1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 */ 32 33 #include <sys/dmu.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/dbuf.h> 37 #include <sys/dnode.h> 38 #include <sys/zfs_context.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/dmu_traverse.h> 41 #include <sys/dsl_dataset.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/dsl_prop.h> 44 #include <sys/dsl_pool.h> 45 #include <sys/dsl_synctask.h> 46 #include <sys/spa_impl.h> 47 #include <sys/zfs_ioctl.h> 48 #include <sys/zap.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/zfs_znode.h> 51 #include <zfs_fletcher.h> 52 #include <sys/avl.h> 53 #include <sys/ddt.h> 54 #include <sys/zfs_onexit.h> 55 #include <sys/dmu_send.h> 56 #include <sys/dmu_recv.h> 57 #include <sys/dsl_destroy.h> 58 #include <sys/blkptr.h> 59 #include <sys/dsl_bookmark.h> 60 #include <sys/zfeature.h> 61 #include <sys/bqueue.h> 62 #include <sys/zvol.h> 63 #include <sys/policy.h> 64 #include <sys/objlist.h> 65 #ifdef _KERNEL 66 #include <sys/zfs_vfsops.h> 67 #endif 68 69 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 70 int zfs_send_corrupt_data = B_FALSE; 71 /* 72 * This tunable controls the amount of data (measured in bytes) that will be 73 * prefetched by zfs send. If the main thread is blocking on reads that haven't 74 * completed, this variable might need to be increased. If instead the main 75 * thread is issuing new reads because the prefetches have fallen out of the 76 * cache, this may need to be decreased. 77 */ 78 int zfs_send_queue_length = SPA_MAXBLOCKSIZE; 79 /* 80 * This tunable controls the length of the queues that zfs send worker threads 81 * use to communicate. If the send_main_thread is blocking on these queues, 82 * this variable may need to be increased. If there is a significant slowdown 83 * at the start of a send as these threads consume all the available IO 84 * resources, this variable may need to be decreased. 85 */ 86 int zfs_send_no_prefetch_queue_length = 1024 * 1024; 87 /* 88 * These tunables control the fill fraction of the queues by zfs send. The fill 89 * fraction controls the frequency with which threads have to be cv_signaled. 90 * If a lot of cpu time is being spent on cv_signal, then these should be tuned 91 * down. If the queues empty before the signalled thread can catch up, then 92 * these should be tuned up. 93 */ 94 int zfs_send_queue_ff = 20; 95 int zfs_send_no_prefetch_queue_ff = 20; 96 97 /* 98 * Use this to override the recordsize calculation for fast zfs send estimates. 99 */ 100 int zfs_override_estimate_recordsize = 0; 101 102 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */ 103 int zfs_send_set_freerecords_bit = B_TRUE; 104 105 /* Set this tunable to FALSE is disable sending unmodified spill blocks. */ 106 int zfs_send_unmodified_spill_blocks = B_TRUE; 107 108 static inline boolean_t 109 overflow_multiply(uint64_t a, uint64_t b, uint64_t *c) 110 { 111 uint64_t temp = a * b; 112 if (b != 0 && temp / b != a) 113 return (B_FALSE); 114 *c = temp; 115 return (B_TRUE); 116 } 117 118 struct send_thread_arg { 119 bqueue_t q; 120 objset_t *os; /* Objset to traverse */ 121 uint64_t fromtxg; /* Traverse from this txg */ 122 int flags; /* flags to pass to traverse_dataset */ 123 int error_code; 124 boolean_t cancel; 125 zbookmark_phys_t resume; 126 uint64_t *num_blocks_visited; 127 }; 128 129 struct redact_list_thread_arg { 130 boolean_t cancel; 131 bqueue_t q; 132 zbookmark_phys_t resume; 133 redaction_list_t *rl; 134 boolean_t mark_redact; 135 int error_code; 136 uint64_t *num_blocks_visited; 137 }; 138 139 struct send_merge_thread_arg { 140 bqueue_t q; 141 objset_t *os; 142 struct redact_list_thread_arg *from_arg; 143 struct send_thread_arg *to_arg; 144 struct redact_list_thread_arg *redact_arg; 145 int error; 146 boolean_t cancel; 147 }; 148 149 struct send_range { 150 boolean_t eos_marker; /* Marks the end of the stream */ 151 uint64_t object; 152 uint64_t start_blkid; 153 uint64_t end_blkid; 154 bqueue_node_t ln; 155 enum type {DATA, HOLE, OBJECT, OBJECT_RANGE, REDACT, 156 PREVIOUSLY_REDACTED} type; 157 union { 158 struct srd { 159 dmu_object_type_t obj_type; 160 uint32_t datablksz; // logical size 161 uint32_t datasz; // payload size 162 blkptr_t bp; 163 arc_buf_t *abuf; 164 abd_t *abd; 165 kmutex_t lock; 166 kcondvar_t cv; 167 boolean_t io_outstanding; 168 boolean_t io_compressed; 169 int io_err; 170 } data; 171 struct srh { 172 uint32_t datablksz; 173 } hole; 174 struct sro { 175 /* 176 * This is a pointer because embedding it in the 177 * struct causes these structures to be massively larger 178 * for all range types; this makes the code much less 179 * memory efficient. 180 */ 181 dnode_phys_t *dnp; 182 blkptr_t bp; 183 } object; 184 struct srr { 185 uint32_t datablksz; 186 } redact; 187 struct sror { 188 blkptr_t bp; 189 } object_range; 190 } sru; 191 }; 192 193 /* 194 * The list of data whose inclusion in a send stream can be pending from 195 * one call to backup_cb to another. Multiple calls to dump_free(), 196 * dump_freeobjects(), and dump_redact() can be aggregated into a single 197 * DRR_FREE, DRR_FREEOBJECTS, or DRR_REDACT replay record. 198 */ 199 typedef enum { 200 PENDING_NONE, 201 PENDING_FREE, 202 PENDING_FREEOBJECTS, 203 PENDING_REDACT 204 } dmu_pendop_t; 205 206 typedef struct dmu_send_cookie { 207 dmu_replay_record_t *dsc_drr; 208 dmu_send_outparams_t *dsc_dso; 209 offset_t *dsc_off; 210 objset_t *dsc_os; 211 zio_cksum_t dsc_zc; 212 uint64_t dsc_toguid; 213 uint64_t dsc_fromtxg; 214 int dsc_err; 215 dmu_pendop_t dsc_pending_op; 216 uint64_t dsc_featureflags; 217 uint64_t dsc_last_data_object; 218 uint64_t dsc_last_data_offset; 219 uint64_t dsc_resume_object; 220 uint64_t dsc_resume_offset; 221 boolean_t dsc_sent_begin; 222 boolean_t dsc_sent_end; 223 } dmu_send_cookie_t; 224 225 static int do_dump(dmu_send_cookie_t *dscp, struct send_range *range); 226 227 static void 228 range_free(struct send_range *range) 229 { 230 if (range->type == OBJECT) { 231 size_t size = sizeof (dnode_phys_t) * 232 (range->sru.object.dnp->dn_extra_slots + 1); 233 kmem_free(range->sru.object.dnp, size); 234 } else if (range->type == DATA) { 235 mutex_enter(&range->sru.data.lock); 236 while (range->sru.data.io_outstanding) 237 cv_wait(&range->sru.data.cv, &range->sru.data.lock); 238 if (range->sru.data.abd != NULL) 239 abd_free(range->sru.data.abd); 240 if (range->sru.data.abuf != NULL) { 241 arc_buf_destroy(range->sru.data.abuf, 242 &range->sru.data.abuf); 243 } 244 mutex_exit(&range->sru.data.lock); 245 246 cv_destroy(&range->sru.data.cv); 247 mutex_destroy(&range->sru.data.lock); 248 } 249 kmem_free(range, sizeof (*range)); 250 } 251 252 /* 253 * For all record types except BEGIN, fill in the checksum (overlaid in 254 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 255 * up to the start of the checksum itself. 256 */ 257 static int 258 dump_record(dmu_send_cookie_t *dscp, void *payload, int payload_len) 259 { 260 dmu_send_outparams_t *dso = dscp->dsc_dso; 261 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 262 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 263 (void) fletcher_4_incremental_native(dscp->dsc_drr, 264 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 265 &dscp->dsc_zc); 266 if (dscp->dsc_drr->drr_type == DRR_BEGIN) { 267 dscp->dsc_sent_begin = B_TRUE; 268 } else { 269 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dscp->dsc_drr->drr_u. 270 drr_checksum.drr_checksum)); 271 dscp->dsc_drr->drr_u.drr_checksum.drr_checksum = dscp->dsc_zc; 272 } 273 if (dscp->dsc_drr->drr_type == DRR_END) { 274 dscp->dsc_sent_end = B_TRUE; 275 } 276 (void) fletcher_4_incremental_native(&dscp->dsc_drr-> 277 drr_u.drr_checksum.drr_checksum, 278 sizeof (zio_cksum_t), &dscp->dsc_zc); 279 *dscp->dsc_off += sizeof (dmu_replay_record_t); 280 dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, dscp->dsc_drr, 281 sizeof (dmu_replay_record_t), dso->dso_arg); 282 if (dscp->dsc_err != 0) 283 return (SET_ERROR(EINTR)); 284 if (payload_len != 0) { 285 *dscp->dsc_off += payload_len; 286 /* 287 * payload is null when dso_dryrun == B_TRUE (i.e. when we're 288 * doing a send size calculation) 289 */ 290 if (payload != NULL) { 291 (void) fletcher_4_incremental_native( 292 payload, payload_len, &dscp->dsc_zc); 293 } 294 295 /* 296 * The code does not rely on this (len being a multiple of 8). 297 * We keep this assertion because of the corresponding assertion 298 * in receive_read(). Keeping this assertion ensures that we do 299 * not inadvertently break backwards compatibility (causing the 300 * assertion in receive_read() to trigger on old software). 301 * 302 * Raw sends cannot be received on old software, and so can 303 * bypass this assertion. 304 */ 305 306 ASSERT((payload_len % 8 == 0) || 307 (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)); 308 309 dscp->dsc_err = dso->dso_outfunc(dscp->dsc_os, payload, 310 payload_len, dso->dso_arg); 311 if (dscp->dsc_err != 0) 312 return (SET_ERROR(EINTR)); 313 } 314 return (0); 315 } 316 317 /* 318 * Fill in the drr_free struct, or perform aggregation if the previous record is 319 * also a free record, and the two are adjacent. 320 * 321 * Note that we send free records even for a full send, because we want to be 322 * able to receive a full send as a clone, which requires a list of all the free 323 * and freeobject records that were generated on the source. 324 */ 325 static int 326 dump_free(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset, 327 uint64_t length) 328 { 329 struct drr_free *drrf = &(dscp->dsc_drr->drr_u.drr_free); 330 331 /* 332 * When we receive a free record, dbuf_free_range() assumes 333 * that the receiving system doesn't have any dbufs in the range 334 * being freed. This is always true because there is a one-record 335 * constraint: we only send one WRITE record for any given 336 * object,offset. We know that the one-record constraint is 337 * true because we always send data in increasing order by 338 * object,offset. 339 * 340 * If the increasing-order constraint ever changes, we should find 341 * another way to assert that the one-record constraint is still 342 * satisfied. 343 */ 344 ASSERT(object > dscp->dsc_last_data_object || 345 (object == dscp->dsc_last_data_object && 346 offset > dscp->dsc_last_data_offset)); 347 348 /* 349 * If there is a pending op, but it's not PENDING_FREE, push it out, 350 * since free block aggregation can only be done for blocks of the 351 * same type (i.e., DRR_FREE records can only be aggregated with 352 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 353 * aggregated with other DRR_FREEOBJECTS records). 354 */ 355 if (dscp->dsc_pending_op != PENDING_NONE && 356 dscp->dsc_pending_op != PENDING_FREE) { 357 if (dump_record(dscp, NULL, 0) != 0) 358 return (SET_ERROR(EINTR)); 359 dscp->dsc_pending_op = PENDING_NONE; 360 } 361 362 if (dscp->dsc_pending_op == PENDING_FREE) { 363 /* 364 * Check to see whether this free block can be aggregated 365 * with pending one. 366 */ 367 if (drrf->drr_object == object && drrf->drr_offset + 368 drrf->drr_length == offset) { 369 if (offset + length < offset || length == UINT64_MAX) 370 drrf->drr_length = UINT64_MAX; 371 else 372 drrf->drr_length += length; 373 return (0); 374 } else { 375 /* not a continuation. Push out pending record */ 376 if (dump_record(dscp, NULL, 0) != 0) 377 return (SET_ERROR(EINTR)); 378 dscp->dsc_pending_op = PENDING_NONE; 379 } 380 } 381 /* create a FREE record and make it pending */ 382 bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t)); 383 dscp->dsc_drr->drr_type = DRR_FREE; 384 drrf->drr_object = object; 385 drrf->drr_offset = offset; 386 if (offset + length < offset) 387 drrf->drr_length = DMU_OBJECT_END; 388 else 389 drrf->drr_length = length; 390 drrf->drr_toguid = dscp->dsc_toguid; 391 if (length == DMU_OBJECT_END) { 392 if (dump_record(dscp, NULL, 0) != 0) 393 return (SET_ERROR(EINTR)); 394 } else { 395 dscp->dsc_pending_op = PENDING_FREE; 396 } 397 398 return (0); 399 } 400 401 /* 402 * Fill in the drr_redact struct, or perform aggregation if the previous record 403 * is also a redaction record, and the two are adjacent. 404 */ 405 static int 406 dump_redact(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset, 407 uint64_t length) 408 { 409 struct drr_redact *drrr = &dscp->dsc_drr->drr_u.drr_redact; 410 411 /* 412 * If there is a pending op, but it's not PENDING_REDACT, push it out, 413 * since free block aggregation can only be done for blocks of the 414 * same type (i.e., DRR_REDACT records can only be aggregated with 415 * other DRR_REDACT records). 416 */ 417 if (dscp->dsc_pending_op != PENDING_NONE && 418 dscp->dsc_pending_op != PENDING_REDACT) { 419 if (dump_record(dscp, NULL, 0) != 0) 420 return (SET_ERROR(EINTR)); 421 dscp->dsc_pending_op = PENDING_NONE; 422 } 423 424 if (dscp->dsc_pending_op == PENDING_REDACT) { 425 /* 426 * Check to see whether this redacted block can be aggregated 427 * with pending one. 428 */ 429 if (drrr->drr_object == object && drrr->drr_offset + 430 drrr->drr_length == offset) { 431 drrr->drr_length += length; 432 return (0); 433 } else { 434 /* not a continuation. Push out pending record */ 435 if (dump_record(dscp, NULL, 0) != 0) 436 return (SET_ERROR(EINTR)); 437 dscp->dsc_pending_op = PENDING_NONE; 438 } 439 } 440 /* create a REDACT record and make it pending */ 441 bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t)); 442 dscp->dsc_drr->drr_type = DRR_REDACT; 443 drrr->drr_object = object; 444 drrr->drr_offset = offset; 445 drrr->drr_length = length; 446 drrr->drr_toguid = dscp->dsc_toguid; 447 dscp->dsc_pending_op = PENDING_REDACT; 448 449 return (0); 450 } 451 452 static int 453 dmu_dump_write(dmu_send_cookie_t *dscp, dmu_object_type_t type, uint64_t object, 454 uint64_t offset, int lsize, int psize, const blkptr_t *bp, 455 boolean_t io_compressed, void *data) 456 { 457 uint64_t payload_size; 458 boolean_t raw = (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW); 459 struct drr_write *drrw = &(dscp->dsc_drr->drr_u.drr_write); 460 461 /* 462 * We send data in increasing object, offset order. 463 * See comment in dump_free() for details. 464 */ 465 ASSERT(object > dscp->dsc_last_data_object || 466 (object == dscp->dsc_last_data_object && 467 offset > dscp->dsc_last_data_offset)); 468 dscp->dsc_last_data_object = object; 469 dscp->dsc_last_data_offset = offset + lsize - 1; 470 471 /* 472 * If there is any kind of pending aggregation (currently either 473 * a grouping of free objects or free blocks), push it out to 474 * the stream, since aggregation can't be done across operations 475 * of different types. 476 */ 477 if (dscp->dsc_pending_op != PENDING_NONE) { 478 if (dump_record(dscp, NULL, 0) != 0) 479 return (SET_ERROR(EINTR)); 480 dscp->dsc_pending_op = PENDING_NONE; 481 } 482 /* write a WRITE record */ 483 bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t)); 484 dscp->dsc_drr->drr_type = DRR_WRITE; 485 drrw->drr_object = object; 486 drrw->drr_type = type; 487 drrw->drr_offset = offset; 488 drrw->drr_toguid = dscp->dsc_toguid; 489 drrw->drr_logical_size = lsize; 490 491 /* only set the compression fields if the buf is compressed or raw */ 492 boolean_t compressed = 493 (bp != NULL ? BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 494 io_compressed : lsize != psize); 495 if (raw || compressed) { 496 ASSERT(raw || dscp->dsc_featureflags & 497 DMU_BACKUP_FEATURE_COMPRESSED); 498 ASSERT(!BP_IS_EMBEDDED(bp)); 499 ASSERT3S(psize, >, 0); 500 501 if (raw) { 502 ASSERT(BP_IS_PROTECTED(bp)); 503 504 /* 505 * This is a raw protected block so we need to pass 506 * along everything the receiving side will need to 507 * interpret this block, including the byteswap, salt, 508 * IV, and MAC. 509 */ 510 if (BP_SHOULD_BYTESWAP(bp)) 511 drrw->drr_flags |= DRR_RAW_BYTESWAP; 512 zio_crypt_decode_params_bp(bp, drrw->drr_salt, 513 drrw->drr_iv); 514 zio_crypt_decode_mac_bp(bp, drrw->drr_mac); 515 } else { 516 /* this is a compressed block */ 517 ASSERT(dscp->dsc_featureflags & 518 DMU_BACKUP_FEATURE_COMPRESSED); 519 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 520 ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp))); 521 ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF); 522 ASSERT3S(lsize, >=, psize); 523 } 524 525 /* set fields common to compressed and raw sends */ 526 drrw->drr_compressiontype = BP_GET_COMPRESS(bp); 527 drrw->drr_compressed_size = psize; 528 payload_size = drrw->drr_compressed_size; 529 } else { 530 payload_size = drrw->drr_logical_size; 531 } 532 533 if (bp == NULL || BP_IS_EMBEDDED(bp) || (BP_IS_PROTECTED(bp) && !raw)) { 534 /* 535 * There's no pre-computed checksum for partial-block writes, 536 * embedded BP's, or encrypted BP's that are being sent as 537 * plaintext, so (like fletcher4-checksummed blocks) userland 538 * will have to compute a dedup-capable checksum itself. 539 */ 540 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 541 } else { 542 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 543 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 544 ZCHECKSUM_FLAG_DEDUP) 545 drrw->drr_flags |= DRR_CHECKSUM_DEDUP; 546 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 547 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 548 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 549 DDK_SET_CRYPT(&drrw->drr_key, BP_IS_PROTECTED(bp)); 550 drrw->drr_key.ddk_cksum = bp->blk_cksum; 551 } 552 553 if (dump_record(dscp, data, payload_size) != 0) 554 return (SET_ERROR(EINTR)); 555 return (0); 556 } 557 558 static int 559 dump_write_embedded(dmu_send_cookie_t *dscp, uint64_t object, uint64_t offset, 560 int blksz, const blkptr_t *bp) 561 { 562 char buf[BPE_PAYLOAD_SIZE]; 563 struct drr_write_embedded *drrw = 564 &(dscp->dsc_drr->drr_u.drr_write_embedded); 565 566 if (dscp->dsc_pending_op != PENDING_NONE) { 567 if (dump_record(dscp, NULL, 0) != 0) 568 return (SET_ERROR(EINTR)); 569 dscp->dsc_pending_op = PENDING_NONE; 570 } 571 572 ASSERT(BP_IS_EMBEDDED(bp)); 573 574 bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t)); 575 dscp->dsc_drr->drr_type = DRR_WRITE_EMBEDDED; 576 drrw->drr_object = object; 577 drrw->drr_offset = offset; 578 drrw->drr_length = blksz; 579 drrw->drr_toguid = dscp->dsc_toguid; 580 drrw->drr_compression = BP_GET_COMPRESS(bp); 581 drrw->drr_etype = BPE_GET_ETYPE(bp); 582 drrw->drr_lsize = BPE_GET_LSIZE(bp); 583 drrw->drr_psize = BPE_GET_PSIZE(bp); 584 585 decode_embedded_bp_compressed(bp, buf); 586 587 if (dump_record(dscp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 588 return (SET_ERROR(EINTR)); 589 return (0); 590 } 591 592 static int 593 dump_spill(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object, 594 void *data) 595 { 596 struct drr_spill *drrs = &(dscp->dsc_drr->drr_u.drr_spill); 597 uint64_t blksz = BP_GET_LSIZE(bp); 598 uint64_t payload_size = blksz; 599 600 if (dscp->dsc_pending_op != PENDING_NONE) { 601 if (dump_record(dscp, NULL, 0) != 0) 602 return (SET_ERROR(EINTR)); 603 dscp->dsc_pending_op = PENDING_NONE; 604 } 605 606 /* write a SPILL record */ 607 bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t)); 608 dscp->dsc_drr->drr_type = DRR_SPILL; 609 drrs->drr_object = object; 610 drrs->drr_length = blksz; 611 drrs->drr_toguid = dscp->dsc_toguid; 612 613 /* See comment in dump_dnode() for full details */ 614 if (zfs_send_unmodified_spill_blocks && 615 (bp->blk_birth <= dscp->dsc_fromtxg)) { 616 drrs->drr_flags |= DRR_SPILL_UNMODIFIED; 617 } 618 619 /* handle raw send fields */ 620 if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) { 621 ASSERT(BP_IS_PROTECTED(bp)); 622 623 if (BP_SHOULD_BYTESWAP(bp)) 624 drrs->drr_flags |= DRR_RAW_BYTESWAP; 625 drrs->drr_compressiontype = BP_GET_COMPRESS(bp); 626 drrs->drr_compressed_size = BP_GET_PSIZE(bp); 627 zio_crypt_decode_params_bp(bp, drrs->drr_salt, drrs->drr_iv); 628 zio_crypt_decode_mac_bp(bp, drrs->drr_mac); 629 payload_size = drrs->drr_compressed_size; 630 } 631 632 if (dump_record(dscp, data, payload_size) != 0) 633 return (SET_ERROR(EINTR)); 634 return (0); 635 } 636 637 static int 638 dump_freeobjects(dmu_send_cookie_t *dscp, uint64_t firstobj, uint64_t numobjs) 639 { 640 struct drr_freeobjects *drrfo = &(dscp->dsc_drr->drr_u.drr_freeobjects); 641 uint64_t maxobj = DNODES_PER_BLOCK * 642 (DMU_META_DNODE(dscp->dsc_os)->dn_maxblkid + 1); 643 644 /* 645 * ZoL < 0.7 does not handle large FREEOBJECTS records correctly, 646 * leading to zfs recv never completing. to avoid this issue, don't 647 * send FREEOBJECTS records for object IDs which cannot exist on the 648 * receiving side. 649 */ 650 if (maxobj > 0) { 651 if (maxobj <= firstobj) 652 return (0); 653 654 if (maxobj < firstobj + numobjs) 655 numobjs = maxobj - firstobj; 656 } 657 658 /* 659 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 660 * push it out, since free block aggregation can only be done for 661 * blocks of the same type (i.e., DRR_FREE records can only be 662 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 663 * can only be aggregated with other DRR_FREEOBJECTS records). 664 */ 665 if (dscp->dsc_pending_op != PENDING_NONE && 666 dscp->dsc_pending_op != PENDING_FREEOBJECTS) { 667 if (dump_record(dscp, NULL, 0) != 0) 668 return (SET_ERROR(EINTR)); 669 dscp->dsc_pending_op = PENDING_NONE; 670 } 671 672 if (dscp->dsc_pending_op == PENDING_FREEOBJECTS) { 673 /* 674 * See whether this free object array can be aggregated 675 * with pending one 676 */ 677 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 678 drrfo->drr_numobjs += numobjs; 679 return (0); 680 } else { 681 /* can't be aggregated. Push out pending record */ 682 if (dump_record(dscp, NULL, 0) != 0) 683 return (SET_ERROR(EINTR)); 684 dscp->dsc_pending_op = PENDING_NONE; 685 } 686 } 687 688 /* write a FREEOBJECTS record */ 689 bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t)); 690 dscp->dsc_drr->drr_type = DRR_FREEOBJECTS; 691 drrfo->drr_firstobj = firstobj; 692 drrfo->drr_numobjs = numobjs; 693 drrfo->drr_toguid = dscp->dsc_toguid; 694 695 dscp->dsc_pending_op = PENDING_FREEOBJECTS; 696 697 return (0); 698 } 699 700 static int 701 dump_dnode(dmu_send_cookie_t *dscp, const blkptr_t *bp, uint64_t object, 702 dnode_phys_t *dnp) 703 { 704 struct drr_object *drro = &(dscp->dsc_drr->drr_u.drr_object); 705 int bonuslen; 706 707 if (object < dscp->dsc_resume_object) { 708 /* 709 * Note: when resuming, we will visit all the dnodes in 710 * the block of dnodes that we are resuming from. In 711 * this case it's unnecessary to send the dnodes prior to 712 * the one we are resuming from. We should be at most one 713 * block's worth of dnodes behind the resume point. 714 */ 715 ASSERT3U(dscp->dsc_resume_object - object, <, 716 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 717 return (0); 718 } 719 720 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 721 return (dump_freeobjects(dscp, object, 1)); 722 723 if (dscp->dsc_pending_op != PENDING_NONE) { 724 if (dump_record(dscp, NULL, 0) != 0) 725 return (SET_ERROR(EINTR)); 726 dscp->dsc_pending_op = PENDING_NONE; 727 } 728 729 /* write an OBJECT record */ 730 bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t)); 731 dscp->dsc_drr->drr_type = DRR_OBJECT; 732 drro->drr_object = object; 733 drro->drr_type = dnp->dn_type; 734 drro->drr_bonustype = dnp->dn_bonustype; 735 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 736 drro->drr_bonuslen = dnp->dn_bonuslen; 737 drro->drr_dn_slots = dnp->dn_extra_slots + 1; 738 drro->drr_checksumtype = dnp->dn_checksum; 739 drro->drr_compress = dnp->dn_compress; 740 drro->drr_toguid = dscp->dsc_toguid; 741 742 if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 743 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 744 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 745 746 bonuslen = P2ROUNDUP(dnp->dn_bonuslen, 8); 747 748 if ((dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) { 749 ASSERT(BP_IS_ENCRYPTED(bp)); 750 751 if (BP_SHOULD_BYTESWAP(bp)) 752 drro->drr_flags |= DRR_RAW_BYTESWAP; 753 754 /* needed for reconstructing dnp on recv side */ 755 drro->drr_maxblkid = dnp->dn_maxblkid; 756 drro->drr_indblkshift = dnp->dn_indblkshift; 757 drro->drr_nlevels = dnp->dn_nlevels; 758 drro->drr_nblkptr = dnp->dn_nblkptr; 759 760 /* 761 * Since we encrypt the entire bonus area, the (raw) part 762 * beyond the bonuslen is actually nonzero, so we need 763 * to send it. 764 */ 765 if (bonuslen != 0) { 766 drro->drr_raw_bonuslen = DN_MAX_BONUS_LEN(dnp); 767 bonuslen = drro->drr_raw_bonuslen; 768 } 769 } 770 771 /* 772 * DRR_OBJECT_SPILL is set for every dnode which references a 773 * spill block. This allows the receiving pool to definitively 774 * determine when a spill block should be kept or freed. 775 */ 776 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 777 drro->drr_flags |= DRR_OBJECT_SPILL; 778 779 if (dump_record(dscp, DN_BONUS(dnp), bonuslen) != 0) 780 return (SET_ERROR(EINTR)); 781 782 /* Free anything past the end of the file. */ 783 if (dump_free(dscp, object, (dnp->dn_maxblkid + 1) * 784 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), DMU_OBJECT_END) != 0) 785 return (SET_ERROR(EINTR)); 786 787 /* 788 * Send DRR_SPILL records for unmodified spill blocks. This is useful 789 * because changing certain attributes of the object (e.g. blocksize) 790 * can cause old versions of ZFS to incorrectly remove a spill block. 791 * Including these records in the stream forces an up to date version 792 * to always be written ensuring they're never lost. Current versions 793 * of the code which understand the DRR_FLAG_SPILL_BLOCK feature can 794 * ignore these unmodified spill blocks. 795 */ 796 if (zfs_send_unmodified_spill_blocks && 797 (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) && 798 (DN_SPILL_BLKPTR(dnp)->blk_birth <= dscp->dsc_fromtxg)) { 799 struct send_range record; 800 blkptr_t *bp = DN_SPILL_BLKPTR(dnp); 801 802 bzero(&record, sizeof (struct send_range)); 803 record.type = DATA; 804 record.object = object; 805 record.eos_marker = B_FALSE; 806 record.start_blkid = DMU_SPILL_BLKID; 807 record.end_blkid = record.start_blkid + 1; 808 record.sru.data.bp = *bp; 809 record.sru.data.obj_type = dnp->dn_type; 810 record.sru.data.datablksz = BP_GET_LSIZE(bp); 811 812 if (do_dump(dscp, &record) != 0) 813 return (SET_ERROR(EINTR)); 814 } 815 816 if (dscp->dsc_err != 0) 817 return (SET_ERROR(EINTR)); 818 819 return (0); 820 } 821 822 static int 823 dump_object_range(dmu_send_cookie_t *dscp, const blkptr_t *bp, 824 uint64_t firstobj, uint64_t numslots) 825 { 826 struct drr_object_range *drror = 827 &(dscp->dsc_drr->drr_u.drr_object_range); 828 829 /* we only use this record type for raw sends */ 830 ASSERT(BP_IS_PROTECTED(bp)); 831 ASSERT(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW); 832 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 833 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_DNODE); 834 ASSERT0(BP_GET_LEVEL(bp)); 835 836 if (dscp->dsc_pending_op != PENDING_NONE) { 837 if (dump_record(dscp, NULL, 0) != 0) 838 return (SET_ERROR(EINTR)); 839 dscp->dsc_pending_op = PENDING_NONE; 840 } 841 842 bzero(dscp->dsc_drr, sizeof (dmu_replay_record_t)); 843 dscp->dsc_drr->drr_type = DRR_OBJECT_RANGE; 844 drror->drr_firstobj = firstobj; 845 drror->drr_numslots = numslots; 846 drror->drr_toguid = dscp->dsc_toguid; 847 if (BP_SHOULD_BYTESWAP(bp)) 848 drror->drr_flags |= DRR_RAW_BYTESWAP; 849 zio_crypt_decode_params_bp(bp, drror->drr_salt, drror->drr_iv); 850 zio_crypt_decode_mac_bp(bp, drror->drr_mac); 851 852 if (dump_record(dscp, NULL, 0) != 0) 853 return (SET_ERROR(EINTR)); 854 return (0); 855 } 856 857 static boolean_t 858 send_do_embed(const blkptr_t *bp, uint64_t featureflags) 859 { 860 if (!BP_IS_EMBEDDED(bp)) 861 return (B_FALSE); 862 863 /* 864 * Compression function must be legacy, or explicitly enabled. 865 */ 866 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 867 !(featureflags & DMU_BACKUP_FEATURE_LZ4))) 868 return (B_FALSE); 869 870 /* 871 * If we have not set the ZSTD feature flag, we can't send ZSTD 872 * compressed embedded blocks, as the receiver may not support them. 873 */ 874 if ((BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD && 875 !(featureflags & DMU_BACKUP_FEATURE_ZSTD))) 876 return (B_FALSE); 877 878 /* 879 * Embed type must be explicitly enabled. 880 */ 881 switch (BPE_GET_ETYPE(bp)) { 882 case BP_EMBEDDED_TYPE_DATA: 883 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 884 return (B_TRUE); 885 break; 886 default: 887 return (B_FALSE); 888 } 889 return (B_FALSE); 890 } 891 892 /* 893 * This function actually handles figuring out what kind of record needs to be 894 * dumped, and calling the appropriate helper function. In most cases, 895 * the data has already been read by send_reader_thread(). 896 */ 897 static int 898 do_dump(dmu_send_cookie_t *dscp, struct send_range *range) 899 { 900 int err = 0; 901 switch (range->type) { 902 case OBJECT: 903 err = dump_dnode(dscp, &range->sru.object.bp, range->object, 904 range->sru.object.dnp); 905 return (err); 906 case OBJECT_RANGE: { 907 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid); 908 if (!(dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW)) { 909 return (0); 910 } 911 uint64_t epb = BP_GET_LSIZE(&range->sru.object_range.bp) >> 912 DNODE_SHIFT; 913 uint64_t firstobj = range->start_blkid * epb; 914 err = dump_object_range(dscp, &range->sru.object_range.bp, 915 firstobj, epb); 916 break; 917 } 918 case REDACT: { 919 struct srr *srrp = &range->sru.redact; 920 err = dump_redact(dscp, range->object, range->start_blkid * 921 srrp->datablksz, (range->end_blkid - range->start_blkid) * 922 srrp->datablksz); 923 return (err); 924 } 925 case DATA: { 926 struct srd *srdp = &range->sru.data; 927 blkptr_t *bp = &srdp->bp; 928 spa_t *spa = 929 dmu_objset_spa(dscp->dsc_os); 930 931 ASSERT3U(srdp->datablksz, ==, BP_GET_LSIZE(bp)); 932 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid); 933 if (BP_GET_TYPE(bp) == DMU_OT_SA) { 934 arc_flags_t aflags = ARC_FLAG_WAIT; 935 enum zio_flag zioflags = ZIO_FLAG_CANFAIL; 936 937 if (dscp->dsc_featureflags & DMU_BACKUP_FEATURE_RAW) { 938 ASSERT(BP_IS_PROTECTED(bp)); 939 zioflags |= ZIO_FLAG_RAW; 940 } 941 942 zbookmark_phys_t zb; 943 ASSERT3U(range->start_blkid, ==, DMU_SPILL_BLKID); 944 zb.zb_objset = dmu_objset_id(dscp->dsc_os); 945 zb.zb_object = range->object; 946 zb.zb_level = 0; 947 zb.zb_blkid = range->start_blkid; 948 949 arc_buf_t *abuf = NULL; 950 if (!dscp->dsc_dso->dso_dryrun && arc_read(NULL, spa, 951 bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ, 952 zioflags, &aflags, &zb) != 0) 953 return (SET_ERROR(EIO)); 954 955 err = dump_spill(dscp, bp, zb.zb_object, 956 (abuf == NULL ? NULL : abuf->b_data)); 957 if (abuf != NULL) 958 arc_buf_destroy(abuf, &abuf); 959 return (err); 960 } 961 if (send_do_embed(bp, dscp->dsc_featureflags)) { 962 err = dump_write_embedded(dscp, range->object, 963 range->start_blkid * srdp->datablksz, 964 srdp->datablksz, bp); 965 return (err); 966 } 967 ASSERT(range->object > dscp->dsc_resume_object || 968 (range->object == dscp->dsc_resume_object && 969 range->start_blkid * srdp->datablksz >= 970 dscp->dsc_resume_offset)); 971 /* it's a level-0 block of a regular object */ 972 973 mutex_enter(&srdp->lock); 974 while (srdp->io_outstanding) 975 cv_wait(&srdp->cv, &srdp->lock); 976 err = srdp->io_err; 977 mutex_exit(&srdp->lock); 978 979 if (err != 0) { 980 if (zfs_send_corrupt_data && 981 !dscp->dsc_dso->dso_dryrun) { 982 /* 983 * Send a block filled with 0x"zfs badd bloc" 984 */ 985 srdp->abuf = arc_alloc_buf(spa, &srdp->abuf, 986 ARC_BUFC_DATA, srdp->datablksz); 987 uint64_t *ptr; 988 for (ptr = srdp->abuf->b_data; 989 (char *)ptr < (char *)srdp->abuf->b_data + 990 srdp->datablksz; ptr++) 991 *ptr = 0x2f5baddb10cULL; 992 } else { 993 return (SET_ERROR(EIO)); 994 } 995 } 996 997 ASSERT(dscp->dsc_dso->dso_dryrun || 998 srdp->abuf != NULL || srdp->abd != NULL); 999 1000 uint64_t offset = range->start_blkid * srdp->datablksz; 1001 1002 char *data = NULL; 1003 if (srdp->abd != NULL) { 1004 data = abd_to_buf(srdp->abd); 1005 ASSERT3P(srdp->abuf, ==, NULL); 1006 } else if (srdp->abuf != NULL) { 1007 data = srdp->abuf->b_data; 1008 } 1009 1010 /* 1011 * If we have large blocks stored on disk but the send flags 1012 * don't allow us to send large blocks, we split the data from 1013 * the arc buf into chunks. 1014 */ 1015 if (srdp->datablksz > SPA_OLD_MAXBLOCKSIZE && 1016 !(dscp->dsc_featureflags & 1017 DMU_BACKUP_FEATURE_LARGE_BLOCKS)) { 1018 while (srdp->datablksz > 0 && err == 0) { 1019 int n = MIN(srdp->datablksz, 1020 SPA_OLD_MAXBLOCKSIZE); 1021 err = dmu_dump_write(dscp, srdp->obj_type, 1022 range->object, offset, n, n, NULL, B_FALSE, 1023 data); 1024 offset += n; 1025 /* 1026 * When doing dry run, data==NULL is used as a 1027 * sentinel value by 1028 * dmu_dump_write()->dump_record(). 1029 */ 1030 if (data != NULL) 1031 data += n; 1032 srdp->datablksz -= n; 1033 } 1034 } else { 1035 err = dmu_dump_write(dscp, srdp->obj_type, 1036 range->object, offset, 1037 srdp->datablksz, srdp->datasz, bp, 1038 srdp->io_compressed, data); 1039 } 1040 return (err); 1041 } 1042 case HOLE: { 1043 struct srh *srhp = &range->sru.hole; 1044 if (range->object == DMU_META_DNODE_OBJECT) { 1045 uint32_t span = srhp->datablksz >> DNODE_SHIFT; 1046 uint64_t first_obj = range->start_blkid * span; 1047 uint64_t numobj = range->end_blkid * span - first_obj; 1048 return (dump_freeobjects(dscp, first_obj, numobj)); 1049 } 1050 uint64_t offset = 0; 1051 1052 /* 1053 * If this multiply overflows, we don't need to send this block. 1054 * Even if it has a birth time, it can never not be a hole, so 1055 * we don't need to send records for it. 1056 */ 1057 if (!overflow_multiply(range->start_blkid, srhp->datablksz, 1058 &offset)) { 1059 return (0); 1060 } 1061 uint64_t len = 0; 1062 1063 if (!overflow_multiply(range->end_blkid, srhp->datablksz, &len)) 1064 len = UINT64_MAX; 1065 len = len - offset; 1066 return (dump_free(dscp, range->object, offset, len)); 1067 } 1068 default: 1069 panic("Invalid range type in do_dump: %d", range->type); 1070 } 1071 return (err); 1072 } 1073 1074 static struct send_range * 1075 range_alloc(enum type type, uint64_t object, uint64_t start_blkid, 1076 uint64_t end_blkid, boolean_t eos) 1077 { 1078 struct send_range *range = kmem_alloc(sizeof (*range), KM_SLEEP); 1079 range->type = type; 1080 range->object = object; 1081 range->start_blkid = start_blkid; 1082 range->end_blkid = end_blkid; 1083 range->eos_marker = eos; 1084 if (type == DATA) { 1085 range->sru.data.abd = NULL; 1086 range->sru.data.abuf = NULL; 1087 mutex_init(&range->sru.data.lock, NULL, MUTEX_DEFAULT, NULL); 1088 cv_init(&range->sru.data.cv, NULL, CV_DEFAULT, NULL); 1089 range->sru.data.io_outstanding = 0; 1090 range->sru.data.io_err = 0; 1091 range->sru.data.io_compressed = B_FALSE; 1092 } 1093 return (range); 1094 } 1095 1096 /* 1097 * This is the callback function to traverse_dataset that acts as a worker 1098 * thread for dmu_send_impl. 1099 */ 1100 /*ARGSUSED*/ 1101 static int 1102 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1103 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 1104 { 1105 struct send_thread_arg *sta = arg; 1106 struct send_range *record; 1107 1108 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 1109 zb->zb_object >= sta->resume.zb_object); 1110 1111 /* 1112 * All bps of an encrypted os should have the encryption bit set. 1113 * If this is not true it indicates tampering and we report an error. 1114 */ 1115 if (sta->os->os_encrypted && 1116 !BP_IS_HOLE(bp) && !BP_USES_CRYPT(bp)) { 1117 spa_log_error(spa, zb); 1118 zfs_panic_recover("unencrypted block in encrypted " 1119 "object set %llu", dmu_objset_id(sta->os)); 1120 return (SET_ERROR(EIO)); 1121 } 1122 1123 if (sta->cancel) 1124 return (SET_ERROR(EINTR)); 1125 if (zb->zb_object != DMU_META_DNODE_OBJECT && 1126 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) 1127 return (0); 1128 atomic_inc_64(sta->num_blocks_visited); 1129 1130 if (zb->zb_level == ZB_DNODE_LEVEL) { 1131 if (zb->zb_object == DMU_META_DNODE_OBJECT) 1132 return (0); 1133 record = range_alloc(OBJECT, zb->zb_object, 0, 0, B_FALSE); 1134 record->sru.object.bp = *bp; 1135 size_t size = sizeof (*dnp) * (dnp->dn_extra_slots + 1); 1136 record->sru.object.dnp = kmem_alloc(size, KM_SLEEP); 1137 bcopy(dnp, record->sru.object.dnp, size); 1138 bqueue_enqueue(&sta->q, record, sizeof (*record)); 1139 return (0); 1140 } 1141 if (zb->zb_level == 0 && zb->zb_object == DMU_META_DNODE_OBJECT && 1142 !BP_IS_HOLE(bp)) { 1143 record = range_alloc(OBJECT_RANGE, 0, zb->zb_blkid, 1144 zb->zb_blkid + 1, B_FALSE); 1145 record->sru.object_range.bp = *bp; 1146 bqueue_enqueue(&sta->q, record, sizeof (*record)); 1147 return (0); 1148 } 1149 if (zb->zb_level < 0 || (zb->zb_level > 0 && !BP_IS_HOLE(bp))) 1150 return (0); 1151 if (zb->zb_object == DMU_META_DNODE_OBJECT && !BP_IS_HOLE(bp)) 1152 return (0); 1153 1154 uint64_t span = bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level); 1155 uint64_t start; 1156 1157 /* 1158 * If this multiply overflows, we don't need to send this block. 1159 * Even if it has a birth time, it can never not be a hole, so 1160 * we don't need to send records for it. 1161 */ 1162 if (!overflow_multiply(span, zb->zb_blkid, &start) || (!(zb->zb_blkid == 1163 DMU_SPILL_BLKID || DMU_OT_IS_METADATA(dnp->dn_type)) && 1164 span * zb->zb_blkid > dnp->dn_maxblkid)) { 1165 ASSERT(BP_IS_HOLE(bp)); 1166 return (0); 1167 } 1168 1169 if (zb->zb_blkid == DMU_SPILL_BLKID) 1170 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA); 1171 1172 enum type record_type = DATA; 1173 if (BP_IS_HOLE(bp)) 1174 record_type = HOLE; 1175 else if (BP_IS_REDACTED(bp)) 1176 record_type = REDACT; 1177 else 1178 record_type = DATA; 1179 1180 record = range_alloc(record_type, zb->zb_object, start, 1181 (start + span < start ? 0 : start + span), B_FALSE); 1182 1183 uint64_t datablksz = (zb->zb_blkid == DMU_SPILL_BLKID ? 1184 BP_GET_LSIZE(bp) : dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 1185 1186 if (BP_IS_HOLE(bp)) { 1187 record->sru.hole.datablksz = datablksz; 1188 } else if (BP_IS_REDACTED(bp)) { 1189 record->sru.redact.datablksz = datablksz; 1190 } else { 1191 record->sru.data.datablksz = datablksz; 1192 record->sru.data.obj_type = dnp->dn_type; 1193 record->sru.data.bp = *bp; 1194 } 1195 1196 bqueue_enqueue(&sta->q, record, sizeof (*record)); 1197 return (0); 1198 } 1199 1200 struct redact_list_cb_arg { 1201 uint64_t *num_blocks_visited; 1202 bqueue_t *q; 1203 boolean_t *cancel; 1204 boolean_t mark_redact; 1205 }; 1206 1207 static int 1208 redact_list_cb(redact_block_phys_t *rb, void *arg) 1209 { 1210 struct redact_list_cb_arg *rlcap = arg; 1211 1212 atomic_inc_64(rlcap->num_blocks_visited); 1213 if (*rlcap->cancel) 1214 return (-1); 1215 1216 struct send_range *data = range_alloc(REDACT, rb->rbp_object, 1217 rb->rbp_blkid, rb->rbp_blkid + redact_block_get_count(rb), B_FALSE); 1218 ASSERT3U(data->end_blkid, >, rb->rbp_blkid); 1219 if (rlcap->mark_redact) { 1220 data->type = REDACT; 1221 data->sru.redact.datablksz = redact_block_get_size(rb); 1222 } else { 1223 data->type = PREVIOUSLY_REDACTED; 1224 } 1225 bqueue_enqueue(rlcap->q, data, sizeof (*data)); 1226 1227 return (0); 1228 } 1229 1230 /* 1231 * This function kicks off the traverse_dataset. It also handles setting the 1232 * error code of the thread in case something goes wrong, and pushes the End of 1233 * Stream record when the traverse_dataset call has finished. 1234 */ 1235 static void 1236 send_traverse_thread(void *arg) 1237 { 1238 struct send_thread_arg *st_arg = arg; 1239 int err = 0; 1240 struct send_range *data; 1241 fstrans_cookie_t cookie = spl_fstrans_mark(); 1242 1243 err = traverse_dataset_resume(st_arg->os->os_dsl_dataset, 1244 st_arg->fromtxg, &st_arg->resume, 1245 st_arg->flags, send_cb, st_arg); 1246 1247 if (err != EINTR) 1248 st_arg->error_code = err; 1249 data = range_alloc(DATA, 0, 0, 0, B_TRUE); 1250 bqueue_enqueue_flush(&st_arg->q, data, sizeof (*data)); 1251 spl_fstrans_unmark(cookie); 1252 thread_exit(); 1253 } 1254 1255 /* 1256 * Utility function that causes End of Stream records to compare after of all 1257 * others, so that other threads' comparison logic can stay simple. 1258 */ 1259 static int __attribute__((unused)) 1260 send_range_after(const struct send_range *from, const struct send_range *to) 1261 { 1262 if (from->eos_marker == B_TRUE) 1263 return (1); 1264 if (to->eos_marker == B_TRUE) 1265 return (-1); 1266 1267 uint64_t from_obj = from->object; 1268 uint64_t from_end_obj = from->object + 1; 1269 uint64_t to_obj = to->object; 1270 uint64_t to_end_obj = to->object + 1; 1271 if (from_obj == 0) { 1272 ASSERT(from->type == HOLE || from->type == OBJECT_RANGE); 1273 from_obj = from->start_blkid << DNODES_PER_BLOCK_SHIFT; 1274 from_end_obj = from->end_blkid << DNODES_PER_BLOCK_SHIFT; 1275 } 1276 if (to_obj == 0) { 1277 ASSERT(to->type == HOLE || to->type == OBJECT_RANGE); 1278 to_obj = to->start_blkid << DNODES_PER_BLOCK_SHIFT; 1279 to_end_obj = to->end_blkid << DNODES_PER_BLOCK_SHIFT; 1280 } 1281 1282 if (from_end_obj <= to_obj) 1283 return (-1); 1284 if (from_obj >= to_end_obj) 1285 return (1); 1286 int64_t cmp = TREE_CMP(to->type == OBJECT_RANGE, from->type == 1287 OBJECT_RANGE); 1288 if (unlikely(cmp)) 1289 return (cmp); 1290 cmp = TREE_CMP(to->type == OBJECT, from->type == OBJECT); 1291 if (unlikely(cmp)) 1292 return (cmp); 1293 if (from->end_blkid <= to->start_blkid) 1294 return (-1); 1295 if (from->start_blkid >= to->end_blkid) 1296 return (1); 1297 return (0); 1298 } 1299 1300 /* 1301 * Pop the new data off the queue, check that the records we receive are in 1302 * the right order, but do not free the old data. This is used so that the 1303 * records can be sent on to the main thread without copying the data. 1304 */ 1305 static struct send_range * 1306 get_next_range_nofree(bqueue_t *bq, struct send_range *prev) 1307 { 1308 struct send_range *next = bqueue_dequeue(bq); 1309 ASSERT3S(send_range_after(prev, next), ==, -1); 1310 return (next); 1311 } 1312 1313 /* 1314 * Pop the new data off the queue, check that the records we receive are in 1315 * the right order, and free the old data. 1316 */ 1317 static struct send_range * 1318 get_next_range(bqueue_t *bq, struct send_range *prev) 1319 { 1320 struct send_range *next = get_next_range_nofree(bq, prev); 1321 range_free(prev); 1322 return (next); 1323 } 1324 1325 static void 1326 redact_list_thread(void *arg) 1327 { 1328 struct redact_list_thread_arg *rlt_arg = arg; 1329 struct send_range *record; 1330 fstrans_cookie_t cookie = spl_fstrans_mark(); 1331 if (rlt_arg->rl != NULL) { 1332 struct redact_list_cb_arg rlcba = {0}; 1333 rlcba.cancel = &rlt_arg->cancel; 1334 rlcba.q = &rlt_arg->q; 1335 rlcba.num_blocks_visited = rlt_arg->num_blocks_visited; 1336 rlcba.mark_redact = rlt_arg->mark_redact; 1337 int err = dsl_redaction_list_traverse(rlt_arg->rl, 1338 &rlt_arg->resume, redact_list_cb, &rlcba); 1339 if (err != EINTR) 1340 rlt_arg->error_code = err; 1341 } 1342 record = range_alloc(DATA, 0, 0, 0, B_TRUE); 1343 bqueue_enqueue_flush(&rlt_arg->q, record, sizeof (*record)); 1344 spl_fstrans_unmark(cookie); 1345 1346 thread_exit(); 1347 } 1348 1349 /* 1350 * Compare the start point of the two provided ranges. End of stream ranges 1351 * compare last, objects compare before any data or hole inside that object and 1352 * multi-object holes that start at the same object. 1353 */ 1354 static int 1355 send_range_start_compare(struct send_range *r1, struct send_range *r2) 1356 { 1357 uint64_t r1_objequiv = r1->object; 1358 uint64_t r1_l0equiv = r1->start_blkid; 1359 uint64_t r2_objequiv = r2->object; 1360 uint64_t r2_l0equiv = r2->start_blkid; 1361 int64_t cmp = TREE_CMP(r1->eos_marker, r2->eos_marker); 1362 if (unlikely(cmp)) 1363 return (cmp); 1364 if (r1->object == 0) { 1365 r1_objequiv = r1->start_blkid * DNODES_PER_BLOCK; 1366 r1_l0equiv = 0; 1367 } 1368 if (r2->object == 0) { 1369 r2_objequiv = r2->start_blkid * DNODES_PER_BLOCK; 1370 r2_l0equiv = 0; 1371 } 1372 1373 cmp = TREE_CMP(r1_objequiv, r2_objequiv); 1374 if (likely(cmp)) 1375 return (cmp); 1376 cmp = TREE_CMP(r2->type == OBJECT_RANGE, r1->type == OBJECT_RANGE); 1377 if (unlikely(cmp)) 1378 return (cmp); 1379 cmp = TREE_CMP(r2->type == OBJECT, r1->type == OBJECT); 1380 if (unlikely(cmp)) 1381 return (cmp); 1382 1383 return (TREE_CMP(r1_l0equiv, r2_l0equiv)); 1384 } 1385 1386 enum q_idx { 1387 REDACT_IDX = 0, 1388 TO_IDX, 1389 FROM_IDX, 1390 NUM_THREADS 1391 }; 1392 1393 /* 1394 * This function returns the next range the send_merge_thread should operate on. 1395 * The inputs are two arrays; the first one stores the range at the front of the 1396 * queues stored in the second one. The ranges are sorted in descending 1397 * priority order; the metadata from earlier ranges overrules metadata from 1398 * later ranges. out_mask is used to return which threads the ranges came from; 1399 * bit i is set if ranges[i] started at the same place as the returned range. 1400 * 1401 * This code is not hardcoded to compare a specific number of threads; it could 1402 * be used with any number, just by changing the q_idx enum. 1403 * 1404 * The "next range" is the one with the earliest start; if two starts are equal, 1405 * the highest-priority range is the next to operate on. If a higher-priority 1406 * range starts in the middle of the first range, then the first range will be 1407 * truncated to end where the higher-priority range starts, and we will operate 1408 * on that one next time. In this way, we make sure that each block covered by 1409 * some range gets covered by a returned range, and each block covered is 1410 * returned using the metadata of the highest-priority range it appears in. 1411 * 1412 * For example, if the three ranges at the front of the queues were [2,4), 1413 * [3,5), and [1,3), then the ranges returned would be [1,2) with the metadata 1414 * from the third range, [2,4) with the metadata from the first range, and then 1415 * [4,5) with the metadata from the second. 1416 */ 1417 static struct send_range * 1418 find_next_range(struct send_range **ranges, bqueue_t **qs, uint64_t *out_mask) 1419 { 1420 int idx = 0; // index of the range with the earliest start 1421 int i; 1422 uint64_t bmask = 0; 1423 for (i = 1; i < NUM_THREADS; i++) { 1424 if (send_range_start_compare(ranges[i], ranges[idx]) < 0) 1425 idx = i; 1426 } 1427 if (ranges[idx]->eos_marker) { 1428 struct send_range *ret = range_alloc(DATA, 0, 0, 0, B_TRUE); 1429 *out_mask = 0; 1430 return (ret); 1431 } 1432 /* 1433 * Find all the ranges that start at that same point. 1434 */ 1435 for (i = 0; i < NUM_THREADS; i++) { 1436 if (send_range_start_compare(ranges[i], ranges[idx]) == 0) 1437 bmask |= 1 << i; 1438 } 1439 *out_mask = bmask; 1440 /* 1441 * OBJECT_RANGE records only come from the TO thread, and should always 1442 * be treated as overlapping with nothing and sent on immediately. They 1443 * are only used in raw sends, and are never redacted. 1444 */ 1445 if (ranges[idx]->type == OBJECT_RANGE) { 1446 ASSERT3U(idx, ==, TO_IDX); 1447 ASSERT3U(*out_mask, ==, 1 << TO_IDX); 1448 struct send_range *ret = ranges[idx]; 1449 ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]); 1450 return (ret); 1451 } 1452 /* 1453 * Find the first start or end point after the start of the first range. 1454 */ 1455 uint64_t first_change = ranges[idx]->end_blkid; 1456 for (i = 0; i < NUM_THREADS; i++) { 1457 if (i == idx || ranges[i]->eos_marker || 1458 ranges[i]->object > ranges[idx]->object || 1459 ranges[i]->object == DMU_META_DNODE_OBJECT) 1460 continue; 1461 ASSERT3U(ranges[i]->object, ==, ranges[idx]->object); 1462 if (first_change > ranges[i]->start_blkid && 1463 (bmask & (1 << i)) == 0) 1464 first_change = ranges[i]->start_blkid; 1465 else if (first_change > ranges[i]->end_blkid) 1466 first_change = ranges[i]->end_blkid; 1467 } 1468 /* 1469 * Update all ranges to no longer overlap with the range we're 1470 * returning. All such ranges must start at the same place as the range 1471 * being returned, and end at or after first_change. Thus we update 1472 * their start to first_change. If that makes them size 0, then free 1473 * them and pull a new range from that thread. 1474 */ 1475 for (i = 0; i < NUM_THREADS; i++) { 1476 if (i == idx || (bmask & (1 << i)) == 0) 1477 continue; 1478 ASSERT3U(first_change, >, ranges[i]->start_blkid); 1479 ranges[i]->start_blkid = first_change; 1480 ASSERT3U(ranges[i]->start_blkid, <=, ranges[i]->end_blkid); 1481 if (ranges[i]->start_blkid == ranges[i]->end_blkid) 1482 ranges[i] = get_next_range(qs[i], ranges[i]); 1483 } 1484 /* 1485 * Short-circuit the simple case; if the range doesn't overlap with 1486 * anything else, or it only overlaps with things that start at the same 1487 * place and are longer, send it on. 1488 */ 1489 if (first_change == ranges[idx]->end_blkid) { 1490 struct send_range *ret = ranges[idx]; 1491 ranges[idx] = get_next_range_nofree(qs[idx], ranges[idx]); 1492 return (ret); 1493 } 1494 1495 /* 1496 * Otherwise, return a truncated copy of ranges[idx] and move the start 1497 * of ranges[idx] back to first_change. 1498 */ 1499 struct send_range *ret = kmem_alloc(sizeof (*ret), KM_SLEEP); 1500 *ret = *ranges[idx]; 1501 ret->end_blkid = first_change; 1502 ranges[idx]->start_blkid = first_change; 1503 return (ret); 1504 } 1505 1506 #define FROM_AND_REDACT_BITS ((1 << REDACT_IDX) | (1 << FROM_IDX)) 1507 1508 /* 1509 * Merge the results from the from thread and the to thread, and then hand the 1510 * records off to send_prefetch_thread to prefetch them. If this is not a 1511 * send from a redaction bookmark, the from thread will push an end of stream 1512 * record and stop, and we'll just send everything that was changed in the 1513 * to_ds since the ancestor's creation txg. If it is, then since 1514 * traverse_dataset has a canonical order, we can compare each change as 1515 * they're pulled off the queues. That will give us a stream that is 1516 * appropriately sorted, and covers all records. In addition, we pull the 1517 * data from the redact_list_thread and use that to determine which blocks 1518 * should be redacted. 1519 */ 1520 static void 1521 send_merge_thread(void *arg) 1522 { 1523 struct send_merge_thread_arg *smt_arg = arg; 1524 struct send_range *front_ranges[NUM_THREADS]; 1525 bqueue_t *queues[NUM_THREADS]; 1526 int err = 0; 1527 fstrans_cookie_t cookie = spl_fstrans_mark(); 1528 1529 if (smt_arg->redact_arg == NULL) { 1530 front_ranges[REDACT_IDX] = 1531 kmem_zalloc(sizeof (struct send_range), KM_SLEEP); 1532 front_ranges[REDACT_IDX]->eos_marker = B_TRUE; 1533 front_ranges[REDACT_IDX]->type = REDACT; 1534 queues[REDACT_IDX] = NULL; 1535 } else { 1536 front_ranges[REDACT_IDX] = 1537 bqueue_dequeue(&smt_arg->redact_arg->q); 1538 queues[REDACT_IDX] = &smt_arg->redact_arg->q; 1539 } 1540 front_ranges[TO_IDX] = bqueue_dequeue(&smt_arg->to_arg->q); 1541 queues[TO_IDX] = &smt_arg->to_arg->q; 1542 front_ranges[FROM_IDX] = bqueue_dequeue(&smt_arg->from_arg->q); 1543 queues[FROM_IDX] = &smt_arg->from_arg->q; 1544 uint64_t mask = 0; 1545 struct send_range *range; 1546 for (range = find_next_range(front_ranges, queues, &mask); 1547 !range->eos_marker && err == 0 && !smt_arg->cancel; 1548 range = find_next_range(front_ranges, queues, &mask)) { 1549 /* 1550 * If the range in question was in both the from redact bookmark 1551 * and the bookmark we're using to redact, then don't send it. 1552 * It's already redacted on the receiving system, so a redaction 1553 * record would be redundant. 1554 */ 1555 if ((mask & FROM_AND_REDACT_BITS) == FROM_AND_REDACT_BITS) { 1556 ASSERT3U(range->type, ==, REDACT); 1557 range_free(range); 1558 continue; 1559 } 1560 bqueue_enqueue(&smt_arg->q, range, sizeof (*range)); 1561 1562 if (smt_arg->to_arg->error_code != 0) { 1563 err = smt_arg->to_arg->error_code; 1564 } else if (smt_arg->from_arg->error_code != 0) { 1565 err = smt_arg->from_arg->error_code; 1566 } else if (smt_arg->redact_arg != NULL && 1567 smt_arg->redact_arg->error_code != 0) { 1568 err = smt_arg->redact_arg->error_code; 1569 } 1570 } 1571 if (smt_arg->cancel && err == 0) 1572 err = SET_ERROR(EINTR); 1573 smt_arg->error = err; 1574 if (smt_arg->error != 0) { 1575 smt_arg->to_arg->cancel = B_TRUE; 1576 smt_arg->from_arg->cancel = B_TRUE; 1577 if (smt_arg->redact_arg != NULL) 1578 smt_arg->redact_arg->cancel = B_TRUE; 1579 } 1580 for (int i = 0; i < NUM_THREADS; i++) { 1581 while (!front_ranges[i]->eos_marker) { 1582 front_ranges[i] = get_next_range(queues[i], 1583 front_ranges[i]); 1584 } 1585 range_free(front_ranges[i]); 1586 } 1587 if (range == NULL) 1588 range = kmem_zalloc(sizeof (*range), KM_SLEEP); 1589 range->eos_marker = B_TRUE; 1590 bqueue_enqueue_flush(&smt_arg->q, range, 1); 1591 spl_fstrans_unmark(cookie); 1592 thread_exit(); 1593 } 1594 1595 struct send_reader_thread_arg { 1596 struct send_merge_thread_arg *smta; 1597 bqueue_t q; 1598 boolean_t cancel; 1599 boolean_t issue_reads; 1600 uint64_t featureflags; 1601 int error; 1602 }; 1603 1604 static void 1605 dmu_send_read_done(zio_t *zio) 1606 { 1607 struct send_range *range = zio->io_private; 1608 1609 mutex_enter(&range->sru.data.lock); 1610 if (zio->io_error != 0) { 1611 abd_free(range->sru.data.abd); 1612 range->sru.data.abd = NULL; 1613 range->sru.data.io_err = zio->io_error; 1614 } 1615 1616 ASSERT(range->sru.data.io_outstanding); 1617 range->sru.data.io_outstanding = B_FALSE; 1618 cv_broadcast(&range->sru.data.cv); 1619 mutex_exit(&range->sru.data.lock); 1620 } 1621 1622 static void 1623 issue_data_read(struct send_reader_thread_arg *srta, struct send_range *range) 1624 { 1625 struct srd *srdp = &range->sru.data; 1626 blkptr_t *bp = &srdp->bp; 1627 objset_t *os = srta->smta->os; 1628 1629 ASSERT3U(range->type, ==, DATA); 1630 ASSERT3U(range->start_blkid + 1, ==, range->end_blkid); 1631 /* 1632 * If we have large blocks stored on disk but 1633 * the send flags don't allow us to send large 1634 * blocks, we split the data from the arc buf 1635 * into chunks. 1636 */ 1637 boolean_t split_large_blocks = 1638 srdp->datablksz > SPA_OLD_MAXBLOCKSIZE && 1639 !(srta->featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS); 1640 /* 1641 * We should only request compressed data from the ARC if all 1642 * the following are true: 1643 * - stream compression was requested 1644 * - we aren't splitting large blocks into smaller chunks 1645 * - the data won't need to be byteswapped before sending 1646 * - this isn't an embedded block 1647 * - this isn't metadata (if receiving on a different endian 1648 * system it can be byteswapped more easily) 1649 */ 1650 boolean_t request_compressed = 1651 (srta->featureflags & DMU_BACKUP_FEATURE_COMPRESSED) && 1652 !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) && 1653 !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp)); 1654 1655 enum zio_flag zioflags = ZIO_FLAG_CANFAIL; 1656 1657 if (srta->featureflags & DMU_BACKUP_FEATURE_RAW) { 1658 zioflags |= ZIO_FLAG_RAW; 1659 srdp->io_compressed = B_TRUE; 1660 } else if (request_compressed) { 1661 zioflags |= ZIO_FLAG_RAW_COMPRESS; 1662 srdp->io_compressed = B_TRUE; 1663 } 1664 1665 srdp->datasz = (zioflags & ZIO_FLAG_RAW_COMPRESS) ? 1666 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp); 1667 1668 if (!srta->issue_reads) 1669 return; 1670 if (BP_IS_REDACTED(bp)) 1671 return; 1672 if (send_do_embed(bp, srta->featureflags)) 1673 return; 1674 1675 zbookmark_phys_t zb = { 1676 .zb_objset = dmu_objset_id(os), 1677 .zb_object = range->object, 1678 .zb_level = 0, 1679 .zb_blkid = range->start_blkid, 1680 }; 1681 1682 arc_flags_t aflags = ARC_FLAG_CACHED_ONLY; 1683 1684 int arc_err = arc_read(NULL, os->os_spa, bp, 1685 arc_getbuf_func, &srdp->abuf, ZIO_PRIORITY_ASYNC_READ, 1686 zioflags, &aflags, &zb); 1687 /* 1688 * If the data is not already cached in the ARC, we read directly 1689 * from zio. This avoids the performance overhead of adding a new 1690 * entry to the ARC, and we also avoid polluting the ARC cache with 1691 * data that is not likely to be used in the future. 1692 */ 1693 if (arc_err != 0) { 1694 srdp->abd = abd_alloc_linear(srdp->datasz, B_FALSE); 1695 srdp->io_outstanding = B_TRUE; 1696 zio_nowait(zio_read(NULL, os->os_spa, bp, srdp->abd, 1697 srdp->datasz, dmu_send_read_done, range, 1698 ZIO_PRIORITY_ASYNC_READ, zioflags, &zb)); 1699 } 1700 } 1701 1702 /* 1703 * Create a new record with the given values. 1704 */ 1705 static void 1706 enqueue_range(struct send_reader_thread_arg *srta, bqueue_t *q, dnode_t *dn, 1707 uint64_t blkid, uint64_t count, const blkptr_t *bp, uint32_t datablksz) 1708 { 1709 enum type range_type = (bp == NULL || BP_IS_HOLE(bp) ? HOLE : 1710 (BP_IS_REDACTED(bp) ? REDACT : DATA)); 1711 1712 struct send_range *range = range_alloc(range_type, dn->dn_object, 1713 blkid, blkid + count, B_FALSE); 1714 1715 if (blkid == DMU_SPILL_BLKID) 1716 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_SA); 1717 1718 switch (range_type) { 1719 case HOLE: 1720 range->sru.hole.datablksz = datablksz; 1721 break; 1722 case DATA: 1723 ASSERT3U(count, ==, 1); 1724 range->sru.data.datablksz = datablksz; 1725 range->sru.data.obj_type = dn->dn_type; 1726 range->sru.data.bp = *bp; 1727 issue_data_read(srta, range); 1728 break; 1729 case REDACT: 1730 range->sru.redact.datablksz = datablksz; 1731 break; 1732 default: 1733 break; 1734 } 1735 bqueue_enqueue(q, range, datablksz); 1736 } 1737 1738 /* 1739 * This thread is responsible for two things: First, it retrieves the correct 1740 * blkptr in the to ds if we need to send the data because of something from 1741 * the from thread. As a result of this, we're the first ones to discover that 1742 * some indirect blocks can be discarded because they're not holes. Second, 1743 * it issues prefetches for the data we need to send. 1744 */ 1745 static void 1746 send_reader_thread(void *arg) 1747 { 1748 struct send_reader_thread_arg *srta = arg; 1749 struct send_merge_thread_arg *smta = srta->smta; 1750 bqueue_t *inq = &smta->q; 1751 bqueue_t *outq = &srta->q; 1752 objset_t *os = smta->os; 1753 fstrans_cookie_t cookie = spl_fstrans_mark(); 1754 struct send_range *range = bqueue_dequeue(inq); 1755 int err = 0; 1756 1757 /* 1758 * If the record we're analyzing is from a redaction bookmark from the 1759 * fromds, then we need to know whether or not it exists in the tods so 1760 * we know whether to create records for it or not. If it does, we need 1761 * the datablksz so we can generate an appropriate record for it. 1762 * Finally, if it isn't redacted, we need the blkptr so that we can send 1763 * a WRITE record containing the actual data. 1764 */ 1765 uint64_t last_obj = UINT64_MAX; 1766 uint64_t last_obj_exists = B_TRUE; 1767 while (!range->eos_marker && !srta->cancel && smta->error == 0 && 1768 err == 0) { 1769 switch (range->type) { 1770 case DATA: 1771 issue_data_read(srta, range); 1772 bqueue_enqueue(outq, range, range->sru.data.datablksz); 1773 range = get_next_range_nofree(inq, range); 1774 break; 1775 case HOLE: 1776 case OBJECT: 1777 case OBJECT_RANGE: 1778 case REDACT: // Redacted blocks must exist 1779 bqueue_enqueue(outq, range, sizeof (*range)); 1780 range = get_next_range_nofree(inq, range); 1781 break; 1782 case PREVIOUSLY_REDACTED: { 1783 /* 1784 * This entry came from the "from bookmark" when 1785 * sending from a bookmark that has a redaction 1786 * list. We need to check if this object/blkid 1787 * exists in the target ("to") dataset, and if 1788 * not then we drop this entry. We also need 1789 * to fill in the block pointer so that we know 1790 * what to prefetch. 1791 * 1792 * To accomplish the above, we first cache whether or 1793 * not the last object we examined exists. If it 1794 * doesn't, we can drop this record. If it does, we hold 1795 * the dnode and use it to call dbuf_dnode_findbp. We do 1796 * this instead of dbuf_bookmark_findbp because we will 1797 * often operate on large ranges, and holding the dnode 1798 * once is more efficient. 1799 */ 1800 boolean_t object_exists = B_TRUE; 1801 /* 1802 * If the data is redacted, we only care if it exists, 1803 * so that we don't send records for objects that have 1804 * been deleted. 1805 */ 1806 dnode_t *dn; 1807 if (range->object == last_obj && !last_obj_exists) { 1808 /* 1809 * If we're still examining the same object as 1810 * previously, and it doesn't exist, we don't 1811 * need to call dbuf_bookmark_findbp. 1812 */ 1813 object_exists = B_FALSE; 1814 } else { 1815 err = dnode_hold(os, range->object, FTAG, &dn); 1816 if (err == ENOENT) { 1817 object_exists = B_FALSE; 1818 err = 0; 1819 } 1820 last_obj = range->object; 1821 last_obj_exists = object_exists; 1822 } 1823 1824 if (err != 0) { 1825 break; 1826 } else if (!object_exists) { 1827 /* 1828 * The block was modified, but doesn't 1829 * exist in the to dataset; if it was 1830 * deleted in the to dataset, then we'll 1831 * visit the hole bp for it at some point. 1832 */ 1833 range = get_next_range(inq, range); 1834 continue; 1835 } 1836 uint64_t file_max = 1837 (dn->dn_maxblkid < range->end_blkid ? 1838 dn->dn_maxblkid : range->end_blkid); 1839 /* 1840 * The object exists, so we need to try to find the 1841 * blkptr for each block in the range we're processing. 1842 */ 1843 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1844 for (uint64_t blkid = range->start_blkid; 1845 blkid < file_max; blkid++) { 1846 blkptr_t bp; 1847 uint32_t datablksz = 1848 dn->dn_phys->dn_datablkszsec << 1849 SPA_MINBLOCKSHIFT; 1850 uint64_t offset = blkid * datablksz; 1851 /* 1852 * This call finds the next non-hole block in 1853 * the object. This is to prevent a 1854 * performance problem where we're unredacting 1855 * a large hole. Using dnode_next_offset to 1856 * skip over the large hole avoids iterating 1857 * over every block in it. 1858 */ 1859 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 1860 &offset, 1, 1, 0); 1861 if (err == ESRCH) { 1862 offset = UINT64_MAX; 1863 err = 0; 1864 } else if (err != 0) { 1865 break; 1866 } 1867 if (offset != blkid * datablksz) { 1868 /* 1869 * if there is a hole from here 1870 * (blkid) to offset 1871 */ 1872 offset = MIN(offset, file_max * 1873 datablksz); 1874 uint64_t nblks = (offset / datablksz) - 1875 blkid; 1876 enqueue_range(srta, outq, dn, blkid, 1877 nblks, NULL, datablksz); 1878 blkid += nblks; 1879 } 1880 if (blkid >= file_max) 1881 break; 1882 err = dbuf_dnode_findbp(dn, 0, blkid, &bp, 1883 NULL, NULL); 1884 if (err != 0) 1885 break; 1886 ASSERT(!BP_IS_HOLE(&bp)); 1887 enqueue_range(srta, outq, dn, blkid, 1, &bp, 1888 datablksz); 1889 } 1890 rw_exit(&dn->dn_struct_rwlock); 1891 dnode_rele(dn, FTAG); 1892 range = get_next_range(inq, range); 1893 } 1894 } 1895 } 1896 if (srta->cancel || err != 0) { 1897 smta->cancel = B_TRUE; 1898 srta->error = err; 1899 } else if (smta->error != 0) { 1900 srta->error = smta->error; 1901 } 1902 while (!range->eos_marker) 1903 range = get_next_range(inq, range); 1904 1905 bqueue_enqueue_flush(outq, range, 1); 1906 spl_fstrans_unmark(cookie); 1907 thread_exit(); 1908 } 1909 1910 #define NUM_SNAPS_NOT_REDACTED UINT64_MAX 1911 1912 struct dmu_send_params { 1913 /* Pool args */ 1914 void *tag; // Tag that dp was held with, will be used to release dp. 1915 dsl_pool_t *dp; 1916 /* To snapshot args */ 1917 const char *tosnap; 1918 dsl_dataset_t *to_ds; 1919 /* From snapshot args */ 1920 zfs_bookmark_phys_t ancestor_zb; 1921 uint64_t *fromredactsnaps; 1922 /* NUM_SNAPS_NOT_REDACTED if not sending from redaction bookmark */ 1923 uint64_t numfromredactsnaps; 1924 /* Stream params */ 1925 boolean_t is_clone; 1926 boolean_t embedok; 1927 boolean_t large_block_ok; 1928 boolean_t compressok; 1929 boolean_t rawok; 1930 boolean_t savedok; 1931 uint64_t resumeobj; 1932 uint64_t resumeoff; 1933 uint64_t saved_guid; 1934 zfs_bookmark_phys_t *redactbook; 1935 /* Stream output params */ 1936 dmu_send_outparams_t *dso; 1937 1938 /* Stream progress params */ 1939 offset_t *off; 1940 int outfd; 1941 char saved_toname[MAXNAMELEN]; 1942 }; 1943 1944 static int 1945 setup_featureflags(struct dmu_send_params *dspp, objset_t *os, 1946 uint64_t *featureflags) 1947 { 1948 dsl_dataset_t *to_ds = dspp->to_ds; 1949 dsl_pool_t *dp = dspp->dp; 1950 #ifdef _KERNEL 1951 if (dmu_objset_type(os) == DMU_OST_ZFS) { 1952 uint64_t version; 1953 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) 1954 return (SET_ERROR(EINVAL)); 1955 1956 if (version >= ZPL_VERSION_SA) 1957 *featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 1958 } 1959 #endif 1960 1961 /* raw sends imply large_block_ok */ 1962 if ((dspp->rawok || dspp->large_block_ok) && 1963 dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_BLOCKS)) { 1964 *featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 1965 } 1966 1967 /* encrypted datasets will not have embedded blocks */ 1968 if ((dspp->embedok || dspp->rawok) && !os->os_encrypted && 1969 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 1970 *featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 1971 } 1972 1973 /* raw send implies compressok */ 1974 if (dspp->compressok || dspp->rawok) 1975 *featureflags |= DMU_BACKUP_FEATURE_COMPRESSED; 1976 1977 if (dspp->rawok && os->os_encrypted) 1978 *featureflags |= DMU_BACKUP_FEATURE_RAW; 1979 1980 if ((*featureflags & 1981 (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED | 1982 DMU_BACKUP_FEATURE_RAW)) != 0 && 1983 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) { 1984 *featureflags |= DMU_BACKUP_FEATURE_LZ4; 1985 } 1986 1987 /* 1988 * We specifically do not include DMU_BACKUP_FEATURE_EMBED_DATA here to 1989 * allow sending ZSTD compressed datasets to a receiver that does not 1990 * support ZSTD 1991 */ 1992 if ((*featureflags & 1993 (DMU_BACKUP_FEATURE_COMPRESSED | DMU_BACKUP_FEATURE_RAW)) != 0 && 1994 dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_ZSTD_COMPRESS)) { 1995 *featureflags |= DMU_BACKUP_FEATURE_ZSTD; 1996 } 1997 1998 if (dspp->resumeobj != 0 || dspp->resumeoff != 0) { 1999 *featureflags |= DMU_BACKUP_FEATURE_RESUMING; 2000 } 2001 2002 if (dspp->redactbook != NULL) { 2003 *featureflags |= DMU_BACKUP_FEATURE_REDACTED; 2004 } 2005 2006 if (dsl_dataset_feature_is_active(to_ds, SPA_FEATURE_LARGE_DNODE)) { 2007 *featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE; 2008 } 2009 return (0); 2010 } 2011 2012 static dmu_replay_record_t * 2013 create_begin_record(struct dmu_send_params *dspp, objset_t *os, 2014 uint64_t featureflags) 2015 { 2016 dmu_replay_record_t *drr = kmem_zalloc(sizeof (dmu_replay_record_t), 2017 KM_SLEEP); 2018 drr->drr_type = DRR_BEGIN; 2019 2020 struct drr_begin *drrb = &drr->drr_u.drr_begin; 2021 dsl_dataset_t *to_ds = dspp->to_ds; 2022 2023 drrb->drr_magic = DMU_BACKUP_MAGIC; 2024 drrb->drr_creation_time = dsl_dataset_phys(to_ds)->ds_creation_time; 2025 drrb->drr_type = dmu_objset_type(os); 2026 drrb->drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 2027 drrb->drr_fromguid = dspp->ancestor_zb.zbm_guid; 2028 2029 DMU_SET_STREAM_HDRTYPE(drrb->drr_versioninfo, DMU_SUBSTREAM); 2030 DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, featureflags); 2031 2032 if (dspp->is_clone) 2033 drrb->drr_flags |= DRR_FLAG_CLONE; 2034 if (dsl_dataset_phys(dspp->to_ds)->ds_flags & DS_FLAG_CI_DATASET) 2035 drrb->drr_flags |= DRR_FLAG_CI_DATA; 2036 if (zfs_send_set_freerecords_bit) 2037 drrb->drr_flags |= DRR_FLAG_FREERECORDS; 2038 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_SPILL_BLOCK; 2039 2040 if (dspp->savedok) { 2041 drrb->drr_toguid = dspp->saved_guid; 2042 strlcpy(drrb->drr_toname, dspp->saved_toname, 2043 sizeof (drrb->drr_toname)); 2044 } else { 2045 dsl_dataset_name(to_ds, drrb->drr_toname); 2046 if (!to_ds->ds_is_snapshot) { 2047 (void) strlcat(drrb->drr_toname, "@--head--", 2048 sizeof (drrb->drr_toname)); 2049 } 2050 } 2051 return (drr); 2052 } 2053 2054 static void 2055 setup_to_thread(struct send_thread_arg *to_arg, objset_t *to_os, 2056 dmu_sendstatus_t *dssp, uint64_t fromtxg, boolean_t rawok) 2057 { 2058 VERIFY0(bqueue_init(&to_arg->q, zfs_send_no_prefetch_queue_ff, 2059 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize), 2060 offsetof(struct send_range, ln))); 2061 to_arg->error_code = 0; 2062 to_arg->cancel = B_FALSE; 2063 to_arg->os = to_os; 2064 to_arg->fromtxg = fromtxg; 2065 to_arg->flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA; 2066 if (rawok) 2067 to_arg->flags |= TRAVERSE_NO_DECRYPT; 2068 if (zfs_send_corrupt_data) 2069 to_arg->flags |= TRAVERSE_HARD; 2070 to_arg->num_blocks_visited = &dssp->dss_blocks; 2071 (void) thread_create(NULL, 0, send_traverse_thread, to_arg, 0, 2072 curproc, TS_RUN, minclsyspri); 2073 } 2074 2075 static void 2076 setup_from_thread(struct redact_list_thread_arg *from_arg, 2077 redaction_list_t *from_rl, dmu_sendstatus_t *dssp) 2078 { 2079 VERIFY0(bqueue_init(&from_arg->q, zfs_send_no_prefetch_queue_ff, 2080 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize), 2081 offsetof(struct send_range, ln))); 2082 from_arg->error_code = 0; 2083 from_arg->cancel = B_FALSE; 2084 from_arg->rl = from_rl; 2085 from_arg->mark_redact = B_FALSE; 2086 from_arg->num_blocks_visited = &dssp->dss_blocks; 2087 /* 2088 * If from_ds is null, send_traverse_thread just returns success and 2089 * enqueues an eos marker. 2090 */ 2091 (void) thread_create(NULL, 0, redact_list_thread, from_arg, 0, 2092 curproc, TS_RUN, minclsyspri); 2093 } 2094 2095 static void 2096 setup_redact_list_thread(struct redact_list_thread_arg *rlt_arg, 2097 struct dmu_send_params *dspp, redaction_list_t *rl, dmu_sendstatus_t *dssp) 2098 { 2099 if (dspp->redactbook == NULL) 2100 return; 2101 2102 rlt_arg->cancel = B_FALSE; 2103 VERIFY0(bqueue_init(&rlt_arg->q, zfs_send_no_prefetch_queue_ff, 2104 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize), 2105 offsetof(struct send_range, ln))); 2106 rlt_arg->error_code = 0; 2107 rlt_arg->mark_redact = B_TRUE; 2108 rlt_arg->rl = rl; 2109 rlt_arg->num_blocks_visited = &dssp->dss_blocks; 2110 2111 (void) thread_create(NULL, 0, redact_list_thread, rlt_arg, 0, 2112 curproc, TS_RUN, minclsyspri); 2113 } 2114 2115 static void 2116 setup_merge_thread(struct send_merge_thread_arg *smt_arg, 2117 struct dmu_send_params *dspp, struct redact_list_thread_arg *from_arg, 2118 struct send_thread_arg *to_arg, struct redact_list_thread_arg *rlt_arg, 2119 objset_t *os) 2120 { 2121 VERIFY0(bqueue_init(&smt_arg->q, zfs_send_no_prefetch_queue_ff, 2122 MAX(zfs_send_no_prefetch_queue_length, 2 * zfs_max_recordsize), 2123 offsetof(struct send_range, ln))); 2124 smt_arg->cancel = B_FALSE; 2125 smt_arg->error = 0; 2126 smt_arg->from_arg = from_arg; 2127 smt_arg->to_arg = to_arg; 2128 if (dspp->redactbook != NULL) 2129 smt_arg->redact_arg = rlt_arg; 2130 2131 smt_arg->os = os; 2132 (void) thread_create(NULL, 0, send_merge_thread, smt_arg, 0, curproc, 2133 TS_RUN, minclsyspri); 2134 } 2135 2136 static void 2137 setup_reader_thread(struct send_reader_thread_arg *srt_arg, 2138 struct dmu_send_params *dspp, struct send_merge_thread_arg *smt_arg, 2139 uint64_t featureflags) 2140 { 2141 VERIFY0(bqueue_init(&srt_arg->q, zfs_send_queue_ff, 2142 MAX(zfs_send_queue_length, 2 * zfs_max_recordsize), 2143 offsetof(struct send_range, ln))); 2144 srt_arg->smta = smt_arg; 2145 srt_arg->issue_reads = !dspp->dso->dso_dryrun; 2146 srt_arg->featureflags = featureflags; 2147 (void) thread_create(NULL, 0, send_reader_thread, srt_arg, 0, 2148 curproc, TS_RUN, minclsyspri); 2149 } 2150 2151 static int 2152 setup_resume_points(struct dmu_send_params *dspp, 2153 struct send_thread_arg *to_arg, struct redact_list_thread_arg *from_arg, 2154 struct redact_list_thread_arg *rlt_arg, 2155 struct send_merge_thread_arg *smt_arg, boolean_t resuming, objset_t *os, 2156 redaction_list_t *redact_rl, nvlist_t *nvl) 2157 { 2158 dsl_dataset_t *to_ds = dspp->to_ds; 2159 int err = 0; 2160 2161 uint64_t obj = 0; 2162 uint64_t blkid = 0; 2163 if (resuming) { 2164 obj = dspp->resumeobj; 2165 dmu_object_info_t to_doi; 2166 err = dmu_object_info(os, obj, &to_doi); 2167 if (err != 0) 2168 return (err); 2169 2170 blkid = dspp->resumeoff / to_doi.doi_data_block_size; 2171 } 2172 /* 2173 * If we're resuming a redacted send, we can skip to the appropriate 2174 * point in the redaction bookmark by binary searching through it. 2175 */ 2176 if (redact_rl != NULL) { 2177 SET_BOOKMARK(&rlt_arg->resume, to_ds->ds_object, obj, 0, blkid); 2178 } 2179 2180 SET_BOOKMARK(&to_arg->resume, to_ds->ds_object, obj, 0, blkid); 2181 if (nvlist_exists(nvl, BEGINNV_REDACT_FROM_SNAPS)) { 2182 uint64_t objset = dspp->ancestor_zb.zbm_redaction_obj; 2183 /* 2184 * Note: If the resume point is in an object whose 2185 * blocksize is different in the from vs to snapshots, 2186 * we will have divided by the "wrong" blocksize. 2187 * However, in this case fromsnap's send_cb() will 2188 * detect that the blocksize has changed and therefore 2189 * ignore this object. 2190 * 2191 * If we're resuming a send from a redaction bookmark, 2192 * we still cannot accidentally suggest blocks behind 2193 * the to_ds. In addition, we know that any blocks in 2194 * the object in the to_ds will have to be sent, since 2195 * the size changed. Therefore, we can't cause any harm 2196 * this way either. 2197 */ 2198 SET_BOOKMARK(&from_arg->resume, objset, obj, 0, blkid); 2199 } 2200 if (resuming) { 2201 fnvlist_add_uint64(nvl, BEGINNV_RESUME_OBJECT, dspp->resumeobj); 2202 fnvlist_add_uint64(nvl, BEGINNV_RESUME_OFFSET, dspp->resumeoff); 2203 } 2204 return (0); 2205 } 2206 2207 static dmu_sendstatus_t * 2208 setup_send_progress(struct dmu_send_params *dspp) 2209 { 2210 dmu_sendstatus_t *dssp = kmem_zalloc(sizeof (*dssp), KM_SLEEP); 2211 dssp->dss_outfd = dspp->outfd; 2212 dssp->dss_off = dspp->off; 2213 dssp->dss_proc = curproc; 2214 mutex_enter(&dspp->to_ds->ds_sendstream_lock); 2215 list_insert_head(&dspp->to_ds->ds_sendstreams, dssp); 2216 mutex_exit(&dspp->to_ds->ds_sendstream_lock); 2217 return (dssp); 2218 } 2219 2220 /* 2221 * Actually do the bulk of the work in a zfs send. 2222 * 2223 * The idea is that we want to do a send from ancestor_zb to to_ds. We also 2224 * want to not send any data that has been modified by all the datasets in 2225 * redactsnaparr, and store the list of blocks that are redacted in this way in 2226 * a bookmark named redactbook, created on the to_ds. We do this by creating 2227 * several worker threads, whose function is described below. 2228 * 2229 * There are three cases. 2230 * The first case is a redacted zfs send. In this case there are 5 threads. 2231 * The first thread is the to_ds traversal thread: it calls dataset_traverse on 2232 * the to_ds and finds all the blocks that have changed since ancestor_zb (if 2233 * it's a full send, that's all blocks in the dataset). It then sends those 2234 * blocks on to the send merge thread. The redact list thread takes the data 2235 * from the redaction bookmark and sends those blocks on to the send merge 2236 * thread. The send merge thread takes the data from the to_ds traversal 2237 * thread, and combines it with the redaction records from the redact list 2238 * thread. If a block appears in both the to_ds's data and the redaction data, 2239 * the send merge thread will mark it as redacted and send it on to the prefetch 2240 * thread. Otherwise, the send merge thread will send the block on to the 2241 * prefetch thread unchanged. The prefetch thread will issue prefetch reads for 2242 * any data that isn't redacted, and then send the data on to the main thread. 2243 * The main thread behaves the same as in a normal send case, issuing demand 2244 * reads for data blocks and sending out records over the network 2245 * 2246 * The graphic below diagrams the flow of data in the case of a redacted zfs 2247 * send. Each box represents a thread, and each line represents the flow of 2248 * data. 2249 * 2250 * Records from the | 2251 * redaction bookmark | 2252 * +--------------------+ | +---------------------------+ 2253 * | | v | Send Merge Thread | 2254 * | Redact List Thread +----------> Apply redaction marks to | 2255 * | | | records as specified by | 2256 * +--------------------+ | redaction ranges | 2257 * +----^---------------+------+ 2258 * | | Merged data 2259 * | | 2260 * | +------------v--------+ 2261 * | | Prefetch Thread | 2262 * +--------------------+ | | Issues prefetch | 2263 * | to_ds Traversal | | | reads of data blocks| 2264 * | Thread (finds +---------------+ +------------+--------+ 2265 * | candidate blocks) | Blocks modified | Prefetched data 2266 * +--------------------+ by to_ds since | 2267 * ancestor_zb +------------v----+ 2268 * | Main Thread | File Descriptor 2269 * | Sends data over +->(to zfs receive) 2270 * | wire | 2271 * +-----------------+ 2272 * 2273 * The second case is an incremental send from a redaction bookmark. The to_ds 2274 * traversal thread and the main thread behave the same as in the redacted 2275 * send case. The new thread is the from bookmark traversal thread. It 2276 * iterates over the redaction list in the redaction bookmark, and enqueues 2277 * records for each block that was redacted in the original send. The send 2278 * merge thread now has to merge the data from the two threads. For details 2279 * about that process, see the header comment of send_merge_thread(). Any data 2280 * it decides to send on will be prefetched by the prefetch thread. Note that 2281 * you can perform a redacted send from a redaction bookmark; in that case, 2282 * the data flow behaves very similarly to the flow in the redacted send case, 2283 * except with the addition of the bookmark traversal thread iterating over the 2284 * redaction bookmark. The send_merge_thread also has to take on the 2285 * responsibility of merging the redact list thread's records, the bookmark 2286 * traversal thread's records, and the to_ds records. 2287 * 2288 * +---------------------+ 2289 * | | 2290 * | Redact List Thread +--------------+ 2291 * | | | 2292 * +---------------------+ | 2293 * Blocks in redaction list | Ranges modified by every secure snap 2294 * of from bookmark | (or EOS if not readcted) 2295 * | 2296 * +---------------------+ | +----v----------------------+ 2297 * | bookmark Traversal | v | Send Merge Thread | 2298 * | Thread (finds +---------> Merges bookmark, rlt, and | 2299 * | candidate blocks) | | to_ds send records | 2300 * +---------------------+ +----^---------------+------+ 2301 * | | Merged data 2302 * | +------------v--------+ 2303 * | | Prefetch Thread | 2304 * +--------------------+ | | Issues prefetch | 2305 * | to_ds Traversal | | | reads of data blocks| 2306 * | Thread (finds +---------------+ +------------+--------+ 2307 * | candidate blocks) | Blocks modified | Prefetched data 2308 * +--------------------+ by to_ds since +------------v----+ 2309 * ancestor_zb | Main Thread | File Descriptor 2310 * | Sends data over +->(to zfs receive) 2311 * | wire | 2312 * +-----------------+ 2313 * 2314 * The final case is a simple zfs full or incremental send. The to_ds traversal 2315 * thread behaves the same as always. The redact list thread is never started. 2316 * The send merge thread takes all the blocks that the to_ds traversal thread 2317 * sends it, prefetches the data, and sends the blocks on to the main thread. 2318 * The main thread sends the data over the wire. 2319 * 2320 * To keep performance acceptable, we want to prefetch the data in the worker 2321 * threads. While the to_ds thread could simply use the TRAVERSE_PREFETCH 2322 * feature built into traverse_dataset, the combining and deletion of records 2323 * due to redaction and sends from redaction bookmarks mean that we could 2324 * issue many unnecessary prefetches. As a result, we only prefetch data 2325 * after we've determined that the record is not going to be redacted. To 2326 * prevent the prefetching from getting too far ahead of the main thread, the 2327 * blocking queues that are used for communication are capped not by the 2328 * number of entries in the queue, but by the sum of the size of the 2329 * prefetches associated with them. The limit on the amount of data that the 2330 * thread can prefetch beyond what the main thread has reached is controlled 2331 * by the global variable zfs_send_queue_length. In addition, to prevent poor 2332 * performance in the beginning of a send, we also limit the distance ahead 2333 * that the traversal threads can be. That distance is controlled by the 2334 * zfs_send_no_prefetch_queue_length tunable. 2335 * 2336 * Note: Releases dp using the specified tag. 2337 */ 2338 static int 2339 dmu_send_impl(struct dmu_send_params *dspp) 2340 { 2341 objset_t *os; 2342 dmu_replay_record_t *drr; 2343 dmu_sendstatus_t *dssp; 2344 dmu_send_cookie_t dsc = {0}; 2345 int err; 2346 uint64_t fromtxg = dspp->ancestor_zb.zbm_creation_txg; 2347 uint64_t featureflags = 0; 2348 struct redact_list_thread_arg *from_arg; 2349 struct send_thread_arg *to_arg; 2350 struct redact_list_thread_arg *rlt_arg; 2351 struct send_merge_thread_arg *smt_arg; 2352 struct send_reader_thread_arg *srt_arg; 2353 struct send_range *range; 2354 redaction_list_t *from_rl = NULL; 2355 redaction_list_t *redact_rl = NULL; 2356 boolean_t resuming = (dspp->resumeobj != 0 || dspp->resumeoff != 0); 2357 boolean_t book_resuming = resuming; 2358 2359 dsl_dataset_t *to_ds = dspp->to_ds; 2360 zfs_bookmark_phys_t *ancestor_zb = &dspp->ancestor_zb; 2361 dsl_pool_t *dp = dspp->dp; 2362 void *tag = dspp->tag; 2363 2364 err = dmu_objset_from_ds(to_ds, &os); 2365 if (err != 0) { 2366 dsl_pool_rele(dp, tag); 2367 return (err); 2368 } 2369 2370 /* 2371 * If this is a non-raw send of an encrypted ds, we can ensure that 2372 * the objset_phys_t is authenticated. This is safe because this is 2373 * either a snapshot or we have owned the dataset, ensuring that 2374 * it can't be modified. 2375 */ 2376 if (!dspp->rawok && os->os_encrypted && 2377 arc_is_unauthenticated(os->os_phys_buf)) { 2378 zbookmark_phys_t zb; 2379 2380 SET_BOOKMARK(&zb, to_ds->ds_object, ZB_ROOT_OBJECT, 2381 ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2382 err = arc_untransform(os->os_phys_buf, os->os_spa, 2383 &zb, B_FALSE); 2384 if (err != 0) { 2385 dsl_pool_rele(dp, tag); 2386 return (err); 2387 } 2388 2389 ASSERT0(arc_is_unauthenticated(os->os_phys_buf)); 2390 } 2391 2392 if ((err = setup_featureflags(dspp, os, &featureflags)) != 0) { 2393 dsl_pool_rele(dp, tag); 2394 return (err); 2395 } 2396 2397 /* 2398 * If we're doing a redacted send, hold the bookmark's redaction list. 2399 */ 2400 if (dspp->redactbook != NULL) { 2401 err = dsl_redaction_list_hold_obj(dp, 2402 dspp->redactbook->zbm_redaction_obj, FTAG, 2403 &redact_rl); 2404 if (err != 0) { 2405 dsl_pool_rele(dp, tag); 2406 return (SET_ERROR(EINVAL)); 2407 } 2408 dsl_redaction_list_long_hold(dp, redact_rl, FTAG); 2409 } 2410 2411 /* 2412 * If we're sending from a redaction bookmark, hold the redaction list 2413 * so that we can consider sending the redacted blocks. 2414 */ 2415 if (ancestor_zb->zbm_redaction_obj != 0) { 2416 err = dsl_redaction_list_hold_obj(dp, 2417 ancestor_zb->zbm_redaction_obj, FTAG, &from_rl); 2418 if (err != 0) { 2419 if (redact_rl != NULL) { 2420 dsl_redaction_list_long_rele(redact_rl, FTAG); 2421 dsl_redaction_list_rele(redact_rl, FTAG); 2422 } 2423 dsl_pool_rele(dp, tag); 2424 return (SET_ERROR(EINVAL)); 2425 } 2426 dsl_redaction_list_long_hold(dp, from_rl, FTAG); 2427 } 2428 2429 dsl_dataset_long_hold(to_ds, FTAG); 2430 2431 from_arg = kmem_zalloc(sizeof (*from_arg), KM_SLEEP); 2432 to_arg = kmem_zalloc(sizeof (*to_arg), KM_SLEEP); 2433 rlt_arg = kmem_zalloc(sizeof (*rlt_arg), KM_SLEEP); 2434 smt_arg = kmem_zalloc(sizeof (*smt_arg), KM_SLEEP); 2435 srt_arg = kmem_zalloc(sizeof (*srt_arg), KM_SLEEP); 2436 2437 drr = create_begin_record(dspp, os, featureflags); 2438 dssp = setup_send_progress(dspp); 2439 2440 dsc.dsc_drr = drr; 2441 dsc.dsc_dso = dspp->dso; 2442 dsc.dsc_os = os; 2443 dsc.dsc_off = dspp->off; 2444 dsc.dsc_toguid = dsl_dataset_phys(to_ds)->ds_guid; 2445 dsc.dsc_fromtxg = fromtxg; 2446 dsc.dsc_pending_op = PENDING_NONE; 2447 dsc.dsc_featureflags = featureflags; 2448 dsc.dsc_resume_object = dspp->resumeobj; 2449 dsc.dsc_resume_offset = dspp->resumeoff; 2450 2451 dsl_pool_rele(dp, tag); 2452 2453 void *payload = NULL; 2454 size_t payload_len = 0; 2455 nvlist_t *nvl = fnvlist_alloc(); 2456 2457 /* 2458 * If we're doing a redacted send, we include the snapshots we're 2459 * redacted with respect to so that the target system knows what send 2460 * streams can be correctly received on top of this dataset. If we're 2461 * instead sending a redacted dataset, we include the snapshots that the 2462 * dataset was created with respect to. 2463 */ 2464 if (dspp->redactbook != NULL) { 2465 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, 2466 redact_rl->rl_phys->rlp_snaps, 2467 redact_rl->rl_phys->rlp_num_snaps); 2468 } else if (dsl_dataset_feature_is_active(to_ds, 2469 SPA_FEATURE_REDACTED_DATASETS)) { 2470 uint64_t *tods_guids; 2471 uint64_t length; 2472 VERIFY(dsl_dataset_get_uint64_array_feature(to_ds, 2473 SPA_FEATURE_REDACTED_DATASETS, &length, &tods_guids)); 2474 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_SNAPS, tods_guids, 2475 length); 2476 } 2477 2478 /* 2479 * If we're sending from a redaction bookmark, then we should retrieve 2480 * the guids of that bookmark so we can send them over the wire. 2481 */ 2482 if (from_rl != NULL) { 2483 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS, 2484 from_rl->rl_phys->rlp_snaps, 2485 from_rl->rl_phys->rlp_num_snaps); 2486 } 2487 2488 /* 2489 * If the snapshot we're sending from is redacted, include the redaction 2490 * list in the stream. 2491 */ 2492 if (dspp->numfromredactsnaps != NUM_SNAPS_NOT_REDACTED) { 2493 ASSERT3P(from_rl, ==, NULL); 2494 fnvlist_add_uint64_array(nvl, BEGINNV_REDACT_FROM_SNAPS, 2495 dspp->fromredactsnaps, (uint_t)dspp->numfromredactsnaps); 2496 if (dspp->numfromredactsnaps > 0) { 2497 kmem_free(dspp->fromredactsnaps, 2498 dspp->numfromredactsnaps * sizeof (uint64_t)); 2499 dspp->fromredactsnaps = NULL; 2500 } 2501 } 2502 2503 if (resuming || book_resuming) { 2504 err = setup_resume_points(dspp, to_arg, from_arg, 2505 rlt_arg, smt_arg, resuming, os, redact_rl, nvl); 2506 if (err != 0) 2507 goto out; 2508 } 2509 2510 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 2511 uint64_t ivset_guid = (ancestor_zb != NULL) ? 2512 ancestor_zb->zbm_ivset_guid : 0; 2513 nvlist_t *keynvl = NULL; 2514 ASSERT(os->os_encrypted); 2515 2516 err = dsl_crypto_populate_key_nvlist(os, ivset_guid, 2517 &keynvl); 2518 if (err != 0) { 2519 fnvlist_free(nvl); 2520 goto out; 2521 } 2522 2523 fnvlist_add_nvlist(nvl, "crypt_keydata", keynvl); 2524 fnvlist_free(keynvl); 2525 } 2526 2527 if (!nvlist_empty(nvl)) { 2528 payload = fnvlist_pack(nvl, &payload_len); 2529 drr->drr_payloadlen = payload_len; 2530 } 2531 2532 fnvlist_free(nvl); 2533 err = dump_record(&dsc, payload, payload_len); 2534 fnvlist_pack_free(payload, payload_len); 2535 if (err != 0) { 2536 err = dsc.dsc_err; 2537 goto out; 2538 } 2539 2540 setup_to_thread(to_arg, os, dssp, fromtxg, dspp->rawok); 2541 setup_from_thread(from_arg, from_rl, dssp); 2542 setup_redact_list_thread(rlt_arg, dspp, redact_rl, dssp); 2543 setup_merge_thread(smt_arg, dspp, from_arg, to_arg, rlt_arg, os); 2544 setup_reader_thread(srt_arg, dspp, smt_arg, featureflags); 2545 2546 range = bqueue_dequeue(&srt_arg->q); 2547 while (err == 0 && !range->eos_marker) { 2548 err = do_dump(&dsc, range); 2549 range = get_next_range(&srt_arg->q, range); 2550 if (issig(JUSTLOOKING) && issig(FORREAL)) 2551 err = SET_ERROR(EINTR); 2552 } 2553 2554 /* 2555 * If we hit an error or are interrupted, cancel our worker threads and 2556 * clear the queue of any pending records. The threads will pass the 2557 * cancel up the tree of worker threads, and each one will clean up any 2558 * pending records before exiting. 2559 */ 2560 if (err != 0) { 2561 srt_arg->cancel = B_TRUE; 2562 while (!range->eos_marker) { 2563 range = get_next_range(&srt_arg->q, range); 2564 } 2565 } 2566 range_free(range); 2567 2568 bqueue_destroy(&srt_arg->q); 2569 bqueue_destroy(&smt_arg->q); 2570 if (dspp->redactbook != NULL) 2571 bqueue_destroy(&rlt_arg->q); 2572 bqueue_destroy(&to_arg->q); 2573 bqueue_destroy(&from_arg->q); 2574 2575 if (err == 0 && srt_arg->error != 0) 2576 err = srt_arg->error; 2577 2578 if (err != 0) 2579 goto out; 2580 2581 if (dsc.dsc_pending_op != PENDING_NONE) 2582 if (dump_record(&dsc, NULL, 0) != 0) 2583 err = SET_ERROR(EINTR); 2584 2585 if (err != 0) { 2586 if (err == EINTR && dsc.dsc_err != 0) 2587 err = dsc.dsc_err; 2588 goto out; 2589 } 2590 2591 /* 2592 * Send the DRR_END record if this is not a saved stream. 2593 * Otherwise, the omitted DRR_END record will signal to 2594 * the receive side that the stream is incomplete. 2595 */ 2596 if (!dspp->savedok) { 2597 bzero(drr, sizeof (dmu_replay_record_t)); 2598 drr->drr_type = DRR_END; 2599 drr->drr_u.drr_end.drr_checksum = dsc.dsc_zc; 2600 drr->drr_u.drr_end.drr_toguid = dsc.dsc_toguid; 2601 2602 if (dump_record(&dsc, NULL, 0) != 0) 2603 err = dsc.dsc_err; 2604 } 2605 out: 2606 mutex_enter(&to_ds->ds_sendstream_lock); 2607 list_remove(&to_ds->ds_sendstreams, dssp); 2608 mutex_exit(&to_ds->ds_sendstream_lock); 2609 2610 VERIFY(err != 0 || (dsc.dsc_sent_begin && 2611 (dsc.dsc_sent_end || dspp->savedok))); 2612 2613 kmem_free(drr, sizeof (dmu_replay_record_t)); 2614 kmem_free(dssp, sizeof (dmu_sendstatus_t)); 2615 kmem_free(from_arg, sizeof (*from_arg)); 2616 kmem_free(to_arg, sizeof (*to_arg)); 2617 kmem_free(rlt_arg, sizeof (*rlt_arg)); 2618 kmem_free(smt_arg, sizeof (*smt_arg)); 2619 kmem_free(srt_arg, sizeof (*srt_arg)); 2620 2621 dsl_dataset_long_rele(to_ds, FTAG); 2622 if (from_rl != NULL) { 2623 dsl_redaction_list_long_rele(from_rl, FTAG); 2624 dsl_redaction_list_rele(from_rl, FTAG); 2625 } 2626 if (redact_rl != NULL) { 2627 dsl_redaction_list_long_rele(redact_rl, FTAG); 2628 dsl_redaction_list_rele(redact_rl, FTAG); 2629 } 2630 2631 return (err); 2632 } 2633 2634 int 2635 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 2636 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok, 2637 boolean_t rawok, boolean_t savedok, int outfd, offset_t *off, 2638 dmu_send_outparams_t *dsop) 2639 { 2640 int err; 2641 dsl_dataset_t *fromds; 2642 ds_hold_flags_t dsflags; 2643 struct dmu_send_params dspp = {0}; 2644 dspp.embedok = embedok; 2645 dspp.large_block_ok = large_block_ok; 2646 dspp.compressok = compressok; 2647 dspp.outfd = outfd; 2648 dspp.off = off; 2649 dspp.dso = dsop; 2650 dspp.tag = FTAG; 2651 dspp.rawok = rawok; 2652 dspp.savedok = savedok; 2653 2654 dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2655 err = dsl_pool_hold(pool, FTAG, &dspp.dp); 2656 if (err != 0) 2657 return (err); 2658 2659 err = dsl_dataset_hold_obj_flags(dspp.dp, tosnap, dsflags, FTAG, 2660 &dspp.to_ds); 2661 if (err != 0) { 2662 dsl_pool_rele(dspp.dp, FTAG); 2663 return (err); 2664 } 2665 2666 if (fromsnap != 0) { 2667 err = dsl_dataset_hold_obj_flags(dspp.dp, fromsnap, dsflags, 2668 FTAG, &fromds); 2669 if (err != 0) { 2670 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG); 2671 dsl_pool_rele(dspp.dp, FTAG); 2672 return (err); 2673 } 2674 dspp.ancestor_zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 2675 dspp.ancestor_zb.zbm_creation_txg = 2676 dsl_dataset_phys(fromds)->ds_creation_txg; 2677 dspp.ancestor_zb.zbm_creation_time = 2678 dsl_dataset_phys(fromds)->ds_creation_time; 2679 2680 if (dsl_dataset_is_zapified(fromds)) { 2681 (void) zap_lookup(dspp.dp->dp_meta_objset, 2682 fromds->ds_object, DS_FIELD_IVSET_GUID, 8, 1, 2683 &dspp.ancestor_zb.zbm_ivset_guid); 2684 } 2685 2686 /* See dmu_send for the reasons behind this. */ 2687 uint64_t *fromredact; 2688 2689 if (!dsl_dataset_get_uint64_array_feature(fromds, 2690 SPA_FEATURE_REDACTED_DATASETS, 2691 &dspp.numfromredactsnaps, 2692 &fromredact)) { 2693 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED; 2694 } else if (dspp.numfromredactsnaps > 0) { 2695 uint64_t size = dspp.numfromredactsnaps * 2696 sizeof (uint64_t); 2697 dspp.fromredactsnaps = kmem_zalloc(size, KM_SLEEP); 2698 bcopy(fromredact, dspp.fromredactsnaps, size); 2699 } 2700 2701 boolean_t is_before = 2702 dsl_dataset_is_before(dspp.to_ds, fromds, 0); 2703 dspp.is_clone = (dspp.to_ds->ds_dir != 2704 fromds->ds_dir); 2705 dsl_dataset_rele(fromds, FTAG); 2706 if (!is_before) { 2707 dsl_pool_rele(dspp.dp, FTAG); 2708 err = SET_ERROR(EXDEV); 2709 } else { 2710 err = dmu_send_impl(&dspp); 2711 } 2712 } else { 2713 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED; 2714 err = dmu_send_impl(&dspp); 2715 } 2716 dsl_dataset_rele(dspp.to_ds, FTAG); 2717 return (err); 2718 } 2719 2720 int 2721 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 2722 boolean_t large_block_ok, boolean_t compressok, boolean_t rawok, 2723 boolean_t savedok, uint64_t resumeobj, uint64_t resumeoff, 2724 const char *redactbook, int outfd, offset_t *off, 2725 dmu_send_outparams_t *dsop) 2726 { 2727 int err = 0; 2728 ds_hold_flags_t dsflags; 2729 boolean_t owned = B_FALSE; 2730 dsl_dataset_t *fromds = NULL; 2731 zfs_bookmark_phys_t book = {0}; 2732 struct dmu_send_params dspp = {0}; 2733 2734 dsflags = (rawok) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2735 dspp.tosnap = tosnap; 2736 dspp.embedok = embedok; 2737 dspp.large_block_ok = large_block_ok; 2738 dspp.compressok = compressok; 2739 dspp.outfd = outfd; 2740 dspp.off = off; 2741 dspp.dso = dsop; 2742 dspp.tag = FTAG; 2743 dspp.resumeobj = resumeobj; 2744 dspp.resumeoff = resumeoff; 2745 dspp.rawok = rawok; 2746 dspp.savedok = savedok; 2747 2748 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 2749 return (SET_ERROR(EINVAL)); 2750 2751 err = dsl_pool_hold(tosnap, FTAG, &dspp.dp); 2752 if (err != 0) 2753 return (err); 2754 2755 if (strchr(tosnap, '@') == NULL && spa_writeable(dspp.dp->dp_spa)) { 2756 /* 2757 * We are sending a filesystem or volume. Ensure 2758 * that it doesn't change by owning the dataset. 2759 */ 2760 2761 if (savedok) { 2762 /* 2763 * We are looking for the dataset that represents the 2764 * partially received send stream. If this stream was 2765 * received as a new snapshot of an existing dataset, 2766 * this will be saved in a hidden clone named 2767 * "<pool>/<dataset>/%recv". Otherwise, the stream 2768 * will be saved in the live dataset itself. In 2769 * either case we need to use dsl_dataset_own_force() 2770 * because the stream is marked as inconsistent, 2771 * which would normally make it unavailable to be 2772 * owned. 2773 */ 2774 char *name = kmem_asprintf("%s/%s", tosnap, 2775 recv_clone_name); 2776 err = dsl_dataset_own_force(dspp.dp, name, dsflags, 2777 FTAG, &dspp.to_ds); 2778 if (err == ENOENT) { 2779 err = dsl_dataset_own_force(dspp.dp, tosnap, 2780 dsflags, FTAG, &dspp.to_ds); 2781 } 2782 2783 if (err == 0) { 2784 err = zap_lookup(dspp.dp->dp_meta_objset, 2785 dspp.to_ds->ds_object, 2786 DS_FIELD_RESUME_TOGUID, 8, 1, 2787 &dspp.saved_guid); 2788 } 2789 2790 if (err == 0) { 2791 err = zap_lookup(dspp.dp->dp_meta_objset, 2792 dspp.to_ds->ds_object, 2793 DS_FIELD_RESUME_TONAME, 1, 2794 sizeof (dspp.saved_toname), 2795 dspp.saved_toname); 2796 } 2797 if (err != 0) 2798 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG); 2799 2800 kmem_strfree(name); 2801 } else { 2802 err = dsl_dataset_own(dspp.dp, tosnap, dsflags, 2803 FTAG, &dspp.to_ds); 2804 } 2805 owned = B_TRUE; 2806 } else { 2807 err = dsl_dataset_hold_flags(dspp.dp, tosnap, dsflags, FTAG, 2808 &dspp.to_ds); 2809 } 2810 2811 if (err != 0) { 2812 dsl_pool_rele(dspp.dp, FTAG); 2813 return (err); 2814 } 2815 2816 if (redactbook != NULL) { 2817 char path[ZFS_MAX_DATASET_NAME_LEN]; 2818 (void) strlcpy(path, tosnap, sizeof (path)); 2819 char *at = strchr(path, '@'); 2820 if (at == NULL) { 2821 err = EINVAL; 2822 } else { 2823 (void) snprintf(at, sizeof (path) - (at - path), "#%s", 2824 redactbook); 2825 err = dsl_bookmark_lookup(dspp.dp, path, 2826 NULL, &book); 2827 dspp.redactbook = &book; 2828 } 2829 } 2830 2831 if (err != 0) { 2832 dsl_pool_rele(dspp.dp, FTAG); 2833 if (owned) 2834 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG); 2835 else 2836 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG); 2837 return (err); 2838 } 2839 2840 if (fromsnap != NULL) { 2841 zfs_bookmark_phys_t *zb = &dspp.ancestor_zb; 2842 int fsnamelen; 2843 if (strpbrk(tosnap, "@#") != NULL) 2844 fsnamelen = strpbrk(tosnap, "@#") - tosnap; 2845 else 2846 fsnamelen = strlen(tosnap); 2847 2848 /* 2849 * If the fromsnap is in a different filesystem, then 2850 * mark the send stream as a clone. 2851 */ 2852 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 2853 (fromsnap[fsnamelen] != '@' && 2854 fromsnap[fsnamelen] != '#')) { 2855 dspp.is_clone = B_TRUE; 2856 } 2857 2858 if (strchr(fromsnap, '@') != NULL) { 2859 err = dsl_dataset_hold(dspp.dp, fromsnap, FTAG, 2860 &fromds); 2861 2862 if (err != 0) { 2863 ASSERT3P(fromds, ==, NULL); 2864 } else { 2865 /* 2866 * We need to make a deep copy of the redact 2867 * snapshots of the from snapshot, because the 2868 * array will be freed when we evict from_ds. 2869 */ 2870 uint64_t *fromredact; 2871 if (!dsl_dataset_get_uint64_array_feature( 2872 fromds, SPA_FEATURE_REDACTED_DATASETS, 2873 &dspp.numfromredactsnaps, 2874 &fromredact)) { 2875 dspp.numfromredactsnaps = 2876 NUM_SNAPS_NOT_REDACTED; 2877 } else if (dspp.numfromredactsnaps > 0) { 2878 uint64_t size = 2879 dspp.numfromredactsnaps * 2880 sizeof (uint64_t); 2881 dspp.fromredactsnaps = kmem_zalloc(size, 2882 KM_SLEEP); 2883 bcopy(fromredact, dspp.fromredactsnaps, 2884 size); 2885 } 2886 if (!dsl_dataset_is_before(dspp.to_ds, fromds, 2887 0)) { 2888 err = SET_ERROR(EXDEV); 2889 } else { 2890 zb->zbm_creation_txg = 2891 dsl_dataset_phys(fromds)-> 2892 ds_creation_txg; 2893 zb->zbm_creation_time = 2894 dsl_dataset_phys(fromds)-> 2895 ds_creation_time; 2896 zb->zbm_guid = 2897 dsl_dataset_phys(fromds)->ds_guid; 2898 zb->zbm_redaction_obj = 0; 2899 2900 if (dsl_dataset_is_zapified(fromds)) { 2901 (void) zap_lookup( 2902 dspp.dp->dp_meta_objset, 2903 fromds->ds_object, 2904 DS_FIELD_IVSET_GUID, 8, 1, 2905 &zb->zbm_ivset_guid); 2906 } 2907 } 2908 dsl_dataset_rele(fromds, FTAG); 2909 } 2910 } else { 2911 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED; 2912 err = dsl_bookmark_lookup(dspp.dp, fromsnap, dspp.to_ds, 2913 zb); 2914 if (err == EXDEV && zb->zbm_redaction_obj != 0 && 2915 zb->zbm_guid == 2916 dsl_dataset_phys(dspp.to_ds)->ds_guid) 2917 err = 0; 2918 } 2919 2920 if (err == 0) { 2921 /* dmu_send_impl will call dsl_pool_rele for us. */ 2922 err = dmu_send_impl(&dspp); 2923 } else { 2924 dsl_pool_rele(dspp.dp, FTAG); 2925 } 2926 } else { 2927 dspp.numfromredactsnaps = NUM_SNAPS_NOT_REDACTED; 2928 err = dmu_send_impl(&dspp); 2929 } 2930 if (owned) 2931 dsl_dataset_disown(dspp.to_ds, dsflags, FTAG); 2932 else 2933 dsl_dataset_rele_flags(dspp.to_ds, dsflags, FTAG); 2934 return (err); 2935 } 2936 2937 static int 2938 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed, 2939 uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep) 2940 { 2941 int err = 0; 2942 uint64_t size; 2943 /* 2944 * Assume that space (both on-disk and in-stream) is dominated by 2945 * data. We will adjust for indirect blocks and the copies property, 2946 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 2947 */ 2948 2949 uint64_t recordsize; 2950 uint64_t record_count; 2951 objset_t *os; 2952 VERIFY0(dmu_objset_from_ds(ds, &os)); 2953 2954 /* Assume all (uncompressed) blocks are recordsize. */ 2955 if (zfs_override_estimate_recordsize != 0) { 2956 recordsize = zfs_override_estimate_recordsize; 2957 } else if (os->os_phys->os_type == DMU_OST_ZVOL) { 2958 err = dsl_prop_get_int_ds(ds, 2959 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize); 2960 } else { 2961 err = dsl_prop_get_int_ds(ds, 2962 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize); 2963 } 2964 if (err != 0) 2965 return (err); 2966 record_count = uncompressed / recordsize; 2967 2968 /* 2969 * If we're estimating a send size for a compressed stream, use the 2970 * compressed data size to estimate the stream size. Otherwise, use the 2971 * uncompressed data size. 2972 */ 2973 size = stream_compressed ? compressed : uncompressed; 2974 2975 /* 2976 * Subtract out approximate space used by indirect blocks. 2977 * Assume most space is used by data blocks (non-indirect, non-dnode). 2978 * Assume no ditto blocks or internal fragmentation. 2979 * 2980 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 2981 * block. 2982 */ 2983 size -= record_count * sizeof (blkptr_t); 2984 2985 /* Add in the space for the record associated with each block. */ 2986 size += record_count * sizeof (dmu_replay_record_t); 2987 2988 *sizep = size; 2989 2990 return (0); 2991 } 2992 2993 int 2994 dmu_send_estimate_fast(dsl_dataset_t *origds, dsl_dataset_t *fromds, 2995 zfs_bookmark_phys_t *frombook, boolean_t stream_compressed, 2996 boolean_t saved, uint64_t *sizep) 2997 { 2998 int err; 2999 dsl_dataset_t *ds = origds; 3000 uint64_t uncomp, comp; 3001 3002 ASSERT(dsl_pool_config_held(origds->ds_dir->dd_pool)); 3003 ASSERT(fromds == NULL || frombook == NULL); 3004 3005 /* 3006 * If this is a saved send we may actually be sending 3007 * from the %recv clone used for resuming. 3008 */ 3009 if (saved) { 3010 objset_t *mos = origds->ds_dir->dd_pool->dp_meta_objset; 3011 uint64_t guid; 3012 char dsname[ZFS_MAX_DATASET_NAME_LEN + 6]; 3013 3014 dsl_dataset_name(origds, dsname); 3015 (void) strcat(dsname, "/"); 3016 (void) strcat(dsname, recv_clone_name); 3017 3018 err = dsl_dataset_hold(origds->ds_dir->dd_pool, 3019 dsname, FTAG, &ds); 3020 if (err != ENOENT && err != 0) { 3021 return (err); 3022 } else if (err == ENOENT) { 3023 ds = origds; 3024 } 3025 3026 /* check that this dataset has partially received data */ 3027 err = zap_lookup(mos, ds->ds_object, 3028 DS_FIELD_RESUME_TOGUID, 8, 1, &guid); 3029 if (err != 0) { 3030 err = SET_ERROR(err == ENOENT ? EINVAL : err); 3031 goto out; 3032 } 3033 3034 err = zap_lookup(mos, ds->ds_object, 3035 DS_FIELD_RESUME_TONAME, 1, sizeof (dsname), dsname); 3036 if (err != 0) { 3037 err = SET_ERROR(err == ENOENT ? EINVAL : err); 3038 goto out; 3039 } 3040 } 3041 3042 /* tosnap must be a snapshot or the target of a saved send */ 3043 if (!ds->ds_is_snapshot && ds == origds) 3044 return (SET_ERROR(EINVAL)); 3045 3046 if (fromds != NULL) { 3047 uint64_t used; 3048 if (!fromds->ds_is_snapshot) { 3049 err = SET_ERROR(EINVAL); 3050 goto out; 3051 } 3052 3053 if (!dsl_dataset_is_before(ds, fromds, 0)) { 3054 err = SET_ERROR(EXDEV); 3055 goto out; 3056 } 3057 3058 err = dsl_dataset_space_written(fromds, ds, &used, &comp, 3059 &uncomp); 3060 if (err != 0) 3061 goto out; 3062 } else if (frombook != NULL) { 3063 uint64_t used; 3064 err = dsl_dataset_space_written_bookmark(frombook, ds, &used, 3065 &comp, &uncomp); 3066 if (err != 0) 3067 goto out; 3068 } else { 3069 uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 3070 comp = dsl_dataset_phys(ds)->ds_compressed_bytes; 3071 } 3072 3073 err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp, 3074 stream_compressed, sizep); 3075 /* 3076 * Add the size of the BEGIN and END records to the estimate. 3077 */ 3078 *sizep += 2 * sizeof (dmu_replay_record_t); 3079 3080 out: 3081 if (ds != origds) 3082 dsl_dataset_rele(ds, FTAG); 3083 return (err); 3084 } 3085 3086 /* BEGIN CSTYLED */ 3087 ZFS_MODULE_PARAM(zfs_send, zfs_send_, corrupt_data, INT, ZMOD_RW, 3088 "Allow sending corrupt data"); 3089 3090 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_length, INT, ZMOD_RW, 3091 "Maximum send queue length"); 3092 3093 ZFS_MODULE_PARAM(zfs_send, zfs_send_, unmodified_spill_blocks, INT, ZMOD_RW, 3094 "Send unmodified spill blocks"); 3095 3096 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_length, INT, ZMOD_RW, 3097 "Maximum send queue length for non-prefetch queues"); 3098 3099 ZFS_MODULE_PARAM(zfs_send, zfs_send_, queue_ff, INT, ZMOD_RW, 3100 "Send queue fill fraction"); 3101 3102 ZFS_MODULE_PARAM(zfs_send, zfs_send_, no_prefetch_queue_ff, INT, ZMOD_RW, 3103 "Send queue fill fraction for non-prefetch queues"); 3104 3105 ZFS_MODULE_PARAM(zfs_send, zfs_, override_estimate_recordsize, INT, ZMOD_RW, 3106 "Override block size estimate with fixed size"); 3107 /* END CSTYLED */ 3108