 */ 1237 static __attribute__((noreturn)) void 1238 send_traverse_thread(void *arg) 1239 { 1240 struct send_thread_arg *st_arg = arg; 1241 int err = 0; 1242 struct send_range *data; 1243 fstrans_cookie_t cookie = spl_fstrans_mark(); 1244 1245 err = traverse_dataset_resume(st_arg->os->os_dsl_dataset, 1246 st_arg->fromtxg, &st_arg->resume, 1247 st_arg->flags, send_cb, st_arg); 1248 1249 if (err != EINTR) 1250 st_arg->error_code = err; 1251 data = range_alloc(DATA, 0, 0, 0, B_TRUE); 1252 bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data)); 1253 spl_fstrans_unmark(cookie); 1254 thread_exit(); 1255 } 1256 1257 /* 1258 * Utility function that causes End of Stream records to compare after of all 1259 * others, so that other threads' comparison logic can stay simple. 1260 */ 1261 static int __attribute__((unused)) 1262 send_range_after(const struct send_range *from, const struct send_range *to) 1263 { 1264 if (from->eos_marker == B_TRUE) 1265 return (1); 1266 if (to->eos_marker == B_TRUE) 1267 return (-1); 1268 1269 uint64_t from_obj = from->object; 1270 uint64_t from_end_obj = from->object + 1; 1271 uint64_t to_obj = to->object; 1272 uint64_t to_end_obj = to->object + 1; 1273 if (from_obj == 0) { 1274 ASSERT(from->type == HOLE || from->type == OBJECT_RANGE); 1275 from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT; 1276 from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT; 1277 } 1278 if (to_obj == 0) { 1279 ASSERT(to->type == HOLE || to->type == OBJECT_RANGE); 1280 to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT; 1281 to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT; 1282 } 1283 1284 if (from_end_obj <= to_obj) 1285 return (-1); 1286 if (from_obj >= to_end_obj) 1287 return (1); 1288 int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type == 1289 OBJECT_RANGE); 1290 if (unlikely(cmp)) 1291 return (cmp); 1292 cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT); 1293 if (unlikely(cmp)) 1294 return (cmp); 1295 if (from->end_blkid <= to->start_blkid) 1296 return (-1); 1297 if (from->start_blkid >= to->end_blkid) 1298 return (1); 1299 return (0); 1300 } 1301 1302 /* 1303 * Pop the new data off the queue, check that the records we receive are in 1304 * the right order, but do not free the old data. This is used so that the 1305 * records can be sent on to the main thread without copying the data. 1306 */ 1307 static struct send_range * 1308 get_next_range_nofree(bqueue_t *bq, struct send_range *prev) 1309 { 1310 struct send_range *next = bqueue_dequeue(bq); 1311 ASSERT3S(send_range_after(prev, next), ==, -1); 1312 return (next); 1313 } 1314 1315 /* 1316 * Pop the new data off the queue, check that the records we receive are in 1317 * the right order, and free the old data. 1318 */ 1319 static struct send_range * 1320 get_next_range(bqueue_t *bq, struct send_range *prev) 1321 { 1322 struct send_range *next = get_next_range_nofree(bq, prev); 1323 range_free(prev); 1324 return (next); 1325 } 1326 1327 static __attribute__((noreturn)) void 1328 redact_list_thread(void *arg) 1329 { 1330 struct redact_list_thread_arg *rlt_arg = arg; 1331 struct send_range *record; 1332 fstrans_cookie_t cookie = spl_fstrans_mark(); 1333 if (rlt_arg->rl != NULL) { 1334 struct redact_list_cb_arg rlcba = {0}; 1335 rlcba.cancel = &rlt_arg->cancel; 1336 rlcba.q = &rlt_arg->q; 1337 rlcba.num_blocks_visited = rlt_arg->num_blocks_visited; 1338 rlcba.mark_redact = rlt_arg->mark_redact; 1339 int err = dsl_redaction_list_traverse(rlt_arg->rl, 1340 &rlt_arg->resume, redact_list_cb, &rlcba); 1341 if (err != EINTR) 1342 rlt_arg->error_code = err; 1343 } 1344 record = range_alloc(DATA, 0, 0, 0, B_TRUE); 1345 bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record)); 1346 spl_fstrans_unmark(cookie); 1347 1348 thread_exit(); 1349 } 1350 1351 /* 1352 * Compare the start point of the two provided ranges. End of stream ranges 1353 * compare last, objects compare before any data or hole inside that object and 1354 * multi-object holes that start at the same object. 1355 */ 1356 static int 1357 send_range_start_compare(struct send_range *r1, struct send_range *r2) 1358 { 1359 uint64_t r1_objequiv = r1->object; 1360 uint64_t r1_l0equiv = r1->start_blkid; 1361 uint64_t r2_objequiv = r2->object; 1362 uint64_t r2_l0equiv = r2->start_blkid; 1363 int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker); 1364 if (unlikely(cmp)) 1365 return (cmp); 1366 if (r1->object == 0) { 1367 r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK; 1368 r1_l0equiv = 0; 1369 } 1370 if (r2->object == 0) { 1371 r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK; 1372 r2_l0equiv = 0; 1373 } 1374 1375 cmp = TREE_CMP(r1_objequiv, r2_objequiv); 1376 if (likely(cmp)) 1377 return (cmp); 1378 cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE); 1379 if (unlikely(cmp)) 1380 return (cmp); 1381 cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT); 1382 if (unlikely(cmp)) 1383 return (cmp); 1384 1385 return (TREE_CMP(r1_l0equiv, r2_l0equiv)); 1386 } 1387 1388 enum q_idx { 1389 REDACT_IDX = 0, 1390 TO_IDX, 1391 FROM_IDX, 1392 NUM_THREADS 1393 }; 1394 1395 /* 1396 * This function returns the next range the send_merge_thread should operate on. 1397 * The inputs are two arrays; the first one stores the range at the front of the 1398 * queues stored in the second one. The ranges are sorted in descending 1399 * priority order; the metadata from earlier ranges overrules metadata from 1400 * later ranges. out_mask is used to return which threads the ranges came from; 1401 * bit i is set if ranges[i] started at the same place as the returned range. 1402 * 1403 * This code is not hardcoded to compare a specific number of threads; it could 1404 * be used with any number, just by changing the q_idx enum. 1405 * 1406 * The "next range" is the one with the earliest start; if two starts are equal, 1407 * the highest-priority range is the next to operate on. If a higher-priority 1408 * range starts in the middle of the first range, then the first range will be 1409 * truncated to end where the higher-priority range starts, and we will operate 1410 * on that one next time. In this way, we make sure that each block covered by 1411 * some range gets covered by a returned range, and each block covered is 1412 * returned using the metadata of the highest-priority range it appears in. 1413 * 1414 * For example, if the three ranges at the front of the queues were [2,4), 1415 * [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata 1416 * from the third range, [2,4) with the metadata from the first range, and then 1417 * [4,5) with the metadata from the second. 1418 */ 1419 static struct send_range * 1420 find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask) 1421 { 1422 int idx = 0; // index of the range with the earliest start 1423 int i; 1424 uint64_t bmask = 0; 1425 for (i = 1; i < NUM_THREADS; i++) { 1426 if (send_range_start_compare(ranges[i], ranges[idx]) < 0) 1427 idx = i; 1428 } 1429 if (ranges[idx]->eos_marker) { 1430 struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE); 1431 *out_mask = 0; 1432 return (ret); 1433 } 1434 /* 1435 * Find all the ranges that start at that same point. 1436 */ 1437 for (i = 0; i < NUM_THREADS; i++) { 1438 if (send_range_start_compare(ranges[i], ranges[idx]) == 0) 1439 bmask |= 1 << i; 1440 } 1441 *out_mask = bmask; 1442 /* 1443 * OBJECT_RANGE records only come from the TO thread, and should always 1444 * be treated as overlapping with nothing and sent on immediately. They 1445 * are only used in raw sends, and are never redacted. 1446 */ 1447 if (ranges[idx]->type == OBJECT_RANGE) { 1448 ASSERT3U(idx, ==, TO_IDX); 1449 ASSERT3U(*out_mask, ==, 1 << TO_IDX); 1450 struct send_range *ret = ranges[idx]; 1451 ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]); 1452 return (ret); 1453 } 1454 /* 1455 * Find the first start or end point after the start of the first range. 1456 */ 1457 uint64_t first_change = ranges[idx]->end_blkid; 1458 for (i = 0; i < NUM_THREADS; i++) { 1459 if (i == idx || ranges[i]->eos_marker || 1460 ranges[i]->object > ranges[idx]->object || 1461 ranges[i]->object == DMU_META_DNODE_OBJECT) 1462 continue; 1463 ASSERT3U(ranges[i]->object, ==, ranges[idx]->object); 1464 if (first_change > ranges[i]->start_blkid && 1465 (bmask & (1 << i)) == 0) 1466 first_change = ranges[i]->start_blkid; 1467 else if (first_change > ranges[i]->end_blkid) 1468 first_change = ranges[i]->end_blkid; 1469 } 1470 /* 1471 * Update all ranges to no longer overlap with the range we're 1472 * returning. All such ranges must start at the same place as the range 1473 * being returned, and end at or after first_change. Thus we update 1474 * their start to first_change. If that makes them size 0, then free 1475 * them and pull a new range from that thread. 1476 */ 1477 for (i = 0; i < NUM_THREADS; i++) { 1478 if (i == idx || (bmask & (1 << i)) == 0) 1479 continue; 1480 ASSERT3U(first_change, >, ranges[i]->start_blkid); 1481 ranges[i]->start_blkid = first_change; 1482 ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid); 1483 if (ranges[i]->start_blkid == ranges[i]->end_blkid) 1484 ranges[i] = get_next_range(qs[i], ranges[i]); 1485 } 1486 /* 1487 * Short-circuit the simple case; if the range doesn't overlap with 1488 * anything else, or it only overlaps with things that start at the same 1489 * place and are longer, send it on. 1490 */ 1491 if (first_change == ranges[idx]->end_blkid) { 1492 struct send_range *ret = ranges[idx]; 1493 ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]); 1494 return (ret); 1495 } 1496 1497 /* 1498 * Otherwise, return a truncated copy of ranges[idx] and move the start 1499 * of ranges[idx] back to first_change. 1500 */ 1501 struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP); 1502 *ret = *ranges[idx]; 1503 ret->end_blkid = first_change; 1504 ranges[idx]->start_blkid = first_change; 1505 return (ret); 1506 } 1507 1508 #define FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX)) 1509 1510 /* 1511 * Merge the results from the from thread and the to thread, and then hand the 1512 * records off to send_prefetch_thread to prefetch them. If this is not a 1513 * send from a redaction bookmark, the from thread will push an end of stream 1514 * record and stop, and we'll just send everything that was changed in the 1515 * to_ds since the ancestor's creation txg. If it is, then since 1516 * traverse_dataset has a canonical order, we can compare each change as 1517 * they're pulled off the queues. That will give us a stream that is 1518 * appropriately sorted, and covers all records. In addition, we pull the 1519 * data from the redact_list_thread and use that to determine which blocks 1520 * should be redacted. 1521 */ 1522 static __attribute__((noreturn)) void 1523 send_merge_thread(void *arg) 1524 { 1525 struct send_merge_thread_arg *smt_arg = arg; 1526 struct send_range *front_ranges[NUM_THREADS]; 1527 bqueue_t *queues[NUM_THREADS]; 1528 int err = 0; 1529 fstrans_cookie_t cookie = spl_fstrans_mark(); 1530 1531 if (smt_arg->redact_arg == NULL) { 1532 front_ranges[REDACT_IDX] = 1533 kmem_zalloc(sizeof (struct send_range), KM_SLEEP); 1534 front_ranges[REDACT_IDX]->eos_marker = B_TRUE; 1535 front_ranges[REDACT_IDX]->type = REDACT; 1536 queues[REDACT_IDX] = NULL; 1537 } else { 1538 front_ranges[REDACT_IDX] = 1539 bqueue_dequeue(&smt_arg->redact_arg->q); 1540 queues[REDACT_IDX] = &smt_arg->redact_arg->q; 1541 } 1542 front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q); 1543 queues[TO_IDX] = &smt_arg->to_arg->q; 1544 front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q); 1545 queues[FROM_IDX] = &smt_arg->from_arg->q; 1546 uint64_t mask = 0; 1547 struct send_range *range; 1548 for (range = find_next_range(front_ranges, queues, &mask); 1549 !range->eos_marker && err == 0 && !smt_arg->cancel; 1550 range = find_next_range(front_ranges, queues, &mask)) { 1551 /* 1552 * If the range in question was in both the from redact bookmark 1553 * and the bookmark we're using to redact, then don't send it. 1554 * It's already redacted on the receiving system, so a redaction 1555 * record would be redundant. 1556 */ 1557 if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) { 1558 ASSERT3U(range->type, ==, REDACT); 1559 range_free(range); 1560 continue; 1561 } 1562 bqueue_enqueue(&smt_arg->q, range, sizeof (*range)); 1563 1564 if (smt_arg->to_arg->error_code != 0) { 1565 err = smt_arg->to_arg->error_code; 1566 } else if (smt_arg->from_arg->error_code != 0) { 1567 err = smt_arg->from_arg->error_code; 1568 } else if (smt_arg->redact_arg != NULL && 1569 smt_arg->redact_arg->error_code != 0) { 1570 err = smt_arg->redact_arg->error_code; 1571 } 1572 } 1573 if (smt_arg->cancel && err == 0) 1574 err = SET_ERROR(EINTR); 1575 smt_arg->error = err; 1576 if (smt_arg->error != 0) { 1577 smt_arg->to_arg->cancel = B_TRUE; 1578 smt_arg->from_arg->cancel = B_TRUE; 1579 if (smt_arg->redact_arg != NULL) 1580 smt_arg->redact_arg->cancel = B_TRUE; 1581 } 1582 for (int i = 0; i < NUM_THREADS; i++) { 1583 while (!front_ranges[i]->eos_marker) { 1584 front_ranges[i] = get_next_range(queues[i], 1585 front_ranges[i]); 1586 } 1587 range_free(front_ranges[i]); 1588 } 1589 if (range == NULL) 1590 range = kmem_zalloc(sizeof (*range), KM_SLEEP); 1591 range->eos_marker = B_TRUE; 1592 bqueue_enqueue_flush(&smt_arg->q, range, 1); 1593 spl_fstrans_unmark(cookie); 1594 thread_exit(); 1595 } 1596 1597 struct send_reader_thread_arg { 1598 struct send_merge_thread_arg *smta; 1599 bqueue_t q; 1600 boolean_t cancel; 1601 boolean_t issue_reads; 1602 uint64_t featureflags; 1603 int error; 1604 }; 1605 1606 static void 1607 dmu_send_read_done(zio_t *zio) 1608 { 1609 struct send_range *range = zio->io_private; 1610 1611 mutex_enter(&range->sru.data.lock); 1612 if (zio->io_error != 0) { 1613 abd_free(range->sru.data.abd); 1614 range->sru.data.abd = NULL; 1615 range->sru.data.io_err = zio->io_error; 1616 } 1617 1618 ASSERT(range->sru.data.io_outstanding); 1619 range->sru.data.io_outstanding = B_FALSE; 1620 cv_broadcast(&range->sru.data.cv); 1621 mutex_exit(&range->sru.data.lock); 1622 } 1623 1624 static void 1625 issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range) 1626 { 1627 struct srd *srdp = &range->sru.data; 1628 blkptr_t *bp = &srdp->bp; 1629 objset_t *os = srta->smta->os; 1630 1631 ASSERT3U(range->type, ==, DATA); 1632 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid); 1633 /* 1634 * If we have large blocks stored on disk but 1635 * the send flags don't allow us to send large 1636 * blocks, we split the data from the arc buf 1637 * into chunks. 1638 */ 1639 boolean_t split_large_blocks = 1640 srdp->datablksz > SPA_OLD_MAXBLOCKSIZE && 1641 !(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS); 1642 /* 1643 * We should only request compressed data from the ARC if all 1644 * the following are true: 1645 * - stream compression was requested 1646 * - we aren't splitting large blocks into smaller chunks 1647 * - the data won't need to be byteswapped before sending 1648 * - this isn't an embedded block 1649 * - this isn't metadata (if receiving on a different endian 1650 * system it can be byteswapped more easily) 1651 */ 1652 boolean_t request_compressed = 1653 (srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) && 1654 !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) && 1655 !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp)); 1656 1657 zio_flag_t zioflags = ZIO_FLAG_CANFAIL; 1658 1659 if (srta->featureflags & DMU_BACKUP_FEATURE_RAW) { 1660 zioflags |= ZIO_FLAG_RAW; 1661 srdp->io_compressed = B_TRUE; 1662 } else if (request_compressed) { 1663 zioflags |= ZIO_FLAG_RAW_COMPRESS; 1664 srdp->io_compressed = B_TRUE; 1665 } 1666 1667 srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ? 1668 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp); 1669 1670 if (!srta->issue_reads) 1671 return; 1672 if (BP_IS_REDACTED(bp)) 1673 return; 1674 if (send_do_embed(bp, srta->featureflags)) 1675 return; 1676 1677 zbookmark_phys_t zb = { 1678 .zb_objset = dmu_objset_id(os), 1679 .zb_object = range->object, 1680 .zb_level = 0, 1681 .zb_blkid = range->start_blkid, 1682 }; 1683 1684 arc_flags_t aflags = ARC_FLAG_CACHED_ONLY; 1685 1686 int arc_err = arc_read(NULL, os->os_spa, bp, 1687 arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ, 1688 zioflags, &aflags, &zb); 1689 /* 1690 * If the data is not already cached in the ARC, we read directly 1691 * from zio. This avoids the performance overhead of adding a new 1692 * entry to the ARC, and we also avoid polluting the ARC cache with 1693 * data that is not likely to be used in the future. 1694 */ 1695 if (arc_err != 0) { 1696 srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE); 1697 srdp->io_outstanding = B_TRUE; 1698 zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd, 1699 srdp->datasz, dmu_send_read_done, range, 1700 ZIO_PRIORITY_ASYNC_READ, zioflags, &zb)); 1701 } 1702 } 1703 1704 /* 1705 * Create a new record with the given values. 1706 */ 1707 static void 1708 enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn, 1709 uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz) 1710 { 1711 enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE : 1712 (BP_IS_REDACTED(bp) ? REDACT : DATA)); 1713 1714 struct send_range *range = range_alloc(range_type, dn->dn_object, 1715 blkid, blkid + count, B_FALSE); 1716 1717 if (blkid == DMU_SPILL_BLKID) 1718 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA); 1719 1720 switch (range_type) { 1721 case HOLE: 1722 range->sru.hole.datablksz = datablksz; 1723 break; 1724 case DATA: 1725 ASSERT3U(count, ==, 1); 1726 range->sru.data.datablksz = datablksz; 1727 range->sru.data.obj_type = dn->dn_type; 1728 range->sru.data.bp = *bp; 1729 issue_data_read(srta, range); 1730 break; 1731 case REDACT: 1732 range->sru.redact.datablksz = datablksz; 1733 break; 1734 default: 1735 break; 1736 } 1737 bqueue_enqueue(q, range, datablksz); 1738 } 1739 1740 /* 1741 * This thread is responsible for two things: First, it retrieves the correct 1742 * blkptr in the to ds if we need to send the data because of something from 1743 * the from thread. As a result of this, we're the first ones to discover that 1744 * some indirect blocks can be discarded because they're not holes. Second, 1745 * it issues prefetches for the data we need to send. 1746 */ 1747 static __attribute__((noreturn)) void 1748 send_reader_thread(void *arg) 1749 { 1750 struct send_reader_thread_arg *srta = arg; 1751 struct send_merge_thread_arg *smta = srta->smta; 1752 bqueue_t *inq = &smta->q; 1753 bqueue_t *outq = &srta->q; 1754 objset_t *os = smta->os; 1755 fstrans_cookie_t cookie = spl_fstrans_mark(); 1756 struct send_range *range = bqueue_dequeue(inq); 1757 int err = 0; 1758 1759 /* 1760 * If the record we're analyzing is from a redaction bookmark from the 1761 * fromds, then we need to know whether or not it exists in the tods so 1762 * we know whether to create records for it or not. If it does, we need 1763 * the datablksz so we can generate an appropriate record for it. 1764 * Finally, if it isn't redacted, we need the blkptr so that we can send 1765 * a WRITE record containing the actual data. 1766 */ 1767 uint64_t last_obj = UINT64_MAX; 1768 uint64_t last_obj_exists = B_TRUE; 1769 while (!range->eos_marker && !srta->cancel && smta->error == 0 && 1770 err == 0) { 1771 switch (range->type) { 1772 case DATA: 1773 issue_data_read(srta, range); 1774 bqueue_enqueue(outq, range, range->sru.data.datablksz); 1775 range = get_next_range_nofree(inq, range); 1776 break; 1777 case HOLE: 1778 case OBJECT: 1779 case OBJECT_RANGE: 1780 case REDACT: // Redacted blocks must exist 1781 bqueue_enqueue(outq, range, sizeof (*range)); 1782 range = get_next_range_nofree(inq, range); 1783 break; 1784 case PREVIOUSLY_REDACTED: { 1785 /* 1786 * This entry came from the "from bookmark" when 1787 * sending from a bookmark that has a redaction 1788 * list. We need to check if this object/blkid 1789 * exists in the target ("to") dataset, and if 1790 * not then we drop this entry. We also need 1791 * to fill in the block pointer so that we know 1792 * what to prefetch. 1793 * 1794 * To accomplish the above, we first cache whether or 1795 * not the last object we examined exists. If it 1796 * doesn't, we can drop this record. If it does, we hold 1797 * the dnode and use it to call dbuf_dnode_findbp. We do 1798 * this instead of dbuf_bookmark_findbp because we will 1799 * often operate on large ranges, and holding the dnode 1800 * once is more efficient. 1801 */ 1802 boolean_t object_exists = B_TRUE; 1803 /* 1804 * If the data is redacted, we only care if it exists, 1805 * so that we don't send records for objects that have 1806 * been deleted. 1807 */ 1808 dnode_t *dn; 1809 if (range->object == last_obj && !last_obj_exists) { 1810 /* 1811 * If we're still examining the same object as 1812 * previously, and it doesn't exist, we don't 1813 * need to call dbuf_bookmark_findbp. 1814 */ 1815 object_exists = B_FALSE; 1816 } else { 1817 err = dnode_hold(os, range->object, FTAG, &dn); 1818 if (err == ENOENT) { 1819 object_exists = B_FALSE; 1820 err = 0; 1821 } 1822 last_obj = range->object; 1823 last_obj_exists = object_exists; 1824 } 1825 1826 if (err != 0) { 1827 break; 1828 } else if (!object_exists) { 1829 /* 1830 * The block was modified, but doesn't 1831 * exist in the to dataset; if it was 1832 * deleted in the to dataset, then we'll 1833 * visit the hole bp for it at some point. 1834 */ 1835 range = get_next_range(inq, range); 1836 continue; 1837 } 1838 uint64_t file_max = 1839 (dn->dn_maxblkid < range->end_blkid ? 1840 dn->dn_maxblkid : range->end_blkid); 1841 /* 1842 * The object exists, so we need to try to find the 1843 * blkptr for each block in the range we're processing. 1844 */ 1845 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1846 for (uint64_t blkid = range->start_blkid; 1847 blkid < file_max; blkid++) { 1848 blkptr_t bp; 1849 uint32_t datablksz = 1850 dn->dn_phys->dn_datablkszsec << 1851 SPA_MINBLOCKSHIFT; 1852 uint64_t offset = blkid * datablksz; 1853 /* 1854 * This call finds the next non-hole block in 1855 * the object. This is to prevent a 1856 * performance problem where we're unredacting 1857 * a large hole. Using dnode_next_offset to 1858 * skip over the large hole avoids iterating 1859 * over every block in it. 1860 */ 1861 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 1862 &offset, 1, 1, 0); 1863 if (err == ESRCH) { 1864 offset = UINT64_MAX; 1865 err = 0; 1866 } else if (err != 0) { 1867 break; 1868 } 1869 if (offset != blkid * datablksz) { 1870 /* 1871 * if there is a hole from here 1872 * (blkid) to offset 1873 */ 1874 offset = MIN(offset, file_max * 1875 datablksz); 1876 uint64_t nblks = (offset / datablksz) - 1877 blkid; 1878 enqueue_range(srta, outq, dn, blkid, 1879 nblks, NULL, datablksz); 1880 blkid += nblks; 1881 } 1882 if (blkid >= file_max) 1883 break; 1884 err = dbuf_dnode_findbp(dn, 0, blkid, &bp, 1885 NULL, NULL); 1886 if (err != 0) 1887 break; 1888 ASSERT(!BP_IS_HOLE(&bp)); 1889 enqueue_range(srta, outq, dn, blkid, 1, &bp, 1890 datablksz); 1891 } 1892 rw_exit(&dn->dn_struct_rwlock); 1893 dnode_rele(dn, FTAG); 1894 range = get_next_range(inq, range); 1895 } 1896 } 1897 } 1898 if (srta->cancel || err != 0) { 1899 smta->cancel = B_TRUE; 1900 srta->error = err; 1901 } else if (smta->error != 0) { 1902 srta->error = smta->error; 1903 } 1904 while (!range->eos_marker) 1905 range = get_next_range(inq, range); 1906 1907 bqueue_enqueue_flush(outq, range, 1); 1908 spl_fstrans_unmark(cookie); 1909 thread_exit(); 1910 } 1911 1912 #define NUM_SNAPS_NOT_REDACTED UINT64_MAX 1913 1914 struct dmu_send_params { 1915 /* Pool args */ 1916 const void *tag; // Tag dp was held with, will be used to release dp. 1917 dsl_pool_t *dp; 1918 /* To snapshot args */ 1919 const char *tosnap; 1920 dsl_dataset_t *to_ds; 1921 /* From snapshot args */ 1922 zfs_bookmark_phys_t ancestor_zb; 1923 uint64_t *fromredactsnaps; 1924 /* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */ 1925 uint64_t numfromredactsnaps; 1926 /* Stream params */ 1927 boolean_t is_clone; 1928 boolean_t embedok; 1929 boolean_t large_block_ok; 1930 boolean_t compressok; 1931 boolean_t rawok; 1932 boolean_t savedok; 1933 uint64_t resumeobj; 1934 uint64_t resumeoff; 1935 uint64_t saved_guid; 1936 zfs_bookmark_phys_t *redactbook; 1937 /* Stream output params */ 1938 dmu_send_outparams_t *dso; 1939 1940 /* Stream progress params */ 1941 offset_t *off; 1942 int outfd; 1943 char saved_toname[MAXNAMELEN]; 1944 }; 1945 1946 static int 1947 setup_featureflags(struct dmu_send_params *dspp, objset_t *os, 1948 uint64_t *featureflags) 1949 { 1950 dsl_dataset_t *to_ds = dspp->to_ds; 1951 dsl_pool_t *dp = dspp->dp; 1952 #ifdef _KERNEL 1953 if (dmu_objset_type(os) == DMU_OST_ZFS) { 1954 uint64_t version; 1955 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) 1956 return (SET_ERROR(EINVAL)); 1957 1958 if (version >= ZPL_VERSION_SA) 1959 *featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 1960 } 1961 #endif 1962 1963 /* raw sends imply large_block_ok */ 1964 if ((dspp->rawok || dspp->large_block_ok) && 1965 dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) { 1966 *featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 1967 } 1968 1969 /* encrypted datasets will not have embedded blocks */ 1970 if ((dspp->embedok || dspp->rawok) && !os->os_encrypted && 1971 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 1972 *featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 1973 } 1974 1975 /* raw send implies compressok */ 1976 if (dspp->compressok || dspp->rawok) 1977 *featureflags |= DMU_BACKUP_FEATURE_COMPRESSED; 1978 1979 if (dspp->rawok && os->os_encrypted) 1980 *featureflags |= DMU_BACKUP_FEATURE_RAW; 1981 1982 if ((*featureflags & 1983 (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED | 1984 DMU_BACKUP_FEATURE_RAW)) != 0 && 1985 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) { 1986 *featureflags |= DMU_BACKUP_FEATURE_LZ4; 1987 } 1988 1989 /* 1990 * We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to 1991 * allow sending ZSTD compressed datasets to a receiver that does not 1992 * support ZSTD 1993 */ 1994 if ((*featureflags & 1995 (DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 && 1996 dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) { 1997 *featureflags |= DMU_BACKUP_FEATURE_ZSTD; 1998 } 1999 2000 if (dspp->resumeobj != 0 || dspp->resumeoff != 0) { 2001 *featureflags |= DMU_BACKUP_FEATURE_RESUMING; 2002 } 2003 2004 if (dspp->redactbook != NULL) { 2005 *featureflags |= DMU_BACKUP_FEATURE_REDACTED; 2006 } 2007 2008 if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) { 2009 *featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE; 2010 } 2011 return (0); 2012 } 2013 2014 static dmu_replay_record_t * 2015 create_begin_record(struct dmu_send_params *dspp, objset_t *os, 2016 uint64_t featureflags) 2017 { 2018 dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t), 2019 KM_SLEEP); 2020 drr->drr_type = DRR_BEGIN; 2021 2022 struct drr_begin *drrb = &drr->drr_u.drr_begin; 2023 dsl_dataset_t *to_ds = dspp->to_ds; 2024 2025 drrb->drr_magic = DMU_BACKUP_MAGIC; 2026 drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time; 2027 drrb->drr_type = dmu_objset_type(os); 2028 drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 2029 drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid; 2030 2031 DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM); 2032 DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags); 2033 2034 if (dspp->is_clone) 2035 drrb->drr_flags |= DRR_FLAG_CLONE; 2036 if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET) 2037 drrb->drr_flags |= DRR_FLAG_CI_DATA; 2038 if (zfs_send_set_freerecords_bit) 2039 drrb->drr_flags |= DRR_FLAG_FREERECORDS; 2040 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK; 2041 2042 if (dspp->savedok) { 2043 drrb->drr_toguid = dspp->saved_guid; 2044 strlcpy(drrb->drr_toname, dspp->saved_toname, 2045 sizeof (drrb->drr_toname)); 2046 } else { 2047 dsl_dataset_name(to_ds, drrb->drr_toname); 2048 if (!to_ds->ds_is_snapshot) { 2049 (void) strlcat(drrb->drr_toname, "@--head--", 2050 sizeof (drrb->drr_toname)); 2051 } 2052 } 2053 return (drr); 2054 } 2055 2056 static void 2057 setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os, 2058 dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok) 2059 { 2060 VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff, 2061 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize), 2062 offsetof(struct send_range, ln))); 2063 to_arg->error_code = 0; 2064 to_arg->cancel = B_FALSE; 2065 to_arg->os = to_os; 2066 to_arg->fromtxg = fromtxg; 2067 to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA; 2068 if (rawok) 2069 to_arg->flags |= TRAVERSE_NO_DECRYPT; 2070 if (zfs_send_corrupt_data) 2071 to_arg->flags |= TRAVERSE_HARD; 2072 to_arg->num_blocks_visited = &dssp->dss_blocks; 2073 (void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0, 2074 curproc, TS_RUN, minclsyspri); 2075 } 2076 2077 static void 2078 setup_from_thread(struct redact_list_thread_arg *from_arg, 2079 redaction_list_t *from_rl, dmu_sendstatus_t *dssp) 2080 { 2081 VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff, 2082 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize), 2083 offsetof(struct send_range, ln))); 2084 from_arg->error_code = 0; 2085 from_arg->cancel = B_FALSE; 2086 from_arg->rl = from_rl; 2087 from_arg->mark_redact = B_FALSE; 2088 from_arg->num_blocks_visited = &dssp->dss_blocks; 2089 /* 2090 * If from_ds is null, send_traverse_thread just returns success and 2091 * enqueues an eos marker. 2092 */ 2093 (void) thread_create(NULL, 0, redact_list_thread, from_arg, 0, 2094 curproc, TS_RUN, minclsyspri); 2095 } 2096 2097 static void 2098 setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg, 2099 struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp) 2100 { 2101 if (dspp->redactbook == NULL) 2102 return; 2103 2104 rlt_arg->cancel = B_FALSE; 2105 VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff, 2106 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize), 2107 offsetof(struct send_range, ln))); 2108 rlt_arg->error_code = 0; 2109 rlt_arg->mark_redact = B_TRUE; 2110 rlt_arg->rl = rl; 2111 rlt_arg->num_blocks_visited = &dssp->dss_blocks; 2112 2113 (void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0, 2114 curproc, TS_RUN, minclsyspri); 2115 } 2116 2117 static void 2118 setup_merge_thread(struct send_merge_thread_arg *smt_arg, 2119 struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg, 2120 struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg, 2121 objset_t *os) 2122 { 2123 VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff, 2124 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize), 2125 offsetof(struct send_range, ln))); 2126 smt_arg->cancel = B_FALSE; 2127 smt_arg->error = 0; 2128 smt_arg->from_arg = from_arg; 2129 smt_arg->to_arg = to_arg; 2130 if (dspp->redactbook != NULL) 2131 smt_arg->redact_arg = rlt_arg; 2132 2133 smt_arg->os = os; 2134 (void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc, 2135 TS_RUN, minclsyspri); 2136 } 2137 2138 static void 2139 setup_reader_thread(struct send_reader_thread_arg *srt_arg, 2140 struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg, 2141 uint64_t featureflags) 2142 { 2143 VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff, 2144 MAX(zfs_send_queue_length, 2 * zfs_max_recordsize), 2145 offsetof(struct send_range, ln))); 2146 srt_arg->smta = smt_arg; 2147 srt_arg->issue_reads = !dspp->dso->dso_dryrun; 2148 srt_arg->featureflags = featureflags; 2149 (void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0, 2150 curproc, TS_RUN, minclsyspri); 2151 } 2152 2153 static int 2154 setup_resume_points(struct dmu_send_params *dspp, 2155 struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg, 2156 struct redact_list_thread_arg *rlt_arg, 2157 struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os, 2158 redaction_list_t *redact_rl, nvlist_t *nvl) 2159 { 2160 (void) smt_arg; 2161 dsl_dataset_t *to_ds = dspp->to_ds; 2162 int err = 0; 2163 2164 uint64_t obj = 0; 2165 uint64_t blkid = 0; 2166 if (resuming) { 2167 obj = dspp->resumeobj; 2168 dmu_object_info_t to_doi; 2169 err = dmu_object_info(os, obj, &to_doi); 2170 if (err != 0) 2171 return (err); 2172 2173 blkid = dspp->resumeoff / to_doi.doi_data_block_size; 2174 } 2175 /* 2176 * If we're resuming a redacted send, we can skip to the appropriate 2177 * point in the redaction bookmark by binary searching through it. 2178 */ 2179 if (redact_rl != NULL) { 2180 SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid); 2181 } 2182 2183 SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid); 2184 if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) { 2185 uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj; 2186 /* 2187 * Note: If the resume point is in an object whose 2188 * blocksize is different in the from vs to snapshots, 2189 * we will have divided by the "wrong" blocksize. 2190 * However, in this case fromsnap's send_cb() will 2191 * detect that the blocksize has changed and therefore 2192 * ignore this object. 2193 * 2194 * If we're resuming a send from a redaction bookmark, 2195 * we still cannot accidentally suggest blocks behind 2196 * the to_ds. In addition, we know that any blocks in 2197 * the object in the to_ds will have to be sent, since 2198 * the size changed. Therefore, we can't cause any harm 2199 * this way either. 2200 */ 2201 SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid); 2202 } 2203 if (resuming) { 2204 fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj); 2205 fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff); 2206 } 2207 return (0); 2208 } 2209 2210 static dmu_sendstatus_t * 2211 setup_send_progress(struct dmu_send_params *dspp) 2212 { 2213 dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP); 2214 dssp->dss_outfd = dspp->outfd; 2215 dssp->dss_off = dspp->off; 2216 dssp->dss_proc = curproc; 2217 mutex_enter(&dspp->to_ds->ds_sendstream_lock); 2218 list_insert_head(&dspp->to_ds->ds_sendstreams, dssp); 2219 mutex_exit(&dspp->to_ds->ds_sendstream_lock); 2220 return (dssp); 2221 } 2222 2223 /* 2224 * Actually do the bulk of the work in a zfs send. 2225 * 2226 * The idea is that we want to do a send from ancestor_zb to to_ds. We also 2227 * want to not send any data that has been modified by all the datasets in 2228 * redactsnaparr, and store the list of blocks that are redacted in this way in 2229 * a bookmark named redactbook, created on the to_ds. We do this by creating 2230 * several worker threads, whose function is described below. 2231 * 2232 * There are three cases. 2233 * The first case is a redacted zfs send. In this case there are 5 threads. 2234 * The first thread is the to_ds traversal thread: it calls dataset_traverse on 2235 * the to_ds and finds all the blocks that have changed since ancestor_zb (if 2236 * it's a full send, that's all blocks in the dataset). It then sends those 2237 * blocks on to the send merge thread. The redact list thread takes the data 2238 * from the redaction bookmark and sends those blocks on to the send merge 2239 * thread. The send merge thread takes the data from the to_ds traversal 2240 * thread, and combines it with the redaction records from the redact list 2241 * thread. If a block appears in both the to_ds's data and the redaction data, 2242 * the send merge thread will mark it as redacted and send it on to the prefetch 2243 * thread. Otherwise, the send merge thread will send the block on to the 2244 * prefetch thread unchanged. The prefetch thread will issue prefetch reads for 2245 * any data that isn't redacted, and then send the data on to the main thread. 2246 * The main thread behaves the same as in a normal send case, issuing demand 2247 * reads for data blocks and sending out records over the network 2248 * 2249 * The graphic below diagrams the flow of data in the case of a redacted zfs 2250 * send. Each box represents a thread, and each line represents the flow of 2251 * data. 2252 * 2253 * Records from the | 2254 * redaction bookmark | 2255 * +--------------------+ | +---------------------------+ 2256 * | | v | Send Merge Thread | 2257 * | Redact List Thread +----------> Apply redaction marks to | 2258 * | | | records as specified by | 2259 * +--------------------+ | redaction ranges | 2260 * +----^---------------+------+ 2261 * | | Merged data 2262 * | | 2263 * | +------------v--------+ 2264 * | | Prefetch Thread | 2265 * +--------------------+ | | Issues prefetch | 2266 * | to_ds Traversal | | | reads of data blocks| 2267 * | Thread (finds +---------------+ +------------+--------+ 2268 * | candidate blocks) | Blocks modified | Prefetched data 2269 * +--------------------+ by to_ds since | 2270 * ancestor_zb +------------v----+ 2271 * | Main Thread | File Descriptor 2272 * | Sends data over +->(to zfs receive) 2273 * | wire | 2274 * +-----------------+ 2275 * 2276 * The second case is an incremental send from a redaction bookmark. The to_ds 2277 * traversal thread and the main thread behave the same as in the redacted 2278 * send case. The new thread is the from bookmark traversal thread. It 2279 * iterates over the redaction list in the redaction bookmark, and enqueues 2280 * records for each block that was redacted in the original send. The send 2281 * merge thread now has to merge the data from the two threads. For details 2282 * about that process, see the header comment of send_merge_thread(). Any data 2283 * it decides to send on will be prefetched by the prefetch thread. Note that 2284 * you can perform a redacted send from a redaction bookmark; in that case, 2285 * the data flow behaves very similarly to the flow in the redacted send case, 2286 * except with the addition of the bookmark traversal thread iterating over the 2287 * redaction bookmark. The send_merge_thread also has to take on the 2288 * responsibility of merging the redact list thread's records, the bookmark 2289 * traversal thread's records, and the to_ds records. 2290 * 2291 * +---------------------+ 2292 * | | 2293 * | Redact List Thread +--------------+ 2294 * | | | 2295 * +---------------------+ | 2296 * Blocks in redaction list | Ranges modified by every secure snap 2297 * of from bookmark | (or EOS if not readcted) 2298 * | 2299 * +---------------------+ | +----v----------------------+ 2300 * | bookmark Traversal | v | Send Merge Thread | 2301 * | Thread (finds +---------> Merges bookmark, rlt, and | 2302 * | candidate blocks) | | to_ds send records | 2303 * +---------------------+ +----^---------------+------+ 2304 * | | Merged data 2305 * | +------------v--------+ 2306 * | | Prefetch Thread | 2307 * +--------------------+ | | Issues prefetch | 2308 * | to_ds Traversal | | | reads of data blocks| 2309 * | Thread (finds +---------------+ +------------+--------+ 2310 * | candidate blocks) | Blocks modified | Prefetched data 2311 * +--------------------+ by to_ds since +------------v----+ 2312 * ancestor_zb | Main Thread | File Descriptor 2313 * | Sends data over +->(to zfs receive) 2314 * | wire | 2315 * +-----------------+ 2316 * 2317 * The final case is a simple zfs full or incremental send. The to_ds traversal 2318 * thread behaves the same as always. The redact list thread is never started. 2319 * The send merge thread takes all the blocks that the to_ds traversal thread 2320 * sends it, prefetches the data, and sends the blocks on to the main thread. 2321 * The main thread sends the data over the wire. 2322 * 2323 * To keep performance acceptable, we want to prefetch the data in the worker 2324 * threads. While the to_ds thread could simply use the TRAVERSE_PREFETCH 2325 * feature built into traverse_dataset, the combining and deletion of records 2326 * due to redaction and sends from redaction bookmarks mean that we could 2327 * issue many unnecessary prefetches. As a result, we only prefetch data 2328 * after we've determined that the record is not going to be redacted. To 2329 * prevent the prefetching from getting too far ahead of the main thread, the 2330 * blocking queues that are used for communication are capped not by the 2331 * number of entries in the queue, but by the sum of the size of the 2332 * prefetches associated with them. The limit on the amount of data that the 2333 * thread can prefetch beyond what the main thread has reached is controlled 2334 * by the global variable zfs_send_queue_length. In addition, to prevent poor 2335 * performance in the beginning of a send, we also limit the distance ahead 2336 * that the traversal threads can be. That distance is controlled by the 2337 * zfs_send_no_prefetch_queue_length tunable. 2338 * 2339 * Note: Releases dp using the specified tag. 2340 */ 2341 static int 2342 dmu_send_impl(struct dmu_send_params *dspp) 2343 { 2344 objset_t *os; 2345 dmu_replay_record_t *drr; 2346 dmu_sendstatus_t *dssp; 2347 dmu_send_cookie_t dsc = {0}; 2348 int err; 2349 uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg; 2350 uint64_t featureflags = 0; 2351 struct redact_list_thread_arg *from_arg; 2352 struct send_thread_arg *to_arg; 2353 struct redact_list_thread_arg *rlt_arg; 2354 struct send_merge_thread_arg *smt_arg; 2355 struct send_reader_thread_arg *srt_arg; 2356 struct send_range *range; 2357 redaction_list_t *from_rl = NULL; 2358 redaction_list_t *redact_rl = NULL; 2359 boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0); 2360 boolean_t book_resuming = resuming; 2361 2362 dsl_dataset_t *to_ds = dspp->to_ds; 2363 zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb; 2364 dsl_pool_t *dp = dspp->dp; 2365 const void *tag = dspp->tag; 2366 2367 err = dmu_objset_from_ds(to_ds, &os); 2368 if (err != 0) { 2369 dsl_pool_rele(dp, tag); 2370 return (err); 2371 } 2372 2373 /* 2374 * If this is a non-raw send of an encrypted ds, we can ensure that 2375 * the objset_phys_t is authenticated. This is safe because this is 2376 * either a snapshot or we have owned the dataset, ensuring that 2377 * it can't be modified. 2378 */ 2379 if (!dspp->rawok && os->os_encrypted && 2380 arc_is_unauthenticated(os->os_phys_buf)) { 2381 zbookmark_phys_t zb; 2382 2383 SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT, 2384 ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2385 err = arc_untransform(os->os_phys_buf, os->os_spa, 2386 &zb, B_FALSE); 2387 if (err != 0) { 2388 dsl_pool_rele(dp, tag); 2389 return (err); 2390 } 2391 2392 ASSERT0(arc_is_unauthenticated(os->os_phys_buf)); 2393 } 2394 2395 if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) { 2396 dsl_pool_rele(dp, tag); 2397 return (err); 2398 } 2399 2400 /* 2401 * If we're doing a redacted send, hold the bookmark's redaction list. 2402 */ 2403 if (dspp->redactbook != NULL) { 2404 err = dsl_redaction_list_hold_obj(dp, 2405 dspp->redactbook->zbm_redaction_obj, FTAG, 2406 &redact_rl); 2407 if (err != 0) { 2408 dsl_pool_rele(dp, tag); 2409 return (SET_ERROR(EINVAL)); 2410 } 2411 dsl_redaction_list_long_hold(dp, redact_rl, FTAG); 2412 } 2413 2414 /* 2415 * If we're sending from a redaction bookmark, hold the redaction list 2416 * so that we can consider sending the redacted blocks. 2417 */ 2418 if (ancestor_zb->zbm_redaction_obj != 0) { 2419 err = dsl_redaction_list_hold_obj(dp, 2420 ancestor_zb->zbm_redaction_obj, FTAG, &from_rl); 2421 if (err != 0) { 2422 if (redact_rl != NULL) { 2423 dsl_redaction_list_long_rele(redact_rl, FTAG); 2424 dsl_redaction_list_rele(redact_rl, FTAG); 2425 } 2426 dsl_pool_rele(dp, tag); 2427 return (SET_ERROR(EINVAL)); 2428 } 2429 dsl_redaction_list_long_hold(dp, from_rl, FTAG); 2430 } 2431 2432 dsl_dataset_long_hold(to_ds, FTAG); 2433 2434 from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP); 2435 to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP); 2436 rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP); 2437 smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP); 2438 srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP); 2439 2440 drr = create_begin_record(dspp, os, featureflags); 2441 dssp = setup_send_progress(dspp); 2442 2443 dsc.dsc_drr = drr; 2444 dsc.dsc_dso = dspp->dso; 2445 dsc.dsc_os = os; 2446 dsc.dsc_off = dspp->off; 2447 dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid; 2448 dsc.dsc_fromtxg = fromtxg; 2449 dsc.dsc_pending_op = PENDING_NONE; 2450 dsc.dsc_featureflags = featureflags; 2451 dsc.dsc_resume_object = dspp->resumeobj; 2452 dsc.dsc_resume_offset = dspp->resumeoff; 2453 2454 dsl_pool_rele(dp, tag); 2455 2456 void *payload = NULL; 2457 size_t payload_len = 0; 2458 nvlist_t *nvl = fnvlist_alloc(); 2459 2460 /* 2461 * If we're doing a redacted send, we include the snapshots we're 2462 * redacted with respect to so that the target system knows what send 2463 * streams can be correctly received on top of this dataset. If we're 2464 * instead sending a redacted dataset, we include the snapshots that the 2465 * dataset was created with respect to. 2466 */ 2467 if (dspp->redactbook != NULL) { 2468 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, 2469 redact_rl->rl_phys->rlp_snaps, 2470 redact_rl->rl_phys->rlp_num_snaps); 2471 } else if (dsl_dataset_feature_is_active(to_ds, 2472 SPA_FEATURE_REDACTED_DATASETS)) { 2473 uint64_t *tods_guids; 2474 uint64_t length; 2475 VERIFY(dsl_dataset_get_uint64_array_feature(to_ds, 2476 SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids)); 2477 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids, 2478 length); 2479 } 2480 2481 /* 2482 * If we're sending from a redaction bookmark, then we should retrieve 2483 * the guids of that bookmark so we can send them over the wire. 2484 */ 2485 if (from_rl != NULL) { 2486 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS, 2487 from_rl->rl_phys->rlp_snaps, 2488 from_rl->rl_phys->rlp_num_snaps); 2489 } 2490 2491 /* 2492 * If the snapshot we're sending from is redacted, include the redaction 2493 * list in the stream. 2494 */ 2495 if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) { 2496 ASSERT3P(from_rl, ==, NULL); 2497 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS, 2498 dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps); 2499 if (dspp->numfromredactsnaps > 0) { 2500 kmem_free(dspp->fromredactsnaps, 2501 dspp->numfromredactsnaps * sizeof (uint64_t)); 2502 dspp->fromredactsnaps = NULL; 2503 } 2504 } 2505 2506 if (resuming || book_resuming) { 2507 err = setup_resume_points(dspp, to_arg, from_arg, 2508 rlt_arg, smt_arg, resuming, os, redact_rl, nvl); 2509 if (err != 0) 2510 goto out; 2511 } 2512 2513 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 2514 uint64_t ivset_guid = ancestor_zb->zbm_ivset_guid; 2515 nvlist_t *keynvl = NULL; 2516 ASSERT(os->os_encrypted); 2517 2518 err = dsl_crypto_populate_key_nvlist(os, ivset_guid, 2519 &keynvl); 2520 if (err != 0) { 2521 fnvlist_free(nvl); 2522 goto out; 2523 } 2524 2525 fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl); 2526 fnvlist_free(keynvl); 2527 } 2528 2529 if (!nvlist_empty(nvl)) { 2530 payload = fnvlist_pack(nvl, &payload_len); 2531 drr->drr_payloadlen = payload_len; 2532 } 2533 2534 fnvlist_free(nvl); 2535 err = dump_record(&dsc, payload, payload_len); 2536 fnvlist_pack_free(payload, payload_len); 2537 if (err != 0) { 2538 err = dsc.dsc_err; 2539 goto out; 2540 } 2541 2542 setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok); 2543 setup_from_thread(from_arg, from_rl, dssp); 2544 setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp); 2545 setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os); 2546 setup_reader_thread(srt_arg, dspp, smt_arg, featureflags); 2547 2548 range = bqueue_dequeue(&srt_arg->q); 2549 while (err == 0 && !range->eos_marker) { 2550 err = do_dump(&dsc, range); 2551 range = get_next_range(&srt_arg->q, range); 2552 if (issig(JUSTLOOKING) && issig(FORREAL)) 2553 err = SET_ERROR(EINTR); 2554 } 2555 2556 /* 2557 * If we hit an error or are interrupted, cancel our worker threads and 2558 * clear the queue of any pending records. The threads will pass the 2559 * cancel up the tree of worker threads, and each one will clean up any 2560 * pending records before exiting. 2561 */ 2562 if (err != 0) { 2563 srt_arg->cancel = B_TRUE; 2564 while (!range->eos_marker) { 2565 range = get_next_range(&srt_arg->q, range); 2566 } 2567 } 2568 range_free(range); 2569 2570 bqueue_destroy(&srt_arg->q); 2571 bqueue_destroy(&smt_arg->q); 2572 if (dspp->redactbook != NULL) 2573 bqueue_destroy(&rlt_arg->q); 2574 bqueue_destroy(&to_arg->q); 2575 bqueue_destroy(&from_arg->q); 2576 2577 if (err == 0 && srt_arg->error != 0) 2578 err = srt_arg->error; 2579 2580 if (err != 0) 2581 goto out; 2582 2583 if (dsc.dsc_pending_op != PENDING_NONE) 2584 if (dump_record(&dsc, NULL, 0) != 0) 2585 err = SET_ERROR(EINTR); 2586 2587 if (err != 0) { 2588 if (err == EINTR && dsc.dsc_err != 0) 2589 err = dsc.dsc_err; 2590 goto out; 2591 } 2592 2593 /* 2594 * Send the DRR_END record if this is not a saved stream. 2595 * Otherwise, the omitted DRR_END record will signal to 2596 * the receive side that the stream is incomplete. 2597 */ 2598 if (!dspp->savedok) { 2599 memset(drr, 0, sizeof (dmu_replay_record_t)); 2600 drr->drr_type = DRR_END; 2601 drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc; 2602 drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid; 2603 2604 if (dump_record(&dsc, NULL, 0) != 0) 2605 err = dsc.dsc_err; 2606 } 2607 out: 2608 mutex_enter(&to_ds->ds_sendstream_lock); 2609 list_remove(&to_ds->ds_sendstreams, dssp); 2610 mutex_exit(&to_ds->ds_sendstream_lock); 2611 2612 VERIFY(err != 0 || (dsc.dsc_sent_begin && 2613 (dsc.dsc_sent_end || dspp->savedok))); 2614 2615 kmem_free(drr, sizeof (dmu_replay_record_t)); 2616 kmem_free(dssp, sizeof (dmu_sendstatus_t)); 2617 kmem_free(from_arg, sizeof (*from_arg)); 2618 kmem_free(to_arg, sizeof (*to_arg)); 2619 kmem_free(rlt_arg, sizeof (*rlt_arg)); 2620 kmem_free(smt_arg, sizeof (*smt_arg)); 2621 kmem_free(srt_arg, sizeof (*srt_arg)); 2622 2623 dsl_dataset_long_rele(to_ds, FTAG); 2624 if (from_rl != NULL) { 2625 dsl_redaction_list_long_rele(from_rl, FTAG); 2626 dsl_redaction_list_rele(from_rl, FTAG); 2627 } 2628 if (redact_rl != NULL) { 2629 dsl_redaction_list_long_rele(redact_rl, FTAG); 2630 dsl_redaction_list_rele(redact_rl, FTAG); 2631 } 2632 2633 return (err); 2634 } 2635 2636 int 2637 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 2638 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok, 2639 boolean_t rawok, boolean_t savedok, int outfd, offset_t *off, 2640 dmu_send_outparams_t *dsop) 2641 { 2642 int err; 2643 dsl_dataset_t *fromds; 2644 ds_hold_flags_t dsflags; 2645 struct dmu_send_params dspp = {0}; 2646 dspp.embedok = embedok; 2647 dspp.large_block_ok = large_block_ok; 2648 dspp.compressok = compressok; 2649 dspp.outfd = outfd; 2650 dspp.off = off; 2651 dspp.dso = dsop; 2652 dspp.tag = FTAG; 2653 dspp.rawok = rawok; 2654 dspp.savedok = savedok; 2655 2656 dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2657 err = dsl_pool_hold(pool, FTAG, &dspp.dp); 2658 if (err != 0) 2659 return (err); 2660 2661 err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG, 2662 &dspp.to_ds); 2663 if (err != 0) { 2664 dsl_pool_rele(dspp.dp, FTAG); 2665 return (err); 2666 } 2667 2668 if (fromsnap != 0) { 2669 err = dsl_dataset_hold_obj_flags(dspp.dp, fromsnap, dsflags, 2670 FTAG, &fromds); 2671 if (err != 0) { 2672 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG); 2673 dsl_pool_rele(dspp.dp, FTAG); 2674 return (err); 2675 } 2676 dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 2677 dspp.ancestor_zb.zbm_creation_txg = 2678 dsl_dataset_phys(fromds)->ds_creation_txg; 2679 dspp.ancestor_zb.zbm_creation_time = 2680 dsl_dataset_phys(fromds)->ds_creation_time; 2681 2682 if (dsl_dataset_is_zapified(fromds)) { 2683 (void) zap_lookup(dspp.dp->dp_meta_objset, 2684 fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1, 2685 &dspp.ancestor_zb.zbm_ivset_guid); 2686 } 2687 2688 /* See dmu_send for the reasons behind this. */ 2689 uint64_t *fromredact; 2690 2691 if (!dsl_dataset_get_uint64_array_feature(fromds, 2692 SPA_FEATURE_REDACTED_DATASETS, 2693 &dspp.numfromredactsnaps, 2694 &fromredact)) { 2695 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED; 2696 } else if (dspp.numfromredactsnaps > 0) { 2697 uint64_t size = dspp.numfromredactsnaps * 2698 sizeof (uint64_t); 2699 dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP); 2700 memcpy(dspp.fromredactsnaps, fromredact, size); 2701 } 2702 2703 boolean_t is_before = 2704 dsl_dataset_is_before(dspp.to_ds, fromds, 0); 2705 dspp.is_clone = (dspp.to_ds->ds_dir != 2706 fromds->ds_dir); 2707 dsl_dataset_rele(fromds, FTAG); 2708 if (!is_before) { 2709 dsl_pool_rele(dspp.dp, FTAG); 2710 err = SET_ERROR(EXDEV); 2711 } else { 2712 err = dmu_send_impl(&dspp); 2713 } 2714 } else { 2715 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED; 2716 err = dmu_send_impl(&dspp); 2717 } 2718 if (dspp.fromredactsnaps) 2719 kmem_free(dspp.fromredactsnaps, 2720 dspp.numfromredactsnaps * sizeof (uint64_t)); 2721 2722 dsl_dataset_rele(dspp.to_ds, FTAG); 2723 return (err); 2724 } 2725 2726 int 2727 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 2728 boolean_t large_block_ok, boolean_t compressok, boolean_t rawok, 2729 boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff, 2730 const char *redactbook, int outfd, offset_t *off, 2731 dmu_send_outparams_t *dsop) 2732 { 2733 int err = 0; 2734 ds_hold_flags_t dsflags; 2735 boolean_t owned = B_FALSE; 2736 dsl_dataset_t *fromds = NULL; 2737 zfs_bookmark_phys_t book = {0}; 2738 struct dmu_send_params dspp = {0}; 2739 2740 dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2741 dspp.tosnap = tosnap; 2742 dspp.embedok = embedok; 2743 dspp.large_block_ok = large_block_ok; 2744 dspp.compressok = compressok; 2745 dspp.outfd = outfd; 2746 dspp.off = off; 2747 dspp.dso = dsop; 2748 dspp.tag = FTAG; 2749 dspp.resumeobj = resumeobj; 2750 dspp.resumeoff = resumeoff; 2751 dspp.rawok = rawok; 2752 dspp.savedok = savedok; 2753 2754 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 2755 return (SET_ERROR(EINVAL)); 2756 2757 err = dsl_pool_hold(tosnap, FTAG, &dspp.dp); 2758 if (err != 0) 2759 return (err); 2760 2761 if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) { 2762 /* 2763 * We are sending a filesystem or volume. Ensure 2764 * that it doesn't change by owning the dataset. 2765 */ 2766 2767 if (savedok) { 2768 /* 2769 * We are looking for the dataset that represents the 2770 * partially received send stream. If this stream was 2771 * received as a new snapshot of an existing dataset, 2772 * this will be saved in a hidden clone named 2773 * "<pool>/<dataset>/%recv". Otherwise, the stream 2774 * will be saved in the live dataset itself. In 2775 * either case we need to use dsl_dataset_own_force() 2776 * because the stream is marked as inconsistent, 2777 * which would normally make it unavailable to be 2778 * owned. 2779 */ 2780 char *name = kmem_asprintf("%s/%s", tosnap, 2781 recv_clone_name); 2782 err = dsl_dataset_own_force(dspp.dp, name, dsflags, 2783 FTAG, &dspp.to_ds); 2784 if (err == ENOENT) { 2785 err = dsl_dataset_own_force(dspp.dp, tosnap, 2786 dsflags, FTAG, &dspp.to_ds); 2787 } 2788 2789 if (err == 0) { 2790 err = zap_lookup(dspp.dp->dp_meta_objset, 2791 dspp.to_ds->ds_object, 2792 DS_FIELD_RESUME_TOGUID, 8, 1, 2793 &dspp.saved_guid); 2794 } 2795 2796 if (err == 0) { 2797 err = zap_lookup(dspp.dp->dp_meta_objset, 2798 dspp.to_ds->ds_object, 2799 DS_FIELD_RESUME_TONAME, 1, 2800 sizeof (dspp.saved_toname), 2801 dspp.saved_toname); 2802 } 2803 if (err != 0) 2804 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG); 2805 2806 kmem_strfree(name); 2807 } else { 2808 err = dsl_dataset_own(dspp.dp, tosnap, dsflags, 2809 FTAG, &dspp.to_ds); 2810 } 2811 owned = B_TRUE; 2812 } else { 2813 err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG, 2814 &dspp.to_ds); 2815 } 2816 2817 if (err != 0) { 2818 dsl_pool_rele(dspp.dp, FTAG); 2819 return (err); 2820 } 2821 2822 if (redactbook != NULL) { 2823 char path[ZFS_MAX_DATASET_NAME_LEN]; 2824 (void) strlcpy(path, tosnap, sizeof (path)); 2825 char *at = strchr(path, '@'); 2826 if (at == NULL) { 2827 err = EINVAL; 2828 } else { 2829 (void) snprintf(at, sizeof (path) - (at - path), "#%s", 2830 redactbook); 2831 err = dsl_bookmark_lookup(dspp.dp, path, 2832 NULL, &book); 2833 dspp.redactbook = &book; 2834 } 2835 } 2836 2837 if (err != 0) { 2838 dsl_pool_rele(dspp.dp, FTAG); 2839 if (owned) 2840 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG); 2841 else 2842 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG); 2843 return (err); 2844 } 2845 2846 if (fromsnap != NULL) { 2847 zfs_bookmark_phys_t *zb = &dspp.ancestor_zb; 2848 int fsnamelen; 2849 if (strpbrk(tosnap, "@#") != NULL) 2850 fsnamelen = strpbrk(tosnap, "@#") - tosnap; 2851 else 2852 fsnamelen = strlen(tosnap); 2853 2854 /* 2855 * If the fromsnap is in a different filesystem, then 2856 * mark the send stream as a clone. 2857 */ 2858 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 2859 (fromsnap[fsnamelen] != '@' && 2860 fromsnap[fsnamelen] != '#')) { 2861 dspp.is_clone = B_TRUE; 2862 } 2863 2864 if (strchr(fromsnap, '@') != NULL) { 2865 err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG, 2866 &fromds); 2867 2868 if (err != 0) { 2869 ASSERT3P(fromds, ==, NULL); 2870 } else { 2871 /* 2872 * We need to make a deep copy of the redact 2873 * snapshots of the from snapshot, because the 2874 * array will be freed when we evict from_ds. 2875 */ 2876 uint64_t *fromredact; 2877 if (!dsl_dataset_get_uint64_array_feature( 2878 fromds, SPA_FEATURE_REDACTED_DATASETS, 2879 &dspp.numfromredactsnaps, 2880 &fromredact)) { 2881 dspp.numfromredactsnaps = 2882 NUM_SNAPS_NOT_REDACTED; 2883 } else if (dspp.numfromredactsnaps > 0) { 2884 uint64_t size = 2885 dspp.numfromredactsnaps * 2886 sizeof (uint64_t); 2887 dspp.fromredactsnaps = kmem_zalloc(size, 2888 KM_SLEEP); 2889 memcpy(dspp.fromredactsnaps, fromredact, 2890 size); 2891 } 2892 if (!dsl_dataset_is_before(dspp.to_ds, fromds, 2893 0)) { 2894 err = SET_ERROR(EXDEV); 2895 } else { 2896 zb->zbm_creation_txg = 2897 dsl_dataset_phys(fromds)-> 2898 ds_creation_txg; 2899 zb->zbm_creation_time = 2900 dsl_dataset_phys(fromds)-> 2901 ds_creation_time; 2902 zb->zbm_guid = 2903 dsl_dataset_phys(fromds)->ds_guid; 2904 zb->zbm_redaction_obj = 0; 2905 2906 if (dsl_dataset_is_zapified(fromds)) { 2907 (void) zap_lookup( 2908 dspp.dp->dp_meta_objset, 2909 fromds->ds_object, 2910 DS_FIELD_IVSET_GUID, 8, 1, 2911 &zb->zbm_ivset_guid); 2912 } 2913 } 2914 dsl_dataset_rele(fromds, FTAG); 2915 } 2916 } else { 2917 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED; 2918 err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds, 2919 zb); 2920 if (err == EXDEV && zb->zbm_redaction_obj != 0 && 2921 zb->zbm_guid == 2922 dsl_dataset_phys(dspp.to_ds)->ds_guid) 2923 err = 0; 2924 } 2925 2926 if (err == 0) { 2927 /* dmu_send_impl will call dsl_pool_rele for us. */ 2928 err = dmu_send_impl(&dspp); 2929 } else { 2930 if (dspp.fromredactsnaps) 2931 kmem_free(dspp.fromredactsnaps, 2932 dspp.numfromredactsnaps * 2933 sizeof (uint64_t)); 2934 dsl_pool_rele(dspp.dp, FTAG); 2935 } 2936 } else { 2937 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED; 2938 err = dmu_send_impl(&dspp); 2939 } 2940 if (owned) 2941 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG); 2942 else 2943 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG); 2944 return (err); 2945 } 2946 2947 static int 2948 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed, 2949 uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep) 2950 { 2951 int err = 0; 2952 uint64_t size; 2953 /* 2954 * Assume that space (both on-disk and in-stream) is dominated by 2955 * data. We will adjust for indirect blocks and the copies property, 2956 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 2957 */ 2958 2959 uint64_t recordsize; 2960 uint64_t record_count; 2961 objset_t *os; 2962 VERIFY0(dmu_objset_from_ds(ds, &os)); 2963 2964 /* Assume all (uncompressed) blocks are recordsize. */ 2965 if (zfs_override_estimate_recordsize != 0) { 2966 recordsize = zfs_override_estimate_recordsize; 2967 } else if (os->os_phys->os_type == DMU_OST_ZVOL) { 2968 err = dsl_prop_get_int_ds(ds, 2969 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize); 2970 } else { 2971 err = dsl_prop_get_int_ds(ds, 2972 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize); 2973 } 2974 if (err != 0) 2975 return (err); 2976 record_count = uncompressed / recordsize; 2977 2978 /* 2979 * If we're estimating a send size for a compressed stream, use the 2980 * compressed data size to estimate the stream size. Otherwise, use the 2981 * uncompressed data size. 2982 */ 2983 size = stream_compressed ? compressed : uncompressed; 2984 2985 /* 2986 * Subtract out approximate space used by indirect blocks. 2987 * Assume most space is used by data blocks (non-indirect, non-dnode). 2988 * Assume no ditto blocks or internal fragmentation. 2989 * 2990 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 2991 * block. 2992 */ 2993 size -= record_count * sizeof (blkptr_t); 2994 2995 /* Add in the space for the record associated with each block. */ 2996 size += record_count * sizeof (dmu_replay_record_t); 2997 2998 *sizep = size; 2999 3000 return (0); 3001 } 3002 3003 int 3004 dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds, 3005 zfs_bookmark_phys_t *frombook, boolean_t stream_compressed, 3006 boolean_t saved, uint64_t *sizep) 3007 { 3008 int err; 3009 dsl_dataset_t *ds = origds; 3010 uint64_t uncomp, comp; 3011 3012 ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool)); 3013 ASSERT(fromds == NULL || frombook == NULL); 3014 3015 /* 3016 * If this is a saved send we may actually be sending 3017 * from the %recv clone used for resuming. 3018 */ 3019 if (saved) { 3020 objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset; 3021 uint64_t guid; 3022 char dsname[ZFS_MAX_DATASET_NAME_LEN + 6]; 3023 3024 dsl_dataset_name(origds, dsname); 3025 (void) strcat(dsname, "/"); 3026 (void) strlcat(dsname, recv_clone_name, 3027 sizeof (dsname) - strlen(dsname)); 3028 3029 err = dsl_dataset_hold(origds->ds_dir->dd_pool, 3030 dsname, FTAG, &ds); 3031 if (err != ENOENT && err != 0) { 3032 return (err); 3033 } else if (err == ENOENT) { 3034 ds = origds; 3035 } 3036 3037 /* check that this dataset has partially received data */ 3038 err = zap_lookup(mos, ds->ds_object, 3039 DS_FIELD_RESUME_TOGUID, 8, 1, &guid); 3040 if (err != 0) { 3041 err = SET_ERROR(err == ENOENT ? EINVAL : err); 3042 goto out; 3043 } 3044 3045 err = zap_lookup(mos, ds->ds_object, 3046 DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname); 3047 if (err != 0) { 3048 err = SET_ERROR(err == ENOENT ? EINVAL : err); 3049 goto out; 3050 } 3051 } 3052 3053 /* tosnap must be a snapshot or the target of a saved send */ 3054 if (!ds->ds_is_snapshot && ds == origds) 3055 return (SET_ERROR(EINVAL)); 3056 3057 if (fromds != NULL) { 3058 uint64_t used; 3059 if (!fromds->ds_is_snapshot) { 3060 err = SET_ERROR(EINVAL); 3061 goto out; 3062 } 3063 3064 if (!dsl_dataset_is_before(ds, fromds, 0)) { 3065 err = SET_ERROR(EXDEV); 3066 goto out; 3067 } 3068 3069 err = dsl_dataset_space_written(fromds, ds, &used, &comp, 3070 &uncomp); 3071 if (err != 0) 3072 goto out; 3073 } else if (frombook != NULL) { 3074 uint64_t used; 3075 err = dsl_dataset_space_written_bookmark(frombook, ds, &used, 3076 &comp, &uncomp); 3077 if (err != 0) 3078 goto out; 3079 } else { 3080 uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 3081 comp = dsl_dataset_phys(ds)->ds_compressed_bytes; 3082 } 3083 3084 err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp, 3085 stream_compressed, sizep); 3086 /* 3087 * Add the size of the BEGIN and END records to the estimate. 3088 */ 3089 *sizep += 2 * sizeof (dmu_replay_record_t); 3090 3091 out: 3092 if (ds != origds) 3093 dsl_dataset_rele(ds, FTAG); 3094 return (err); 3095 } 3096 3097 ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW, 3098 "Allow sending corrupt data"); 3099 3100 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, UINT, ZMOD_RW, 3101 "Maximum send queue length"); 3102 3103 ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW, 3104 "Send unmodified spill blocks"); 3105 3106 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, UINT, ZMOD_RW, 3107 "Maximum send queue length for non-prefetch queues"); 3108 3109 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, UINT, ZMOD_RW, 3110 "Send queue fill fraction"); 3111 3112 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, UINT, ZMOD_RW, 3113 "Send queue fill fraction for non-prefetch queues"); 3114 3115 ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, UINT, ZMOD_RW, 3116 "Override block size estimate with fixed size"); 3117